Science.gov

Sample records for radiation therapy boost

  1. Prospective Study of Local Control and Late Radiation Toxicity After Intraoperative Radiation Therapy Boost for Early Breast Cancer

    SciTech Connect

    Chang, David W.; Marvelde, Luc te; Chua, Boon H.

    2014-01-01

    Purpose: To report the local recurrence rate and late toxicity of intraoperative radiation therapy (IORT) boost to the tumor bed using the Intrabeam System followed by external-beam whole-breast irradiation (WBI) in women with early-stage breast cancer in a prospective single-institution study. Methods and Materials: Women with breast cancer ≤3 cm were recruited between February 2003 and May 2005. After breast-conserving surgery, a single dose of 5 Gy IORT boost was delivered using 50-kV x-rays to a depth of 10 mm from the applicator surface. This was followed by WBI to a total dose of 50 Gy in 25 fractions. Patients were reviewed at regular, predefined intervals. Late toxicities were recorded using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring systems. Results: Fifty-five patients completed both IORT boost and external-beam WBI. Median follow-up was 3.3 years (range, 1.4-4.1 years). There was no reported locoregional recurrence or death. One patient developed distant metastases. Grade 2 and 3 subcutaneous fibrosis was detected in 29 (53%) and 8 patients (15%), respectively. Conclusions: The use of IORT as a tumor bed boost using kV x-rays in breast-conserving therapy was associated with good local control but a clinically significant rate of grade 2 and 3 subcutaneous fibrosis.

  2. Dosimetric evaluation of simultaneous integrated boost during stereotactic body radiation therapy for pancreatic cancer

    SciTech Connect

    Yang, Wensha; Reznik, Robert; Fraass, Benedick A.; Nissen, Nicholas; Hendifar, Andrew; Wachsman, Ashley; Sandler, Howard; Tuli, Richard

    2015-04-01

    Stereotactic body radiation therapy (SBRT) provides a promising way to treat locally advanced pancreatic cancer and borderline resectable pancreatic cancer. A simultaneous integrated boost (SIB) to the region of vessel abutment or encasement during SBRT has the potential to downstage otherwise likely positive surgical margins. Despite the potential benefit of using SIB-SBRT, the ability to boost is limited by the local geometry of the organs at risk (OARs), such as stomach, duodenum, and bowel (SDB), relative to tumor. In this study, we have retrospectively replanned 20 patients with 25 Gy prescribed to the planning target volume (PTV) and 33~80 Gy to the boost target volume (BTV) using an SIB technique for all patients. The number of plans and patients able to satisfy a set of clinically established constraints is analyzed. The ability to boost vessels (within the gross target volume [GTV]) is shown to correlate with the overlap volume (OLV), defined to be the overlap between the GTV + a 1(OLV1)- or 2(OLV2)-cm margin with the union of SDB. Integral dose, boost dose contrast (BDC), biologically effective BDC, tumor control probability for BTV, and normal tissue complication probabilities are used to analyze the dosimetric results. More than 65% of the cases can deliver a boost to 40 Gy while satisfying all OAR constraints. An OLV2 of 100 cm{sup 3} is identified as the cutoff volume: for cases with OLV2 larger than 100 cm{sup 3}, it is very unlikely the case could achieve 25 Gy to the PTV while successfully meeting all the OAR constraints.

  3. Experience in fractionated stereotactic body radiation therapy boost for newly diagnosed nasopharyngeal carcinoma

    SciTech Connect

    Chen, Helen H.W.; Tsai, S.-T.; Wang, M.-S.; Wu, Y.-H.; Hsueh, W.-T.; Yang, M.-W.; Yeh, I-C.; Lin, J.-C. . E-mail: jclin@vghtc.gov.tw

    2006-12-01

    Purpose: Radiotherapy is the most effective treatment for nasopharyngeal carcinoma (NPC). The aim of this study is to evaluate the efficacy and toxicity of fractionated stereotactic body radiation therapy (SBRT) boost for NPC. Methods and Materials: Sixty-four patients with newly diagnosed, nonmetastatic NPC were treated with conventional radiotherapy 64.8-68.4 Gy followed by fractionated SBRT boost 12-15 Gy between January 2002 and July 2004. Most patients (72%) presented with Stage III-IV disease. Fifty-two patients also received cisplatin-based concurrent (38) or neoadjuvant (14) chemotherapy. The major endpoints were local control, overall survival, and complications. Results: All patients finished the planned dose of radiotherapy. After a median follow-up of 31 months (range, 22-54), 15 patients developed tumor recurrences-3 in the nasopharynx, 4 in the neck, 5 in distant sites, 1 in both nasopharynx and neck, 2 in the neck and a distant site. The 3-year actuarial rate of local control was 93.1%, regional control 91.4%, freedom from distant metastasis 90.3%, and overall survival 84.9%, respectively. There were no Grade 4 acute or chronic radiation-related complications. Conclusions: Fractionated SBRT boost for NPC is technically feasible and provides good local control without any severe complications.

  4. Disease Control and Ototoxicity Using Intensity-Modulated Radiation Therapy Tumor-Bed Boost for Medulloblastoma

    SciTech Connect

    Polkinghorn, William R.; Dunkel, Ira J.; Souweidane, Mark M.; Khakoo, Yasmin; Lyden, David C.; Gilheeney, Stephen W.; Becher, Oren J.; Budnick, Amy S.; Wolden, Suzanne L.

    2011-11-01

    Purpose: We previously reported excellent local control for treating medulloblastoma with a limited boost to the tumor bed. In order to decrease ototoxicity, we subsequently implemented a tumor-bed boost using intensity-modulated radiation therapy (IMRT), the clinical results of which we report here. Patients and Methods: A total of 33 patients with newly diagnosed medulloblastoma, 25 with standard risk, and 8 with high risk, were treated on an IMRT tumor-bed boost following craniospinal irradiation (CSI). Six standard-risk patients were treated with an institutional protocol with 18 Gy CSI in conjunction with intrathecal iodine-131-labeled monoclonal antibody. The majority of patients received concurrent vincristine and standard adjuvant chemotherapy. Pure-tone audiograms were graded according to National Cancer Institute Common Terminology Criteria for Adverse Events version 3.0. Results: Median age was 9 years old (range, 4-46 years old). Median follow-up was 63 months. Kaplan-Meier estimates of progression-free survival (PFS) and overall survival (OS) rates for standard-risk patients who received 23.4 or 36 Gy CSI (not including those who received 18 Gy CSI with radioimmunotherapy) were 81.4% and 88.4%, respectively, at 5 years; 5-year PFS and OS rates for high-risk patients were both 87.5%. There were no isolated posterior fossa failures outside of the boost volume. Posttreatment audiograms were available for 31 patients, of whom 6%, at a median follow-up of 19 months, had developed Grade 3 hearing loss. Conclusion: An IMRT tumor-bed boost results in excellent local control while delivering a low mean dose to the cochlea, resulting in a low rate of ototoxicity.

  5. Four-Week Course of Radiation for Breast Cancer Using Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost

    SciTech Connect

    Freedman, Gary M. . E-mail: Gary.Freedman@FCCC.edu; Anderson, Penny R.; Goldstein, Lori J.; Ma Changming; Li Jinsheng; Swaby, Ramona F.; Litwin, Samuel; Watkins-Bruner, Deborah; Sigurdson, Elin R.; Morrow, Monica

    2007-06-01

    Purpose: Standard radiation for early breast cancer requires daily treatment for 6 to 7 weeks. This is an inconvenience to many women, and for some a barrier for breast conservation. We present the acute toxicity of a 4-week course of hypofractionated radiation. Methods and Materials: A total of 75 patients completed radiation on a Phase II trial approved by the hospital institutional review board. Eligibility criteria were broad to include any patient normally eligible for standard radiation: age {>=}18 years, invasive or in situ cancer, American Joint Committee on Cancer Stage 0 to II, breast-conserving surgery, and any systemic therapy not given concurrently. The median age was 52 years (range, 31-81 years). Of the patients, 15% had ductal carcinoma in situ, 67% T1, and 19% T2; 71% were N0, 17% N1, and 12% NX. Chemotherapy was given before radiation in 44%. Using photon intensity-modulated radiation therapy and incorporated electron beam boost, the whole breast received 45 Gy and the lumpectomy bed 56 Gy in 20 treatments over 4 weeks. Results: The maximum acute skin toxicity by the end of treatment was Grade 0 in 9 patients (12%), Grade 1 in 49 (65%) and Grade 2 in 17 (23%). There was no Grade 3 or higher skin toxicity. After radiation, all Grade 2 toxicity had resolved by 6 weeks. Hematologic toxicity was Grade 0 in most patients except for Grade 1 neutropenia in 2 patients, and Grade 1 anemia in 11 patients. There were no significant differences in baseline vs. 6-week posttreatment patient-reported or physician-reported cosmetic scores. Conclusions: This 4-week course of postoperative radiation using intensity-modulated radiation therapy is feasible and is associated with acceptable acute skin toxicity and quality of life. Long-term follow-up data are needed. This radiation schedule may represent an alternative both to longer 6-week to 7-week standard whole-breast radiation and more radically shortened 1-week, partial-breast treatment schedules.

  6. High-Dose Split-Course Radiation Therapy for Anal Cancer: Outcome Analysis Regarding the Boost Strategy (CORS-03 Study)

    SciTech Connect

    Hannoun-Levi, Jean-Michel; Ortholan, Cecile; Resbeut, Michel; Teissier, Eric; Ronchin, Philippe; Cowen, Didier; Zaccariotto, Audrey; Benezery, Karen; Francois, Eric; Salem, Naji; Ellis, Steve; Azria, David; Gerard, Jean-Pierre

    2011-07-01

    Purpose: To retrospectively assess the clinical outcome in anal cancer patients treated with split-course radiation therapy and boosted through external-beam radiation therapy (EBRT) or brachytherapy (BCT). Methods and Materials: From January 2000 to December 2004, a selected group (162 patients) with invasive nonmetastatic anal squamous cell carcinoma was studied. Tumor staging reported was T1 = 31 patients (19%), T2 = 77 patients (48%), T3 = 42 patients (26%), and T4= 12 patients (7%). Lymph node status was N0-1 (86%) and N2-3 (14%). Patients underwent a first course of EBRT: mean dose 45.1 Gy (range, 39.5-50) followed by a boost: mean dose 17.9 Gy (range, 8-25) using EBRT (76 patients, 47%) or BCT (86 patients, 53%). All characteristics of patients and tumors were well balanced between the BCT and EBRT groups. Results: The mean overall treatment time (OTT) was 82 days (range, 45-143) and 67 days (range, 37-128) for the EBRT and BCT groups, respectively (p < 0.001). The median follow-up was 62 months (range, 2-108). The 5-year cumulative rate of local recurrence (CRLR) was 21%. In the univariate analysis, the prognostic factors for CRLR were as follows: T stage (T1-2 = 15% vs. T3-4 = 36%, p = 0.03), boost technique (BCT = 12% vs. EBRT = 33%, p = 0.002) and OTT (OTT <80 days = 14%, OTT {>=}80 days = 34%, p = 0.005). In the multivariate analysis, BCT boost was the unique prognostic factor (hazard ratio = 0.62 (0.41-0.92). In the subgroup of patients with OTT <80 days, the 5-year CRLR was significantly increased with the BCT boost (BC = 9% vs. EBRT = 28%, p = 0.03). In the case of OTT {>=}80 days, the 5-year CRLR was not affected by the boost technique (BCT = 29% vs. EBRT = 38%, p = 0.21). Conclusion: In anal cancer, when OTT is <80 days, BCT boost is superior to EBRT boost for CRLR. These results suggest investigating the benefit of BCT boost in prospective trials.

  7. Cosmetic Outcome and Seroma Formation After Breast-Conserving Surgery With Intraoperative Radiation Therapy Boost for Early Breast Cancer

    SciTech Connect

    Senthi, Sashendra; Link, Emma; Chua, Boon H.

    2012-10-01

    Purpose: To evaluate cosmetic outcome and its association with breast wound seroma after breast-conserving surgery (BCS) with targeted intraoperative radiation therapy (tIORT) boost for early breast cancer. Methods and Materials: An analysis of a single-arm prospective study of 55 patients with early breast cancer treated with BCS and tIORT boost followed by conventional whole breast radiation therapy (WBRT) between August 2003 and January 2006 was performed. A seroma was defined as a fluid collection at the primary tumor resection site identified clinically or radiologically. Cosmetic assessments using the European Organization for Research and Treatment of Cancer rating system were performed at baseline before BCS and 30 months after WBRT was completed. Results: Twenty-eight patients (51%) developed a seroma, with 18 patients (33%) requiring at least 1 aspiration. Tumor location was significantly associated with seroma formation (P=.001). Ten of 11 patients with an upper inner quadrant tumor developed a seroma. Excellent or good overall cosmetic outcome at 30 months was observed in 34 patients (62%, 95% confidence interval 53%-80%). Seroma formation was not associated with the overall cosmetic result (P=.54). Conclusion: BCS with tIORT boost followed by WBRT was associated with an acceptable cosmetic outcome. Seroma formation was not significantly associated with an adverse cosmetic outcome.

  8. Optimal beam design on intensity-modulated radiation therapy with simultaneous integrated boost in nasopharyngeal cancer

    SciTech Connect

    Cheng, Mei-Chun; Hu, Yu-Wen; Liu, Ching-Sheng; Lee, Jeun-Shenn; Huang, Pin-I; Yen, Sang-Hue; Lee, Yuh-Lin; Hsieh, Chun-Mei; Shiau, Cheng-Ying

    2014-10-01

    This study aims to determine the optimal beam design among various combinations of field numbers and beam trajectories for intensity-modulated radiation therapy (IMRT) with simultaneous integrated boost (SIB) technique for the treatment of nasopharyngeal cancer (NPC). We used 10 fields with gantry angles of 155°, 130°, 75°, 25°, 0° L, 0° R, 335°, 285°, 230°, and 205° denoted as F10. To decrease doses in the spinal cord, the F10 technique was designed by featuring 2 pairs of split-opposed beam fields at 155° to 335° and 205° to 25°, as well as one pair of manually split beam fields at 0°. The F10 technique was compared with 4 other common field arrangements: F7E, 7 fields with 50° equally spaced gantry angles; F7, the basis of F10 with 155°, 130°, 75°, 0°, 285°, 230°, and 205°; F9E, 9 fields with 40° equally spaced gantry angles; and FP, 7 posterior fields with 180°, 150°, 120°, 90°, 270°, 240°, and 210°. For each individual case of 10 patients, the customized constraints derived after optimization with the standard F10 technique were applied to 4 other field arrangements. The 4 new optimized plans of each individual case were normalized to achieve the same coverage of planning target volume (PTV){sub 63} {sub Gy} as that of the standard F10 technique. The F10 field arrangement exhibited the best coverage in PTV{sub 70} {sub Gy} and the least mean dose in the trachea-esophagus region. Furthermore, the F10 field arrangement demonstrated the highest level of conformity in the low-dose region and the least monitor unit. The F10 field arrangement performed more outstandingly than the other field arrangements in PTV{sub 70} {sub Gy} coverage and spared the central organ. This arrangement also exhibited the highest conformity and delivery efficiency. The F10 technique is recommended as the standard beam geometry for the SIB-IMRT of NPC.

  9. Dose Escalation for Locally Advanced Lung Cancer Using Adaptive Radiation Therapy With Simultaneous Integrated Volume-Adapted Boost

    SciTech Connect

    Weiss, Elisabeth; Fatyga, Mirek; Wu, Yan; Dogan, Nesrin; Balik, Salim; Sleeman, William; Hugo, Geoffrey

    2013-07-01

    Purpose: To test the feasibility of a planned phase 1 study of image-guided adaptive radiation therapy in locally advanced lung cancer. Methods and Materials: Weekly 4-dimensional fan beam computed tomographs (4D FBCT) of 10 lung cancer patients undergoing concurrent chemoradiation therapy were used to simulate adaptive radiation therapy: After an initial intensity modulated radiation therapy plan (0-30 Gy/2 Gy), adaptive replanning was performed on week 2 (30-50 Gy/2 Gy) and week 4 scans (50-66 Gy/2 Gy) to adjust for volume and shape changes of primary tumors and lymph nodes. Week 2 and 4 clinical target volumes (CTV) were deformably warped from the initial planning scan to adjust for anatomical changes. On the week 4 scan, a simultaneous integrated volume-adapted boost was created to the shrunken primary tumor with dose increases in 5 0.4-Gy steps from 66 Gy to 82 Gy in 2 scenarios: plan A, lung isotoxicity; plan B, normal tissue tolerance. Cumulative dose was assessed by deformably mapping and accumulating biologically equivalent dose normalized to 2 Gy-fractions (EQD2). Results: The 82-Gy level was achieved in 1 in 10 patients in scenario A, resulting in a 13.4-Gy EQD2 increase and a 22.1% increase in tumor control probability (TCP) compared to the 66-Gy plan. In scenario B, 2 patients reached the 82-Gy level with a 13.9 Gy EQD2 and 23.4% TCP increase. Conclusions: The tested image-guided adaptive radiation therapy strategy enabled relevant increases in EQD2 and TCP. Normal tissue was often dose limiting, indicating a need to modify the present study design before clinical implementation.

  10. Dosimetric Comparison of High-Dose-Rate Brachytherapy and Intensity-Modulated Radiation Therapy as a Boost to the Prostate

    SciTech Connect

    Hermesse, Johanne; Biver, Sylvie; Jansen, Nicolas; Lenaerts, Eric; Nickers, Philippe

    2010-01-15

    Purpose: We compared the dose conformity of two radiation modalities: high-dose-rate brachytherapy (HDR BT) and intensity-modulated radiation therapy (IMRT) to deliver a boost to the prostate after external beam radiotherapy (EBRT). Methods and Materials: Ten successive patients with prostate adenocarcinoma treated with a single 10-Gy HDR BT boost after EBRT were investigated. Four theoretical IMRT plans were computed: (a) 32.85 Gy IMRT and (b) 26 Gy IMRT with CTV-PTV expansions, doses corresponding to the equivalent dose in 2-Gy fractions (EQD2) of one 10-Gy fraction calculated with a prostate alpha/beta ratio of respectively 1.5 and 3 Gy; and (c) 32.85 Gy IMRT and (d) 26 Gy IMRT without CTV-PTV expansions. The dose-volume histogram values converted in EQD2 with an alpha/beta ratio of 3 Gy for the organs at risk were compared. Results: The HDR BT plan delivered higher mean doses to the PTV compared with IMRT plans. In all, 33% of the rectal volume received a mean dose of 5.32 +- 0.65 Gy and 20% of bladder volume received 4.61 +- 1.24 Gy with HDR BT. In comparison, doses delivered with IMRT were respectively 13.4 +- 1.49 Gy and 10.81 +- 4 Gy, even if only 26 Gy was prescribed to the PTV with no CTV-PTV expansion (p < 0.0001). The hot spots inside the urethra were greater with HDR BT but acceptable. Conclusions: Use of HDR BT produced a more conformal plan for the boost to the prostate than IMRT even without CTV-PTV expansions.

  11. Ototoxicity evaluation in medulloblastoma patients treated with involved field boost using intensity-modulated radiation therapy (IMRT): a retrospective review

    PubMed Central

    2014-01-01

    Background Ototoxicity is a known side effect of combined radiation therapy and cisplatin chemotherapy for the treatment of medulloblastoma. The delivery of an involved field boost by intensity modulated radiation therapy (IMRT) may reduce the dose to the inner ear when compared with conventional radiotherapy. The dose of cisplatin may also affect the risk of ototoxicity. A retrospective study was performed to evaluate the impact of involved field boost using IMRT and cisplatin dose on the rate of ototoxicity. Methods Data from 41 medulloblastoma patients treated with IMRT were collected. Overall and disease-free survival rates were calculated by Kaplan-Meier method Hearing function was graded according to toxicity criteria of Pediatric Oncology Group (POG). Doses to inner ear and total cisplatin dose were correlated with hearing function by univariate and multivariate data analysis. Results After a mean follow-up of 44 months (range: 14 to 72 months), 37 patients remained alive, with two recurrences, both in spine with CSF involvement, resulting in a disease free-survival and overall survival of 85.2% and 90.2%, respectively. Seven patients (17%) experienced POG Grade 3 or 4 toxicity. Cisplatin dose was a significant factor for hearing loss in univariate analysis (p < 0.03). In multivariate analysis, median dose to inner ear was significantly associated with hearing loss (p < 0.01). POG grade 3 and 4 toxicity were uncommon with median doses to the inner ear bellow 42 Gy (p < 0.05) and total cisplatin dose of less than 375 mg/m2 (p < 0.01). Conclusions IMRT leads to a low rate of severe ototoxicity. Median radiation dose to auditory apparatus should be kept below 42 Gy. Cisplatin doses should not exceed 375 mg/m2. PMID:25041714

  12. Early-Stage Breast Cancer Treated With 3-Week Accelerated Whole-Breast Radiation Therapy and Concomitant Boost

    SciTech Connect

    Chadha, Manjeet; Woode, Rudolph; Sillanpaa, Jussi; Lucido, David; Boolbol, Susan K.; Kirstein, Laurie; Osborne, Michael P.; Feldman, Sheldon; Harrison, Louis B.

    2013-05-01

    Purpose: To report early outcomes of accelerated whole-breast radiation therapy with concomitant boost. Methods and Materials: This is a prospective, institutional review board-approved study. Eligibility included stage TisN0, T1N0, and T2N0 breast cancer. Patients receiving adjuvant chemotherapy were ineligible. The whole breast received 40.5 Gy in 2.7-Gy fractions with a concomitant lumpectomy boost of 4.5 Gy in 0.3-Gy fractions. Total dose to the lumpectomy site was 45 Gy in 15 fractions over 19 days. Results: Between October 2004 and December 2010, 160 patients were treated; stage distribution was as follows: TisN0, n=63; T1N0, n=88; and T2N0, n=9. With a median follow-up of 3.5 years (range, 1.5-7.8 years) the 5-year overall survival and disease-free survival rates were 90% (95% confidence interval [CI] 0.84-0.94) and 97% (95% CI 0.93-0.99), respectively. Five-year local relapse-free survival was 99% (95% CI 0.96-0.99). Acute National Cancer Institute/Common Toxicity Criteria grade 1 and 2 skin toxicity was observed in 70% and 5%, respectively. Among the patients with ≥2-year follow-up no toxicity higher than grade 2 on the Late Effects in Normal Tissues–Subjective, Objective, Management, and Analytic scale was observed. Review of the radiation therapy dose–volume histogram noted that ≥95% of the prescribed dose encompassed the lumpectomy target volume in >95% of plans. The median dose received by the heart D{sub 05} was 215 cGy, and median lung V{sub 20} was 7.6%. Conclusions: The prescribed accelerated schedule of whole-breast radiation therapy with concomitant boost can be administered, achieving acceptable dose distribution. With follow-up to date, the results are encouraging and suggest minimal side effects and excellent local control.

  13. Assessments of Sequential Intensity Modulated Radiation Therapy Boost (SqIB) Treatments Using HART

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-05-01

    A retrospective study was pursued to evaluate the SqIB treatments performed on ten head and neck cancer patients(n=10).Average prescription doses (PDs) of 39 Gy,15Gy and 17.8Gy were delivered consecutively from larger to smaller planning target volumes(ptvs) in three different treatment plans using 6 MV X-ray photon beams from a Linear accelerator (SLA Linac, Elekta) on BID weak on-weak off schedules. These plans were statistically evaluated on basis of plan indices (PIs),dose response of targets and critical structures, and dose tolerance(DT) of various organs utilizing the DVH analysis automated software known as Histogram Analysis in Radiation Therapy-HART(S.Jang et al., 2008, Med Phys 35, p.2812). Mean SqIB PIs were found consistent with the reported values for varying radio-surgical systems.The 95.5%(n=10)of each ptvs and the gross tumor volume also received 95% (n=10)of PDs in treatments. The average volume of ten organs (N=10) affected by each PDs shrank with decreasing size of ptvs in above plans.A largest volume of Oropharynx (79%,n=10,N=10) irradiated at PD, but the largest volume of Larynx (98%, n=10, N=10) was vulnerable to DT of structure (TD50).Thus, we have demonstrated the efficiency and accuracy of HART in the assessment of Linac based plans in radiation therapy treatments of cancer.

  14. Whole breast and excision cavity radiotherapy plan comparison: Conformal radiotherapy with sequential boost versus intensity-modulated radiation therapy with a simultaneously integrated boost

    SciTech Connect

    Small, Katherine; Kelly, Chris; Beldham-Collins, Rachael; Gebski, Val

    2013-03-15

    A comparative study was conducted comparing the difference between (1) conformal radiotherapy (CRT) to the whole breast with sequential boost excision cavity plans and (2) intensity-modulated radiation therapy (IMRT) to the whole breast with simultaneously integrated boost to the excision cavity. The computed tomography (CT) data sets of 25 breast cancer patients were used and the results analysed to determine if either planning method produced superior plans. CT data sets from 25 past breast cancer patients were planned using (1) CRT prescribed to 50 Gy in 25 fractions (Fx) to the whole-breast planning target volume (PTV) and 10 Gy in 5Fx to the excision cavity and (2) IMRT prescribed to 60 Gy in 25Fx, with 60 Gy delivered to the excision cavity PTV and 50 Gy delivered to the whole-breast PTV, treated simultaneously. In total, 50 plans were created, with each plan evaluated by PTV coverage using conformity indices, plan maximum dose, lung dose, and heart maximum dose for patients with left-side lesions. CRT plans delivered the lowest plan maximum doses in 56% of cases (average CRT = 6314.34 cGy, IMRT = 6371.52 cGy). They also delivered the lowest mean lung dose in 68% of cases (average CRT = 1206.64 cGy, IMRT = 1288.37 cGy) and V20 in 88% of cases (average CRT = 20.03%, IMRT = 21.73%) and V30 doses in 92% of cases (average CRT = 16.82%, IMRT = 17.97%). IMRT created more conformal plans, using both conformity index and conformation number, in every instance, and lower heart maximum doses in 78.6% of cases (average CRT = 5295.26 cGy, IMRT = 5209.87 cGy). IMRT plans produced superior dose conformity and shorter treatment duration, but a slightly higher planning maximum and increased lung doses. IMRT plans are also faster to treat on a daily basis, with shorter fractionation.

  15. Long-term Outcomes in Treatment of Invasive Bladder Cancer With Concomitant Boost and Accelerated Hyperfractionated Radiation Therapy

    SciTech Connect

    Canyilmaz, Emine; Yavuz, Melek Nur; Serdar, Lasif; Uslu, Gonca Hanedan; Zengin, Ahmet Yasar; Aynaci, Ozlem; Haciislamoglu, Emel; Bahat, Zumrut; Yoney, Adnan

    2014-11-01

    Purpose: The aim of this study was to evaluate the long-term clinical efficacy and toxicity of concomitant boost and accelerated hyperfractionated radiation therapy (CBAHRT) in patients with invasive bladder cancer. Methods and Materials: Between October 1997 and September 2012, 334 patients with diagnoses of invasive bladder cancer were selected. These patients received CBAHRT as a bladder-conserving approach. The treatment consisted of a dose of 45 Gy/1.8 Gy to the whole pelvis with a daily concomitant boost of 1.5 Gy to the tumor. Total dose was 67.5 Gy in 5 weeks. A total of 32 patients (10.3%) had a diagnosis of stage T1, 202 (64.3%) were at stage T2, 46 (14.6%) were at stage T3a, 22 (7%) were at stage T3b, and 12 (3.8%) were at stage T4a. Results: The follow-up period was 33.1 months (range, 4.3-223.3 months). Grade 3 late intestinal toxicity was observed in 9 patients (2.9%), whereas grade 3 late urinary toxicity was observed in 8 patients (2.5%). The median overall survival (OS) was 26.3 months (95% confidence interval [CI]: 21.4-31.2). The 5-, 10, and 15-year OS rates were 32.1% (standard error [SE], ± 0.027), 17.9% (SE, ± 0.025) and 12.5% (SE, ± 0.028), respectively. The median cause-specific survival (CSS) was 42.1 months (95% CI: 28.7-55.5). The 5-, 10-, and 15-year CSS rates were 43.2% (SE, ± 0.03), 30.3% (SE, ± 0.03), and 28% (SE, ± 0.04), respectively. The median relapse-free survival (RFS) was 111.8 months (95% CI: 99.6-124). The 5-, 10-, and 15-year RFS rates were 61.9% (SE, ± 0.03), 57.6% (SE, ± 0.04), and 48.2% (SE, ± 0.07), respectively. Conclusions: The CBAHRT technique demonstrated acceptable toxicity and local control rates in patients with invasive bladder cancer, and this therapy facilitated bladder conservation. In selected patients, the CBAHRT technique is a practical alternative treatment option with acceptable 5-, 10-, and 15-year results in patients undergoing cystectomy as well as concurrent chemoradiation therapy.

