Sample records for radiation standards complex

  1. Proposed Reference Spectral Irradiance Standards to Improve Photovoltaic Concentrating System Design and Performance Evaluation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myers, D. R.; Emery, K. E.; Gueymard, C.

    2002-05-01

    This conference paper describes the American Society for Testing and Materials (ASTM), the International Electrotechnical Commission (IEC), and the International Standards Organization (ISO) standard solar terrestrial spectra (ASTM G-159, IEC-904-3, ISO 9845-1) provide standard spectra for photovoltaic performance applications. Modern terrestrial spectral radiation models and knowledge of atmospheric physics are applied to develop suggested revisions to update the reference spectra. We use a moderately complex radiative transfer model (SMARTS2) to produce the revised spectra. SMARTS2 has been validated against the complex MODTRAN radiative transfer code and spectral measurements. The model is proposed as an adjunct standard to reproduce the referencemore » spectra. The proposed spectra represent typical clear sky spectral conditions associated with sites representing reasonable photovoltaic energy production and weathering and durability climates. The proposed spectra are under consideration by ASTM.« less

  2. Standards for Radiation Effects Testing: Ensuring Scientific Rigor in the Face of Budget Realities and Modern Device Challenges

    NASA Technical Reports Server (NTRS)

    Lauenstein, J M.

    2015-01-01

    An overview is presented of the space radiation environment and its effects on electrical, electronic, and electromechanical parts. Relevant test standards and guidelines are listed. Test standards and guidelines are necessary to ensure best practices, minimize and bound systematic and random errors, and to ensure comparable results from different testers and vendors. Test standards are by their nature static but exist in a dynamic environment of advancing technology and radiation effects research. New technologies, failure mechanisms, and advancement in our understanding of known failure mechanisms drive the revision or development of test standards. Changes to standards must be weighed against their impact on cost and existing part qualifications. There must be consensus on new best practices. The complexity of some new technologies exceeds the scope of existing test standards and may require development of a guideline specific to the technology. Examples are given to illuminate the value and limitations of key radiation test standards as well as the challenges in keeping these standards up to date.

  3. Electromagnetic disturbance of electric drive system signal is extracted based on PLS

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Wang, Chuanqi; Yang, Weidong; Zhang, Xu; Jiang, Li; Hou, Shuai; Chen, Xichen

    2018-05-01

    At present ISO11452 and GB/T33014 specified by electromagnetic immunity are narrowband electromagnetic radiation, but our exposure to electromagnetic radiation at ordinary times is not only a narrowband electromagnetic radiation, and some broadband electromagnetic radiation, and even some of the more complex electromagnetic environment. In terms of Electric vehicles, electric drive system is a kind of complex electromagnetic disturbance source, is not only a narrow-band signal, there are a lot of broadband signal, this paper puts forward PLS data processing method is adopted to analyze the electric drive system of electromagnetic disturbance, this kind of method to extract the data can be provide reliable data support for future standards.

  4. ISO WD 1856. Guideline for radiation exposure of nonmetallic materials. Present status

    NASA Astrophysics Data System (ADS)

    Briskman, B. A.

    In the framework of the International Organization for Standardization (ISO) activity we started development of international standard series for space environment simulation at on-ground tests of materials. The proposal was submitted to ISO Technical Committee 20 (Aircraft and Space Vehicles), Subcommittee 14 (Space Systems and Operations) and was approved as Working Draft 15856 at the Los-Angeles meeting (1997). A draft of the first international standard "Space Environment Simulation for Radiation Tests of Materials" (1st version) was presented at the 7th International Symposium on Materials in Space Environment (Briskman et al, 1997). The 2nd version of the standard was limited to nonmetallic materials and presented at the 20th Space Simulation Conference (Briskman and Borson, 1998). It covers the testing of nonmetallic materials embracing also polymer composite materials including metal components (metal matrix composites) to simulated space radiation. The standard does not cover semiconductor materials. The types of simulated radiation include charged particles (electrons and protons), solar ultraviolet radiation, and soft X-radiation of solar flares. Synergistic interactions of the radiation environment are covered only for these natural and some induced environmental effects. This standard outlines the recommended methodology and practices for the simulation of space radiation on materials. Simulation methods are used to reproduce the effects of the space radiation environment on materials that are located on surfaces of space vehicles and behind shielding. It was discovered that the problem of radiation environment simulation is very complex and the approaches of different specialists and countries to the problem are sometimes quite opposite. To the present moment we developed seven versions of the standard. The last version is a compromise between these approaches. It was approved at the last ISO TC20/SC14/WG4 meeting in Houston, October 2002. At a splinter meeting of Int. Conference on Materials in a Space Environment, Noordwijk, Netherlands, ESA, June 2003, the experts from ESA, USA, France, Russia and Japan discussed the last version of the draft and approved it with a number of notes. A revised version of the standard will be presented this May at ISO TC20/SC14 meeting in Russia.

  5. Pros and Cons of 3D Image Fusion in Endovascular Aortic Repair: A Systematic Review and Meta-analysis.

    PubMed

    Goudeketting, Seline R; Heinen, Stefan G H; Ünlü, Çağdaş; van den Heuvel, Daniel A F; de Vries, Jean-Paul P M; van Strijen, Marco J; Sailer, Anna M

    2017-08-01

    To systematically review and meta-analyze the added value of 3-dimensional (3D) image fusion technology in endovascular aortic repair for its potential to reduce contrast media volume, radiation dose, procedure time, and fluoroscopy time. Electronic databases were systematically searched for studies published between January 2010 and March 2016 that included a control group describing 3D fusion imaging in endovascular aortic procedures. Two independent reviewers assessed the methodological quality of the included studies and extracted data on iodinated contrast volume, radiation dose, procedure time, and fluoroscopy time. The contrast use for standard and complex endovascular aortic repairs (fenestrated, branched, and chimney) were pooled using a random-effects model; outcomes are reported as the mean difference with 95% confidence intervals (CIs). Seven studies, 5 retrospective and 2 prospective, involving 921 patients were selected for analysis. The methodological quality of the studies was moderate (median 17, range 15-18). The use of fusion imaging led to an estimated mean reduction in iodinated contrast of 40.1 mL (95% CI 16.4 to 63.7, p=0.002) for standard procedures and a mean 70.7 mL (95% CI 44.8 to 96.6, p<0.001) for complex repairs. Secondary outcome measures were not pooled because of potential bias in nonrandomized data, but radiation doses, procedure times, and fluoroscopy times were lower, although not always significantly, in the fusion group in 6 of the 7 studies. Compared with the control group, 3D fusion imaging is associated with a significant reduction in the volume of contrast employed for standard and complex endovascular aortic procedures, which can be particularly important in patients with renal failure. Radiation doses, procedure times, and fluoroscopy times were reduced when 3D fusion was used.

  6. CMacIonize: Monte Carlo photoionisation and moving-mesh radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, Bert; Wood, Kenneth

    2018-02-01

    CMacIonize simulates the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given time, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code and also as a moving-mesh code.

  7. The Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE

    NASA Astrophysics Data System (ADS)

    Vandenbroucke, B.; Wood, K.

    2018-04-01

    We present the public Monte Carlo photoionization and moving-mesh radiation hydrodynamics code CMACIONIZE, which can be used to simulate the self-consistent evolution of HII regions surrounding young O and B stars, or other sources of ionizing radiation. The code combines a Monte Carlo photoionization algorithm that uses a complex mix of hydrogen, helium and several coolants in order to self-consistently solve for the ionization and temperature balance at any given type, with a standard first order hydrodynamics scheme. The code can be run as a post-processing tool to get the line emission from an existing simulation snapshot, but can also be used to run full radiation hydrodynamical simulations. Both the radiation transfer and the hydrodynamics are implemented in a general way that is independent of the grid structure that is used to discretize the system, allowing it to be run both as a standard fixed grid code, but also as a moving-mesh code.

  8. Physical and biological properties of U. S. standard endotoxin EC after exposure to ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Csako, G.; Elin, R.J.; Hochstein, H.D.

    Techniques that reduce the toxicity of bacterial endotoxins are useful for studying the relationship between structure and biological activity. We used ionizing radiation to detoxify a highly refined endotoxin preparation. U.S. standard endotoxin EC. Dose-dependent changes occurred by exposure to /sup 60/Co-radiation in the physical properties and biological activities of the endotoxin. Sodium dodecyl sulfate-polyacrylamide slab gel electrophoresis showed gradual loss of the polysaccharide components (O-side chain and R-core) from the endotoxin molecules. In contrast, although endotoxin revealed a complex absorption pattern in the UV range, radiation treatment failed to modify that pattern. Dose-related destruction of the primary toxic component,more » lipid A, was suggested by the results of activity tests: both the pyrogenicity and limulus reactivity of the endotoxin were destroyed by increasing doses of radiation. The results indicate that the detoxification is probably due to multiple effects of the ionizing radiation on bacterial lipopolysaccharides, and the action involves (i) the destruction of polysaccharide moieties and possibly (ii) the alteration of lipid A component of the endotoxin molecule.« less

  9. Atmospheric Radiative Transfer for Satellite Remote Sensing

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2008-01-01

    I will discuss the science of satellite remote sensing which involves the interpretation and inversion of radiometric measurements made from space. The goal of remote sensing is to retrieve some physical aspects of the medium which are sensitive to the radiation at specific wavelengths. This requires the use of fundamentals of atmospheric radiative transfer. I will talk about atmospheric radiation or, more specifically, about the interactions of solar radiation with aerosols and cloud particles. The focus will be more on cloudy atmospheres. I will also show how a standard one-dimensional approach, that is traced back at least 100 years, can fail to interpret the complexity of real clouds. I n these cases, three-dimensional radiative transfer should be used. Examples of satellite retrievals will illustrate the cases.

  10. Peres experiment using photons: No test for hypercomplex (quaternionic) quantum theories

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2017-06-01

    Assuming the standard axioms for quaternionic quantum theory and a spatially localized scattering interaction, the S matrix in quaternionic quantum theory is complex valued, not quaternionic. Using the standard connections between the S matrix, the forward scattering amplitude for electromagnetic wave scattering, and the index of refraction, we show that the index of refraction is necessarily complex, not quaternionic. This implies that the recent optical experiment of Procopio et al. [Nat. Commun. 8, 15044 (2017), 10.1038/ncomms15044] based on the Peres proposal does not test for hypercomplex or quaternionic quantum effects arising within the standard Hilbert space framework. Such a test requires looking at near zone fields, not radiation zone fields.

  11. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion

    PubMed Central

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-01-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425

  12. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    PubMed

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-07

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  13. The potential of polymer gel dosimeters for 3D MR-IGRT quality assurance

    NASA Astrophysics Data System (ADS)

    Roed, Y.; Ding, Y.; Wen, Z.; Wang, J.; Pinsky, L.; Ibbott, G.

    2017-05-01

    Advances in radiotherapy technology have enabled more accurate delivery of radiation doses to anatomically complex tumor volumes, while sparing surrounding tissues. The most recent advanced treatment modality combines a radiation delivery system (either Cobalt-60 therapy heads or linear accelerator) with a diagnostic magnetic resonance (MR) scanner to perform MR-image guided radiotherapy (MR-IGRT). For a radiation treatment plan to be delivered successfully with MR-IGRT the compliance with previously established criteria to validate the passing of such plans has to be confirmed. Due to the added strong magnetic field a new set of quality assurance standards has to be developed. Ideal detectors are MR-compatible, can capture complex dose distributions and can be read out with MRI. Polymer gels were investigated as potential three dimensional MR-IGRT quality assurance detectors.

  14. USAFSAM (USAF School of Aerospace Medicine) Review and Analysis of Radiofrequency Radiation Bioeffects Literature: Fourth Report.

    DTIC Science & Technology

    1984-05-01

    TEST CHART ?NATIONAL BUREAU OF STANDARDS-1963-A AD)A142 961 Repor USAFSAM-TR-84-17 USAFSAM REVIEW AND ANALYSIS OF RADIOFREQUENCY RADIATION BIOEFFECTS...1983a) AUTHOR ABSTRACT: Normal mouse B lymphocytes were tested for the ability to cap plasma antigen-antibody complexes following exposure to 2.45-GHz...treatment, the irradiated cells and the nonirradiated controls were tested for capping by the direct immunofluorescence technique. First, the cells

  15. Integrating Map Algebra and Statistical Modeling for Spatio- Temporal Analysis of Monthly Mean Daily Incident Photosynthetically Active Radiation (PAR) over a Complex Terrain.

    PubMed

    Evrendilek, Fatih

    2007-12-12

    This study aims at quantifying spatio-temporal dynamics of monthly mean dailyincident photosynthetically active radiation (PAR) over a vast and complex terrain such asTurkey. The spatial interpolation method of universal kriging, and the combination ofmultiple linear regression (MLR) models and map algebra techniques were implemented togenerate surface maps of PAR with a grid resolution of 500 x 500 m as a function of fivegeographical and 14 climatic variables. Performance of the geostatistical and MLR modelswas compared using mean prediction error (MPE), root-mean-square prediction error(RMSPE), average standard prediction error (ASE), mean standardized prediction error(MSPE), root-mean-square standardized prediction error (RMSSPE), and adjustedcoefficient of determination (R² adj. ). The best-fit MLR- and universal kriging-generatedmodels of monthly mean daily PAR were validated against an independent 37-year observeddataset of 35 climate stations derived from 160 stations across Turkey by the Jackknifingmethod. The spatial variability patterns of monthly mean daily incident PAR were moreaccurately reflected in the surface maps created by the MLR-based models than in thosecreated by the universal kriging method, in particular, for spring (May) and autumn(November). The MLR-based spatial interpolation algorithms of PAR described in thisstudy indicated the significance of the multifactor approach to understanding and mappingspatio-temporal dynamics of PAR for a complex terrain over meso-scales.

  16. Radiative model of neutrino mass with neutrino interacting MeV dark matter

    DOE PAGES

    Arhrib, Abdesslam; Bohm, Celine; Ma, Ernest; ...

    2016-04-26

    We consider the radiative generation of neutrino mass through the interactions of neutrinos with MeV dark matter. We construct a realistic renormalizable model with one scalar doublet (in additional to the standard model doublet) and one complex singlet together with three light singlet Majorana fermions, all transforming under a dark U(1)(D) symmetry which breaks softly to Z(2). We study in detail the scalar sector which supports this specific scenario and its rich phenomenology.

  17. The development of an energy-independent personnel neutron dosimeter using CR-39

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doremus, S.W.

    The addition of specialized (n,{alpha}) radiators to a standard polyethylene/CR-39 (PE/CR-39) neutron dosimetry system was evaluated for improved response to low energy neutrons. Specialized radiators consisting of poly(vinyl alcohol) complexed with boron (natural and enriched boron-10) and poly(acrylic acid) complexed with lithium (enriched lithium-6) were evaluated. The complexion of boron with poly(vinyl alcohol) was accomplished by incorporation or surface coating. The complexion of lithium with poly(acrylic acid) was exclusively performed by incorporation. The dosimeter was designed such that the specialized radiator was in contact with the CR-39 detector (i.e., the specialized radiator was sandwiched between the CR-39 detector and polyethylenemore » radiator). The neutron response of this dosimetry system was investigated using {sup 252}Cf (moderated and bare) spontaneous fission neutrons. Detectors were chemically etched and then read with a Nikon OPTIPHOT microscope. The mean response (tracks {center dot} field{sup {minus}1}) of detectors treated with specialized (n,{alpha}) radiators were evaluated against PE/CR-39 controls. The results of this investigation demonstrate that PE/CR-39 dosimeters equipped with specialized (n,{alpha}) radiators have a noticeable response to low energy neutrons that in many instances is significantly greater than that of the controls. The addition of specialized radiators to this dosimetry system did not effect (diminish) its response to fast neutrons.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cordaro, J.; Shull, D.; Farrar, M.

    Radiation monitoring in nuclear facilities is essential to safe operation of the equipment as well as protecting personnel. In specific, typical air monitoring of radioactive gases or particulate involves complex systems of valves, pumps, piping and electronics. The challenge is to measure a representative sample in areas that are radioactively contaminated. Running cables and piping to these locations is very expensive due to the containment requirements. Penetration into and out of an airborne or containment area is complex and costly. The process rooms are built with thick rebar-enforced concrete walls with glove box containment chambers inside. Figure 1 shows highmore » temperature radiation resistance cabling entering the top of a typical glove box. In some case, the entire processing area must be contained in a 'hot cell' where the only access into the chamber is via manipulators. An example is shown in Figure 2. A short range wireless network provides an ideal communication link for transmitting the data from the radiation sensor to a 'clean area', or area absent of any radiation fields or radioactive contamination. Radiation monitoring systems that protect personnel and equipment must meet stringent codes and standards due to the consequences of failure. At first glance a wired system would seem more desirable. Concerns with wireless communication include latency, jamming, spoofing, man in the middle attacks, and hacking. The Department of Energy's Savannah River National Laboratory (SRNL) has developed a prototype wireless radiation air monitoring system that address many of the concerns with wireless and allows quick deployment in radiation and contamination areas. It is stand alone and only requires a standard 120 VAC, 60 Hz power source. It is designed to be mounted or portable. The wireless link uses a National Security Agency (NSA) Suite B compliant wireless network from Fortress Technologies that is considered robust enough to be used for classified data transmission in place of NSA Type 1 devices.« less

  19. Comparative occupational radiation exposure between fixed and mobile imaging systems.

    PubMed

    Kendrick, Daniel E; Miller, Claire P; Moorehead, Pamela A; Kim, Ann H; Baele, Henry R; Wong, Virginia L; Jordan, David W; Kashyap, Vikram S

    2016-01-01

    Endovascular intervention exposes surgical staff to scattered radiation, which varies according to procedure and imaging equipment. The purpose of this study was to determine differences in occupational exposure between procedures performed with fixed imaging (FI) in an endovascular suite compared with conventional mobile imaging (MI) in a standard operating room. A series of 116 endovascular cases were performed over a 4-month interval in a dedicated endovascular suite with FI and conventional operating room with MI. All cases were performed at a single institution and radiation dose was recorded using real-time dosimetry badges from Unfors RaySafe (Hopkinton, Mass). A dosimeter was mounted in each room to establish a radiation baseline. Staff dose was recorded using individual badges worn on the torso lead. Total mean air kerma (Kar; mGy, patient dose) and mean case dose (mSv, scattered radiation) were compared between rooms and across all staff positions for cases of varying complexity. Statistical analyses for all continuous variables were performed using t test and analysis of variance where appropriate. A total of 43 cases with MI and 73 cases with FI were performed by four vascular surgeons. Total mean Kar, and case dose were significantly higher with FI compared with MI. (mean ± standard error of the mean, 523 ± 49 mGy vs 98 ± 19 mGy; P < .00001; 0.77 ± 0.03 mSv vs 0.16 ± 0.08 mSv, P < .00001). Exposure for the primary surgeon and assistant was significantly higher with FI compared with MI. Mean exposure for all cases using either imaging modality, was significantly higher for the primary surgeon and assistant than for support staff (ie, nurse, radiology technologist) beyond 6 feet from the X-ray source, indicated according to one-way analysis of variance (MI: P < .00001; FI: P < .00001). Support staff exposure was negligible and did not differ between FI and MI. Room dose stratified according to case complexity (Kar) showed statistically significantly higher scattered radiation in FI vs MI across all quartiles. The scattered radiation is several-fold higher with FI than MI across all levels of case complexity. Radiation exposure decreases with distance from the radiation source, and is negligible outside of a 6-foot radius. Modern endovascular suites allow high-fidelity imaging, yet additional strategies to minimize exposure and occupational risk are needed. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  20. DNA Damage by Ionizing Radiation: Tandem Double Lesions by Charged Particles

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Chaban, Galina M.; Wang, Dunyou; Dateo, Christopher E.

    2005-01-01

    Oxidative damages by ionizing radiation are the source of radiation-induced carcinogenesis, damage to the central nervous system, lowering of the immune response, as well as other radiation-induced damages to human health. Monte Carlo track simulations and kinetic modeling of radiation damages to the DNA employ available molecular and cellular data to simulate the biological effect of high and low LET radiation io the DNA. While the simulations predict single and double strand breaks and base damages, so far all complex lesions are the result of stochastic coincidence from independent processes. Tandem double lesions have not yet been taken into account. Unlike the standard double lesions that are produced by two separate attacks by charged particles or radicals, tandem double lesions are produced by one single attack. The standard double lesions dominate at the high dosage regime. On the other hand, tandem double lesions do not depend on stochastic coincidences and become important at the low dosage regime of particular interest to NASA. Tandem double lesions by hydroxyl radical attack of guanine in isolated DNA have been reported at a dosage of radiation as low as 10 Gy. The formation of two tandem base lesions was found to be linear with the applied doses, a characteristic of tandem lesions. However, tandem double lesions from attack by a charged particle have not been reported.

  1. BARTTest: Community-Standard Atmospheric Radiative-Transfer and Retrieval Tests

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Himes, Michael D.; Cubillos, Patricio E.; Blecic, Jasmina; Challener, Ryan C.

    2018-01-01

    Atmospheric radiative transfer (RT) codes are used both to predict planetary and brown-dwarf spectra and in retrieval algorithms to infer atmospheric chemistry, clouds, and thermal structure from observations. Observational plans, theoretical models, and scientific results depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. The community needs a suite of test calculations with analytically, numerically, or at least community-verified results. We therefore present the Bayesian Atmospheric Radiative Transfer Test Suite, or BARTTest. BARTTest has four categories of tests: analytically verified RT tests of simple atmospheres (single line in single layer, line blends, saturation, isothermal, multiple line-list combination, etc.), community-verified RT tests of complex atmospheres, synthetic retrieval tests on simulated data with known answers, and community-verified real-data retrieval tests.BARTTest is open-source software intended for community use and further development. It is available at https://github.com/ExOSPORTS/BARTTest. We propose this test suite as a standard for verifying atmospheric RT and retrieval codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G, NASA Astrophysics Data Analysis Program grant NNX13AF38G, and NASA Exoplanets Research Program grant NNX17AB62G.

  2. Tests of Exoplanet Atmospheric Radiative Transfer Codes

    NASA Astrophysics Data System (ADS)

    Harrington, Joseph; Challener, Ryan; DeLarme, Emerson; Cubillos, Patricio; Blecic, Jasmina; Foster, Austin; Garland, Justin

    2016-10-01

    Atmospheric radiative transfer codes are used both to predict planetary spectra and in retrieval algorithms to interpret data. Observational plans, theoretical models, and scientific results thus depend on the correctness of these calculations. Yet, the calculations are complex and the codes implementing them are often written without modern software-verification techniques. In the process of writing our own code, we became aware of several others with artifacts of unknown origin and even outright errors in their spectra. We present a series of tests to verify atmospheric radiative-transfer codes. These include: simple, single-line line lists that, when combined with delta-function abundance profiles, should produce a broadened line that can be verified easily; isothermal atmospheres that should produce analytically-verifiable blackbody spectra at the input temperatures; and model atmospheres with a range of complexities that can be compared to the output of other codes. We apply the tests to our own code, Bayesian Atmospheric Radiative Transfer (BART) and to several other codes. The test suite is open-source software. We propose this test suite as a standard for verifying current and future radiative transfer codes, analogous to the Held-Suarez test for general circulation models. This work was supported by NASA Planetary Atmospheres grant NX12AI69G and NASA Astrophysics Data Analysis Program grant NNX13AF38G.

  3. The Effects of Radiation on Imagery Sensors in Space

    NASA Technical Reports Server (NTRS)

    Mathis, Dylan

    2007-01-01

    Recent experience using high definition video on the International Space Station reveals camera pixel degradation due to particle radiation to be a much more significant problem with high definition cameras than with standard definition video. Although it may at first appear that increased pixel density on the imager is the logical explanation for this, the ISS implementations of high definition suggest a more complex causal and mediating factor mix. The degree of damage seems to vary from one type of camera to another, and this variation prompts a reconsideration of the possible factors in pixel loss, such as imager size, number of pixels, pixel aperture ratio, imager type (CCD or CMOS), method of error correction/concealment, and the method of compression used for recording or transmission. The problem of imager pixel loss due to particle radiation is not limited to out-of-atmosphere applications. Since particle radiation increases with altitude, it is not surprising to find anecdotal evidence that video cameras subject to many hours of airline travel show an increased incidence of pixel loss. This is even evident in some standard definition video applications, and pixel loss due to particle radiation only stands to become a more salient issue considering the continued diffusion of high definition video cameras in the marketplace.

  4. Small animal radiotherapy research platforms

    NASA Astrophysics Data System (ADS)

    Verhaegen, Frank; Granton, Patrick; Tryggestad, Erik

    2011-06-01

    Advances in conformal radiation therapy and advancements in pre-clinical radiotherapy research have recently stimulated the development of precise micro-irradiators for small animals such as mice and rats. These devices are often kilovolt x-ray radiation sources combined with high-resolution CT imaging equipment for image guidance, as the latter allows precise and accurate beam positioning. This is similar to modern human radiotherapy practice. These devices are considered a major step forward compared to the current standard of animal experimentation in cancer radiobiology research. The availability of this novel equipment enables a wide variety of pre-clinical experiments on the synergy of radiation with other therapies, complex radiation schemes, sub-target boost studies, hypofractionated radiotherapy, contrast-enhanced radiotherapy and studies of relative biological effectiveness, to name just a few examples. In this review we discuss the required irradiation and imaging capabilities of small animal radiation research platforms. We describe the need for improved small animal radiotherapy research and highlight pioneering efforts, some of which led recently to commercially available prototypes. From this, it will be clear that much further development is still needed, on both the irradiation side and imaging side. We discuss at length the need for improved treatment planning tools for small animal platforms, and the current lack of a standard therein. Finally, we mention some recent experimental work using the early animal radiation research platforms, and the potential they offer for advancing radiobiology research.

  5. Department of Energy Air Emissions Annual Report Oak Ridge Reservation, Oak Ridge, Tennessee 40 Code of Federal Regulations (CFR) 61, Subpart H Calendar Year 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Richard

    As defined in the preamble of the final rule, the entire DOE facility on the Oak Ridge Reservation (ORR) must meet the 10 mrem/yr ED standard.1 In other words, the combined ED from all radiological air emission sources from Y-12 National Security Complex (Y-12 Complex), Oak Ridge National Laboratory (ORNL), East Tennessee Technology Park (ETTP), Oak Ridge Institute for Science and Education (ORISE) and any other DOE operation on the reservation must meet the 10 mrem/yr standard. Compliance with the standard is demonstrated through emission sampling, monitoring, calculations and radiation dose modeling in accordance with approved EPA methodologies and procedures.more » DOE estimates the ED to many individuals or receptor points in the vicinity of ORR, but it is the dose to the maximally exposed individual (MEI) that determines compliance with the standard.« less

  6. Development of a low cost, GPS-based upgrade to a standard handheld gamma detector for mapping environmental radioactive contamination.

    PubMed

    Paridaens, J

    2006-02-01

    A low cost extension to a standard handheld radiation monitor was developed, allowing one to perform outdoor georeferenced gamma measurements. It consists of a commercial wireless Bluetooth GPS receiver, a commercial RS-232 to Bluetooth converter combined with a standard Bluetooth enabled pocket personal computer (PPC). The system is intended for use in difficult to access areas, typically for foot campaigns. As the operator walks, a straightforward homemade visual basic program alternately reads GPS position and gamma dose rate into the PPC, creating a data log. This allows a single operator on foot to map between 50 and 200 ha of environmental radiation per day in very rugged areas, depending on the accessibility of the terrain and the detail required. On a test field with known contamination, a spatial precision of about 5-10 m was obtainable. The device was also used to reveal complex contamination patterns in the flooding zones of a radioactively contaminated small river.

  7. Assessment of health effects in epidemiologic studies of air pollution.

    PubMed Central

    Samet, J M; Speizer, F E

    1993-01-01

    As we increasingly recognize the complexity of the pollutants in indoor and outdoor microenvironments, a broad array of inhaled mixtures has assumed scientific, public health, and regulatory importance. Few adverse effects of environmental pollutants are specific, that is, uniquely associated with a single agent; the adverse effects that might be considered in an investigation of the consequences of exposure to an inhaled complex mixture are generally nonspecific. In the context of this paper, we will refer to binary mixtures as complex, though we realize that a more precise definition of complexity would restrict the term to mixtures of three or more constituents. Their causes potentially include not only pollutant exposures through the medium of inhaled air but other environmental agents, such as infectious organisms and radiation, and inherent characteristics of the exposed persons, such as atopy. We review the outcome measures that have been used in epidemiologic studies of the health effects of single pollutants and complex mixtures. Some of these outcome measures have been carefully standardized, whereas others need similar standardization and modification to improve sensitivity and specificity for investigating the health effects of air pollution. PMID:8206024

  8. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  9. Urban-Small Building Complex Environment: W07US Stability Analysis and Inter-Study Comparison, Volume AS-2

    DTIC Science & Technology

    2008-05-01

    pyranometer (Kipp/Zonen-CM3). A Campbell CR23X micro-logger recorded the standard meteorological parameters in 1-min averages. 3 Figure 2... Pyranometer Kipp/Zonen CM3 Watts/meter2 Net solar radiation Net radiometer Kipp/Zonen NR-LITE Watts/meter2 Table 4. W07US tower configuration. Tower Number

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, James

    Atmospheric Radiation Measurement (ARM) Program standard data format is NetCDF 3 (Network Common Data Form). The object of this tutorial is to provide a basic introduction to NetCDF with an emphasis on aspects of the ARM application of NetCDF. The goal is to provide basic instructions for reading and visualizing ARM NetCDF data with the expectation that these examples can then be applied to more complex applications.

  11. 21 CFR 14.120 - Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...

  12. 21 CFR 14.120 - Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...

  13. 21 CFR 14.120 - Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...

  14. 21 CFR 14.120 - Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...

  15. 21 CFR 14.120 - Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Radiation Safety Standards Committee (TEPRSSC). 14.120 Section 14.120 Food and Drugs FOOD AND DRUG... Technical Electronic Products Radiation Safety Standards Committee § 14.120 Establishment of the Technical Electronic Product Radiation Safety Standards Committee (TEPRSSC). The Technical Electronic Product Radiation...

  16. Management of surgical and radiation induced rectourethral fistulas with an interposition muscle flap and selective buccal mucosal onlay graft.

    PubMed

    Vanni, Alex J; Buckley, Jill C; Zinman, Leonard N

    2010-12-01

    Rectourethral fistulas are a rare but devastating complication of pelvic surgery and radiation. We review, analyze and describe the management and outcomes of nonradiated and radiation/ablation induced rectourethral fistulas during a consecutive 12-year period. We performed a retrospective review of patients undergoing rectourethral fistula repair between January 1, 1998 and December 31, 2009. Patient demographics as well as preoperative, operative and postoperative data were obtained. All rectourethral fistulas were repaired using an anterior transperineal approach with a muscle interposition flap and selective use of a buccal mucosal graft urethral patch onlay. A total of 74 patients with rectourethral fistulas underwent repair with an anterior perineal approach and muscle interposition flap (68 gracilis muscle interposition flaps, 6 other muscle interposition flaps). We compared 35 nonradiated and 39 radiated/ablation induced rectourethral fistulas. Concurrent urethral strictures were present in 11% of nonradiated and 28% of radiated/ablation rectourethral fistulas. At a mean followup of 20 months 100% of nonradiated rectourethral fistulas were closed with 1 procedure while 84% of radiated/ablation rectourethral fistulas were closed in a single stage. Of the patients with nonradiated rectourethral fistulas 97% had the bowel undiverted. Of those undiverted cases 100% were without bowel complication. Of the patients with radiated/ablation rectourethral fistulas 31% required permanent fecal diversion. Successful rectourethral fistula closure can be achieved for nonradiated (100%) and radiation/ablation (84%) rectourethral fistulas using a standard anterior perineal approach with an interposition muscle flap and selective use of buccal mucosal graft, providing a standard for rectourethral fistula repair. Even the most complex radiation/ablation rectourethral fistula can be repaired avoiding permanent urinary and fecal diversion. Copyright © 2010 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Significant anti-tumor effect of bevacizumab in treatment of pineal gland glioblastoma multiforme.

    PubMed

    Mansour, Joshua; Fields, Braxton; Macomson, Samuel; Rixe, Olivier

    2014-12-01

    Glioblastoma multiforme (GBM) is the most aggressive subtype of malignant gliomas. Current standard treatment for GBM involves a combination of cytoreduction through surgical resection, followed by radiation with concomitant and adjuvant chemotherapy (temozolomide). The role of bevacizumab in the treatment of GBM continues to be a topic of ongoing research and debate. Despite aggressive treatment, these tumors remain undoubtedly fatal, especially in the elderly. Furthermore, tumors present in the pineal gland are extremely rare, accounting for only 0.1-0.4 % of all adult brain tumors, with this location adding to the complexity of treatment. We present a case of GBM, at the rare location of pineal gland, in an elderly patient who was refractory to initial standard of care treatment with radiation and concomitant and adjuvant temozolomide, but who developed a significant response to anti-angiogenic therapy using bevacizumab.

  18. [The study of the multifactorial anthropogenic effect on the ecosystems of the industrial reservoirs of "Maiak" industrial complex].

    PubMed

    Smagin, A I

    2006-01-01

    The analysis of the ecological situation of the Southern Urals industrial water reservoirs of the nuclear fuel cycle enterprise, "Mayak" PA is represented. The study was held in the 80s - early 90s. The subjects of the study were: a cooling water reservoir--Kysyl-Tash Lake (R-2) as well as a radioactive waste storage reservoir (R-10). Irtyash Lake, which is a drinking water reservoir for the city of Ozyorsk and Alabuga and Kazhakul Lakes, located on the boundary of the Eastern Urals Radioactive Trace (EURT), were taken as control ones. Such water reservoirs as Irtyash, Kysyl-Tash and the waste storage reservoir (R-10) are incorporated into the Techa River basin; while Alabuga and Kazhakul Lakes are related to the interfluve between the Techa River and the Sinara River. The complex effect from such man--caused factors as radiation, chemical and thermal to water reservoirs' ecosystems was studied. Radionuclide specific activities of the major reservoir components (water, bottom sediments, and biological objects), cumulative stock and radiation doses to the biota were determined. Assessment of the condition of biological structures of individual reservoirs was performed. It was found that the long-term complex influence of radiation, thermal and chemical factors resulted in the formation of the unique technology-induced ecosystems being a part of "Mayak" PA process cycle. Radiation doses to the fish of the cooling water reservoir and the radioactive waste storage reservoir were experimentally estimated. These doses from the incorporated beta-emitters were not less then 2-3 Gy/year. The long-term complex influence of radiation and chemical factors didn't cause any irreversible changes either in the fish population or in the ecosystem. Water purity indicators like crayfish (Astacus leptodactilus Esch) and mollusk (Anodonta cygnea L.) were found in the cooling water reservoir. The comparative analysis of the ecological situation of the reservoirs carried out on the basis of several qualitative indicators and with the help of the formalized scoring system allowed determining that the optimum ecological conditions can be observed in Irtyash Lake. The quality of the environment of Alabuga Lake is slightly lower. The ecological conditions in Kysyl-Tash Lake are up to the standard, while in Kazhakul Lake they are lower than the standard. This is the result of the natural salinization of the ecosystem. The lowest indicator was obtained for the radioactive waste storage reservoir.

  19. Radiation absorbed by a vertical cylinder in complex outdoor environments under clear sky conditions

    NASA Astrophysics Data System (ADS)

    Krys, S. A.; Brown, R. D.

    1990-06-01

    Research was conducted into the estimation of radiation absorbed by a vertical cylinder in complex outdoor environments under clear sky conditions. Two methods of estimation were employed: a cylindrical radiation thermometer (CRT) and model developed by Brown and Gillespie (1986), and the weather station model. The CRT produced an integrated temperature reading from which the radiant environment could be estimated successfully given simultaneous measurements of air temperature and wind speed. The CRT estimates compared to the measured radiation gave a correlation coefficient of 0.9499, SE=19.8 W/m2, α=99.9%. The physically-based equations (weather station model)require the inputs of data from a near by weather station and site characteristics to estimate radiation absorbed by a vertical cylinder. The correlation coefficient for the weather station model is 0.9529, SE=16.8 W/m2, α=99.9%. This model estimates short wave and long wave radiation separately; hence, this allowed further comparison to measured values. The short wave radiation was very successfully estimated: R=0.9865, SE=10.0 W/m2, α=99.9%. The long wave radiation estimates were also successful: R=0.8654, SE=15.7 W/m2, and α=99.9%. Though the correlation coefficient and standard error may suggest inaccuracy to the micrometeorologist, these estimation techniques would be extremely useful as predictors of human thermal comfort which is not a precise measure buut defined by a range. The reported methods require little specialized knowledge of micrometeorology and are vehicles for the designers of outdoor spaces to measure accurately the inherent radiant environment of outdoor spaces and provide a measurement technique to simulate or model the effect of various landscape elements on planned environments.

  20. Radiation safety of crew and passengers of air transportation in civil aviation. Provisional standards

    NASA Technical Reports Server (NTRS)

    Aksenov, A. F.; Burnazyan, A. I.

    1985-01-01

    The purpose and application of the provisional standards for radiation safety of crew and passengers in civil aviation are given. The radiation effect of cosmic radiation in flight on civil aviation air transport is described. Standard levels of radiation and conditions of radiation safety are discussed.

  1. Higgs boson mass and complex sneutrino dark matter in the supersymmetric inverse seesaw models

    NASA Astrophysics Data System (ADS)

    Guo, Jun; Kang, Zhaofeng; Li, Tianjun; Liu, Yandong

    2014-02-01

    The discovery of a relatively heavy Standard Model (SM)-like Higgs boson challenges naturalness of the minimal supersymmetric standard model (MSSM) from both Higgs and dark matter (DM) sectors. We study these two aspects in the MSSM extended by the low-scale inverse seesaw mechanism. Firstly, it admits a sizable radiative contribution to the Higgs boson mass m h , up to ~4 GeV in the case of an IR-fixed point of the coupling Y ν LH u ν c and a large sneutrino mixing. Secondly, the lightest sneutrino, highly complex as expected, is a viable thermal DM candidate. Owing to the correct DM relic density and the XENON100 experimental constraints, two scenarios survive: a Higgs-portal complex DM with mass lying around the Higgs pole or above W threshold, and a coannihilating DM with slim prospect of detection. Given an extra family of sneutrinos, both scenarios naturally work when we attempt to suppress the DM left-handed sneutrino component, confronting with enhancing m h .

  2. 76 FR 70130 - Notice of Public Meeting of the Interagency Steering Committee on Radiation Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-10

    ... Committee on Radiation Standards AGENCY: Environmental Protection Agency. ACTION: Notice of Public Meeting... Committee on Radiation Standards (ISCORS) on November 14, 2011, in Washington, DC. The purpose of ISCORS is to foster early resolution and coordination of regulatory issues associated with radiation standards...

  3. 75 FR 66092 - Notice of Public Meeting of the Interagency Steering Committee on Radiation Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Committee on Radiation Standards AGENCY: Environmental Protection Agency. ACTION: Notice of public meeting... Committee on Radiation Standards (ISCORS) on November 9, 2010, in Washington, DC. The purpose of ISCORS is to foster early resolution and coordination of regulatory issues associated with radiation standards...

  4. Advancements in internationally accepted standards for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, Harry; Derr, Donald D.; Vehar, David W.

    1993-10-01

    Three subcommittees of the American Society for Testing and Materials (ASTM) are developing standards on various aspects of radiation processing. Subcommittee E10.01 "Dosimetry for Radiation Processing" has published 9 standards on how to select and calibrate dosimeters, where to put them, how many to use, and how to use individual types of dosimeter systems. The group is also developing standards on how to use gamma, electron beam, and x-ray facilities for radiation processing, and a standard on how to treat dose uncertainties. Efforts are underway to promote inclusion of these standards into procedures now being developed by government agencies and by international groups such as the United Nations' International Consultative Group on Food Irradiation (ICGFI) in order to harmonize regulations and help avoid trade barriers. Subcommittee F10.10 "Food Processing and Packaging" has completed standards on good irradiation practices for meat and poultry and for fresh fruits, and is developing similar standards for the irradiation of seafood and spices. These food-related standards are based on practices previously published by ICGFI. Subcommittee E10.07 on "Radiation Dosimetry for Radiation Effects on Materials and Devices" principally develops standards for determining doses for radiation hardness testing of electronics. Some, including their standards on the Fricke and TLD dosimetry systems are equally useful in other radiation processing applications.

  5. Generating a heated fluid using an electromagnetic radiation-absorbing complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    A vessel including a concentrator configured to concentrate electromagnetic (EM) radiation received from an EM radiation source and a complex configured to absorb EM radiation to generate heat. The vessel is configured to receive a cool fluid from the cool fluid source, concentrate the EM radiation using the concentrator, apply the EM radiation to the complex, and transform, using the heat generated by the complex, the cool fluid to the heated fluid. The complex is at least one of consisting of copper nanoparticles, copper oxide nanoparticles, nanoshells, nanorods, carbon moieties, encapsulated nanoshells, encapsulated nanoparticles, and branched nanostructures. Further, the EMmore » radiation is at least one of EM radiation in an ultraviolet region of an electromagnetic spectrum, in a visible region of the electromagnetic spectrum, and in an infrared region of the electromagnetic spectrum.« less

  6. 10 CFR 71.47 - External radiation standards for all packages.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false External radiation standards for all packages. 71.47... MATERIAL Package Approval Standards § 71.47 External radiation standards for all packages. (a) Except as... the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external surface of the...

  7. 10 CFR 71.47 - External radiation standards for all packages.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false External radiation standards for all packages. 71.47... MATERIAL Package Approval Standards § 71.47 External radiation standards for all packages. (a) Except as... the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external surface of the...

  8. 10 CFR 71.47 - External radiation standards for all packages.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false External radiation standards for all packages. 71.47... MATERIAL Package Approval Standards § 71.47 External radiation standards for all packages. (a) Except as... the radiation level does not exceed 2 mSv/h (200 mrem/h) at any point on the external surface of the...

  9. Provisional standards of radiation safety of flight personnel and passengers in air transport of the civil aviation

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Provisional standards for radiation affecting passenger aircraft are considered. Agencies responsible for seeing that the regulations are enforced are designated while radiation sources and types of radiation are defined. Standard levels of permissible radiation are given and conditions for radiation safety are discussed. Dosimetric equipment on board aircraft is delineated and regulation effective dates are given.

  10. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manley, Stephen, E-mail: stephen.manley@ncahs.health.nsw.gov.au; Last, Andrew; Fu, Kenneth

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of ourmore » conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients.« less

  11. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards

    PubMed Central

    Manley, Stephen; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P

    2015-01-01

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients. PMID:26229680

  12. Regional cancer centre demonstrates voluntary conformity with the national Radiation Oncology Practice Standards.

    PubMed

    Manley, Stephen; Last, Andrew; Fu, Kenneth; Greenham, Stuart; Kovendy, Andrew; Shakespeare, Thomas P

    2015-06-01

    Radiation Oncology Practice Standards have been developed over the last 10 years and were published for use in Australia in 2011. Although the majority of the radiation oncology community supports the implementation of the standards, there has been no mechanism for uniform assessment or governance. North Coast Cancer Institute's public radiation oncology service is provided across three main service centres on the north coast of NSW. With a strong focus on quality management, we embraced the opportunity to demonstrate conformity with the Radiation Oncology Practice Standards. The Local Health District's Clinical Governance units were engaged to perform assessments of our conformity with the standards and this was signed off as complete on 16 December 2013. The process of demonstrating conformity with the Radiation Oncology Practice Standards has enhanced the culture of quality in our centres. We have demonstrated that self-assessment utilising trained auditors is a viable method for centres to demonstrate conformity. National implementation of the Radiation Oncology Practice Standards will benefit individual centres and the broader radiation oncology community to improve the service delivered to our patients.