  16. Intensity modulated radiation therapy with simultaneous integrated boost based dose escalation on neoadjuvant chemoradiation therapy for locally advanced distal esophageal adenocarcinoma

    PubMed Central

    Zeng, Ming; Aguila, Fernando N; Patel, Taral; Knapp, Mark; Zhu, Xue-Qiang; Chen, Xi-Lin; Price, Phillip D

    2016-01-01

    AIM: To evaluate impact of radiation therapy dose escalation through intensity modulated radiation therapy with simultaneous integrated boost (IMRT-SIB). METHODS: We retrospectively reviewed the patients who underwent four-dimensional-based IMRT-SIB-based neoadjuvant chemoradiation protocol. During the concurrent chemoradiation therapy, radiation therapy was through IMRT-SIB delivered in 28 consecutive daily fractions with total radiation doses of 56 Gy to tumor and 5040 Gy dose-painted to clinical tumor volume, with a regimen at the discretion of the treating medical oncologist. This was followed by surgical tumor resection. We analyzed pathological completion response (pCR) rates its relationship with overall survival and event-free survival. RESULTS: Seventeen patients underwent dose escalation with the IMRT-SIB protocol between 2007 and 2014 and their records were available for analysis. Among the IMRT-SIB-treated patients, the toxicity appeared mild, the most common side effects were grade 1-3 esophagitis (46%) and pneumonitis (11.7%). There were no cardiac events. The Ro resection rate was 94% (n = 16), the pCR rate was 47% (n = 8), and the postoperative morbidity was zero. There was one mediastinal failure found, one patient had local failure at the anastomosis site, and the majority of failures were distant in the lung or bone. The 3-year disease-free survival and overall survival rates were 41% (n = 7) and 53% (n = 9), respectively. CONCLUSION: The dose escalation through IMRT-SIB in the chemoradiation regimen seems responsible for down-staging the distal esophageal with well-tolerated complications. PMID:27190587

  17. Five-year Local Control in a Phase II Study of Hypofractionated Intensity Modulated Radiation Therapy With an Incorporated Boost for Early Stage Breast Cancer

    SciTech Connect

    Freedman, Gary M.; Anderson, Penny R.; Bleicher, Richard J.; Litwin, Samuel; Li Tianyu; Swaby, Ramona F.; Ma, Chang-Ming Charlie; Li Jinsheng; Sigurdson, Elin R.; Watkins-Bruner, Deborah; Morrow, Monica; Goldstein, Lori J.

    2012-11-15

    Purpose: Conventional radiation fractionation of 1.8-2 Gy per day for early stage breast cancer requires daily treatment for 6-7 weeks. We report the 5-year results of a phase II study of intensity modulated radiation therapy (IMRT), hypofractionation, and incorporated boost that shortened treatment time to 4 weeks. Methods and Materials: The study design was phase II with a planned accrual of 75 patients. Eligibility included patients aged {>=}18 years, Tis-T2, stage 0-II, and breast conservation. Photon IMRT and an incorporated boost was used, and the whole breast received 2.25 Gy per fraction for a total of 45 Gy, and the tumor bed received 2.8 Gy per fraction for a total of 56 Gy in 20 treatments over 4 weeks. Patients were followed every 6 months for 5 years. Results: Seventy-five patients were treated from December 2003 to November 2005. The median follow-up was 69 months. Median age was 52 years (range, 31-81). Median tumor size was 1.4 cm (range, 0.1-3.5). Eighty percent of tumors were node negative; 93% of patients had negative margins, and 7% of patients had close (>0 and <2 mm) margins; 76% of cancers were invasive ductal type: 15% were ductal carcinoma in situ, 5% were lobular, and 4% were other histology types. Twenty-nine percent of patients 29% had grade 3 carcinoma, and 20% of patients had extensive in situ carcinoma; 11% of patients received chemotherapy, 36% received endocrine therapy, 33% received both, and 20% received neither. There were 3 instances of local recurrence for a 5-year actuarial rate of 2.7%. Conclusions: This 4-week course of hypofractionated radiation with incorporated boost was associated with excellent local control, comparable to historical results of 6-7 weeks of conventional whole-breast fractionation with sequential boost.

  18. SU-F-BRF-07: Impact of Different Patient Setup Strategies in Adaptive Radiation Therapy with Simultaneous Integrated Volume-Adapted Boost of NSCLC

    SciTech Connect

    Balik, S; Weiss, E; Sleeman, W; Wu, Y; Hugo, G; Dogan, N; Fatyga, M

    2014-06-15

    Purpose: To evaluate the potential impact of several setup error correction strategies on a proposed image-guided adaptive radiotherapy strategy for locally advanced lung cancer. Methods: Daily 4D cone-beam CT and weekly 4D fan-beam CT images were acquired from 9 lung cancer patients undergoing concurrent chemoradiation therapy. Initial planning CT was deformably registered to daily CBCT images to generate synthetic treatment courses. An adaptive radiation therapy course was simulated using the weekly CT images with replanning twice and a hypofractionated, simultaneous integrated boost to a total dose of 66 Gy to the original PTV and either a 66 Gy (no boost) or 82 Gy (boost) dose to the boost PTV (ITV + 3mm) in 33 fractions with IMRT or VMAT. Lymph nodes (LN) were not boosted (prescribed to 66 Gy in both plans). Synthetic images were rigidly, bony (BN) or tumor and carina (TC), registered to the corresponding plan CT, dose was computed on these from adaptive replans (PLAN) and deformably accumulated back to the original planning CT. Cumulative D98% of CTV of PT (ITV for 82Gy) and LN, and normal tissue dose changes were analyzed. Results: Two patients were removed from the study due to large registration errors. For the remaining 7 patients, D98% for CTV-PT (ITV-PT for 82 Gy) and CTV-LN was within 1 Gy of PLAN for both 66 Gy and 82 Gy plans with both setup techniques. Overall, TC based setup provided better results, especially for LN coverage (p = 0.1 for 66Gy plan and p = 0.2 for 82 Gy plan, comparison of BN and TC), though not significant. Normal tissue dose constraints violated for some patients if constraint was barely achieved in PLAN. Conclusion: The hypofractionated adaptive strategy appears to be deliverable with soft tissue alignment for the evaluated margins and planning parameters. Research was supported by NIH P01CA116602.

  19. Image guided radiation therapy boost in combination with high-dose-rate intracavitary brachytherapy for the treatment of cervical cancer

    PubMed Central

    Wang, Xianliang; Li, Jie; Yuan, Ke; Yin, Gang; Wan, Bin

    2016-01-01

    Purpose The purpose of this study was to demonstrate the dosimetric and clinical feasibility of image guided radiation therapy (IGRT) combined with high-dose-rate (HDR) intracavitary brachytherapy (ICBT) to improve dose distribution in cervical cancer treatment. Material and methods For 42 cervical cancer patients, magnetic resonance imaging (MRI) scans were acquired after completion of whole pelvic irradiation 45-46 Gy and 5 fractions of B + I (ICBT + IGRT) treatment were subsequently received. The high risk clinical target volume (HRCTV), intermediate risk clinical target volume (IRCTV), bladder, rectum, and sigmoid were contoured on the computed tomography (CT) scans. The total planning aim doses for HRCTV was D90% > 85 Gy, whilst constraints for rectum and sigmoid were D2cc < 75 Gy and D2cc < 90 Gy for bladder in terms of an equivalent dose in 2 Gy (EQD2) for external beam radiotherapy (EBRT) and brachytherapy boost. The IGRT plan was optimized on top of the ICBT dose distribution. A dosimetric comparison was made between B + I and optimized ICBT (O-ICBT) only. Results The mean D90% of HRCTV was comparable for B + I and O-ICBT (p = 0.82). For B + I plan, HRCTV D100%, IRCTV D100%, and IRCTV D90% were significantly increased by a mean of 10.52 Gy, 5.61 Gy, and 2.70 Gy, respectively (p < 0.01). The D2cc for bladder, rectum, and sigmoid were lower by a mean of 21.36, 6.78, and 10.65 Gy, respectively (p < 0.01). The mean rectum V60 Gy value over 42 patients was almost the same for both techniques but for bladder and sigmoid B + I had higher V60 Gy mean values as compared with the O-ICBT. Conclusions B + I can improve dose distribution in cervical cancer treatment; it could be useful for tumors extended beyond the reach of intracavitary/interstitial brachytherapy (IC/ISBT) or for centers that are inexperienced or ill-equipped with IC/ISBT techniques. Additional confirmatory prospective studies with larger numbers of patients and longer follow-up are required to

  20. Radiation Therapy

    MedlinePlus

    ... people who have radiation therapy may feel more tired than usual, not feel hungry, or lose their ... of radiation therapy include: Fatigue. Fatigue, or feeling tired, is the most common side effect of radiation ...

  1. Radiation therapy

    MedlinePlus

    ... Because radiation is most harmful to quickly growing cells, radiation therapy damages cancer cells more than normal cells. ... cells from growing and dividing, and leads to cell death. Radiation therapy is used to fight many types of ...

  2. Stereotactic Body Radiation Therapy Can Be Used Safely to Boost Residual Disease in Locally Advanced Non-Small Cell Lung Cancer: A Prospective Study

    SciTech Connect

    Feddock, Jonathan; Arnold, Susanne M.; Shelton, Brent J.; Sinha, Partha; Conrad, Gary; Chen, Li; Rinehart, John; McGarry, Ronald C.

    2013-04-01

    Purpose: To report the results of a prospective, single-institution study evaluating the feasibility of conventional chemoradiation (CRT) followed by stereotactic body radiation therapy (SBRT) as a means of dose escalation for patients with stage II-III non-small cell lung cancer (NSCLC) with residual disease. Methods and Materials: Patients without metastatic disease and with radiologic evidence of limited residual disease (≤5 cm) within the site of the primary tumor and good or complete nodal responses after standard CRT to a target dose of 60 Gy were considered eligible. The SBRT boost was done to achieve a total combined dose biological equivalent dose >100 Gy to the residual primary tumor, consisting of 10 Gy × 2 fractions (20 Gy total) for peripheral tumors, and 6.5 Gy × 3 fractions (19.5 Gy total) for medial tumors using the Radiation Therapy Oncology Group protocol 0813 definitions. The primary endpoint was the development of grade ≥3 radiation pneumonitis (RP). Results: After a median follow-up of 13 months, 4 patients developed acute grade 3 RP, and 1 (2.9%) developed late and persistent grade 3 RP. No patients developed grade 4 or 5 RP. Mean lung dose, V2.5, V5, V10, and V20 values were calculated for the SBRT boost, and none were found to significantly predict for RP. Only advancing age (P=.0147), previous smoking status (P=.0505), and high CRT mean lung dose (P=.0295) were significantly associated with RP development. At the time of analysis, the actuarial local control rate at the primary tumor site was 82.9%, with only 6 patients demonstrating recurrence. Conclusions: Linear accelerator-based SBRT for dose escalation of limited residual NSCLC after definitive CRT was feasible and did not increase the risk for toxicity above that for standard radiation therapy.

  3. Radiation Therapy

    MedlinePlus

    Radiation therapy is a cancer treatment. It uses high doses of radiation to kill cancer cells and stop them from ... half of all cancer patients receive it. The radiation may be external, from special machines, or internal, ...

  4. Impact of intensity-modulated radiation therapy as a boost treatment on the lung-dose distributions for non-small-cell lung cancer

    SciTech Connect

    Choi, Youngmin . E-mail: cymin00@yahoo.co.kr; Kim, Jeung Kee; Lee, Hyung Sik; Hur, Won Joo; Chai, Gyu Young; Kang, Ki Mun

    2005-11-01

    Purpose: To investigate the feasibility of intensity-modulated radiotherapy (IMRT) as a method of boost radiotherapy after the initial irradiation by the conventional anterior/posterior opposed beams for centrally located non-small-cell lung cancer through the evaluation of dose distributions according to the various boost methods. Methods and Materials: Seven patients with T3 or T4 lung cancer and mediastinal node enlargement who previously received radiotherapy were studied. All patients underwent virtual simulation retrospectively with the previous treatment planning computed tomograms. Initial radiotherapy plans were designed to deliver 40 Gy to the primary tumor and involved nodal regions with the conventional anterior/posterior opposed beams. Two radiation dose levels, 24 and 30 Gy, were used for the boost radiotherapy plans, and four different boost methods (a three-dimensional conformal radiotherapy [3DCRT], five-, seven-, and nine-beam IMRT) were applied to each dose level. The goals of the boost plans were to deliver the prescribed radiation dose to 95% of the planning target volume (PTV) and minimize the volumes of the normal lungs and spinal cord irradiated above their tolerance doses. Dose distributions in the PTVs and lungs, according to the four types of boost plans, were compared in the boost and sum plans, respectively. Results: The percentage of lung volumes irradiated >20 Gy (V20) was reduced significantly in the IMRT boost plans compared with the 3DCRT boost plans at the 24- and 30-Gy dose levels (p 0.007 and 0.0315 respectively). Mean lung doses according to the boost methods were not different in the 24- and 30-Gy boost plans. The conformity indexes (CI) of the IMRT boost plans were lower than those of the 3DCRT plans in the 24- and 30-Gy plans (p = 0.001 in both). For the sum plans, there was no difference of the dose distributions in the PTVs and lungs according to the boost methods. Conclusions: In the boost plans the V20s and CIs were

  5. Concurrent weekly docetaxel and concomitant boost radiation therapy in the treatment of locally advanced squamous cell cancer of the head and neck

    SciTech Connect

    Tishler, Roy B. . E-mail: roy_tishler@dfci.harvard.edu; Posner, Marshall R.; Norris, Charles M.; Mahadevan, Anand; Sullivan, Christopher; Goguen, Laura; Wirth, Lori J.; Costello, Rosemary; Case, MaryAnn; Stowell, Sara; Sammartino, Dan; Busse, Paul M.; Haddad, Robert I.

    2006-07-15

    Purpose: In a Phase I/II trial, we investigated concurrent weekly docetaxel and concomitant boost radiation in patients with locally advanced squamous cell cancer of the head and neck (SCCHN) after induction chemotherapy. Patients and Methods: Patients presented with American Joint Committee on Cancer Stage III/IV and were treated initially with induction chemotherapy using cisplatinum/5-fluorouracil (PF), carboplatinum-5-FU, or docetaxel-PF. Patients then received docetaxel four times weekly with concomitant boost (CB) radiation (1.8 Gy once-daily X20, 1.8/1.5 Gy twice a day). Fifteen patients each received 20 mg/M{sup 2} and 25 mg/M{sup 2}. Results: Thirty-one patients were enrolled and 30 were evaluable for response and toxicity. Median follow-up was 42 months (range, 27-63 months). Primary sites were: oropharynx 19, oral cavity 2, larynx/hypopharynx 5, and unknown primary 4. Eighty-seven percent of patients had N2/N3 disease; 60% had T3/T4 disease. Twenty percent of patients had a complete response (CR) to induction chemotherapy. After chemoradiotherapy, 21 of 30 patients had a CR, 2 had progressive disease, and 7 had partial response (PR). Nineteen of 26 patients presenting with neck disease had neck dissections, and 7 of 19 were positive. Ninety-three percent of all patients were rendered disease-free after all planned therapy. Treatment failed in 8 patients, and 7 have died of disease. An additional patient died with no evidence of disease. Twenty-one patients (70%) are currently alive with no evidence of disease. No acute dose-limiting toxicity was observed at either dose level. Conclusions: This intensive treatment regimen of concurrent docetaxel/concomitant boost radiation and surgery after induction chemotherapy in poor prognosis patients yields good local regional control and survival. Docetaxel/CB chemoradiotherapy represents an aggressive alternative regimen to platinum-based chemoradiotherapy or surgery in patients who have a poor response to

  6. Long-Term Follow-Up of Preoperative Pelvic Radiation Therapy and Concomitant Boost Irradiation in Locally Advanced Rectal Cancer Patients: A Multi-Institutional Phase II Study (KROG 04-01)

    SciTech Connect

    Lee, Jong Hoon; Kim, Dae Yong; Nam, Taek-Keun; Yoon, Sei-Chul; Lee, Doo Seok; Park, Ji Won; Oh, Jae Hwan; Chang, Hee Jin; Yoon, Mee Sun; Jeong, Jae-Uk; Jang, Hong Seok

    2012-11-15

    Purpose: To perform a prospective phase II study to investigate the efficacy and safety of preoperative pelvic radiation therapy and concomitant small-field boost irradiation with 5-fluorouracil and leucovorin for 5 weeks in locally advanced rectal cancer patients. Methods and Materials: Sixty-nine patients with locally advanced, nonmetastatic, mid-to-lower rectal cancer were prospectively enrolled. They had received preoperative chemoradiation therapy and total mesorectal excision. Pelvic radiation therapy of 43.2 Gy in 24 fractions plus concomitant boost radiation therapy of 7.2 Gy in 12 fractions was delivered to the pelvis and tumor bed for 5 weeks. Two cycles of 5-fluorouracil and leucovorin were administered for 3 days in the first and fifth week of radiation therapy. The pathologic response, survival outcome, and treatment toxicity were evaluated for the study endpoints. Results: Of 69 patients, 8 (11.6%) had a pathologically complete response. Downstaging rates were 40.5% for T classification and 68.1% for N classification. At the median follow-up of 69 months, 36 patients have been followed up for more than 5 years. The 5-year disease-free survival (DFS) and overall survival rates were 66.0% and 75.3%, respectively. Higher pathologic T (P = .045) and N (P = .032) classification were significant adverse prognostic factors for DFS, and high-grade histology was an adverse prognostic factor for both DFS (P = .025) and overall survival (P = .031) on the multivariate analysis. Fifteen patients (21.7%) experienced grade 3 or 4 acute toxicity, and 7 patients (10.1%) had long-term toxicity. Conclusion: Preoperative pelvic radiation therapy with concomitant boost irradiation with 5-fluorouracil and leucovorin for 5 weeks showed acceptable acute and long-term toxicities. However, the benefit of concomitant small-field boost irradiation for 5 weeks in rectal cancer patients was not demonstrated beyond conventional irradiation for 6 weeks in terms of tumor response and

  7. Anticipated Intraoperative Electron Beam Boost, External Beam Radiation Therapy, and Limb-Sparing Surgical Resection for Patients with Pediatric Soft-Tissue Sarcomas of the Extremity: A Multicentric Pooled Analysis of Long-Term Outcomes

    SciTech Connect

    Sole, Claudio V.; Calvo, Felipe A.; Polo, Alfredo; Cambeiro, Mauricio; Alvarez, Ana; Gonzalez, Carmen; Gonzalez, Jose; San Julian, Mikel; Martinez-Monge, Rafael

    2014-09-01

    Purpose: To perform a joint analysis of data from 3 contributing centers within the intraoperative electron-beam radiation therapy (IOERT)-Spanish program, to determine the potential of IOERT as an anticipated boost before external beam radiation therapy in the multidisciplinary treatment of pediatric extremity soft-tissue sarcomas. Methods and Materials: From June 1993 to May 2013, 62 patients (aged <21 years) with a histologic diagnosis of primary extremity soft-tissue sarcoma with absence of distant metastases, undergoing limb-sparing grossly resected surgery, external beam radiation therapy (median dose 40 Gy) and IOERT (median dose 10 Gy) were considered eligible for this analysis. Results: After a median follow-up of 66 months (range, 4-235 months), 10-year local control, disease-free survival, and overall survival was 85%, 76%, and 81%, respectively. In multivariate analysis after adjustment for other covariates, tumor size >5 cm (P=.04) and R1 margin status (P=.04) remained significantly associated with local relapse. In regard to overall survival only margin status (P=.04) retained association on multivariate analysis. Ten patients (16%) reported severe chronic toxicity events (all grade 3). Conclusions: An anticipated IOERT boost allowed for external beam radiation therapy dose reduction, with high local control and acceptably low toxicity rates. The combined radiosurgical approach needs to be tested in a prospective trial to confirm these results.

  8. Radiation Therapy (For Parents)

    MedlinePlus

    ... 5 Things to Know About Zika & Pregnancy Radiation Therapy KidsHealth > For Parents > Radiation Therapy Print A A ... many questions and concerns about it. About Radiation Therapy In radiation therapy, high-energy radiation from X- ...

  9. Fully Automated Simultaneous Integrated Boosted-Intensity Modulated Radiation Therapy Treatment Planning Is Feasible for Head-and-Neck Cancer: A Prospective Clinical Study

    SciTech Connect

    Wu Binbin; McNutt, Todd; Zahurak, Marianna; Simari, Patricio; Pang, Dalong; Taylor, Russell; Sanguineti, Giuseppe

    2012-12-01

    Purpose: To prospectively determine whether overlap volume histogram (OVH)-driven, automated simultaneous integrated boosted (SIB)-intensity-modulated radiation therapy (IMRT) treatment planning for head-and-neck cancer can be implemented in clinics. Methods and Materials: A prospective study was designed to compare fully automated plans (APs) created by an OVH-driven, automated planning application with clinical plans (CPs) created by dosimetrists in a 3-dose-level (70 Gy, 63 Gy, and 58.1 Gy), head-and-neck SIB-IMRT planning. Because primary organ sparing (cord, brain, brainstem, mandible, and optic nerve/chiasm) always received the highest priority in clinical planning, the study aimed to show the noninferiority of APs with respect to PTV coverage and secondary organ sparing (parotid, brachial plexus, esophagus, larynx, inner ear, and oral mucosa). The sample size was determined a priori by a superiority hypothesis test that had 85% power to detect a 4% dose decrease in secondary organ sparing with a 2-sided alpha level of 0.05. A generalized estimating equation (GEE) regression model was used for statistical comparison. Results: Forty consecutive patients were accrued from July to December 2010. GEE analysis indicated that in APs, overall average dose to the secondary organs was reduced by 1.16 (95% CI = 0.09-2.33) with P=.04, overall average PTV coverage was increased by 0.26% (95% CI = 0.06-0.47) with P=.02 and overall average dose to the primary organs was reduced by 1.14 Gy (95% CI = 0.45-1.8) with P=.004. A physician determined that all APs could be delivered to patients, and APs were clinically superior in 27 of 40 cases. Conclusions: The application can be implemented in clinics as a fast, reliable, and consistent way of generating plans that need only minor adjustments to meet specific clinical needs.

  10. Impact of the Radiation Boost on Outcomes After Breast-Conserving Surgery and Radiation

    SciTech Connect

    Murphy, Colin; Anderson, Penny R.; Li Tianyu; Bleicher, Richard J.; Sigurdson, Elin R.; Goldstein, Lori J.; Swaby, Ramona; Denlinger, Crystal; Dushkin, Holly; Nicolaou, Nicos; Freedman, Gary M.

    2011-09-01

    Purpose: We examined the impact of radiation tumor bed boost parameters in early-stage breast cancer on local control and cosmetic outcomes. Methods and Materials: A total of 3,186 women underwent postlumpectomy whole-breast radiation with a tumor bed boost for Tis to T2 breast cancer from 1970 to 2008. Boost parameters analyzed included size, energy, dose, and technique. Endpoints were local control, cosmesis, and fibrosis. The Kaplan-Meier method was used to estimate actuarial incidence, and a Cox proportional hazard model was used to determine independent predictors of outcomes on multivariate analysis (MVA). The median follow-up was 78 months (range, 1-305 months). Results: The crude cosmetic results were excellent in 54%, good in 41%, and fair/poor in 5% of patients. The 10-year estimate of an excellent cosmesis was 66%. On MVA, independent predictors for excellent cosmesis were use of electron boost, lower electron energy, adjuvant systemic therapy, and whole-breast IMRT. Fibrosis was reported in 8.4% of patients. The actuarial incidence of fibrosis was 11% at 5 years and 17% at 10 years. On MVA, independent predictors of fibrosis were larger cup size and higher boost energy. The 10-year actuarial local failure was 6.3%. There was no significant difference in local control by boost method, cut-out size, dose, or energy. Conclusions: Likelihood of excellent cosmesis or fibrosis are associated with boost technique, electron energy, and cup size. However, because of high local control and rare incidence of fair/poor cosmesis with a boost, the anatomy of the patient and tumor cavity should ultimately determine the necessary boost parameters.

  11. Testosterone Therapy May Boost Older Men's Sex Lives

    MedlinePlus

    ... 159622.html Testosterone Therapy May Boost Older Men's Sex Lives Gel hormone treatment led to improved libido ... experienced a moderate but significant improvement in their sex drive, sexual activity and erectile function compared to ...

  12. Radiation Therapy for Cancer

    MedlinePlus

    ... What is radiation therapy? Radiation therapy uses high-energy radiation to shrink tumors and kill cancer cells ( ... is a measure of the amount of radiation energy absorbed by 1 kilogram of human tissue. Different ...

  13. Impact of Boost Radiation in the Treatment of Ductal Carcinoma In Situ: A Population-Based Analysis

    SciTech Connect

    Rakovitch, Eileen; Narod, Steven A.; Nofech-Moses, Sharon; Hanna, Wedad; Thiruchelvam, Deva; Saskin, Refik; Taylor, Carole; Tuck, Alan; Youngson, Bruce; Miller, Naomi; Done, Susan J.; Sengupta, Sandip; Elavathil, Leela; Jani, Prashant A.; Bonin, Michel; Metcalfe, Stephanie; Paszat, Lawrence

    2013-07-01

    Purpose: To report the outcomes of a population of women with ductal carcinoma in situ (DCIS) treated with breast-conserving surgery and radiation and to evaluate the independent effect of boost radiation on the development of local recurrence. Methods and Materials: All women diagnosed with DCIS and treated with breast-conserving surgery and radiation therapy in Ontario from 1994 to 2003 were identified. Treatments and outcomes were identified through administrative databases and validated by chart review. The impact of boost radiation on the development of local recurrence was determined using survival analyses. Results: We identified 1895 cases of DCIS that were treated by breast-conserving surgery and radiation therapy; 561 patients received boost radiation. The cumulative 10-year rate of local recurrence was 13% for women who received boost radiation and 12% for those who did not (P=.3). The 10-year local recurrence-free survival (LRFS) rate among women who did and who did not receive boost radiation was 88% and 87%, respectively (P=.27), 94% and 93% for invasive LRFS (P=.58), and was 95% and 93% for DCIS LRFS (P=.31). On multivariable analyses, boost radiation was not associated with a lower risk of local recurrence (hazard ratio = 0.82, 95% confidence interval 0.59-1.15) (P=.25). Conclusions: Among a population of women treated with breast-conserving surgery and radiation for DCIS, additional (boost) radiation was not associated with a lower risk of local or invasive recurrence.

  14. Positive Surgical Margins in Soft Tissue Sarcoma Treated With Preoperative Radiation: Is a Postoperative Boost Necessary?

    SciTech Connect

    Al Yami, Ali; Griffin, Anthony M.; Ferguson, Peter C.; Catton, Charles N.; Chung, Peter W.M.

    2010-07-15

    Purpose: For patients with an extremity soft tissue sarcoma (STS) treated with preoperative radiotherapy and surgically excised with positive margins, we retrospectively reviewed whether a postoperative radiation boost reduced the risk of local recurrence (LR). Methods and Materials: A total of 216 patients with positive margins after resection of an extremity STS treated between 1986 and 2003 were identified from our institution's prospectively collected database. Patient demographics, radiation therapy parameters including timing and dose, classification of positive margin status, reasons for not administering a postoperative boost, and oncologic outcome were collected and evaluated. Results: Of the 216 patients with a positive surgical margin, 52 patients were treated with preoperative radiation therapy alone (50 Gy), whereas 41 received preoperative radiation therapy plus a postoperative boost (80% received 16 Gy postoperatively for a total of 66 Gy). There was no difference in baseline tumor characteristics between the two groups. Six of 52 patients in the group receiving preoperative radiation alone developed a LR compared with 9 of 41 in the boost group. Five-year estimated LR-free survivals were 90.4% and 73.8%, respectively (p = 0.13). Conclusions: We found that including the postoperative radiation boost after preoperative radiation and a margin-positive excision did not provide an advantage in preventing LR for patients treated with external beam radiotherapy. Given that higher radiation doses placed patients at greater risk for late complications such as fracture, fibrosis, edema, and joint stiffness, judicious avoidance of the postoperative boost while maintaining an equivalent rate of local control can reduce the risk of these difficult-to-treat morbidities.

  15. Improved survival of poor prognosis diffuse histiocytic (large cell) lymphoma managed with sequential induction chemotherapy, "boost" radiation therapy, and autologous bone marrow transplantation.

    PubMed

    Chadha, M; Shank, B; Fuks, Z; Clarkson, B D; Bonfiglio, P; Gnecco, C; Gulati, S

    1988-03-01

    From 1981 to 1985, 33 patients with the diagnosis of diffuse histiocytic (large cell) lymphoma (DHL) with a poor prognosis received induction multi-drug chemotherapy followed by autologous marrow cryopreservation. Thirty patients who had residual disease after chemotherapy were given "boost" irradiation to these sites, followed immediately by hyperfractionated total body irradiation, 1320 to 1375 cGy in 11 fractions over 4 days, then cyclophosphamide (60 mg/kg/d) for 2 days. All patients received an autologous bone marrow transplant (ABMT), with 15 patients receiving marrow purged with 4-hydroperoxycyclophosphamide. Patients were transplanted either as part of a planned induction-transplant approach (Group I), or as salvage after relapse on the same induction regimen (Group II), or other conventional chemotherapy regimens (Group III). In the entire group, 16 of 33 patients (48%) are alive free of lymphoma with a median follow-up of 32 months (11 to 53 mo). Actuarial (Kaplan-Meier) survival is 51% at 2 years and 46% at 3 years, with only 1 patient dying after 2 years out of 11 at risk. Eight patients (24%) succumbed to early treatment related complications. Nine patients (27%) died from relapse. Patients receiving ABMT as planned sequential therapy post-induction (Group I) did significantly better than patients given ABMT as salvage therapy after relapse on prior chemotherapy (Groups II and III) and better than the historical group of patients treated with chemotherapy alone. At 2 years, the survival in Group I is 79% versus 0% for Group II versus 48% for Group III. Historically, this group of high risk patients had a 2-year disease-free survival of 20% or less with chemotherapy alone. PMID:3277931

  16. Radiation Therapy

    MedlinePlus

    ... Radiation (also called x-rays, gamma rays, or photons) either kills tumor cells directly or interferes with ... treatment per day, five days a week, for two to seven weeks. Potiential Side Effects Most people ...

  17. Hyperfractionated Concomitant Boost Proton Beam Therapy for Esophageal Carcinoma

    SciTech Connect

    Mizumoto, Masashi; Sugahara, Shinji; Okumura, Toshiyuki; Hashimoto, Takayuki; Oshiro, Yoshiko; Fukumitsu, Nobuyoshi; Nakahara, Akira; Terashima, Hideo; Tsuboi, Koji; Sakurai, Hideyuki

    2011-11-15

    Purpose: To evaluate the efficacy and safety of hyperfractionated concomitant boost proton beam therapy (PBT) for patients with esophageal cancer. Methods and Materials: The study participants were 19 patients with esophageal cancer who were treated with hyperfractionated photon therapy and PBT between 1990 and 2007. The median total dose was 78 GyE (range, 70-83 GyE) over a median treatment period of 48 days (range, 38-53 days). Ten of the 19 patients were at clinical T Stage 3 or 4. Results: There were no cases in which treatment interruption was required because of radiation-induced esophagitis or hematologic toxicity. The overall 1- and 5-year actuarial survival rates for all 19 patients were 79.0% and 42.8%, respectively, and the median survival time was 31.5 months (95% limits: 16.7- 46.3 months). Of the 19 patients, 17 (89%) showed a complete response within 4 months after completing treatment and 2 (11%) showed a partial response, giving a response rate of 100% (19/19). The 1- and 5-year local control rates for all 19 patients were 93.8% and 84.4 %, respectively. Only 1 patient had late esophageal toxicity of Grade 3 at 6 months after hyperfractionated PBT. There were no other nonhematologic toxicities, including no cases of radiation pneumonia or cardiac failure of Grade 3 or higher. Conclusions: The results suggest that hyperfractionated PBT is safe and effective for patients with esophageal cancer. Further studies are needed to establish the appropriate role and treatment schedule for use of PBT for esophageal cancer.

  18. Long-Term Results of Concomitant Boost Radiation Plus Concurrent Cisplatin for Advanced Head and Neck Carcinomas: A Phase II Trial of the Radiation Therapy Oncology Group (RTOG 99-14)

    SciTech Connect

    Garden, Adam S.; Harris, Jonathan M.S.; Trotti, Andy; Jones, Christopher U.; Carrascosa, Luis; Cheng, Jonathan D.; Spencer, Sharon S.; Forastiere, Arlene; Weber, Randal S.; Ang, K. Kian

    2008-08-01

    Purpose: The feasibility of combining concomitant boost-accelerated radiation regimen (AFX-C) with cisplatin was previously demonstrated in this Phase II trial. This article reports the long-term toxicity, relapse patterns, and survival in patients with advanced head and neck carcinoma. Methods and Materials: Between April and November 2000, 84 patients with Stage III-IV HNC were enrolled, and 76 patients were analyzable. Radiation consisted of 72 Gy over 6 weeks. Cisplatin dose was 100 mg/m{sup 2} on Days 1 and 22. Tumor and clinical status were assessed, and acute-late toxicities were graded. Results: The median follow-up for surviving patients is 4.3 years. The 2- and 4-year locoregional failure rates were 33% and 36%, respectively, and the 2- and 4-year survival rates were 70% and 54%, respectively. The worst overall late Grade 3 or 4 toxicity rate was 42%. The prevalence rates of a gastrostomy at any time during follow-up, at 12 months, and at 48 months were 83%, 41%, and 17%, respectively. Five of 36 patients (14%) alive and without disease at last follow-up were gastrostomy-tube dependent. Conclusion: These data of long-term follow-up of patients treated with AFX-C with cisplatin show encouraging results with regard to locoregional disease control and survival, with few recurrences after 2 years. The late toxicity rates are relatively high. However, although prolonged dysphagia was noted in our preliminary report, its prevalence does decreased over time. A Phase III trial comparing AFX-C plus cisplatin against standard radiation plus cisplatin has completed accrual.

  19. Extended Field Intensity Modulated Radiation Therapy With Concomitant Boost for Lymph Node–Positive Cervical Cancer: Analysis of Regional Control and Recurrence Patterns in the Positron Emission Tomography/Computed Tomography Era

    SciTech Connect

    Vargo, John A.; Kim, Hayeon; Choi, Serah; Sukumvanich, Paniti; Olawaiye, Alexander B.; Kelley, Joseph L.; Edwards, Robert P.; Comerci, John T.; Beriwal, Sushil

    2014-12-01

    Purpose: Positron emission tomography/computed tomography (PET/CT) is commonly used for nodal staging in locally advanced cervical cancer; however the false negative rate for para-aortic disease are 20% to 25% in PET-positive pelvic nodal disease. Unless surgically staged, pelvis-only treatment may undertreat para-aortic disease. We have treated patients with PET-positive nodes with extended field intensity modulated radiation therapy (IMRT) to address the para-aortic region prophylactically with concomitant boost to involved nodes. The purpose of this study was to assess regional control rates and recurrence patterns. Methods and Materials: Sixty-one patients with cervical cancer (stage IBI-IVA) diagnosed from 2003 to 2012 with PET-avid pelvic nodes treated with extended field IMRT (45 Gy in 25 fractions with concomitant boost to involved nodes to a median of 55 Gy in 25 fractions) with concurrent cisplatin and brachytherapy were retrospectively analyzed. The nodal location was pelvis-only in 41 patients (67%) and pelvis + para-aortic in 20 patients (33%). There were a total of 179 nodes, with a median number of positive nodes of 2 (range, 1-16 nodes) per patient and a median nodal size of 1.8 cm (range, 0.7-4.5 cm). Response was assessed by PET/CT at 12 to 16 weeks. Results: Complete clinical and imaging response at the first follow-up visit was seen in 77% of patients. At a mean follow-up time of 29 months (range, 3-116 months), 8 patients experienced recurrence. The sites of persistent/recurrent disease were as follows: cervix 10 (16.3%), regional nodes 3 (4.9%), and distant 14 (23%). The rate of para-aortic failure in patients with pelvic-only nodes was 2.5%. There were no significant differences in recurrence patterns by the number/location of nodes, largest node size, or maximum node standardized uptake value. The rate of late grade 3+ adverse events was 4%. Conclusions: Extended field IMRT was well tolerated and resulted in low regional recurrence

  20. Radiation Therapy: Additional Treatment Options

    MedlinePlus

    ... This is refered to as immunotherapy . Intraoperative Radiation Therapy Radiation therapy given during surgery is called intraoperative ... external beam therapy or as brachytherapy . Novel Targeted Therapies Cancer doctors now know much more about how ...

  1. Change in Seroma Volume During Whole-Breast Radiation Therapy

    SciTech Connect

    Sharma, Rajiv; Spierer, Marnee Mutyala, Subhakar; Thawani, Nitika; Cohen, Hillel W.; Hong, Linda; Garg, Madhur K.; Kalnicki, Shalom

    2009-09-01

    Purpose: After breast-conserving surgery, a seroma often forms in the surgical cavity. If not drained, it may affect the volume of tumor bed requiring a boost after whole-breast radiation therapy (WBRT). Our objective was to evaluate the change in seroma volume that occurs during WBRT, before boost planning. Methods and Materials: A retrospective review was performed of women receiving breast-conserving therapy with evidence of seroma at the time of WBRT planning. Computed tomography (CT) simulation was performed before WBRT and before the tumor bed boost. All patients received either a hypofractionated (42.4 Gy/16 fraction + 9.6 Gy/4 fraction boost) or standard fractionated (50.4 Gy/28 fraction + 10 Gy/5 fraction boost) regimen. Seroma volumes were contoured and compared on CT at the time of WBRT simulation and tumor bed boost planning. Results: Twenty-four patients with evidence of seroma were identified and all patients received WBRT without drainage of the seroma. Mean seroma volume before WBRT and at boost planning were significantly different at 65.7 cm{sup 3} (SD, 50.5 cm{sup 3}) and 35.6 cm{sup 3} (SD, 24.8 cm{sup 3}), respectively (p < 0.001). Mean and median reduction in seroma volume during radiation were 39.6% (SD, 23.8%) and 46.2% (range, 10.7-76.7%), respectively. Fractionation schedule was not correlated with change in seroma volume. Length of time from surgery to start of radiation therapy showed an inverse correlation with change in seroma volume (Pearson correlation r = -0.53, p < 0.01). Conclusions: The volume of seroma changes significantly during WBRT. Consequently, the accuracy of breast boost planning is likely affected, as is the volume of normal breast tissue irradiated. CT-based boost planning before boost irradiation is suggested to ensure appropriate coverage.

  2. Torticollis following radiation therapy

    SciTech Connect

    Landan, I.; Cullis, P.A.

    1987-01-01

    A patient with adenocarcinoma in the apical portion of the lung producing a Pancoast's syndrome developed torticollis a few months after receiving a course of radiation therapy (5,040 rad) to his upper chest and neck. We describe this case, in which local radiation fibrosis of the neck muscles and perhaps segmental demyelination of the 11th cranial nerve resulted in peripheral nervous system lesion causing torticollis.

  3. Radiation Therapy for Testicular Cancer

    MedlinePlus

    ... therapy for testicular cancer Radiation therapy uses a beam of high-energy rays (such as gamma rays ... machine outside the body is known as external beam radiation . The treatment is much like getting an ...

  4. Radiation Therapy for Skin Cancer

    MedlinePlus

    ... Laser surgery Cancer cells are killed by laser beams.  Electrodessication The cancer is dried with an electric ... a chemical reaction that kills nearby cells. EXTERNAL BEAM RADIATION THERAPY External beam radiation therapy may be ...

  5. Radiation Therapy for Lung Cancer

    MedlinePlus

    ... whether surgery will be helpful for you EXTERNAL BEAM RADIATION THER APY External beam radiation therapy is the safe delivery of high- ... your cancer. A linear accelerator focuses the radiation beam to a precise location in your body for ...

  6. Microbeam radiation therapy

    NASA Astrophysics Data System (ADS)

    Laissue, Jean A.; Lyubimova, Nadia; Wagner, Hans-Peter; Archer, David W.; Slatkin, Daniel N.; Di Michiel, Marco; Nemoz, Christian; Renier, Michel; Brauer, Elke; Spanne, Per O.; Gebbers, Jan-Olef; Dixon, Keith; Blattmann, Hans

    1999-10-01

    The central nervous system of vertebrates, even when immature, displays extraordinary resistance to damage by microscopically narrow, multiple, parallel, planar beams of x rays. Imminently lethal gliosarcomas in the brains of mature rats can be inhibited and ablated by such microbeams with little or no harm to mature brain tissues and neurological function. Potentially palliative, conventional wide-beam radiotherapy of malignant brain tumors in human infants under three years of age is so fraught with the danger of disrupting the functional maturation of immature brain tissues around the targeted tumor that it is implemented infrequently. Other kinds of therapy for such tumors are often inadequate. We suggest that microbeam radiation therapy (MRT) might help to alleviate the situation. Wiggler-generated synchrotron x-rays were first used for experimental microplanar beam (microbeam) radiation therapy (MRT) at Brookhaven National Laboratory's National Synchrotron Light Source in the early 1990s. We now describe the progress achieved in MRT research to date using immature and adult rats irradiated at the European Synchrotron Radiation Facility in Grenoble, France, and investigated thereafter at the Institute of Pathology of the University of Bern.

  7. Bile Duct (Cholangiocarcinoma) Cancer: Radiation Therapy

    MedlinePlus

    ... form of radiation for bile duct cancer. External beam radiation therapy (EBRT) This type of radiation therapy ... determine the correct angles for aiming the radiation beams and the proper dose of radiation. The treatment ...

  8. COSMIC: A Regimen of Intensity Modulated Radiation Therapy Plus Dose-Escalated, Raster-Scanned Carbon Ion Boost for Malignant Salivary Gland Tumors: Results of the Prospective Phase 2 Trial

    SciTech Connect

    Jensen, Alexandra D.; Nikoghosyan, Anna V.; Lossner, Karen; Haberer, Thomas; Jäkel, Oliver; Münter, Marc W.; Debus, Jürgen

    2015-09-01

    Purpose: To investigate the effect of intensity modulated radiation therapy (IMRT) and dose-escalated carbon ion (C12) therapy in adenoid cystic carcinoma (ACC) and other malignant salivary gland tumors (MSGTs) of the head and neck. Patients and Methods: COSMIC (combined treatment of malignant salivary gland tumors with intensity modulated radiation therapy and carbon ions) is a prospective phase 2 trial of 24 Gy(RBE) C12 followed by 50 Gy IMRT in patients with pathologically confirmed MSGT. The primary endpoint is mucositis Common Terminology Criteria grade 3; the secondary endpoints are locoregional control (LC), progression-free survival (PFS), overall survival (OS), and toxicity. Toxicity was scored according to the Common Terminology Criteria for Adverse Events version 3; treatment response was scored according to Response Evaluation Criteria in Solid Tumors 1.1. Results: Between July 2010 and August 2011, 54 patients were accrued, and 53 were available for evaluation. The median follow-up time was 42 months; patients with microscopically incomplete resections (R1, n=20), gross residual disease (R2, n=17), and inoperable disease (n=16) were included. Eighty-nine percent of patients had ACC, and 57% had T4 tumors. The most common primary sites were paranasal sinus (34%), submandibular gland, and palate. At the completion of radiation therapy, 26% of patients experienced grade 3 mucositis, and 20 patients reported adverse events of the ear (38%). The most common observed late effects were grade 1 xerostomia (49%), hearing impairment (25%, 2% ipsilateral hearing loss), and adverse events of the eye (20%), but no visual impairment or loss of vision. Grade 1 central nervous system necrosis occurred in 6%, and 1 grade 4 ICA hemorrhage without neurologic sequelae. The best response was 54% (complete response/partial remission). At 3 years, the LC, PFS, and OS were 81.9%, 57.9%, and 78.4%, respectively. No difference was found regarding resection status. The

  9. Does Axillary Boost Increase Lymphedema Compared With Supraclavicular Radiation Alone After Breast Conservation?

    SciTech Connect

    Hayes, Shelly B. Freedman, Gary M.; Li Tianyu; Anderson, Penny R.; Ross, Eric

    2008-12-01

    Purpose: To determine independent predictors of lymphedema (LE) after breast radiotherapy and to quantify added risks of LE from regional node irradiation (RNI). Materials and Methods: A total of 2,579 women with T1-2, N 0-3, M0 breast cancer treated with breast conservation between 1970 and 2005 were studied. A total of 2,169 patients (84%) received radiation to the breast (B), 226 (8.8%) to the breast and supraclavicular LNs (B+SC), and 184 (7.1%) to the breast, supraclavicular LNs, and a posterior axillary boost (B+SC+PAB). Median follow-up was 81 months (range, 3-271). Results: Eighteen percent of patients developed LE. LE risks were as follows: 16% (B), 23% (B+SC), and 31% (B+SC+PAB) (p < 0.0001). LE severity was greater in patients who had RNI (p = 0.0002). On multivariate analysis, RT field (p < 0.0001), obesity index (p = 0.0157), systemic therapy (p = 0.0013), and number of LNs dissected (p < 0.0001) independently predicted for LE. In N1 patients, the addition of a SC to tangents (p < 0.0001) and the addition of a PAB to tangents (p = 0.0017) conferred greater risks of LE, but adding a PAB to B+SC RT did not (p = 0.8002). In the N2 patients, adding a PAB increased the risk of LE 4.5-fold over B+SC RT (p = 0.0011). Conclusions: LE predictors included number of LNs dissected, RNI, obesity index, and systemic therapy. LE risk increased when a SC or PAB were added in the N1 subgroup. In the N2 patients, a PAB increased the risk over B+SC. The decision to boost the axilla must be weighed against the increased risk of LE that it imposes.

  10. Benefit of Radiation Boost After Whole-Breast Radiotherapy

    SciTech Connect

    Livi, Lorenzo; Borghesi, Simona; Saieva, Calogero; Fambrini, Massimiliano; Iannalfi, Alberto; Greto, Daniela; Paiar, Fabiola; Scoccianti, Silvia; Simontacchi, Gabriele; Bianchi, Simonetta; Cataliotti, Luigi; Biti, Giampaolo

    2009-11-15

    Purpose: To determine whether a boost to the tumor bed after breast-conserving surgery (BCS) and radiotherapy (RT) to the whole breast affects local control and disease-free survival. Methods and Materials: A total of 1,138 patients with pT1 to pT2 breast cancer underwent adjuvant RT at the University of Florence. We analyzed only patients with a minimum follow-up of 1 year (range, 1-20 years), with negative surgical margins. The median age of the patient population was 52.0 years (+-7.9 years). The breast cancer relapse incidence probability was estimated by the Kaplan-Meier method, and differences between patient subgroups were compared by the log rank test. Cox regression models were used to evaluate the risk of breast cancer relapse. Results: On univariate survival analysis, boost to the tumor bed reduced breast cancer recurrence (p < 0.0001). Age and tamoxifen also significantly reduced breast cancer relapse (p = 0.01 and p = 0.014, respectively). On multivariate analysis, the boost and the medium age (45-60 years) were found to be inversely related to breast cancer relapse (hazard ratio [HR], 0.27; 95% confidence interval [95% CI], 0.14-0.52, and HR 0.61; 95% CI, 0.37-0.99, respectively). The effect of the boost was more evident in younger patients (HR, 0.15 and 95% CI, 0.03-0.66 for patients <45 years of age; and HR, 0.31 and 95% CI, 0.13-0.71 for patients 45-60 years) on multivariate analyses stratified by age, although it was not a significant predictor in women older than 60 years. Conclusion: Our results suggest that boost to the tumor bed reduces breast cancer relapse and is more effective in younger patients.

  11. Radiation Therapy for Soft Tissue Sarcomas

    MedlinePlus

    ... called palliative treatment . Types of radiation therapy External beam radiation therapy: For this treatment, radiation delivered from ... impact on healthy tissue. In some centers, proton beam radiation is an option. This uses streams of ...

  12. [Radiation therapy and redox imaging].

    PubMed

    Matsumoto, Ken-ichiro

    2015-01-01

    Radiation therapy kills cancer cells in part by flood of free radicals. Radiation ionizes and/or excites water molecules to create highly reactive species, i.e. free radicals and/or reactive oxygen species. Free radical chain reactions oxidize biologically important molecules and thereby disrupt their function. Tissue oxygen and/or redox status, which can influence the course of the free radical chain reaction, can affect the efficacy of radiation therapy. Prior observation of tissue oxygen and/or redox status is helpful for planning a safe and efficient course of radiation therapy. Magnetic resonance-based redox imaging techniques, which can estimate tissue redox status non-invasively, have been developed not only for diagnostic information but also for estimating the efficacy of treatment. Redox imaging is now spotlighted to achieve radiation theranostics. PMID:25948308

  13. [Radiation therapy and redox imaging].

    PubMed

    Matsumoto, Ken-ichiro

    2015-01-01

    Radiation therapy kills cancer cells in part by flood of free radicals. Radiation ionizes and/or excites water molecules to create highly reactive species, i.e. free radicals and/or reactive oxygen species. Free radical chain reactions oxidize biologically important molecules and thereby disrupt their function. Tissue oxygen and/or redox status, which can influence the course of the free radical chain reaction, can affect the efficacy of radiation therapy. Prior observation of tissue oxygen and/or redox status is helpful for planning a safe and efficient course of radiation therapy. Magnetic resonance-based redox imaging techniques, which can estimate tissue redox status non-invasively, have been developed not only for diagnostic information but also for estimating the efficacy of treatment. Redox imaging is now spotlighted to achieve radiation theranostics.

  14. Approaching Oxygen-Guided Intensity-Modulated Radiation Therapy.

    PubMed

    Epel, Boris; Redler, Gage; Pelizzari, Charles; Tormyshev, Victor M; Halpern, Howard J

    2016-01-01

    The outcome of cancer radiation treatment is strongly correlated with tumor oxygenation. The aim of this study is to use oxygen tension distributions in tumors obtained using Electron Paramagnetic Resonance (EPR) imaging to devise better tumor radiation treatment. The proposed radiation plan is delivered in two steps. In the first step, a uniform 50% tumor control dose (TCD50) is delivered to the whole tumor. For the second step an additional dose boost is delivered to radioresistant, hypoxic tumor regions. FSa fibrosarcomas grown in the gastrocnemius of the legs of C3H mice were used. Oxygen tension images were obtained using a 250 MHz pulse imager and injectable partially deuterated trityl OX63 (OX71) spin probe. Radiation was delivered with a novel animal intensity modulated radiation therapy (IMRT) XRAD225Cx microCT/radiation therapy delivery system. In a simplified scheme for boost dose delivery, the boost area is approximated by a sphere, whose radius and position are determined using an EPR O2 image. The sphere that irradiates the largest fraction of hypoxic voxels in the tumor was chosen using an algorithm based on Receiver Operator Characteristic (ROC) analysis. We used the fraction of irradiated hypoxic volume as the true positive determinant and the fraction of irradiated normoxic volume as the false positive determinant in the terms of that analysis. The most efficient treatment is the one that demonstrates the shortest distance from the ROC curve to the upper left corner of the ROC plot. The boost dose corresponds to the difference between TCD90 and TCD50 values. For the control experiment an identical radiation dose to the normoxic tumor area is delivered.

  15. Retroperitoneal Sarcoma (RPS) High Risk Gross Tumor Volume Boost (HR GTV Boost) Contour Delineation Agreement Among NRG Sarcoma Radiation and Surgical Oncologists

    PubMed Central

    Baldini, Elizabeth H.; Bosch, Walter; Kane, John M.; Abrams, Ross A.; Salerno, Kilian E.; Deville, Curtiland; Raut, Chandrajit P.; Petersen, Ivy A.; Chen, Yen-Lin; Mullen, John T.; Millikan, Keith W.; Karakousis, Giorgos; Kendrick, Michael L.; DeLaney, Thomas F.; Wang, Dian

    2015-01-01

    Purpose Curative intent management of retroperitoneal sarcoma (RPS) requires gross total resection. Preoperative radiotherapy (RT) often is used as an adjuvant to surgery, but recurrence rates remain high. To enhance RT efficacy with acceptable tolerance, there is interest in delivering “boost doses” of RT to high-risk areas of gross tumor volume (HR GTV) judged to be at risk for positive resection margins. We sought to evaluate variability in HR GTV boost target volume delineation among collaborating sarcoma radiation and surgical oncologist teams. Methods Radiation planning CT scans for three cases of RPS were distributed to seven paired radiation and surgical oncologist teams at six institutions. Teams contoured HR GTV boost volumes for each case. Analysis of contour agreement was performed using the simultaneous truth and performance level estimation (STAPLE) algorithm and kappa statistics. Results HRGTV boost volume contour agreement between the seven teams was “substantial” or “moderate” for all cases. Agreement was best on the torso wall posteriorly (abutting posterior chest abdominal wall) and medially (abutting ipsilateral para-vertebral space and great vessels). Contours varied more significantly abutting visceral organs due to differing surgical opinions regarding planned partial organ resection. Conclusions Agreement of RPS HRGTV boost volumes between sarcoma radiation and surgical oncologist teams was substantial to moderate. Differences were most striking in regions abutting visceral organs, highlighting the importance of collaboration between the radiation and surgical oncologist for “individualized” target delineation on the basis of areas deemed at risk and planned resection. PMID:26018727

  16. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, Daniel N.; Dilmanian, F. Avraham; Spanne, Per O.

    1994-01-01

    A method of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation, in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue.

  17. Method for microbeam radiation therapy

    DOEpatents

    Slatkin, D.N.; Dilmanian, F.A.; Spanne, P.O.

    1994-08-16

    A method is disclosed of performing radiation therapy on a patient, involving exposing a target, usually a tumor, to a therapeutic dose of high energy electromagnetic radiation, preferably X-ray radiation. The dose is in the form of at least two non-overlapping microbeams of radiation, each microbeam having a width of less than about 1 millimeter. Target tissue exposed to the microbeams receives a radiation dose during the exposure that exceeds the maximum dose that such tissue can survive. Non-target tissue between the microbeams receives a dose of radiation below the threshold amount of radiation that can be survived by the tissue, and thereby permits the non-target tissue to regenerate. The microbeams may be directed at the target from one direction, or from more than one direction in which case the microbeams overlap within the target tissue enhancing the lethal effect of the irradiation while sparing the surrounding healthy tissue. No Drawings

  18. External Radiation Therapy

    MedlinePlus Videos and Cool Tools

    Narrator: When the cancer is not completely contained in the prostate or when the patient is older the treatment that is frequently used ... There are different forms of radiation for prostate cancer. They really boil down to two different types. ...