  13. Grain size segregation in debris discs

    NASA Astrophysics Data System (ADS)

    Thebault, P.; Kral, Q.; Augereau, J.-C.

    2014-01-01

    Context. In most debris discs, dust grain dynamics is strongly affected by stellar radiation pressure. Because this mechanism is size-dependent, we expect dust grains to be spatially segregated according to their sizes. However, because of the complex interplay between radiation pressure, grain processing by collisions, and dynamical perturbations, this spatial segregation of the particle size distribution (PSD) has proven difficult to investigate and quantify with numerical models. Aims: We propose to thoroughly investigate this problem by using a new-generation code that can handle some of the complex coupling between dynamical and collisional effects. We intend to explore how PSDs behave in both unperturbed discs at rest and in discs pertubed by planetary objects. Methods: We used the DyCoSS code to investigate the coupled effect of collisions, radiation pressure, and dynamical perturbations in systems that have reached a steady-state. We considered two setups: a narrow ring perturbed by an exterior planet, and an extended disc into which a planet is embedded. For both setups we considered an additional unperturbed case without a planet. We also investigated the effect of possible spatial size segregation on disc images at different wavelengths. Results: We find that PSDs are always spatially segregated. The only case for which the PSD follows a standard dn ∝ s-3.5ds law is for an unperturbed narrow ring, but only within the parent-body ring itself. For all other configurations, the size distributions can strongly depart from such power laws and have steep spatial gradients. As an example, the geometrical cross-section of the disc is very rarely dominated by the smallest grains on bound orbits, as it is expected to be in standard PSDs in sq with q ≤ -3. Although the exact profiles and spatial variations of PSDs are a complex function of the set-up that is considered, we are still able to derive some reliable results that will be useful for image or SED-fitting models of observed discs.

  14. Achieving EMC Emissions Compliance for an Aeronautics Power Line Communications System

    NASA Astrophysics Data System (ADS)

    Dominiak, S.; Vos, G.; ter Meer, T.; Widmer, H.

    2012-05-01

    Transmitting data over the power distribution network - Power Line Communications (PLC) -provides an interesting solution to reducing the weight and complexity of wiring networks in commercial aircraft. One of the potential roadblocks for the introduction of this technology is achieving EMC emissions compliance. In this article an overview of the EMC conducted and radiated emissions testing for PLC- enabled aeronautics equipment is presented. Anomalies resulting from chamber resonances leading to discrepancies between the conducted emissions tests and the measured radiated emissions are identified and described. Measurements made according to the current version of the civil aeronautical EMC standard, EUROCAE ED-14F (RTCA DO-160F), show that PLC equipment can achieve full EMC emissions compliance.

  15. Principles of Sterilization of Mars Descent Vehicle Elements

    NASA Astrophysics Data System (ADS)

    Trofimov, Vladislav; Deshevaya, Elena; Khamidullina, N.; Kalashnikov, Viktor

    Due to COSPAR severe requirements to permissible microbiological contamination of elements of down-to-Mars S/C as well as complexity of their chemical composition and structure the exposure of such S/C elements to antimicrobial treatment (sterilization) at their integration requires application of a wide set of methods: chemical, ultraviolet, radiation. The report describes the analysis of all the aspects of applicable methods of treatment for cleaning of elements’ surfaces and inner contents from microbiota. The analysis showed that the most important, predictable and controllable method is radiation processing (of the elements which don’t change their properties after effective treatment). The experience of ionizing radiation application for sterilization of products for medicine, etc. shows that, depending on initial microbial contamination of lander elements, the required absorbed dose can be within the range 12 ÷ 35 kGr. The analysis of the effect of irregularity of radiation absorption in complex structure elements to the choice of radiation methodology was made and the algorithm of the choice of effective conditions of radiation treatment and control of sterilization efficiency was suggested. The important phase of establishing of the effective condition of each structure element treatment is experimental verification of real microbiological contamination in terms of S/C integration, contamination maximum decrease using another cleaning procedures (mechanical, chemical, ultraviolet) and determination of radiation resistance of spore microorganisms typical for the shops of space technology manufacturing and assembling. Proceeding from three parameters (irregularity of radiation absorption in a concrete element, its initial microbial contamination and resistance of microorganisms to the effect of radiation) the condition of the packed object sterilization is chosen, the condition that prevents secondary contamination, ensures given reliability of the treatment without final experimental microbiological verification only by simple control of the absorbed dose at critical points. All the process phases (from the choice of treatment conditions to provision of the procedure safety) are strictly regulated by Russian legislation in accordance with international standards.

  16. [RADIATION HYGIENIC MONITORING AT THE AREA OF THE LOCATION OF THE FAR EASTERN CENTER FOR RADIOACTIVE WASTE MANAGEMENT (FEC "DALRAO"--BRANCH OF FSUE "ROSRAO")].

    PubMed

    Kiselev, S M; Shandala, N K; Akhromeev, S V; Gimadova, T I; Seregin, V A; Titov, A V; Biryukova, N G

    2015-01-01

    Intensification ofactivities in the field of spent nuclear fuel (SNF) and radioactive waste (RW) management in the Far East region of Russia assumes an increase of the environmental load on the territories adjacent to the enterprise and settlements. To ensure radiation safety during works on SNF and radioactive waste management in the standard mode of operation and during the rehabilitation works in the contaminated territories, there is need for the optimization of the existing system of radiation-hygienic monitoring, aimed at the implementation of complex dynamic observation of parameters of radiation-hygienic situation and radiation amount of the population living in the vicinity of the Far Eastern Center for Radioactive Waste Management (FEC "DALRAO"). To solve this problem there is required a significant amount of total and enough structured information on the character of the formation of the radiation situation, the potential ways of the spread of man-made pollution to the surrounding area, determining the radiation load on the population living in the vicinity of the object. In this paper there are presented the results of field studies of the radiation situation at the plant FEC "DALRAO", which were obtained during the course of expedition trips in 2009-2012.

  17. How consistent are precipitation patterns predicted by GCMs in the absence of cloud radiative effects?

    NASA Astrophysics Data System (ADS)

    Popke, Dagmar; Bony, Sandrine; Mauritsen, Thorsten; Stevens, Bjorn

    2015-04-01

    Model simulations with state-of-the-art general circulation models reveal a strong disagreement concerning the simulated regional precipitation patterns and their changes with warming. The deviating precipitation response even persists when reducing the model experiment complexity to aquaplanet simulation with forced sea surface temperatures (Stevens and Bony, 2013). To assess feedbacks between clouds and radiation on precipitation responses we analyze data from 5 models performing the aquaplanet simulations of the Clouds On Off Klima Intercomparison Experiment (COOKIE), where the interaction of clouds and radiation is inhibited. Although cloud radiative effects are then disabled, the precipitation patterns among models are as diverse as with cloud radiative effects switched on. Disentangling differing model responses in such simplified experiments thus appears to be key to better understanding the simulated regional precipitation in more standard configurations. By analyzing the local moisture and moist static energy budgets in the COOKIE experiments we investigate likely causes for the disagreement among models. References Stevens, B. & S. Bony: What Are Climate Models Missing?, Science, 2013, 340, 1053-1054

  18. SEURAT: SPH scheme extended with ultraviolet line radiative transfer

    NASA Astrophysics Data System (ADS)

    Abe, Makito; Suzuki, Hiroyuki; Hasegawa, Kenji; Semelin, Benoit; Yajima, Hidenobu; Umemura, Masayuki

    2018-05-01

    We present a novel Lyman alpha (Ly α) radiative transfer code, SEURAT (SPH scheme Extended with Ultraviolet line RAdiative Transfer), where line scatterings are solved adaptively with the resolution of the smoothed particle hydrodynamics (SPH). The radiative transfer method implemented in SEURAT is based on a Monte Carlo algorithm in which the scattering and absorption by dust are also incorporated. We perform standard test calculations to verify the validity of the code; (i) emergent spectra from a static uniform sphere, (ii) emergent spectra from an expanding uniform sphere, and (iii) escape fraction from a dusty slab. Thereby, we demonstrate that our code solves the {Ly} α radiative transfer with sufficient accuracy. We emphasize that SEURAT can treat the transfer of {Ly} α photons even in highly complex systems that have significantly inhomogeneous density fields. The high adaptivity of SEURAT is desirable to solve the propagation of {Ly} α photons in the interstellar medium of young star-forming galaxies like {Ly} α emitters (LAEs). Thus, SEURAT provides a powerful tool to model the emergent spectra of {Ly} α emission, which can be compared to the observations of LAEs.

  19. 78 FR 21120 - Notice of Public Meeting of the Interagency Steering Committee on Radiation Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-09

    ... Committee on Radiation Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of public... Steering Committee on Radiation Standards (ISCORS) on May 1, 2013 in Washington, DC. The purpose of ISCORS is to foster early resolution and coordination of regulatory issues associated with radiation...

  20. 78 FR 54248 - Notice of Public Meeting of the Interagency Steering Committee on Radiation Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... Steering Committee on Radiation Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of... Steering Committee on Radiation Standards (ISCORS) on September 18, 2013 in Washington, DC. The purpose of ISCORS is to foster early resolution and coordination of regulatory issues associated with radiation...

  1. Multiscale modeling of multi-decadal trends in air pollutant concentrations and their radiative properties: the role of models in an integrated observing system

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Xing, J.; Szykman, J.; Gan, C. M.; Hogrefe, C.; Pleim, J. E.

    2015-12-01

    Air Pollution simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions across varying space and time scales. Setting and attaining lower ambient air quality standards requires an improved understanding and quantification of source attribution amongst the multiple anthropogenic and natural sources, on time scales ranging from episodic to annual and spatial scales ranging from urban to continental. Changing emission patterns over the developing regions of the world are likely to exacerbate the impacts of long-range pollutant transport on background pollutant levels, which may then impact the attainment of local air quality standards. Thus, strategies for reduction of pollution levels of surface air over a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Additionally, as short-lived climate forcers, aerosols and ozone exert regionally heterogeneous radiative forcing and influence regional climate trends. EPA's coupled WRF-CMAQ modeling system is applied over a domain encompassing the northern hemisphere for the period spanning 1990-2010. This period has witnessed significant reductions in anthropogenic emissions in North America and Europe as a result of implementation of control measures and dramatic increases across Asia associated with economic and population growth, resulting in contrasting trends in air pollutant distributions and transport patterns across the northern hemisphere. Model results (trends in pollutant concentrations, optical and radiative characteristics) across the northern hemisphere are analyzed in conjunction with surface, aloft and remote sensing measurements to contrast the differing trends in air pollution and aerosol-radiation interactions in these regions over the past two decades. Given the future LEO (TropOMI) and GEO (Sentinel-4, GEMS, and TEMPO) atmospheric chemistry satellite observing capabilities, the results from these model applications will be discussed in the context of how the new satellite observations could help constrain and reduce uncertainties in the models.

  2. UNCERTAINTY ON RADIATION DOSES ESTIMATED BY BIOLOGICAL AND RETROSPECTIVE PHYSICAL METHODS.

    PubMed

    Ainsbury, Elizabeth A; Samaga, Daniel; Della Monaca, Sara; Marrale, Maurizio; Bassinet, Celine; Burbidge, Christopher I; Correcher, Virgilio; Discher, Michael; Eakins, Jon; Fattibene, Paola; Güçlü, Inci; Higueras, Manuel; Lund, Eva; Maltar-Strmecki, Nadica; McKeever, Stephen; Rääf, Christopher L; Sholom, Sergey; Veronese, Ivan; Wieser, Albrecht; Woda, Clemens; Trompier, Francois

    2018-03-01

    Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.

  3. Provisional standards of radiation safety during flights

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Radiation effects during space flights are discussed in the context of the sources and dangers of such radiation and the radiobiological prerequisites for establishing safe levels of radiation dosage. Standard safe levels of radiation during space flight are established.

  4. ECIRS (Endoscopic Combined Intrarenal Surgery) in the Galdakao-modified supine Valdivia position: a new life for percutaneous surgery?

    PubMed

    Cracco, Cecilia Maria; Scoffone, Cesare Marco

    2011-12-01

    Percutaneous nephrolithotomy (PNL) is still the gold-standard treatment for large and/or complex renal stones. Evolution in the endoscopic instrumentation and innovation in the surgical skills improved its success rate and reduced perioperative morbidity. ECIRS (Endoscopic Combined IntraRenal Surgery) is a new way of affording PNL in a modified supine position, approaching antero-retrogradely to the renal cavities, and exploiting the full array of endourologic equipment. ECIRS summarizes the main issues recently debated about PNL. The recent literature regarding supine PNL and ECIRS has been reviewed, namely about patient positioning, synergy between operators, procedures, instrumentation, accessories and diagnostic tools, step-by-step standardization along with versatility of the surgical sequence, minimization of radiation exposure, broadening to particular and/or complex patients, limitation of post-operative renal damage. Supine PNL and ECIRS are not superior to prone PNL in terms of urological results, but guarantee undeniable anesthesiological and management advantages for both patient and operators. In particular, ECIRS requires from the surgeon a permanent mental attitude to synergy, standardized surgical steps, versatility and adherence to the ongoing clinical requirements. ECIRS can be performed also in particular cases, irrespective to age or body habitus. The use of flexible endoscopes during ECIRS contributes to minimizing radiation exposure, hemorrhagic risk and post-PNL renal damage. ECIRS may be considered an evolution of the PNL procedure. Its proposal has the merit of having triggered the critical analysis of the various PNL steps and of patient positioning, and of having transformed the old static PNL into an updated approach.

  5. Is ionizing radiation regulated more stringently than chemical carcinogens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Travis, C.C.; Pack, S.R.; Hattemer-Frey, H.A.

    1989-04-01

    It is widely believed that United States government agencies regulate exposure to ionizing radiation more stringently than exposure to chemical carcinogens. It is difficult to verify this perception, however, because chemical carcinogens and ionizing radiation are regulated using vastly different strategies. Chemical carcinogens are generally regulated individually. Regulators consider the risk of exposure to one chemical rather than the cumulative radiation exposure from all sources. Moreover, standards for chemical carcinogens are generally set in terms of quantities released or resultant environmental concentrations, while standards for ionizing radiation are set in terms of dose to the human body. Since chemicals andmore » ionizing radiation cannot be compared on the basis of equal dose to the exposed individual, standards regulating chemicals and ionizing radiation cannot be compared directly. It is feasible, however, to compare the two sets of standards on the basis of equal risk to the exposed individual, assuming that standards for chemicals and ionizing radiation are equivalent if estimated risk levels are equitable. This paper compares risk levels associated with current standards for ionizing radiation and chemical carcinogens. The authors do not attempt to determine whether either type of risk is regulated too stringently or not stringently enough but endeavor only to ascertain if ionizing radiation is actually regulated more strictly than chemical carcinogens.« less

  6. Comparison of a suspended radiation protection system versus standard lead apron for radiation exposure of a simulated interventionalist.

    PubMed

    Marichal, Daniel A; Anwar, Temoor; Kirsch, David; Clements, Jessica; Carlson, Luke; Savage, Clare; Rees, Chet R

    2011-04-01

    To evaluate the radiation protective characteristics of a system designed to enhance operator protection while eliminating weight to the body and allowing freedom of motion. Radiation doses to a mock interventionalist were measured with calibrated dosimeters in a clinical interventional suite. A standard lead apron (SLA; Pb equivalent, 0.5 mm) was compared with a suspended radiation protection system (ZeroGravity; Zgrav) that shields from the top of the head to the calves (except the right arm and left forearm) with a complex overhead motion system that eliminates weight on the operator and allows freedom of motion. Zgrav included a suspended lead apron with increased lead equivalency, greater length, proximal left arm and shoulder coverage, and a wraparound face shield of 0.5 mm Pb equivalency. A 26-cm-thick Lucite stack (ie, mock patient) created scatter during 10 controlled angiography sequences of 120 exposures each. Parameters included a field of view of 40 cm, table height of 94 cm, 124 cm from the tube to image intensifier, 50 cm from the image center to operator, 66 kVp, and 466-470 mA. Under identical conditions, average doses (SLA vs Zgrav) were 264 versus 3.4 (ratio, 78) to left axilla (P < .001), 456 versus 10.2 (ratio, 45) to left eye (P < .001), 379.4 versus 6.6 (ratio, 57) to right eye (P < .005), and 18.8 versus 1.2 (ratio, 16) to gonad (P < .001). Relative to a conventional lead apron, the Zgrav system provided a 16-78-fold decrease in radiation exposure for a mock interventionalist in a simulated clinical setting. Copyright © 2011 SIR. Published by Elsevier Inc. All rights reserved.

  7. Waste remediation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-01-17

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  8. Waste remediation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-12-29

    A system including a steam generation system and a chamber. The steam generation system includes a complex and the steam generation system is configured to receive water, concentrate electromagnetic (EM) radiation received from an EM radiation source, apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat, and transform, using the heat generated by the complex, the water to steam. The chamber is configured to receive the steam and an object, wherein the object is of medical waste, medical equipment, fabric, and fecal matter.

  9. 41 CFR 50-204.36 - Radiation standards for mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Radiation standards for mining. 50-204.36 Section 50-204.36 Public Contracts and Property Management Other Provisions Relating to Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50...

  10. 41 CFR 50-204.36 - Radiation standards for mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 1 2012-07-01 2009-07-01 true Radiation standards for mining. 50-204.36 Section 50-204.36 Public Contracts and Property Management Other Provisions Relating to Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50...

  11. 41 CFR 50-204.36 - Radiation standards for mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Radiation standards for mining. 50-204.36 Section 50-204.36 Public Contracts and Property Management Other Provisions Relating to Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50...

  12. Radiation exposure to eye lens and operator hands during endovascular procedures in hybrid operating rooms.

    PubMed

    Attigah, Nicolas; Oikonomou, Kyriakos; Hinz, Ulf; Knoch, Thomas; Demirel, Serdar; Verhoeven, Eric; Böckler, Dittmar

    2016-01-01

    The purpose of this study was to evaluate the radiation exposure of vascular surgeons' eye lens and fingers during complex endovascular procedures in modern hybrid operating rooms. Prospective, nonrandomized multicenter study design. One hundred seventy-one consecutive patients (138 male; median age, 72.5 years [interquartile range, 65-77 years]) underwent an endovascular procedure in a hybrid operating room between March 2012 and July 2013 in two vascular centers. The dose-area product (DAP), fluoroscopy time, operating time, and amount of contrast dye were registered prospectively. For radiation dose recordings, single-use dosimeters were attached at eye level and to the ring finger of the hand next to the radiation field of the operator for each endovascular procedure. Dose recordings were evaluated by an independent institution. Before the study, precursory investigations were obtained to simulate the radiation dose to eye lens and fingers with an Alderson phantome (RSD, Long Beach, Calif). Interventions were classified into six treatment categories: endovascular repair of infrarenal abdominal aneurysm (n = 65), thoracic endovascular aortic repair (n = 32), branched endovascular aortic repair for thoracoabdominal aneurysms (n = 17), fenestrated endovascular aortic repair for complex abdominal aortic aneurysm, (n = 25), iliac branched device (n = 8), and peripheral interventions (n = 24). There was a significant correlation in DAP between both lens (P < .01; r = 0.55) and finger (P < .01; r = 0.56) doses. The estimated fluoroscopy time to reach a radiation threshold of 20 mSv/y was 1404.10 minutes (90% confidence limit, 1160, 1650 minutes). According to correlation of the lens dose with the DAP an estimated cumulative DAP of 932,000 mGy/m(2) (90% confidence limit, 822,000, 1,039,000) would be critical for a threshold of 20 mSv/y for the eyes. Radiation protection is a serious issue for vascular surgeons because most complex endovascular procedures are delivering measurable radiation to the eyes. With the correlation of the DAP obtained in standard endovascular procedures a critical threshold of 20 mSv/y to the eyes can be predicted and thus an estimate of a potential harmful exposure to the eyes can be obtained. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  13. Impact of semi-annihilation of ℤ{sub 3} symmetric dark matter with radiative neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Mayumi; Toma, Takashi

    2014-09-08

    We investigate a ℤ{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken ℤ{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter inmore » ℤ{sub 2} symmetric models.« less

  14. Impact of semi-annihilation of Z{sub 3} symmetric dark matter with radiative neutrino masses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aoki, Mayumi; Toma, Takashi, E-mail: mayumi@hep.s.kanazawa-u.ac.jp, E-mail: takashi.toma@durham.ac.uk

    2014-09-01

    We investigate a Z{sub 3} symmetric model with two-loop radiative neutrino masses. Dark matter in the model is either a Dirac fermion or a complex scalar as a result of an unbroken Z{sub 3} symmetry. In addition to standard annihilation processes, semi-annihilation of the dark matter contributes to the relic density. We study the effect of the semi-annihilation in the model and find that those contributions are important to obtain the observed relic density. The experimental signatures in dark matter searches are also discussed, where some of them are expected to be different from the signatures of dark matter inmore » Z{sub 2} symmetric models.« less

  15. Federal Guidance Report No. 1: Background Material for the Development of Radiation Protection Standards (Federal Radiation Council)

    EPA Pesticide Factsheets

    This report provides required interim radiation protection recommendations. It includes recommendations for additional research which will provide a firmer basis for the formulation of radiation standards.

  16. ISO radiation sterilization standards

    NASA Astrophysics Data System (ADS)

    Lambert, Byron J.; Hansen, Joyce M.

    1998-06-01

    This presentation provides an overview of the current status of the ISO radiation sterilization standards. The ISO standards are voluntary standards which detail both the validation and routine control of the sterilization process. ISO 11137 was approved in 1994 and published in 1995. When reviewing the standard you will note that less than 20% of the standard is devoted to requirements and the remainder is guidance on how to comply with the requirements. Future standards developments in radiation sterilization are being focused on providing additional guidance. The guidance that is currently provided in informative annexes of ISO 11137 includes: device/packaging materials, dose setting methods, and dosimeters and dose measurement, currently, there are four Technical Reports being developed to provide additional guidance: 1. AAMI Draft TIR, "Radiation Sterilization Material Qualification" 2. ISO TR 13409-1996, "Sterilization of health care products — Radiation sterilization — Substantiation of 25 kGy as a sterilization dose for small or infrequent production batches" 3. ISO Draft TR, "Sterilization of health care products — Radiation sterilization Selection of a sterilization dose for a single production batch" li]4. ISO Draft TR, "Sterilization of health care products — Radiation sterilization-Product Families, Plans for Sampling and Frequency of Dose Audits."

  17. 41 CFR 50-204.36 - Radiation standards for mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 1 2013-07-01 2013-07-01 false Radiation standards for mining. 50-204.36 Section 50-204.36 Public Contracts and Property Management Other Provisions Relating to Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-20...

  18. 41 CFR 50-204.36 - Radiation standards for mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 1 2014-07-01 2014-07-01 false Radiation standards for mining. 50-204.36 Section 50-204.36 Public Contracts and Property Management Other Provisions Relating to Public Contracts PUBLIC CONTRACTS, DEPARTMENT OF LABOR 204-SAFETY AND HEALTH STANDARDS FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-20...

  19. Radiation safety standards and their application: international policies and current issues.

    PubMed

    González, Abel J

    2004-09-01

    This paper briefly describes the current policies of the United Nations Scientific Committee on the Effects of Atomic Radiation and the International Commission on Radiological Protection and how these policies are converted into international radiation safety standards by the International Atomic Energy Agency, which is the only global organization-within the United Nations family of international agencies-with a statutory mandate not only to establish such standards but also to provide for their application. It also summarizes the current status of the established corpus of such international standards, and of it foreseeable evolution, as well as of legally binding undertakings by countries around the world that are linked to these standards. Moreover, this paper also reviews some major current global issues related to the application of international standards, including the following: strengthening of national infrastructures for radiation safety, including technical cooperation programs for assisting developing countries; occupational radiation safety challenges, including the protection of pregnant workers and their unborn children, dealing with working environments with high natural radiation levels, and occupational attributability of health effects (probability of occupational causation); restricting discharges of radioactive substances into the environment: reviewing current international policies vis-a-vis the growing concern on the radiation protection of the "environment;" radiological protection of patients undergoing radiodiagnostic and radiotherapeutic procedures: the current International Action Plan; safety and security of radiation sources: post-11 September developments; preparedness and response to radiation emergencies: enhancing the international network; safe transport of radioactive materials: new apprehensions; safety of radioactive waste management: concerns and connections with radiation protection; and radioactive residues remaining after the termination of activities: radiation protection response to the forthcoming wave of decommissioning of installations with radioactive materials. The ultimate aim of this paper is to encourage information exchange, cooperation, and collaboration within the radiation protection professional community. In particular, the paper tries to facilitate consolidation of the growing international regime on radiation safety, including the expansion of legally binding undertakings by countries, the strengthening of the current corpus of international radiation safety standards, and the development of international provisions for ensuring the proper worldwide application of these standards, such as a system of international appraisals by peer review.

  20. 76 FR 29010 - Agency Information Collection Activities; Submission for OMB Review; Comment Request; Ionizing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-19

    ... for OMB Review; Comment Request; Ionizing Radiation Standard ACTION: Notice. SUMMARY: The Department... information collection request (ICR) titled, ``Ionizing Radiation Standard,'' to the Office of Management and... provisions of the Ionizing Radiation Standard specify paperwork requirements, including: Monitoring of worker...

  1. Microwave enhanced recovery of nickel-copper ore: communition and floatability aspects.

    PubMed

    Henda, R; Hermas, A; Gedye, R; Islam, M R

    2005-01-01

    A study describing the effect of microwave radiation, at a frequency of 2450 MHz, on the processes of communication and flotation of a complex sulphide nickel-copper ore is presented. Ore communication has been investigated under standard radiation-free conditions and after ore treatment in a radiated environment as a function of ore size, exposure time to radiation, and microwave power. The findings show that communication is tremendously improved by microwave radiation with values of the relative work index as low as 23% at a microwave power of 1.406 kW and after 10 s of exposure time. Communication is affected by exposure time and microwave power in a nontrivial manner. In terms of ore floatability, the experimental tests have been carried out on a sample of 75 microm in size under different exposure times. The results show that both ore concentrate recoveries and grades of nickel and copper are significantly enhanced after microwave treatment of the ore with relative increases in recovered concentrate, grade of nickel, and grade of copper of 26 wt%, 15 wt%, and 27%, respectively, at a microwave power of 1330 kW and after 30 s of exposure time.

  2. 3D Realistic Radiative Hydrodynamic Modeling of a Moderate-Mass Star: Effects of Rotation

    NASA Astrophysics Data System (ADS)

    Kitiashvili, Irina; Kosovichev, Alexander G.; Mansour, Nagi N.; Wray, Alan A.

    2018-01-01

    Recent progress in stellar observations opens new perspectives in understanding stellar evolution and structure. However, complex interactions in the turbulent radiating plasma together with effects of magnetic fields and rotation make inferences of stellar properties uncertain. The standard 1D mixing-length-based evolutionary models are not able to capture many physical processes of stellar interior dynamics, but they provide an initial approximation of the stellar structure that can be used to initialize 3D time-dependent radiative hydrodynamics simulations, based on first physical principles, that take into account the effects of turbulence, radiation, and others. In this presentation we will show simulation results from a 3D realistic modeling of an F-type main-sequence star with mass 1.47 Msun, in which the computational domain includes the upper layers of the radiation zone, the entire convection zone, and the photosphere. The simulation results provide new insight into the formation and properties of the convective overshoot region, the dynamics of the near-surface, highly turbulent layer, the structure and dynamics of granulation, and the excitation of acoustic and gravity oscillations. We will discuss the thermodynamic structure, oscillations, and effects of rotation on the dynamics of the star across these layers.

  3. Authorship in Radiation Oncology: Proliferation Trends Over 30 Years.

    PubMed

    Ojerholm, Eric; Swisher-McClure, Samuel

    2015-11-15

    To investigate authorship trends in the radiation oncology literature. We examined the authorship credits of "original research articles" within 2 popular radiation oncology journals-International Journal of Radiation Oncology, Biology, Physics and Radiotherapy and Oncology-in 1984, 1994, 2004, and 2014. We compared the number of authors per publication during these 4 time periods using simple linear regression as a test for trend. We investigated additional author characteristics in a subset of articles. A total of 2005 articles were eligible. The mean number of authors per publication rose from 4.3 in 1984 to 9.1 in 2014 (P<.001). On subset analysis of 400 articles, there was an increase in the percentage of multidisciplinary bylines (from 52% to 72%), multi-institutional bylines (from 20% to 53%), and publications with a trainee first author (from 16% to 56%) during the study period. The mean number of authors per publication has more than doubled over the last 30 years in the radiation oncology literature. Possible explanations include increasingly complex and collaborative research as well as honorary authorship. Explicit documentation of author contributions could help ensure that scientific work is credited according to accepted standards. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazawa, Masaharu; Tomiyama, Kenichi; Saotome-Nakamura, Ai

    Highlights: • Radiation increases cellular uptake of exosomes. • Radiation induces colocalization of CD29 and CD81. • Exosomes selectively bind the CD29/CD81 complex. • Radiation increases the cellular uptake of exosomes through CD29/CD81 complex formation. - Abstract: Exosomes mediate intercellular communication, and mesenchymal stem cells (MSC) or their secreted exosomes affect a number of pathophysiologic states. Clinical applications of MSC and exosomes are increasingly anticipated. Radiation therapy is the main therapeutic tool for a number of various conditions. The cellular uptake mechanisms of exosomes and the effects of radiation on exosome–cell interactions are crucial, but they are not well understood.more » Here we examined the basic mechanisms and effects of radiation on exosome uptake processes in MSC. Radiation increased the cellular uptake of exosomes. Radiation markedly enhanced the initial cellular attachment to exosomes and induced the colocalization of integrin CD29 and tetraspanin CD81 on the cell surface without affecting their expression levels. Exosomes dominantly bound to the CD29/CD81 complex. Knockdown of CD29 completely inhibited the radiation-induced uptake, and additional or single knockdown of CD81 inhibited basal uptake as well as the increase in radiation-induced uptake. We also examined possible exosome uptake processes affected by radiation. Radiation-induced changes did not involve dynamin2, reactive oxygen species, or their evoked p38 mitogen-activated protein kinase-dependent endocytic or pinocytic pathways. Radiation increased the cellular uptake of exosomes through CD29/CD81 complex formation. These findings provide essential basic insights for potential therapeutic applications of exosomes or MSC in combination with radiation.« less

  5. Comparison of Different Mo/Au TES Designs for Radiation Detectors

    NASA Astrophysics Data System (ADS)

    Pobes, Carlos; Fàbrega, Lourdes; Camón, Agustín; Strichovanec, Pavel; Moral-Vico, Javier; Casañ-Pastor, Nieves; Jáudenes, Rosa M.; Sesé, Javier

    2018-05-01

    We report on the fabrication and characterization of Mo/Au-based transition-edge sensors (TES), intended to be used in X-ray detectors. We have performed complete dark characterization using I-V curves, complex impedance and noise measurements at different bath temperatures and biases. Devices with two designs, different sizes and different membranes have been characterized, some of them with a central bismuth absorber. This has allowed extraction of the relevant parameters of the TES, analyses of their standard behavior and evaluation of their prospects.

  6. Research on the management and endorsement of nuclear safety standards in the United States and its revelation for China

    NASA Astrophysics Data System (ADS)

    Liu, Ting; Tian, Yu; Yang, Lili; Gao, Siyi; Song, Dahu

    2018-01-01

    This paper introduces the American standard system, the Nuclear Regulatory Commission (NRC)’s responsibility, NRC nuclear safety regulations and standards system, studies on NRC’s standards management and endorsement mode, analyzes the characteristics of NRC standards endorsement management, and points out its disadvantages. This paper draws revelation from the standard management and endorsement model of NRC and points suggestion to China’s nuclear and radiation safety standards management.The issue of the “Nuclear Safety Law”plays an important role in China’s nuclear and radiation safety supervision. Nuclear and radiation safety regulations and standards are strong grips on the implementation of “Nuclear Safety Law”. This paper refers on the experience of international advanced countriy, will effectively promote the improvement of the endorsed management of China’s nuclear and radiation safety standards.

  7. The Development of a Beta-Gamma Personnel Dosimeter

    NASA Astrophysics Data System (ADS)

    Tsakeres, Frank Steven

    The assessment of absorbed dose in mixed beta and gamma radiation fields is an extremely complex task. For many years, the assessment of the absorbed dose to tissue from the weakly penetrating components of a radiation field (i.e., beta particles, electrons) has been largely ignored. Beta radiation fields are encountered routinely in a nuclear facility and may represent the major radiation component under certain accident or emergency conditions. Many attempts have been made to develop an accurate mixed field personnel dosimeter. However, all of these dosimeters have exhibited numerous response problems which have limited their usefulness for personnel dose assessment. Consequently, the determination of the absorbed dose at the epidermal depth (i.e., 7 mg/cm('2)) has been difficult to measure accurately. The objective of this research project was to design, build, and test a sensitive and accurate personnel dosimeter for mixed field applications. The selection of the various dosimeter elements were determined by evaluating several types of phosphors, filters, and backscatter materials. After evaluating the various response characteristics of the badge components, a prototype dosimeter, the CHEMM (CaF(,2):Dy Highly Efficient Multiple Element Multiple Filter) personnel dosimeter, was developed and tested at Georgia Tech, Emory University and the National Bureau of Standards. This dosimeter was comprised of four large CaF(,2):Dy (TLD-200) TLD's and a standard LiF (TLD-100) chip. The weakly penetrating and penetrating components of a radiation field were separated using a series of TLD/filter combinations and a new dose assessment algorithm. The large TLD-200 chips, along with a series of tissue-equivalent filters, were used to determine the absorbed dose due to the weakly penetrating radiation while a LiF/filter combination was used to measure the penetrating component. In addition, a new backscatter material was included in the badge design to better simulate a tissue-equivalent response. The CHEMM personnel dosimeter performance tests were conducted to simulate actual mixed radiation field environments. This dosimeter provided a high degree of sensitivity with accuracies well within the ANSI recommended performance standards for personnel dosimeters. In addition, it was concluded that the CHEMM dosimetry system provided a practical dosimeter alternative with a higher dose assessment accuracy and measurement sensitivity than the personnel dosimetry systems presently used in the nuclear power industry.

  8. Incoming longwave radiation to melting snow: observations, sensitivity and estimation in Northern environments

    NASA Astrophysics Data System (ADS)

    Sicart, J. E.; Pomeroy, J. W.; Essery, R. L. H.; Bewley, D.

    2006-11-01

    At high latitudes, longwave radiation can provide similar, or higher, amounts of energy to snow than shortwave radiation due to the low solar elevation (cosine effect and increased scattering due to long atmospheric path lengths). This effect is magnified in mountains due to shading and longwave emissions from the complex topography. This study examines longwave irradiance at the snow surface in the Wolf Creek Research Basin, Yukon Territory, Canada (60° 36N, 134° 57W) during the springs of 2002 and 2004. Incoming longwave radiation was estimated from standard meteorological measurements by segregating radiation sources into clear sky, clouds and surrounding terrain. A sensitivity study was conducted to detect the atmospheric and topographic conditions under which emission from adjacent terrain significantly increases the longwave irradiance. The total incoming longwave radiation is more sensitive to sky view factor than to the temperature of the emitting terrain surfaces. Brutsaert's equation correctly simulates the clear-sky irradiance for hourly time steps using temperature and humidity. Longwave emissions from clouds, which raised longwave radiation above that from clear skies by 16% on average, were best estimated using daily atmospheric shortwave transmissivity and hourly relative humidity. An independent test of the estimation procedure for a prairie site near Saskatoon, Saskatchewan, Canada, indicated that the calculations are robust in late winter and spring conditions. Copyright

  9. 76 FR 9379 - Exelon Generation Company, LLC; Lasalle County Station, Units 1 and 2; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ...-38, ``Storage of Low-Level Radioactive Wastes at Power Reactor Sites'' and to meet the radiation protection standards in 10 CFR Part 20, ``Standards for Protection Against Radiation,'' and 40 CFR Part 190, ``Environmental Radiation Protection Standards for Nuclear Power Operations.'' Environmental Impacts of the...

  10. Quantum therapy in correction of the lipidic metabolism at acute pancreatitis

    NASA Astrophysics Data System (ADS)

    Anaskin, S. G.; Vlasov, A. P.; Spirina, M. A.; Vlasova, T. I.; Muratova, T. A.; Korniletsky, I. D.; Geraskin, V. S.

    2017-01-01

    Attempt to establish efficiency of laser therapy in correction of a lipid metabolism at patients with acute pancreatitis was the purpose of work. There were clinical laboratory researches of 48 patients with acute heavy pancreatitis. To the first clinical group (comparison) standard therapy was carried out. To patients of the second clinical group (main) in addition to basic therapy within 10 days daily sessions of laser therapy by the device "Matrix" were held later. Radiation with the wavelength of 635 nanometers, 2 MW was used. Percutaneous laser radiation of blood was carried out to projections of a cubital vein within 30 minutes daily. Inclusion of laser therapy in complex treatment of patients with pancreatitis led to more significant positive dynamics. Reduction of weight of endotoxemia in the main group is set that was verified by decrease in level of both hydrophilic, and hydrophobic toxins. The analysis of the data obtained as a result of research in the main group revealed decrease in concentration of products of free radical oxidation of lipids in comparison with group of comparison for 12,1 - 17,3% of % (p. <. 0,05). Laser radiation of blood as a part of complex treatment led to reliable inhibition of activity of enzymes of phospholipase system in blood plasma, in particular activity of a phospholipase of A2 fell for 13,2 - 34,4% (p <0,05). Thus, inclusion of laser therapy in structure of complex treatment of sharp pancreatitis allowed to reduce significantly expressiveness of endogenous intoxication, intensity of processes of free radical oxidation of membrane lipids and activity of phospholipase systems.

  11. 24 CFR Appendix II to Subpart C of... - Development of Standards; Calculation Methods

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...; Calculation Methods I. Background Information Concerning the Standards (a) Thermal Radiation: (1) Introduction... and structures in the event of fire. The resulting fireball emits thermal radiation which is absorbed... radiation being emitted. The radiation can cause severe burn, injuries and even death to exposed persons...

  12. Complex chromosome aberrations persist in individuals many years after occupational exposure to densely ionizing radiation: an mFISH study.

    PubMed

    Hande, M Prakash; Azizova, Tamara V; Burak, Ludmilla E; Khokhryakov, Valentin F; Geard, Charles R; Brenner, David J

    2005-09-01

    Long-lived, sensitive, and specific biomarkers of particular mutagenic agents are much sought after and potentially have broad applications in the fields of cancer biology, epidemiology, and prevention. Many clastogens induce a spectrum of chromosome aberrations, and some of them can be exploited as biomarkers of exposure. Densely ionizing radiation, for example, alpha particle radiation (from radon or plutonium) and neutron radiation, preferentially induces complex chromosome aberrations, which can be detected by the 24-color multifluor fluorescence in situ hybridization (mFISH) technique. We report the detection and quantification of stable complex chromosome aberrations in lymphocytes of healthy former nuclear-weapons workers, who were exposed many years ago to plutonium, gamma rays, or both, at the Mayak weapons complex in Russia. We analyzed peripheral-blood lymphocytes from these individuals for the presence of persistent complex chromosome aberrations. A significantly elevated frequency of complex chromosome translocations was detected in the highly exposed plutonium workers but not in the group exposed only to high doses of gamma radiation. No such differences were found for simple chromosomal aberrations. The results suggest that stable complex chromosomal translocations represent a long-lived, quantitative, low-background biomarker of densely ionizing radiation for human populations exposed many years ago. (c) 2005 Wiley-Liss, Inc.

  13. Use of benefit-cost analysis in establishing Federal radiation protection standards: a review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erickson, L.E.

    1979-10-01

    This paper complements other work which has evaluated the cost impacts of radiation standards on the nuclear industry. It focuses on the approaches to valuation of the health and safety benefits of radiation standards and the actual and appropriate processes of benefit-cost comparison. A brief historical review of the rationale(s) for the levels of radiation standards prior to 1970 is given. The Nuclear Regulatory Commission (NRC) established numerical design objectives for light water reactors (LWRs). The process of establishing these numerical design criteria below the radiation protection standards set in 10 CFR 20 is reviewed. EPA's 40 CFR 190 environmentalmore » standards for the uranium fuel cycle have lower values than NRC's radiation protection standards in 10 CFR 20. The task of allocating EPA's 40 CFR 190 standards to the various portions of the fuel cycle was left to the implementing agency, NRC. So whether or not EPA's standards for the uranium fuel cycle are more stringent for LWRs than NRC's numerical design objectives depends on how EPA's standards are implemented by NRC. In setting the numerical levels in Appendix I to 10 CFR 50 and 40 CFR 190 NRC and EPA, respectively, focused on the costs of compliance with various levels of radiation control. A major portion of the paper is devoted to a review and critique of the available methods for valuing health and safety benefits. All current approaches try to estimate a constant value of life and use this to vaue the expected number of lives saved. This paper argues that it is more appropriate to seek a value of a reduction in risks to health and life that varies with the extent of these risks. Additional research to do this is recommended. (DC)« less

  14. Analysis of complex-type chromosome exchanges in astronauts' lymphocytes after space flight as a biomarker of high-LET exposure

    NASA Technical Reports Server (NTRS)

    George, Kerry; Wu, Honglu; Willingham, Veronica; Cucinotta, Francis A.

    2002-01-01

    High-LET radiation is more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. To investigate if complex chromosome exchanges are induced by the high-LET component of space radiation exposure, damage was assessed in astronauts' blood lymphocytes before and after long duration missions of 3-4 months. The frequency of simple translocations increased significantly for most of the crewmembers studied. However, there were few complex exchanges detected and only one crewmember had a significant increase after flight. It has been suggested that the yield of complex chromosome damage could be underestimated when analyzing metaphase cells collected at one time point after irradiation, and analysis of chemically-induced PCC may be more accurate since problems with complicated cell-cycle delays are avoided. However, in this case the yields of chromosome damage were similar for metaphase and PCC analysis of astronauts' lymphocytes. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties.

  15. Electricity generation using electromagnetic radiation

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2017-08-22

    In general, in one aspect, the invention relates to a system to create vapor for generating electric power. The system includes a vessel comprising a fluid and a complex and a turbine. The vessel of the system is configured to concentrate EM radiation received from an EM radiation source. The vessel of the system is further configured to apply the EM radiation to the complex, where the complex absorbs the EM radiation to generate heat. The vessel of the system is also configured to transform, using the heat generated by the complex, the fluid to vapor. The vessel of the system is further configured to sending the vapor to a turbine. The turbine of the system is configured to receive, from the vessel, the vapor used to generate the electric power.

  16. Wave field synthesis of moving virtual sound sources with complex radiation properties.

    PubMed

    Ahrens, Jens; Spors, Sascha

    2011-11-01

    An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.

  17. [Standards and guidelines of radiation protection and safety in dental X-ray examinations].