  19. Advances in radiation therapy dosimetry

    PubMed Central

    Paliwal, Bhudatt; Tewatia, Dinesh

    2009-01-01

    During the last decade, there has been an explosion of new radiation therapy planning and delivery tools. We went through a rapid transition from conventional three-dimensional (3D) conformal radiation therapy to intensity-modulated radiation therapy (IMRT) treatments, and additional new techniques for motion-adaptive radiation therapy are being introduced. These advances push the frontiers in our effort to provide better patient care; and with the addition of IMRT, temporal dimensions are major challenges for the radiotherapy patient dosimetry and delivery verification. Advanced techniques are less tolerant to poor implementation than are standard techniques. Mis-administrations are more difficult to detect and can possibly lead to poor outcomes for some patients. Instead of presenting a manual on quality assurance for radiation therapy, this manuscript provides an overview of dosimetry verification tools and a focused discussion on breath holding, respiratory gating and the applications of four-dimensional computed tomography in motion management. Some of the major challenges in the above areas are discussed. PMID:20098555

  20. Boosting the Potency of T-cell Therapies.

    PubMed

    Poh, Alissa

    2016-04-01

    Researchers in the adoptive T-cell therapy field are continuing to refine the ways in which the specificity of these immune cells can be redirected toward tumors. They've found that selecting the most persistent, proliferative T cells-and genetically manipulating only these defined subsets-ensures a potent therapeutic product that's effective even at minuscule doses.

  1. Cardiac cell therapy: boosting mesenchymal stem cells effects.

    PubMed

    Samper, E; Diez-Juan, A; Montero, J A; Sepúlveda, P

    2013-06-01

    Acute myocardial infarction is a major problem of world public health and available treatments have limited efficacy. Cardiac cell therapy is a new therapeutic strategy focused on regeneration and repair of the injured cardiac muscle. Among different cell types used, mesenchymal stem cells (MSC) have been widely tested in preclinical studies and several clinical trials have evaluated their clinical efficacy in myocardial infarction. However, the beneficial effects of MSC in humans are limited due to poor engraftment and survival of these cells, therefore ways to overcome these obstacles should improve efficacy. Different strategies have been used, such as genetically modifying MSC, or preconditioning the cells with factors that potentiate their survival and therapeutic mechanisms. In this review we compile the most relevant approaches used to improve MSC therapeutic capacity and to understand the molecular mechanisms involved in MSC mediated cardiac repair.

  2. Prone Breast Intensity Modulated Radiation Therapy: 5-Year Results

    SciTech Connect

    Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Fenton Kerimian, Maria; Goldberg, Judith D.; Formenti, Silvia C.

    2014-07-15

    Purpose: To report the 5-year results of a technique of prone breast radiation therapy delivered by a regimen of accelerated intensity modulated radiation therapy with a concurrent boost to the tumor bed. Methods and Materials: Between 2003 and 2006, 404 patients with stage I-II breast cancer were prospectively enrolled into 2 consecutive protocols, institutional trials 03-30 and 05-181, that used the same regimen of 40.5 Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5 Gy (total dose 48 Gy). All patients were treated after segmental mastectomy and had negative margins and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine setup attempted and chosen if found to better spare these organs. Results: Ninety-two percent of patients were treated prone, 8% supine. Seventy-two percent had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 to 228.27 cm{sup 3}, mean 19.65 cm{sup 3}. In-field heart volume for left breast cancer patients ranged from 0 to 21.24 cm{sup 3}, mean 1.59 cm{sup 3}. There was no heart in the field for right breast cancer patients. At a median follow-up of 5 years, the 5-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% confidence interval [CI] 0.65%-1.04%). The 5-year cumulative incidence of regional recurrence was 0.53% (95% CI 0.41%-0.69%), and the 5-year overall cumulative death rate was 1.28% (95% CI 0.48%-3.38%). Eighty-two percent (95% CI 77%-85%) of patients judged their final cosmetic result as excellent/good. Conclusions: Prone accelerated intensity modulated radiation therapy with a concomitant boost results in excellent local control and optimal sparing of heart and lung, with good cosmesis. Radiation Therapy Oncology Group protocol 1005, a phase 3, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and

  3. Radiation therapy of esophageal cancer

    SciTech Connect

    Hancock, S.L.; Glatstein, E.

    1984-06-01

    Radiation therapy has been used extensively in the management of patients with cancer of the esophagus. It has demonstrated an ability to cure a small minority of patients. Cure is likely to be limited to patients who have lesions less than 5 cm in length and have minimal, if any, involvement of lymph nodes. Esophagectomy is likely to cure a similar, small percentage of patients with the same presentation of minimal disease but has a substantial acute postoperative mortality rate and greater morbidity than irradiation. Combining surgery and either preoperative or postoperative irradiation may cure a small percentage of patients beyond the number cured with either modality alone. Radiation has demonstrated benefit as an adjuvant to surgery following the resection of minimal disease. However, radiation alone has never been compared directly with surgery for the highly select, minimal lesions managed by surgery. Radiation provides good palliation of dysphagia in the majority of patients, and roughly one third may have adequate swallowing for the duration of their illness when ''radical'' doses have been employed. Surgical bypass procedures have greater acute morbidity but appear to provide more reliable, prolonged palliation of dysphagia. Several approaches to improving the efficacy of irradiation are currently under investigation. These approahces include fractionation schedules, radiosensitizers, neutron-beam therapy, and helium-ion therapy.

  4. Once-Daily Radiation Therapy for Inflammatory Breast Cancer

    SciTech Connect

    Brown, Lindsay; Harmsen, William; Blanchard, Miran; Goetz, Matthew; Jakub, James; Mutter, Robert; Petersen, Ivy; Rooney, Jessica; Stauder, Michael; Yan, Elizabeth; Laack, Nadia

    2014-08-01

    Purpose: Inflammatory breast cancer (IBC) is a rare and aggressive breast cancer variant treated with multimodality therapy. A variety of approaches intended to escalate the intensity and efficacy of radiation therapy have been reported, including twice-daily radiation therapy, dose escalation, and aggressive use of bolus. Herein, we examine our outcomes for patients treated with once-daily radiation therapy with aggressive bolus utilization, focusing on treatment technique. Methods and Materials: A retrospective review of patients with nonmetastatic IBC treated from January 1, 2000, through December 31, 2010, was performed. Locoregional control (LRC), disease-free survival (DFS), overall survival (OS) and predictors thereof were assessed. Results: Fifty-two women with IBC were identified, 49 (94%) of whom were treated with neoadjuvant chemotherapy. All underwent mastectomy followed by adjuvant radiation therapy. Radiation was delivered in once-daily fractions of 1.8 to 2.25 Gy (median, 2 Gy). Patients were typically treated with daily 1-cm bolus throughout treatment, and 33 (63%) received a subsequent boost to the mastectomy scar. Five-year Kaplan Meier survival estimates for LRC, DFS, and OS were 81%, 56%, and 64%, respectively. Locoregional recurrence was associated with poorer OS (P<.001; hazard ratio [HR], 4.1). Extracapsular extension was associated with worse LRC (P=.02), DFS (P=.007), and OS (P=.002). Age greater than 50 years was associated with better DFS (P=.03). Pathologic complete response was associated with a trend toward improved LRC (P=.06). Conclusions: Once-daily radiation therapy with aggressive use of bolus for IBC results in outcomes consistent with previous reports using various intensified radiation therapy regimens. LRC remains a challenge despite modern systemic therapy. Extracapsular extension, age ≤50 years, and lack of complete response to chemotherapy appear to be associated with worse outcomes. Novel strategies are needed in IBC

  5. Radiation therapy of acromegaly.

    PubMed

    Eastman, R C; Gorden, P; Glatstein, E; Roth, J

    1992-09-01

    Conventional megavoltage irradiation of GH-secreting tumors has predictable effects on tumor mass, GH, and pituitary function. 1. Further growth of the tumor is prevented in more than 99% of patients, with only a fraction of a percent of patients requiring subsequent surgery for tumor mass effects. 2. GH falls predictably with time. By 2 years GH falls by about 50% from the baseline level, and by 5 years by about 75% from the baseline level. The initial GH elevation and the size and erosive features of the sella turcica do not affect the percent decrease in GH from the baseline elevation. 3. With prolonged follow-up, further decrease in GH is seen at 10 and 15 years, with the fraction of surviving patients achieving GH levels less than 5 ng/mL approaching 90% after 15 years in our experience. Gender, previous surgery, and hyperprolactinemia do not seem to affect the response to treatment. Patients with initial GH greater than 100 ng/mL are significantly less likely to achieve GH values less than 5 ng/mL during long-term follow-up. 4. Hypopituitarism is a predictable outcome of treatment, is delayed, and may be more likely in patients who have had surgery prior to irradiation. There is no evidence that this complication is more common in patients with acromegaly than in patients with other pituitary adenomas receiving similar treatment. 5. Vision loss due to megavoltage irradiation--using modern techniques and limiting the total dose to 4680 rad given in 25 fractions over 35 days, with individual fractions not exceeding 180 rad--is extremely rare. The reported cases have occurred almost entirely in patients who have received larger doses or higher fractional doses. The theory that patients with acromegaly are prone to radiation-induced injury to the CNS and optic nerves and chiasm because of small vessel disease is not supported by a review of the reported cases. 6. Brain necrosis and secondary neoplasms induced by irradiation are extremely rare. 7. Although

  6. Prostate Stereotactic Ablative Radiation Therapy Using Volumetric Modulated Arc Therapy to Dominant Intraprostatic Lesions

    SciTech Connect

    Murray, Louise J.; Lilley, John; Thompson, Christopher M.; Cosgrove, Vivian; Mason, Josh; Sykes, Jonathan; Franks, Kevin; Sebag-Montefiore, David; Henry, Ann M.

    2014-06-01

    Purpose: To investigate boosting dominant intraprostatic lesions (DILs) in the context of stereotactic ablative radiation therapy (SABR) and to examine the impact on tumor control probability (TCP) and normal tissue complication probability (NTCP). Methods and Materials: Ten prostate datasets were selected. DILs were defined using T2-weighted, dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging. Four plans were produced for each dataset: (1) no boost to DILs; (2) boost to DILs, no seminal vesicles in prescription; (3) boost to DILs, proximal seminal vesicles (proxSV) prescribed intermediate dose; and (4) boost to DILs, proxSV prescribed higher dose. The prostate planning target volume (PTV) prescription was 42.7 Gy in 7 fractions. DILs were initially prescribed 115% of the PTV{sub Prostate} prescription, and PTV{sub DIL} prescriptions were increased in 5% increments until organ-at-risk constraints were reached. TCP and NTCP calculations used the LQ-Poisson Marsden, and Lyman-Kutcher-Burman models respectively. Results: When treating the prostate alone, the median PTV{sub DIL} prescription was 125% (range: 110%-140%) of the PTV{sub Prostate} prescription. Median PTV{sub DIL} D50% was 55.1 Gy (range: 49.6-62.6 Gy). The same PTV{sub DIL} prescriptions and similar PTV{sub DIL} median doses were possible when including the proxSV within the prescription. TCP depended on prostate α/β ratio and was highest with an α/β ratio = 1.5 Gy, where the additional TCP benefit of DIL boosting was least. Rectal NTCP increased with DIL boosting and was considered unacceptably high in 5 cases, which, when replanned with an emphasis on reducing maximum dose to 0.5 cm{sup 3} of rectum (Dmax{sub 0.5cc}), as well as meeting existing constraints, resulted in considerable rectal NTCP reductions. Conclusions: Boosting DILs in the context of SABR is technically feasible but should be approached with caution. If this therapy is adopted, strict rectal

  7. Boosting immunity by antiviral drug therapy: A simple relationship among timing, efficacy, and success

    NASA Astrophysics Data System (ADS)

    Komarova, Natalia L.; Barnes, Eleanor; Klenerman, Paul; Wodarz, Dominik

    2003-02-01

    Drug therapies against persistent human infections such as hepatitis C virus, hepatitis B virus, and HIV fail to consistently eradicate the infection from the host. Hence, recent emphasis has shifted to the study of antiviral therapy aimed at boosting specific immune responses. It was argued that structured therapy interruptions were required to achieve this, because such regimes have shown promising results in early HIV infection. Using mathematical models, we show that, contrary to this notion, a single phase of drug therapy can result in the establishment of sustained immunity. We present a simple relationship between timing of therapy and efficacy of the drugs required for success. In the presence of strong viral suppression, we show that therapy should be stopped relatively early, and that a longer duration of treatment leads to failure. On the other hand, in the presence of weaker viral suppression, stopping treatment too early is detrimental, and therapy has to be continued beyond a time threshold. We discuss our modeling results primarily in the context of HCV therapy during chronic infection. Although the therapy regimes explored here also have implications for HIV, virus-mediated destruction of specific immune cells renders success unlikely during the chronic phase of the infection.

  8. Radiation Therapy and Hearing Loss

    SciTech Connect

    Bhandare, Niranjan; Jackson, Andrew; Eisbruch, Avraham; Pan, Charlie C.; Flickinger, John C.; Antonelli, Patrick; Mendenhall, William M.

    2010-03-01

    A review of literature on the development of sensorineural hearing loss after high-dose radiation therapy for head-and-neck tumors and stereotactic radiosurgery or fractionated stereotactic radiotherapy for the treatment of vestibular schwannoma is presented. Because of the small volume of the cochlea a dose-volume analysis is not feasible. Instead, the current literature on the effect of the mean dose received by the cochlea and other treatment- and patient-related factors on outcome are evaluated. Based on the data, a specific threshold dose to cochlea for sensorineural hearing loss cannot be determined; therefore, dose-prescription limits are suggested. A standard for evaluating radiation therapy-associated ototoxicity as well as a detailed approach for scoring toxicity is presented.

  9. [Radiation therapy of pancreatic cancer].

    PubMed

    Huguet, F; Mornex, F; Orthuon, A

    2016-09-01

    Currently, the use of radiation therapy for patients with pancreatic cancer is subject to discussion. In adjuvant setting, the standard treatment is 6 months of chemotherapy with gemcitabine and capecitabine. Chemoradiation (CRT) may improve the survival of patients with incompletely resected tumors (R1). This should be confirmed by a prospective trial. Neoadjuvant CRT is a promising treatment especially for patients with borderline resectable tumors. For patients with locally advanced tumors, there is no a standard. An induction chemotherapy followed by CRT for non-progressive patients reduces the rate of local relapse. Whereas in the first trials of CRT large fields were used, the treated volumes have been reduced to improve tolerance. Tumor movements induced by breathing should be taken in account. Intensity modulated radiation therapy allows a reduction of doses to the organs at risk. Whereas widely used, this technique is not recommended. PMID:27523418

  10. [Radiation therapy of pancreatic cancer].

    PubMed

    Huguet, F; Mornex, F; Orthuon, A

    2016-09-01

    Currently, the use of radiation therapy for patients with pancreatic cancer is subject to discussion. In adjuvant setting, the standard treatment is 6 months of chemotherapy with gemcitabine and capecitabine. Chemoradiation (CRT) may improve the survival of patients with incompletely resected tumors (R1). This should be confirmed by a prospective trial. Neoadjuvant CRT is a promising treatment especially for patients with borderline resectable tumors. For patients with locally advanced tumors, there is no a standard. An induction chemotherapy followed by CRT for non-progressive patients reduces the rate of local relapse. Whereas in the first trials of CRT large fields were used, the treated volumes have been reduced to improve tolerance. Tumor movements induced by breathing should be taken in account. Intensity modulated radiation therapy allows a reduction of doses to the organs at risk. Whereas widely used, this technique is not recommended.

  11. Clinical studies on the use of radiation therapy as primary treatment of early breast cancer

    SciTech Connect

    Harris, J.R.; Beadle, G.F.; Hellman, S.

    1984-02-01

    The treatment of operable breast cancer by primary radiation therapy instead of mastectomy is undergoing evaluation in the United States and Europe. Retrospective studies of patients treated by primary radiation therapy show that local control and survival rates are comparable to those obtained by mastectomy. Detailed analysis of local failure following primary radiation therapy indicates the importance of excisional biopsy of the primary tumor, moderate doses of radiation to the breast and draining lymph node areas, and the use of a boost to the primary tumor area in maximizing local control. Further, the judicious use of local excision combined with meticulous radiotherapy technique yields highly satisfactory results for the majority of treated patients. Preliminary results from prospective trials also indicate that primary radiation therapy provides both local control and survival rates equivalent to mastectomy. Primary radiation therapy is becoming an increasingly important alternative to mastectomy where surgical and radiotherapeutic expertise are available to optimize both local tumor control and the final cosmetic outcome.

  12. Intraoperative delivery of cell-killing boost radiation - a review of current and future methods.

    PubMed

    Stoll, Anke; van Oepen, Alexander; Friebe, Michael

    2016-08-01

    Techniques for intraoperative radiation therapy (IORT), the applications of tumor bed radiation immediately after surgery or utilising intracavitary access, have evolved in recent years. They are designed to substitute or complement conventional external beam radiation therapy in selected patients. IORT has become an excellent treatment option because of good long-term therapy outcomes. The combination of IORT with external beam radiation therapy has the potential to improve local control. The purpose of this paper is to present IORT techniques using gamma and electronic sources, as well as more conventional nuclide-based approaches and to evaluate their effectiveness. Common techniques for radiation of tumor cavities are listed and compared. Radionuclide IORT methods are represented by balloon and hybrid multi-catheter devices in combination with appropriate afterloaders. Electron beam therapy dedicated for use as intraoperative radiation system is reviewed and miniature x-ray sources in electronic radiation therapy are presented. These systems could further simplify IORT, because they are easy to use and require no shielding due to their relatively low photon energies. In combination with additional imaging techniques (MRI, US, CT and NucMed) the application of these miniature x-ray sources or catheter-based nuclide therapies could be the future of IORT. PMID:27161210

  13. FULL ELECTROMAGNETIC SIMULATION OF COHERENT SYNCHROTRON RADIATION VIA THE LORENTZ-BOOSTED FRAME APPROACH

    SciTech Connect

    Fawley, William M; Vay, Jean-Luc

    2010-05-21

    Numerical simulation of some systems containing charged particles with highly relativistic directed motion can by speeded up by orders of magnitude by choice of the proper Lorentz-boosted frame. Orders of magnitude speedup has been demonstrated for simulations from first principles of laser-plasma accelerator, free electron laser, and particle beams interacting with electron clouds. Here we address the application of the Lorentz-boosted frame approach to coherent synchrotron radiation (CSR), which can be strongly present in bunch compressor chicanes. CSR is particularly relevant to the next generation of x-ray light sources and is simultaneously difficult to simulate in the lab frame because of the large ratio of scale lengths. It can increase both the incoherent and coherent longitudinal energy spread, effects that often lead to an increase in transverse emittance. We have adapted the WARP code to simulate CSR emission along a simple dipole bend. We present some scaling arguments for the possible computational speed up factor in the boosted frame and initial 3D simulation results.

  14. External beam boost versus interstitial high-dose-rate brachytherapy boost in the adjuvant radiotherapy following breast-conserving therapy in early-stage breast cancer: a dosimetric comparison

    PubMed Central

    Melchert, Corinna; Kovács, György

    2016-01-01

    Purpose This study aims to compare the dosimetric data of local tumor's bed dose escalation (boost) with photon beams (external beam radiation therapy – EBRT) versus high-dose-rate interstitial brachytherapy (HDR-BT) after breast-conserving treatment in women with early-stage breast cancer. Material and methods We analyzed the treatment planning data of 136 irradiated patients, treated between 2006 and 2013, who underwent breast-conserving surgery and adjuvant whole breast irradiation (WBI; 50.4 Gy) and boost (HDR-BT: 10 Gy in one fraction [n = 36]; EBRT: 10 Gy in five fractions [n = 100]). Organs at risk (OAR; heart, ipsilateral lung, skin, most exposed rib segment) were delineated. Dosimetric parameters were calculated with the aid of dose-volume histograms (DVH). A non-parametric test was performed to compare the two different boost forms. Results There was no difference for left-sided cancers regarding the maximum dose to the heart (HDR-BT 29.8% vs. EBRT 29.95%, p = 0.34). The maximum doses to the other OAR were significantly lower for HDR-BT (Dmax lung 47.12% vs. 87.7%, p < 0.01; rib 61.17% vs. 98.5%, p < 0.01; skin 57.1% vs. 94.75%, p < 0.01; in the case of right-sided breast irradiation, dose of the heart 6.00% vs. 16.75%, p < 0.01). Conclusions Compared to EBRT, local dose escalation with HDR-BT presented a significant dose reduction to the investigated OAR. Only left-sided irradiation showed no difference regarding the maximum dose to the heart. Reducing irradiation exposure to OAR could result in a reduction of long-term side effects. Therefore, from a dosimetric point of view, an interstitial boost complementary to WBI via EBRT seems to be more advantageous in the adjuvant radiotherapy of breast cancer.

  15. External beam boost versus interstitial high-dose-rate brachytherapy boost in the adjuvant radiotherapy following breast-conserving therapy in early-stage breast cancer: a dosimetric comparison

    PubMed Central

    Melchert, Corinna; Kovács, György

    2016-01-01

    Purpose This study aims to compare the dosimetric data of local tumor's bed dose escalation (boost) with photon beams (external beam radiation therapy – EBRT) versus high-dose-rate interstitial brachytherapy (HDR-BT) after breast-conserving treatment in women with early-stage breast cancer. Material and methods We analyzed the treatment planning data of 136 irradiated patients, treated between 2006 and 2013, who underwent breast-conserving surgery and adjuvant whole breast irradiation (WBI; 50.4 Gy) and boost (HDR-BT: 10 Gy in one fraction [n = 36]; EBRT: 10 Gy in five fractions [n = 100]). Organs at risk (OAR; heart, ipsilateral lung, skin, most exposed rib segment) were delineated. Dosimetric parameters were calculated with the aid of dose-volume histograms (DVH). A non-parametric test was performed to compare the two different boost forms. Results There was no difference for left-sided cancers regarding the maximum dose to the heart (HDR-BT 29.8% vs. EBRT 29.95%, p = 0.34). The maximum doses to the other OAR were significantly lower for HDR-BT (Dmax lung 47.12% vs. 87.7%, p < 0.01; rib 61.17% vs. 98.5%, p < 0.01; skin 57.1% vs. 94.75%, p < 0.01; in the case of right-sided breast irradiation, dose of the heart 6.00% vs. 16.75%, p < 0.01). Conclusions Compared to EBRT, local dose escalation with HDR-BT presented a significant dose reduction to the investigated OAR. Only left-sided irradiation showed no difference regarding the maximum dose to the heart. Reducing irradiation exposure to OAR could result in a reduction of long-term side effects. Therefore, from a dosimetric point of view, an interstitial boost complementary to WBI via EBRT seems to be more advantageous in the adjuvant radiotherapy of breast cancer. PMID:27648082

  16. Selecting the optimum particle for radiation therapy.

    PubMed

    Slater, James M

    2007-08-01

    Ionizing radiation therapy is one of the primary modalities for treating cancers. Ideally, the particle selected to deliver ionizing radiation for routine therapy should control the disease, cause minimal side effects, and be affordable. Two major properties for judging the utility of a particle, physical controllability and selective cell destruction, influence the decision for selection. The proton, at present, has the best combination of capabilities for routine radiation therapy. Heavier ions require further study to determine their role in patient treatment. PMID:17668950

  17. Missed Radiation Therapy and Cancer Recurrence

    Cancer.gov

    Patients who miss radiation therapy sessions during cancer treatment have an increased risk of their disease returning, even if they eventually complete their course of radiation treatment, according to a new study.

  18. Ototoxicity After Intensity-Modulated Radiation Therapy and Cisplatin-Based Chemotherapy in Children With Medulloblastoma

    SciTech Connect

    Paulino, Arnold C.; Lobo, Mark; Teh, Bin S.; Okcu, M. Fatih; South, Michael; Butler, E. Brian; Su, Jack; Chintagumpala, Murali

    2010-12-01

    Purpose: To report the incidence of Pediatric Oncology Group (POG) Grade 3 or 4 ototoxicity in a cohort of patients treated with craniospinal irradiation (CSI) followed by posterior fossa (PF) and/or tumor bed (TB) boost using intensity-modulated radiation therapy (IMRT). Methods and Materials: From 1998 to 2006, 44 patients with medulloblastoma were treated with CSI followed by IMRT to the PF and/or TB and cisplatin-based chemotherapy. Patients with standard-risk disease were treated with 18 to 23.4 Gy CSI followed by either a (1) PF boost to 36 Gy and TB boost to 54 to 55.8 Gy or (2) TB boost to 55.8 Gy. Patients with high-risk disease received 36 to 39.6 Gy CSI followed by a (1) PF boost to 54 to 55.8 Gy, (2) PF boost to 45 Gy and TB boost to 55.8 Gy, or (3) TB boost to 55.8 Gy. Median audiogram follow-up was 41 months (range, 11-92.4 months). Results: POG Grade Ototoxicity 0, 1, 2, 3. and 4 was found in 29, 32, 11, 13. and 3 ears. respectively, with POG Grade 3 or 4 accounting for 18.2% of cases. There was a statistically significant difference in mean radiation dose (D{sub mean}) cochlea according to degree of ototoxicity, with D{sub mean} cochlea increasing with severity of hearing loss (p = 0.027). Conclusions: Severe ototoxicity was seen in 18.2% of ears in children treated with IMRT boost and cisplatin-based chemotherapy. Increasing dose to the cochlea was associated with increasing severity of hearing loss.

  19. Radiation therapy for Graves' disease

    SciTech Connect

    Brennan, M.W.; Leone, C.R. Jr.; Janaki, L.

    1983-08-01

    We used radiation therapy (a total of 2,000 rads) to treat 14 patients (three men and 11 women, ranging in age from 27 to 72 years) with Graves' disease. Three of these patients had refused to take corticosteroids and the other 11 had failed to respond to them, had experienced side effects, or had other contraindications to their use. After follow-up periods ranging from six months to three years, soft-tissue inflammation was reduced in 13 of the 14 patients. All but two patients showed a decrease in proptosis of 1 to 3 mm. Myopathy showed the least improvement. Although we noted transient eyelid erythema, there were no permanent sequelae and none of the patients has had a recurrence of the inflammation.

  20. Melioidosis: reactivation during radiation therapy

    SciTech Connect

    Jegasothy, B.V.; Goslen, J.B.; Salvatore, M.A.

    1980-05-01

    Melioidosis is caused by Pseudomonas pseudomallei, a gram-negative, motile bacillus which is a naturally occurring soil saprophyte. The organism is endemic in Southeast Asia, the Philippines, Australia, and parts of Central and South America. Most human disease occurs from infection acquired in these countries. Infection with P pseudomallei may produce no apparent clinical disease. Acute pneumonitis or septicemia may result from inhalation of the organism, and inoculation into sites of trauma may cause localized skin abscesses, or the disease may remain latent and be reactivated months or years later by trauma, burns, or pneumococcal pneumonia, diabetic ketoacidosis, influenza, or bronchogenic carcinoma. The last is probably the commonest form of melioidosis seen in the United States. We present the first case of reactivation of melioidosis after radiation therapy for carcinoma of the lung, again emphasizing the need to consider melioidosis in a septic patient with a history of travel, especially to Southeast Asia.

  1. Whole-brain radiation therapy of brain metastasis.

    PubMed

    Sahgal, Arjun; Soliman, Hany; Larson, David A

    2012-01-01

    The purpose of this report was to review the role of whole brain radiotherapy (WBRT) in the management of brain metastases. In particular, we review the role of WBRT as a prophylactic therapy, and the role of surgery and stereotactic radiousurgery (SRS) with respect to WBRT, by discussing the relevant randomized controlled trials. WBRT is associated with toxicities and this may influence the decision to use WBRT and, therefore, we review both the acute side effects of WBRT and the more serious late side effects of neurocognitive impairment and leukoencephalopathy. As patients are living longer with brain metastases the role of WBRT is moving forward; however, using modern radiation technology we may be able to reduce the morbidity of this therapy. We present an extreme case of re-re-treatment WBRT with hippocampal sparing and simultaneous integrated boosts to multiple lesions as one of the future directions under evaluation. PMID:22236670

  2. Advanced Semiconductor Dosimetry in Radiation Therapy

    SciTech Connect

    Rosenfeld, Anatoly B.

    2011-05-05

    Modern radiation therapy is very conformal, resulting in a complexity of delivery that leads to many small radiation fields with steep dose gradients, increasing error probability. Quality assurance in delivery of such radiation fields is paramount and requires real time and high spatial resolution dosimetry. Semiconductor radiation detectors due to their small size, ability to operate in passive and active modes and easy real time multichannel readout satisfy many aspects of in vivo and in a phantom quality assurance in modern radiation therapy. Update on the recent developments and improvements in semiconductor radiation detectors and their application for quality assurance in radiation therapy, based mostly on the developments at the Centre for Medical Radiation Physics (CMRP), University of Wollongong, is presented.

  3. Radiation therapy facilities in the United States

    SciTech Connect

    Ballas, Leslie K.; Elkin, Elena B. . E-mail: elkine@mskcc.org; Schrag, Deborah; Minsky, Bruce D.; Bach, Peter B.

    2006-11-15

    Purpose: About half of all cancer patients in the United States receive radiation therapy as a part of their cancer treatment. Little is known, however, about the facilities that currently deliver external beam radiation. Our goal was to construct a comprehensive database of all radiation therapy facilities in the United States that can be used for future health services research in radiation oncology. Methods and Materials: From each state's health department we obtained a list of all facilities that have a linear accelerator or provide radiation therapy. We merged these state lists with information from the American Hospital Association (AHA), as well as 2 organizations that audit the accuracy of radiation machines: the Radiologic Physics Center (RPC) and Radiation Dosimetry Services (RDS). The comprehensive database included all unique facilities listed in 1 or more of the 4 sources. Results: We identified 2,246 radiation therapy facilities operating in the United States as of 2004-2005. Of these, 448 (20%) facilities were identified through state health department records alone and were not listed in any other data source. Conclusions: Determining the location of the 2,246 radiation facilities in the United States is a first step in providing important information to radiation oncologists and policymakers concerned with access to radiation therapy services, the distribution of health care resources, and the quality of cancer care.

  4. Combination External Beam Radiation and Brachytherapy Boost With Androgen Suppression for Treatment of Intermediate-Risk Prostate Cancer: An Initial Report of CALGB 99809

    SciTech Connect

    Hurwitz, Mark D.; McGinnis, Lamar S.; Keuttel, Michael R.; DiBiase, Steven J.; Small, Eric J.

    2008-11-01

    Purpose: Transperineal prostate brachytherapy (TPPB) can be used with external beam radiation therapy (EBRT) to provide a high-dose conformal boost to the prostate. The results of a multicenter Phase II trial assessing safety of combination of EBRT and TPPB boost with androgen suppression (AST) in treatment of intermediate-risk prostate cancer are present here. Materials and Methods: Patients had intermediate-risk prostate cancer. Six months of AST was administered. EBRT to the prostate and seminal vesicles was administered to 45Gy followed by TPPB using either {sup 125}I or {sup 103}Pd to deliver an additional 100Gy or 90Gy. Toxicity was graded using the National Cancer Institute CTC version 2 and the Radiation Therapy Oncology Group late radiation morbidity scoring systems. Results: Sixty-three patients were enrolled. Median follow-up was 38 months. Side effects of AST including sexual dysfunction and vasomotor symptoms were commonly observed. Apart from erectile dysfunction, short-term Grade 2 and 3 toxicity was noted in 21% and 7%, primarily genitourinary related. Long-term Grade 2 and 3 toxicities were noted in 13% and 3%. Two patients had Grade 3 dysuria that resolved with longer follow-up. The most common Grade 2 long-term toxicity was urinary frequency (5%). No biochemical or clinical evidence of progression was noted for the entire cohort. Conclusions: In a cooperative group setting, combination EBRT and TPPB boost with 6 months of AST was generally well tolerated with expected genitourinary and gastrointestinal toxicities. Further follow-up will be required to fully assess long-term toxicity and cancer control.

  5. What to Know about External Beam Radiation Therapy

    MedlinePlus

    ... Understanding Radiation Therapy What To Know About External Beam Radiation Therapy “My wife and I made a ... treatment. He also told me that the external beam radiation therapy wouldn’t make me radioactive. I ...

  6. Radiation Therapy Physics, 3rd Edition

    NASA Astrophysics Data System (ADS)

    Hendee, William R.; Ibbott, Geoffrey S.; Hendee, Eric G.

    2004-08-01

    The Third Edition of Radiation Therapy Physics addresses in concise fashion the fundamental diagnostic radiologic physics principles as well as their clinical implications. Along with coverage of the concepts and applications for the radiation treatment of cancer patients, the authors have included reviews of the most up-to-date instrumentation and critical historical links. The text includes coverage of imaging in therapy planning and surveillance, calibration protocols, and precision radiation therapy, as well as discussion of relevant regulation and compliance activities. It contains an updated and expanded section on computer applications in radiation therapy and electron beam therapy, and features enhanced user-friendliness and visual appeal with a new, easy-to-follow format, including sidebars and a larger trim size. With its user-friendly presentation and broad, comprehensive coverage of radiotherapy physics, this Third Edition doubles as a medical text and handy professional reference.

  7. External beam radiation therapy for orthopaedic pathology.

    PubMed

    Gross, Christopher E; Frank, Rachel M; Hsu, Andrew R; Diaz, Aidnag; Gitelis, Steven

    2015-04-01

    External beam radiation therapy is essential in the management of a wide spectrum of musculoskeletal conditions, both benign and malignant, including bony and soft-tissue sarcomas, metastatic tumors, pigmented villonodular synovitis, and heterotopic ossification. Radiation therapy, in combination with surgery, helps reduce the functional loss from cancer resections. Although the field of radiation therapy is firmly rooted in physics and radiation biology, its indications and delivery methods are rapidly evolving. External beam radiation therapy mainly comes in the form of four sources of radiotherapy: protons, photons, electrons, and neutrons. Each type of energy has a unique role in treating various pathologies; however, these energy types also have their own distinctive limitations and morbidities. PMID:25712073

  8. [Image guided radiation therapy (IGRT)].

    PubMed

    Lagrange, J-L; de Crevoisier, R

    2010-07-01

    Image guided radiation therapy (IGRT) is a major technical innovation of radiotherapy. It allows locating the tumor under the linear accelerator just before the irradiation, by direct visualization (3D mode soft tissue) or indirect visualization (2D mode and radio-opaque markers). The technical implementation of IGRT is done by very different complex devices. The most common modality, because available in any new accelerator, is the cone beam CT. The main experiment of IGRT focuses on prostate cancer. Preliminary studies suggest the use of IGRT combined with IMRT should increase local control and decrease toxicity, especially rectal toxicity. In head and neck tumors, due to major deformation, a rigid registration is insufficient and replanning is necessary (adaptive radiotherapy). The onboard imaging delivers a specific dose, needed to be measured and taken into account, in order not to increase the risk of toxicity. Studies comparing different modalities of IGRT according to clinical and economic endpoints are ongoing; to better define the therapeutic indications.

  9. Radiation Sensitization in Cancer Therapy.

    ERIC Educational Resources Information Center

    Greenstock, Clive L.

    1981-01-01

    Discusses various aspects of radiation damage to biological material, including free radical mechanisms, radiation sensitization and protection, tumor hypoxia, mechanism of hypoxic cell radiosensitization, redox model for radiation modification, sensitizer probes of cellular radiation targets, pulse radiolysis studies of free radical kinetics,…

  10. External Beam Boost for Cancer of the Cervix Uteri When Intracavitary Therapy Cannot Be Performed

    SciTech Connect

    Barraclough, Lisa Helen Swindell, Ric; Livsey, Jacqueline E.; Hunter, Robin D.; Davidson, Susan E.

    2008-07-01

    Purpose: To assess the outcome of patients treated with radical radiotherapy for cervical cancer who received an external beam boost, in place of intracavitary brachytherapy (ICT), after irradiation to the whole pelvis. Methods and Materials: Case notes were reviewed for all patients treated in this way in a single center between 1996 and 2004. Patient and tumor details, the reasons why ICT was not possible, and treatment outcome were documented. Results: Forty-four patients were identified. The mean age was 56.4 years (range, 26-88 years). Clinical International Federation of Gynecology and Obstetrics or radiologic stage for Stages I, II, III, and IV, respectively, was 16%, 48%, 27%, and 7%. A total radiation dose of 54-70 Gy was given (75% received {>=}60 Gy). Reasons for ICT not being performed were technical limitations in 73%, comorbidity or isolation limitations in 23%, and patient choice in 4%. The median follow-up was 2.3 years. Recurrent disease was seen in 48%, with a median time to recurrence of 2.3 years. Central recurrence was seen in 16 of the 21 patients with recurrent disease. The 5-year overall survival rate was 49.3%. The 3-year cancer-specific survival rate by stage was 100%, 70%, and 42% for Stages I, II, and III, respectively. Late Grades 1 and 2 bowel, bladder, and vaginal toxicity were seen in 41%. Late Grade 3 toxicity was seen in 2%. Conclusion: An external beam boost is a reasonable option after external beam radiotherapy to the pelvis when it is not possible to perform ICT.

  11. [Therapy of radiation enteritis--current challenges].

    PubMed

    Baranyai, Zsolt; Sinkó, Dániel; Jósa, Valéria; Zaránd, Attila; Teknos, Dániel

    2011-07-10

    Radiation enteritis is one of the most feared complications after abdominal and pelvic radiation therapy. The incidence varies from 0.5 to 5%. It is not rare that the slowly progressing condition will be fatal. During a period of 13 years 24 patients were operated due to the complication of radiation enteritis. Despite different types of surgery repeated operation was required in 25% of cases and finally 4 patients died. Analyzing these cases predisposing factors and different therapeutic options of this condition are discussed. Treatment options of radiation induced enteritis are limited; however, targeted therapy significantly improves the outcome. Cooperation between oncologist, gastroenterologist and surgeon is required to establish adequate therapeutic plan.

  12. Hyperbaric oxygen therapy for radiation myelitis

    SciTech Connect

    Poulton, T.J.; Witcofski, R.L.

    1985-12-01

    Radiation therapy may damage healthy tissues adjacent to tumor. Hyperbaric oxygen therapy (HBO) is useful in treating soft tissue and osteoradionecrosis. In addition, HBO has been recommended to treat radiation-induced myelitis. We used radiation to induce a predictable myelitis in the spinal cords of rats who were randomized into treatment (HBO) and control groups 8 wk after irradiation. Serial neurologic examination showed no benefit or harm as a result of HBO. This small pilot study did not demonstrate any clinically significant benefit of HBO for radiation myelitis in rats.

  13. Comparing Postoperative Radiation Therapies for Brain Metastases

    Cancer.gov

    In this clinical trial, patients with one to four brain metastases who have had at least one of the metastatic tumors removed surgically will be randomly assigned to undergo whole-brain radiation therapy or stereotactic radiosurgery.

  14. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 2 2013-10-01 2013-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  15. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  16. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 2 2014-10-01 2014-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  17. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 2 2011-10-01 2011-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  18. 42 CFR 410.35 - X-ray therapy and other radiation therapy services: Scope.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 2 2012-10-01 2012-10-01 false X-ray therapy and other radiation therapy services... Other Health Services § 410.35 X-ray therapy and other radiation therapy services: Scope. Medicare Part B pays for X-ray therapy and other radiation therapy services, including radium therapy...

  19. Hypofractionation in radiation therapy and its impact

    SciTech Connect

    Papiez, Lech; Timmerman, Robert

    2008-01-15

    A brief history of the underlying principles of the conventional fractionation in radiation therapy is discussed, followed by the formulation of the hypothesis for hypofractionated stereotactic body radiation therapy (SBRT). Subsequently, consequences of the hypothesis for SBRT dose shaping and dose delivery techniques are sketched. A brief review of the advantages of SBRT therapy in light of the existing experience is then provided. Finally, the need for new technological developments is advocated to make SBRT therapies more practical, safer, and clinically more effective. It is finally concluded that hypofractionated SBRT treatment will develop into a new paradigm that will shape the future of radiation therapy by providing the means to suppress the growth of most carcinogen-induced carcinomas and by supporting the cure of the disease.

  20. Role of radiation therapy for 'juvenile' angiofibroma.

    PubMed

    Gudea, F; Vega, M; Canals, E; Montserrat, J M; Valdano, J

    1990-09-01

    Juvenile nasopharyngeal angiofibroma (JNA) is a rare benign neoplasm which occurs primarily in male adolescents and is characterized by aggressive local growth. The controversy concerning appropriate treatment for patients with juvenile angiofibroma persists. Radiation therapy and surgical resection have both been reported to be effective to control a high proportion of these tumours. The case reported here demonstrates a locally advanced JNA controlled by radiation therapy.

  1. Nursing care update: Internal radiation therapy

    SciTech Connect

    Lowdermilk, D.L.

    1990-01-01

    Internal radiation therapy has been used in treating gynecological cancers for over 100 years. A variety of radioactive sources are currently used alone and in combination with other cancer treatments. Nurses need to be able to provide safe, comprehensive care to patients receiving internal radiation therapy while using precautions to keep the risks of exposure to a minimum. This article discusses current trends and issues related to such treatment for gynecological cancers.20 references.

  2. THERMOPLASTIC MATERIALS APPLICATIONS IN RADIATION THERAPY.

    PubMed

    Munteanu, Anca; Moldoveanu, Sinziana; Manea, Elena

    2016-01-01

    This is an example of the use of thermoplastic materials in a high-tech medicine field, oncology radiation therapy, in order to produce the rigid masks for positioning and immobilization of the patient during simulation of the treatment procedure, the imaging verification of position and administration of the indicated radiation dose. Implementation of modern techniques of radiation therapy is possible only if provided with performant equipment (CT simulators, linear accelerators of high energy particles provided with multilamellar collimators and imaging verification systems) and accessories that increase the precision of the treatment (special supports for head-neck, thorax, pelvis, head-neck and thorax immobilization masks, compensating materials like bolus type material). The paper illustrates the main steps in modern radiation therapy service and argues the role of thermoplastics in reducing daily patient positioning errors during treatment. As part of quality assurance of irradiation procedure, using a rigid mask is mandatory when applying 3D conformal radiation therapy techniques, radiation therapy with intensity modulated radiation or rotational techninques.

  3. THERMOPLASTIC MATERIALS APPLICATIONS IN RADIATION THERAPY.

    PubMed

    Munteanu, Anca; Moldoveanu, Sinziana; Manea, Elena

    2016-01-01

    This is an example of the use of thermoplastic materials in a high-tech medicine field, oncology radiation therapy, in order to produce the rigid masks for positioning and immobilization of the patient during simulation of the treatment procedure, the imaging verification of position and administration of the indicated radiation dose. Implementation of modern techniques of radiation therapy is possible only if provided with performant equipment (CT simulators, linear accelerators of high energy particles provided with multilamellar collimators and imaging verification systems) and accessories that increase the precision of the treatment (special supports for head-neck, thorax, pelvis, head-neck and thorax immobilization masks, compensating materials like bolus type material). The paper illustrates the main steps in modern radiation therapy service and argues the role of thermoplastics in reducing daily patient positioning errors during treatment. As part of quality assurance of irradiation procedure, using a rigid mask is mandatory when applying 3D conformal radiation therapy techniques, radiation therapy with intensity modulated radiation or rotational techninques. PMID:27125096

  4. Tumor bed boost radiotherapy in breast cancer. A review of current techniques.

    PubMed

    Bahadur, Yasir A; Constantinescu, Camelia T

    2012-04-01

    Various breast boost irradiation techniques were studied and compared. The most commonly used techniques are external beam radiation therapy (EBRT) (photons or electrons) and high dose rate (HDR) interstitial brachytherapy, but recent studies have also revealed the use of advanced radiotherapy techniques, such as intensity modulated radiation therapy (IMRT), intra-operative radiation therapy (IORT), tomotherapy, and protons. The purpose of this study is to systematically review the literature concerning breast boost radiotherapy techniques, and suggest evidence based guidelines for each. A search for literature was performed in the National Library of Medicine's (PubMed) database for English-language articles published from 1st January 1990 to 5th April 2011. The key words were `breast boost radiotherapy`, `breast boost irradiation`, and `breast boost irradiation AND techniques`. Randomized trials comparing the long-term results of boost irradiation techniques, balancing the local control, and cosmesis against logistic resources, and including cost-benefit analysis are further needed. PMID:22485229

  5. Particle Radiation Therapy: Requiem or Reveille

    PubMed Central

    Alexander, Leslie L.; Goldson, Alfred L.; Alexander, George A.

    1979-01-01

    The 1960s and 1970s witnessed a surge of many institutions devoted to electron therapy. Currently, many facilities are adding or have added particle types of radiation to their armamentarium against cancer. The authors review the concepts, problems, and potentials of this form of therapy. ImagesFigure 1 PMID:423289

  6. Radiologist, computed tomography, and radiation therapy

    SciTech Connect

    Goitein, M.; Meyer, J.

    1982-06-01

    The use of computed tomography (CT) in planning radiation therapy is discussed. The three major issues that involve collaboration between the diagnostic radiologist and the radiation therapist are identified as selection of equipment, logistics, and conduct of individual CT studies. The importance of cooperation between the diagnostic and therapeutic radiologist is stressed.

  7. New therapeutic strategies in radiation therapy

    SciTech Connect

    Kinsella, T.J.; Bloomer, W.D.

    1981-04-24

    Radiation therapy has been an integral part of curative cancer therapy for many decades. The tolerance of normal tissues traversed by radiation and resistant tumor cell populations traditionally have limited the radiocurability of certain tumors, especially with higher clinical stages. However, research in radiobiology and radiation physics is providing ways to increase cure while limiting morbidity. Computer-controlled dynamic treatment, radioprotector drugs, hyperbaric oxygen, carbogen breathing during irradiation, particle irradiation, and hypoxic cell sensitizing drugs are presently undergoing clinical evaluation with some encouraging preliminary results. We review the fundamental concepts underlying these clinical trials and analyze the results.

  8. Volumetric modulated arc therapy planning for primary prostate cancer with selective intraprostatic boost determined by 18F-choline PET/CT

    PubMed Central

    Kuang, Yu; Wu, Lili; Hirata, Emily; Miyazaki, Kyle; Sato, Miles; Kwee, Sandi A.

    2015-01-01

    Objective Evaluate expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boost to an intraprostatic dominant lesion (IDL) defined by 18F-fluorocholine PET/CT. Methods Thirty patients with localized prostate cancer underwent 18F-fluorocholine PET/CT before treatment. Two VMAT plans, plan79Gy and plan100-105Gy, were compared for each patient. The whole-prostate planning target volume (PTVprostate) was prescribed 79 Gy in both plans, however plan100-105Gy added simultaneous boost doses of 100 Gy and 105 Gy prescribed to IDLs defined by 60% and 70% of maximum prostatic uptake on 18F-fluorocholine PET (IDLsuv60% and IDLsuv70%, respectively, with IDLsuv70% nested inside IDLsuv60% to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathologic correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Results Planning objectives and dose constraints proved feasible in 30/30 cases. Prostate sextant histopathology was available from 28 cases, confirming that IDLsuv60% adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in one case. Plan100-105Gy had significantly higher TCP than Plan79Gy across all prostate regions for α/β ratios ranging from 1.5 Gy to 10Gy (p < 0.001 each case). There were no significant differences in bladder and femoral head NTCP between plans, and slightly lower rectal NTCP (endpoint: grade 2+ late toxicity or rectal bleeding) for plan100-105Gy. Conclusion VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through simultaneous delivery of a steep radiation boost to an 18F-fluorocholine PET-defined IDL. PMID:25832692

  9. [Laser radiations in medical therapy].

    PubMed

    Richand, P; Boulnois, J L

    1983-06-30

    The therapeutic effects of various types of laser beams and the various techniques employed are studied. Clinical and experimental research has shown that Helio-Neon laser beams are most effective as biological stimulants and in reducing inflammation. For this reasons they are best used in dermatological surgery cases (varicose ulcers, decubital and surgical wounds, keloid scars, etc.). Infrared diode laser beams have been shown to be highly effective painkillers especially in painful pathologies like postherpetic neuritis. The various applications of laser therapy in acupuncture, the treatment of reflex dermatologia and optic fibre endocavital therapy are presented. The neurophysiological bases of this therapy are also briefly described.

  10. Particle therapy for cancers: a new weapon in radiation therapy.

    PubMed

    Jiang, Guo-Liang

    2012-06-01

    Particle irradiation started to draw attention in the past decade and has now become a hotspot in the radiation oncology community. This article reviews the most advanced developments in particle irradiation, focusing on the characteristics of proton and carbon ions in radiation physics and radiobiology. The Bragg peak of physical dose distribution causes proton and carbon beams to optimally meet the requirement for cancer irradiation because the Bragg peak permits the accurate concentration of the dose on the tumor, thus sparing the adjacent normal tissues. Moreover, carbon ion has more radiobiological benefits than photon and proton beams. These benefits include stronger sterilization effects on intrinsic radio-resistant tumors and more effective killing of hypoxic, G(0), and S phase cells. Compared with the most advanced radiation techniques using photon, such as three-dimensional conformal radiation therapy and intensity-modulated radiation therapy, proton therapy has yielded more promising outcomes in local control and survival for head and neck cancers, prostate carcinoma, and pediatric cancers. Carbon therapy in Japan showed even more promising results than proton therapy. The local controls and overall survivals were as good as that treated by surgery in early stages of non-small cell lung cancer, hepatocellular carcinoma, prostate carcinoma, and head and neck cancers, especially for such highly resistant tumors as melanoma. The non-invasive nature of particle therapy affords more patients with chances to receive and benefit from treatment. Particle therapy is gradually getting attention from the oncology community. However, the cost of particle therapy facilities has limited the worldwide use of this technology.

  11. How Should I Care for Myself During Radiation Therapy?

    MedlinePlus

    ... Upper GI What is Radiation Therapy? Find a Radiation Oncologist Last Name: Facility: City: State: Zip Code: ... information How Should I Care for Myself During Radiation Therapy? Get plenty of rest. Many patients experience ...

  12. Ocular neuromyotonia after radiation therapy

    SciTech Connect

    Lessell, S.; Lessell, I.M.; Rizzo, J.F. III

    1986-12-15

    Ocular neuromyotonia is a paroxysmal monocular deviation that results from spasm of eye muscles secondary to spontaneous discharges from third, fourth, or sixth nerve axons. We observed this rare disorder in four patients who had been treated with radiation for tumors in the region of the sella turcica and cavernous sinus. Based on these cases and four others identified in the literature it would appear that radiation predisposes to a cranial neuropathy in which ocular neuromyotonia may be the major manifestation. Radiation appears to be the most common cause of ocular neuromyotonia.

  13. Impaired skin integrity related to radiation therapy

    SciTech Connect

    Ratliff, C.

    1990-09-01

    Skin reactions associated with radiation therapy require frequent nursing assessment and intervention. Preventive interventions and early management can minimize the severity of the skin reaction. With the understanding of the pathogenesis of radiation skin reactions, the ET nurse can determine who is at risk and then implement preventive measures. Because radiation treatment is fractionated, skin reactions do not usually occur until midway through the course of therapy and will subside within a few weeks after completion of radiation. Many patients and their families still fear that radiation causes severe burns. Teaching and anticipatory guidance by the ET nurse is needed to assist patients and their families to overcome this fear, and to educate them on preventive skin care regimens.

  14. Outcome and Prognostic Factors of Radiation Therapy for Medulloblastoma

    SciTech Connect

    Rieken, Stefan; Mohr, Angela; Habermehl, Daniel; Welzel, Thomas; Lindel, Katja; Witt, Olaf; Kulozik, Andreas E.; Wick, Wolfgang; Debus, Juergen; Combs, Stephanie E.

    2011-11-01

    Purpose: To investigate treatment outcome and prognostic factors after radiation therapy in patients with medulloblastomas (MB). Methods and Materials: Sixty-six patients with histologically confirmed MB were treated at University Hospital of Heidelberg between 1985 and 2009. Forty-two patients (64%) were pediatric ({<=}18 years), and 24 patients (36%) were adults. Tumor resection was performed in all patients and was complete in 47%. All patients underwent postoperative craniospinal irradiation (CSI) delivering a median craniospinal dose of 35.5 Gy with additional boosts to the posterior fossa up to 54.0 Gy. Forty-seven patients received chemotherapy, including 21 in whom chemotherapy was administered before CSI. Statistical analysis was performed using the log-rank test and the Kaplan-Meier method. Results: Median follow-up was 93 months. Overall survival (OS) and local and distant progression-free survival (LPFS and DPFS) were 73%, 62%, and 77% at 60 months. Both local and distant recurrence predisposed for significantly reduced OS. Macroscopic complete tumor resection, desmoplastic histology and early initiation of postoperative radiation therapy within 28 days were associated with improved outcome. The addition of chemotherapy did not improve survival rates. Toxicity was moderate. Conclusions: Complete resection of MB followed by CSI yields long survival rates in both children and adults. Delayed initiation of CSI is associated with poor outcome. Desmoplastic histology is associated with improved survival. The role of chemotherapy, especially in the adult population, must be further investigated in clinical studies.

  15. Resource Letter MPRT-1: Medical Physics in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Ratliff, Steven T.

    2009-09-01

    This resource letter provides a guide to the literature on medical physics in the field of radiation therapy. Journal articles, books, and websites are cited for the following topics: radiological physics, particle accelerators, radiation dose measurements, protocols for radiation dose measurements, radiation shielding and radiation protection, neutron, proton, and heavy-ion therapies, imaging for radiation therapy, brachytherapy, quality assurance, treatment planning, dose calculations, and intensity-modulated and image-guided therapy.

  16. Radiation therapy in cholangiocellular carcinomas.

    PubMed

    Brunner, Thomas B; Seufferlein, Thomas

    2016-08-01

    Cholangiocarcinoma can arise in all parts of the biliary tract and this has implications for therapy. Surgery is the mainstay of therapy however local relapse is a major problem. Therefore, adjuvant treatment with chemoradiotherapy was tested in trials. The SWOG-S0809 trial regimen of chemoradiotherapy which was tested in extrahepatic cholangiocarcinoma and in gallbladder cancer can currently be regarded as highest level of evidence for this indication. In contrast to adjuvant therapy where only conventionally fractionated radiotherapy plays a role, stereotactic body radiotherapy (SBRT) today has become a powerful alternative to chemoradiotherapy for definitive treatment due to the ability to administer higher doses of radiotherapy to improve local control. Sequential combinations with chemotherapy are also frequently employed. Nevertheless, in general cholangiocarcinoma is an orphan disease and future clinical trials will have to improve the available level of evidence. PMID:27644907

  17. Radiation Therapy for Cutaneous T-Cell Lymphomas.

    PubMed

    Tandberg, Daniel J; Craciunescu, Oana; Kelsey, Chris R

    2015-10-01

    Radiation therapy is an extraordinarily effective skin-directed therapy for cutaneous T-cell lymphomas. Lymphocytes are extremely sensitive to radiation and a complete response is generally achieved even with low doses. Radiation therapy has several important roles in the management of mycosis fungoides. For the rare patient with unilesional disease, radiation therapy alone is potentially curative. For patients with more advanced cutaneous disease, radiation therapy to local lesions or to the entire skin can effectively palliate symptomatic disease and provide local disease control. Compared with other skin-directed therapies, radiation therapy is particularly advantageous because it can effectively penetrate and treat thicker plaques and tumors. PMID:26433843

  18. Radiation therapy after breast augmentation or reconstruction in early or recurrent breast cancer

    SciTech Connect

    Ryu, J.; Yahalom, J.; Shank, B.; Chaglassian, T.A.; McCormick, B. )

    1990-09-01

    Fourteen patients whose augmented or reconstructed breasts were treated with radiation therapy were analyzed. Silicone gel implants were used in 13 patients and free-injected silicone in one patient. The total radiation dose ranged from 4400 to 6200 cGy using tangential photon fields or an en face electron field by megavoltage equipment. In several cases, electron boost radiation was added to the tumor bed. The majority of the patients tolerated therapy well with minimal transient skin reactions; only three patients required a treatment break secondary to moist desquamation. Three patients developed documented implant encapsulation, although the majority retained good to excellent cosmesis. In summary, when breast carcinoma arises in the augmented or reconstructed breast, conservative management (i.e., limited surgery and definitive irradiation) is feasible without compromising the therapy or the cosmetic result. Thus, conservative management should be offered as an option to patients who are interested in breast prosthesis conservation.