    PubMed

    Guo, X L; Li, G; Cheng, Y; Yu, Q; Wang, H; Zhang, Z Y

    2017-12-09

    With the rapid development of imaging technology, the application of dental imaging in diagnosis, treatment planning, intraoperative surgical navigation, monitoring of treatment or lesion development and assessment of treatment outcomes is playing an essential role in oral healthcare. The increased total number of dental X-ray examinations is accompanied by a relatively significant increase in collective dose to patients as well as to dental healthcare workers, which is harmful to human bodies to a certain degree. Some radiation protection standards and guidelines in dental radiology have been published in European countries, US, Canada and Australia, etc. Adherence to these standards and guidelines helps to achieve images with diagnostic quality and avoid unnecessary and repeated exposures. However, no radiation protection standard or guideline with regard to dental X-ray examinations has been put in force so far in mainland China. Therefore, a literature review on available radiation protection standards and guidelines was conducted to provide reference to the development of radiation protection standards or guidelines in mainland China.

  18. 40 CFR 190.10 - Standards for normal operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Standards for normal operations. 190.10 Section 190.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS Environmental Standards...

  19. Guidelines for treatment naming in radiation oncology

    PubMed Central

    Shields, Lisa B. E.; Hahl, Michael; Maudlin, Casey; Bassett, Mark; Spalding, Aaron C.

    2015-01-01

    Safety concerns may arise from a lack of standardization and ambiguity during the treatment planning and delivery process in radiation therapy. A standardized target and organ‐at‐risk naming convention in radiation therapy was developed by a task force comprised of several Radiation Oncology Societies. We present a nested‐survey approach in a community setting to determine the methodology for radiation oncology departments to standardize their practice. Our Institution's continuous quality improvement (CQI) committee recognized that, due to growth from one to three centers, significant variability existed within plan parameters specific to patients’ treatment. A multidiscipline, multiclinical site consortium was established to create a guideline for standard naming. Input was gathered using anonymous, electronic surveys from physicians, physicists, dosimetrists, chief therapists, and nurse managers. Surveys consisted of several primary areas of interest: anatomical sites, course naming, treatment plan naming, and treatment field naming. Additional concepts included capitalization, specification of laterality, course naming in the event of multiple sites being treated within the same course of treatment, primary versus boost planning, the use of bolus, revisions for plans, image‐guidance field naming, forbidden characters, and standard units for commonly used physical quantities in radiation oncology practice. Guidelines for standard treatment naming were developed that could be readily adopted. This multidisciplinary study provides a clear, straightforward, and easily implemented protocol for the radiotherapy treatment process. Standard nomenclature facilitates the safe means of communication between team members in radiation oncology. The guidelines presented in this work serve as a model for radiation oncology clinics to standardize their practices. PACS number(s): 87.56.bd, 87.56.Fc, 87.55.Qr, 87.55.‐x, 87.55.N‐, 87.55.T‐, 87.55.D‐ PMID:27074449

  20. TU-G-213-03: IEC Subcommittee 62C (Equipment for Radiotherapy, Nuclear Medicine and Radiation Dosimetry): Recent and Active Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culberson, W.

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less

  1. Ultraviolet Radiation Dose National Standard of México

    NASA Astrophysics Data System (ADS)

    Cardoso, R.; Rosas, E.

    2006-09-01

    We present the Ultraviolet (UV) Radiation Dose National Standard for México. The establishment of this measurement reference at Centro Nacional de Metrología (CENAM) eliminates the need of contacting foreign suppliers in the search for traceability towards the SI units when calibrating instruments at 365 nm. Further more, the UV Radiation Dose National Standard constitutes a highly accurate and reliable source for the UV radiation dose measurements performed in medical and cosmetic treatments as in the the food and pharmaceutics disinfection processes, among other.

  2. Joint American Nuclear Society and Health Physics Society Conference: Applicability of Radiation Response Models to Low Dose Protection Standards.

    PubMed

    Glines, Wayne M; Markham, Anna

    2018-05-01

    Seventy-five years after the Hanford Site was initially created as the primary plutonium production site for atomic weapons development under the Manhattan Project, the American Nuclear Society and the Health Physics Society are sponsoring a conference from 30 September through 3 October 2018, in Pasco, Washington, titled "Applicability of Radiation Response Models to Low Dose Protection Standards." The goal of this conference is to use current scientific data to update the approach to regulating low-level radiation doses; i.e., to answer a quintessential question of radiation protection-how to best develop radiation protection standards that protect human populations against detrimental effects while allowing the beneficial uses of radiation and radioactive materials. Previous conferences (e.g., "Wingspread Conference," "Arlie Conference") have attempted to address this question; but now, almost 20 y later, the key issues, goals, conclusions, and recommendations of those two conferences remain and are as relevant as they were then. Despite the best efforts of the conference participants and increased knowledge and understanding of the science underlying radiation effects in human populations, the bases of current radiation protection standards have evolved little. This 2018 conference seeks to provide a basis and path forward for evolving radiation protection standards to be more reflective of current knowledge and understanding of low dose response models.

  3. Gold-coated copper cone detector as a new standard detector for F2 laser radiation at 157 nm.

    PubMed

    Kück, Stefan; Brandt, Friedhelm; Taddeo, Mario

    2005-04-20

    A new standard detector for high-accuracy measurements of F2 laser radiation at 157 nm is presented. This gold-coated copper cone detector permits the measurement of average powers up to 2 W with an uncertainty of approximately 1%. To the best of our knowledge, this is the first highly accurate standard detector for F2 laser radiation for this power level. It is fully characterized according to Guide to the Expression of Uncertainty in Measurement of the International Organization for Standardization and is connected to the calibration chain for laser radiation established by the German National Metrology Institute.

  4. A prospective evaluation of contrast and radiation dose and image quality in cardiac CT in children with complex congenital heart disease using low-concentration iodinated contrast agent and low tube voltage and current.

    PubMed

    Hou, Qiao-Ru; Gao, Wei; Sun, Ai-Min; Wang, Qian; Qiu, Hai-Sheng; Wang, Fang; Hu, Li-Wei; Li, Jian-Ying; Zhong, Yu-Min

    2017-02-01

    To the assess image quality, contrast dose and radiation dose in cardiac CT in children with congenital heart disease (CHD) using low-concentration iodinated contrast agent and low tube voltage and current in comparison with standard dose protocol. 110 patients with CHD were randomized to 1 of the 2 scan protocols: Group A (n = 45) with 120 mA tube current and contrast agent of 270 mgI/ml in concentration (Visipaque ™ ; GE Healthcare Ireland, Co., Cork, UK); and Group B (n = 65) with the conventional 160 mA and 370 mgI/ml concentration contrast (Iopamiro ® ; Shanghai Bracco Sine Pharmaceutical Corp Ltd, Shanghai, China). Both groups used 80 kVp tube voltage and were reconstructed with 70% adaptive statistical iterative reconstruction algorithm. The CT value and noise in aortic arch were measured and the signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. A five-point scale was used to subjectively evaluate image quality. Contrast and radiation dose were recorded. There was no difference in age and weight between the two groups (all p > 0.05). The iodine load and radiation dose in Group A were statistically lower (3976 ± 747 mgI vs 5763 ± 1018 mgI in iodine load and 0.60 ± 0.08 mSv vs 0.77 ± 0.10 mSv in effective dose; p < 0.001). However, image noise, CT value, CNR, SNR and subjective image quality for the two groups were similar (all p > 0.05), and with good agreement between the two observers. Comparing the surgery results, the diagnostic accuracy for extracardiac and intracardiac defects for Group A was 96% and 92%, respectively, while the corresponding numbers for Group B were 95% and 93%. Compared with the standard dose protocol, the use of low tube voltage (80 kVp), low tube current (120 mA) and low-concentration iodinated contrast agent (270 mgI/ml) enables a reduction of 30% in iodine load and 22% in radiation dose while maintaining compatible image quality and diagnostic accuracy. Advances in knowledge: The new cardiac CT scanning protocol can largely reduce the adverse effects of radiation and contrast media to children. Meanwhile, it also can be used effectively to examine complex CHD.

  5. Modernisation and consolidation of the European radiation protection legislation: the new Euratom Basic Safety Standards Directive.

    PubMed

    Mundigl, Stefan

    2015-04-01

    With the publication of new basic safety standards for the protection against the dangers arising from exposure to ionising radiation, foreseen in Article 2 and Article 30 of the Euratom Treaty, the European Commission modernises and consolidates the European radiation protection legislation. A revision of the Basic Safety Standards was needed in order (1) to take account of the scientific and technological progress since 1996 and (2) to consolidate the existing set of Euratom radiation protection legislation, merging five Directives and upgrading a recommendation to become legally binding. The new Directive offers in a single coherent document basics safety standards for radiation protection, which take account of the most recent advances in science and technology, cover all relevant radiation sources, including natural radiation sources, integrate protection of workers, members of the public, patients and the environment, cover all exposure situations, planned, existing, emergency, and harmonise numerical values with international standards. After the publication of the Directive in the beginning of 2014, Member States have 4 y to transpose the Directive into national legislation and to implement the requirements therein. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Perspectives on High-Energy-Density Physics

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare example in which simplicity emerges from the complexity present in the plasma state.

  7. Standardization of terminology in field of ionizing radiations and their measurements

    NASA Astrophysics Data System (ADS)

    Yudin, M. F.; Karaveyev, F. M.

    1984-03-01

    A new standard terminology was introduced on 1 January 1982 by the Scientific-Technical Commission on All-Union State Standards to cover ionizing radiations and their measurements. It is based on earlier standards such as GOST 15484-74/81, 18445-70/73, 19849-74, 22490-77 as well as the latest recommendations by international committees. One hundred eighty-six terms and definitions in 14 paragraphs are contained. Fundamental concepts, sources and forms of ionizing radiations, characteristics and parameters of ionizing radiations, and methods of measuring their characteristics and parameters are covered. New terms have been added to existing ones. The equivalent English, French, and German terms are also given. The terms measurement of ionizing radiation and transfer of ionizing particles (equivalent of particle fluence of energy fluence) are still under discussion.

  8. 40 CFR 190.10 - Standards for normal operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....10 Section 190.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS Environmental... operations and to radiation from these operations. (b) The total quantity of radioactive materials entering...

  9. 40 CFR 190.10 - Standards for normal operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....10 Section 190.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS Environmental... operations and to radiation from these operations. (b) The total quantity of radioactive materials entering...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voytchev, M; Radev, R; Chiaro, P

    The International Electrotechnical Commission (IEC) is the leading and oldest global organization with over 100 years history of developing and publishing international standards for all electrical, electronic and related technologies, including radiation detection instrumentation. Subcommittee 45B 'Radiation Protection Instrumentation' of the IEC has recently started the development of two standards on radiation-generating devices. IEC 62463 'Radiation protection instrumentation--X-ray Systems for the Screening of Persons for Security and the Carrying of Illicit Items' is applicable to X-ray systems designed for screening people to detect if they are carrying objects such as weapons, explosives, chemical and biological agents and other concealed itemsmore » that could be used for criminal purposes, e.g. terrorist use, drug smuggling, etc. IEC 62523 'Radiation protection instrumentation--Cargo/Vehicle radiographic inspection systems' applies to cargo/vehicle imaging inspection systems using accelerator produced X-ray or gamma radiation to obtain images of the screened objects (e.g. cargo containers, transport and passenger vehicles and railroad cars). The objective of both standards is to specify standard requirements and general characteristics and test procedures, as well as, radiation, electrical, environmental, mechanical, and safety requirements and to provide examples of acceptable methods to test these requirements. In particular the standards address the design requirements as they relate to the radiation protection of the people being screened, people who are in the vicinity of the equipment and the operators. The standard IEC 62463 does not deal with the performance requirements for the quality of the object detection. Compliance with the standards requirements will provide the manufacturers with internationally acceptable specifications and the device users with assurance of the rigorous quality and accuracy of the measurements in relation to the radiological safety of the equipment. The main characteristics of IEC 62463 and IEC 62523 standards are presented and as well as the IEC methodology of standard development and approval.« less

  11. Beyond the standard curriculum: a review of available opportunities for medical students to prepare for a career in radiation oncology.

    PubMed

    Agarwal, Ankit; DeNunzio, Nicholas J; Ahuja, Divya; Hirsch, Ariel E

    2014-01-01

    To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Society for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Authorship in Radiation Oncology: Proliferation Trends Over 30 Years

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ojerholm, Eric, E-mail: eric.ojerholm@uphs.upenn.edu; Swisher-McClure, Samuel

    Purpose: To investigate authorship trends in the radiation oncology literature. Methods and Materials: We examined the authorship credits of “original research articles” within 2 popular radiation oncology journals–International Journal of Radiation Oncology, Biology, Physics and Radiotherapy and Oncology–in 1984, 1994, 2004, and 2014. We compared the number of authors per publication during these 4 time periods using simple linear regression as a test for trend. We investigated additional author characteristics in a subset of articles. Results: A total of 2005 articles were eligible. The mean number of authors per publication rose from 4.3 in 1984 to 9.1 in 2014 (P<.001).more » On subset analysis of 400 articles, there was an increase in the percentage of multidisciplinary bylines (from 52% to 72%), multi-institutional bylines (from 20% to 53%), and publications with a trainee first author (from 16% to 56%) during the study period. Conclusions: The mean number of authors per publication has more than doubled over the last 30 years in the radiation oncology literature. Possible explanations include increasingly complex and collaborative research as well as honorary authorship. Explicit documentation of author contributions could help ensure that scientific work is credited according to accepted standards.« less

  13. Preparing a cost analysis for the section of medical physics-guidelines and methods.

    PubMed

    Mills, M D; Spanos, W J; Jose, B O; Kelly, B A; Brill, J P

    2000-01-01

    Radiation oncology is a highly complex medical specialty, involving many varied routine and special procedures. To assure cost-effectiveness and maintain support for the medical physics program, managers are obligated to analyze and defend all aspects of an institutional billing and cost-reporting program. Present standards of practice require that each patient's radiation treatments be customized to fit his/her particular condition. Since the use of personnel time and other resources is highly variable among patients, graduated levels of charges have been established to allow for more precise billing. Some radiation oncology special procedures have no specific code descriptors; so existing codes are modified or additional information attached in order to avoid payment denial. Recent publications have explored the manpower needs, salaries, and other resources required to perform radiation oncology "physics" procedures. This information is used to construct a model cost-based resource use profile for a radiation oncology center. This profile can be used to help the financial officer prepare a cost report for the institution. Both civil and criminal penalties for Medicare fraud and abuse (intentional or unintentional) are included in the False Claims Act and other statutes. Compliance guidelines require managers to train all personnel in correct billing procedures and to review continually billing performance.

  14. Use of Existing CAD Models for Radiation Shielding Analysis

    NASA Technical Reports Server (NTRS)

    Lee, K. T.; Barzilla, J. E.; Wilson, P.; Davis, A.; Zachman, J.

    2015-01-01

    The utility of a radiation exposure analysis depends not only on the accuracy of the underlying particle transport code, but also on the accuracy of the geometric representations of both the vehicle used as radiation shielding mass and the phantom representation of the human form. The current NASA/Space Radiation Analysis Group (SRAG) process to determine crew radiation exposure in a vehicle design incorporates both output from an analytic High Z and Energy Particle Transport (HZETRN) code and the properties (i.e., material thicknesses) of a previously processed drawing. This geometry pre-process can be time-consuming, and the results are less accurate than those determined using a Monte Carlo-based particle transport code. The current work aims to improve this process. Although several Monte Carlo programs (FLUKA, Geant4) are readily available, most use an internal geometry engine. The lack of an interface with the standard CAD formats used by the vehicle designers limits the ability of the user to communicate complex geometries. Translation of native CAD drawings into a format readable by these transport programs is time consuming and prone to error. The Direct Accelerated Geometry -United (DAGU) project is intended to provide an interface between the native vehicle or phantom CAD geometry and multiple particle transport codes to minimize problem setup, computing time and analysis error.

  15. Mitigating Upsets in SRAM-Based FPGAs from the Xilinx Virtex 2 Family

    NASA Technical Reports Server (NTRS)

    Swift, G. M.; Yui, C. C.; Carmichael, C.; Koga, R.; George, J. S.

    2003-01-01

    Static random access memory (SRAM) upset rates in field programmable gate arrays (FPGAs) from the Xilinx Virtex 2 family have been tested for radiation effects on configuration memory, block RAM and the power-on-reset (POR) and SelectMAP single event functional interrupts (SEFIs). Dynamic testing has shown the effectiveness and value of Triple Module Redundancy (TMR) and partial reconfiguration when used in conjunction. Continuing dynamic testing for more complex designs and other Virtex 2 capabilities (i.e., I/O standards, digital clock managers (DCM), etc.) is scheduled.

  16. Gamma-Ray Burst Afterglows with ALMA

    NASA Astrophysics Data System (ADS)

    Urata, Y.; Huang, K.; Takahashi, S.

    2015-12-01

    We present multi-wavelength observations including sub-millimeter follow-ups for two GRB afterglows. The rapid SMA and multi-wavelength observations for GRB120326A revealed their complex emissions as the synchrotron self-inverse Compton radiation from reverse shock. The observations including ALMA for GRB131030A also showed the significant X-ray excess from the standard forward shock synchrotron model. Based on these results, we also discuss further observations for (A) constraining of the mass of progenitor with polarization, (B) the first confirmation of GRB jet collimation, and (C) revealing the origin of optically dark GRBs.

  17. DNA damage and repair after high LET radiation

    NASA Astrophysics Data System (ADS)

    O'Neill, Peter; Cucinotta, Francis; Anderson, Jennifer

    Predictions from biophysical models of interactions of radiation tracks with cellular DNA indicate that clustered DNA damage sites, defined as two or more lesions formed within one or two helical turns of the DNA by passage of a single radiation track, are formed in mammalian cells. These complex DNA damage sites are regarded as a signature of ionizing radiation exposure particularly as the likelihood of clustered damage sites arising endogenously is low. For instance, it was predicted from biophysical modelling that 30-40% of low LET-induced double strand breaks (DSB), a form of clustered damage, are complex with the yield increasing to >90% for high LET radiation, consistent with the reduced reparability of DSB with increasing ionization density of the radiation. The question arises whether the increased biological effects such as mutagenesis, carcinogenesis and lethality is in part related to DNA damage complexity and/or spatial distribution of the damage sites, which may lead to small DNA fragments. With particle radiation it is also important to consider not only delta-rays which may cause clustered damaged sites and may be highly mutagenic but the non-random spatial distribution of DSB which may lead to deletions. In this overview I will concentrate on the molecular aspects of the variation of the complexity of DNA damage on radiation quality and the challenges this complexity presents the DNA damage repair pathways. I will draw on data from micro-irradiations which indicate that the repair of DSBs by non-homologous end joining is highly regulated with pathway choice and kinetics of repair dependent on the chemical complexity of the DSB. In summary the aim is to emphasis the link between the spatial distribution of energy deposition events related to the track, the molecular products formed and the consequence of damage complexity contributing to biological effects and to present some of the outstanding molecular challenges with particle radiation.

  18. Absolute rate constant for the O plus NO chemiluminescence in the near infrared

    NASA Technical Reports Server (NTRS)

    Golde, M. F.; Roche, A. E.; Kaufman, F.

    1973-01-01

    Infrared chemiluminescence from the process O + NO (+M) NO2 + hv (+M) has been studied between 1.3 and 4.1 micrometer. The wavelength dependence of the continuum between 1.3 and 3.3 micrometer is in fair agreement with previous studies and the measured radiative rate constant at 1.51 micrometer establishes the NO-O glow in this spectral range as a secondary emission standard. Comparison with previous studies of the visible region of the glow implies that the overall radiative rate constant lies in the range (9.4 to 11.2) x 10 to the minus 17 power cu cm sec/1. In the region 3.3 to 4.1 micrometer, the previously observed broad band, peaking at 3.7 micrometer, shows a complex kinetic dependence on O and M.

  19. A novel imaging approach for prostate cancer is tested in new clinical trial | Center for Cancer Research

    Cancer.gov

    Prostate cancer patients who have failed standard radiation therapy have the options of surgery, radioactive seed implantation or cryoablation. Deborah Citrin, M.D., of the Radiation Oncology Branch is leading a study of stereotactic body radiation therapy (SBRT) to treat prostate cancer that has recurred locally after standard radiation therapy. The goal of this study is to use a novel imaging approach to guide treatment and to define the best dose of SBRT for patients whose prostate cancer has recurred after standard radiotherapy. Read more...

  20. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  1. The origin of neutron biological effectiveness as a function of energy.

    PubMed

    Baiocco, G; Barbieri, S; Babini, G; Morini, J; Alloni, D; Friedland, W; Kundrát, P; Schmitt, E; Puchalska, M; Sihver, L; Ottolenghi, A

    2016-09-22

    The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data.

  2. The origin of neutron biological effectiveness as a function of energy

    NASA Astrophysics Data System (ADS)

    Baiocco, G.; Barbieri, S.; Babini, G.; Morini, J.; Alloni, D.; Friedland, W.; Kundrát, P.; Schmitt, E.; Puchalska, M.; Sihver, L.; Ottolenghi, A.

    2016-09-01

    The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data.

  3. Radiation Safety in Children With Congenital and Acquired Heart Disease: A Scientific Position Statement on Multimodality Dose Optimization From the Image Gently Alliance.

    PubMed

    Hill, Kevin D; Frush, Donald P; Han, B Kelly; Abbott, Brian G; Armstrong, Aimee K; DeKemp, Robert A; Glatz, Andrew C; Greenberg, S Bruce; Herbert, Alexander Sheldon; Justino, Henri; Mah, Douglas; Mahesh, Mahadevappa; Rigsby, Cynthia K; Slesnick, Timothy C; Strauss, Keith J; Trattner, Sigal; Viswanathan, Mohan N; Einstein, Andrew J

    2017-07-01

    There is a need for consensus recommendations for ionizing radiation dose optimization during multimodality medical imaging in children with congenital and acquired heart disease (CAHD). These children often have complex diseases and may be exposed to a relatively high cumulative burden of ionizing radiation from medical imaging procedures, including cardiac computed tomography, nuclear cardiology studies, and fluoroscopically guided diagnostic and interventional catheterization and electrophysiology procedures. Although these imaging procedures are all essential to the care of children with CAHD and have contributed to meaningfully improved outcomes in these patients, exposure to ionizing radiation is associated with potential risks, including an increased lifetime attributable risk of cancer. The goal of these recommendations is to encourage informed imaging to achieve appropriate study quality at the lowest achievable dose. Other strategies to improve care include a patient-centered approach to imaging, emphasizing education and informed decision making and programmatic approaches to ensure appropriate dose monitoring. Looking ahead, there is a need for standardization of dose metrics across imaging modalities, so as to encourage comparative effectiveness studies across the spectrum of CAHD in children. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. A detailed numerical simulation of a liquid-propellant rocket engine ground test experiment

    NASA Astrophysics Data System (ADS)

    Lankford, D. W.; Simmons, M. A.; Heikkinen, B. D.

    1992-07-01

    A computational simulation of a Liquid Rocket Engine (LRE) ground test experiment was performed using two modeling approaches. The results of the models were compared with selected data to assess the validity of state-of-the-art computational tools for predicting the flowfield and radiative transfer in complex flow environments. The data used for comparison consisted of in-band station radiation measurements obtained in the near-field portion of the plume exhaust. The test article was a subscale LRE with an afterbody, resulting in a large base region. The flight conditions were such that afterburning regions were observed in the plume flowfield. A conventional standard modeling approach underpredicted the extent of afterburning and the associated radiation levels. These results were attributed to the absence of the base flow region which is not accounted for in this model. To assess the effects of the base region a Navier-Stokes model was applied. The results of this calculation indicate that the base recirculation effects are dominant features in the immediate expansion region and resulted in a much improved comparison. However, the downstream in-band station radiation data remained underpredicted by this model.

  5. A Review of Shared Decision-Making and Patient Decision Aids in Radiation Oncology.

    PubMed

    Woodhouse, Kristina Demas; Tremont, Katie; Vachani, Anil; Schapira, Marilyn M; Vapiwala, Neha; Simone, Charles B; Berman, Abigail T

    2017-06-01

    Cancer treatment decisions are complex and may be challenging for patients, as multiple treatment options can often be reasonably considered. As a result, decisional support tools have been developed to assist patients in the decision-making process. A commonly used intervention to facilitate shared decision-making is a decision aid, which provides evidence-based outcomes information and guides patients towards choosing the treatment option that best aligns with their preferences and values. To ensure high quality, systematic frameworks and standards have been proposed for the development of an optimal aid for decision making. Studies have examined the impact of these tools on facilitating treatment decisions and improving decision-related outcomes. In radiation oncology, randomized controlled trials have demonstrated that decision aids have the potential to improve patient outcomes, including increased knowledge about treatment options and decreased decisional conflict with decision-making. This article provides an overview of the shared-decision making process and summarizes the development, validation, and implementation of decision aids as patient educational tools in radiation oncology. Finally, this article reviews the findings from decision aid studies in radiation oncology and offers various strategies to effectively implement shared decision-making into clinical practice.

  6. The origin of neutron biological effectiveness as a function of energy

    PubMed Central

    Baiocco, G.; Barbieri, S.; Babini, G.; Morini, J.; Alloni, D.; Friedland, W.; Kundrát, P.; Schmitt, E.; Puchalska, M.; Sihver, L.; Ottolenghi, A.

    2016-01-01

    The understanding of the impact of radiation quality in early and late responses of biological targets to ionizing radiation exposure necessarily grounds on the results of mechanistic studies starting from physical interactions. This is particularly true when, already at the physical stage, the radiation field is mixed, as it is the case for neutron exposure. Neutron Relative Biological Effectiveness (RBE) is energy dependent, maximal for energies ~1 MeV, varying significantly among different experiments. The aim of this work is to shed light on neutron biological effectiveness as a function of field characteristics, with a comprehensive modeling approach: this brings together transport calculations of neutrons through matter (with the code PHITS) and the predictive power of the biophysical track structure code PARTRAC in terms of DNA damage evaluation. Two different energy dependent neutron RBE models are proposed: the first is phenomenological and based only on the characterization of linear energy transfer on a microscopic scale; the second is purely ab-initio and based on the induction of complex DNA damage. Results for the two models are compared and found in good qualitative agreement with current standards for radiation protection factors, which are agreed upon on the basis of RBE data. PMID:27654349

  7. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode.

    PubMed

    Pronin, A V; Goncharov, Yu G; Fischer, T; Wosnitza, J

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r = absolute value(r) x exp(i phi(R)) of a solid at frequencies of 1-50 cm(-1) (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  8. Phase-sensitive terahertz spectroscopy with backward-wave oscillators in reflection mode

    NASA Astrophysics Data System (ADS)

    Pronin, A. V.; Goncharov, Yu. G.; Fischer, T.; Wosnitza, J.

    2009-12-01

    In this article we describe a method which allows accurate measurements of the complex reflection coefficient r̂=|r̂|ṡexp(iφR) of a solid at frequencies of 1-50 cm-1 (30 GHz-1.5 THz). Backward-wave oscillators are used as sources for monochromatic coherent radiation tunable in frequency. The amplitude of the complex reflection (the reflectivity) is measured in a standard way, while the phase shift, introduced by the reflection from the sample surface, is measured using a Michelson interferometer. This method is particular useful for nontransparent samples, where phase-sensitive transmission measurements are not possible. The method requires no Kramers-Kronig transformation in order to extract the sample's electrodynamic properties (such as the complex dielectric function or complex conductivity). Another area of application of this method is the study of magnetic materials with complex dynamic permeabilities different from unity at the measurement frequencies (for example, colossal-magnetoresistance materials and metamaterials). Measuring both the phase-sensitive transmission and the phase-sensitive reflection allows for a straightforward model-independent determination of the dielectric permittivity and magnetic permeability of such materials.

  9. A Dose of Reality: Radiation Analysis for Realistic Human Spacecraft

    NASA Technical Reports Server (NTRS)

    Barzilla, J. E.; Lee, K. T.

    2017-01-01

    INTRODUCTION As with most computational analyses, a tradeoff exists between problem complexity, resource availability and response accuracy when modeling radiation transport from the source to a detector. The largest amount of analyst time for setting up an analysis is often spent ensuring that any simplifications made have minimal impact on the results. The vehicle shield geometry of interest is typically simplified from the original CAD design in order to reduce computation time, but this simplification requires the analyst to "re-draw" the geometry with a limited set of volumes in order to accommodate a specific radiation transport software package. The resulting low-fidelity geometry model cannot be shared with or compared to other radiation transport software packages, and the process can be error prone with increased model complexity. The work presented here demonstrates the use of the DAGMC (Direct Accelerated Geometry for Monte Carlo) Toolkit from the University of Wisconsin, to model the impacts of several space radiation sources on a CAD drawing of the US Lab module. METHODS The DAGMC toolkit workflow begins with the export of an existing CAD geometry from the native CAD to the ACIS format. The ACIS format file is then cleaned using SpaceClaim to remove small holes and component overlaps. Metadata is then assigned to the cleaned geometry file using CUBIT/Trelis from csimsoft (Registered Trademark). The DAGMC plugin script removes duplicate shared surfaces, facets the geometry to a specified tolerance, and ensures that the faceted geometry is water tight. This step also writes the material and scoring information to a standard input file format that the analyst can alter as desired prior to running the radiation transport program. The scoring results can be transformed, via python script, into a 3D format that is viewable in a standard graphics program. RESULTS The CAD model of the US Lab module of the International Space Station, inclusive of all the racks and components, was simplified to remove holes and volume overlaps. Problematic features within the drawing were also removed or repaired to prevent runtime issues. The cleaned drawing was then run through the DAGMC workflow to prepare for analysis. Pilot tests modeling transport of 1GeV proton and 800MeV/A oxygen sources show that reasonable results are converged upon in an acceptable amount of overall computation time from drawing preparation to data analysis. The FLUKA radiation transport code will next be used to model both a GCR and a trapped radiation source. These results will then be compared with measurements that have been made by the radiation instrumentation deployed inside the US Lab module. DISCUSSION Early analyses have indicated that the DAGMC workflow is a promising toolkit for running vehicle geometries of interest to NASA through multiple radiation transport codes. In addition, recent work has shown that a realistic human phantom, provided via a subcontract with the University of Florida, can be placed inside any vehicle geometry for a combinatorial analysis. This added functionality gives the user the ability to score various parameters at the organ level, and the results can then be used as input for cancer risk models.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, M.

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less

  11. RIP1 and RIP3 complex regulates radiation-induced programmed necrosis in glioblastoma.

    PubMed

    Das, Arabinda; McDonald, Daniel G; Dixon-Mah, Yaenette N; Jacqmin, Dustin J; Samant, Vikram N; Vandergrift, William A; Lindhorst, Scott M; Cachia, David; Varma, Abhay K; Vanek, Kenneth N; Banik, Naren L; Jenrette, Joseph M; Raizer, Jeffery J; Giglio, Pierre; Patel, Sunil J

    2016-06-01

    Radiation-induced necrosis (RN) is a relatively common side effect of radiation therapy for glioblastoma. However, the molecular mechanisms involved and the ways RN mechanisms differ from regulated cell death (apoptosis) are not well understood. Here, we compare the molecular mechanism of cell death (apoptosis or necrosis) of C6 glioma cells in both in vitro and in vivo (C6 othotopically allograft) models in response to low and high doses of X-ray radiation. Lower radiation doses were used to induce apoptosis, while high-dose levels were chosen to induce radiation necrosis. Our results demonstrate that active caspase-8 in this complex I induces apoptosis in response to low-dose radiation and inhibits necrosis by cleaving RIP1 and RI. When activation of caspase-8 was reduced at high doses of X-ray radiation, the RIP1/RIP3 necrosome complex II is formed. These complexes induce necrosis through the caspase-3-independent pathway mediated by calpain, cathepsin B/D, and apoptosis-inducing factor (AIF). AIF has a dual role in apoptosis and necrosis. At high doses, AIF promotes chromatinolysis and necrosis by interacting with histone H2AX. In addition, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. Analysis of inflammatory markers in matched plasma and cerebrospinal fluid (CSF) isolated from in vivo specimens demonstrated the upregulation of chemokines and cytokines during the necrosis phase. Using RIP1/RIP3 kinase specific inhibitors (Nec-1, GSK'872), we also establish that the RIP1-RIP3 complex regulates programmed necrosis after either high-dose radiation or TNF-α-induced necrosis requires RIP1 and RIP3 kinases. Overall, our data shed new light on the relationship between RIP1/RIP3-mediated programmed necrosis and AIF-mediated caspase-independent programmed necrosis in glioblastoma.

  12. 40 CFR 191.24 - Disposal standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...

  13. 40 CFR 191.04 - Alternative standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Alternative standards. 191.04 Section 191.04 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...

  14. 40 CFR 191.04 - Alternative standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Alternative standards. 191.04 Section 191.04 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...

  15. 40 CFR 191.24 - Disposal standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...

  16. 40 CFR 191.24 - Disposal standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...

  17. 40 CFR 191.24 - Disposal standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...

  18. 40 CFR 191.24 - Disposal standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Disposal standards. 191.24 Section 191.24 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...

  19. 40 CFR 191.04 - Alternative standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Alternative standards. 191.04 Section 191.04 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL...

  20. Proceedings of a Meeting on Traceability for Ionizing Radiation Measurements

    NASA Astrophysics Data System (ADS)

    Heaton, H. T., II

    1982-02-01

    General concepts for traceability were presented from several perspectives. The national standards for radiation dosimetry, radioactivity measurements, and neutron measurements were described. Specific programs for achieving traceability to the national standards for radiation measurements in medical, occupational, and environmental applications were summarized.

  1. Beyond the Standard Curriculum: A Review of Available Opportunities for Medical Students to Prepare for a Career in Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Ankit; DeNunzio, Nicholas J.; Ahuja, Divya

    Purpose: To review currently available opportunities for medical students to supplement their standard medical education to prepare for a career in radiation oncology. Methods and Materials: Google and PubMed were used to identify existing clinical, health policy, and research programs for medical students in radiation oncology. In addition, results publicly available by the National Resident Matching Program were used to explore opportunities that successful radiation oncology applicants pursued during their medical education, including obtaining additional graduate degrees. Results: Medical students can pursue a wide variety of opportunities before entering radiation oncology. Several national specialty societies, such as the American Societymore » for Radiation Oncology and the Radiological Society of North America, offer summer internships for medical students interested in radiation oncology. In 2011, 30% of allopathic senior medical students in the United States who matched into radiation oncology had an additional graduate degree, including PhD, MPH, MBA, and MA degrees. Some medical schools are beginning to further integrate dedicated education in radiation oncology into the standard 4-year medical curriculum. Conclusions: To the authors' knowledge, this is the first comprehensive review of available opportunities for medical students interested in radiation oncology. Early exposure to radiation oncology and additional educational training beyond the standard medical curriculum have the potential to create more successful radiation oncology applicants and practicing radiation oncologists while also promoting the growth of the field. We hope this review can serve as guide to radiation oncology applicants and mentors as well as encourage discussion regarding initiatives in radiation oncology opportunities for medical students.« less

  2. A scalable plant-resolving radiative transfer model based on optimized GPU ray tracing

    USDA-ARS?s Scientific Manuscript database

    A new model for radiative transfer in participating media and its application to complex plant canopies is presented. The goal was to be able to efficiently solve complex canopy-scale radiative transfer problems while also representing sub-plant heterogeneity. In the model, individual leaf surfaces ...

  3. TH-E-209-00: Radiation Dose Monitoring and Protocol Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  4. 40 CFR 190.10 - Standards for normal operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Standards for normal operations. 190.10 Section 190.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS Environmental...

  5. 40 CFR 191.03 - Standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Standards. 191.03 Section 191.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL, HIGH-LEVEL AND...

  6. 40 CFR 191.03 - Standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Standards. 191.03 Section 191.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL, HIGH-LEVEL AND...

  7. 40 CFR 191.03 - Standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Standards. 191.03 Section 191.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL, HIGH-LEVEL AND...

  8. 40 CFR 191.03 - Standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Standards. 191.03 Section 191.03 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL, HIGH-LEVEL AND...

  9. Radiation Standards: The Last Word or at Least a Definitive One

    ERIC Educational Resources Information Center

    Gillette, Robert

    1972-01-01

    Discusses the report of the National Academy of Science Committee on the Biological Effects of Ionizing Radiation, with particular reference to the possibilities for lowering maximum permissible standards for exposure to man-made radiation. The excessive use of diagnostic X-rays is considered. (AL)

  10. A novel imaging approach for prostate cancer is tested in new clinical trial | Center for Cancer Research

    Cancer.gov

    Prostate cancer patients who have failed standard radiation therapy have the options of surgery, radioactive seed implantation or cryoablation. Deborah Citrin, M.D., of the Radiation Oncology Branch is leading a study of stereotactic body radiation therapy (SBRT) to treat prostate cancer that has recurred locally after standard radiation therapy. The goal of this study is to

  11. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Myhre, G.; Penner, J. E.; Randles, C.; Samset, B.; Schulz, M.; Yu, H.; Zhou, C.

    2012-09-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 W m-2 and the inter-model standard deviation is 0.70 W m-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 W m-2, and the standard deviation increases to 1.21 W m-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment, demonstrates that host model uncertainties could explain about half of the overall sulfate forcing diversity of 0.13 W m-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

  12. Recollections on Sixty Years of NBS Ionizing Radiation Programs for Energetic X Rays and Electrons1

    PubMed Central

    Koch, H. William

    2006-01-01

    These recollections are on ionizing radiation programs at the National Bureau of Standards (NBS) that started in 1928 and ended in 1988 when NBS became the National Institute of Standards and Technology (NIST). The independent Council on Ionizing Radiation Measurements and Standards (CIRMS) was formed in 1992. This article focuses on how measurements and standards for x rays, gamma rays, and electrons with energies above 1 MeV began at NBS and how they progressed. It also suggests how the radiation processors of materials and foods, the medical radiographic and radiological industries, and the radiological protection interests of the government (including homeland security) represented in CIRMS can benefit from NIST programs. PMID:27274947

  13. Radiation hardness of Efratom M-100 rubidium frequency standard

    NASA Technical Reports Server (NTRS)

    English, T. C.; Vorwerk, H.; Rudie, N. J.

    1983-01-01

    The effects of nuclear radiation on rubidium gas cell frequency standards and components are presented, including the results of recent tests where a continuously operating rubidium frequency standard (Effratom, Model M-100) was subjected to simultaneous neutron/gamma radiation. At the highest neutron fluence 7.5 10 to the 12th power n/sq cm and total dose 11 krad(Si) tested, the unit operated satisfactorily; the total frequency change over the 2 1/2 hour test period due to all causes, including repeated retraction from and insertion into the reactor, was less than 1 x 10 to the -10th power. The effects of combined neutron/gamma radiation on rubidium frequency standard physics package components were also studied, and the results are presented.

  14. Job security and fear: Do these drive our radiation guidelines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, R.G.

    1994-01-01

    This commentary asks why scientists want radiation standard setting at a level well below that at which any health related problem has been observed in a human being. The idea that job security and fear actually may drive radiation standards is presented as a possibility. 3 refs.

  15. TU-G-213-00: The International Electrotechnical Commission (IEC): What Is It and Why Should Medical Physicists Care?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less

  16. TU-G-213-01: IEC and US Committee Activities and Organizational Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibbott, G.

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less

  17. 40 CFR 197.30 - What standards must DOE meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false What standards must DOE meet? 197.30 Section 197.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  18. 40 CFR 197.20 - What standard must DOE meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false What standard must DOE meet? 197.20 Section 197.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  19. 40 CFR 197.4 - What standard must DOE meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false What standard must DOE meet? 197.4 Section 197.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  20. 40 CFR 197.20 - What standard must DOE meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true What standard must DOE meet? 197.20 Section 197.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  1. 40 CFR 197.30 - What standards must DOE meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false What standards must DOE meet? 197.30 Section 197.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  2. 40 CFR 197.4 - What standard must DOE meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false What standard must DOE meet? 197.4 Section 197.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  3. 40 CFR 197.20 - What standard must DOE meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false What standard must DOE meet? 197.20 Section 197.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  4. 40 CFR 197.4 - What standard must DOE meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false What standard must DOE meet? 197.4 Section 197.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  5. 40 CFR 197.30 - What standards must DOE meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true What standards must DOE meet? 197.30 Section 197.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  6. 40 CFR 197.25 - What standard must DOE meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true What standard must DOE meet? 197.25 Section 197.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  7. 40 CFR 197.4 - What standard must DOE meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false What standard must DOE meet? 197.4 Section 197.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  8. 40 CFR 197.25 - What standard must DOE meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false What standard must DOE meet? 197.25 Section 197.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  9. 40 CFR 197.25 - What standard must DOE meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false What standard must DOE meet? 197.25 Section 197.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  10. 40 CFR 197.25 - What standard must DOE meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false What standard must DOE meet? 197.25 Section 197.25 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  11. 40 CFR 197.4 - What standard must DOE meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true What standard must DOE meet? 197.4 Section 197.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  12. 40 CFR 197.30 - What standards must DOE meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false What standards must DOE meet? 197.30 Section 197.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  13. 40 CFR 197.20 - What standard must DOE meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false What standard must DOE meet? 197.20 Section 197.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  14. 40 CFR 197.30 - What standards must DOE meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false What standards must DOE meet? 197.30 Section 197.30 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  15. 40 CFR 197.20 - What standard must DOE meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false What standard must DOE meet? 197.20 Section 197.20 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN, NEVADA Public...

  16. A DICOM-RT radiation oncology ePR with decision support utilizing a quantified knowledge base from historical data

    NASA Astrophysics Data System (ADS)

    Documet, Jorge R.; Liu, Brent; Le, Anh; Law, Maria

    2008-03-01

    During the last 2 years we have been working on developing a DICOM-RT (Radiation Therapy) ePR (Electronic Patient Record) with decision support that will allow physicists and radiation oncologists during their decision-making process. This ePR allows offline treatment dose calculations and plan evaluation, while at the same time it compares and quantifies treatment planning algorithms using DICOM-RT objects. The ePR framework permits the addition of visualization, processing, and analysis tools, which combined with the core functionality of reporting, importing and exporting of medical studies, creates a very powerful application that can improve the efficiency while planning cancer treatments. Usually a Radiation Oncology department will have disparate and complex data generated by the RT modalities as well as data scattered in RT Information/Management systems, Record & Verify systems, and Treatment Planning Systems (TPS) which can compromise the efficiency of the clinical workflow since the data crucial for a clinical decision may be time-consuming to retrieve, temporarily missing, or even lost. To address these shortcomings, the ACR-NEMA Standards Committee extended its DICOM (Digital Imaging & Communications in Medicine) standard from Radiology to RT by ratifying seven DICOM RT objects starting in 1997 [1,2]. However, they are not broadly used yet by the RT community in daily clinical operations. In the past, the research focus of an RT department has primarily been developing new protocols and devices to improve treatment process and outcomes of cancer patients with minimal effort dedicated to integration of imaging and information systems. Our attempt is to show a proof-of-concept that a DICOM-RT ePR system can be developed as a foundation to perform medical imaging informatics research in developing decision-support tools and knowledge base for future data mining applications.

  17. Twenty new ISO standards on dosimetry for radiation processing

    NASA Astrophysics Data System (ADS)

    Farrar, H., IV

    2000-03-01

    Twenty standards on essentially all aspects of dosimetry for radiation processing were published as new ISO standards in December 1998. The standards are based on 20 standard practices and guides developed over the past 14 years by Subcommittee E10.01 of the American Society for Testing and Materials (ASTM). The transformation to ISO standards using the 'fast track' process under ISO Technical Committee 85 (ISO/TC85) commenced in 1995 and resulted in some overlap of technical information between three of the new standards and the existing ISO Standard 11137 Sterilization of health care products — Requirements for validation and routine control — Radiation sterilization. Although the technical information in these four standards was consistent, compromise wording in the scopes of the three new ISO standards to establish precedence for use were adopted. Two of the new ISO standards are specifically for food irradiation applications, but the majority apply to all forms of gamma, X-ray, and electron beam radiation processing, including dosimetry for sterilization of health care products and the radiation processing of fruit, vegetables, meats, spices, processed foods, plastics, inks, medical wastes, and paper. Most of the standards provide exact procedures for using individual dosimetry systems or for characterizing various types of irradiation facilities, but one covers the selection and calibration of dosimetry systems, and another covers the treatment of uncertainties using the new ISO Type A and Type B evaluations. Unfortunately, nine of the 20 standards just adopted by the ISO are not the most recent versions of these standards and are therefore already out of date. To help solve this problem, efforts are being made to develop procedures to coordinate the ASTM and ISO development and revision processes for these and future ASTM-originating dosimetry standards. In the meantime, an additional four dosimetry standards have recently been published by the ASTM but have not yet been submitted to the ISO, and six more dosimetry standards are under development.

  18. Actual questions raised by nanoparticle radiosensitization

    NASA Astrophysics Data System (ADS)

    Brun, Emilie; Sicard-Roselli, Cécile

    2016-11-01

    Radiosensitization by metallic nanoparticles (NP) has been explored for more than a decade with promising results in vitro and in cellulo reported in a vast number of publications. Yet, few clinical trials are on-going. This could be related to the lack of selectivity of NP leading to massive quantities to be injected to observe an effect but also to the higher degree of complexity than first thought leading to an absence of consensus probably caused by the lack of standardization in pre-clinical studies. Given the wide panel of NP used, in terms of core nature, size, coating, not to mention of cell lines and irradiation modalities, cross-comparison of data is not a walk in the park. But only a thorough examination could help identifying the key parameters and the possible mechanisms involved. This step is crucial as it should provide guidance for designing the most efficient combination NP/radiation and rationally establishing clinical protocols. In this review, we will combine and confront cellular radiosensitization results with in vitro and numerical experiments in order to give the more recent vision of this complex phenomenon. We decided to address a few hot topics such as the influence of the incident radiation energy, the localization of NP or the so-called ;biological; effect. We will highlight that among the barriers to break down, some are not restricted to the ;nano; community: an incontestable support could be offered by the ;radiation; community in the broadest sense.

  19. Formation of Clustered DNA Damage after High-LET Irradiation: A Review

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Georgakilas, Alexandros G.

    2008-01-01

    Radiation can cause as well as cure cancer. The risk of developing radiation-induced cancer has traditionally been estimated from cancer incidence among survivors of the atomic bombs in Hiroshima and Nagasaki. These data provide the best estimate of human cancer risk over the dose range for low linear energy transfer (LET) radiations, such as X- or gamma-rays. The situation of estimating the real biological effects becomes even more difficult in the case of high LET particles encountered in space or as the result of domestic exposure to particles from radon gas emitters or other radioactive emitters like uranium-238. Complex DNA damage, i.e., the signature of high-LET radiations comprises by closely spaced DNA lesions forming a cluster of DNA damage. The two basic groups of complex DNA damage are double strand breaks (DSBs) and non-DSB oxidative clustered DNA lesions (OCDL). Theoretical analysis and experimental evidence suggest there is increased complexity and severity of complex DNA damage with increasing LET (linear energy transfer) and a high mutagenic or carcinogenic potential. Data available on the formation of clustered DNA damage (DSBs and OCDL) by high-LET radiations are often controversial suggesting a variable response to dose and type of radiation. The chemical nature and cellular repair mechanisms of complex DNA damage have been much less characterized than those of isolated DNA lesions like an oxidized base or a single strand break especially in the case of high-LET radiation. This review will focus on the induction of clustered DNA damage by high-LET radiations presenting the earlier and recent relative data.

  20. The history of the Universe is an elliptic curve

    NASA Astrophysics Data System (ADS)

    Coquereaux, Robert

    2015-06-01

    Friedmann-Lemaître equations with contributions coming from matter, curvature, cosmological constant, and radiation, when written in terms of conformal time u rather than in terms of cosmic time t, can be solved explicitly in terms of standard Weierstrass elliptic functions. The spatial scale factor, the temperature, the densities, the Hubble function, and almost all quantities of cosmological interest (with the exception of t itself) are elliptic functions of u, in particular they are bi-periodic with respect to a lattice of the complex plane, when one takes u complex. After recalling the basics of the theory, we use these explicit expressions, as well as the experimental constraints on the present values of density parameters (we choose for the curvature density a small value in agreement with experimental bounds) to display the evolution of the main cosmological quantities for one real period 2{{ω }r} of conformal time (the cosmic time t ‘never ends’ but it goes to infinity for a finite value {{u}f}\\lt 2{{ω }r} of u). A given history of the Universe, specified by the measured values of present-day densities, is associated with a lattice in the complex plane, or with an elliptic curve, and therefore with two Weierstrass invariants {{g}2},{{g}3}. Using the same experimental data we calculate the values of these invariants, as well as the associated modular parameter and the corresponding Klein j-invariant. If one takes the flat case k = 0, the lattice is only defined up to homotheties, and if one, moreover, neglects the radiation contribution, the j-invariant vanishes and the corresponding modular parameter τ can be chosen in one corner of the standard fundamental domain of the modular group (equihanharmonic case: τ =exp (2iπ /3)). Several exact—i.e., non-numerical—results of independent interest are obtained in that case.

  1. Reliability of an x-ray system for calibrating and testing personal radiation dosimeters

    NASA Astrophysics Data System (ADS)

    Guimarães, M. C.; Silva, C. R. E.; Rosado, P. H. G.; Cunha, P. G.; Da Silva, T. A.

    2018-03-01

    Metrology laboratories are expected to maintain standardized radiation beams and traceable standard dosimeters to provide reliable calibrations or testing of detectors. Results of the characterization of an x-ray system for performing calibration and testing of radiation dosimeters used for individual monitoring are shown in this work.

  2. Patient-related factors influencing detectability of coronary arteries in 320-row CT angiography in infants with complex congenital heart disease.

    PubMed

    Yamasaki, Yuzo; Kawanami, Satoshi; Kamitani, Takeshi; Sagiyama, Koji; Shin, Seitaro; Hino, Takuya; Nagata, Hazumu; Yabuuchi, Hidetake; Nagao, Michinobu; Honda, Hiroshi

    2018-05-05

    To investigate the performance of second-generation 320-row computed tomographic (CT) angiography (CTA) in detecting coronary arteries and identify factors influencing visibility of the coronary arteries in infants with complex congenital heart disease (CHD). Data of 60 infants (aged 0-2 years, median 2 months) with complex CHD who underwent examination using 320-row CTA with low-dose prospective electrocardiogram-triggered volume target scanning were reviewed. The coronary arteries of each infant were assessed using a 0-4-point scoring system based on the number of coronary segments with a visible course. Clinical parameters, the CT value in the ascending aorta, image noise, and the radiation dose were subjected to univariate and multivariate analyses. The mean coronary score for all examinations was 2.6 ± 1.5 points. The mean attenuation in the ascending aorta was 306.7 ± 66.2 HU and the mean standard deviation was 21.7 ± 4.4. The mean effective radiation dose was 1.27 ± 0.39 mSv. Multivariate regression analysis showed significant correlations between coronary score and body weight (p < 0.05) and between coronary score and the CT value in the ascending aorta (p < 0.02). Second-generation 320-row CTA with prospective electrocardiogram-triggered volume target scanning and hybrid iterative reconstruction allows good visibility of the coronary arteries in infants with complex CHD. Body weight and the CT value in the ascending aorta are important factors influencing the visibility of the coronary arteries in infants.

  3. Evaluation of Arctic broadband surface radiation measurements

    NASA Astrophysics Data System (ADS)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Niebergall, O.; Wendell, J.; Albee, R.

    2012-02-01

    The Arctic is a challenging environment for making in-situ surface radiation measurements. A standard suite of radiation sensors is typically designed to measure incoming and outgoing shortwave (SW) and thermal infrared, or longwave (LW), radiation. Enhancements may include various sensors for measuring irradiance in narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that keep sensors and shading devices trained on the sun along its diurnal path. High quality measurements require striking a balance between locating stations in a pristine undisturbed setting free of artificial blockage (such as from buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data in the Arctic include solar tracker malfunctions, rime/frost/snow deposition on the protective glass domes of the radiometers and operational problems due to limited operator access in extreme weather conditions. In this study, comparisons are made between the global and component sum (direct [vertical component] + diffuse) SW measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of arctic radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both SW and LW measurements. Solutions to these operational problems that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols are proposed.

  4. Evaluation of arctic broadband surface radiation measurements

    NASA Astrophysics Data System (ADS)

    Matsui, N.; Long, C. N.; Augustine, J.; Halliwell, D.; Uttal, T.; Longenecker, D.; Nievergall, O.; Wendell, J.; Albee, R.

    2011-08-01

    The Arctic is a challenging environment for making in-situ radiation measurements. A standard suite of radiation sensors is typically designed to measure the total, direct and diffuse components of incoming and outgoing broadband shortwave (SW) and broadband thermal infrared, or longwave (LW) radiation. Enhancements can include various sensors for measuring irradiance in various narrower bandwidths. Many solar radiation/thermal infrared flux sensors utilize protective glass domes and some are mounted on complex mechanical platforms (solar trackers) that rotate sensors and shading devices that track the sun. High quality measurements require striking a balance between locating sensors in a pristine undisturbed location free of artificial blockage (such as buildings and towers) and providing accessibility to allow operators to clean and maintain the instruments. Three significant sources of erroneous data include solar tracker malfunctions, rime/frost/snow deposition on the instruments and operational problems due to limited operator access in extreme weather conditions. In this study, a comparison is made between the global and component sum (direct [vertical component] + diffuse) shortwave measurements. The difference between these two quantities (that theoretically should be zero) is used to illustrate the magnitude and seasonality of radiation flux measurement problems. The problem of rime/frost/snow deposition is investigated in more detail for one case study utilizing both shortwave and longwave measurements. Solutions to these operational problems are proposed that utilize measurement redundancy, more sophisticated heating and ventilation strategies and a more systematic program of operational support and subsequent data quality protocols.

  5. Larger sized wire arrays on 1.5 MA Z-pinch generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Safronova, A. S., E-mail: alla@unr.edu; Kantsyrev, V. L., E-mail: alla@unr.edu; Weller, M. E., E-mail: alla@unr.edu

    Experiments on the UNR Zebra generator with Load Current Multiplier (LCM) allow for implosions of larger sized wire array loads than at standard current of 1 MA. Advantages of larger sized planar wire array implosions include enhanced energy coupling to plasmas, better diagnostic access to observable plasma regions, and more complex geometries of the wire loads. The experiments with larger sized wire arrays were performed on 1.5 MA Zebra with LCM (the anode-cathode gap was 1 cm, which is half the gap used in the standard mode). In particular, larger sized multi-planar wire arrays had two outer wire planes frommore » mid-atomic-number wires to create a global magnetic field (gmf) and plasma flow between them. A modified central plane with a few Al wires at the edges was put in the middle between outer planes to influence gmf and to create Al plasma flow in the perpendicular direction (to the outer arrays plasma flow). Such modified plane has different number of empty slots: it was increased from 6 up to 10, hence increasing the gap inside the middle plane from 4.9 to 7.7 mm, respectively. Such load configuration allows for more independent study of the flows of L-shell mid-atomic-number plasma (between the outer planes) and K-shell Al plasma (which first fills the gap between the edge wires along the middle plane) and their radiation in space and time. We demonstrate that such configuration produces higher linear radiation yield and electron temperatures as well as advantages of better diagnostics access to observable plasma regions and how the load geometry (size of the gap in the middle plane) influences K-shell Al radiation. In particular, K-shell Al radiation was delayed compared to L-shell mid-atomic-number radiation when the gap in the middle plane was large enough (when the number of empty slots was increased up to ten)« less

  6. Evolution of radiation resistance in a complex microenvironment

    NASA Astrophysics Data System (ADS)

    Kim, So Hyun; Austin, Robert; Mehta, Monal; Kahn, Atif

    2013-03-01

    Radiation treatment responses in brain cancers are typically associated with short progression-free intervals in highly lethal malignancies such as glioblastomas. Even as patients routinely progress through second and third line salvage therapies, which are usually empirically selected, surprisingly little information exists on how cancer cells evolve resistance. We will present experimental results showing how in the presence of complex radiation gradients evolution of resistance to radiation occurs. Sponsored by the NCI/NIH Physical Sciences Oncology Centers

  7. Space radiation shielding studies for astronaut and electronic component risk assessment

    NASA Astrophysics Data System (ADS)

    Fuchs, Jordan; Gersey, Brad; Wilkins, Richard

    The space radiation environment is comprised of a complex and variable mix of high energy charged particles, gamma rays and other exotic species. Elements of this radiation field may also interact with intervening matter (such as a spaceship wall) and create secondary radiation particles such as neutrons. Some of the components of the space radiation environment are highly penetrating and can cause adverse effects in humans and electronic components aboard spacecraft. Developing and testing materials capable of providing effective shielding against the space radiation environment presents special challenges to researchers. Researchers at the Cen-ter for Radiation Engineering and Science for Space Exploration (CRESSE) at Prairie View AM University (PVAMU) perform accelerator based experiments testing the effectiveness of various materials for use as space radiation shields. These experiments take place at the NASA Space Radiation Laboratory at Brookhaven National Laboratory, the proton synchrotron at Loma Linda University Medical Center, and the Los Alamos Neutron Science Center at Los Alamos National Laboratory where charged particles and neutrons are produced at energies similar to those found in the space radiation environment. The work presented in this paper constitutes the beginning phase of an undergraduate research project created to contribute to this ongoing space radiation shielding project. Specifically, this student project entails devel-oping and maintaining a database of information concerning the historical data from shielding experiments along with a systematic categorization and storage system for the actual shielding materials. The shielding materials referred to here range in composition from standard materi-als such as high density polyethylene and aluminum to exotic multifunctional materials such as spectra-fiber infused composites. The categorization process for each material includes deter-mination of the density thickness of individual samples and a clear labeling and filing method that allows immediate cross referencing with other material samples during the experimental design process. Density thickness measurements will be performed using a precision scale that will allow for the fabrication of sets of standard density thicknesses of selected materials for ready use in shielding experiments. The historical data from previous shielding experiments consists primarily of measurements of absorbed dose, dose equivalent and dose distributions from a Tissue Equivalent Proportional Counter (TEPC) as measured downstream of various thicknesses of the materials while being irradiated in one of the aforementioned particle beams. This data has been digitally stored and linked to the composition of each material and may be easily accessed for shielding effectiveness inter-comparisons. This work was designed to facili-tate and increase the efficiency of ongoing space radiation shielding research performed at the CRESSE as well as serve as a way to educate new generations of space radiation researchers.

  8. TH-E-209-01: Fluoroscopic Dose Monitoring and Patient Follow-Up Program at Massachusetts General Hospital

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, B.

    2016-06-15

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  9. TH-E-209-02: Dose Monitoring and Protocol Optimization: The Pediatric Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  10. Corrigendum to “Accelerated materials evaluation for nuclear applications” [J. Nucl. Mater. 488 (2017) 46–62

    DOE PAGES

    Griffiths, Malcolm; Walters, L.; Greenwood, L. R.; ...

    2017-09-21

    The original article addresses the opportunities and complexities of using materials test reactors with high neutron fluxes to perform accelerated studies of material aging in power reactors operating at lower neutron fluxes and with different neutron flux spectra. Radiation damage and gas production in different reactors have been compared using the code, SPECTER. This code provides a common standard from which to compare neutron damage data generated by different research groups using a variety of reactors. This Corrigendum identifies a few typographical errors. Tables 2 and 3 are included in revised form.

  11. Evaluation of novel disposable, light-weight radiation protection devices in an interventional radiology setting: a randomized controlled trial.

    PubMed

    Uthoff, Heiko; Peña, Constantino; West, James; Contreras, Francisco; Benenati, James F; Katzen, Barry T

    2013-04-01

    Radiation exposure to interventionalists is increasing. The currently available standard radiation protection devices are heavy and do not protect the head of the operator. The aim of this study was to evaluate the effectiveness and comfort of caps and thyroid collars made of a disposable, light-weight, lead-free material (XPF) for occupational radiation protection in a clinical setting. Up to two interventional operators were randomized to wear a XPF or standard 0.5-mm lead-equivalent thyroid collars in 60 consecutive endovascular procedures requiring fluoroscopy. Simultaneously a XPF cap was worn by all operators. Radiation doses were measured using dosimeters placed outside and underneath the caps and thyroid collars. Wearing comfort was assessed at the end of each procedure on a visual analog scale (0-100 [100 = optimal]). Patient and procedure data did not differ between the XPF and standard protection groups. The cumulative radiation dose measured outside the cap was 15,700 μSv and outside the thyroid collars 21,240 μSv. Measured radiation attenuation provided by the XPF caps (n = 70), XPF thyroid collars (n = 40), and standard thyroid collars (n = 38) was 85.4% ± 25.6%, 79.7% ± 25.8% and 71.9% ± 34.2%, respectively (mean difference XPF vs standard thyroid collars, 7.8% [95% CI, -5.9% to 21.6%]; p = 0.258). The median XPF cap weight was 144 g (interquartile range, 128-170 g), and the XPF thyroid collars were 27% lighter than the standard thyroid collars (p < 0.0001). Operators rated the comfort of all devices as high (mean scores for XPF caps and XPF thyroid collars 83.4 ± 12.7 (SD) and 88.5 ± 14.6, respectively; mean scores for standard thyroid collars 89.6 ± 9.9) (p = 0.648). Light-weight disposable caps and thyroid collars made of XPF were assessed as being comfortable to wear, and they provide radiation protection similar to that of standard 0.5-mm lead-equivalent thyroid collars.

  12. Lightweight bilayer barium sulfate-bismuth oxide composite thyroid collars for superior radiation protection in fluoroscopy-guided interventions: a prospective randomized controlled trial.

    PubMed

    Uthoff, Heiko; Benenati, Matthew J; Katzen, Barry T; Peña, Constantino; Gandhi, Ripal; Staub, Daniel; Schernthaner, Melanie

    2014-02-01

    To test whether newer bilayer barium sulfate-bismuth oxide composite (XPF) thyroid collars (TCs) provide superior radiation protection and comfort during fluoroscopy-guided interventions compared with standard 0.5-mm lead-equivalent TCs. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant study, and 144 fluoroscopy-guided vascular interventions were included at one center between October 2011 and July 2012, with up to two operators randomly assigned to wear XPF (n = 135) or standard 0.5-mm lead-equivalent (n = 121) TCs. Radiation doses were measured by using dosimeters placed outside and underneath the TCs. Wearing comfort was assessed at the end of each procedure on a visual analog scale (0-100, with 100 indicating optimal comfort). Adjusted differences in comfort and radiation dose reductions were calculated by using a mixed logistic regression model and the common method of inverse variance weighting, respectively. Patient (height, weight, and body mass index) and procedure (type and duration of intervention, operator, fluoroscopy time, dose-area product, and air kerma) data did not differ between the XPF and standard groups. Comfort was assessed in all 256 measurements. On average, the XPF TCs were 47.6% lighter than the standard TCs (mean weight ± standard deviation, 133 g ± 14 vs 254 g ± 44; P < .001) and had a significantly higher likelihood of a high level of comfort (visual analog scale >90; odds ratio, 7.6; 95% confidence interval: 3.0, 19.2; P < .001). Radiation dose reduction provided by the TCs was analyzed in 117 data sets (60 in the XPF group, 57 in the standard group). The mean radiation dose reductions (ie, radiation protection) provided by XPF and standard TCs were 90.7% and 72.4%, with an adjusted mean difference of 17.9% (95% confidence interval: 7.7%, 28.1%; P < .001) favoring XPF. XPF TCs are a lightweight alternative to standard 0.5-mm lead-equivalent TCs and provide superior radiation protection during fluoroscopy-guided interventions. © RSNA, 2013.

  13. Effect of environmental factors on the complexation of iron and humic acid.

    PubMed

    Fang, Kai; Yuan, Dongxing; Zhang, Lei; Feng, Lifeng; Chen, Yaojin; Wang, Yuzhou

    2015-01-01

    A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron (Fe) and humic acid (HA) in a water environment. The factors affecting the complexation of Fe and HA, such as ionic strength, pH, temperature and UV radiation, were investigated. The Fe-HA complex residence time was also studied. Experimental results showed that pH could influence the deprotonation of HA and hydrolysis of Fe, and thus affected the complexation of Fe and HA. The complexation was greatly disrupted by the presence of NaCl. Temperature had some influence on the complexation. The yield of Fe-HA complexes showed a small decrease at high levels of UV radiation, but the effect of UV radiation on Fe-HA complex formation at natural levels could be neglected. It took about 10 hr for the complexation to reach equilibrium, and the Fe-HA complex residence time was about 20 hr. Complexation of Fe and HA reached a maximum level under the conditions of pH 6, very low ionic strength, in the dark and at a water temperature of about 25°C, for 10 hr. It was suggested that the Fe-HA complex could form mainly in freshwater bodies and reach high levels in the warm season with mild sunlight radiation. With changing environmental parameters, such as at lower temperature in winter or higher pH and ionic strength in an estuary, the concentration of the Fe-HA complex would decrease. Copyright © 2014. Published by Elsevier B.V.

  14. 42 CFR Appendix B to Part 75 - Standards for Accreditation of Dental Radiography Training for Dental Hygienists

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... must include content in seven areas: radiation physics; radiation biology; radiation health, safety... 42 Public Health 1 2010-10-01 2010-10-01 false Standards for Accreditation of Dental Radiography Training for Dental Hygienists B Appendix B to Part 75 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF...

  15. 42 CFR Appendix C to Part 75 - Standards for Accreditation of Dental Radiography Training for Dental Assistants

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... areas: radiation physics; radiation biology; radiation health, safety, and protection; X-ray films and... 42 Public Health 1 2010-10-01 2010-10-01 false Standards for Accreditation of Dental Radiography Training for Dental Assistants C Appendix C to Part 75 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF...

  16. Radiation techniques for esophageal cancer.

    PubMed

    Zhang, Minsi; Wu, Abraham J

    2017-10-01

    Radiotherapy plays a crucial role in the curative management of localized esophageal cancer, both as definitive and preoperative therapy. For definitive therapy, the standard radiation dose is 50.4 Gy in 28 fractions and should be delivered with concurrent chemotherapy. Chemoradiotherapy also has a wellestablished benefit in the preoperative setting, as established in the CROSS randomized trial. Radiation fields are typically generous, to account for subclinical extension of disease along the esophagus and to regional nodes. Three-dimensional conformal radiation is the current standard technique for esophageal cancer, though intensity-modulated radiation therapy is increasingly utilized and may improve the outcomes of esophageal radiotherapy by reducing radiation dose to critical normal tissues.

  17. A methodological approach to a realistic evaluation of skin absorbed doses during manipulation of radioactive sources by means of GAMOS Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Italiano, Antonio; Amato, Ernesto; Auditore, Lucrezia; Baldari, Sergio

    2018-05-01

    The accurate evaluation of the radiation burden associated with radiation absorbed doses to the skin of the extremities during the manipulation of radioactive sources is a critical issue in operational radiological protection, deserving the most accurate calculation approaches available. Monte Carlo simulation of the radiation transport and interaction is the gold standard for the calculation of dose distributions in complex geometries and in presence of extended spectra of multi-radiation sources. We propose the use of Monte Carlo simulations in GAMOS, in order to accurately estimate the dose to the extremities during manipulation of radioactive sources. We report the results of these simulations for 90Y, 131I, 18F and 111In nuclides in water solutions enclosed in glass or plastic receptacles, such as vials or syringes. Skin equivalent doses at 70 μm of depth and dose-depth profiles are reported for different configurations, highlighting the importance of adopting a realistic geometrical configuration in order to get accurate dosimetric estimations. Due to the easiness of implementation of GAMOS simulations, case-specific geometries and nuclides can be adopted and results can be obtained in less than about ten minutes of computation time with a common workstation.

  18. Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study

    NASA Astrophysics Data System (ADS)

    Stier, P.; Schutgens, N. A. J.; Bellouin, N.; Bian, H.; Boucher, O.; Chin, M.; Ghan, S.; Huneeus, N.; Kinne, S.; Lin, G.; Ma, X.; Myhre, G.; Penner, J. E.; Randles, C. A.; Samset, B.; Schulz, M.; Takemura, T.; Yu, F.; Yu, H.; Zhou, C.

    2013-03-01

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as a measure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in twelve participating models. Even with prescribed aerosol radiative properties, simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.47 Wm-2 and the inter-model standard deviation is 0.55 Wm-2, corresponding to a relative standard deviation of 12%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.04 Wm-2, and the standard deviation increases to 1.01 W-2, corresponding to a significant relative standard deviation of 97%. However, the top-of-atmosphere forcing variability owing to absorption (subtracting the scattering case from the case with scattering and absorption) is low, with absolute (relative) standard deviations of 0.45 Wm-2 (8%) clear-sky and 0.62 Wm-2 (11%) all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative forcing in the AeroCom Direct Effect experiment demonstrates that host model uncertainties could explain about 36% of the overall sulfate forcing diversity of 0.11 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained surface albedos, such as sea ice. Our results demonstrate that host model uncertainties are an important component of aerosol forcing uncertainty that require further attention.

  19. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines - Implication in modification of radiation damage

    PubMed Central

    Anuranjani; Bala, Madhu

    2014-01-01

    Whole body exposure to low linear energy transfer (LET) ionizing radiations (IRs) damages vital intracellular bio-molecules leading to multiple cellular and tissue injuries as well as pathophysiologies such as inflammation, immunosuppression etc. Nearly 70% of damage is caused indirectly by radiolysis of intracellular water leading to formation of reactive oxygen species (ROS) and free radicals and producing a state of oxidative stress. The damage is also caused by direct ionization of biomolecules. The type of radiation injuries is dependent on the absorbed radiation dose. Sub-lethal IR dose produces more of DNA base damages, whereas higher doses produce more DNA single strand break (SSBs), and double strand breaks (DSBs). The Nrf2-ARE pathway is an important oxidative stress regulating pathway. The DNA DSBs repair regulated by MRN complex, immunomodulation and inflammation regulated by HMGB1 and various types of cytokines are some of the key pathways which interact with each other in a complex manner and modify the radiation response. Because the majority of radiation damage is via oxidative stress, it is essential to gain in depth understanding of the mechanisms of Nrf2-ARE pathway and understand its interactions with MRN complex, HMGB1 and cytokines to increase our understanding on the radiation responses. Such information is of tremendous help in development of medical radiation countermeasures, radioprotective drugs and therapeutics. Till date no approved and safe countermeasure is available for human use. This study reviews the Nrf2-ARE pathway and its crosstalk with MRN-complex, HMGB1 and cytokines (TNF-a, IL-6, IFN-? etc.). An attempt is also made to review the modification of some of these pathways in presence of selected antioxidant radioprotective compounds or herbal extracts. PMID:25009785

  20. Optoelectronic Devices with Complex Failure Modes

    NASA Technical Reports Server (NTRS)

    Johnston, A.

    2000-01-01

    This part of the NSREC-2000 Short Course discusses radiation effects in basic photonic devices along with effects in more complex optoelectronic devices where the overall radiation response depends on several factors, with the possibility of multiple failure modes.

  1. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Standards for Accreditation of Educational Programs for Radiation Therapy Technologists E Appendix E to Part 75 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION, LICENSING STANDARDS FOR THE ACCREDITATION OF...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voytchev, Miroslav; Ambrosi, P.; Behrens, R.

    This paper presents IEC/SC 45B Radiation protection instrumentation and its standards for individual monitoring of ionising radiation: IEC 61526 Ed. 3 for active personal dosemeters and IEC 62387-1 for passive integrating dosimetry systems. The transposition of these standards as CENELEC (European) standards is also discussed together with the collaboration between IEC/SC 45B and ISO/TC 85/SC 2.

  3. 40 CFR 197.38 - Are the Individual Protection and Ground Water Protection Standards Severable?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Are the Individual Protection and Ground Water Protection Standards Severable? 197.38 Section 197.38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN,...

  4. 40 CFR 197.38 - Are the Individual Protection and Ground Water Protection Standards Severable?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Are the Individual Protection and Ground Water Protection Standards Severable? 197.38 Section 197.38 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS PUBLIC HEALTH AND ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR YUCCA MOUNTAIN,...

  5. Methods of treating complex space vehicle geometry for charged particle radiation transport

    NASA Technical Reports Server (NTRS)

    Hill, C. W.

    1973-01-01

    Current methods of treating complex geometry models for space radiation transport calculations are reviewed. The geometric techniques used in three computer codes are outlined. Evaluations of geometric capability and speed are provided for these codes. Although no code development work is included several suggestions for significantly improving complex geometry codes are offered.

  6. Radon in the Workplace: the Occupational Safety and Health Administration (OSHA) Ionizing Radiation Standard.

    PubMed

    Lewis, Robert K

    2016-10-01

    On 29 December 1970, the Occupational Safety and Health Act of 1970 established the Occupational Safety and Health Administration (OSHA). This article on OSHA, Title 29, Part 1910.1096 Ionizing Radiation standard was written to increase awareness of the employer, the workforce, state and federal governments, and those in the radon industry who perform radon testing and radon mitigation of the existence of these regulations, particularly the radon relevant aspect of the regulations. This review paper was also written to try to explain what can sometimes be complicated regulations. As the author works within the Radon Division of the Pennsylvania Department of Environmental Protection, Bureau of Radiation Protection, the exclusive focus of the article is on radon. The 1910.1096 standard obviously covers many other aspects of radiation and radiation safety in the work place.

  7. International Standardization of the Clinical Dosimetry of Beta Radiation Brachytherapy Sources: Progress of an ISO Standard

    NASA Astrophysics Data System (ADS)

    Soares, Christopher

    2006-03-01

    In 2004 a new work item proposal (NWIP) was accepted by the International Organization for Standardization (ISO) Technical Committee 85 (TC85 -- Nuclear Energy), Subcommittee 2 (Radiation Protection) for the development of a standard for the clinical dosimetry of beta radiation sources used for brachytherapy. To develop this standard, a new Working Group (WG 22 - Ionizing Radiation Dosimetry and Protocols in Medical Applications) was formed. The standard is based on the work of an ad-hoc working group initiated by the Dosimetry task group of the Deutsches Insitiut für Normung (DIN). Initially the work was geared mainly towards the needs of intravascular brachytherapy, but with the decline of this application, more focus has been placed on the challenges of accurate dosimetry for the concave eye plaques used to treat ocular melanoma. Guidance is given for dosimetry formalisms, reference data to be used, calibrations, measurement methods, modeling, uncertainty determinations, treatment planning and reporting, and clinical quality control. The document is currently undergoing review by the ISO member bodies for acceptance as a Committee Draft (CD) with publication of the final standard expected by 2007. There are opportunities for other ISO standards for medical dosimetry within the framework of WG22.

  8. Investigation of Radiation Protection Methodologies for Radiation Therapy Shielding Using Monte Carlo Simulation and Measurement

    NASA Astrophysics Data System (ADS)

    Tanny, Sean

    The advent of high-energy linear accelerators for dedicated medical use in the 1950's by Henry Kaplan and the Stanford University physics department began a revolution in radiation oncology. Today, linear accelerators are the standard of care for modern radiation therapy and can generate high-energy beams that can produce tens of Gy per minute at isocenter. This creates a need for a large amount of shielding material to properly protect members of the public and hospital staff. Standardized vault designs and guidance on shielding properties of various materials are provided by the National Council on Radiation Protection (NCRP) Report 151. However, physicists are seeking ways to minimize the footprint and volume of shielding material needed which leads to the use of non-standard vault configurations and less-studied materials, such as high-density concrete. The University of Toledo Dana Cancer Center has utilized both of these methods to minimize the cost and spatial footprint of the requisite radiation shielding. To ensure a safe work environment, computer simulations were performed to verify the attenuation properties and shielding workloads produced by a variety of situations where standard recommendations and guidance documents were insufficient. This project studies two areas of concern that are not addressed by NCRP 151, the radiation shielding workload for the vault door with a non-standard design, and the attenuation properties of high-density concrete for both photon and neutron radiation. Simulations have been performed using a Monte-Carlo code produced by the Los Alamos National Lab (LANL), Monte Carlo Neutrons, Photons 5 (MCNP5). Measurements have been performed using a shielding test port designed into the maze of the Varian Edge treatment vault.

  9. The Calibration of Gloss Reference Standards

    NASA Astrophysics Data System (ADS)

    Budde, W.

    1980-04-01

    In present international and national standards for the measurement of specular gloss the primary and secondary reference standards are defined for monochromatic radiation. However the glossmeter specified is using polychromatic radiation (CIE Standard Illuminant C) and the CIE Standard Photometric Observer. This produces errors in practical gloss measurements of up to 0.5%. Although this may be considered small as compared to the accuracy of most practical gloss measurements, such an error should not be tolerated in the calibration of secondary standards. Corrections for such errors are presented and various alternatives for amendments of the existing documentary standards are discussed.

  10. Low-Frequency Carbon Recombination Lines in the Orion Molecular Cloud Complex

    NASA Astrophysics Data System (ADS)

    Tremblay, Chenoa D.; Jordan, Christopher H.; Cunningham, Maria; Jones, Paul A.; Hurley-Walker, Natasha

    2018-05-01

    We detail tentative detections of low-frequency carbon radio recombination lines from within the Orion molecular cloud complex observed at 99-129 MHz. These tentative detections include one alpha transition and one beta transition over three locations and are located within the diffuse regions of dust observed in the infrared at 100 μm, the Hα emission detected in the optical, and the synchrotron radiation observed in the radio. With these observations, we are able to study the radiation mechanism transition from collisionally pumped to radiatively pumped within the H ii regions within the Orion molecular cloud complex.

  11. Measurement and standardization of eye safety for optical radiation of LED products

    NASA Astrophysics Data System (ADS)

    Mou, Tongsheng; Peng, Zhenjian

    2013-06-01

    The blue light hazard (BLH) to human eye's retina is now a new issue emerging in applications of artificial light sources. Especially for solid state lighting sources based on the blue chip-LED(GaN), the photons with their energy more than 2.4 eV show photochemical effects on the retina significantly, raising damage both in photoreceptors and retinal pigment epithelium. The photobiological safety of artificial light sources emitting optical radiation has gained more and more attention worldwide and addressed by international standards IEC 62471-2006(CIE S009/E: 2002). Meanwhile, it is involved in IEC safety specifications of LED lighting products and covered by European Directive 2006/25/EC on the minimum health and safety requirements regarding the exposure of the workers to artificial optical radiation. In practical applications of the safety standards, the measuring methods of optical radiation from LED products to eyes are important in establishment of executable methods in the industry. In 2011, a new project to develop the international standard of IEC TR62471-4,that is "Measuring methods of optical radiation related to photobiological safety", was approved and are now under way. This paper presents the concerned methods for the assessment of optical radiation hazards in the standards. Furthermore, a retina radiance meter simulating eye's optical geometry is also described, which is a potential tool for blue light hazard assessment of retinal exposure to optical radiation. The spectroradiometric method integrated with charge-coupled device(CCD) imaging system is introduced to provide more reliable results.

  12. Diffusion tensor imaging in children with tuberous sclerosis complex: tract-based spatial statistics assessment of brain microstructural changes.

    PubMed

    Zikou, Anastasia K; Xydis, Vasileios G; Astrakas, Loukas G; Nakou, Iliada; Tzarouchi, Loukia C; Tzoufi, Meropi; Argyropoulou, Maria I

    2016-07-01

    There is evidence of microstructural changes in normal-appearing white matter of patients with tuberous sclerosis complex. To evaluate major white matter tracts in children with tuberous sclerosis complex using tract-based spatial statistics diffusion tensor imaging (DTI) analysis. Eight children (mean age ± standard deviation: 8.5 ± 5.5 years) with an established diagnosis of tuberous sclerosis complex and 8 age-matched controls were studied. The imaging protocol consisted of T1-weighted high-resolution 3-D spoiled gradient-echo sequence and a spin-echo, echo-planar diffusion-weighted sequence. Differences in the diffusion indices were evaluated using tract-based spatial statistics. Tract-based spatial statistics showed increased axial diffusivity in the children with tuberous sclerosis complex in the superior and anterior corona radiata, the superior longitudinal fascicle, the inferior fronto-occipital fascicle, the uncinate fascicle and the anterior thalamic radiation. No significant differences were observed in fractional anisotropy, mean diffusivity and radial diffusivity between patients and control subjects. No difference was found in the diffusion indices between the baseline and follow-up examination in the patient group. Patients with tuberous sclerosis complex have increased axial diffusivity in major white matter tracts, probably related to reduced axonal integrity.

  13. Niagara Falls Storage Site annual site environmental monitoring report. Calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-04-01

    During 1985, an environmental monitoring program was continued at the Niagara Falls Storage Site (NFSS), a United States Department of Energy (DOE) surplus facility located in Niagara County, New York, presently used for the interim storage of low-level radioactive residues and contaminated soils and rubble. The monitoring program is being conducted by Bechtel National, Inc. Monitoring results show that the NFSS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable limits have been revisedmore » since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the limits applied for the 1985 are based on a standard of 100 mrem/yr. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program measured radon gas concentrations in air; uranium and radium concentrations in surface water, groundwater, and sediments; and external gamma dose rates. Environmental samples collected were analyzed to determine compliance with applicable standards. Potential radiation doses to the public were also calculated.« less

  14. Modulating Radiation Resistance: Novel Protection Paradigms Based on Defenses against Ionizing Radiation in the Extrempohile Deinococcus radiodurans

    DTIC Science & Technology

    2013-07-01

    USA (2013); 2) Many environmental yeast are extremely radiation-resistant, accumulate nitrogenous Mn2+-Pi complexes, and highly resistant to...5 important in aerobic environments . Numerous organisms which accumulate “compatible solutes” fit this model, including representative archaea...cyanobacteria, lichens, alpine yeast, and tardigrades. 4.3 Knowns and Unknowns of Deinococcus Mn2+ Complexes It is worth reminding the reader

  15. 40 CFR 190.12 - Effective date.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Effective date. 190.12 Section 190.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS Environmental Standards for the...

  16. 40 CFR 190.12 - Effective date.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Effective date. 190.12 Section 190.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS Environmental Standards for the...

  17. 40 CFR 190.12 - Effective date.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Effective date. 190.12 Section 190.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS Environmental Standards for the...

  18. 40 CFR 190.12 - Effective date.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Effective date. 190.12 Section 190.12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS Environmental Standards for the...

  19. Parallelization of interpolation, solar radiation and water flow simulation modules in GRASS GIS using OpenMP

    NASA Astrophysics Data System (ADS)

    Hofierka, Jaroslav; Lacko, Michal; Zubal, Stanislav

    2017-10-01

    In this paper, we describe the parallelization of three complex and computationally intensive modules of GRASS GIS using the OpenMP application programming interface for multi-core computers. These include the v.surf.rst module for spatial interpolation, the r.sun module for solar radiation modeling and the r.sim.water module for water flow simulation. We briefly describe the functionality of the modules and parallelization approaches used in the modules. Our approach includes the analysis of the module's functionality, identification of source code segments suitable for parallelization and proper application of OpenMP parallelization code to create efficient threads processing the subtasks. We document the efficiency of the solutions using the airborne laser scanning data representing land surface in the test area and derived high-resolution digital terrain model grids. We discuss the performance speed-up and parallelization efficiency depending on the number of processor threads. The study showed a substantial increase in computation speeds on a standard multi-core computer while maintaining the accuracy of results in comparison to the output from original modules. The presented parallelization approach showed the simplicity and efficiency of the parallelization of open-source GRASS GIS modules using OpenMP, leading to an increased performance of this geospatial software on standard multi-core computers.

  20. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  1. Estimating Longwave Atmospheric Emissivity in the Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Ebrahimi, S.; Marshall, S. J.

    2014-12-01

    Incoming longwave radiation is an important source of energy contributing to snow and glacier melt. However, estimating the incoming longwave radiation from the atmosphere is challenging due to the highly varying conditions of the atmosphere, especially cloudiness. We analyze the performance of some existing models included a physically-based clear-sky model by Brutsaert (1987) and two different empirical models for all-sky conditions (Lhomme and others, 2007; Herrero and Polo, 2012) at Haig Glacier in the Canadian Rocky Mountains. Models are based on relations between readily observed near-surface meteorological data, including temperature, vapor pressure, relative humidity, and estimates of shortwave radiation transmissivity (i.e., clear-sky or cloud-cover indices). This class of models generally requires solar radiation data in order to obtain a proxy for cloud conditions. This is not always available for distributed models of glacier melt, and can have high spatial variations in regions of complex topography, which likely do not reflect the more homogeneous atmospheric longwave emissions. We therefore test longwave radiation parameterizations as a function of near-surface humidity and temperature variables, based on automatic weather station data (half-hourly and mean daily values) from 2004 to 2012. Results from comparative analysis of different incoming longwave radiation parameterizations showed that the locally-calibrated model based on relative humidity and vapour pressure performs better than other published models. Performance is degraded but still better than standard cloud-index based models when we transfer the model to another site, roughly 900 km away, Kwadacha Glacier in the northern Canadian Rockies.

  2. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...

  3. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...

  4. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...

  5. 42 CFR Appendix E to Part 75 - Standards for Accreditation of Educational Programs for Radiation Therapy Technologists

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... universities; (b) Hospitals, clinics, or autonomous radiation oncology centers meeting the criteria for major... structure and function; (f) Oncologic pathology; (g) Radiation oncology; (h) Radiobiology; (i) Mathematics; (j) Radiation physics; (k) Radiation protection; (l) Radiation oncology technique; (m) Radiographic...

  6. Use of an Online Education Platform to Enhance Patients' Knowledge About Radiation in Diagnostic Imaging.

    PubMed

    Steele, Joseph R; Jones, A Kyle; Clarke, Ryan K; Shiao, Sue J; Wei, Wei; Shoemaker, Stowe; Parmar, Simrit

    2017-03-01

    The aim of this study was to compare the impact of a digital interactive education platform and standard paper-based education on patients' knowledge regarding ionizing radiation. Beginning in January 2015, patients at a tertiary cancer center scheduled for diagnostic imaging procedures were randomized to receive information about ionizing radiation delivered through a web-based interactive education platform (interactive education group), the same information in document format (document education group), or no specialized education (control group). Patients who completed at least some education and control group patients were invited to complete a knowledge assessment; interactive education patients were invited to provide feedback about satisfaction with their experience. A total of 2,226 patients participated. Surveys were completed by 302 of 745 patients (40.5%) participating in interactive education, 488 of 993 (49.1%) participating in document education, and 363 of 488 (74.4%) in the control group. Patients in the interactive education group were significantly more likely to say that they knew the definition of ionizing radiation, outperformed the other groups in identifying which imaging examinations used ionizing radiation, were significantly more likely to identify from a list which imaging modality had the highest radiation dose, and tended to perform better when asked about the tissue effects of radiation in diagnostic imaging, although this difference was not significant. In the interactive education group, 84% of patients were satisfied with the experience, and 79% said that they would recommend the program. Complex information on a highly technical subject with personal implications for patients may be conveyed more effectively using electronic platforms, and this approach is well accepted. Copyright © 2016 American College of Radiology. Published by Elsevier Inc. All rights reserved.