  19. Radiation sensitization in cancer therapy

    SciTech Connect

    Greenstock, C.L.

    1981-02-01

    One possible benefit of stimulated oxygen consumption rendering aerobic cancer cells hypoxic, and the reductive sensitizer drug metabolism which has been found to be selective for hypoxic tissue, is that the resulting reductive metabolites are selectively toxic and may be useful in chemotherapy to kill sensitive hypoxic tumor cells. Radiation chemical, biochemical and pharmacological studies are continuing to provide additional information on drug delivery, metabolism and cytotoxicity, in order to select and evaluate clinically acceptable sensitizer drugs. Radiation chemical studies over the past decade have led to the development and selection of the nitroimidazoles, metronidazole and misonidazole for clinical evaluation in terms of improved cancer treatments. The results of ongoing clinical trials will, within the next few years, indicate how successful this application of basic radiation chemical research has been. 39 references are included. (JMT)

  20. Hypofractionated Radiation Therapy for Breast Ductal Carcinoma In Situ

    SciTech Connect

    Hathout, Lara; Hijal, Tarek; Théberge, Valérie; Fortin, Bernard; Vulpe, Horia; Hogue, Jean-Charles; Lambert, Christine; Bahig, Houda; and others

    2013-12-01

    Purpose: Conventional radiation therapy (RT) administered in 25 fractions after breast-conserving surgery (BCS) is the standard treatment for ductal carcinoma in situ (DCIS) of the breast. Although accelerated hypofractionated regimens in 16 fractions have been shown to be equivalent to conventional RT for invasive breast cancer, few studies have reported results of using hypofractionated RT in DCIS. Methods and Materials: In this multicenter collaborative effort, we retrospectively reviewed the records of all women with DCIS at 3 institutions treated with BCS followed by hypofractionated whole-breast RT (WBRT) delivered in 16 fractions. Results: Between 2003 and 2010, 440 patients with DCIS underwent BCS followed by hypofractionated WBRT in 16 fractions for a total dose of 42.5 Gy (2.66 Gy per fraction). Boost RT to the surgical bed was given to 125 patients (28%) at a median dose of 10 Gy in 4 fractions (2.5 Gy per fraction). After a median follow-up time of 4.4 years, 14 patients had an ipsilateral local relapse, resulting in a local recurrence-free survival of 97% at 5 years. Positive surgical margins, high nuclear grade, age less than 50 years, and a premenopausal status were all statistically associated with an increased occurrence of local recurrence. Tumor hormone receptor status, use of adjuvant hormonal therapy, and administration of additional boost RT did not have an impact on local control in our cohort. On multivariate analysis, positive margins, premenopausal status, and nuclear grade 3 tumors had a statistically significant worse local control rate. Conclusions: Hypofractionated RT using 42.5 Gy in 16 fractions provides excellent local control for patients with DCIS undergoing BCS.

  1. Respiratory Motion Prediction in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Vedam, Sastry

    Active respiratory motion management has received increasing attention in the past decade as a means to reduce the internal margin (IM) component of the clinical target volume (CTV)—planning target volume (PTV) margin typically added around the gross tumor volume (GTV) during radiation therapy of thoracic and abdominal tumors. Engineering and technical developments in linear accelerator design and respiratory motion monitoring respectively have made the delivery of motion adaptive radiation therapy possible through real-time control of either dynamic multileaf collimator (MLC) motion (gantry based linear accelerator design) or robotic arm motion (robotic arm mounted linear accelerator design).

  2. Building immunity to cancer with radiation therapy.

    PubMed

    Haikerwal, Suresh J; Hagekyriakou, Jim; MacManus, Michael; Martin, Olga A; Haynes, Nicole M

    2015-11-28

    Over the last decade there has been a dramatic shift in the focus of cancer research toward understanding how the body's immune defenses can be harnessed to promote the effectiveness of cytotoxic anti-cancer therapies. The ability of ionizing radiation to elicit anti-cancer immune responses capable of controlling tumor growth has led to the emergence of promising combination-based radio-immunotherapeutic strategies for the treatment of cancer. Herein we review the immunoadjuvant properties of localized radiation therapy and discuss how technological advances in radio-oncology and developments in the field of tumor-immunotherapy have started to revolutionize the therapeutic application of radiotherapy.

  3. Radiation Therapy for Pilocytic Astrocytomas of Childhood

    SciTech Connect

    Mansur, David B.; Rubin, Joshua B.; Kidd, Elizabeth A.; King, Allison A.; Hollander, Abby S.; Smyth, Matthew D.; Limbrick, David D.; Park, T.S.; Leonard, Jeffrey R.

    2011-03-01

    Purpose: Though radiation therapy is generally considered the most effective treatment for unresectable pilocytic astrocytomas in children, there are few data to support this claim. To examine the efficacy of radiation therapy for pediatric pilocytic astrocytomas, we retrospectively reviewed the experience at our institution. Methods and Materials: Thirty-five patients 18 years old or younger with unresectable tumors and without evidence of neurofibromatosis have been treated since 1982. Patients were treated with local radiation fields to a median dose of 54 Gy. Six patients were treated with radiosurgery to a median dose of 15.5 Gy. Five patients were treated with initial chemotherapy and irradiated after progression. Results: All patients were alive after a median follow-up of 5.0 years. However, progression-free survival was 68.7%. None of 11 infratentorial tumors progressed compared with 6 of 20 supratentorial tumors. A trend toward improved progression-free survival was seen with radiosurgery (80%) compared with external beam alone (66%), but this difference did not reach statistical significance. Eight of the 9 patients progressing after therapy did so within the irradiated volume. Conclusions: Although the survival of these children is excellent, almost one third of patients have progressive disease after definitive radiotherapy. Improvements in tumor control are needed in this patient population, and the optimal therapy has not been fully defined. Prospective trials comparing initial chemotherapy to radiation therapy are warranted.

  4. Anesthesia for intraoperative radiation therapy in children

    SciTech Connect

    Friesen, R.H.; Morrison, J.E. Jr.; Verbrugge, J.J.; Daniel, W.E.; Aarestad, N.O.; Burrington, J.D.

    1987-06-01

    Intraoperative radiation therapy (IORT) is a relatively new mode of cancer treatment which is being used with increasing frequency. IORT presents several challenges to the anesthesiologist, including patients who are debilitated from their disease or chemotherapy, operations involving major tumor resections, intraoperative interdepartmental transport of patients, and remote monitoring of patients during electron beam therapy. This report discusses the anesthetic management of ten children undergoing IORT. With adequate preparation and interdepartmental communication, complications can be avoided during these challenging cases.

  5. Effects of radiation therapy in microvascular anastomoses

    SciTech Connect

    Fried, M.P.

    1985-07-01

    The otolaryngologist, as a head and neck surgeon, commonly cares for patients with upper aerodigestive tract malignancies. Therapy of these neoplasms often requires wide excision. One standard reconstructive procedure utilizes pedicled regional flaps, both dermal and myodermal which have some disadvantages. The shortcomings of these pedicled regional flaps have led to the use of the vascularized free flap in certain cases. The occasional case may lead to catastrophe if microanastomoses fail when combined with radiation. Notwithstanding, many surgical series have reported success when radiation has been given. The present investigation was undertaken to assess the effects of radiation therapy on microvascular anastomoses when radiation is administered pre- or postoperatively or when nonradiated tissue is transferred to an irradiated recipient site. These effects were observed serially in an experimental rat model using a tubed superficial epigastric flap that adequately reflected tissue viability and vascular patency. The histologic changes were then noted over a three month period after completion of both radiation and surgery. This study adds credence to the observation of the lack of deleterious effects of radiation on experimental microvascular anastomotic patency whether the radiation is given before or after surgery or if radiated tissue is approximated to nonradiated vessels.

  6. Bullous pemphigoid after radiation therapy

    SciTech Connect

    Duschet, P.; Schwarz, T.; Gschnait, F.

    1988-02-01

    Electron beam therapy applied to a lymph node metastasis from a squamous cell carcinoma was followed by the development of histologically and immunologically typical bullous pemphigoid, the lesions being initially strictly confined to the irradiation area. This observation suggests that the bullous pemphigoid antigen may be altered or unmasked by electron beam radiotherapy, leading subsequently to the production of autoantibodies. The disease in this case effectively responded to the administration of tetracycline and niacinamide, a therapeutic regimen described recently.

  7. Secondary Malignancy Risk Following Proton Radiation Therapy

    PubMed Central

    Eaton, Bree R.; MacDonald, Shannon M.; Yock, Torunn I.; Tarbell, Nancy J.

    2015-01-01

    Radiation-induced secondary malignancies are a significant, yet uncommon cause of morbidity and mortality among cancer survivors. Secondary malignancy risk is dependent upon multiple factors including patient age, the biological and genetic predisposition of the individual, the volume and location of tissue irradiated, and the dose of radiation received. Proton therapy (PRT) is an advanced particle therapy with unique dosimetric properties resulting in reduced entrance dose and minimal to no exit dose when compared with standard photon radiation therapy. Multiple dosimetric studies in varying cancer subtypes have demonstrated that PRT enables the delivery of adequate target volume coverage with reduced integral dose delivered to surrounding tissues, and modeling studies taking into account dosimetry and radiation cell biology have estimated a significantly reduced risk of radiation-induced secondary malignancy with PRT. Clinical data are emerging supporting the lower incidence of secondary malignancies after PRT compared with historical photon data, though longer follow-up in proton treated cohorts is awaited. This article reviews the current dosimetric and clinical literature evaluating the incidence of and risk factors associated with radiation-induced secondary malignancy following PRT. PMID:26636040

  8. Intensity-modulated radiation therapy: dynamic MLC (DMLC) therapy, multisegment therapy and tomotherapy. An example of QA in DMLC therapy.

    PubMed

    Webb, S

    1998-10-01

    Intensity-modulated radiation therapy will make a quantum leap in tumor control. It is the new radiation therapy for the new millennium. The major methods to achieve IMRT are: 1. dynamic multileaf collimator (DMLC) therapy, 2. multisegment therapy, and 3. tomotherapy. The principles of these 3 techniques are briefly reviewed. Each technique presents unique QA issues which are outlined. As an example this paper will present the results of a recent new study of an important QA concern in DMLC therapy.

  9. Glossodynia after radiation therapy and chemotherapy

    SciTech Connect

    Naylor, G.D.; Marino, G.G.; Shumway, R.C.

    1989-10-01

    Radiation therapy and chemotherapy have decreased the mortality rates of cancer patients, but the morbidity associated with oral complications is high in many cases. A pretreatment oral evaluation and institution of a preventive care program reduce oral symptoms such as glossodynia considerably. When oral symptoms are minimized, the dentist can improve the patient's quality of life.40 references.

  10. Process of Coping with Radiation Therapy.

    ERIC Educational Resources Information Center

    Johnson, Jean E.; And Others

    1989-01-01

    Evaluated ability of self-regulation and emotional-drive theories to explain effects of informational intervention entailing objective descriptions of experience on outcomes of coping with radiation therapy among 84 men with prostate cancer. Consistent with self-regulation theory, similarity between expectations and experience and degree of…

  11. Stereotactic body radiation therapy delivery validation

    NASA Astrophysics Data System (ADS)

    Olding, T.; Garcia, L.; Alexander, K.; Schreiner, L. J.; Joshi, C.

    2013-06-01

    This work describes the use of a motion phantom and 1D, 2D, and 3D ion chamber, EBT3 film, electronic portal imaging device (EPID) and FXG gel measurements for dosimetric validation of a stereotactic ablative radiation therapy (SBRT) technique in our clinic. Results show good agreement between the measurements and calculated treatment plan dose.

  12. Radiation therapy for orbital lymphoma

    SciTech Connect

    Zhou Ping . E-mail: pzhou@partners.org; Ng, Andrea K.; Silver, Barbara; Li Sigui; Hua Ling; Mauch, Peter M.

    2005-11-01

    Purpose: To describe radiation techniques and evaluate outcomes for orbital lymphoma. Methods and Materials: Forty-six patients (and 62 eyes) with orbital lymphoma treated with radiotherapy between 1987 and 2003 were included. The majority had mucosa-associated lymphoid tissue (48%) or follicular (30%) lymphoma. Seventeen patients had prior lymphoma at other sites, and 29 had primary orbital lymphoma. Median follow-up was 46 months. Results: The median dose was 30.6 Gy; one-third received <30 Gy. Electrons were used in 9 eyes with disease confined to the conjunctiva or eyelid, and photons in 53 eyes with involvement of intraorbital tissues to cover entire orbit. Local control rate was 98% for all patients and 100% for those with indolent lymphoma. Three of the 26 patients with localized primary lymphoma failed distantly, resulting in a 5-year freedom-from-distant-relapse rate of 89%. The 5-year disease-specific and overall survival rates were 95% and 88%, respectively. Late toxicity was mainly cataract formation in patients who received radiation without lens block. Conclusions A dose of 30 Gy is sufficient for indolent orbital lymphoma. Distant relapse rate in patients with localized orbital lymphoma was lower than that reported for low-grade lymphoma presenting in other sites. Orbital radiotherapy can be used for salvage of recurrent indolent lymphoma.

  13. Radiation biology: the conceptual and practical impact on radiation therapy

    SciTech Connect

    Suit, H.D.

    1983-04-01

    Radiation biology has had an important impact on clinical radiation therapy by providing a rationale for implementation of new treatment strategies and for clinical concepts or practices thereby increasing their acceptance. The observed rather narrow range of D/sub 0/ and n values for mammalian cells contributed to successful trials of radiation treatment of several ''radiation-resistant'' tumors, e.g., carcinoma of prostate, color-rectum, and sarcoma of soft tissue. Attention of clinicians was forcibly directed to assessment of local results (local failure, treatment complications) and not merely survival at 5 years by the extensive literature of cell survival curves (in vivo and in vitro) and dose-response assays on normal and tumor tissues. Upon these same laboratory results a scientific rationale was developed for use of shrinking field technique, low dose for subclinical disease, and the combination of moderate dose radiation therapy and conservative surgery. The entire area of clinical research into altered dose fractionation schedules is based upon research on cell proliferation kinetics and repair of radiation damage. The understanding that the time for complete regression of tumor depends not only upon cell kill but also on the pattern of cell proliferation of the progeny of lethally irradiated cells and the abundance of stroma provided a basis for accepting patients with slowly responding tumors for treatment. There remains a wide field of need in research in this area as even today a large proportion of patients who die of cancer die with their cancer uncontrolled at the primary site.

  14. Radiation Therapy -- What It Is, How It Helps

    MedlinePlus

    ... saved articles window. My Saved Articles » My ACS » Radiation Therapy -- What It Is, How It Helps Download ... to-read guide offers a basic explanation of radiation therapy. Click on the topics below to get ...

  15. Comparison of particle-radiation-therapy modalities

    SciTech Connect

    Fairchild, R.G.; Bond, V.P.

    1981-01-01

    The characteristics of dose distribution, beam alignment, and radiobiological advantages accorded to high LET radiation were reviewed and compared for various particle beam radiotherapeutic modalities (neutron, Auger electrons, p, ..pi../sup -/, He, C, Ne, and Ar ions). Merit factors were evaluated on the basis of effective dose to tumor relative to normal tissue, linear energy transfer (LET), and dose localization, at depths of 1, 4, and 10 cm. In general, it was found that neutron capture therapy using an epithermal neutron beam provided the best merit factors available for depths up to 8 cm. The position of fast neutron therapy on the Merit Factor Tables was consistently lower than that of other particle modalities, and above only /sup 60/Co. The largest body of clinical data exists for fast neutron therapy; results are considered by some to be encouraging. It then follows that if benefits with fast neutron therapy are real, additional gains are within reach with other modalities.

  16. Pulsed laser radiation therapy of skin tumors

    SciTech Connect

    Kozlov, A.P.; Moskalik, K.G.

    1980-11-15

    Radiation from a neodymium laser was used to treat 846 patients with 687 precancerous lesions or benign tumors of the skin, 516 cutaneous carcinomas, 33 recurrences of cancer, 51 melanomas, and 508 metastatic melanomas in the skin. The patients have been followed for three months to 6.5 years. No relapses have been observed during this period. Metastases to regional lymph nodes were found in five patients with skin melanoma. Pulsed laser radiation may be successfully used in the treatment of precancerous lesions and benign tumors as well as for skin carcinoma and its recurrences, and for skin melanoma. Laser radiation is more effective in the treatment of tumors inaccessible to radiation therapy and better in those cases in which surgery may have a bad cosmetic or even mutilating effect. Laser beams can be employed in conjunction with chemo- or immunotherapy.

  17. Emission guided radiation therapy for lung and prostate cancers: A feasibility study on a digital patient

    PubMed Central

    Fan, Qiyong; Nanduri, Akshay; Mazin, Samuel; Zhu, Lei

    2012-01-01

    Purpose: Accurate tumor tracking remains a challenge in current radiation therapy. Many strategies including image guided radiation therapy alleviate the problem to certain extents. The authors propose a new modality called emission guided radiation therapy (EGRT) to accurately and directly track the tumor based on its biological signature. This work is to demonstrate the feasibility of EGRT under two clinical scenarios using a 4D digital patient model. Methods: EGRT uses lines of response (LOR’s) from positron emission events to direct beamlets of therapeutic radiation through the emission sites inside a tumor. This is accomplished by a radiation delivery system consisting of a Linac and positron emission tomography (PET) detectors on a fast rotating closed-ring gantry. During the treatment of radiotracer-administrated cancer patients, PET detectors collect LOR's from tumor uptake sites and the Linac responds in nearly real-time with beamlets of radiation along the same LOR paths. Moving tumors are therefore treated with a high targeting accuracy. Based on the EGRT concept, the authors design a treatment method with additional modulation algorithms including attenuation correction and an integrated boost scheme. Performance is evaluated using simulations of a lung tumor case with 3D motion and a prostate tumor case with setup errors. The emission process is simulated by Geant4 Application for Tomographic Emission package (GATE) and Linac dose delivery is simulated using a voxel-based Monte Carlo algorithm (VMC++). Results: In the lung case with attenuation correction, compared to a conventional helical treatment, EGRT achieves a 41% relative increase in dose to 95% of the gross tumor volume (GTV) and a 55% increase to 50% of the GTV. All dose distributions are normalized for the same dose to the lung. In the prostate case with the integrated boost and no setup error, EGRT yields a 19% and 55% relative dose increase to 95% and 50% of the GTV, respectively, when

  18. Stereotactic radiation therapy and radiosurgery.

    PubMed

    Ostertag, C B

    1994-01-01

    In all stereotactic irradiation procedures, a high dose is delivered to a relatively small target volume. Whether fractionated stereotactic radiotherapy is preferable (based on a therapeutic ratio) or a radiosurgical method (aiming at the precise and complete destruction of a tissue volume) depends on the definition and composition of the target. The methodologies can be grouped in closed-skull external focussed beam stereotactic radiosurgery/radiotherapy and in stereotactic implantation/injection of radiation sources. Although originally developed to treat functional disorders of the brain, stereotactic radiosurgery has been used most successfully for over 4 decades to treat cerebral arteriovenous malformations. Complete obliteration ranges from 30 to 50% after 1 year are reported. At 2 years the results range from 72 to 90%. Clearly the outcome is influenced by patient selection. In the treatment of acoustic neurinomas follow-up data of larger series of radiosurgery show that the treatment performed under local anesthesia on an outpatient basis becomes comparable with the best microsurgery data. Using multiple isocenters and MR localization tumor growth control is achieved in more than 90% of cases, with hearing preservation of approximately 50%. Pituitary tumors with Cushing's syndrome, acromegaly, Nelson's syndrome, prolactinomas and nonsecreting adenomas have been treated with various stereotactic irradiation methods. Further refinement of both localization techniques, dose distribution and beam manipulation will make radiosurgery an attractive modality because of its noninvasive character and low morbidity. Only a small subgroup of patients with low-grade gliomas are candidates for stereotactic localized irradiation treatment, namely those with circumscribed tumors with only limited spread of tumor cells into the periphery. For this subgroup, which usually comprises not more than 25% of all low-grade gliomas, the results from interstitial radiosurgery compete

  19. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation therapy system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  20. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  1. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  2. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  3. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  4. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  5. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  6. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  7. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radionuclide radiation therapy system. 892.5750... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5750 Radionuclide radiation therapy system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  8. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  9. 21 CFR 892.5300 - Medical neutron radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical neutron radiation therapy system. 892.5300... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5300 Medical neutron radiation therapy system. (a) Identification. A medical neutron radiation therapy system is a device intended...

  10. 21 CFR 892.5840 - Radiation therapy simulation system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...

  11. Magnetically scanned ion beams for radiation therapy

    SciTech Connect

    Alonso, J.R.

    1988-10-01

    The advantageous physical characteristics of slowing-down and stopping charged particle ion beams have been demonstrated to be highly desirable for application to radiation therapy. Specifically, the prospect of concentrating the dose delivered into a sharp-defined treatment volume while keeping to a minimum the total dose to tissues outside this volume is most appealing, offering very significant improvements over what is possible with established radiation therapy techniques. Key to achieving this physical dose distribution in an actual treatment setting is the technique used for delivering the beam into the patient. Magnetically scanned beams are emerging as the technique of choice, but daunting problems remain still in achieving the utmost theoretically possible dose distributions. 21 refs., 2 figs.

  12. Volumetric Modulated Arc Therapy Planning for Primary Prostate Cancer With Selective Intraprostatic Boost Determined by {sup 18}F-Choline PET/CT

    SciTech Connect

    Kuang, Yu; Wu, Lili; Hirata, Emily; Miyazaki, Kyle; Sato, Miles

    2015-04-01

    Purpose: This study evaluated expected tumor control and normal tissue toxicity for prostate volumetric modulated arc therapy (VMAT) with and without radiation boosts to an intraprostatically dominant lesion (IDL), defined by {sup 18}F-choline positron emission tomography/computed tomography (PET/CT). Methods and Materials: Thirty patients with localized prostate cancer underwent {sup 18}F-choline PET/CT before treatment. Two VMAT plans, plan{sub 79} {sub Gy} and plan{sub 100-105} {sub Gy}, were compared for each patient. The whole-prostate planning target volume (PTV{sub prostate}) prescription was 79 Gy in both plans, but plan{sub 100-105} {sub Gy} added simultaneous boost doses of 100 Gy and 105 Gy to the IDL, defined by 60% and 70% of maximum prostatic uptake on {sup 18}F-choline PET (IDL{sub suv60%} and IDL{sub suv70%}, respectively, with IDL{sub suv70%} nested inside IDL{sub suv60%} to potentially enhance tumor specificity of the maximum point dose). Plan evaluations included histopathological correspondence, isodose distributions, dose-volume histograms, tumor control probability (TCP), and normal tissue complication probability (NTCP). Results: Planning objectives and dose constraints proved feasible in 30 of 30 cases. Prostate sextant histopathology was available for 28 cases, confirming that IDL{sub suv60%} adequately covered all tumor-bearing prostate sextants in 27 cases and provided partial coverage in 1 case. Plan{sub 100-105} {sub Gy} had significantly higher TCP than plan{sub 79} {sub Gy} across all prostate regions for α/β ratios ranging from 1.5 Gy to 10 Gy (P<.001 for each case). There were no significant differences in bladder and femoral head NTCP between plans and slightly lower rectal NTCP (endpoint: grade ≥ 2 late toxicity or rectal bleeding) was found for plan{sub 100-105} {sub Gy}. Conclusions: VMAT can potentially increase the likelihood of tumor control in primary prostate cancer while observing normal tissue tolerances through

  13. Reduction in Radiation-Induced Morbidity by Use of an Intercurrent Boost in the Management of Early-Stage Breast Cancer

    SciTech Connect

    Trombetta, Mark; Julian, Thomas B.; Valakh, Vladimir; Greenberg, Larisa; Labban, George; Khalid, Mian K.; Werts, E. Day; Parda, David

    2010-08-01

    Purpose: Electron or photon boost immediately following whole-breast irradiation performed after conservation surgery for early-stage breast cancer is the accepted standard of care. This regimen frequently results in Grade III dermatitis, causing discomfort or treatment interruption. Herein, we compare patients treated with whole-breast irradiation followed by boost compared with a cohort with a planned intercurrent radiation boost. Methods and Materials: The records of 650 consecutive breast cancer patients treated at Allegheny General Hospital (AGH) between 2000 and 2008 were reviewed. Selected for this study were 327 patients with T1 or T2 tumors treated with external beam radiotherapy postlumpectomy. One hundred and sixty-nine patients were treated by whole-breast radiotherapy (WBRT) followed by boost at completion. One hundred fifty-eight were treated with a planned intercurrent boost (delivered following 3,600 cGy WBRT). The mean whole breast radiation dose in the conventionally treated group was 5,032 cGy (range, 4500-5400 cGy), and the mean whole breast dose was 5,097 cGy (range, 4860-5040 cGy) in the group treated with a planned intercurrent boost. Results: The occurrence of Grade III dermatitis was significantly reduced in the WBRT/intercurrent boost group compared with the WBRT/boost group (0.6% vs. 8.9%), as was the incidence of treatment interruption (1.9% vs. 14.2%). With a median follow-up of 32 months and 27 months, respectively, no significant difference in local control was identified. Conclusions: Patients treated with intercurrent boost developed less Grade III dermatitis and unplanned treatment interruptions with similar local control.

  14. Breast Intensity-Modulated Radiation Therapy Reduces Time Spent With Acute Dermatitis for Women of All Breast Sizes During Radiation

    SciTech Connect

    Freedman, Gary M. Li Tianyu; Nicolaou, Nicos; Chen Yan; Ma, Charlie C.-M.; Anderson, Penny R.

    2009-07-01

    Purpose: To study the time spent with radiation-induced dermatitis during a course of radiation therapy for breast cancer in women treated with conventional or intensity-modulated radiation therapy (IMRT). Methods and Materials: The study population consisted of 804 consecutive women with early-stage breast cancer treated with breast-conserving surgery and radiation from 2001 to 2006. All patients were treated with whole-breast radiation followed by a boost to the tumor bed. Whole-breast radiation consisted of conventional wedged photon tangents (n = 405) earlier in the study period and mostly of photon IMRT (n = 399) in later years. All patients had acute dermatitis graded each week of treatment. Results: The breakdown of the cases of maximum acute dermatitis by grade was as follows: 3%, Grade 0; 34%, Grade 1; 61%, Grade 2; and 2%, Grade 3. The breakdown of cases of maximum toxicity by technique was as follows: 48%, Grade 0/1, and 52%, Grade 2/3, for IMRT; and 25%, Grade 0/1, and 75%, Grade 2/3, for conventional radiation therapy (p < 0.0001). The IMRT patients spent 82% of weeks during treatment with Grade 0/1 dermatitis and 18% with Grade 2/3 dermatitis, compared with 29% and 71% of patients, respectively, treated with conventional radiation (p < 0.0001). Furthermore, the time spent with Grade 2/3 toxicity was decreased in IMRT patients with small (p = 0.0015), medium (p < 0.0001), and large (p < 0.0001) breasts. Conclusions: Breast IMRT is associated with a significant decrease both in the time spent during treatment with Grade 2/3 dermatitis and in the maximum severity of dermatitis compared with that associated with conventional radiation, regardless of breast size.