  7. TH-E-209-03: Development of An In-House CT Dose Monitoring and Management System Based On Open-Source Software Resources -- Pearls and Pitfalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  8. Causation's nuclear future: applying proportional liability to the Price-Anderson Act.

    PubMed

    O'Connell, William D

    2014-11-01

    For more than a quarter century, public discourse has pushed the nuclear-power industry in the direction of heavier regulation and greater scrutiny, effectively halting construction of new reactors. By focusing on contemporary fear of significant accidents, such discourse begs the question of what the nation's court system would actually do should a major nuclear incident cause radiation-induced cancers. Congress's attempt to answer that question is the Price-Anderson Act, a broad statute addressing claims by the victims of a major nuclear accident. Lower courts interpreting the Act have repeatedly encountered a major stumbling block: it declares that judges must apply the antediluvian preponderance-of-the-evidence logic of state tort law, even though radiation science insists that the causes of radiation-induced cancers are more complex. After a major nuclear accident, the Act's paradoxically outdated rules for adjudicating "causation" would make post-incident compensation unworkable. This Note urges that nuclear-power-plant liability should not turn on eighteenth-century tort law. Drawing on modern scientific conclusions regarding the invariably "statistical" nature of cancer, this Note suggests a unitary federal standard for the Price-Anderson Act--that a defendant be deemed to have "caused" a plaintiff's injury in direct proportion to the increased risk of harm the defendant has imposed. This "proportional liability" rule would not only fairly evaluate the costs borne by injured plaintiffs and protect a reawakening nuclear industry from the prospect of bank-breaking litigation, but would prove workable with only minor changes to the Price-Anderson Act's standards of "injury" and "fault."

  9. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...

  10. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1902 Posting requirements. (a) Posting of radiation areas. The licensee shall post each radiation area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, RADIATION AREA...

  11. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...

  12. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...

  13. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1902 Posting requirements. (a) Posting of radiation areas. The licensee shall post each radiation area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, RADIATION AREA...

  14. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1902 Posting requirements. (a) Posting of radiation areas. The licensee shall post each radiation area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, RADIATION AREA...

  15. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1902 Posting requirements. (a) Posting of radiation areas. The licensee shall post each radiation area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, RADIATION AREA...

  16. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...

  17. 10 CFR 20.1902 - Posting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1902 Posting requirements. (a) Posting of radiation areas. The licensee shall post each radiation area with a conspicuous sign or signs bearing the radiation symbol and the words “CAUTION, RADIATION AREA...

  18. 10 CFR 20.1101 - Radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Radiation protection programs. 20.1101 Section 20.1101 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation Protection Programs § 20.1101 Radiation protection programs. (a) Each licensee shall develop, document, and implement...

  19. 21 CFR 900.12 - Quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MAMMOGRAPHY... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic...

  20. Waiting Lists for Radiation Therapy: A Case Study

    PubMed Central

    2001-01-01

    Background Why waiting lists arise and how to address them remains unclear, and an improved understanding of these waiting list "dynamics" could lead to better management. The purpose of this study is to understand how the current shortage in radiation therapy in Ontario developed; the implications of prolonged waits; who is held accountable for managing such delays; and short, intermediate, and long-term solutions. Methods A case study of the radiation therapy shortage in 1998-99 at Princess Margaret Hospital, Toronto, Ontario, Canada. Relevant documents were collected; semi-structured, face-to-face interviews with ten administrators, health care workers, and patients were conducted, audio-taped and transcribed; and relevant meetings were observed. Results The radiation therapy shortage arose from a complex interplay of factors including: rising cancer incidence rates; broadening indications for radiation therapy; human resources management issues; government funding decisions; and responsiveness to previous planning recommendations. Implications of delays include poorer cancer control rates; patient suffering; and strained doctor-patient relationships. An incompatible relationship exists between moral responsibility, borne by government, and legal liability, borne by physicians. Short-term solutions include re-referral to centers with available resources; long-term solutions include training and recruiting health care workers, improving workload standards, increasing compensation, and making changes to the funding formula. Conclusion Human resource planning plays a critical role in the causes and solutions of waiting lists. Waiting lists have harsh implications for patients. Accountability relationships require realignment. PMID:11319944

  1. Direct measurement of a patient's entrance skin dose during pediatric cardiac catheterization

    PubMed Central

    Sun, Lue; Mizuno, Yusuke; Iwamoto, Mari; Goto, Takahisa; Koguchi, Yasuhiro; Miyamoto, Yuka; Tsuboi, Koji; Chida, Koichi; Moritake, Takashi

    2014-01-01

    Children with complex congenital heart diseases often require repeated cardiac catheterization; however, children are more radiosensitive than adults. Therefore, radiation-induced carcinogenesis is an important consideration for children who undergo those procedures. We measured entrance skin doses (ESDs) using radio-photoluminescence dosimeter (RPLD) chips during cardiac catheterization for 15 pediatric patients (median age, 1.92 years; males, n = 9; females, n = 6) with cardiac diseases. Four RPLD chips were placed on the patient's posterior and right side of the chest. Correlations between maximum ESD and dose–area products (DAP), total number of frames, total fluoroscopic time, number of cine runs, cumulative dose at the interventional reference point (IRP), body weight, chest thickness, and height were analyzed. The maximum ESD was 80 ± 59 (mean ± standard deviation) mGy. Maximum ESD closely correlated with both DAP (r = 0.78) and cumulative dose at the IRP (r = 0.82). Maximum ESD for coiling and ballooning tended to be higher than that for ablation, balloon atrial septostomy, and diagnostic procedures. In conclusion, we directly measured ESD using RPLD chips and found that maximum ESD could be estimated in real-time using angiographic parameters, such as DAP and cumulative dose at the IRP. Children requiring repeated catheterizations would be exposed to high radiation levels throughout their lives, although treatment influences radiation dose. Therefore, the radiation dose associated with individual cardiac catheterizations should be analyzed, and the effects of radiation throughout the lives of such patients should be followed. PMID:24968708

  2. Calculation of the radiative heat exchange in a conical cavity of complex configuration with an absorptive medium

    NASA Technical Reports Server (NTRS)

    Surinov, Y. A.; Fedyanin, V. E.

    1975-01-01

    The generalized zonal method is used to calculate the distribution of the temperature factor on the lateral surface of a conical cavity of complex configuration (a Laval nozzle) containing an absorptive medium. The highest values of the radiation density occur on the converging part of the lateral surface of the complex conical cavity (Laval nozzle).

  3. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model.

    PubMed

    Matzarakis, Andreas; Rutz, Frank; Mayer, Helmut

    2010-03-01

    Short- and long-wave radiation flux densities absorbed by people have a significant influence on their energy balance. The heat effect of the absorbed radiation flux densities is parameterised by the mean radiant temperature. This paper presents the physical basis of the RayMan model, which simulates the short- and long-wave radiation flux densities from the three-dimensional surroundings in simple and complex environments. RayMan has the character of a freely available radiation and human-bioclimate model. The aim of the RayMan model is to calculate radiation flux densities, sunshine duration, shadow spaces and thermo-physiologically relevant assessment indices using only a limited number of meteorological and other input data. A comparison between measured and simulated values for global radiation and mean radiant temperature shows that the simulated data closely resemble measured data.

  4. Coherent beam control with an all-dielectric transformation optics based lens

    NASA Astrophysics Data System (ADS)

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-01

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  5. Coherent beam control with an all-dielectric transformation optics based lens.

    PubMed

    Yi, Jianjia; Burokur, Shah Nawaz; Piau, Gérard-Pascal; de Lustrac, André

    2016-01-05

    Transformation optics (TO) concept well known for its huge possibility in patterning the path of electromagnetic waves is exploited to design a beam steering lens. The broadband directive in-phase emission in a desired off-normal direction from an array of equally fed radiators is numerically and experimentally reported. Such manipulation is achieved without the use of complex and bulky phase shifters as it is the case in classical phased array antennas. The all-dielectric compact low-cost lens prototype presenting a graded permittivity profile is fabricated through three-dimensional (3D) polyjet printing technology. The array of radiators is composed of four planar microstrip antennas realized using standard lithography techniques and is used as excitation source for the lens. To validate the proposed lens, we experimentally demonstrate the broadband focusing properties and in-phase directive emissions deflected from the normal direction. Both the far-field radiation patterns and the near-field distributions are measured and reported. Measurements agree quantitatively and qualitatively with numerical full-wave simulations and confirm the corresponding steering properties. Such experimental validation paves the way to inexpensive easy-made all-dielectric microwave lenses for beam forming and collimation.

  6. Radiation-Tolerant DC-DC Converters

    NASA Technical Reports Server (NTRS)

    Skutt, Glenn; Sable, Dan; Leslie, Leonard; Graham, Shawn

    2012-01-01

    A document discusses power converters suitable for space use that meet the DSCC MIL-PRF-38534 Appendix G radiation hardness level P classification. A method for qualifying commercially produced electronic parts for DC-DC converters per the Defense Supply Center Columbus (DSCC) radiation hardened assurance requirements was developed. Development and compliance testing of standard hybrid converters suitable for space use were completed for missions with total dose radiation requirements of up to 30 kRad. This innovation provides the same overall performance as standard hybrid converters, but includes assurance of radiation- tolerant design through components and design compliance testing. This availability of design-certified radiation-tolerant converters can significantly reduce total cost and delivery time for power converters for space applications that fit the appropriate DSCC classification (30 kRad).

  7. Analysis of complex environment effect on near-field emission

    NASA Astrophysics Data System (ADS)

    Ravelo, B.; Lalléchère, S.; Bonnet, P.; Paladian, F.

    2014-10-01

    The article is dealing with uncertainty analyses of radiofrequency circuits electromagnetic compatibility emission based on the near-field/near-field (NF/NF) transform combined with stochastic approach. By using 2D data corresponding to electromagnetic (EM) field (X=E or H) scanned in the observation plane placed at the position z0 above the circuit under test (CUT), the X field map was extracted. Then, uncertainty analyses were assessed via the statistical moments from X component. In addition, stochastic collocation based was considered and calculations were applied to planar EM NF radiated by the CUTs as Wilkinson power divider and a microstrip line operating at GHz levels. After Matlab implementation, the mean and standard deviation were assessed. The present study illustrates how the variations of environmental parameters may impact EM fields. The NF uncertainty methodology can be applied to any physical parameter effects in complex environment and useful for printed circuit board (PCBs) design guideline.

  8. The MCART radiation physics core: the quest for radiation dosimetry standardization.

    PubMed

    Kazi, Abdul M; MacVittie, Thomas J; Lasio, Giovanni; Lu, Wei; Prado, Karl L

    2014-01-01

    Dose-related radiobiological research results can only be compared meaningfully when radiation dosimetry is standardized. To this purpose, the National Institute of Allergy and Infectious Diseases (NIAID)-sponsored Medical Countermeasures Against Radiological Threats (MCART) consortium recently created a Radiation Physics Core (RPC) as an entity to assume responsibility of standardizing radiation dosimetry practices among its member laboratories. The animal research activities in these laboratories use a variety of ionizing photon beams from several irradiators such as 250-320 kVp x-ray generators, Cs irradiators, Co teletherapy machines, and medical linear accelerators (LINACs). In addition to this variety of sources, these centers use a range of irradiation techniques and make use of different dose calculation schemes to conduct their experiments. An extremely important objective in these research activities is to obtain a Dose Response Relationship (DRR) appropriate to their respective organ-specific models of acute and delayed radiation effects. A clear and unambiguous definition of the DRR is essential for the development of medical countermeasures. It is imperative that these DRRs are transparent between centers. The MCART RPC has initiated the establishment of standard dosimetry practices among member centers and is introducing a Remote Dosimetry Monitoring Service (RDMS) to ascertain ongoing quality assurance. This paper will describe the initial activities of the MCART RPC toward implementing these standardization goals. It is appropriate to report a summary of initial activities with the intent of reporting the full implementation at a later date.

  9. The FLUKA Code: An Overview

    NASA Technical Reports Server (NTRS)

    Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fasso, A.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.; hide

    2006-01-01

    FLUKA is a multipurpose Monte Carlo code which can transport a variety of particles over a wide energy range in complex geometries. The code is a joint project of INFN and CERN: part of its development is also supported by the University of Houston and NASA. FLUKA is successfully applied in several fields, including but not only, particle physics, cosmic ray physics, dosimetry, radioprotection, hadron therapy, space radiation, accelerator design and neutronics. The code is the standard tool used at CERN for dosimetry, radioprotection and beam-machine interaction studies. Here we give a glimpse into the code physics models with a particular emphasis to the hadronic and nuclear sector.

  10. The indirect effect of radiation reduces the repair fidelity of NHEJ as verified in repair deficient CHO cell lines exposed to different radiation qualities and potassium bromate.

    PubMed

    Bajinskis, Ainars; Olsson, Gunilla; Harms-Ringdahl, Mats

    2012-03-01

    The complexity of DNA lesions induced by ionizing radiation is mainly dependent on radiation quality, where the indirect action of radiation may contribute to different extent depending on the type of radiation under study. The effect of indirect action of radiation can be investigated by using agents that induce oxidative DNA damage or by applying free radical scavengers. The aim of this study was to investigate the role of the indirect effect of radiation for the repair fidelity of non-homologous end-joining (NHEJ), homologous recombination repair (HRR) and base excision repair (BER) when DNA damage of different complexity was induced by gamma radiation, alpha particles or from base damages (8-oxo-dG) induced by potassium bromate (KBrO(3)). CHO cells lines deficient in XRCC3 (HRR) irs1SF, XRCC7 (NHEJ) V3-3 and XRCC1 (BER) EM9 were irradiated in the absence or presence of the free radical scavenger dimethyl sulfoxide (DMSO). The endpoints investigated included rate of cell proliferation by the DRAG assay, clonogenic cell survival and the level of primary DNA damage by the comet assay. The results revealed that the indirect effect of low-LET radiation significantly reduced the repair fidelity of both NHEJ and HRR pathways. For high-LET radiation the indirect effect of radiation also significantly reduced the repair fidelity for the repair deficient cell lines. The results suggest further that the repair fidelity of the error prone NHEJ repair pathway is more impaired by the indirect effect of high-LET radiation relative to the other repair pathways studied. The response to bromate observed for the two DSB repair deficient cell lines strongly support earlier studies that bromate induces complex DNA damages. The significantly reduced repair fidelity of irs1SF and V3-3 suggests that NHEJ as well as HRR are needed for the repair, and that complex DSBs are formed after bromate exposure. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Programmable calculator software for computation of the plasma binding of ligands.

    PubMed

    Conner, D P; Rocci, M L; Larijani, G E

    1986-01-01

    The computation of the extent of plasma binding of a ligand to plasma constituents using radiolabeled ligand and equilibrium dialysis is complex and tedious. A computer program for the HP-41C Handheld Computer Series (Hewlett-Packard) was developed to perform these calculations. The first segment of the program constructs a standard curve for quench correction of post-dialysis plasma and buffer samples, using either external standard ratio (ESR) or sample channels ratio (SCR) techniques. The remainder of the program uses the counts per minute, SCR or ESR, and post-dialysis volume of paired plasma and buffer samples generated from the dialysis procedure to compute the extent of binding after correction for background radiation, counting efficiency, and intradialytic shifts of fluid between plasma and buffer compartments during dialysis. This program greatly simplifies the analysis of equilibrium dialysis data and has been employed in the analysis of dexamethasone binding in normal and uremic sera.

  12. 10 CFR 20.1901 - Caution signs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Caution signs. 20.1901 Section 20.1901 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1901 Caution signs. (a) Standard radiation symbol. Unless otherwise authorized by the Commission, the symbol...

  13. 10 CFR 20.1901 - Caution signs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Caution signs. 20.1901 Section 20.1901 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1901 Caution signs. (a) Standard radiation symbol. Unless otherwise authorized by the Commission, the symbol...

  14. 10 CFR 20.1001 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Purpose. 20.1001 Section 20.1001 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1001 Purpose. (a) The regulations in this part establish standards for protection against ionizing radiation resulting from...

  15. 10 CFR 20.1001 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Purpose. 20.1001 Section 20.1001 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1001 Purpose. (a) The regulations in this part establish standards for protection against ionizing radiation resulting from...

  16. 10 CFR 20.1001 - Purpose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Purpose. 20.1001 Section 20.1001 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1001 Purpose. (a) The regulations in this part establish standards for protection against ionizing radiation resulting from...

  17. 10 CFR 20.1001 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Purpose. 20.1001 Section 20.1001 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1001 Purpose. (a) The regulations in this part establish standards for protection against ionizing radiation resulting from...

  18. 10 CFR 20.1901 - Caution signs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Caution signs. 20.1901 Section 20.1901 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1901 Caution signs. (a) Standard radiation symbol. Unless otherwise authorized by the Commission, the symbol...

  19. 10 CFR 20.1901 - Caution signs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Caution signs. 20.1901 Section 20.1901 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1901 Caution signs. (a) Standard radiation symbol. Unless otherwise authorized by the Commission, the symbol...

  20. 10 CFR 20.1901 - Caution signs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Caution signs. 20.1901 Section 20.1901 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary Procedures § 20.1901 Caution signs. (a) Standard radiation symbol. Unless otherwise authorized by the Commission, the symbol...

  1. 10 CFR 20.1001 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Purpose. 20.1001 Section 20.1001 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1001 Purpose. (a) The regulations in this part establish standards for protection against ionizing radiation resulting from...

  2. In vivo anti-radiation activities of the Ulva pertusa polysaccharides and polysaccharide-iron(III) complex.

    PubMed

    Shi, Jinming; Cheng, Cuilin; Zhao, Haitian; Jing, Jing; Gong, Ning; Lu, Weihong

    2013-09-01

    Polysaccharides with different molecular weights were extracted from Ulva pertusa and fractionated by ultrafiltration. Iron(III) complex of the low molecular-weight U. pertusa polysaccharides were synthesized. Atomic absorption spectrum showed that the iron content of iron(III)-polysaccharide complex was 27.4%. The comparison between U. pertusa polysaccharides and their iron(III) complex showed that iron chelating altered the structural characteristics of the polysaccharides. The bioactivity analysis showed that polysaccharide with low molecular weight was more effective than polysaccharide with high molecular weight in protecting mice from radiation induced damages on bone marrow cells and immune system. Results also proved that the anti-radiation and anti-oxidative activity of iron(III) complex of low molecular-weight polysaccharides were not less than that of low molecular-weight polysaccharides. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Formerly Utilized Sites Remedial Action Program (FUSRAP) Hazelwood Interim Storage Site annual site environmental report. Calendar year 1985. [FUSRAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-04-01

    The Hazelwood Interim Storage Site (HISS) is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the HISS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/y. The applicable limits have been revised since the 1984 environmental monitoring report was published. The limits applied in 1984 were based on a radiation protection standard of 500 mrem/y; the limits applied for 1985 are based on a standard of 100 mrem/y. The HISSmore » is part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), a DOE program to decontaminate or otherwise control sites where low-level radioactive contamination remains from the early years of the nation's atomic energy program. To determine whether the site is in compliance with DOE standards, environmental measurements are expressed as percentages of the applicable DCG, while the calculated doses to the public are expressed as percentages of the applicable radiation protection standard. The monitoring program at the HISS measures uranium, radium, and thorium concentrations in surface water, groundwater, and sediment; radon gas concentrations in air; and external gamma radiation exposure rates. Potential radiation doses to the public are also calculated. The HISS was designated for remedial action under FUSRAP because radioactivity above applicable limits was found to exist at the site and its vicinity. Elevated levels of radiation still exist in areas where remedial action has not yet been completed.« less

  4. Exposure safety standards for nonionizing radiation (NIR) from collision-avoidance radar

    NASA Astrophysics Data System (ADS)

    Palmer-Fortune, Joyce; Brecher, Aviva; Spencer, Paul; Huguenin, Richard; Woods, Ken

    1997-02-01

    On-vehicle technology for collision avoidance using millimeter wave radar is currently under development and is expected to be in vehicles in coming years. Recently approved radar bands for collision avoidance applications include 47.5 - 47.8 GHz and 76 - 77 GHz. Widespread use of active radiation sources in the public domain would contribute to raised levels of human exposure to high frequency electromagnetic radiation, with potential for adverse health effects. In order to design collision avoidance systems that will pose an acceptably low radiation hazard, it is necessary to determine what levels of electromagnetic radiation at millimeter wave frequencies will be acceptable in the environment. This paper will summarize recent research on NIR (non-ionizing radiation) exposure safety standards for high frequency electromagnetic radiation. We have investigated both governmental and non- governmental professional organizations worldwide.

  5. Deviation from the Standard of Care for Early Breast Cancer in the Elderly: What are the Consequences?

    PubMed

    Sun, Susie X; Hollenbeak, Christopher S; Leung, Anna M

    2015-08-01

    For elderly patients with early-stage breast cancer, the standards of care often are not strictly followed due to either clinician biases or patient preferences. The authors hypothesized that forgoing radiation and lymph node (LN) staging for elderly patients with early-stage breast cancer would have a negative impact on survival. From the Surveillance, Epidemiology, and End Results Program database, 53,619 women older than 55 years with stage 1 breast cancer who underwent breast conservation surgery were identified. Analyses were performed to compare the characteristics and outcomes of patients who received the standards of care with LN sampling and radiation and those of patients who did not, with control used for confounders. To account for selection bias from covariate imbalance, propensity score matching was performed. Survival was analyzed using the Kaplan-Meier method. Older patients were less likely to receive radiation and LN sampling. These standards of care were associated with improved overall survival rates of 15.8 and 27.1 % after 10 years, respectively (p ≤ 0.0001). This survival advantage persisted after propensity score matching, with a 7.4 % higher survival rate for patients who received radiation and a 16.8 % higher survival rate for those who underwent LN staging (p < 0.0001). Lymph node sampling and radiation therapy also conferred a statistically significant improvement in breast cancer-specific survival, with 1.3 and 2.6 % lower mortality rates respectively in the radiated and LN biopsy groups (p < 0.0001). As patients age, they are less likely to receive the standard of care for stage 1 breast cancer. Even after controlling for other factors, the study showed that failure to adhere to the standards of LN sampling and radiation therapy may have a negative impact in survival.

  6. 21 CFR 900.12 - Quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic... ensure that medical physicists certified by the body are competent to perform physics survey; and (B)(1...

  7. 21 CFR 900.12 - Quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic... ensure that medical physicists certified by the body are competent to perform physics survey; and (B)(1...

  8. 21 CFR 900.12 - Quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic... ensure that medical physicists certified by the body are competent to perform physics survey; and (B)(1...

  9. 21 CFR 900.12 - Quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to mammography. The training shall include instruction in radiation physics, including radiation physics specific to mammography, radiation effects, and radiation protection. The mammographic... ensure that medical physicists certified by the body are competent to perform physics survey; and (B)(1...

  10. Radiation damage to nucleoprotein complexes in macromolecular crystallography

    DOE PAGES

    Bury, Charles; Garman, Elspeth F.; Ginn, Helen Mary; ...

    2015-01-30

    Significant progress has been made in macromolecular crystallography over recent years in both the understanding and mitigation of X-ray induced radiation damage when collecting diffraction data from crystalline proteins. Despite the large field that is productively engaged in the study of radiation chemistry of nucleic acids, particularly of DNA, there are currently very few X-ray crystallographic studies on radiation damage mechanisms in nucleic acids. Quantitative comparison of damage to protein and DNA crystals separately is challenging, but many of the issues are circumvented by studying pre-formed biological nucleoprotein complexes where direct comparison of each component can be made under themore » same controlled conditions. A model protein–DNA complex C.Esp1396I is employed to investigate specific damage mechanisms for protein and DNA in a biologically relevant complex over a large dose range (2.07–44.63 MGy). In order to allow a quantitative analysis of radiation damage sites from a complex series of macromolecular diffraction data, a computational method has been developed that is generally applicable to the field. Typical specific damage was observed for both the protein on particular amino acids and for the DNA on, for example, the cleavage of base-sugar N 1—C and sugar-phosphate C—O bonds. Strikingly the DNA component was determined to be far more resistant to specific damage than the protein for the investigated dose range. We observed the protein at low doses and found that they were susceptible to radiation damage while the DNA was far more resistant, damage only being observed at significantly higher doses.« less

  11. Complex chromosomal rearrangements induced in vivo by heavy ions.

    PubMed

    Durante, M; Ando, K; Furusawa, Y; Obe, G; George, K; Cucinotta, F A

    2004-01-01

    It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel

  12. Complex Chromosomal Rearrangements Induced in Vivo by Heavy Ions

    NASA Technical Reports Server (NTRS)

    Durante, M.; Ando, K.; Furusawa, G.; Obe, G.; George, K.; Cucinotta, F. A.

    2004-01-01

    It has been suggested that the ratio complex/simple exchanges can be used as a biomarker of exposure to high-LET radiation. We tested this hypothesis in vivo, by considering data from several studies that measured complex exchanges in peripheral blood from humans exposed to mixed fields of low- and high-LET radiation. In particular, we studied data from astronauts involved in long-term missions in low-Earth-orbit, and uterus cancer patients treated with accelerated carbon ions. Data from two studies of chromosomal aberrations in astronauts used blood samples obtained before and after space flight, and a third study used blood samples from patients before and after radiotherapy course. Similar methods were used in each study, where lymphocytes were stimulated to grow in vitro, and collected after incubation in either colcemid or calyculin A. Slides were painted with whole-chromosome DNA fluorescent probes (FISH), and complex and simple chromosome exchanges in the painted genome were classified separately. Complex-type exchanges were observed at low frequencies in control subjects, and in our test subjects before the treatment. No statistically significant increase in the yield of complex-type exchanges was induced by the space flight. Radiation therapy induced a high fraction of complex exchanges, but no significant differences could be detected between patients treated with accelerated carbon ions or X-rays. Complex chromosomal rearrangements do not represent a practical biomarker of radiation quality in our test subjects. Copyright 2003 S. Karger AG, Basel.

  13. Identification of gamma-irradiated fruit juices by EPR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aleksieva, K. I.; Dimov, K. G.; Yordanov, N. D.

    2014-10-01

    The results of electron paramagnetic resonance (EPR) study on commercially available juices from various fruits and different fruit contents: 25%, 40%, 50%, and 100%, homemade juices, nectars and concentrated fruit syrups, before and after gamma-irradiation are reported. In order to remove water from non- and irradiated samples all juices and nectars were filtered; the solid residue was washed with alcohol and dried at room temperature. Only concentrated fruit syrups were dried for 60 min at 40 °C in a standard laboratory oven. All samples under study show a singlet EPR line with g=2.0025 before irradiation with exception of concentrated fruit syrups, which are EPR silent. Irradiation of juice samples gives rise to complex EPR spectra which gradually transferred to "cellulose-like" EPR spectrum from 25% to 100% fruit content. Concentrated fruit syrups show typical "sugar-like" spectra due to added saccharides. All EPR spectra are characteristic and can prove radiation treatment. The fading kinetics of radiation-induced EPR signals were studied for a period of 60 days after irradiation.

  14. Essentials and guidelines for clinical medical physics residency training programs: executive summary of AAPM Report Number 249.

    PubMed

    Prisciandaro, Joann I; Willis, Charles E; Burmeister, Jay W; Clarke, Geoffrey D; Das, Rupak K; Esthappan, Jacqueline; Gerbi, Bruce J; Harkness, Beth A; Patton, James A; Peck, Donald J; Pizzutiello, Robert J; Sandison, George A; White, Sharon L; Wichman, Brian D; Ibbott, Geoffrey S; Both, Stefan

    2014-05-08

    There is a clear need for established standards for medical physics residency training. The complexity of techniques in imaging, nuclear medicine, and radiation oncology continues to increase with each passing year. It is therefore imperative that training requirements and competencies are routinely reviewed and updated to reflect the changing environment in hospitals and clinics across the country. In 2010, the AAPM Work Group on Periodic Review of Medical Physics Residency Training was formed and charged with updating AAPM Report Number 90. This work group includes AAPM members with extensive experience in clinical, professional, and educational aspects of medical physics. The resulting report, AAPM Report Number 249, concentrates on the clinical and professional knowledge needed to function independently as a practicing medical physicist in the areas of radiation oncology, imaging, and nuclear medicine, and constitutes a revision to AAPM Report Number 90. This manuscript presents an executive summary of AAPM Report Number 249.

  15. Essentials and guidelines for clinical medical physics residency training programs: executive summary of AAPM Report Number 249

    PubMed Central

    Willis, Charles E.; Burmeister, Jay W.; Clarke, Geoffrey D.; Das, Rupak K.; Esthappan, Jacqueline; Gerbi, Bruce J.; Harkness, Beth A.; Patton, James A.; Peck, Donald J.; Pizzutiello, Robert J.; Sandison, George A.; White, Sharon L.; Wichman, Brian D.; Ibbott, Geoffrey S.; Both, Stefan

    2014-01-01

    There is a clear need for established standards for medical physics residency training. The complexity of techniques in imaging, nuclear medicine, and radiation oncology continues to increase with each passing year. It is therefore imperative that training requirements and competencies are routinely reviewed and updated to reflect the changing environment in hospitals and clinics across the country. In 2010, the AAPM Work Group on Periodic Review of Medical Physics Residency Training was formed and charged with updating AAPM Report Number 90. This work group includes AAPM members with extensive experience in clinical, professional, and educational aspects of medical physics. The resulting report, AAPM Report Number 249, concentrates on the clinical and professional knowledge needed to function independently as a practicing medical physicist in the areas of radiation oncology, imaging, and nuclear medicine, and constitutes a revision to AAPM Report Number 90. This manuscript presents an executive summary of AAPM Report Number 249. PACS number: 87.10.‐e PMID:24892354

  16. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  17. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  18. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  19. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  20. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  1. 10 CFR 20.1301 - Dose limits for individual members of the public.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Section 20.1301 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Radiation..., exclusive of the dose contributions from background radiation, from any medical administration the....75, to receive a radiation dose greater than 0.1 rem (1 mSv) if— (1) The radiation dose received does...

  2. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  3. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  4. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  5. 10 CFR 20.1004 - Units of radiation dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Units of radiation dose. 20.1004 Section 20.1004 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1004 Units of radiation dose. (a) Definitions. As used in this part, the units of radiation dose are: Gray...

  6. 41 CFR 50-204.35 - Application for variations from radiation levels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation levels. (a) In accordance with policy expressed in the Federal Radiation Council's memorandum concerning...

  7. 41 CFR 50-204.35 - Application for variations from radiation levels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation levels. (a) In accordance with policy expressed in the Federal Radiation Council's memorandum concerning...

  8. 41 CFR 50-204.35 - Application for variations from radiation levels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation levels. (a) In accordance with policy expressed in the Federal Radiation Council's memorandum concerning...

  9. 41 CFR 50-204.35 - Application for variations from radiation levels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... variations from radiation levels. 50-204.35 Section 50-204.35 Public Contracts and Property Management Other... FOR FEDERAL SUPPLY CONTRACTS Radiation Standards § 50-204.35 Application for variations from radiation levels. (a) In accordance with policy expressed in the Federal Radiation Council's memorandum concerning...

  10. Review of Real-Time 3-Dimensional Image Guided Radiation Therapy on Standard-Equipped Cancer Radiation Therapy Systems: Are We at the Tipping Point for the Era of Real-Time Radiation Therapy?

    PubMed

    Keall, Paul J; Nguyen, Doan Trang; O'Brien, Ricky; Zhang, Pengpeng; Happersett, Laura; Bertholet, Jenny; Poulsen, Per R

    2018-04-14

    To review real-time 3-dimensional (3D) image guided radiation therapy (IGRT) on standard-equipped cancer radiation therapy systems, focusing on clinically implemented solutions. Three groups in 3 continents have clinically implemented novel real-time 3D IGRT solutions on standard-equipped linear accelerators. These technologies encompass kilovoltage, combined megavoltage-kilovoltage, and combined kilovoltage-optical imaging. The cancer sites treated span pelvic and abdominal tumors for which respiratory motion is present. For each method the 3D-measured motion during treatment is reported. After treatment, dose reconstruction was used to assess the treatment quality in the presence of motion with and without real-time 3D IGRT. The geometric accuracy was quantified through phantom experiments. A literature search was conducted to identify additional real-time 3D IGRT methods that could be clinically implemented in the near future. The real-time 3D IGRT methods were successfully clinically implemented and have been used to treat more than 200 patients. Systematic target position shifts were observed using all 3 methods. Dose reconstruction demonstrated that the delivered dose is closer to the planned dose with real-time 3D IGRT than without real-time 3D IGRT. In addition, compromised target dose coverage and variable normal tissue doses were found without real-time 3D IGRT. The geometric accuracy results with real-time 3D IGRT had a mean error of <0.5 mm and a standard deviation of <1.1 mm. Numerous additional articles exist that describe real-time 3D IGRT methods using standard-equipped radiation therapy systems that could also be clinically implemented. Multiple clinical implementations of real-time 3D IGRT on standard-equipped cancer radiation therapy systems have been demonstrated. Many more approaches that could be implemented were identified. These solutions provide a pathway for the broader adoption of methods to make radiation therapy more accurate, impacting tumor and normal tissue dose, margins, and ultimately patient outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Electron-proton spectrometer: Summary for critical design review

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The electron-proton spectrometer (EPS) is mounted external to the Skylab module complex on the command service module. It is designed to make a 2 pi omni-directional measurement of electrons and protons which result from solar flares or enhancement of the radiation belts. The EPS data will provide accurate radiation dose information so that uncertain Relative biological effectiveness factors are eliminated by measuring the external particle spectra. Astronaut radiation safety, therefore, can be ensured, as the EPS data can be used to correct or qualify radiation dose measurements recorded by other radiation measuring instrumentation within the Skylab module complex. The EPS has the capability of measuring and extremely wide dynamic radiation dose rate range, approaching 10 to the 7th power. Simultaneously the EPS has the capability to process data from extremely high radiation fields such as might be encountered in the wake of an intense solar flare.

  12. [The remote effects of chronic exposure to ionizing radiation and electromagnetic fields with respect to hygienic standardization].

    PubMed

    Grigor'ev, Iu G; Shafirkin, A V; Nikitina, V N; Vasin, A L

    2003-01-01

    A variety and rate of non-cancer diseases occurred in humans as a result of chronic exposure to ionizing radiation or to electromagnetic radiation (EMR) of high and superhigh frequency have been compared. The intensity of EMR was slightly higher than a sanitary standard for population. A risk of health impairments in workers having occupational exposure to EMR was assessed on the basis of Selie's concept of development of non-specific reaction of the body to chronic stress factors (general adaptation syndrome), models of changes in the body compensatory reserves and calculations of radiation risk after severe and chronic exposure to ionizing radiation.

  13. Radiation Environment Modeling for Spacecraft Design: New Model Developments

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Xapsos, Mike; Lauenstein, Jean-Marie; Ladbury, Ray

    2006-01-01

    A viewgraph presentation on various new space radiation environment models for spacecraft design is described. The topics include: 1) The Space Radiatio Environment; 2) Effects of Space Environments on Systems; 3) Space Radiatio Environment Model Use During Space Mission Development and Operations; 4) Space Radiation Hazards for Humans; 5) "Standard" Space Radiation Environment Models; 6) Concerns about Standard Models; 7) Inadequacies of Current Models; 8) Development of New Models; 9) New Model Developments: Proton Belt Models; 10) Coverage of New Proton Models; 11) Comparison of TPM-1, PSB97, AP-8; 12) New Model Developments: Electron Belt Models; 13) Coverage of New Electron Models; 14) Comparison of "Worst Case" POLE, CRESELE, and FLUMIC Models with the AE-8 Model; 15) New Model Developments: Galactic Cosmic Ray Model; 16) Comparison of NASA, MSU, CIT Models with ACE Instrument Data; 17) New Model Developmemts: Solar Proton Model; 18) Comparison of ESP, JPL91, KIng/Stassinopoulos, and PSYCHIC Models; 19) New Model Developments: Solar Heavy Ion Model; 20) Comparison of CREME96 to CREDO Measurements During 2000 and 2002; 21) PSYCHIC Heavy ion Model; 22) Model Standardization; 23) Working Group Meeting on New Standard Radiation Belt and Space Plasma Models; and 24) Summary.

  14. 21 CFR 1010.1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Radiation Control of the Federal Food, Drug, and Cosmetic Act (formerly the Radiation Control for Health and... control electronic product radiation from such products. Standards so prescribed are subject to amendment...

  15. 21 CFR 1010.1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Radiation Control of the Federal Food, Drug, and Cosmetic Act (formerly the Radiation Control for Health and... control electronic product radiation from such products. Standards so prescribed are subject to amendment...

  16. 21 CFR 1010.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Radiation Control of the Federal Food, Drug, and Cosmetic Act (formerly the Radiation Control for Health and... control electronic product radiation from such products. Standards so prescribed are subject to amendment...

  17. 21 CFR 1010.1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Radiation Control of the Federal Food, Drug, and Cosmetic Act (formerly the Radiation Control for Health and... control electronic product radiation from such products. Standards so prescribed are subject to amendment...

  18. 21 CFR 1010.1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Radiation Control of the Federal Food, Drug, and Cosmetic Act (formerly the Radiation Control for Health and... control electronic product radiation from such products. Standards so prescribed are subject to amendment...

  19. Evaluation of standard radiation atmosphere aerosol models for a coastal environment

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.; Suttles, J. T.; Sebacher, D. I.; Fuller, W. H.; Lecroy, S. R.

    1986-01-01

    Calculations are compared with data from an experiment to evaluate the utility of standard radiation atmosphere (SRA) models for defining aerosol properties in atmospheric radiation computations. Initial calculations with only SRA aerosols in a four-layer atmospheric column simulation allowed a sensitivity study and the detection of spectral trends in optical depth, which differed from measurements. Subsequently, a more detailed analysis provided a revision in the stratospheric layer, which brought calculations in line with both optical depth and skylight radiance data. The simulation procedure allows determination of which atmospheric layers influence both downwelling and upwelling radiation spectra.

  20. A novel approach to characterize information radiation in complex networks

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoyang; Wang, Ying; Zhu, Lin; Li, Chao

    2016-06-01

    The traditional research of information dissemination is mostly based on the virus spreading model that the information is being spread by probability, which does not match very well to the reality, because the information that we receive is always more or less than what was sent. In order to quantitatively describe variations in the amount of information during the spreading process, this article proposes a safety information radiation model on the basis of communication theory, combining with relevant theories of complex networks. This model comprehensively considers the various influence factors when safety information radiates in the network, and introduces some concepts from the communication theory perspective, such as the radiation gain function, receiving gain function, information retaining capacity and information second reception capacity, to describe the safety information radiation process between nodes and dynamically investigate the states of network nodes. On a micro level, this article analyzes the influence of various initial conditions and parameters on safety information radiation through the new model simulation. The simulation reveals that this novel approach can reflect the variation of safety information quantity of each node in the complex network, and the scale-free network has better ;radiation explosive power;, while the small-world network has better ;radiation staying power;. The results also show that it is efficient to improve the overall performance of network security by selecting nodes with high degrees as the information source, refining and simplifying the information, increasing the information second reception capacity and decreasing the noises. In a word, this article lays the foundation for further research on the interactions of information and energy between internal components within complex systems.

  1. 76 FR 4944 - Ionizing Radiation Standard; Extension of the Office of Management and Budget's (OMB) Approval of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Radiation Standard protect workers from the adverse health effects that may result from occupational... DEPARTMENT OF LABOR Occupational Safety and Health Administration [Docket No. OSHA-2010-0030... Information Collection (Paperwork) Requirements AGENCY: Occupational Safety and Health Administration (OSHA...

  2. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...

  3. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...

  4. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...

  5. 10 CFR 20.1008 - Implementation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Implementation. 20.1008 Section 20.1008 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1008 Implementation... in the standards for protection against radiation in effect prior to January 1, 1994 1 that are cited...

  6. 10 CFR 20.1008 - Implementation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Implementation. 20.1008 Section 20.1008 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1008 Implementation... in the standards for protection against radiation in effect prior to January 1, 1994 1 that are cited...

  7. 10 CFR 20.1008 - Implementation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Implementation. 20.1008 Section 20.1008 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1008 Implementation... in the standards for protection against radiation in effect prior to January 1, 1994 1 that are cited...

  8. 10 CFR 20.1008 - Implementation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Implementation. 20.1008 Section 20.1008 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1008 Implementation... in the standards for protection against radiation in effect prior to January 1, 1994 1 that are cited...

  9. 10 CFR 20.1008 - Implementation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Implementation. 20.1008 Section 20.1008 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION General Provisions § 20.1008 Implementation... in the standards for protection against radiation in effect prior to January 1, 1994 1 that are cited...

  10. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...

  11. 32 CFR 218.4 - Dose estimate reporting standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) MISCELLANEOUS GUIDANCE FOR THE DETERMINATION AND REPORTING OF NUCLEAR RADIATION DOSE FOR DOD PARTICIPANTS IN THE ATMOSPHERIC NUCLEAR TEST PROGRAM (1945-1962) § 218.4 Dose estimate reporting standards. The following minimum... of the radiation environment to which the veteran was exposed and shall include inhaled, ingested...

  12. Stochastic Convection Parameterizations

    NASA Technical Reports Server (NTRS)

    Teixeira, Joao; Reynolds, Carolyn; Suselj, Kay; Matheou, Georgios

    2012-01-01

    computational fluid dynamics, radiation, clouds, turbulence, convection, gravity waves, surface interaction, radiation interaction, cloud and aerosol microphysics, complexity (vegetation, biogeochemistry, radiation versus turbulence/convection stochastic approach, non-linearities, Monte Carlo, high resolutions, large-Eddy Simulations, cloud structure, plumes, saturation in tropics, forecasting, parameterizations, stochastic, radiation-clod interaction, hurricane forecasts

  13. Contribution of radiation chemistry to the study of metal clusters.

    PubMed

    Belloni, J

    1998-11-01

    Radiation chemistry dates from the discovery of radioactivity one century ago by H. Becquerel and P. and M. Curie. The complex phenomena induced by ionizing radiation have been explained progressively. At present, the methodology of radiation chemistry, particularly in the pulsed mode, provides a powerful means to study not only the early processes after the energy absorption, but more generally a broad diversity of chemical and biochemical reaction mechanisms. Among them, the new area of metal cluster chemistry illustrates how radiation chemistry contributed to this field in suggesting fruitful original concepts, in guiding and controlling specific syntheses, and in the detailed elaboration of the mechanisms of complex and long-unsolved processes, such as the dynamics of nucleation, electron transfer catalysis and photographic development.

  14. Impact of Radiation Biology on Fundamental Insights in Biology

    DOE R&D Accomplishments Database

    Setlow, Richard B.

    1982-07-27

    Research supported by OHER [Office of Health and Environmental Research] and its predecessors has as one of its major goals an understanding of the effects of radiation at low doses and dose rates on biological systems, so as to predict their effects on humans. It is not possible to measure such effects directly. They must be predicted from basic knowledge on how radiation affects cellular components such as DNA and membranes and how cells react to such changes. What is the probability of radiation producing human mutations and what are the probabilities of radiation producing cancer? The end results of such studies are radiation exposure standards for workers and for the general population. An extension of these goals is setting standards for exposure to chemicals involved in various energy technologies. This latter problem is much more difficult because chemical dosimetry is a primitive state compared to radiation dosimetry.

  15. Ionizing Radiation: The issue of radiation quality

    NASA Astrophysics Data System (ADS)

    Prise, Kevin; Schettino, Giuseppe

    Types of Ionising radiations are differentiated from each other by fundamental characteristics of their energy deposition patterns when they interact with biological materials. At the level of the DNA these non-random patterns drive differences in the yields and distributions of DNA damage patterns and specifically the production of clustered damage or complex lesions. The complex radiation fields found in space bring significant challenges for developing a mechanistic understanding of radiation effects from the perspective of radiation quality as these consist of a diverse range of particle and energy types unique to the space environment. Linear energy transfer, energy deposited per unit track length in units of keV per micron, has long been used as a comparator for different types of radiation but has limitations in that it is an average value. Difference in primary core ionizations relative to secondary delta ray ranges vary significantly with particle mass and energy leading to complex interrelationships with damage production at the cellular level. At the cellular level a greater mechanistic understanding is necessary, linking energy deposition patterns to DNA damage patterns and cellular response, to build appropriate biophysical models that are predictive for different radiation qualities and mixed field exposures. Defined studies using monoenergetic beams delivered under controlled conditions are building quantitative data sets of both initial and long term changes in cells as a basis for a great mechanistic understanding of radiation quality effects of relevance to not only space exposures but clinical application of ion-beams.

  16. Video Display Terminals: Radiation Issues.

    ERIC Educational Resources Information Center

    Murray, William E.

    1985-01-01

    Discusses information gathered in past few years related to health effects of video display terminals (VDTs) with particular emphasis given to issues raised by VDT users. Topics covered include radiation emissions, health concerns, radiation surveys, occupational radiation exposure standards, and long-term risks. (17 references) (EJS)

  17. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report or...

  18. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report or...

  19. 49 CFR 193.2057 - Thermal radiation protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Thermal radiation protection. 193.2057 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Siting Requirements § 193.2057 Thermal radiation protection...) The thermal radiation distances must be calculated using Gas Technology Institute's (GTI) report or...

  20. MULTI2D - a computer code for two-dimensional radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.

    2009-06-01

    Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are required. Nature of problem: In inertial confinement fusion and related experiments with lasers and particle beams, energy transport by thermal radiation becomes important. Under these conditions, the radiation field strongly interacts with the hydrodynamic motion through emission and absorption processes. Solution method: The equations of radiation transfer coupled with Lagrangian hydrodynamics, heat diffusion and beam tracing (laser or ions) are solved, in two-dimensional axial-symmetric geometry ( R-Z coordinates) using a fractional step scheme. Radiation transfer is solved with angular resolution. Matter properties are either interpolated from tables (equations-of-state and opacities) or computed by user routines (conductivities and beam attenuation). Restrictions: The code has been designed for typical conditions prevailing in inertial confinement fusion (ns time scale, matter states close to local thermodynamical equilibrium, negligible radiation pressure, …). Although a wider range of situations can be treated, extrapolations to regions beyond this design range need special care. Unusual features: A special computer language, called r94, is used at top levels of the code. These parts have to be converted to standard C by a translation program (supplied as part of the package). Due to the complexity of code (hydro-code, grid generation, user interface, graphic post-processor, translator program, installation scripts) extensive manuals are supplied as part of the package. Running time: 567 seconds for the example supplied.

  1. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  2. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator... would be subjected in operation. (b) Each oil radiator air duct must be located so that, in case of fire...

  3. 16 CFR 1209.8 - Procedure for calibration of radiation instrumentation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.8 Procedure... radiation pyrometer. Repeat for each temperature. (b) Total heat flux meter. The total flux meter shall be... meter. This latter calibration shall make use of the radiant panel tester as the heat source...

  4. 16 CFR 1209.8 - Procedure for calibration of radiation instrumentation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.8 Procedure... radiation pyrometer. Repeat for each temperature. (b) Total heat flux meter. The total flux meter shall be... meter. This latter calibration shall make use of the radiant panel tester as the heat source...

  5. 16 CFR 1209.8 - Procedure for calibration of radiation instrumentation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.8 Procedure... radiation pyrometer. Repeat for each temperature. (b) Total heat flux meter. The total flux meter shall be... meter. This latter calibration shall make use of the radiant panel tester as the heat source...

  6. 16 CFR 1209.8 - Procedure for calibration of radiation instrumentation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.8 Procedure... radiation pyrometer. Repeat for each temperature. (b) Total heat flux meter. The total flux meter shall be... meter. This latter calibration shall make use of the radiant panel tester as the heat source...

  7. 10 CFR 20.2106 - Records of individual monitoring results.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of individual monitoring results. 20.2106 Section 20.2106 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... includes records required under the standards for protection against radiation in effect prior to January 1...

  8. 10 CFR 20.2106 - Records of individual monitoring results.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of individual monitoring results. 20.2106 Section 20.2106 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... includes records required under the standards for protection against radiation in effect prior to January 1...

  9. 10 CFR 20.2106 - Records of individual monitoring results.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of individual monitoring results. 20.2106 Section 20.2106 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... includes records required under the standards for protection against radiation in effect prior to January 1...

  10. 10 CFR 20.2106 - Records of individual monitoring results.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of individual monitoring results. 20.2106 Section 20.2106 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... includes records required under the standards for protection against radiation in effect prior to January 1...

  11. 10 CFR 20.2106 - Records of individual monitoring results.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of individual monitoring results. 20.2106 Section 20.2106 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... includes records required under the standards for protection against radiation in effect prior to January 1...

  12. Stochastic optimization of intensity modulated radiotherapy to account for uncertainties in patient sensitivity

    NASA Astrophysics Data System (ADS)

    Kåver, Gereon; Lind, Bengt K.; Löf, Johan; Liander, Anders; Brahme, Anders

    1999-12-01

    The aim of the present work is to better account for the known uncertainties in radiobiological response parameters when optimizing radiation therapy. The radiation sensitivity of a specific patient is usually unknown beyond the expectation value and possibly the standard deviation that may be derived from studies on groups of patients. Instead of trying to find the treatment with the highest possible probability of a desirable outcome for a patient of average sensitivity, it is more desirable to maximize the expectation value of the probability for the desirable outcome over the possible range of variation of the radiation sensitivity of the patient. Such a stochastic optimization will also have to consider the distribution function of the radiation sensitivity and the larger steepness of the response for the individual patient. The results of stochastic optimization are also compared with simpler methods such as using biological response `margins' to account for the range of sensitivity variation. By using stochastic optimization, the absolute gain will typically be of the order of a few per cent and the relative improvement compared with non-stochastic optimization is generally less than about 10 per cent. The extent of this gain varies with the level of interpatient variability as well as with the difficulty and complexity of the case studied. Although the dose changes are rather small (<5 Gy) there is a strong desire to make treatment plans more robust, and tolerant of the likely range of variation of the radiation sensitivity of each individual patient. When more accurate predictive assays of the radiation sensitivity for each patient become available, the need to consider the range of variations can be reduced considerably.

  13. Evaluation of radiative fluxes over the north Indian Ocean

    NASA Astrophysics Data System (ADS)

    Ramesh Kumar, M. R.; Pinker, Rachel T.; Mathew, Simi; Venkatesan, R.; Chen, W.

    2018-05-01

    Radiative fluxes are a key component of the surface heat budget of the oceans. Yet, observations over oceanic region are sparse due to the complexity of radiation measurements; moreover, certain oceanic regions are substantially under-sampled, such as the north Indian Ocean. The National Institute of Ocean Technology, Chennai, India, under its Ocean Observation Program has deployed an Ocean Moored Network for the Northern Indian Ocean (OMNI) both in the Arabian Sea and the Bay of Bengal. These buoys are equipped with sensors to measure radiation and rainfall, in addition to other basic meteorological parameters. They are also equipped with sensors to measure sub-surface currents, temperature, and conductivity from the surface up to a depth of 500 m. Observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard the National Aeronautics and Space Administration (NASA) AQUA and TERRA satellites have been used to infer surface radiation over the north Indian Ocean. In this study, we focus only on the shortwave (SW↓) fluxes. The evaluations of the MODIS-based SW↓ fluxes against the RAMA observing network have shown a very good agreement between them, and therefore, we use the MODIS-derived fluxes as a reference for the evaluation of the OMNI observations. In an early deployment of the OMNI buoys, the radiation sensors were placed at 2 m above the sea surface; subsequently, the height of the sensors was raised to 3 m. In this study, we show that there was a substantial improvement in the agreement between the buoy observations and the satellite estimates, once the sensors were raised to higher levels. The correlation coefficient increased from 0.87 to 0.93, and both the bias and standard deviations decreased substantially.

  14. Comparison of the effect of UV laser radiation and of a radiomimetic substance on chromatin

    NASA Astrophysics Data System (ADS)

    Radulescu, Irina; Radu, Liliana; Serbanescu, Ruxandra; Nelea, V. D.; Martin, C.; Mihailescu, Ion N.

    1998-07-01

    The damages of the complex of deoxyribonucleic acid (DNA) and proteins from chromatin, produced by the UV laser radiation and/or by treatment with a radiomimetic substance, bleomycin, were compared. The laser radiation and bleomycin effects on chromatin structure were determined by the static and dynamic fluorimetry of chromatin complexes with the DNA specific ligand-- proflavine and by the analysis of tryptophan chromatin intrinsic fluorescence. Time resolved spectroscopy is a sensitive technique which allows to determine the excited state lifetimes of chromatin--proflavine complexes. Also, the percentage contributions to the fluorescence of proflavine, bound and unbound to chromatin DNA, were evaluated. The damages produced by the UV laser radiation on chromatin are similar with those of radiomimetic substance action and consists in DNA and proteins destruction. The DNA damage degree has been determined. The obtained results may constitute some indications in the laser utilization in radiochimiotherapy.

  15. When two are better than one: bright phosphorescence from non-stereogenic dinuclear iridium(III) complexes.

    PubMed

    Daniels, Ruth E; Culham, Stacey; Hunter, Michael; Durrant, Marcus C; Probert, Michael R; Clegg, William; Williams, J A Gareth; Kozhevnikov, Valery N

    2016-04-28

    A new family of eight dinuclear iridium(iii) complexes has been prepared, featuring 4,6-diarylpyrimidines L(y) as bis-N^C-coordinating bridging ligands. The metal ions are also coordinated by a terminal N^C^N-cyclometallating ligand L(X) based on 1,3-di(2-pyridyl)benzene, and by a monodentate chloride or cyanide. The general formula of the compounds is {IrL(X)Z}2L(y) (Z = Cl or CN). The family comprises examples with three different L(X) ligands and five different diarylpyrimidines L(y), of which four are diphenylpyrimidines and one is a dithienylpyrimidine. The requisite proligands have been synthesised via standard cross-coupling methodology. The synthesis of the complexes involves a two-step procedure, in which L(X)H is reacted with IrCl3·3H2O to form dinuclear complexes of the form [IrL(X)Cl(μ-Cl)]2, followed by treatment with the diarylpyrimidine L(y)H2. Crucially, each complex is formed as a single compound only: the strong trans influence of the metallated rings dictates the relative disposition of the ligands, whilst the use of symmetrically substituted tridentate ligands eliminates the possibility of Λ and Δ enantiomers that are obtained when bis-bidentate units are linked through bridging ligands. The crystal structure of one member of the family has been obtained using a synchrotron X-ray source. All of the complexes are very brightly luminescent, with emission maxima in solution varying over the range 517-572 nm, according to the identity of the ligands. The highest-energy emitter is the cyanide derivative whilst the lowest is the complex with the dithienylpyrimidine. The trends in both the absorption and emission energies as a function of ligand substituent have been rationalised accurately with the aid of TD-DFT calculations. The lowest-excited singlet and triplet levels correlate with the trend in the HOMO-LUMO gap. All the complexes have quantum yields that are close to unity and phosphorescence lifetimes - of the order of 500 ns - that are unusually short for complexes of such brightness. These impressive properties stem from an unusually high rate of radiative decay, possibly due to spin-orbit coupling pathways being facilitated by the second metal ion, and to low non-radiative decay rates that may be related to the rigidity of the dinuclear scaffold.

  16. Magnetic resonance venography and three-dimensional image fusion guidance provide a novel paradigm for endovascular recanalization of chronic central venous occlusion.

    PubMed

    Schwein, Adeline; Lu, Tony; Chinnadurai, Ponraj; Kitkungvan, Danai; Shah, Dipan J; Chakfe, Nabil; Lumsden, Alan B; Bismuth, Jean

    2017-01-01

    Endovascular recanalization is considered first-line therapy for chronic central venous occlusion (CVO). Unlike arteries, in which landmarks such as wall calcifications provide indirect guidance for endovascular navigation, sclerotic veins without known vascular branching patterns impose significant challenges. Therefore, safe wire access through such chronic lesions mostly relies on intuition and experience. Studies have shown that magnetic resonance venography (MRV) can be performed safely in these patients, and the boundaries of occluded veins may be visualized on specific MRV sequences. Intraoperative image fusion techniques have become more common to guide complex arterial endovascular procedures. The aim of this study was to assess the feasibility and utility of MRV and intraoperative cone-beam computed tomography (CBCT) image fusion technique during endovascular CVO recanalization. During the study period, patients with symptomatic CVO and failed standard endovascular recanalization underwent further recanalization attempts with use of intraoperative MRV image fusion guidance. After preoperative MRV and intraoperative CBCT image coregistration, a virtual centerline path of the occluded segment was electronically marked in MRV and overlaid on real-time two-dimensional fluoroscopy images. Technical success, fluoroscopy times, radiation doses, number of venograms before recanalization, and accuracy of the virtual centerline overlay were evaluated. Four patients underwent endovascular CVO recanalization with use of intraoperative MRV image fusion guidance. Mean (± standard deviation) time for image fusion was 6:36 ± 00:51 mm:ss. The lesion was successfully crossed in all patients without complications. Mean fluoroscopy time for lesion crossing was 12.5 ± 3.4 minutes. Mean total fluoroscopy time was 28.8 ± 6.5 minutes. Mean total radiation dose was 15,185 ± 7747 μGy/m 2 , and mean radiation dose from CBCT acquisition was 2788 ± 458 μGy/m 2 (18% of mean total radiation dose). Mean number of venograms before recanalization was 1.6 ± 0.9, whereas two lesions were crossed without any prior venography. On qualitative analysis, virtual centerlines from MRV were aligned with actual guidewire trajectory on fluoroscopy in all four cases. MRV image fusion is feasible and may improve success, safety, and the surgeon's confidence during CVO recanalization. Similar to arterial interventions, three-dimensional MRV imaging and image fusion techniques could foster innovative solutions for such complex venous interventions and have the potential to affect a great number of patients. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  17. Medical and Dental Patient Issues

    MedlinePlus

    ... procedures. Because the Health Physics Society recommends against quantitative estimates of health risks for radiation doses below ... Society for Radiation Oncology Cancer Mechanisms - Radiation Effects Research Foundation Dose and Risk Calculator for Standard Medical ...

  18. Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain

    NASA Astrophysics Data System (ADS)

    Löwe, H.; Helbig, N.

    2012-04-01

    We provide a new quasi-analytical method to compute the topographic influence on the effective albedo of complex topography as required for meteorological, land-surface or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain averages of direct, diffuse and terrain radiation and the sky view factor. Domain averaged quantities are related to a type of level-crossing probability of the random field which is approximated by longstanding results developed for acoustic scattering at ocean boundaries. This allows us to express all non-local horizon effects in terms of a local terrain parameter, namely the mean squared slope. Emerging integrals are computed numerically and fit formulas are given for practical purposes. As an implication of our approach we provide an expression for the effective albedo of complex terrain in terms of the sun elevation angle, mean squared slope, the area averaged surface albedo, and the direct-to-diffuse ratio of solar radiation. As an application, we compute the effective albedo for the Swiss Alps and discuss possible generalizations of the method.

  19. In vivo and in vitro measurements of complex-type chromosomal exchanges induced by heavy ions.

    PubMed

    George, K; Durante, M; Wu, H; Willingham, V; Cucinotta, F A

    2003-01-01

    Heavy ions are more efficient in producing complex-type chromosome exchanges than sparsely ionizing radiation, and this can potentially be used as a biomarker of radiation quality. We measured the induction of complex-type chromosomal aberrations in human peripheral blood lymphocytes exposed in vitro to accelerated H-, He-, C-, Ar-, Fe- and Au-ions in the LET range of approximately 0.4-1400 keV/micrometers. Chromosomes were analyzed either at the first post-irradiation mitosis, or in interphase, following premature condensation by phosphatase inhibitors. Selected chromosomes were then visualized after FISH-painting. The dose-response curve for the induction of complex-type exchanges by heavy ions was linear in the dose-range 0.2-1.5 Gy, while gamma-rays did not produce a significant increase in the yield of complex rearrangements in this dose range. The yield of complex aberrations after 1 Gy of heavy ions increased up to an LET around 100 keV/micrometers, and then declined at higher LET values. When mitotic cells were analyzed, the frequency of complex rearrangements after 1 Gy was about 10 times higher for Ar- or Fe- ions (the most effective ions, with LET around 100 keV/micrometers) than for 250 MeV protons, and values were about 35 times higher in prematurely condensed chromosomes. These results suggest that complex rearrangements may be detected in astronauts' blood lymphocytes after long-term space flight, because crews are exposed to HZE particles from galactic cosmic radiation. However, in a cytogenetic study of ten astronauts after long-term missions on the Mir or International Space Station, we found a very low frequency of complex rearrangements, and a significant post-flight increase was detected in only one out of the ten crewmembers. It appears that the use of complex-type exchanges as biomarker of radiation quality in vivo after low-dose chronic exposure in mixed radiation fields is hampered by statistical uncertainties. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.

  20. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  1. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  2. 29 CFR 1926.53 - Ionizing radiation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Ionizing radiation. 1926.53 Section 1926.53 Labor... § 1926.53 Ionizing radiation. (a) In construction and related activities involving the use of sources of ionizing radiation, the pertinent provisions of the Nuclear Regulatory Commission's Standards for...

  3. Revising shortwave and longwave radiation archives in view of possible revisions of the WSG and WISG reference scales: methods and implications

    NASA Astrophysics Data System (ADS)

    Nyeki, Stephan; Wacker, Stefan; Gröbner, Julian; Finsterle, Wolfgang; Wild, Martin

    2017-08-01

    A large number of radiometers are traceable to the World Standard Group (WSG) for shortwave radiation and the interim World Infrared Standard Group (WISG) for longwave radiation, hosted by the Physikalisch-Meteorologisches Observatorium Davos/World Radiation Centre (PMOD/WRC, Davos, Switzerland). The WSG and WISG have recently been found to over- and underestimate radiation values, respectively (Fehlmann et al., 2012; Gröbner et al., 2014), although research is still ongoing. In view of a possible revision of the reference scales of both standard groups, this study discusses the methods involved and the implications on existing archives of radiation time series, such as the Baseline Surface Radiation Network (BSRN). Based on PMOD/WRC calibration archives and BSRN data archives, the downward longwave radiation (DLR) time series over the 2006-2015 period were analysed at four stations (polar and mid-latitude locations). DLR was found to increase by up to 3.5 and 5.4 W m-2 for all-sky and clear-sky conditions, respectively, after applying a WISG reference scale correction and a minor correction for the dependence of pyrgeometer sensitivity on atmospheric integrated water vapour content. Similar increases in DLR may be expected at other BSRN stations. Based on our analysis, a number of recommendations are made for future studies.

  4. Hawking radiation from a Reisner-Nordström domain wall

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Eric, E-mail: esg3@buffalo.edu

    2010-01-01

    We investigate the effect on the Hawking radiation given off during the time of collapse of a Reisner-Nordström domain wall. Using the functional Schrödinger formalism we are able to probe the time-dependent regime, which is out of the reach of the standard approximations like the Bogolyubov method. We calculate the occupation number of particles for a scalar field and complex scalar field. We demonstrate that the particles from the scalar field are unaffected by the charge of the Reisner-Nordström domain wall, as is expected since the scalar field doesn't carry any charge, which would couple to the charge of themore » Reisner-Nordström domain wall. Here the situation effectively reduces to the uncharged case, a spherically symmetric domain wall. To take the charge into account, we consider the complex scalar field which represents charged particles and anti-particles. Here investigate two different cases, first the non-extremal case and second the extremal case. In the non-extremal case we demonstrate that when the particle (anti-particle) carries charge opposite to that of the domain wall, the occupation number becomes suppressed during late times of the collapse. Therefore the dominate occupation number is when the particle (anti-particle) carries the same charge as the domain wall, as expected due to the Coulomb potential carried by the domain walls. In the extremal case we demonstrate that as time increases the temperature of the radiation decreases until when the domain wall reaches the horizon and the temperature then goes to zero. This is in agreement with the Hawking temperature for charged black holes.« less

  5. Optical radiation hazards of laser welding processes. Part 1: Neodymium-YAG laser.

    PubMed

    Rockwell, R J; Moss, C E

    1983-08-01

    High power laser devices are being used for numerous metalworking processes such as welding, cutting and heat treating. Such laser devices are totally enclosed either by the manufacturer or the end-user. When this is done, the total laser system is usually certified by the manufacturer following the federal requirements of the Code of Federal Regulations (CFR) 1040.10 and 10.40.11 as a Class I laser system. Similarly, the end-user may also reclassify an enclosed high-power laser into the Class I category following the requirements of the American National Standards Institute (ANSI) Z-136.1 (1980) standard. There are, however, numerous industrial laser applications where Class IV systems are required to be used in an unenclosed manner. In such applications, there is concern for both ocular and skin hazards caused by direct and scattered laser radiation, as well as potential hazards caused by the optical radiation created by the laser beam's interaction with the metal (i.e. the plume radiation). Radiant energy measurements are reported for both the scattered laser radiation and the resultant plume radiations which were produced during typical unenclosed Class IV Neodymium-YAG laser welding processes. Evaluation of the plume radiation was done with both radiometric and spectroradiometric measurement equipment. The data obtained were compared to applicable safety standards.

  6. Optical Imaging of Ionizing Radiation from Clinical Sources

    PubMed Central

    Shaffer, Travis M.; Drain, Charles Michael

    2016-01-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. PMID:27688469

  7. Modelling of aortic aneurysm and aortic dissection through 3D printing.

    PubMed

    Ho, Daniel; Squelch, Andrew; Sun, Zhonghua

    2017-03-01

    The aim of this study was to assess if the complex anatomy of aortic aneurysm and aortic dissection can be accurately reproduced from a contrast-enhanced computed tomography (CT) scan into a three-dimensional (3D) printed model. Contrast-enhanced cardiac CT scans from two patients were post-processed and produced as 3D printed thoracic aorta models of aortic aneurysm and aortic dissection. The transverse diameter was measured at five anatomical landmarks for both models, compared across three stages: the original contrast-enhanced CT images, the stereolithography (STL) format computerised model prepared for 3D printing and the contrast-enhanced CT of the 3D printed model. For the model with aortic dissection, measurements of the true and false lumen were taken and compared at two points on the descending aorta. Three-dimensional printed models were generated with strong and flexible plastic material with successful replication of anatomical details of aortic structures and pathologies. The mean difference in transverse vessel diameter between the contrast-enhanced CT images before and after 3D printing was 1.0 and 1.2 mm, for the first and second models respectively (standard deviation: 1.0 mm and 0.9 mm). Additionally, for the second model, the mean luminal diameter difference between the 3D printed model and CT images was 0.5 mm. Encouraging results were achieved with regards to reproducing 3D models depicting aortic aneurysm and aortic dissection. Variances in vessel diameter measurement outside a standard deviation of 1 mm tolerance indicate further work is required into the assessment and accuracy of 3D model reproduction. © 2017 The Authors. Journal of Medical Radiation Sciences published by John Wiley & Sons Australia, Ltd on behalf of Australian Society of Medical Imaging and Radiation Therapy and New Zealand Institute of Medical Radiation Technology.

  8. INTERNATIONAL REPORT: Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003)

    NASA Astrophysics Data System (ADS)

    Felder, R.

    2005-08-01

    In 2003, the International Committee for Weights and Measures (CIPM) recommended updated values of the frequency for certain optical frequency standards recommended for the practical realization of the definition of the metre. The text of this CIPM Recommendation and details of the updated radiations are given here. The complete updated set of recommended radiations, including frequencies, wavelengths, uncertainties and operating conditions where appropriate, is available on the BIPM website.

  9. Investigation into the effects of VHF and UHF band radiation on Hewlett-Packard (HP) Cesium Beam Frequency Standards

    NASA Technical Reports Server (NTRS)

    Dickens, Andrew

    1995-01-01

    This paper documents an investigation into reports which have indicated that exposure to VHF and UHF band radiation has adverse effects on the frequency stability of HP cesium beam frequency standards. Tests carried out on the basis of these reports show that sources of VHF and UHF radiation such as two-way hand held police communications devices do cause reproducible adverse effects. This investigation examines reproducible effects and explores possible causes.

  10. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    NASA Technical Reports Server (NTRS)

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  11. Measurement of background gamma radiation in the northern Marshall Islands.

    PubMed

    Bordner, Autumn S; Crosswell, Danielle A; Katz, Ainsley O; Shah, Jill T; Zhang, Catherine R; Nikolic-Hughes, Ivana; Hughes, Emlyn W; Ruderman, Malvin A

    2016-06-21

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of (137)Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered.

  12. Measurement of background gamma radiation in the northern Marshall Islands

    PubMed Central

    Bordner, Autumn S.; Crosswell, Danielle A.; Katz, Ainsley O.; Shah, Jill T.; Zhang, Catherine R.; Nikolic-Hughes, Ivana; Hughes, Emlyn W.; Ruderman, Malvin A.

    2016-01-01

    We report measurements of background gamma radiation levels on six islands in the northern Marshall Islands (Enewetak, Medren, and Runit onEnewetak Atoll; Bikini and Nam on Bikini Atoll; and Rongelap on Rongelap Atoll). Measurable excess radiation could be expected from the decay of 137Cs produced by the US nuclear testing program there from 1946 to 1958. These recordings are of relevance to safety of human habitation and resettlement. We find low levels of gamma radiation for the settled island of Enewetak [mean = 7.6 millirem/year (mrem/y) = 0.076 millisievert/year (mSv/y)], larger levels of gamma radiation for the island of Rongelap (mean = 19.8 mrem/y = 0.198 mSv/y), and relatively high gamma radiation on the island of Bikini (mean = 184 mrem/y = 1.84 mSv/y). Distributions of gamma radiation levels are provided, and hot spots are discussed. We provide interpolated maps for four islands (Enewetak, Medren, Bikini, and Rongelap), and make comparisons to control measurements performed on the island of Majuro in the southern Marshall Islands, measurements made in Central Park in New York City, and the standard agreed upon by the United States and the Republic of the Marshall Islands (RMI) governments (100 mrem/y = 1 mSv/y). External gamma radiation levels on Bikini Island significantly exceed this standard (P = <<0.01), and external gamma radiation levels on the other islands are below the standard. To determine conclusively whether these islands are safe for habitation, radiation exposure through additional pathways such as food ingestion must be considered. PMID:27274073

  13. Explicit validation of a surface shortwave radiation balance model over snow-covered complex terrain

    NASA Astrophysics Data System (ADS)

    Helbig, N.; Löwe, H.; Mayer, B.; Lehning, M.

    2010-09-01

    A model that computes the surface radiation balance for all sky conditions in complex terrain is presented. The spatial distribution of direct and diffuse sky radiation is determined from observations of incident global radiation, air temperature, and relative humidity at a single measurement location. Incident radiation under cloudless sky is spatially derived from a parameterization of the atmospheric transmittance. Direct and diffuse sky radiation for all sky conditions are obtained by decomposing the measured global radiation value. Spatial incident radiation values under all atmospheric conditions are computed by adjusting the spatial radiation values obtained from the parametric model with the radiation components obtained from the decomposition model at the measurement site. Topographic influences such as shading are accounted for. The radiosity approach is used to compute anisotropic terrain reflected radiation. Validations of the shortwave radiation balance model are presented in detail for a day with cloudless sky. For a day with overcast sky a first validation is presented. Validation of a section of the horizon line as well as of individual radiation components is performed with high-quality measurements. A new measurement setup was designed to determine terrain reflected radiation. There is good agreement between the measurements and the modeled terrain reflected radiation values as well as with incident radiation values. A comparison of the model with a fully three-dimensional radiative transfer Monte Carlo model is presented. That validation reveals a good agreement between modeled radiation values.

  14. Solar Activity, Ultraviolet Radiation and Consequences in Birds in Mexico City, 2001- 2002

    NASA Astrophysics Data System (ADS)

    Valdes, M.; Velasco, V.

    2008-12-01

    Anomalous behavior in commercial and pet birds in Mexico City was reported during 2002 by veterinarians at the Universidad Nacional Autonoma de Mexico. This was attributed to variations in the surrounding luminosity. The solar components, direct, diffuse, global, ultraviolet band A and B, as well as some meteorological parameters, temperature, relative humidity, and precipitation, were then analyzed at the Solar Radiation Laboratory. Although the total annual radiance of the previously mentioned radiation components did not show important changes, ultraviolet Band-B solar radiation did vary significantly. During 2001 the total annual irradiance , 61.05 Hjcm² to 58.32 Hjcm², was 1.6 standard deviations lower than one year later, in 2002 and increased above the mean total annual irradiance, to 65.75 Hjcm², 2.04 standard deviations, giving a total of 3.73 standard deviations for 2001-2002. Since these differences did not show up clearly in the other solar radiation components, daily extra-atmosphere irradiance was analyzed and used to calculate the total annual extra-atmosphere irradiance, which showed a descent for 2001. Our conclusions imply that Ultraviolet Band-B solar radiation is representative of solar activity and has an important impact on commercial activity related with birds.

  15. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Gamma radiation surveys. 57.5047 Section 57... radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where radioactive ores are mined. (b) Surveys shall be in accordance with American National Standards (ANSI...

  16. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Gamma radiation surveys. 57.5047 Section 57... radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where radioactive ores are mined. (b) Surveys shall be in accordance with American National Standards (ANSI...

  17. 30 CFR 57.5047 - Gamma radiation surveys.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Gamma radiation surveys. 57.5047 Section 57... radiation surveys. (a) Gamma radiation surveys shall be conducted annually in all underground mines where radioactive ores are mined. (b) Surveys shall be in accordance with American National Standards (ANSI...

  18. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...

  19. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...

  20. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...

  1. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...

  2. 10 CFR 20.2102 - Records of radiation protection programs.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of radiation protection programs. 20.2102 Section 20.2102 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20.2102 Records of radiation protection programs. (a) Each licensee shall maintain records of the...

  3. Clinical distinctions of radiation sickness with exposure of different parts of the human body to radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nevskaya, G.F.; Abramova, G.M.; Volkova, M.A.

    1982-01-12

    The clinical picture of radiation sickness of 139 radiological patients exposed to local irradition of the head, chest, and stomach with efficient doses of 210 rad was examined. It was found that at fractionated local irraditions the clinical symptom-complex of radiation sickness was identifical to that seen as a result of total-body irradiation. During head irradiation the major symptom was headache and during stomach irradiation nausea. The severity level of radiation damage measured with respect to the clinical symptom-complex as a whole with the aid of the bioinformation model was similar during irradiations of the head and stomach, much highermore » during irradiation of the chest. During head and stomach irradiations the severity level of radiation damage was proportional to the efficient dose. During chest irradiation there was no correlation between the severity level and the exposure to doses of 210 rad.« less

  4. Space Radiation Program Element

    NASA Technical Reports Server (NTRS)

    Krenek, Sam

    2008-01-01

    This poster presentation shows the various elements of the Space Radiation Program. It reviews the program requirements: develop and validate standards, quantify space radiation human health risks, mitigate risks through countermeasures and technologies, and treat and monitor unmitigated risks.

  5. 16 CFR § 1209.8 - Procedure for calibration of radiation instrumentation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard § 1209.8... radiation pyrometer. Repeat for each temperature. (b) Total heat flux meter. The total flux meter shall be... meter. This latter calibration shall make use of the radiant panel tester as the heat source...

  6. Polycapillary lenses for soft x-ray transmission in ITER: Model, comparison with experiments, and potential application

    NASA Astrophysics Data System (ADS)

    Mazon, D.; Liegeard, C.; Jardin, A.; Barnsley, R.; Walsh, M.; O'Mullane, M.; Sirinelli, A.; Dorchies, F.

    2016-11-01

    Measuring Soft X-Ray (SXR) radiation [0.1 keV; 15 keV] in tokamaks is a standard way of extracting valuable information on the particle transport and magnetohydrodynamic activity. Generally, the analysis is performed with detectors positioned close to the plasma for a direct line of sight. A burning plasma, like the ITER deuterium-tritium phase, is too harsh an environment to permit the use of such detectors in close vicinity of the machine. We have thus investigated in this article the possibility of using polycapillary lenses in ITER to transport the SXR information several meters away from the plasma in the complex port-plug geometry.

  7. Polycapillary lenses for soft x-ray transmission in ITER: Model, comparison with experiments, and potential application.

    PubMed

    Mazon, D; Liegeard, C; Jardin, A; Barnsley, R; Walsh, M; O'Mullane, M; Sirinelli, A; Dorchies, F

    2016-11-01

    Measuring Soft X-Ray (SXR) radiation [0.1 keV; 15 keV] in tokamaks is a standard way of extracting valuable information on the particle transport and magnetohydrodynamic activity. Generally, the analysis is performed with detectors positioned close to the plasma for a direct line of sight. A burning plasma, like the ITER deuterium-tritium phase, is too harsh an environment to permit the use of such detectors in close vicinity of the machine. We have thus investigated in this article the possibility of using polycapillary lenses in ITER to transport the SXR information several meters away from the plasma in the complex port-plug geometry.

  8. 40 CFR 191.04 - Alternative standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR MANAGEMENT AND DISPOSAL OF SPENT NUCLEAR FUEL, HIGH-LEVEL AND TRANSURANIC RADIOACTIVE WASTES Environmental Standards for Management and Storage § 191.04 Alternative standards. (a) The Administrator may issue alternative standards from those standards...

  9. Confirmation of Non-Impacted Status (TA16-280 Complex)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruedig, Elizabeth

    2017-12-07

    EPC-ES finds that the materials associated with TA16-280 complex (see Figure 1) are candidates for release to the public for recycle or as sanitary/commercial waste. This finding is consistent with the requirements of DOE Order 458.1 Radiation Protection of the Public and the Environment and LANL Policy 412 Environmental Radiation Protection.

  10. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator must be able to withstand, without failure, any vibration, inertia, and oil pressure load to which it...

  11. 14 CFR 29.1023 - Oil radiators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil radiators. 29.1023 Section 29.1023... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1023 Oil radiators. (a) Each oil radiator must be able to withstand any vibration, inertia, and oil pressure loads to which it would be...

  12. 14 CFR 23.1023 - Oil radiators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil radiators. 23.1023 Section 23.1023... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1023 Oil radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...

  13. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  14. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  15. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  16. 42 CFR Appendix F to Part 75 - Standards for Licensing Radiographers, Nuclear Medicine Technologists, and Radiation Therapy...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... licensed as Radiographers, Nuclear Medicine Technologists, or Radiation Therapy Technologists. 2. Licenses... radiography, nuclear medicine technology, or radiation therapy technology. 2. Special eligibility to take the...-referenced examination in radiography, nuclear medicine technology, or radiation therapy technology shall be...

  17. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator must be able to withstand, without failure, any vibration, inertia, and oil pressure load to which it...

  18. 14 CFR 29.1023 - Oil radiators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil radiators. 29.1023 Section 29.1023... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1023 Oil radiators. (a) Each oil radiator must be able to withstand any vibration, inertia, and oil pressure loads to which it would be...

  19. 14 CFR 23.1023 - Oil radiators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil radiators. 23.1023 Section 23.1023... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1023 Oil radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...

  20. 14 CFR 29.1023 - Oil radiators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil radiators. 29.1023 Section 29.1023... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1023 Oil radiators. (a) Each oil radiator must be able to withstand any vibration, inertia, and oil pressure loads to which it would be...

  1. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator must be able to withstand, without failure, any vibration, inertia, and oil pressure load to which it...

  2. 14 CFR 23.1023 - Oil radiators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil radiators. 23.1023 Section 23.1023... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1023 Oil radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...

  3. 14 CFR 23.1023 - Oil radiators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil radiators. 23.1023 Section 23.1023... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Oil System § 23.1023 Oil radiators. Each oil radiator and its supporting structures must be able to withstand the vibration, inertia...

  4. 14 CFR 25.1023 - Oil radiators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil radiators. 25.1023 Section 25.1023... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1023 Oil radiators. (a) Each oil radiator must be able to withstand, without failure, any vibration, inertia, and oil pressure load to which it...

  5. 14 CFR 29.1023 - Oil radiators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil radiators. 29.1023 Section 29.1023... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1023 Oil radiators. (a) Each oil radiator must be able to withstand any vibration, inertia, and oil pressure loads to which it would be...

  6. 47 CFR 95.635 - Unwanted radiation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Unwanted radiation. 95.635 Section 95.635... SERVICES Technical Regulations Technical Standards § 95.635 Unwanted radiation. Link to an amendment... Unwanted radiation. (d) * * * (1) * * * (v) Are more than 2.5 MHz outside of the 2360-2400 MHz band (for...

  7. 14 CFR 29.1023 - Oil radiators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil radiators. 29.1023 Section 29.1023... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1023 Oil radiators. (a) Each oil radiator must be able to withstand any vibration, inertia, and oil pressure loads to which it would be...

  8. The effect of a supersaturated calcium phosphate mouth rinse on the development of oral mucositis in head and neck cancer patients treated with (chemo)radiation: a single-center, randomized, prospective study of a calcium phosphate mouth rinse + standard of care versus standard of care.

    PubMed

    Lambrecht, Maarten; Mercier, Carole; Geussens, Yasmyne; Nuyts, Sandra

    2013-10-01

    Mucosal damage is an important and debilitating side effect when treating head and neck cancer patients with (chemo-)radiation. The aim of this randomized clinical trial was to investigate whether the addition of a neutral, supersaturated, calcium phosphate (CP) mouth rinse benefits the severity and duration of acute mucositis in head and neck cancer patients treated with (chemo)radiation. A total of 60 patients with malignant neoplasms of the head and neck receiving (chemo)radiation were included in this study. Fifty-eight patients were randomized into two treatment arms: a control group receiving standard of care (n = 31) and a study group receiving standard of care + daily CP mouth rinses (n = 27) starting on the first day of (chemo-)radiation. Oral mucositis and dysphagia were assessed twice a week using the National Cancer Institute common toxicity criteria scale version 3, oral pain was scored with a visual analogue scale. No significant difference in grade III mucositis (59 vs. 71 %; p = 0.25) and dysphagia (33 vs. 42 %, p = 0.39) was observed between the study group compared to the control group. Also no significant difference in time until development of peak mucositis (28.6 vs. 28.7 days; p = 0.48), duration of peak mucositis (22.7 vs. 24.6 days; p = 0.31), recuperation of peak dysphagia (20.5 vs 24.2 days; p = 0.13) and occurrence of severe pain (56 vs. 52 %, p = 0.5). In this randomized study, the addition of CP mouth rinse to standard of care did not improve the frequency, duration or severity of the most common acute toxicities during and early after (chemo)radiation. There is currently no evidence supporting its standard use in daily practice.

  9. Software-hardware complex for the input of telemetric information obtained from rocket studies of the radiation of the earth's upper atmosphere

    NASA Astrophysics Data System (ADS)

    Bazdrov, I. I.; Bortkevich, V. S.; Khokhlov, V. N.

    2004-10-01

    This paper describes a software-hardware complex for the input into a personal computer of telemetric information obtained by means of telemetry stations TRAL KR28, RTS-8, and TRAL K2N. Structural and functional diagrams are given of the input device and the hardware complex. Results that characterize the features of the input process and selective data of optical measurements of atmospheric radiation are given. © 2004

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Colin, E-mail: crk1@soton.ac.uk; Bull, Kim; Chevignard, Mathilde

    Purpose: To compare quality of survival in “standard-risk” medulloblastoma after hyperfractionated radiation therapy of the central nervous system with that after standard radiation therapy, combined with a chemotherapy regimen common to both treatment arms, in the PNET4 randomised controlled trial. Methods and Materials: Participants in the PNET4 trial and their parents/caregivers in 7 participating anonymized countries completed standardized questionnaires in their own language on executive function, health status, behavior, health-related quality of life, and medical, educational, employment, and social information. Pre- and postoperative neurologic status and serial heights and weights were also recorded. Results: Data were provided by 151 ofmore » 244 eligible survivors (62%) at a median age at assessment of 15.2 years and median interval from diagnosis of 5.8 years. Compared with standard radiation therapy, hyperfractionated radiation therapy was associated with lower (ie, better) z-scores for executive function in all participants (mean intergroup difference 0.48 SDs, 95% confidence interval 0.16-0.81, P=.004), but health status, behavioral difficulties, and health-related quality of life z-scores were similar in the 2 treatment arms. Data on hearing impairment were equivocal. Hyperfractionated radiation therapy was also associated with greater decrement in height z-scores (mean intergroup difference 0.43 SDs, 95% confidence interval 0.10-0.76, P=.011). Conclusions: Hyperfractionated radiation therapy was associated with better executive function and worse growth but without accompanying change in health status, behavior, or quality of life.« less

  11. Design of a dual-band radiation system for a complex magnetically insulated line oscillator

    NASA Astrophysics Data System (ADS)

    Yu, Yuanqiang; Wang, Xiaoyu; Fan, Yuwei; Li, Ankun; Li, Sirui

    2018-05-01

    In this paper, a dual-band radiation system for a complex magnetically insulated line oscillator (MILO) is designed and investigated numerically. The radiation system comprises a coaxial plate-inserted mode converter, a power combiner and a conical horn antenna. The mode converter converts the coaxial TEM mode microwaves (1.775 GHz and 3.175 GHz) which are generated by the complex MILO into the coaxial TE11 mode microwaves, and then the coaxial TE11 mode microwaves are combined by the power combiner in a circular waveguide. Lastly, the microwaves are radiated by a conical horn antenna into the air. The gains of the dual-band radiation system are calculated to be 17.8 dB at 1.775 GHz and 18.9 dB at 3.175 GHz. The 3 dB beam widths are 20.5° in E-plane, 26.4° in H-plane at 1.775 GHz and 20.8° in E-plane, 15.1° in H-plane at 3.175 GHz. The power transmission efficiencies of the dual-band radiation system are 98.5% at 1.775 GHz and 95.7% at 3.175 GHz respectively. The power handling capacities of the dual-band radiation system are 4.2 GW at 1.775 GHz and 4.7 GW at 3.175 GHz, respectively.

  12. Radiation factors in space and a system for their monitoring.

    PubMed

    Kovtunenko, V M; Kremnev, R S; Pichkhadze, K M; Bogomolov, V B; Kontor, N N; Filippichev, S A; Petrov, V M; Pissarenko, N F

    1994-10-01

    The radiation environment is of special concern when the spaceship flies in deep space. The annual fluence of the galactic cosmic rays is approximately 10(8) cm-2 and the absorbed dose of the solar cosmic rays can reach 10 Gy per event behind the shielding thickness of 3-5 g cm-2 Al. For the radiation environment monitoring it is planned to place a measuring complex on the space probes "Mars" and "Spectr" flying outside the magnetosphere. This complex is to measure: cosmic rays composition, particle flux, dose equivalent, energy and LET spectra, solar X-rays spectrum. On line data transmission by the space probes permits to obtain the radiation environment data in space.