  15. Magnetic tracking system for radiation therapy.

    PubMed

    Wing-Fai Loke; Tae-Young Choi; Maleki, Teimour; Papiez, Lech; Ziaie, Babak; Byunghoo Jung

    2010-08-01

    Intensity-modulated radiation therapy (IMRT) requires precise delivery of the prescribed dose of radiation to the target and surrounding tissue. Irradiation of moving body anatomy is possible only if stable, accurate, and reliable information about the moving body structures are provided in real time. This paper presents a magnetic position tracking system for radiation therapy. The proposed system uses only four transmitting coils and an implantable transponder. The four transmitting coils generate a magnetic field which is sensed and measured by a biaxial magnetoresistive sensor in the transponder in the tumor. The transponder transmits the information back to a computer to determine the position of the transponder allowing it to track the tumor in real time. The transmission of the information from the transponder to the computer can be wired or wireless. Measurements using a biaxial sensor agree well with the field strength calculated from the ideal equations. The translation from the measurement data to the 3-D location and orientation requires a numerical technique because the equations are in nonclosed forms. The algorithm of tracking is implemented using MATLAB. Each calculation of the position along the target trajectory takes 30 ms, which makes the proposed system suitable for real-time tracking of the transponder for radiation assessment and delivery. An error of less than 2 mm is achieved in the demonstration.

  16. Localized hyperthermia and radiation in cancer therapy.

    PubMed

    Abe, M; Hiraoka, M

    1985-04-01

    Clinical researches in hyperthermia have recently expanded rapidly with the increase in our knowledge of the biological effects of heat on experimental systems. This article provides background information on the biological rationale and current status of technologies concerning thermometry and heating equipment for the application of hyperthermia to human cancer treatment. Much data has been accumulated recently in hyperthermia treatment with and without radiation to superficial tumours which are refractory to conventional treatments. In this paper the treatment results published recently have been surveyed. The complete responses of tumours treated by heat alone are in the range of 15 per cent as opposed to approximately 60 per cent for the combination of heat plus radiation. Clinical results so far published have demonstrated that local control is consistently better in the lesions treated with radiation plus heat than with radiation alone. The morbidity related to heat therapy is within tolerable limits. Several articles on the clinical results of deep-seated tumours treated by hyperthermia are reviewed. Problems to be solved in the application of heat to cancer therapy are discussed.

  17. Chronic neuroendocrinological sequelae of radiation therapy

    SciTech Connect

    Sklar, C.A.; Constine, L.S.

    1995-03-30

    A variety of neuroendocrine disturbances are observed following treatment with external radiation therapy when the hypothalamic-pituitary axis (HPA) is included in the treatment field. Radiation-induced abnormalities are generally dose dependent and may develop many years after irradiation. Growth hormone deficiency and premature sexual development can occur following doses as low as 18 Gy fractionated radiation and are the most common neuroendocrine problems noted in children. Deficiency of gonadotropins, thyroid stimulating hormone, and adrenocorticotropin are seen primarily in individuals treated with > 40 Gy HPA irradiation. Hyperprolactinemia can be seen following high-dose radiotherapy (>40 Gy), especially among young women. Most neuroendocrine disturbances that develop as a result of HPA irradiation are treatable; patients at risk require long-term endocrine follow-up. 23 refs., 6 figs., 2 tabs.

  18. Radiation therapy technology manpower needs 1982.

    PubMed

    Rominger, C J; Browning, D; Diamond, J; Gardner, P; Kramer, S

    1983-12-01

    A shortage of radiation therapy technologists has existed in the United States for many years. This report analyzes the data from the third manpower survey of ACR/ASTR carried out in 1981 to 1982, using the Patterns of Care master facility list. Of 1106 questionnaires mailed, 77% were returned. The survey identified 3757 technologists performing radiation therapy technology duties. Of these, 2537 of these were Registered Technologists (Therapy) American Registry of Radiologic Technologists RTT (ARRT), 1220 were not. There has been a good growth in the total number of RTT (ARRT) members as indicated by the 1982 ARRT Annual Report (1148 in May, 1977, 2878 in May, 1982). Using the "Blue Book" Criteria of 1981 of 2 RTT/megavoltage unit or 2 RTT/300 new patients, the technology need (2900) would appear filled. However, 860 of the RTT were performing supervisory or dosimetry duties and 42% of the 2897 staff technologists were non RTT personnel. At the time of the survey, 597 funded vacancies existed (241 in 1977). A trend toward a changing standard of 3 RTT/megavoltage unit, reflecting the increased complexity of modern radiation therapy techniques, especially in Patterns of Care Strata A1, A2, C1 institutions was identified. While great progress has been made, there is a continuing need for recruitment into the 113 existing educational programs to try to stabilize the supply of technologists. Attention should also be given to measures for upgrading the skills and knowledge of the non RTT personnel in the field and retention of the RTT personnel.

  19. Radiation therapy options for management of the brain tumor patient.

    PubMed

    Lamb, S A

    1995-03-01

    Radiation therapy rarely cures malignant brain tumors; however, it is the best treatment available at present. Refinement of radiation delivery systems must continue in order to minimize normal tissue injury and to maximize the quality of life. Multimodal therapy designed to attack cancer at its genetic makeup holds great promise. Radiation therapy will always remain one of the forms of therapy used to treat malignant brain tumors.

  20. Preliminary Results of Electron Intraoperative Therapy Boost and Hypofractionated External Beam Radiotherapy After Breast-Conserving Surgery in Premenopausal Women

    SciTech Connect

    Ivaldi, Giovanni Battista Leonardi, Maria Cristina; Orecchia, Roberto; Zerini, Dario M.D.; Morra, Anna; Galimberti, Viviana M.D.; Gatti, Giovanna M.D.; Luini, Alberto; Veronesi, Paolo; Ciocca, Mario M.Sc.; Sangalli, Claudia D.M.; Fodor, Cristiana D.M.; Veronesi, Umberto

    2008-10-01

    Purpose: To report the acute and preliminary data on late toxicity of a pilot study of boost with electron intraoperative therapy followed by hypofractionated external beam radiotherapy (HEBRT) of the whole breast. Methods and Materials: Between June 2004 and March 2007, 211 women with a diagnosis of early-stage breast cancer were treated with breast-conserving surgery. During surgery, an electron intraoperative therapy boost of 12 Gy was administered to the tumor bed. Adjuvant local treatment was completed with HEBRT, consisting of a course of 13 daily fractions of 2.85 Gy to the whole breast to a total dose of 37.05 Gy. Acute toxicity of the breast was evaluated at the end of HEBRT and at 1 month of follow-up. Late toxicity was recorded at 6 and 12 months of follow-up. Results: We report the data from 204 patients. The maximal acute skin toxicity was observed at the end of HEBRT (182 patients evaluable) with 7 (3.8%) Grade 3, 52 (28.6%) Grade 2, 123 (67.6%) Grade 1, and no Grade 0 or Grade 4 cases. A total of 108 patients were evaluated for late toxicity. The recorded late skin toxicity was Grade 4 in 1 patient (0.9%), Grade 3 in 1 patient, and Grade 2 or less in 106 patients (98.2%). Conclusions: The results of this study have shown that electron intraoperative therapy followed by HEBRT allows for the delivery of a high dose to the tumor bed and an adequate dose to the whole breast. This treatment is feasible, compliance is high, and the rate of acute toxicity and the preliminary data on chronic toxicity seem acceptable.

  1. Intensity-Modulated Radiation Therapy, Proton Therapy, or Conformal Radiation Therapy and Morbidity and Disease Control in Localized Prostate Cancer

    PubMed Central

    Sheets, Nathan C.; Goldin, Gregg H.; Meyer, Anne-Marie; Wu, Yang; Chang, YunKyung; Stürmer, Til; Holmes, Jordan A.; Reeve, Bryce B.; Godley, Paul A.; Carpenter, William R.; Chen, Ronald C.

    2013-01-01

    Context There has been rapid adoption of newer radiation treatments such as intensitymodulated radiation therapy (IMRT) and proton therapy despite greater cost and limited demonstrated benefit compared with previous technologies. Objective To determine the comparative morbidity and disease control of IMRT, proton therapy, and conformal radiation therapy for primary prostate cancer treatment. Design, Setting, and Patients Population-based study using Surveillance, Epidemiology, and End Results–Medicare-linked data from 2000 through 2009 for patients with nonmetastatic prostate cancer. Main Outcome Measures Rates of gastrointestinal and urinary morbidity, erectile dysfunction, hip fractures, and additional cancer therapy. Results Use of IMRT vs conformal radiation therapy increased from 0.15% in 2000 to 95.9% in 2008. In propensity score–adjusted analyses (N=12 976), men who received IMRT vs conformal radiation therapy were less likely to receive a diagnosis of gastrointestinal morbidities (absolute risk, 13.4 vs 14.7 per 100 person-years; relative risk [RR], 0.91; 95% CI, 0.86–0.96) and hip fractures (absolute risk, 0.8 vs 1.0 per 100 person-years; RR, 0.78; 95% CI, 0.65–0.93) but more likely to receive a diagnosis of erectile dysfunction (absolute risk, 5.9 vs 5.3 per 100 person-years; RR, 1.12; 95% CI, 1.03–1.20). Intensitymodulated radiation therapy patients were less likely to receive additional cancer therapy (absolute risk, 2.5 vs 3.1 per 100 person-years; RR, 0.81; 95% CI, 0.73–0.89). In a propensity score–matched comparison between IMRT and proton therapy (n=1368), IMRT patients had a lower rate of gastrointestinal morbidity (absolute risk, 12.2 vs 17.8 per 100 person-years; RR, 0.66; 95% CI, 0.55–0.79). There were no significant differences in rates of other morbidities or additional therapies between IMRT and proton therapy. Conclusions Among patients with nonmetastatic prostate cancer, the use of IMRT compared with conformal radiation

  2. Intraoperative radiation therapy in recurrent ovarian cancer

    SciTech Connect

    Yap, O.W. Stephanie . E-mail: stbeast@stanford.edu; Kapp, Daniel S.; Teng, Nelson N.H.; Husain, Amreen

    2005-11-15

    Purpose: To evaluate disease outcomes and complications in patients with recurrent ovarian cancer treated with cytoreductive surgery and intraoperative radiation therapy (IORT). Methods and Materials: A retrospective study of 24 consecutive patients with ovarian carcinoma who underwent secondary cytoreduction and intraoperative radiation therapy at our institution between 1994 and 2002 was conducted. After optimal cytoreductive surgery, IORT was delivered with orthovoltage X-rays (200 kVp) using individually sized and beveled cone applications. Outcomes measures were local control of disease, progression-free interval, overall survival, and treatment-related complications. Results: Of these 24 patients, 22 were available for follow-up analysis. Additional treatment at the time of and after IORT included whole abdominopelvic radiation, 9; pelvic or locoregional radiation, 5; chemotherapy, 6; and no adjuvant treatment, 2. IORT doses ranged from 9-14 Gy (median, 12 Gy). The anatomic sites treated were pelvis (sidewalls, vaginal cuff, presacral area, anterior pubis), para-aortic and paracaval lymph node beds, inguinal region, or porta hepatitis. At a median follow-up of 24 months, 5 patients remain free of disease, whereas 17 patients have recurred, of whom 4 are alive with disease and 13 died from disease. Five patients recurred within the radiation fields for a locoregional relapse rate of 32% and 12 patients recurred at distant sites with a median time to recurrence of 13.7 months. Five-year overall survival was 22% with a median survival of 26 months from time of IORT. Nine patients (41%) experienced Grade 3 toxicities from their treatments. Conclusion: In carefully selected patients with locally recurrent ovarian cancer, combined IORT and tumor reductive surgery is reasonably tolerated and may contribute to achieving local control and disease palliation.

  3. Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy

    SciTech Connect

    Choi, Seo-Hyun; Nam, Jae-Kyung; Jang, Junho; Lee, Hae-June Lee, Yoon-Jin

    2015-06-26

    Radiotherapy is a widely used treatment for many tumors. Combination therapy using anti-angiogenic agents and radiation has shown promise; however, these combined therapies are reported to have many limitations in clinical trials. Here, we show that radiation transformed tumor endothelial cells (ECs) to fibroblasts, resulting in reduced vascular endothelial growth factor (VEGF) response and increased Snail1, Twist1, Type I collagen, and transforming growth factor (TGF)-β release. Irradiation of radioresistant Lewis lung carcinoma (LLC) tumors greater than 250 mm{sup 3} increased collagen levels, particularly in large tumor vessels. Furthermore, concomitant sunitinib therapy did not show a significant difference in tumor inhibition versus radiation alone. Thus, we evaluated multimodal therapy that combined pirfenidone, an inhibitor of TGF-induced collagen production, with radiation and sunitinib treatment. This trimodal therapy significantly reduced tumor growth, as compared to radiation alone. Immunohistochemical analysis revealed that radiation-induced collagen deposition and tumor microvessel density were significantly reduced with trimodal therapy, as compared to radiation alone. These data suggest that combined therapy using pirfenidone may modulate the radiation-altered tumor microenvironment, thereby enhancing the efficacy of radiation therapy and concurrent chemotherapy. - Highlights: • Radiation changes tumor endothelial cells to fibroblasts. • Radio-resistant tumors contain collagen deposits, especially in tumor vessels. • Pirfenidone enhances the efficacy of combined radiation and sunitinib therapy. • Pirfenidone reduces radiation-induced collagen deposits in tumors.

  4. Personalized Radiation Therapy (PRT) for Lung Cancer.

    PubMed

    Jin, Jian-Yue; Kong, Feng-Ming Spring

    2016-01-01

    This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient's histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness.

  5. Personalized Radiation Therapy (PRT) for Lung Cancer.

    PubMed

    Jin, Jian-Yue; Kong, Feng-Ming Spring

    2016-01-01

    This chapter reviews and discusses approaches and strategies of personalized radiation therapy (PRT) for lung cancers at four different levels: (1) clinically established PRT based on a patient's histology, stage, tumor volume and tumor locations; (2) personalized adaptive radiation therapy (RT) based on image response during treatment; (3) PRT based on biomarkers; (4) personalized fractionation schedule. The current RT practice for lung cancer is partially individualized according to tumor histology, stage, size/location, and combination with use of systemic therapy. During-RT PET-CT image guided adaptive treatment is being tested in a multicenter trial. Treatment response detected by the during-RT images may also provide a strategy to further personalize the remaining treatment. Research on biomarker-guided PRT is ongoing. The biomarkers include genomics, proteomics, microRNA, cytokines, metabolomics from tumor and blood samples, and radiomics from PET, CT, SPECT images. Finally, RT fractionation schedule may also be personalized to each individual patient to maximize therapeutic gain. Future PRT should be based on comprehensive considerations of knowledge acquired from all these levels, as well as consideration of the societal value such as cost and effectiveness. PMID:26703805

  6. Methods for implementing microbeam radiation therapy

    DOEpatents

    Dilmanian, F. Avraham; Morris, Gerard M.; Hainfeld, James F.

    2007-03-20

    A method of performing radiation therapy includes delivering a therapeutic dose such as X-ray only to a target (e.g., tumor) with continuous broad beam (or in-effect continuous) using arrays of parallel planes of radiation (microbeams/microplanar beams). Microbeams spare normal tissues, and when interlaced at a tumor, form a broad-beam for tumor ablation. Bidirectional interlaced microbeam radiation therapy (BIMRT) uses two orthogonal arrays with inter-beam spacing equal to beam thickness. Multidirectional interlaced MRT (MIMRT) includes irradiations of arrays from several angles, which interleave at the target. Contrast agents, such as tungsten and gold, are administered to preferentially increase the target dose relative to the dose in normal tissue. Lighter elements, such as iodine and gadolinium, are used as scattering agents in conjunction with non-interleaving geometries of array(s) (e.g., unidirectional or cross-fired (intersecting) to generate a broad beam effect only within the target by preferentially increasing the valley dose within the tumor.

  7. [Radiation therapy for prostate cancer in modern era].

    PubMed

    Nishimura, Takuya

    2016-01-01

    The purpose of this paper is to provide overview of the latest research trend on technique of radiation therapy of prostate cancer. Three-dimensional conformal radiation therapy(3D -CRT) has achieved better outcome of treatment for prostate cancer than 2-dimensional radiation therapy. Intensity-modulated radiation therapy(IMRT) is considered to be superior to 3D-CRT at certain points. Image-guided (IG) radiation therapy (IGRT), mainly IG-IMRT, is investigated what kind of influence it has on an outcome, both tumor control rate and adverse events. Particle therapy is a most ideal therapy theoretically. There is, however, few evidence which revealed that the therapy is superior to any other modalities.

  8. Stereotactic Body Radiation Therapy for Pancreatic Cancer.

    PubMed

    Goodman, Karyn A

    2016-01-01

    The role of radiation therapy in the management of pancreatic cancer represents an area of some controversy. However, local disease progression remains a significant cause of morbidity and even mortality for patients with this disease. Stereotactic body radiotherapy (SBRT) is an emerging treatment option for pancreatic cancer, primarily for locally advanced (unresectable) disease as it can provide a therapeutic benefit with significant advantages for patients' quality of life over standard conventional chemoradiation. There may also be a role for SBRT as neoadjuvant therapy for patients with borderline resectable disease to allow conversion to resectability. The objective of this review is to present the data supporting SBRT in pancreatic cancer as well as the potential limitations and caveats of current studies.

  9. Eustachian Tube Obstruction and Radiation Therapy

    PubMed Central

    Duggan, H. E.; Weijer, D. L.

    1964-01-01

    One hundred and ninety-four patients with eustachian tube obstruction due to lymphoid tissue were treated with radiation therapy administered once a week for four weeks. Total dose to the skin for each lateral port was 600 r, and midline dose for a skull of 12 cm. width was approximately 42 rad for every 100 r on the skin. Of 121 patients under 15 years of age, 70% were completely better or markedly improved at six months; 8% showed no change. Long-term follow-up, averaging four and a half years after therapy, indicated that 82% were completely better or markedly improved and 8% were unchanged. Of 73 patients over 15 years of age, 58% were completely better or markedly improved at six months and 20% showed no change. After long-term follow-up (four years and four months after treatment) 68% were completely better or markedly improved and 17% showed no change. PMID:14158555

  10. Intensity-Modulated Radiotherapy as Primary Therapy for Prostate Cancer: Report on Acute Toxicity After Dose Escalation With Simultaneous Integrated Boost to Intraprostatic Lesion

    SciTech Connect

    Fonteyne, Valerie Villeirs, Geert; Speleers, Bruno; Neve, Wilfried de; Wagter, Carlos de; Lumen, Nicolas; Meerleer, Gert de

    2008-11-01

    Purpose: To report on the acute toxicity of a third escalation level using intensity-modulated radiotherapy for prostate cancer (PCa) and the acute toxicity resulting from delivery of a simultaneous integrated boost (SIB) to an intraprostatic lesion (IPL) detected on magnetic resonance imaging (MRI), with or without spectroscopy. Methods and Materials: Between January 2002 and March 2007, we treated 230 patients with intensity-modulated radiotherapy to a third escalation level as primary therapy for prostate cancer. If an IPL (defined by MRI or MRI plus spectroscopy) was present, a SIB was delivered to the IPL. To report on acute toxicity, patients were seen weekly during treatment and 1 and 3 months after treatment. Toxicity was scored using the Radiation Therapy Oncology Group toxicity scale, supplemented by an in-house-developed scoring system. Results: The median dose to the planning target volume was 78 Gy. An IPL was found in 118 patients. The median dose to the MRI-detected IPL and MRI plus spectroscopy-detected IPL was 81 Gy and 82 Gy, respectively. No Grade 3 or 4 acute gastrointestinal toxicity developed. Grade 2 acute gastrointestinal toxicity was present in 26 patients (11%). Grade 3 genitourinary toxicity was present in 15 patients (7%), and 95 patients developed Grade 2 acute genitourinary toxicity (41%). No statistically significant increase was found in Grade 2-3 acute gastrointestinal or genitourinary toxicity after a SIB to an IPL. Conclusion: The results of our study have shown that treatment-induced acute toxicity remains low when intensity-modulated radiotherapy to 80 Gy as primary therapy for prostate cancer is used. In addition, a SIB to an IPL did not increase the severity or incidence of acute toxicity.

  11. Collimator design for experimental minibeam radiation therapy

    SciTech Connect

    Babcock, Kerry; Sidhu, Narinder; Kundapur, Vijayananda; Ali, Kaiser

    2011-04-15

    Purpose: To design and optimize a minibeam collimator for minibeam radiation therapy studies using a 250 kVp x-ray machine as a simulated synchrotron source. Methods: A Philips RT250 orthovoltage x-ray machine was modeled using the EGSnrc/BEAMnrc Monte Carlo software. The resulting machine model was coupled to a model of a minibeam collimator with a beam aperture of 1 mm. Interaperture spacing and collimator thickness were varied to produce a minibeam with the desired peak-to-valley ratio. Results: Proper design of a minibeam collimator with Monte Carlo methods requires detailed knowledge of the x-ray source setup. For a cathode-ray tube source, the beam spot size, target angle, and source shielding all determine the final valley-to-peak dose ratio. Conclusions: A minibeam collimator setup was created, which can deliver a 30 Gy peak dose minibeam radiation therapy treatment at depths less than 1 cm with a valley-to-peak dose ratio on the order of 23%.

  12. Mapping the literature of radiation therapy

    PubMed Central

    Delwiche, Frances A.

    2013-01-01

    Objective: This study characterizes the literature of the radiation therapy profession, identifies the journals most frequently cited by authors writing in this discipline, and determines the level of coverage of these journals by major bibliographic indexes. Method: Cited references from three discipline-specific source journals were analyzed according to the Mapping the Literature of Allied Health Project Protocol of the Nursing and Allied Health Resources Section of the Medical Library Association. Bradford's Law of Scattering was applied to all journal references to identify the most frequently cited journal titles. Results: Journal references constituted 77.8% of the total, with books, government documents, Internet sites, and miscellaneous sources making up the remainder. Although a total of 908 journal titles were cited overall, approximately one-third of the journal citations came from just 11 journals. MEDLINE and Scopus provided the most comprehensive indexing of the journal titles in Zones 1 and 2. The source journals were indexed only by CINAHL and Scopus. Conclusion: The knowledgebase of radiation therapy draws heavily from the fields of oncology, radiology, medical physics, and nursing. Discipline-specific publications are not currently well covered by major indexing services, and those wishing to conduct comprehensive literature searches should search multiple resources. PMID:23646027

  13. Film Dosimetry for Intensity Modulated Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Benites-Rengifo, J.; Martínez-Dávalos, A.; Celis, M.; Lárraga, J.

    2004-09-01

    Intensity Modulated Radiation Therapy (IMRT) is an oncology treatment technique that employs non-uniform beam intensities to deliver highly conformal radiation to the targets while minimizing doses to normal tissues and critical organs. A key element for a successful clinical implementation of IMRT is establishing a dosimetric verification process that can ensure that delivered doses are consistent with calculated ones for each patient. To this end we are developing a fast quality control procedure, based on film dosimetry techniques, to be applied to the 6 MV Novalis linear accelerator for IMRT of the Instituto Nacional de Neurología y Neurocirugía (INNN) in Mexico City. The procedure includes measurements of individual fluence maps for a limited number of fields and dose distributions in 3D using extended dose-range radiographic film. However, the film response to radiation might depend on depth, energy and field size, and therefore compromise the accuracy of measurements. In this work we present a study of the dependence of Kodak EDR2 film's response on the depth, field size and energy, compared with those of Kodak XV2 film. The first aim is to devise a fast and accurate method to determine the calibration curve of film (optical density vs. doses) commonly called a sensitometric curve. This was accomplished by using three types of irradiation techniques: Step-and-shoot, dynamic and static fields.

  14. Exposure Risks Among Children Undergoing Radiation Therapy: Considerations in the Era of Image Guided Radiation Therapy.

    PubMed

    Hess, Clayton B; Thompson, Holly M; Benedict, Stanley H; Seibert, J Anthony; Wong, Kenneth; Vaughan, Andrew T; Chen, Allen M

    2016-04-01

    Recent improvements in toxicity profiles of pediatric oncology patients are attributable, in part, to advances in the field of radiation oncology such as intensity modulated radiation (IMRT) and proton therapy (IMPT). While IMRT and IMPT deliver highly conformal dose to targeted volumes, they commonly demand the addition of 2- or 3-dimensional imaging for precise positioning--a technique known as image guided radiation therapy (IGRT). In this manuscript we address strategies to further minimize exposure risk in children by reducing effective IGRT dose. Portal X rays and cone beam computed tomography (CBCT) are commonly used to verify patient position during IGRT and, because their relative radiation exposure is far less than the radiation absorbed from therapeutic treatment beams, their sometimes significant contribution to cumulative risk can be easily overlooked. Optimizing the conformality of IMRT/IMPT while simultaneously ignoring IGRT dose may result in organs at risk being exposed to a greater proportion of radiation from IGRT than from therapeutic beams. Over a treatment course, cumulative central-axis CBCT effective dose can approach or supersede the amount of radiation absorbed from a single treatment fraction, a theoretical increase of 3% to 5% in mutagenic risk. In select scenarios, this may result in the underprediction of acute and late toxicity risk (such as azoospermia, ovarian dysfunction, or increased lifetime mutagenic risk) in radiation-sensitive organs and patients. Although dependent on variables such as patient age, gender, weight, body habitus, anatomic location, and dose-toxicity thresholds, modifying IGRT use and acquisition parameters such as frequency, imaging modality, beam energy, current, voltage, rotational degree, collimation, field size, reconstruction algorithm, and documentation can reduce exposure, avoid unnecessary toxicity, and achieve doses as low as reasonably achievable, promoting a culture and practice of "gentle IGRT."

  15. Intraoperative electron boost radiation followed by moderate doses of external beam radiotherapy in limb-sparing treatment of patients with extremity soft-tissue sarcoma

    SciTech Connect

    Oertel, Susanne; Treiber, Martina; Zahlten-Hinguranage, Angelika; Eichin, Steffen; Roeder, Falk; Funk, Angela; Hensley, Frank W.; Timke, Carmen; Niethammer, Andreas G.; Huber, Peter E.; Weitz, Juergen; Eble, Micheal J.; Buchler, Markus W.; Bernd, Ludger; Debus, Juergen; Krempien, Robert C. . E-mail: robert_krempien@med.uni-heidelberg.de

    2006-04-01

    Purpose: To analyze long-term prognosis and morbidity after limb-sparing treatment of patients with extremity soft-tissue sarcoma, with intraoperative electron boost radiotherapy (IOERT) followed by a moderate dose of external beam radiotherapy (EBRT). Methods and Materials: A total of 153 patients who were treated in a single center from 1991 to 2004 were evaluated. Median IOERT dose was 15 Gy, mean EBRT dose 43 Gy (range, 40-50.4 Gy) in conventional fractionation (1.8-2 Gy). Median duration of follow-up was 33 months. Acute toxicity was assessed with Common Toxicity Criteria; late toxic effects were scored according to European Organization for Research and Treatment of Cancer/Radiation Therapy Oncology Group criteria. Results: Five-year overall survival and 5-year local control rates were 77% and 78%, respectively. Whereas tumor size, patient age, and EBRT dose did not significantly affect outcome, resection status and grading were significant for survival; resection status and IOERT dose were significant for local control. Extremity salvage until death or time of follow-up was achieved in 90% of our patients, 86% of whom showed excellent limb function without impairment in activities of daily life. Acute toxicity Grade 2-4 was observed in 23% and late toxicity Grade 2-4 in 17% of patients. Conclusions: Treatment with IOERT combined with moderate doses of external beam irradiation yields high local control and extremity preservation rates in resected extremity soft-tissue sarcoma.