  13. Ambient radiation levels in positron emission tomography/computed tomography (PET/CT) imaging center

    PubMed Central

    Santana, Priscila do Carmo; de Oliveira, Paulo Marcio Campos; Mamede, Marcelo; Silveira, Mariana de Castro; Aguiar, Polyanna; Real, Raphaela Vila; da Silva, Teógenes Augusto

    2015-01-01

    Objective To evaluate the level of ambient radiation in a PET/CT center. Materials and Methods Previously selected and calibrated TLD-100H thermoluminescent dosimeters were utilized to measure room radiation levels. During 32 days, the detectors were placed in several strategically selected points inside the PET/CT center and in adjacent buildings. After the exposure period the dosimeters were collected and processed to determine the radiation level. Results In none of the points selected for measurements the values exceeded the radiation dose threshold for controlled area (5 mSv/year) or free area (0.5 mSv/year) as recommended by the Brazilian regulations. Conclusion In the present study the authors demonstrated that the whole shielding system is appropriate and, consequently, the workers are exposed to doses below the threshold established by Brazilian standards, provided the radiation protection standards are followed. PMID:25798004

  14. Optical Imaging of Ionizing Radiation from Clinical Sources.

    PubMed

    Shaffer, Travis M; Drain, Charles Michael; Grimm, Jan

    2016-11-01

    Nuclear medicine uses ionizing radiation for both in vivo diagnosis and therapy. Ionizing radiation comes from a variety of sources, including x-rays, beam therapy, brachytherapy, and various injected radionuclides. Although PET and SPECT remain clinical mainstays, optical readouts of ionizing radiation offer numerous benefits and complement these standard techniques. Furthermore, for ionizing radiation sources that cannot be imaged using these standard techniques, optical imaging offers a unique imaging alternative. This article reviews optical imaging of both radionuclide- and beam-based ionizing radiation from high-energy photons and charged particles through mechanisms including radioluminescence, Cerenkov luminescence, and scintillation. Therapeutically, these visible photons have been combined with photodynamic therapeutic agents preclinically for increasing therapeutic response at depths difficult to reach with external light sources. Last, new microscopy methods that allow single-cell optical imaging of radionuclides are reviewed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  15. Electromagnetic navigation reduces surgical time and radiation exposure for proximal interlocking in retrograde femoral nailing.

    PubMed

    Somerson, Jeremy S; Rowley, David; Kennedy, Chad; Buttacavoli, Frank; Agarwal, Animesh

    2014-07-01

    To compare the time required for proximal locking screw placement between a standard freehand technique and the navigated technique, and to quantify the reduction in ionizing radiation exposure. A fresh frozen cadaver model was used for 48 proximal interlocking screw procedures. Each procedure consisted of insertion of 2 anteroposterior locking screws. Standard fluoroscopic technique was used for 24 procedures, and an electromagnetic navigation system was used for the remaining 24 procedures. Procedure duration was recorded using an electronic timer and radiation doses were documented. Mean total insertion time for both proximal interlocking screws was 405 ± 165.7 seconds with the freehand technique and 311 ± 78.3 seconds in the navigation group (P = 0.002). All procedures resulted in successful locking screw placement. Mean ionizing radiation exposure time for proximal locking was 29.5 ± 12.8 seconds. Proximal locking screw insertion using the navigation technique evaluated in this work was significantly faster than the standard fluoroscopic method. The navigated technique is effective and has the potential to prevent ionizing radiation exposure.

  16. Quality Indicators in Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albert, Jeffrey M.; Das, Prajnan, E-mail: prajdas@mdanderson.org

    Oncologic specialty societies and multidisciplinary collaborative groups have dedicated considerable effort to developing evidence-based quality indicators (QIs) to facilitate quality improvement, accreditation, benchmarking, reimbursement, maintenance of certification, and regulatory reporting. In particular, the field of radiation oncology has a long history of organized quality assessment efforts and continues to work toward developing consensus quality standards in the face of continually evolving technologies and standards of care. This report provides a comprehensive review of the current state of quality assessment in radiation oncology. Specifically, this report highlights implications of the healthcare quality movement for radiation oncology and reviews existing efforts tomore » define and measure quality in the field, with focus on dimensions of quality specific to radiation oncology within the “big picture” of oncologic quality assessment efforts.« less

  17. Calibration of High Heat Flux Sensors at NIST

    PubMed Central

    Murthy, A. V.; Tsai, B. K.; Gibson, C. E.

    1997-01-01

    An ongoing program at the National Institute of Standards and Technology (NIST) is aimed at improving and standardizing heat-flux sensor calibration methods. The current calibration needs of U.S. science and industry exceed the current NIST capability of 40 kW/m2 irradiance. In achieving this goal, as well as meeting lower-level non-radiative heat flux calibration needs of science and industry, three different types of calibration facilities currently are under development at NIST: convection, conduction, and radiation. This paper describes the research activities associated with the NIST Radiation Calibration Facility. Two different techniques, transfer and absolute, are presented. The transfer calibration technique employs a transfer standard calibrated with reference to a radiometric standard for calibrating the sensors using a graphite tube blackbody. Plans for an absolute calibration facility include the use of a spherical blackbody and a cooled aperture and sensor-housing assembly to calibrate the sensors in a low convective environment. PMID:27805156

  18. System and Network Security Acronyms and Abbreviations

    DTIC Science & Technology

    2009-09-01

    hazards of electromagnetic radiation to fuel HERO hazards of electromagnetic radiation to ordnance HERP hazards of electromagnetic ...ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 System and Network Security Acronyms...authentication and key management ALG application layer gateway ANSI American National Standards Institute AP access point API application

  19. 24 CFR Appendix II to Subpart C of... - Development of Standards; Calculation Methods

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... radiation being emitted. The radiation can cause severe burn, injuries and even death to exposed persons... even death. Since it is assumed that children and the elderly could not take refuge behind walls or run... suffer any serious injury. Using this as the safety standard for blast overpressure, nomographs have been...

  20. Comprehensibility of patient consent forms for radiation therapy of cervical cancer.

    PubMed

    MacDougall, Deborah Skinner; Connor, Ulla M; Johnstone, Peter A S

    2012-06-01

    The construct of Health Literacy (HL) deals with patients' capacity to understand their health-related instructions, consent forms, and other documents. A significant challenge of providing healthcare to patients with low HL is the complex nature of the disease process, and of requisite treatments. In radiation oncology specifically, the delivery of ionizing radiation is difficult enough to describe; describing radiation toxicity in terms of the underlying physics and biology is daunting. A multimodal analysis of a small sample of patient consent forms was undertaken in order to address this issue more closely, and identify the extent to which such literature contributes to the challenges faced by patients with low HL. Members of national cooperative group panels dealing with gynecologic cancer were asked to submit copies of consent forms provided to patients with stage II cervical cancer. Four such forms were submitted and reviewed by a single person with expertise in linguistics using standard tools. Three of the four consents scored within the lower portion of the "adequate" range. One consent was not suitable. Consent readability ranged from grades 12.18 to 16.13; this means that they required at least a high school education to interpret, and in two cases required post-graduate coursework. There is significant room for improvement in consent form design and structure. When considering cultural and socioeconomic appropriateness of patient consent forms, input of staff with expertise in linguistics should be sought. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. 40 CFR 190.01 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS General Provisions § 190.01 Applicability. The provisions of this part apply to radiation doses received by members of the public in the...

  2. 40 CFR 190.01 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS ENVIRONMENTAL RADIATION PROTECTION STANDARDS FOR NUCLEAR POWER OPERATIONS General Provisions § 190.01 Applicability. The provisions of this part apply to radiation doses received by members of the public in the...

  3. 10 CFR 835.1 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.1 Scope. (a) General. The rules in this part establish radiation protection standards, limits, and program requirements for protecting individuals from... jurisdiction of a foreign government to the extent governed by occupational radiation protection requirements...

  4. 10 CFR 835.1 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.1 Scope. (a) General. The rules in this part establish radiation protection standards, limits, and program requirements for protecting individuals from... jurisdiction of a foreign government to the extent governed by occupational radiation protection requirements...

  5. 10 CFR 835.1 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.1 Scope. (a) General. The rules in this part establish radiation protection standards, limits, and program requirements for protecting individuals from... jurisdiction of a foreign government to the extent governed by occupational radiation protection requirements...

  6. Standardizing Naming Conventions in Radiation Oncology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santanam, Lakshmi; Hurkmans, Coen; Mutic, Sasa

    2012-07-15

    Purpose: The aim of this study was to report on the development of a standardized target and organ-at-risk naming convention for use in radiation therapy and to present the nomenclature for structure naming for interinstitutional data sharing, clinical trial repositories, integrated multi-institutional collaborative databases, and quality control centers. This taxonomy should also enable improved plan benchmarking between clinical institutions and vendors and facilitation of automated treatment plan quality control. Materials and Methods: The Advanced Technology Consortium, Washington University in St. Louis, Radiation Therapy Oncology Group, Dutch Radiation Oncology Society, and the Clinical Trials RT QA Harmonization Group collaborated in creatingmore » this new naming convention. The International Commission on Radiation Units and Measurements guidelines have been used to create standardized nomenclature for target volumes (clinical target volume, internal target volume, planning target volume, etc.), organs at risk, and planning organ-at-risk volumes in radiation therapy. The nomenclature also includes rules for specifying laterality and margins for various structures. The naming rules distinguish tumor and nodal planning target volumes, with correspondence to their respective tumor/nodal clinical target volumes. It also provides rules for basic structure naming, as well as an option for more detailed names. Names of nonstandard structures used mainly for plan optimization or evaluation (rings, islands of dose avoidance, islands where additional dose is needed [dose painting]) are identified separately. Results: In addition to its use in 16 ongoing Radiation Therapy Oncology Group advanced technology clinical trial protocols and several new European Organization for Research and Treatment of Cancer protocols, a pilot version of this naming convention has been evaluated using patient data sets with varying treatment sites. All structures in these data sets were satisfactorily identified using this nomenclature. Conclusions: Use of standardized naming conventions is important to facilitate comparison of dosimetry across patient datasets. The guidelines presented here will facilitate international acceptance across a wide range of efforts, including groups organizing clinical trials, Radiation Oncology Institute, Dutch Radiation Oncology Society, Integrating the Healthcare Enterprise, Radiation Oncology domain (IHE-RO), and Digital Imaging and Communication in Medicine (DICOM).« less

  7. X-ray-enhanced cancer cell migration requires the linker of nucleoskeleton and cytoskeleton complex.

    PubMed

    Imaizumi, Hiromasa; Sato, Katsutoshi; Nishihara, Asuka; Minami, Kazumasa; Koizumi, Masahiko; Matsuura, Nariaki; Hieda, Miki

    2018-04-01

    The linker of nucleoskeleton and cytoskeleton (LINC) complex is a multifunctional protein complex that is involved in various processes at the nuclear envelope, including nuclear migration, mechanotransduction, chromatin tethering and DNA damage response. We recently showed that a nuclear envelope protein, Sad1 and UNC84 domain protein 1 (SUN1), a component of the LINC complex, has a critical function in cell migration. Although ionizing radiation activates cell migration and invasion in vivo and in vitro, the underlying molecular mechanism remains unknown. Here, we examined the involvement of the LINC complex in radiation-enhanced cell migration and invasion. A sublethal dose of X-ray radiation promoted human breast cancer MDA-MB-231 cell migration and invasion, whereas carbon ion beam radiation suppressed these processes in a dose-dependent manner. Depletion of SUN1 and SUN2 significantly suppressed X-ray-enhanced cell migration and invasion. Moreover, depletion or overexpression of each SUN1 splicing variant revealed that SUN1_888 containing 888 amino acids of SUN1 but not SUN1_916 was required for X-ray-enhanced migration and invasion. In addition, the results suggested that X-ray irradiation affected the expression level of SUN1 splicing variants and a SUN protein binding partner, nesprins. Taken together, our findings supported that the LINC complex contributed to photon-enhanced cell migration and invasion. © 2018 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  8. Optimal shield mass distribution for space radiation protection

    NASA Technical Reports Server (NTRS)

    Billings, M. P.

    1972-01-01

    Computational methods have been developed and successfully used for determining the optimum distribution of space radiation shielding on geometrically complex space vehicles. These methods have been incorporated in computer program SWORD for dose evaluation in complex geometry, and iteratively calculating the optimum distribution for (minimum) shield mass satisfying multiple acute and protected dose constraints associated with each of several body organs.

  9. A general method for computing the total solar radiation force on complex spacecraft structures

    NASA Technical Reports Server (NTRS)

    Chan, F. K.

    1981-01-01

    The method circumvents many of the existing difficulties in computational logic presently encountered in the direct analytical or numerical evaluation of the appropriate surface integral. It may be applied to complex spacecraft structures for computing the total force arising from either specular or diffuse reflection or even from non-Lambertian reflection and re-radiation.

  10. Radiation hybrid maps of D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes

    USDA-ARS?s Scientific Manuscript database

    The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high-resolution genome maps saturated with ordered markers to assist in anchoring and orienting BAC contigs/ sequence scaffolds for whole genome sequence assembly. Radiation hybrid (RH) mapping has proven to be an e...

  11. 10 CFR 20.1601 - Control of access to high radiation areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Control of access to high radiation areas. 20.1601 Section 20.1601 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1601 Control of access to high radiation areas. (a...

  12. 10 CFR 20.1601 - Control of access to high radiation areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Control of access to high radiation areas. 20.1601 Section 20.1601 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1601 Control of access to high radiation areas. (a...

  13. 10 CFR 20.1601 - Control of access to high radiation areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Control of access to high radiation areas. 20.1601 Section 20.1601 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1601 Control of access to high radiation areas. (a...

  14. 10 CFR 20.1601 - Control of access to high radiation areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Control of access to high radiation areas. 20.1601 Section 20.1601 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1601 Control of access to high radiation areas. (a...

  15. 10 CFR 20.1601 - Control of access to high radiation areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Control of access to high radiation areas. 20.1601 Section 20.1601 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1601 Control of access to high radiation areas. (a...

  16. Training of interventional cardiologists in radiation protection--the IAEA's initiatives.

    PubMed

    Rehani, Madan M

    2007-01-08

    The International Atomic Energy Agency (IAEA) has initiated a major international initiative to train interventional cardiologists in radiation protection as a part of its International Action Plan on the radiological protection of patients. A simple programme of two days' training has been developed, covering possible and observed radiation effects among patients and staff, international standards, dose management techniques, examples of good and bad practice and examples indicating prevention of possible injuries as a result of good practice of radiation protection. The training material is freely available on CD from the IAEA. The IAEA has conducted two events in 2004 and 2005 and number of events are planned in 2006. The survey conducted among the cardiologists participating in these programmes indicates that over 80% of them were attending such a structured programme on radiation protection for the first time. As the magnitude of X-ray usage in cardiology grows to match that in interventional radiology, the standards of training on radiation effects, radiation physics and radiation protection in interventional cardiology should also match those in interventional radiology.

  17. Estimating the effective radiation dose imparted to patients by intraoperative cone-beam computed tomography in thoracolumbar spinal surgery.

    PubMed

    Lange, Jeffrey; Karellas, Andrew; Street, John; Eck, Jason C; Lapinsky, Anthony; Connolly, Patrick J; Dipaola, Christian P

    2013-03-01

    Observational. To estimate the radiation dose imparted to patients during typical thoracolumbar spinal surgical scenarios. Minimally invasive techniques continue to become more common in spine surgery. Computer-assisted navigation systems coupled with intraoperative cone-beam computed tomography (CT) represent one such method used to aid in instrumented spinal procedures. Some studies indicate that cone-beam CT technology delivers a relatively low dose of radiation to patients compared with other x-ray-based imaging modalities. The goal of this study was to estimate the radiation exposure to the patient imparted during typical posterior thoracolumbar instrumented spinal procedures, using intraoperative cone-beam CT and to place these values in the context of standard CT doses. Cone-beam CT scans were obtained using Medtronic O-arm (Medtronic, Minneapolis, MN). Thermoluminescence dosimeters were placed in a linear array on a foam-plastic thoracolumbar spine model centered above the radiation source for O-arm presets of lumbar scans for small or large patients. In-air dosimeter measurements were converted to skin surface measurements, using published conversion factors. Dose-length product was calculated from these values. Effective dose was estimated using published effective dose to dose-length product conversion factors. Calculated dosages for many full-length procedures using the small-patient setting fell within the range of published effective doses of abdominal CT scans (1-31 mSv). Calculated dosages for many full-length procedures using the large-patient setting fell within the range of published effective doses of abdominal CT scans when the number of scans did not exceed 3. We have demonstrated that single cone-beam CT scans and most full-length posterior instrumented spinal procedures using O-arm in standard mode would likely impart a radiation dose within the range of those imparted by a single standard CT scan of the abdomen. Radiation dose increases with patient size, and the radiation dose received by larger patients as a result of more than 3 O-arm scans in standard mode may exceed the dose received during standard CT of the abdomen. Understanding radiation imparted to patients by cone-beam CT is important for assessing risks and benefits of this technology, especially when spinal surgical procedures require multiple intraoperative scans.

  18. Automated IMRT planning with regional optimization using planning scripts

    PubMed Central

    Wong, Eugene; Bzdusek, Karl; Lock, Michael; Chen, Jeff Z.

    2013-01-01

    Intensity‐modulated radiation therapy (IMRT) has become a standard technique in radiation therapy for treating different types of cancers. Various class solutions have been developed for simple cases (e.g., localized prostate, whole breast) to generate IMRT plans efficiently. However, for more complex cases (e.g., head and neck, pelvic nodes), it can be time‐consuming for a planner to generate optimized IMRT plans. To generate optimal plans in these more complex cases which generally have multiple target volumes and organs at risk, it is often required to have additional IMRT optimization structures such as dose limiting ring structures, adjust beam geometry, select inverse planning objectives and associated weights, and additional IMRT objectives to reduce cold and hot spots in the dose distribution. These parameters are generally manually adjusted with a repeated trial and error approach during the optimization process. To improve IMRT planning efficiency in these more complex cases, an iterative method that incorporates some of these adjustment processes automatically in a planning script is designed, implemented, and validated. In particular, regional optimization has been implemented in an iterative way to reduce various hot or cold spots during the optimization process that begins with defining and automatic segmentation of hot and cold spots, introducing new objectives and their relative weights into inverse planning, and turn this into an iterative process with termination criteria. The method has been applied to three clinical sites: prostate with pelvic nodes, head and neck, and anal canal cancers, and has shown to reduce IMRT planning time significantly for clinical applications with improved plan quality. The IMRT planning scripts have been used for more than 500 clinical cases. PACS numbers: 87.55.D, 87.55.de PMID:23318393

  19. RESEARCH ACTIVITIES IN THE FIELD OF MATERIALS SCIENCE.

    DTIC Science & Technology

    MAGNETIC RESONANCE, COMPLEX COMPOUNDS, CRYSTAL STRUCTURE, ELECTROCHEMISTRY, CHEMILUMINESCENCE, PHOTOCHEMICAL REACTIONS, PHOSPHORUS HETEROCYCLIC COMPOUNDS...RADIATION CHEMISTRY, POLYMERS, ROCK, SUPERCONDUCTORS, POSITRONS , DAMAGE, RADIATION EFFECTS, HALIDES

  20. Research on the calibration methods of the luminance parameter of radiation luminance meters

    NASA Astrophysics Data System (ADS)

    Cheng, Weihai; Huang, Biyong; Lin, Fangsheng; Li, Tiecheng; Yin, Dejin; Lai, Lei

    2017-10-01

    This paper introduces standard diffusion reflection white plate method and integrating sphere standard luminance source method to calibrate the luminance parameter. The paper compares the effects of calibration results by using these two methods through principle analysis and experimental verification. After using two methods to calibrate the same radiation luminance meter, the data obtained verifies the testing results of the two methods are both reliable. The results show that the display value using standard white plate method has fewer errors and better reproducibility. However, standard luminance source method is more convenient and suitable for on-site calibration. Moreover, standard luminance source method has wider range and can test the linear performance of the instruments.

  1. Test Standard Revision Update: JESD57, "Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation"

    NASA Technical Reports Server (NTRS)

    Lauenstein, Jean-Marie

    2015-01-01

    The JEDEC JESD57 test standard, Procedures for the Measurement of Single-Event Effects in Semiconductor Devices from Heavy-Ion Irradiation, is undergoing its first revision since 1996. In this talk, we place this test standard into context with other relevant radiation test standards to show its importance for single-event effect radiation testing for space applications. We show the range of industry, government, and end-user party involvement in the revision. Finally, we highlight some of the key changes being made and discuss the trade-space in which setting standards must be made to be both useful and broadly adopted.

  2. Signatures of dark radiation in neutrino and dark matter detectors

    NASA Astrophysics Data System (ADS)

    Cui, Yanou; Pospelov, Maxim; Pradler, Josef

    2018-05-01

    We consider the generic possibility that the Universe's energy budget includes some form of relativistic or semi-relativistic dark radiation (DR) with nongravitational interactions with standard model (SM) particles. Such dark radiation may consist of SM singlets or a nonthermal, energetic component of neutrinos. If such DR is created at a relatively recent epoch, it can carry sufficient energy to leave a detectable imprint in experiments designed to search for very weakly interacting particles: dark matter and underground neutrino experiments. We analyze this possibility in some generality, assuming that the interactive dark radiation is sourced by late decays of an unstable particle, potentially a component of dark matter, and considering a variety of possible interactions between the dark radiation and SM particles. Concentrating on the sub-GeV energy region, we derive constraints on different forms of DR using the results of the most sensitive neutrino and dark matter direct detection experiments. In particular, for interacting dark radiation carrying a typical momentum of ˜30 MeV /c , both types of experiments provide competitive constraints. This study also demonstrates that non-standard sources of neutrino emission (e.g., via dark matter decay) are capable of creating a "neutrino floor" for dark matter direct detection that is closer to current bounds than is expected from standard neutrino sources.

  3. Investigation of flow characteristics of a single and two-adjacent natural draft dry cooling towers under cross wind condition

    NASA Astrophysics Data System (ADS)

    Mekanik, Abolghasem; Soleimani, Mohsen

    2007-11-01

    Wind effect on natural draught cooling towers has a very complex physics. The fluid flow and temperature distribution around and in a single and two adjacent (tandem and side by side) dry-cooling towers under cross wind are studied numerically in the present work. Cross-wind can significantly reduce cooling efficiency of natural-draft dry-cooling towers, and the adjacent towers can affect the cooling efficiency of both. In this paper we will present a complex computational model involving more than 750,000 finite volume cells under precisely defined boundary condition. Since the flow is turbulent, the standard k-ɛ turbulence model is used. The numerical results are used to estimate the heat transfer between radiators of the tower and air surrounding it. The numerical simulation explained the main reason for decline of the thermo-dynamical performance of dry-cooling tower under cross wind. In this paper, the incompressible fluid flow is simulated, and the flow is assumed steady and three-dimensional.

  4. 10 CFR 835.1 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.1 Scope. (a) General. The rules in this part establish radiation protection standards, limits, and program requirements for protecting individuals from ionizing radiation resulting from the conduct of DOE activities. (b) Exclusion. Except as provided in...

  5. 10 CFR 835.1 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... doses received as a patient for the purposes of medical diagnosis or therapy, or radiation doses... OCCUPATIONAL RADIATION PROTECTION General Provisions § 835.1 Scope. (a) General. The rules in this part establish radiation protection standards, limits, and program requirements for protecting individuals from...

  6. Early cosmology constrained

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verde, Licia; Jimenez, Raul; Bellini, Emilio

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter Ω{sub MR} < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < N {sub eff} < 3.2 when imposing flatness. Our constraintsmore » thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is r {sub s} = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to r {sub s} = 150 ± 5 Mpc.« less

  7. Early cosmology constrained

    NASA Astrophysics Data System (ADS)

    Verde, Licia; Bellini, Emilio; Pigozzo, Cassio; Heavens, Alan F.; Jimenez, Raul

    2017-04-01

    We investigate our knowledge of early universe cosmology by exploring how much additional energy density can be placed in different components beyond those in the ΛCDM model. To do this we use a method to separate early- and late-universe information enclosed in observational data, thus markedly reducing the model-dependency of the conclusions. We find that the 95% credibility regions for extra energy components of the early universe at recombination are: non-accelerating additional fluid density parameter ΩMR < 0.006 and extra radiation parameterised as extra effective neutrino species 2.3 < Neff < 3.2 when imposing flatness. Our constraints thus show that even when analyzing the data in this largely model-independent way, the possibility of hiding extra energy components beyond ΛCDM in the early universe is seriously constrained by current observations. We also find that the standard ruler, the sound horizon at radiation drag, can be well determined in a way that does not depend on late-time Universe assumptions, but depends strongly on early-time physics and in particular on additional components that behave like radiation. We find that the standard ruler length determined in this way is rs = 147.4 ± 0.7 Mpc if the radiation and neutrino components are standard, but the uncertainty increases by an order of magnitude when non-standard dark radiation components are allowed, to rs = 150 ± 5 Mpc.

  8. Fractal Complexity-Based Feature Extraction Algorithm of Communication Signals

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Li, Jingchao; Guo, Lili; Dou, Zheng; Lin, Yun; Zhou, Ruolin

    How to analyze and identify the characteristics of radiation sources and estimate the threat level by means of detecting, intercepting and locating has been the central issue of electronic support in the electronic warfare, and communication signal recognition is one of the key points to solve this issue. Aiming at accurately extracting the individual characteristics of the radiation source for the increasingly complex communication electromagnetic environment, a novel feature extraction algorithm for individual characteristics of the communication radiation source based on the fractal complexity of the signal is proposed. According to the complexity of the received signal and the situation of environmental noise, use the fractal dimension characteristics of different complexity to depict the subtle characteristics of the signal to establish the characteristic database, and then identify different broadcasting station by gray relation theory system. The simulation results demonstrate that the algorithm can achieve recognition rate of 94% even in the environment with SNR of -10dB, and this provides an important theoretical basis for the accurate identification of the subtle features of the signal at low SNR in the field of information confrontation.

  9. Improvements to Wire Bundle Thermal Modeling for Ampacity Determination

    NASA Technical Reports Server (NTRS)

    Rickman, Steve L.; Iannello, Christopher J.; Shariff, Khadijah

    2017-01-01

    Determining current carrying capacity (ampacity) of wire bundles in aerospace vehicles is critical not only to safety but also to efficient design. Published standards provide guidance on determining wire bundle ampacity but offer little flexibility for configurations where wire bundles of mixed gauges and currents are employed with varying external insulation jacket surface properties. Thermal modeling has been employed in an attempt to develop techniques to assist in ampacity determination for these complex configurations. Previous developments allowed analysis of wire bundle configurations but was constrained to configurations comprised of less than 50 elements. Additionally, for vacuum analyses, configurations with very low emittance external jackets suffered from numerical instability in the solution. A new thermal modeler is presented allowing for larger configurations and is not constrained for low bundle infrared emissivity calculations. Formulation of key internal radiation and interface conductance parameters is discussed including the effects of temperature and air pressure on wire to wire thermal conductance. Test cases comparing model-predicted ampacity and that calculated from standards documents are presented.

  10. Constructing exact perturbations of the standard cosmological models

    NASA Astrophysics Data System (ADS)

    Sopuerta, Carlos F.

    1999-11-01

    In this paper we show a procedure to construct cosmological models which, according to a covariant criterion, can be seen as exact (nonlinear) perturbations of the standard Friedmann-Lemaı⁁tre-Robertson-Walker (FLRW) cosmological models. The special properties of this procedure will allow us to select some of the characteristics of the models and also to study in depth their main geometrical and physical features. In particular, the models are conformally stationary, which means that they are compatible with the existence of isotropic radiation, and the observers that would measure this isotropy are rotating. Moreover, these models have two arbitrary functions (one of them is a complex function) which control their main properties, and in general they do not have any isometry. We study two examples, focusing on the case when the underlying FLRW models are flat dust models. In these examples we compare our results with those of the linearized theory of perturbations about a FLRW background.

  11. Cell and defect behavior in lithium-counterdoped solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Mehta, S.; Swartz, C. K.

    1984-01-01

    Some n(+)/p cells in which lithium is introduced as a counterdopant, by ion-implantation, into the cell's boron-doped p-region were studied. To determine if the cells radiation resistance could be significantly improved by lithium counterdoping. Defect behavior was related to cell performance using deep level transient spectroscopy. Results indicate a significantly increased radiation resistance for the lithium counterdoped cells when compared to the boron doped 1 ohm-cm control cell. The increased radiation resistance of the lithium counterdoped cells is due to the complexing of lithium with divacancies and boron. It is speculated that complexing with oxygen and single vacancies also contributes to the increased radiation resistance. Counterdoping silicon with lithium results in a different set of defects.

  12. Building a New Model of Care for Rapid Breast Radiotherapy Treatment Planning: Evaluation of the Advanced Practice Radiation Therapist in Cavity Delineation.

    PubMed

    Lee, G; Dinniwell, R; Liu, F F; Fyles, A; Han, K; Conrad, T; Levin, W; Marshall, A; Purdie, T G; Koch, C A

    2016-12-01

    Breast radiotherapy treatment is commonly managed by a multidisciplinary team to ensure optimal delivery of care. We sought a new model of care whereby a clinical specialist radiation therapist (CSRT) delineates the cavity target for whole breast radiotherapy treatment planning and the radiation oncologist validates the contour during final plan review. This study evaluated the radiation oncologist's acceptance of these contours and identified characteristics of cavities suitable for CSRT-directed contouring. Following specialised breast oncology education and training by the radiation oncologist, the CSRT prospectively delineated cavities in 30 tangential breast radiotherapy cases and consulted the radiation oncologist in 'complex' cases but directed 'non-complex' cases for treatment planning. Changes to CSRT contours were evaluated using the conformity index. Breast density, time since surgery and cavity location, size and visualisation score [CVS: range 1 (no visible cavity) to 5 (homogenous cavity)] were captured. Of the 30 CSRT delineated cavities contours, the CSRT directed 20 (66.7%) cases for planning without radiation oncology review; 19 were accepted (without changes) by the radiation oncologist upon final plan review and one was changed by the radiation oncologist (conformity index = 0.93) for boost treatment and did not affect the tangential treatment plan. Ten (33.3%) cases, all CVS ≤ 3, were reviewed with the radiation oncologist before planning (conformity index = 0.88 ± 0.12). CVS was inversely correlated with breast density and cavity size (P < 0.01). The CSRT delineated cavities appropriate for clinical radiotherapy treatment planning in women with well-visualised cavities, whereas 'complex' cases with dense breast parenchyma, CVS ≤ 3, and/or cases needing boost radiotherapy treatment required review with the radiation oncologist before planning. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Standards in nuclear science and technology. A bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-09-01

    Abstracts of 1803 U. S. and non-U. S. publications concerning a broad range of standards used in nuclear science and technology are included. The publication dates span the period 1962 through 1972, inclusive. Abstracts are arranged chronologically within four categories entitled Reactors and Engineering, Instruments and Calibration, Radiation and Radiation Protection, and Miscellaneous. A subject index is also included. (auth)

  14. A Comparison of Image Quality and Radiation Exposure Between the Mini C-Arm and the Standard C-Arm.

    PubMed

    van Rappard, Juliaan R M; Hummel, Willy A; de Jong, Tijmen; Mouës, Chantal M

    2018-04-01

    The use of intraoperative fluoroscopy has become mandatory in osseous hand surgery. Due to its overall practicality, the mini C-arm has gained popularity among hand surgeons over the standard C-arm. This study compares image quality and radiation exposure for patient and staff between the mini C-arm and the standard C-arm, both with flat panel technology. An observer-based subjective image quality study was performed using a contrast detail (CD) phantom. Five independent observers were asked to determine the smallest circles discernable to them. The results were plotted in a graph, forming a CD curve. From each curve, an image quality figure (IQF) was derived. A lower IQF equates to a better image quality. The patients' entrance skin dose was measured, and to obtain more information about the staff exposure dose, a perspex hand phantom was used. The scatter radiation was measured at various distances and angles relative to a central point on the detector. The IQF was significantly lower for the mini C-arm resulting in a better image quality. The patients' entrance dose was 10 times higher for the mini C-arm as compared with the standard C-arm, and the scatter radiation threefold. Due to its improved image quality and overall practicality, the mini C-arm is recommended for hand surgical procedures. To ensure that the surgeons' radiation exposure is not exceeding the safety limits, monitoring radiation exposure using mini C-arms with flat panel technology during surgery should be done in a future clinical study.

  15. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  16. The radiation environment on the surface of Mars - Summary of model calculations and comparison to RAD data

    NASA Astrophysics Data System (ADS)

    Matthiä, Daniel; Hassler, Donald M.; de Wet, Wouter; Ehresmann, Bent; Firan, Ana; Flores-McLaughlin, John; Guo, Jingnan; Heilbronn, Lawrence H.; Lee, Kerry; Ratliff, Hunter; Rios, Ryan R.; Slaba, Tony C.; Smith, Michael; Stoffle, Nicholas N.; Townsend, Lawrence W.; Berger, Thomas; Reitz, Günther; Wimmer-Schweingruber, Robert F.; Zeitlin, Cary

    2017-08-01

    The radiation environment at the Martian surface is, apart from occasional solar energetic particle events, dominated by galactic cosmic radiation, secondary particles produced in their interaction with the Martian atmosphere and albedo particles from the Martian regolith. The highly energetic primary cosmic radiation consists mainly of fully ionized nuclei creating a complex radiation field at the Martian surface. This complex field, its formation and its potential health risk posed to astronauts on future manned missions to Mars can only be fully understood using a combination of measurements and model calculations. In this work the outcome of a workshop held in June 2016 in Boulder, CO, USA is presented: experimental results from the Radiation Assessment Detector of the Mars Science Laboratory are compared to model results from GEANT4, HETC-HEDS, HZETRN, MCNP6, and PHITS. Charged and neutral particle spectra and dose rates measured between 15 November 2015 and 15 January 2016 and model results calculated for this time period are investigated.

  17. Discontinuous Galerkin finite element methods for radiative transfer in spherical symmetry

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Bolte, J.; Patzer, A. B. C.

    2016-11-01

    The discontinuous Galerkin finite element method (DG-FEM) is successfully applied to treat a broad variety of transport problems numerically. In this work, we use the full capacity of the DG-FEM to solve the radiative transfer equation in spherical symmetry. We present a discontinuous Galerkin method to directly solve the spherically symmetric radiative transfer equation as a two-dimensional problem. The transport equation in spherical atmospheres is more complicated than in the plane-parallel case owing to the appearance of an additional derivative with respect to the polar angle. The DG-FEM formalism allows for the exact integration of arbitrarily complex scattering phase functions, independent of the angular mesh resolution. We show that the discontinuous Galerkin method is able to describe accurately the radiative transfer in extended atmospheres and to capture discontinuities or complex scattering behaviour which might be present in the solution of certain radiative transfer tasks and can, therefore, cause severe numerical problems for other radiative transfer solution methods.

  18. Quantum control of the normal modes of benzene with ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Sauer, Petra; Dou, Yusheng; Torralva, Ben; Allen, Roland

    2005-03-01

    Remarkable innovations in laser technology have made it possible to create laser pulses with ultrashort durations (below 100 femtoseconds) and ultrahigh intensities (above 1 terawatt per cm^2). To understand the behavior of complex molecules and materials in this new regime of physics, chemistry, biology, and materials science requires innovative techniques which complement experiment and standard theory, and which can treat situations in which conventional approximations like the Born- Oppenheimer approximation, the Franck-Condon principle, and Fermi's golden rule are no longer valid. In this talk we describe a method that we are developing, semiclassical electron-radiation-ion dyanmics (SERID), which can be used to perform simulations of the coupled dynamics of electrons and nuclei in an intense radiation field. We have employed this technique in studying the normal modes of benzene, and the possibility of controlling these modes by optimizing the laser pulses that are applied to the molecule. Animations will be shown of particular normal modes, including the breathing and beating modes, illustrating their symmetries and other properties, and of the photodissociation of benzene when the laser pulse exceeds a threshold intensity.

  19. Bispectral infrared forest fire detection and analysis using classification techniques

    NASA Astrophysics Data System (ADS)

    Aranda, Jose M.; Melendez, Juan; de Castro, Antonio J.; Lopez, Fernando

    2004-01-01

    Infrared cameras are well established as a useful tool for fire detection, but their use for quantitative forest fire measurements faces difficulties, due to the complex spatial and spectral structure of fires. In this work it is shown that some of these difficulties can be overcome by applying classification techniques, a standard tool for the analysis of satellite multispectral images, to bi-spectral images of fires. Images were acquired by two cameras that operate in the medium infrared (MIR) and thermal infrared (TIR) bands. They provide simultaneous and co-registered images, calibrated in brightness temperatures. The MIR-TIR scatterplot of these images can be used to classify the scene into different fire regions (background, ashes, and several ember and flame regions). It is shown that classification makes possible to obtain quantitative measurements of physical fire parameters like rate of spread, embers temperature, and radiated power in the MIR and TIR bands. An estimation of total radiated power and heat release per unit area is also made and compared with values derived from heat of combustion and fuel consumption.

  20. An intelligent maximum permissible exposure meter for safety assessments of laser radiation

    NASA Astrophysics Data System (ADS)

    Corder, D. A.; Evans, D. R.; Tyrer, J. R.

    1996-09-01

    There is frequently a need to make laser power or energy density measurements when determining whether radiation from a laser system exceeds the Maximum Permissible Exposure (MPE) as defined in BS EN 60825. This can be achieved using standard commercially available laser power or energy measurement equipment, but some of these have shortcomings when used in this application. Calculations must be performed by the user to compare the measured value to the MPE. The measurement and calculation procedure appears complex to the nonexpert who may be performing the assessment. A novel approach is described which uses purpose designed hardware and software to simplify the process. The hardware is optimized for measuring the relatively low powers associated with MPEs. The software runs on a Psion Series 3a palmtop computer. This reduces the cost and size of the system yet allows graphical and numerical presentation of data. Data output to other software running on PCs is also possible, enabling the instrument to be used as part of a quality system. Throughout the measurement process the opportunity for user error has been minimized by the hardware and software design.

  1. 10 CFR 20.1903 - Exceptions to posting requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....1903 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary... who takes the precautions necessary to prevent the exposure of individuals to radiation or radioactive... a caution sign because of the presence of a sealed source provided the radiation level at 30...

  2. 10 CFR 20.1903 - Exceptions to posting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ....1903 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary... who takes the precautions necessary to prevent the exposure of individuals to radiation or radioactive... a caution sign because of the presence of a sealed source provided the radiation level at 30...

  3. 10 CFR 20.1903 - Exceptions to posting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....1903 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary... who takes the precautions necessary to prevent the exposure of individuals to radiation or radioactive... a caution sign because of the presence of a sealed source provided the radiation level at 30...

  4. 10 CFR 20.1903 - Exceptions to posting requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ....1903 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary... who takes the precautions necessary to prevent the exposure of individuals to radiation or radioactive... a caution sign because of the presence of a sealed source provided the radiation level at 30...

  5. 10 CFR 20.1903 - Exceptions to posting requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ....1903 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Precautionary... who takes the precautions necessary to prevent the exposure of individuals to radiation or radioactive... a caution sign because of the presence of a sealed source provided the radiation level at 30...

  6. 47 CFR 95.635 - Unwanted radiation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Unwanted radiation. 95.635 Section 95.635 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Technical Regulations Technical Standards § 95.635 Unwanted radiation. (a) In addition to the...

  7. 47 CFR 95.635 - Unwanted radiation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Unwanted radiation. 95.635 Section 95.635 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Technical Regulations Technical Standards § 95.635 Unwanted radiation. (a) In addition to the...

  8. 47 CFR 95.635 - Unwanted radiation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Unwanted radiation. 95.635 Section 95.635 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Technical Regulations Technical Standards § 95.635 Unwanted radiation. (a) In addition to the...

  9. 47 CFR 95.635 - Unwanted radiation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Unwanted radiation. 95.635 Section 95.635 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Technical Regulations Technical Standards § 95.635 Unwanted radiation. (a) In addition to the...

  10. 10 CFR 20.1602 - Control of access to very high radiation areas.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Control of access to very high radiation areas. 20.1602 Section 20.1602 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1602 Control of access to very high radiation areas...

  11. 10 CFR 20.1602 - Control of access to very high radiation areas.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Control of access to very high radiation areas. 20.1602 Section 20.1602 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1602 Control of access to very high radiation areas...

  12. 10 CFR 20.1602 - Control of access to very high radiation areas.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Control of access to very high radiation areas. 20.1602 Section 20.1602 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1602 Control of access to very high radiation areas...

  13. 10 CFR 20.1602 - Control of access to very high radiation areas.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Control of access to very high radiation areas. 20.1602 Section 20.1602 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1602 Control of access to very high radiation areas...

  14. 10 CFR 20.1602 - Control of access to very high radiation areas.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Control of access to very high radiation areas. 20.1602 Section 20.1602 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Control of Exposure From External Sources in Restricted Areas § 20.1602 Control of access to very high radiation areas...

  15. Design of a radiation tolerant system for total ionizing dose monitoring using floating gate and RadFET dosimeters

    NASA Astrophysics Data System (ADS)

    Ferraro, R.; Danzeca, S.; Brucoli, M.; Masi, A.; Brugger, M.; Dilillo, L.

    2017-04-01

    The need for upgrading the Total Ionizing Dose (TID) measurement resolution of the current version of the Radiation Monitoring system for the LHC complex has driven the research of new TID sensors. The sensors being developed nowadays can be defined as Systems On Chip (SOC) with both analog and digital circuitries embedded in the same silicon. A radiation tolerant TID Monitoring System (TIDMon) has been designed to allow the placement of the entire dosimeter readout electronics in very harsh environments such as calibration rooms and even in the mixed radiation field such as the one of the LHC complex. The objective of the TIDMon is to measure the effect of the TID on the new prototype of Floating Gate Dosimeter (FGDOS) without using long cables and with a reliable measurement system. This work introduces the architecture of the TIDMon, the radiation tolerance techniques applied on the controlling electronics as well as the design choices adopted for the system. Finally, results of several tests of TIDMon under different radiation environments such as gamma rays or mixed radiation field at CHARM are presented.

  16. Spectrophotometer and ultrasound evaluation of late toxicity following breast-cancer radiotherapy

    PubMed Central

    Yoshida, E. J.; Chen, H.; Torres, M. A.; Curran, W. J.; Liu, T.

    2011-01-01

    Purpose: Radiation-induced normal-tissue toxicities are common, complex, and distressing side effects that affect 90% of patients receiving breast-cancer radiotherapy and 40% of patients post radiotherapy. In this study, the authors investigated the use of spectrophotometry and ultrasound to quantitatively measure radiation-induced skin discoloration and subcutaneous-tissue fibrosis. The study’s purpose is to determine whether skin discoloration correlates with the development of fibrosis in breast-cancer radiotherapy.Methods : Eighteen breast-cancer patients were enrolled in our initial study. All patients were previously treated with a standard course of radiation, and the median follow-up time was 22 months. The treated and untreated breasts were scanned with a spectrophotometer and an ultrasound. Two spectrophotometer parameters—melanin and erythema indices—were used to quantitatively assess skin discoloration. Two ultrasound parameters—skin thickness and Pearson coefficient of the hypodermis—were used to quantitatively assess severity of fibrosis. These measurements were correlated with clinical assessments (RTOG late morbidity scores).Results: Significant measurement differences between the treated and contralateral breasts were observed among all patients: 27.3% mean increase in skin thickness (p < 0.001), 34.1% mean decrease in Pearson coefficient (p < 0.001), 27.3% mean increase in melanin (p < 0.001), and 22.6% mean increase in erythema (p < 0.001). All parameters except skin thickness correlated with RTOG scores. A moderate correlation exists between melanin and erythema; however, spectrophotometer parameters do not correlate with ultrasound parameters.Conclusions: Spectrophotometry and quantitative ultrasound are objective tools that assess radiation-induced tissue injury. Spectrophotometer parameters did not correlate with those of quantitative ultrasound suggesting that skin discoloration cannot be used as a marker for subcutaneous fibrosis. These tools may prove useful for the reduction of radiation morbidities and improvement of patient quality of life. PMID:21992389

  17. Spectrophotometer and ultrasound evaluation of late toxicity following breast-cancer radiotherapy.

    PubMed

    Yoshida, E J; Chen, H; Torres, M A; Curran, W J; Liu, T

    2011-10-01

    Radiation-induced normal-tissue toxicities are common, complex, and distressing side effects that affect 90% of patients receiving breast-cancer radiotherapy and 40% of patients post radiotherapy. In this study, the authors investigated the use of spectrophotometry and ultrasound to quantitatively measure radiation-induced skin discoloration and subcutaneous-tissue fibrosis. The study's purpose is to determine whether skin discoloration correlates with the development of fibrosis in breast-cancer radiotherapy. Eighteen breast-cancer patients were enrolled in our initial study. All patients were previously treated with a standard course of radiation, and the median follow-up time was 22 months. The treated and untreated breasts were scanned with a spectrophotometer and an ultrasound. Two spectrophotometer parameters-melanin and erythema indices-were used to quantitatively assess skin discoloration. Two ultrasound parameters-skin thickness and Pearson coefficient of the hypodermis-were used to quantitatively assess severity of fibrosis. These measurements were correlated with clinical assessments (RTOG late morbidity scores). Significant measurement differences between the treated and contralateral breasts were observed among all patients: 27.3% mean increase in skin thickness (p < 0.001), 34.1% mean decrease in Pearson coefficient (p < 0.001), 27.3% mean increase in melanin (p < 0.001), and 22.6% mean increase in erythema (p < 0.001). All parameters except skin thickness correlated with RTOG scores. A moderate correlation exists between melanin and erythema; however, spectrophotometer parameters do not correlate with ultrasound parameters. Spectrophotometry and quantitative ultrasound are objective tools that assess radiation-induced tissue injury. Spectrophotometer parameters did not correlate with those of quantitative ultrasound suggesting that skin discoloration cannot be used as a marker for subcutaneous fibrosis. These tools may prove useful for the reduction of radiation morbidities and improvement of patient quality of life.

  18. Bosniak classification system: a prospective comparison of CT, contrast-enhanced US, and MR for categorizing complex renal cystic masses.

    PubMed

    Graumann, Ole; Osther, Susanne Sloth; Karstoft, Jens; Hørlyck, Arne; Osther, Palle Jörn Sloth

    2016-11-01

    Background The Bosniak classification was originally based on computed tomographic (CT) findings. Magnetic resonance (MR) and contrast-enhanced ultrasonography (CEUS) imaging may demonstrate findings that are not depicted at CT, and there may not always be a clear correlation between the findings at MR and CEUS imaging and those at CT. Purpose To compare diagnostic accuracy of MR, CEUS, and CT when categorizing complex renal cystic masses according to the Bosniak classification. Material and Methods From February 2011 to June 2012, 46 complex renal cysts were prospectively evaluated by three readers. Each mass was categorized according to the Bosniak classification and CT was chosen as gold standard. Kappa was calculated for diagnostic accuracy and data was compared with pathological results. Results CT images found 27 BII, six BIIF, seven BIII, and six BIV. Forty-three cysts could be characterized by CEUS, 79% were in agreement with CT (κ = 0.86). Five BII lesions were upgraded to BIIF and four lesions were categorized lower with CEUS. Forty-one lesions were examined with MR; 78% were in agreement with CT (κ = 0.91). Three BII lesions were upgraded to BIIF and six lesions were categorized one category lower. Pathologic correlation in six lesions revealed four malignant and two benign lesions. Conclusion CEUS and MR both up- and downgraded renal cysts compared to CT, and until these non-radiation modalities have been refined and adjusted, CT should remain the gold standard of the Bosniak classification.

  19. [Level of microwave radiation from mobile phone base stations built in residential districts].

    PubMed

    Hu, Ji; Lu, Yiyang; Zhang, Huacheng; Xie, Hebing; Yang, Xinwen

    2009-11-01

    To investigate the condition of microwave radiation pollution from mobile phone base station built in populated area. Random selected 18 residential districts where had base station and 10 residential districts where had no base stations. A TES-92 electromagnetic radiation monitor were used to measure the intensity of microwave radiation in external and internal living environment. The intensities of microwave radiation in the exposure residential districts were more higher than those of the control residential districts (p < 0.05). There was a intensity peak at about 10 m from the station, it would gradually weaken with the increase of the distance. The level of microwave radiation in antenna main lobe region is not certainly more higher than the side lobe direction, and the side lobe direction also is not more lower. At the same district, where there were two base stations, the electromagnetic field nestification would take place in someplace. The intensities of microwave radiation outside the exposure windows in the resident room not only changed with distance but also with the height of the floor. The intensities of microwave radiation inside the aluminum alloys security net were more lower than those of outside the aluminum alloys security net (p < 0.05), but the inside or outside of glass-window appears almost no change (p > 0.05). Although all the measure dates on the ground around the base station could be below the primary standard in "environment electromagnetic wave hygienic standard" (GB9175-88), there were still a minorities of windows which exposed to the base station were higher, and the outside or inside of a few window was even higher beyond the primary safe level defined standard. The aluminum alloys security net can partly shield the microwave radiation from the mobile phone base station.

  20. Synergizing Radiation Therapy and Immunotherapy for Curing Incurable Cancers: Opportunities and Challenges

    PubMed Central

    Hodge, James W.; Guha, Chandan; Neefjes, Jacques; Gulley, James L.

    2012-01-01

    The combination of radiation therapy and immunotherapy holds particular promise as a strategy for cancer therapeutics. There is evidence that immunotherapy is most beneficial alone when employed early in the disease process or in combination with standard therapies (e.g., radiation) later in the disease process. Indeed, radiation may act synergistically with immunotherapy to enhance immune responses, inhibit immunosuppression, and/or alter the phenotype of tumor cells, thus rendering them more susceptible to immune-mediated killing. Furthermore, as monotherapies, both immunotherapy and radiation may be insufficient to eliminate tumor masses. However, following immunization with a cancer vaccine, the destruction of even a small percentage of tumor cells by radiation could result in cross-priming and presentation of tumor antigens to the immune system, thereby potentiating antitumor responses. Learning how to exploit radiation-induced changes to tumor-cell antigens, and how to induce effective immune responses to these cumulatively immunogenic stimuli, is an exciting frontier in cancer therapy research. This review examines a) mechanisms by which many forms of radiation therapy can induce or augment antitumor immune responses and b) preclinical systems that demonstrate that immunotherapy can be effectively combined with radiation therapy. Finally, we review current clinical trials where standard-of-care radiation therapy is being combined with immunotherapy. PMID:18777956

  1. Modeling the Interaction of Radiation Between Vegetation and the Seasonal Snowcover

    NASA Astrophysics Data System (ADS)

    Tribbeck, M. J.; Gurney, R. J.; Morris, E. M.; Pearson, D.

    2001-12-01

    Prediction of meltwater runoff is crucial to communities where the seasonal snowpack is the major water supply. Water is itself a vital resource and it carries nutrients both in solution and in suspension. Simulation of snowpack depletion at a point in open areas has previously been shown to produce accurate results using physically based models such as SNTHERM. However, the radiation balance is more complex under a forest canopy as radiation is scattered and absorbed by canopy elements. This can alter the timing and magnitude of snowpack runoff substantially. The interaction of radiation between a forest canopy and its underlying snowcover is modeled by the coupling of a physically based snow model and an optical and thermal radiation canopy model. The snow model, which is based on SNTHERM (Jordan, 1991), is a discrete, multi-layer, one-dimensional mass and energy budget model for snow and is formulated with an adaptive grid system that compresses with the compacting snowpack and allows retention of snowpack stratigraphy. The vegetation canopy model approximates the canopy as a series of discrete, randomly orientated elements that scatter and absorb optical and thermal radiation. Multiple scattering of radiation between canopy and snow surface is modeled to conserve energy. The coupled model SNOWCAN differs from other vegetation-snow models such as GORT or SNOBAL as it models the albedo feedback mechanism. This is important as the albedo both affects and is affected by (through grain growth) the radiation balance. SNOWCAN is driven by standard atmospheric variables (including incident solar and thermal radiation) measured outside of the canopy and simulates snowpack properties such as temperature and density profiles as well as the sub-canopy radiation balance. The coupled snow and vegetation energy budget model was used to simulate snow depth at an old jack pine site during the 1994 BOREAS campaign. Measured and simulated snow depth showed good agreement throughout the accumulation and ablation periods, yielding an r2 correlation coefficient of 0.94. The snowpack development was also simulated at a point site within a fir stand in Reynolds Creek Experimental Watershed, Idaho, USA for the water year 2000-2001. A sensitivity analysis was carried out and comparisons were made with field observations of snowpack properties and sub-canopy radiation data for model validation.

  2. Radiation-like scalar field and gauge fields in cosmology for a theory with dynamical time

    NASA Astrophysics Data System (ADS)

    Benisty, David; Guendelman, E. I.

    2016-09-01

    Cosmological solutions with a scalar field behaving as radiation are obtained, in the context of gravitational theory with dynamical time. The solution requires the spacial curvature of the universe k, to be zero, unlike the standard radiation solutions, which do not impose any constraint on the spatial curvature of the universe. This is because only such k = 0 radiation solutions pose a homothetic Killing vector. This kind of theory can be used to generalize electromagnetism and other gauge theories, in curved spacetime, and there are no deviations from standard gauge field equation (like Maxwell equations) in the case there exist a conformal Killing vector. But there could be departures from Maxwell and Yang-Mills equations, for more general spacetimes.

  3. American College of Radiology-American Brachytherapy Society practice parameter for electronically generated low-energy radiation sources.

    PubMed

    Devlin, Phillip M; Gaspar, Laurie E; Buzurovic, Ivan; Demanes, D Jeffrey; Kasper, Michael E; Nag, Subir; Ouhib, Zoubir; Petit, Joshua H; Rosenthal, Seth A; Small, William; Wallner, Paul E; Hartford, Alan C

    This collaborative practice parameter technical standard has been created between the American College of Radiology and American Brachytherapy Society to guide the usage of electronically generated low energy radiation sources (ELSs). It refers to the use of electronic X-ray sources with peak voltages up to 120 kVp to deliver therapeutic radiation therapy. The parameter provides a guideline for utilizing ELS, including patient selection and consent, treatment planning, and delivery processes. The parameter reviews the published clinical data with regard to ELS results in skin, breast, and other cancers. This technical standard recommends appropriate qualifications of the involved personnel. The parameter reviews the technical issues relating to equipment specifications as well as patient and personnel safety. Regarding suggestions for educational programs with regard to this parameter,it is suggested that the training level for clinicians be equivalent to that for other radiation therapies. It also suggests that ELS must be done using the same standards of quality and safety as those in place for other forms of radiation therapy. Copyright © 2017 American Brachytherapy Society and American College of Radiology. Published by Elsevier Inc. All rights reserved.

  4. MO-E-213-02: Medical Physicist Involvement in Implementing Patient Protection Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J.

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less

  5. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...

  6. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...

  7. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...

  8. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...

  9. 10 CFR 20.2104 - Determination of prior occupational dose.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 20.2104 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Records § 20... occupational radiation dose received during the current year. (b) Prior to permitting an individual to... statement from the individual, or from the individual's most recent employer for work involving radiation...

  10. Quasi-analytical treatment of spatially averaged radiation transfer in complex terrain

    NASA Astrophysics Data System (ADS)

    LöWe, H.; Helbig, N.

    2012-10-01

    We provide a new quasi-analytical method to compute the subgrid topographic influences on the shortwave radiation fluxes and the effective albedo in complex terrain as required for large-scale meteorological, land surface, or climate models. We investigate radiative transfer in complex terrain via the radiosity equation on isotropic Gaussian random fields. Under controlled approximations we derive expressions for domain-averaged fluxes of direct, diffuse, and terrain radiation and the sky view factor. Domain-averaged quantities can be related to a type of level-crossing probability of the random field, which is approximated by long-standing results developed for acoustic scattering at ocean boundaries. This allows us to express all nonlocal horizon effects in terms of a local terrain parameter, namely, the mean-square slope. Emerging integrals are computed numerically, and fit formulas are given for practical purposes. As an implication of our approach, we provide an expression for the effective albedo of complex terrain in terms of the Sun elevation angle, mean-square slope, the area-averaged surface albedo, and the ratio of atmospheric direct beam to diffuse radiation. For demonstration we compute the decrease of the effective albedo relative to the area-averaged albedo in Switzerland for idealized snow-covered and clear-sky conditions at noon in winter. We find an average decrease of 5.8% and spatial patterns which originate from characteristics of the underlying relief. Limitations and possible generalizations of the method are discussed.

  11. Standardization Process for Space Radiation Models Used for Space System Design

    NASA Technical Reports Server (NTRS)

    Barth, Janet; Daly, Eamonn; Brautigam, Donald

    2005-01-01

    The space system design community has three concerns related to models of the radiation belts and plasma: 1) AP-8 and AE-8 models are not adequate for modern applications; 2) Data that have become available since the creation of AP-8 and AE-8 are not being fully exploited for modeling purposes; 3) When new models are produced, there is no authorizing organization identified to evaluate the models or their datasets for accuracy and robustness. This viewgraph presentation provided an overview of the roadmap adopted by the Working Group Meeting on New Standard Radiation Belt and Space Plasma Models.

  12. Editorial: ERCP-Related Radiation Cataractogenesis: Is It Time to Be Concerned?

    PubMed

    Mekaroonkamol, Parit; Keilin, Steven

    2017-05-01

    With the growing number of fluoroscopic guided endoscopic procedures, radiation-related risk needs to be further assessed. Recent evidence indicates that radiation cataractogenesis occurs at a lower dose threshold than previously believed. While body aprons and thyroid shields are well-established standard protection during fluoroscopy, ocular safety and the use of protective eyewear are not as well defined. This prospective study answered two important questions: Does the standard body dosimeter provide an accurate ocular dosimetry? And what is the time of fluoroscopy needed to warrant using lens protection? It also raises the question whether current guidelines need to be updated.

  13. Mobile phone radiation health risk controversy: the reliability and sufficiency of science behind the safety standards.

    PubMed

    Leszczynski, Dariusz; Xu, Zhengping

    2010-01-27

    There is ongoing discussion whether the mobile phone radiation causes any health effects. The International Commission on Non-Ionizing Radiation Protection, the International Committee on Electromagnetic Safety and the World Health Organization are assuring that there is no proven health risk and that the present safety limits protect all mobile phone users. However, based on the available scientific evidence, the situation is not as clear. The majority of the evidence comes from in vitro laboratory studies and is of very limited use for determining health risk. Animal toxicology studies are inadequate because it is not possible to "overdose" microwave radiation, as it is done with chemical agents, due to simultaneous induction of heating side-effects. There is a lack of human volunteer studies that would, in unbiased way, demonstrate whether human body responds at all to mobile phone radiation. Finally, the epidemiological evidence is insufficient due to, among others, selection and misclassification bias and the low sensitivity of this approach in detection of health risk within the population. This indicates that the presently available scientific evidence is insufficient to prove reliability of the current safety standards. Therefore, we recommend to use precaution when dealing with mobile phones and, whenever possible and feasible, to limit body exposure to this radiation. Continuation of the research on mobile phone radiation effects is needed in order to improve the basis and the reliability of the safety standards.

  14. Mobile phone radiation health risk controversy: the reliability and sufficiency of science behind the safety standards

    PubMed Central

    2010-01-01

    There is ongoing discussion whether the mobile phone radiation causes any health effects. The International Commission on Non-Ionizing Radiation Protection, the International Committee on Electromagnetic Safety and the World Health Organization are assuring that there is no proven health risk and that the present safety limits protect all mobile phone users. However, based on the available scientific evidence, the situation is not as clear. The majority of the evidence comes from in vitro laboratory studies and is of very limited use for determining health risk. Animal toxicology studies are inadequate because it is not possible to "overdose" microwave radiation, as it is done with chemical agents, due to simultaneous induction of heating side-effects. There is a lack of human volunteer studies that would, in unbiased way, demonstrate whether human body responds at all to mobile phone radiation. Finally, the epidemiological evidence is insufficient due to, among others, selection and misclassification bias and the low sensitivity of this approach in detection of health risk within the population. This indicates that the presently available scientific evidence is insufficient to prove reliability of the current safety standards. Therefore, we recommend to use precaution when dealing with mobile phones and, whenever possible and feasible, to limit body exposure to this radiation. Continuation of the research on mobile phone radiation effects is needed in order to improve the basis and the reliability of the safety standards. PMID:20205835

  15. Polycapillary lenses for soft x-ray transmission in ITER: Model, comparison with experiments, and potential application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazon, D., E-mail: Didier.Mazon@cea.fr; Jardin, A.; Liegeard, C.

    2016-11-15

    Measuring Soft X-Ray (SXR) radiation [0.1 keV; 15 keV] in tokamaks is a standard way of extracting valuable information on the particle transport and magnetohydrodynamic activity. Generally, the analysis is performed with detectors positioned close to the plasma for a direct line of sight. A burning plasma, like the ITER deuterium-tritium phase, is too harsh an environment to permit the use of such detectors in close vicinity of the machine. We have thus investigated in this article the possibility of using polycapillary lenses in ITER to transport the SXR information several meters away from the plasma in the complex port-plugmore » geometry.« less

  16. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review.

    PubMed

    Anjum, Komal; Shagufta, Bibi Ibtesam; Abbas, Syed Qamar; Patel, Seema; Khan, Ishrat; Shah, Sayed Asmat Ali; Akhter, Najeeb; Hassan, Syed Shams Ul

    2017-08-01

    Glioblastoma multiforme (GBM) is the deadliest form of heterogeneous brain cancer. It affects an enormous number of patients every year and the survival is approximately 8 to 15 months. GBM has driven by complex signaling pathways and considered as a most challenging to treat. Standard treatment of GBM includes surgery, radiation therapy, chemotherapy and also the combined treatment. This review article described inter and intra- tumor heterogeneity of GMB. In addition, recent chemotherapeutic agents, with their mechanism of action have been defined. FDA-approved drugs also been focused over here and most importantly highlighting some natural and synthetic and novel anti- glioma agents, that are the main focus of researchers nowadays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  17. Phase structure of completely asymptotically free SU(Nc) models with quarks and scalar quarks

    NASA Astrophysics Data System (ADS)

    Hansen, F. F.; Janowski, T.; Langæble, K.; Mann, R. B.; Sannino, F.; Steele, T. G.; Wang, Z. W.

    2018-03-01

    We determine the phase diagram of completely asymptotically free SU (Nc) gauge theories featuring Ns complex scalars and Nf Dirac quarks transforming according to the fundamental representation of the gauge group. The analysis is performed at the maximum known order in perturbation theory. We unveil a very rich dynamics and associated phase structure. Intriguingly, we discover that the completely asymptotically free conditions guarantee that the infrared dynamics displays long-distance conformality, and in a regime when perturbation theory is applicable. We conclude our analysis by determining the quantum corrected potential of the model and summarizing the possible patterns of radiative symmetry breaking. These models are of potential phenomenological interest as either elementary or composite ultraviolet finite extensions of the standard model.

  18. Melasma update

    PubMed Central

    Sarkar, Rashmi; Arora, Pooja; Garg, Vijay Kumar; Sonthalia, Sidharth; Gokhale, Narendra

    2014-01-01

    Melasma is an acquired pigmentary disorder characterized by symmetrical hyperpigmented macules on the face. Its pathogenesis is complex and involves the interplay of various factors such as genetic predisposition, ultraviolet radiation, hormonal factors, and drugs. An insight into the pathogenesis is important to devise treatment modalities that accurately target the disease process and prevent relapses. Hydroquinone remains the gold standard of treatment though many newer drugs, especially plant extracts, have been developed in the last few years. In this article, we review the pathogenetic factors involved in melasma. We also describe the newer treatment options available and their efficacy. We carried out a PubMed search using the following terms “melasma, pathogenesis, etiology, diagnosis, treatment” and have included data of the last few years. PMID:25396123

  19. Vectorial finite elements for solving the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.

    2018-06-01

    The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.

  20. The application of CFD to the modelling of fires in complex geometries

    NASA Astrophysics Data System (ADS)

    Burns, A. D.; Clarke, D. S.; Guilbert, P.; Jones, I. P.; Simcox, S.; Wilkes, N. S.

    The application of Computational Fluid Dynamics (CFD) to industrial safety is a challenging activity. In particular it involves the interaction of several different physical processes, including turbulence, combustion, radiation, buoyancy, compressible flow and shock waves in complex three-dimensional geometries. In addition, there may be multi-phase effects arising, for example, from sprinkler systems for extinguishing fires. The FLOW3D software (1-3) from Computational Fluid Dynamics Services (CFDS) is in widespread use in industrial safety problems, both within AEA Technology, and also by CFDS's commercial customers, for example references (4-13). This paper discusses some other applications of FLOW3D to safety problems. These applications illustrate the coupling of the gas flows with radiation models and combustion models, particularly for complex geometries where simpler radiation models are not applicable.

  1. Top ten models constrained by b {yields} s{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J.L.

    1994-12-01

    The radiative decay b {yields} s{gamma} is examined in the Standard Model and in nine classes of models which contain physics beyond the Standard Model. The constraints which may be placed on these models from the recent results of the CLEO Collaboration on both inclusive and exclusive radiative B decays is summarized. Reasonable bounds are found for the parameters in some cases.

  2. Precision theoretical analysis of neutron radiative beta decay to order O (α2/π2)

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Höllwieser, R.; Troitskaya, N. I.; Wellenzohn, M.; Berdnikov, Ya. A.

    2017-06-01

    In the Standard Model (SM) we calculate the decay rate of the neutron radiative β- decay to order O (α2/π2˜10-5), where α is the fine-structure constant, and radiative corrections to order O (α /π ˜10-3). The obtained results together with the recent analysis of the neutron radiative β- decay to next-to-leading order in the large proton-mass expansion, performed by Ivanov et al. [Phys. Rev. D 95, 033007 (2017), 10.1103/PhysRevD.95.033007], describe recent experimental data by the RDK II Collaboration [Bales et al., Phys. Rev. Lett. 116, 242501 (2016), 10.1103/PhysRevLett.116.242501] within 1.5 standard deviations. We argue a substantial influence of strong low-energy interactions of hadrons coupled to photons on the properties of the amplitude of the neutron radiative β- decay under gauge transformations of real and virtual photons.

  3. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT

    PubMed Central

    Halliburton, Sandra S.; Abbara, Suhny; Chen, Marcus Y.; Gentry, Ralph; Mahesh, Mahadevappa; Raff, Gilbert L.; Shaw, Leslee J.; Hausleiter, Jörg

    2012-01-01

    Over the last few years, computed tomography (CT) has developed into a standard clinical test for a variety of cardiovascular conditions. The emergence of cardiovascular CT during a period of dramatic increase in radiation exposure to the population from medical procedures and heightened concern about the subsequent potential cancer risk has led to intense scrutiny of the radiation burden of this new technique. This has hastened the development and implementation of dose reduction tools and prompted closer monitoring of patient dose. In an effort to aid the cardiovascular CT community in incorporating patient-centered radiation dose optimization and monitoring strategies into standard practice, the Society of Cardiovascular Computed Tomography has produced a guideline document to review available data and provide recommendations regarding interpretation of radiation dose indices and predictors of risk, appropriate use of scanner acquisition modes and settings, development of algorithms for dose optimization, and establishment of procedures for dose monitoring. PMID:21723512

  4. Invited Article: Refined analysis of synchrotron radiation for NIST's SURF III facility

    NASA Astrophysics Data System (ADS)

    Shirley, Eric L.; Furst, Mitchell; Arp, Uwe

    2018-04-01

    We have developed a new method for the exact calculation of synchrotron radiation for the National Institute of Standards and Technology Synchrotron Ultraviolet Radiation Facility, SURF III. Instead of using the Schwinger formula, which is only an approximation, we develop formulae based on Graf's addition theorem for Bessel functions and accurate asymptotic expansions for Hankel functions and Bessel functions. By measuring the radiation intensity profile at two distances from the storage ring, we also confirm an apparent vertical emittance that is consistent with the vertical betatron oscillations that are intentionally introduced to extend beam lifetime by spreading the electron beam spatially. Finally, we determine how much diffraction by beamline apertures enhances the spectral irradiance at an integrating sphere entrance port at the end station. This should eliminate small but treatable components of the uncertainty budget that one should consider when using SURF III or similar synchrotrons as standard, calculable sources of ultraviolet and other radiation.

  5. Implementation of Electronic Checklists in an Oncology Medical Record: Initial Clinical Experience

    PubMed Central

    Albuquerque, Kevin V.; Miller, Alexis A.; Roeske, John C.

    2011-01-01

    Purpose: The quality of any medical treatment depends on the accurate processing of multiple complex components of information, with proper delivery to the patient. This is true for radiation oncology, in which treatment delivery is as complex as a surgical procedure but more dependent on hardware and software technology. Uncorrected errors, even if small or infrequent, can result in catastrophic consequences for the patient. We developed electronic checklists (ECLs) within the oncology electronic medical record (EMR) and evaluated their use and report on our initial clinical experience. Methods: Using the Mosaiq EMR, we developed checklists within the clinical assessment section. These checklists are based on the process flow of information from one group to another within the clinic and enable the processing, confirmation, and documentation of relevant patient information before the delivery of radiation therapy. The clinical use of the ECL was documented by means of a customized report. Results: Use of ECL has reduced the number of times that physicians were called to the treatment unit. In particular, the ECL has ensured that therapists have a better understanding of the treatment plan before the initiation of treatment. An evaluation of ECL compliance showed that, with additional staff training, > 94% of the records were completed. Conclusion: The ECL can be used to ensure standardization of procedures and documentation that the pretreatment checks have been performed before patient treatment. We believe that the implementation of ECLs will improve patient safety and reduce the likelihood of treatment errors. PMID:22043184

  6. Four-Week Course of Radiation for Breast Cancer Using Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freedman, Gary M.; Anderson, Penny R.; Goldstein, Lori J.

    Purpose: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. Methods and Materials: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age {>=}18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapymore » not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. Results: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. Conclusions: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules.« less

  7. Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research

    Cancer.gov

    For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal

  8. Research on the method of establishing the total radiation meter calibration device

    NASA Astrophysics Data System (ADS)

    Gao, Jianqiang; Xia, Ming; Xia, Junwen; Zhang, Dong

    2015-10-01

    Pyranometer is an instrument used to measure the solar radiation, according to pyranometer differs as installation state, can be respectively measured total solar radiation, reflected radiation, or with the help of shading device for measuring scattering radiation. Pyranometer uses the principle of thermoelectric effect, inductive element adopts winding plating type multi junction thermopile, its surface is coated with black coating with high absorption rate. Hot junction in the induction surface, while the cold junction is located in the body, the cold and hot junction produce thermoelectric potential. In the linear range, the output signal is proportional to the solar irradiance. Traceability to national meteorological station, as the unit of the national legal metrology organizations, the responsibility is to transfer value of the sun and the earth radiation value about the national meteorological industry. Using the method of comparison, with indoor calibration of solar simulator, at the same location, standard pyranometer and measured pyranometer were alternately measured radiation irradiance, depending on the irradiation sensitivity standard pyranometer were calculated the radiation sensitivity of measured pyranometer. This paper is mainly about the design and calibration method of the pyranometer indoor device. The uncertainty of the calibration result is also evaluated.

  9. Modeling the response of a standard accretion disc to stochastic viscous fluctuations

    NASA Astrophysics Data System (ADS)

    Ahmad, Naveel; Misra, Ranjeev; Iqbal, Naseer; Maqbool, Bari; Hamid, Mubashir

    2018-01-01

    The observed variability of X-ray binaries over a wide range of time-scales can be understood in the framework of a stochastic propagation model, where viscous fluctuations at different radii induce accretion rate variability that propagate inwards to the X-ray producing region. The scenario successfully explains the power spectra, the linear rms-flux relation as well as the time-lag between different energy photons. The predictions of this model have been obtained using approximate analytical solutions or empirically motivated models which take into account the effect of these propagating variability on the radiative process of complex accretion flows. Here, we study the variation of the accretion rate due to such viscous fluctuations using a hydro-dynamical code for the standard geometrically thin, gas pressure dominated α-disc with a zero torque boundary condition. Our results confirm earlier findings that the time-lag between a perturbation and the resultant inner accretion rate variation depends on the frequency (or time-period) of the perturbation. Here we have quantified that the time-lag tlag ∝f-0.54 , for time-periods less than the viscous time-scale of the perturbation radius and is nearly constant otherwise. This, coupled with radiative process would produce the observed frequency dependent time-lag between different energy bands. We also confirm that if there are random Gaussian fluctuations of the α-parameter at different radii, the resultant inner accretion rate has a power spectrum which is a power-law.

  10. Protection from radon exposure at home and at work in the directive 2013/59/Euratom.

    PubMed

    Bochicchio, F

    2014-07-01

    In recent years, international organisations involved in radiation protection and public health have produced new guidance, recommendations and requirements aiming better protection from radon exposure. These organisations have often worked in close collaboration in order to facilitate the establishment of harmonised standards. This paper deals with such standards and specifically with the new European Council Directive of 5 December 2013 on basic safety standards for protection against the dangers arising from exposure to ionising radiation (2013/59/Euratom). This new Directive has established a harmonised framework for the protection against ionising radiations, including protection from radon exposure. Requirements for radon in workplace are much more tightening than in previous Directive, and exposures to radon in dwellings are regulated for the first time in a Directive. Radon-related articles of this Directive are presented and discussed in this paper, along with some comparisons with other relevant international standards. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. 41 CFR 50-204.25 - Exceptions from posting requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to prevent the exposure of any individual to radiation or radioactive material in excess of the... necessary to prevent the exposure of any individual to radiation or radioactive materials in excess of the... CONTRACTS Radiation Standards § 50-204.25 Exceptions from posting requirements. Notwithstanding the...

  12. 41 CFR 50-204.25 - Exceptions from posting requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to prevent the exposure of any individual to radiation or radioactive material in excess of the... necessary to prevent the exposure of any individual to radiation or radioactive materials in excess of the... CONTRACTS Radiation Standards § 50-204.25 Exceptions from posting requirements. Notwithstanding the...

  13. Radiation Shielding of Lunar Regolith/Polyethylene Composites and Lunar Regolith/Water Mixtures

    NASA Technical Reports Server (NTRS)

    Johnson, Quincy F.; Gersey, Brad; Wilkins, Richard; Zhou, Jianren

    2011-01-01

    Space radiation is a complex mixed field of ionizing radiation that can pose hazardous risks to sophisticated electronics and humans. Mission planning for lunar exploration and long duration habitat construction will face tremendous challenges of shielding against various types of space radiation in an attempt to minimize the detrimental effects it may have on materials, electronics, and humans. In late 2009, the Lunar Crater Observation and Sensing Satellite (LCROSS) discovered that water content in lunar regolith found in certain areas on the moon can be up to 5.6 +/-2.8 weight percent (wt%) [A. Colaprete, et. al., Science, Vol. 330, 463 (2010). ]. In this work, shielding studies were performed utilizing ultra high molecular weight polyethylene (UHMWPE) and aluminum, both being standard space shielding materials, simulated lunar regolith/ polyethylene composites, and simulated lunar regolith mixed with UHMWPE particles and water. Based on the LCROSS findings, radiation shielding experiments were conducted to test for shielding efficiency of regolith/UHMWPE/water mixtures with various percentages of water to compare relative shielding characteristics of these materials. One set of radiation studies were performed using the proton synchrotron at the Loma Linda Medical University where high energy protons similar to those found on the surface of the moon can be generated. A similar experimental protocol was also used at a high energy spalation neutron source at Los Alamos Neutron Science Center (LANSCE). These experiments studied the shielding efficiency against secondary neutrons, another major component of space radiation field. In both the proton and neutron studies, shielding efficiency was determined by utilizing a tissue equivalent proportional counter (TEPC) behind various thicknesses of shielding composite panels or mixture materials. Preliminary results from these studies indicated that adding 2 wt% water to regolith particles could increase shielding of the regolith materials by about 6%. The findings may be utilized to extend the possibilities of potential candidate materials for lunar habitat structures, will potentially impact the design criteria of future human bases on the moon, and provide some guidelines for future space mission planning with respect to radiation exposure and risks posed on astronauts.

  14. European Crew Personal Active Dosimeter (EuCPAD), a novel dosimetry system utilizing operational and scientific synergies for the benefit of humans in space

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas

    A significant expansion of Human presence in space can be recognized over the last decade. Not only the frequency of human space mission did rise, but also time in space, mission duration with extended flights lasting half a year or more are becoming "standard". Despite the challenges to human health and well-being are still significant, or may even increase with mission length and work density. Also radiation exposure in space remains one of the inevitable and dominating factors relevant to crew- health, -safety and therefore mission success. The radiation environment that the space crews are exposed to differs significantly as compared to earth. Exposure in flight exceed doses that are usually received by terrestrial radiation workers on ground. Expanding "medical" demands are not a solely characteristics of current and current and upcoming mission scenarios. Likewise the margins for what is understood as "efficient utilization" for the fully operational science platform ISS, are immense. Understanding, accepting and approaching these challenges ESA-HSO did choose a particular pass of implementation for one of their current developments. Exploiting synergies of research, science and medical operational aspects, the "European Crew Personal Active Dosimeter for Astronauts (EuCPAD)" development exactly addresses these circumstances. It becomes novel part of ESA Radiation Protection Initiative for astronauts. The EuCPAD project aims at the development and manufacturing of an active (powered) dosimeter system to measure astronaut's exposures, support risk assessment dose management by providing a differentiated data set. Final goal is the verification of the system capabilities for medical monitoring at highest standards. The EuCPAD consists of several small portable Personal Active Dosimeters (MU = Mobile Unitas) and a rack mounted docking station “Personal Storage Device (PSD)” for MU storage, data read out and telemetry. The PSD furthermore contains a Tissue Equivalent Proportional Counter (TEPC) and an internal MU(iMU) to enable complex environmental measurements and cross calibrations. This presentation will give an introduction to the dosimetry system and of the current status. The EuCPAD project is carried out under ESA Contract No. 4200023059/09/NL/CP,

  15. Correction factors for the ISO rod phantom, a cylinder phantom, and the ICRU sphere for reference beta radiation fields of the BSS 2

    NASA Astrophysics Data System (ADS)

    Behrens, R.

    2015-03-01

    The International Organization for Standardization (ISO) requires in its standard ISO 6980 that beta reference radiation fields for radiation protection be calibrated in terms of absorbed dose to tissue at a depth of 0.07 mm in a slab phantom (30 cm x 30 cm x 15 cm). However, many beta dosemeters are ring dosemeters and are, therefore, irradiated on a rod phantom (1.9 cm in diameter and 30 cm long), or they are eye dosemeters possibly irradiated on a cylinder phantom (20 cm in diameter and 20 cm high), or area dosemeters irradiated free in air with the conventional quantity value (true value) being defined in a sphere (30 cm in diameter, made of ICRU tissue (International Commission on Radiation Units and Measurements)). Therefore, the correction factors for the conventional quantity value in the rod, the cylinder, and the sphere instead of the slab (all made of ICRU tissue) were calculated for the radiation fields of 147Pm, 85Kr, 90Sr/90Y, and, 106Ru/106Rh sources of the beta secondary standard BSS 2 developed at PTB. All correction factors were calculated for 0° up to 75° (in steps of 15°) radiation incidence. The results are ready for implementation in ISO 6980-3 and have recently been (partly) implemented in the software of the BSS 2.

  16. Precise SAR measurements in the near-field of RF antenna systems

    NASA Astrophysics Data System (ADS)

    Hakim, Bandar M.

    Wireless devices must meet specific safety radiation limits, and in order to assess the health affects of such devices, standard procedures are used in which standard phantoms, tissue-equivalent liquids, and miniature electric field probes are used. The accuracy of such measurements depend on the precision in measuring the dielectric properties of the tissue-equivalent liquids and the associated calibrations of the electric-field probes. This thesis describes work on the theoretical modeling and experimental measurement of the complex permittivity of tissue-equivalent liquids, and associated calibration of miniature electric-field probes. The measurement method is based on measurements of the field attenuation factor and power reflection coefficient of a tissue-equivalent sample. A novel method, to the best of the authors knowledge, for determining the dielectric properties and probe calibration factors is described and validated. The measurement system is validated using saline at different concentrations, and measurements of complex permittivity and calibration factors have been made on tissue-equivalent liquids at 900MHz and 1800MHz. Uncertainty analysis have been conducted to study the measurement system sensitivity. Using the same waveguide to measure tissue-equivalent permittivity and calibrate e-field probes eliminates a source of uncertainty associated with using two different measurement systems. The measurement system is used to test GSM cell-phones at 900MHz and 1800MHz for Specific Absorption Rate (SAR) compliance using a Specific Anthropomorphic Mannequin phantom (SAM).

  17. Creating Access Points to Instrument-Based Atmospheric Data: Perspectives from the ARM Metadata Manager

    NASA Astrophysics Data System (ADS)

    Troyan, D.

    2016-12-01

    The Atmospheric Radiation Measurement (ARM) program has been collecting data from instruments in diverse climate regions for nearly twenty-five years. These data are made available to all interested parties at no cost via specially designed tools found on the ARM website (www.arm.gov). Metadata is created and applied to the various datastreams to facilitate information retrieval using the ARM website, the ARM Data Discovery Tool, and data quality reporting tools. Over the last year, the Metadata Manager - a relatively new position within the ARM program - created two documents that summarize the state of ARM metadata processes: ARM Metadata Workflow, and ARM Metadata Standards. These documents serve as guides to the creation and management of ARM metadata. With many of ARM's data functions spread around the Department of Energy national laboratory complex and with many of the original architects of the metadata structure no longer working for ARM, there is increased importance on using these documents to resolve issues from data flow bottlenecks and inaccurate metadata to improving data discovery and organizing web pages. This presentation will provide some examples from the workflow and standards documents. The examples will illustrate the complexity of the ARM metadata processes and the efficiency by which the metadata team works towards achieving the goal of providing access to data collected under the auspices of the ARM program.

  18. The Importance of Dosimetry Standardization in Radiobiology

    PubMed Central

    Desrosiers, Marc; DeWerd, Larry; Deye, James; Lindsay, Patricia; Murphy, Mark K; Mitch, Michael; Macchiarini, Francesca; Stojadinovic, Strahinja; Stone, Helen

    2013-01-01

    Radiation dose is central to much of radiobiological research. Precision and accuracy of dose measurements and reporting of the measurement details should be sufficient to allow the work to be interpreted and repeated and to allow valid comparisons to be made, both in the same laboratory and by other laboratories. Despite this, a careful reading of published manuscripts suggests that measurement and reporting of radiation dosimetry and setup for radiobiology research is frequently inadequate, thus undermining the reliability and reproducibility of the findings. To address these problems and propose a course of action, the National Cancer Institute (NCI), the National Institute of Allergy and Infectious Diseases (NIAID), and the National Institute of Standards and Technology (NIST) brought together representatives of the radiobiology and radiation physics communities in a workshop in September, 2011. The workshop participants arrived at a number of specific recommendations as enumerated in this paper and they expressed the desirability of creating dosimetry standard operating procedures (SOPs) for cell culture and for small and large animal experiments. It was also felt that these SOPs would be most useful if they are made widely available through mechanism(s) such as the web, where they can provide guidance to both radiobiologists and radiation physicists, be cited in publications, and be updated as the field and needs evolve. Other broad areas covered were the need for continuing education through tutorials at national conferences, and for journals to establish standards for reporting dosimetry. This workshop did not address issues of dosimetry for studies involving radiation focused at the sub-cellular level, internally-administered radionuclides, biodosimetry based on biological markers of radiation exposure, or dose reconstruction for epidemiological studies. PMID:26401441

  19. Variability in effective radiating area and output power of new ultrasound transducers at 3 MHz.

    PubMed

    Johns, Lennart D; Straub, Stephen J; Howard, Samuel M

    2007-01-01

    Spatial average intensity (SAI) is often used by clinicians to gauge therapeutic ultrasound dosage, yet SAI measures are not directly regulated by US Food and Drug Administration (FDA) standards. Current FDA guidelines permit a possible 50% to 150% minimum to maximum range of SAI values, potentially contributing to variability in clinical outcomes. To measure clinical values that describe ultrasound transducers and to determine the degree of intramanufacturer and intermanufacturer variability in effective radiating area, power, and SAI when the transducer is functioning at 3 MHz. A descriptive and interferential approach was taken to this quasi-experimental design. Measurement laboratory. Sixty-six 5-cm(2) ultrasound transducers were purchased from 6 different manufacturers. All transducers were calibrated and then assessed using standardized measurement techniques; SAI was normalized to account for variability in effective radiating area, resulting in an nSAI. Effective radiating area, power, and nSAI. All manufacturers with the exception of Omnisound (P = .534) showed a difference between the reported and measured effective radiating area values (P < .001). All transducers were within FDA guidelines for power (+/-20%). Chattanooga (0.85 +/- 0.05 W/cm(2)) had a lower nSAI (P < .05) than all other manufacturers functioning at 3 MHz. Intramanufacturer variability in SAI ranged from 16% to 35%, and intermanufacturer variability ranged from 22% to 61%. Clinicians should consider treatment values of each individual transducer, regardless of the manufacturer. In addition, clinicians should scrutinize the power calibration and recalibration record of the transducer and adjust clinical settings as needed for the desired level of heating. Our data may aid in explaining the reported heating differences among transducers from different manufacturers. Stricter FDA standards regarding effective radiating area and total power are needed, and standards regulating SAI should be established.

  20. Maywood interim storage site. Annual site environmental report, calendar year 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-05-01

    During 1985, the environmental monitoring program was continued at the Maywood Interim Storage Site (MISS), a US Department of Energy (DOE) facility located in the Borough of Maywood and the Township of Rochelle Park, New Jersey. The MISS is presently used for the storage of low-level radioactively contaminated soils. Monitoring results show that the MISS is in compliance with DOE concentration guides and radiation protection standards. Derived Concentration Guides (DCGs) represent the concentrations of radionuclides in air or water that would limit the radiation dose to 100 mrem/yr. The applicable guides have been revised since the 1984 environmental monitoring reportmore » was published. The guides applied in 1984 were based on a radiation protection standard of 500 mrem/yr; the guides applied for 1985 are based on a standard of 100 mrem/yr.« less

Top