  16. A systematic overview of radiation therapy effects in brain tumours.

    PubMed

    Berg, Gertrud; Blomquist, Erik; Cavallin-Ståhl, Eva

    2003-01-01

    A systematic review of radiation therapy trials in several tumour types was performed by The Swedish Council of Technology Assessment in Health Care (SBU). The procedures for evaluation of the scientific literature are described separately (Acta Oncol 2003; 42: 357-365). This synthesis of the literature on radiation therapy for brain tumours is based on data from 9 randomized trials and 1 meta-analysis. Moreover, data from 2 prospective studies, 3 retrospective studies and 4 other articles were used. In total, 19 scientific articles are included, involving 4,266 patients. The results were compared with those of a similar overview from 1996 including 11,252 patients. The conclusions reached can be summarized as follows: The conclusion from SBU 129/2 that curative treatment is not available for patients with high-grade malignant glioma (grade III and IV) is still valid. The survival benefit from postoperative radiotherapy compared to supportive care only or chemotherapy is about 3-4 months, as demonstrated in earlier randomized studies. Quality of life is now currently estimated and considered to be of major importance when reporting the outcome of treatment for patients with brain tumours. There is no scientific evidence that radiotherapy using hyper- and hypofractionation leads to longer survival for patients with high-grade malignant glioma than conventional radiotherapy. There is large documentation, but only one randomized study. There is some documentation to support the view that patients with grade IV glioma and poor prognosis can be treated with hypofractionation and with an outcome similar to that after conventional fractionation. A shorter treatment time should be convenient for the patient. Documentation of the benefit of a radiotherapy boost with brachytherapy is limited and no conclusion can be drawn. There is no scientific evidence that radiotherapy prolongs life for patients with low-grade glioma. There are some data supporting that radiotherapy can

  17. Addition of Bevacizumab to Standard Radiation Therapy and Daily Temozolomide Is Associated With Minimal Toxicity in Newly Diagnosed Glioblastoma Multiforme

    SciTech Connect

    Vredenburgh, James J.; Desjardins, Annick; Kirkpatrick, John P.; Reardon, David A.; Peters, Katherine B.; Herndon, James E.; Marcello, Jennifer; Bailey, Leighann; Threatt, Stevie; Sampson, John; Friedman, Allan; Friedman, Henry S.

    2012-01-01

    Purpose: To determine the safety of the addition of bevacizumab to standard radiation therapy and daily temozolomide for newly diagnosed glioblastoma multiforme (GBM). Methods and Materials: A total of 125 patients with newly diagnosed GBM were enrolled in the study, and received standard radiation therapy and daily temozolomide. All patients underwent a craniotomy and were at least 2 weeks postoperative. Radiation therapy was administered in 1.8-Gy fractions, with the clinical target volume for the primary course treated to a dose of 45 to 50.4 Gy, followed by a boost of 9 to 14.4 Gy, to a total dose of 59.4 Gy. Patients received temozolomide at 75 mg/m{sup 2} daily throughout the course of radiation therapy. Bevacizumab was given at 10 mg/kg intravenously every 14 days, beginning a minimum of 4 weeks postoperatively. Results: Of the 125 patients, 120 (96%) completed the protocol-specified radiation therapy. Five patients had to stop the protocol therapy, 2 patients with pulmonary emboli, and 1 patient each with a Grade 2 central nervous system hemorrhage, Grade 4 pancytopenia, and wound dehiscence requiring surgical intervention. All 5 patients ultimately finished the radiation therapy. After radiation therapy, 3 patients had progressive disease, 2 had severe fatigue and decreased performance status, 1 patient had a colonic perforation, and 1 had a rectal fissure; these 7 patients therefore did not proceed with the protocol-specified adjuvant temozolomide, bevacizumab, and irinotecan. However, 113 patients (90%) were able to continue on study. Conclusions: The addition of bevacizumab to standard radiation therapy and daily temozolomide was found to be associated with minimal toxicity in patients newly diagnosed with GBM.

  18. [Stereotactic body radiation therapy: uncertainties and margins].

    PubMed

    Lacornerie, T; Marchesi, V; Reynaert, N

    2014-01-01

    The principles governing stereotactic body radiation therapy are tight margins and large dose gradients around targets. Every step of treatment preparation and delivery must be evaluated before applying this technique in the clinic. Uncertainties remain in each of these steps: delineation, prescription with the biological equivalent dose, treatment planning, patient set-up taking into account movements, the machine accuracy. The calculation of margins to take into account uncertainties differs from conventional radiotherapy because of the delivery of few fractions and large dose gradients around the target. The quest of high accuracy is complicated by the difficulty to reach it and the lack of consensus regarding the prescription. Many schemes dose/number of fractions are described in clinical studies and there are differences in the way describing the delivered doses. While waiting for the ICRU report dedicated to this technique, it seems desirable to use the quantities proposed in ICRU Report 83 (IMRT) to report the dose distribution. PMID:25023588

  19. Radiation-induced caries as the late effect of radiation therapy in the head and neck region.

    PubMed

    Dobroś, Katarzyna; Hajto-Bryk, Justyna; Wróblewska, Małgorzata; Zarzecka, Joanna

    2016-01-01

    Overall improvement in the nationwide system of medical services has consequently boosted the number of successfully treated patients who suffer from head and neck cancer. It is essential to effectively prevent development of radiation-induced caries as the late effect of radiation therapy. Incidence and severity of radiationinduced changes within the teeth individually vary depending on the patient's age, actual radiation dose, size of radiation exposure field, patient's general condition and additional risk factors. Inadequately managed treatment of caries may lead to loss of teeth, as well as prove instrumental in tangibly diminishing individual quality of life in patients. Furthermore, the need to have the teeth deemed unyielding or unsuitable for the application of conservative methods of treatment duly extracted is fraught for a patient with an extra hazard of developing osteoradionecrosis (ORN), while also increasing all attendant therapeutic expenditures. The present paper aims to offer some practical insights into currently available methods of preventing likely development of radiation-induced caries. PMID:27688724

  20. Radiation-induced caries as the late effect of radiation therapy in the head and neck region

    PubMed Central

    Hajto-Bryk, Justyna; Wróblewska, Małgorzata; Zarzecka, Joanna

    2015-01-01

    Overall improvement in the nationwide system of medical services has consequently boosted the number of successfully treated patients who suffer from head and neck cancer. It is essential to effectively prevent development of radiation-induced caries as the late effect of radiation therapy. Incidence and severity of radiationinduced changes within the teeth individually vary depending on the patient's age, actual radiation dose, size of radiation exposure field, patient's general condition and additional risk factors. Inadequately managed treatment of caries may lead to loss of teeth, as well as prove instrumental in tangibly diminishing individual quality of life in patients. Furthermore, the need to have the teeth deemed unyielding or unsuitable for the application of conservative methods of treatment duly extracted is fraught for a patient with an extra hazard of developing osteoradionecrosis (ORN), while also increasing all attendant therapeutic expenditures. The present paper aims to offer some practical insights into currently available methods of preventing likely development of radiation-induced caries. PMID:27688724

  1. National Cancer Data Base Analysis of Radiation Therapy Consolidation Modality for Cervical Cancer: The Impact of New Technological Advancements

    SciTech Connect

    Gill, Beant S.; Lin, Jeff F.; Krivak, Thomas C.; Sukumvanich, Paniti; Laskey, Robin A.; Ross, Malcolm S.; Lesnock, Jamie L.; Beriwal, Sushil

    2014-12-01

    Purpose: To utilize the National Cancer Data Base to evaluate trends in brachytherapy and alternative radiation therapy utilization in the treatment of cervical cancer, to identify associations with outcomes between the various radiation therapy modalities. Methods and Materials: Patients with International Federation of Gynecology and Obstetrics stage IIB-IVA cervical cancer in the National Cancer Data Base who received treatment from January 2004 to December 2011 were analyzed. Overall survival was estimated by the Kaplan-Meier method. Univariate and multivariable analyses were performed to identify factors associated with type of boost radiation modality used and its impact on survival. Results: A total of 7654 patients had information regarding boost modality. A predominant proportion of patients were Caucasian (76.2%), had stage IIIB (48.9%) disease with squamous (82.0%) histology, were treated at academic/research centers (47.7%) in the South (34.8%), and lived 0 to 5 miles (27.9%) from the treating facility. A majority received brachytherapy (90.3%). From 2004 to 2011, brachytherapy use decreased from 96.7% to 86.1%, whereas intensity modulated radiation therapy (IMRT) and stereotactic body radiation therapy (SBRT) use increased from 3.3% to 13.9% in the same period (P<.01). Factors associated with decreased brachytherapy utilization included older age, stage IVA disease, smaller tumor size, later year of diagnosis, lower-volume treatment centers, and facility type. After controlling for significant factors from survival analyses, IMRT or SBRT boost resulted in inferior overall survival (hazard ratio, 1.86; 95% confidence interval, 1.35-2.55; P<.01) as compared with brachytherapy. In fact, the survival detriment associated with IMRT or SBRT boost was stronger than that associated with excluding chemotherapy (hazard ratio, 1.61′ 95% confidence interval, 1.27-2.04′ P<.01). Conclusions: Consolidation brachytherapy is a critical treatment component for

  2. Radiation pneumonitis after stereotactic radiation therapy for lung cancer

    PubMed Central

    Yamashita, Hideomi; Takahashi, Wataru; Haga, Akihiro; Nakagawa, Keiichi

    2014-01-01

    Stereotactic body radiation therapy (SBRT) has a local control rate of 95% at 2 years for non-small cell lung cancer (NSCLC) and should improve the prognosis of inoperable patients, elderly patients, and patients with significant comorbidities who have early-stage NSCLC. The safety of SBRT is being confirmed in international, multi-institutional Phase II trials for peripheral lung cancer in both inoperable and operable patients, but reports so far have found that SBRT is a safe and effective treatment for early-stage NSCLC and early metastatic lung cancer. Radiation pneumonitis (RP) is one of the most common toxicities of SBRT. Although most post-treatment RP is Grade 1 or 2 and either asymptomatic or manageable, a few cases are severe, symptomatic, and there is a risk for mortality. The reported rates of symptomatic RP after SBRT range from 9% to 28%. Being able to predict the risk of RP after SBRT is extremely useful in treatment planning. A dose-effect relationship has been demonstrated, but suggested dose-volume factors like mean lung dose, lung V20, and/or lung V2.5 differed among the reports. We found that patients who present with an interstitial pneumonitis shadow on computed tomography scan and high levels of serum Krebs von den Lungen-6 and surfactant protein D have a high rate of severe radiation pneumonitis after SBRT. At our institution, lung cancer patients with these risk factors have not received SBRT since 2006, and our rate of severe RP after SBRT has decreased significantly since then. PMID:25276313

  3. Prostate cancer radiation therapy: A physician's perspective.

    PubMed

    Dal Pra, Alan; Souhami, Luis

    2016-03-01

    Prostate cancer is the second most common cancer in men and a major cause of cancer deaths worldwide. Ionizing radiation has played a substantial role in the curative treatment of this disease. The historical evolution of radiotherapy techniques through 3D-conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and image-guided radiotherapy (IGRT) has allowed more accurate and precise treatments toward significant improvements in the therapeutic ratio. The addition of androgen deprivation therapy has significantly improved overall survival becoming the standard therapy for intermediate- and high-risk disease. Many randomized controlled trials have shown improved local control with dose escalation, and hypofractionated RT has been consolidated with proven efficacy and safe clinical results. However, several questions remain open in the radiotherapeutic management of prostate cancer patients and hopefully ongoing studies will shed light on these uncertainties. More individualized approaches are essential through better prognostic and novel predictive biomarkers of prostate radiotherapy response. Clinicians should critically interpret the evolving technologies in prostate cancer radiotherapy with important optimism but balancing the costs and the actual magnitude of clinical benefit. This article provides an overview of the basic aspects of radiotherapy treatment in localized prostate cancer from a physician's perspective. PMID:27056435

  4. Ultraviolet radiation therapy and UVR dose models

    SciTech Connect

    Grimes, David Robert

    2015-01-15

    Ultraviolet radiation (UVR) has been an effective treatment for a number of chronic skin disorders, and its ability to alleviate these conditions has been well documented. Although nonionizing, exposure to ultraviolet (UV) radiation is still damaging to deoxyribonucleic acid integrity, and has a number of unpleasant side effects ranging from erythema (sunburn) to carcinogenesis. As the conditions treated with this therapy tend to be chronic, exposures are repeated and can be high, increasing the lifetime probability of an adverse event or mutagenic effect. Despite the potential detrimental effects, quantitative ultraviolet dosimetry for phototherapy is an underdeveloped area and better dosimetry would allow clinicians to maximize biological effect whilst minimizing the repercussions of overexposure. This review gives a history and insight into the current state of UVR phototherapy, including an overview of biological effects of UVR, a discussion of UVR production, illness treated by this modality, cabin design and the clinical implementation of phototherapy, as well as clinical dose estimation techniques. Several dose models for ultraviolet phototherapy are also examined, and the need for an accurate computational dose estimation method in ultraviolet phototherapy is discussed.

  5. Virtual reality in radiation therapy training.

    PubMed

    Boejen, Annette; Grau, Cai

    2011-09-01

    Integration of virtual reality (VR) in clinical training programs is a novel tool in radiotherapy. This paper presents a review of the experience with VR and Immersive visualization in 3D perspective for planning and delivery of external radiotherapy. Planning and delivering radiation therapy is a complex process involving physicians, physicists, radiographers and radiation therapists/nurses (RTT's). The specialists must be able to understand spatial relationships in the patient anatomy. Although still in its infancy, VR tools have become available for radiotherapy training, enabling students to simulate and train clinical situations without interfering with the clinical workflow, and without the risk of making errors. Immersive tools like a 3D linear accelerator and 3D display of dose distributions have been integrated into training, together with IT-labs with clinical software. Training in a VR environment seems to be cost-effective for the clinic. Initial reports suggest that 3D display of dose distributions may improve treatment planning and decision making. Whether VR training qualifies the students better than conventional training is still unsettled, but the first results are encouraging. PMID:20724144

  6. A multileaf collimator for neutron radiation therapy

    NASA Astrophysics Data System (ADS)

    Farr, J. B.; Maughan, R. L.; Yudelev, M.; Forman, J. D.; Blosser, E. J.; Horste, T.

    2001-12-01

    A multi-leaf collimator (MLC) has been designed for installation on the super-conducting cyclotron at the Gershenson Radiation Oncology Center. This MLC will replace the existing multi-rod collimator and the increased efficiency thus achieved should allow for a 50% increase in the number of patients treated. A study of the penumbra region of the neutron beam with focused and unfocused collimator leaves has been completed, together with activation measurements in steel and tungsten. Results of these studies were used to finalize the collimator leaf design. A steel collimator leaf with a 5 mm projection at the isocenter and a wedge shaped section has been chosen, to provide beam divergence in the direction perpendicular to the leaf motion. The leaf profile is "stepped" to prevent neutron leakage. The rationale for this leaf design is discussed. The overall design of the collimator system and the incorporation of a remote wedge-changing device will be presented. Each leaf is positioned using a stepping motor; the leaf position is independently confirmed using an optical system incorporating a coherent fiber optic and a CCD camera. The control system is being designed to allow for the implementation of intensity modulated neutron radiation therapy (IMNRT).

  7. Primary radiation therapy for juvenile nasopharyngeal angiofibroma.

    PubMed

    Cummings, B J; Blend, R; Keane, T; Fitzpatrick, P; Beale, F; Clark, R; Garrett, P; Harwood, A; Payne, D; Rider, W

    1984-12-01

    Evidence is presented of the effectiveness and relative lack of serious toxicity of external beam megavoltage radiation therapy (RT) as primary treatment for juvenile nasopharyngeal angiofibroma. The importance of careful radiological evaluation of tumor extent prior to irradiation is stressed, and only moderate dose RT is required. Fifty-five patients have been treated by RT and followed for from 3 to 26 years. Forty-four of 55 patients (80%) had permanent tumor control following a single course of 3000 cGy to 3500 cGy over 3 weeks. Surgical resection or a second course of RT controlled the tumor in all 11 patients in whom regrowth occurred. Angiofibromas involute slowly after RT so that 50% of patients still had visible masses in the nasopharynx 12 months after treatment, but only 10% had any visible abnormality 36 months after RT. Retreatment was necessary only if symptoms recurred, and continued follow-up showed that most asymptomatic nasopharyngeal masses resolved completely. Acute and late toxicity rates were low. Two patients developed tumors in the head or neck following RT. There was no significant clinical impairment of growth or endocrine function. A single course of external beam megavoltage radiation to 3000 cGy in 3 weeks is an effective first treatment for patients with juvenile nasopharyngeal angiofibroma.

  8. Understanding Radiation Therapy: A Guide for Patients and Families

    MedlinePlus

    ... Saved Articles » My ACS » A Guide to Radiation Therapy Download Printable Version [PDF] » ( En español ) You’ve ... you and your doctor have agreed that radiation therapy is your best choice – either alone or along ...

  9. Severe prostatic calcification after radiation therapy for cancer.

    PubMed

    Jones, W A; Miller, E V; Sullivan, L D; Chapman, W H

    1979-06-01

    Severe symptomatic prostatic calcification was seen in 3 patients who had carcinoma of the prostate treated initially with transurethral resection, followed in 2 to 4 weeks by definitive radiation therapy. This complication is probably preventable if an interval of 6 weeks is allowed between transurethral resection of the prostate and radiation therapy.

  10. [Importance of sonotomography in radiation therapy (author's transl)].

    PubMed

    Heckemann, R; Quast, U; Glaeser, L; Schmitt, G

    1976-08-01

    Ultrasound tomography provides true scale representation of body contours and organ structures. The image supplies substantial, individual geometrical data, essential for computerized radiation treatment planning. The mehtod is described. Typical planning examples for therapy are demonstrated. The value of follow up sonograms for radiation therapy is described. The limitations of the method are pointed out.

  11. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  12. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  13. 21 CFR 892.5750 - Radionuclide radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radionuclide radiation therapy system. 892.5750 Section 892.5750 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... system. (a) Identification. A radionuclide radiation therapy system is a device intended to permit...

  14. Diagnosis of delayed cerebral radiation necrosis following proton beam therapy

    SciTech Connect

    Kaufman, M.; Swartz, B.E.; Mandelkern, M.; Ropchan, J.; Gee, M.; Blahd, W.H. )

    1990-04-01

    A 27-year-old man developed delayed cerebral radiation necrosis following proton beam therapy to an arteriovenous malformation. Neuroimaging with technetium 99m diethylenetriamine penta-acetic acid and positron emission tomographic scanning with fludeoxyglucose F 18 aided in his evaluation. Significant improvement of his neurologic deficits resulted from corticosteroid therapy. Clinical resolution was corroborated by serial computed tomographic scans demonstrating regression of the abnormality (a mass lesion). Various facets of radiation injury are discussed, including pathogenesis, risk factors, diagnosis, and therapy.

  15. Reduced Toxicity With Intensity Modulated Radiation Therapy (IMRT) for Desmoplastic Small Round Cell Tumor (DSRCT): An Update on the Whole Abdominopelvic Radiation Therapy (WAP-RT) Experience

    SciTech Connect

    Desai, Neil B.; Stein, Nicholas F.; LaQuaglia, Michael P.; Alektiar, Kaled M.; Kushner, Brian H.; Modak, Shakeel; Magnan, Heather M.; Goodman, Karyn; Wolden, Suzanne L.

    2013-01-01

    Purpose: Desmoplastic small round cell tumor (DSRCT) is a rare malignancy typically involving the peritoneum in young men. Whole abdominopelvic radiation therapy (WAP-RT) using conventional 2-dimensional (2D) radiation therapy (RT) is used to address local recurrence but has been limited by toxicity. Our objectives were to assess the benefit of intensity modulated radiation therapy (IMRT) on toxicity and to update the largest series on radiation for DSRCT. Methods and Materials: The records of 31 patients with DSRCT treated with WAP-RT (22 with 2D-RT and 9 with IMRT) between 1992 and 2011 were retrospectively reviewed. All received multi-agent chemotherapy and maximal surgical debulking followed by 30 Gy of WAP-RT. A further focal boost of 12 to 24 Gy was used in 12 cases. Boost RT and autologous stem cell transplantation were nearly exclusive to patients treated with 2D-RT. Toxicities were assessed with the Common Terminology Criteria for Adverse Events. Dosimetric analysis compared IMRT and simulated 2D-RT dose distributions. Results: Of 31 patients, 30 completed WAP-RT, with a median follow-up after RT of 19 months. Acute toxicity was reduced with IMRT versus 2D-RT: P=.04 for gastrointestinal toxicity of grade 2 or higher (33% vs 77%); P=.02 for grade 4 hematologic toxicity (33% vs 86%); P=.01 for rates of granulocyte colony-stimulating factor; and P=.04 for rates of platelet transfusion. Post treatment red blood cell and platelet transfusion rates were also reduced (P=.01). IMRT improved target homogeneity ([D05-D95]/D05 of 21% vs 46%) and resulted in a 21% mean bone dose reduction. Small bowel obstruction was the most common late toxicity (23% overall). Updated 3-year overall survival and progression-free survival rates were 50% and 24%, respectively. Overall survival was associated with distant metastasis at diagnosis on multivariate analysis. Most failures remained intraperitoneal (88%). Conclusions: IMRT for consolidative WAP-RT in DSRCT improves

  16. Towards incorporating affective computing to virtual rehabilitation; surrogating attributed attention from posture for boosting therapy adaptation

    NASA Astrophysics Data System (ADS)

    Rivas, Jesús J.; Heyer, Patrick; Orihuela-Espina, Felipe; Sucar, Luis Enrique

    2015-01-01

    Virtual rehabilitation (VR) is a novel motor rehabilitation therapy in which the rehabilitation exercises occurs through interaction with bespoken virtual environments. These virtual environments dynamically adapt their activity to match the therapy progress. Adaptation should be guided by the cognitive and emotional state of the patient, none of which are directly observable. Here, we present our first steps towards inferring non-observable attentional state from unobtrusively observable seated posture, so that this knowledge can later be exploited by a VR platform to modulate its behaviour. The space of seated postures was discretized and 648 pictures of acted representations were exposed to crowd-evaluation to determine attributed state of attention. A semi-supervised classifier based on Na¨ıve Bayes with structural improvement was learnt to unfold a predictive relation between posture and attributed attention. Internal validity was established following a 2×5 cross-fold strategy. Following 4959 votes from crowd, classification accuracy reached a promissory 96.29% (µ±σ = 87.59±6.59) and F-measure reached 82.35% (µ ± σ = 69.72 ± 10.50). With the afforded rate of classification, we believe it is safe to claim posture as a reliable proxy for attributed attentional state. It follows that unobtrusively monitoring posture can be exploited for guiding an intelligent adaptation in a virtual rehabilitation platform. This study further helps to identify critical aspects of posture permitting inference of attention.

  17. Stereotactic Body Radiation Therapy Versus Intensity-Modulated Radiation Therapy for Prostate Cancer: Comparison of Toxicity

    PubMed Central

    Yu, James B.; Cramer, Laura D.; Herrin, Jeph; Soulos, Pamela R.; Potosky, Arnold L.; Gross, Cary P.

    2014-01-01

    Purpose Stereotactic body radiation therapy (SBRT) is a technically demanding prostate cancer treatment that may be less expensive than intensity-modulated radiation therapy (IMRT). Because SBRT may deliver a greater biologic dose of radiation than IMRT, toxicity could be increased. Studies comparing treatment cost to the Medicare program and toxicity are needed. Methods We performed a retrospective study by using a national sample of Medicare beneficiaries age ≥ 66 years who received SBRT or IMRT as primary treatment for prostate cancer from 2008 to 2011. Each SBRT patient was matched to two IMRT patients with similar follow-up (6, 12, or 24 months). We calculated the cost of radiation therapy treatment to the Medicare program and toxicity as measured by Medicare claims; we used a random effects model to compare genitourinary (GU), GI, and other toxicity between matched patients. Results The study sample consisted of 1,335 SBRT patients matched to 2,670 IMRT patients. The mean treatment cost was $13,645 for SBRT versus $21,023 for IMRT. In the 6 months after treatment initiation, 15.6% of SBRT versus 12.6% of IMRT patients experienced GU toxicity (odds ratio [OR], 1.29; 95% CI, 1.05 to 1.53; P = .009). At 24 months after treatment initiation, 43.9% of SBRT versus 36.3% of IMRT patients had GU toxicity (OR, 1.38; 95% CI, 1.12 to 1.63; P = .001). The increase in GU toxicity was due to claims indicative of urethritis, urinary incontinence, and/or obstruction. Conclusion Although SBRT was associated with lower treatment costs, there appears to be a greater rate of GU toxicity for patients undergoing SBRT compared with IMRT, and prospective correlation with randomized trials is needed. PMID:24616315

  18. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain. PMID:26235550

  19. Whole-brain hippocampal sparing radiation therapy: Volume-modulated arc therapy vs intensity-modulated radiation therapy case study.

    PubMed

    Lee, Katrina; Lenards, Nishele; Holson, Janice

    2016-01-01

    The hippocampus is responsible for memory and cognitive function. An ongoing phase II clinical trial suggests that sparing dose to the hippocampus during whole-brain radiation therapy can help preserve a patient׳s neurocognitive function. Progressive research and advancements in treatment techniques have made treatment planning more sophisticated but beneficial for patients undergoing treatment. The aim of this study is to evaluate and compare hippocampal sparing whole-brain (HS-WB) radiation therapy treatment planning techniques using volume-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT). We randomly selected 3 patients to compare different treatment techniques that could be used for reducing dose to the hippocampal region. We created 2 treatment plans, a VMAT and an IMRT, from each patient׳s data set and planned on the Eclipse 11.0 treatment planning system (TPS). A total of 6 plans (3 IMRT and 3 VMAT) were created and evaluated for this case study. The physician contoured the hippocampus as per the Radiation Therapy Oncology Group (RTOG) 0933 protocol atlas. The organs at risk (OR) were contoured and evaluated for the plan comparison, which included the spinal cord, optic chiasm, the right and left eyes, lenses, and optic nerves. Both treatment plans produced adequate coverage on the planning target volume (PTV) while significantly reducing dose to the hippocampal region. The VMAT treatment plans produced a more homogenous dose distribution throughout the PTV while decreasing the maximum point dose to the target. However, both treatment techniques demonstrated hippocampal sparing when irradiating the whole brain.

  20. Radiation Therapy for Chloroma (Granulocytic Sarcoma)

    SciTech Connect

    Bakst, Richard; Wolden, Suzanne; Yahalom, Joachim

    2012-04-01

    Objectives: Chloroma (granulocytic sarcoma) is a rare, extramedullary tumor of immature myeloid cells related to acute nonlymphocytic leukemia or myelodysplastic syndrome. Radiation therapy (RT) is often used in the treatment of chloromas; however, modern studies of RT are lacking. We reviewed our experience to analyze treatment response, disease control, and toxicity associated with RT to develop treatment algorithm recommendations for patients with chloroma. Patients and Methods: Thirty-eight patients who underwent treatment for chloromas at our institution between February 1990 and June 2010 were identified and their medical records were reviewed and analyzed. Results: The majority of patients that presented with chloroma at the time of initial leukemia diagnosis (78%) have not received RT because it regressed after initial chemotherapy. Yet most patients that relapsed or remained with chloroma after chemotherapy are in the RT cohort (90%). Thirty-three courses of RT were administered to 22 patients. Radiation subsite breakdown was: 39% head and neck, 24% extremity, 9% spine, 9% brain, 6% genitourinary, 6% breast, 3% pelvis, and 3% genitourinary. Median dose was 20 (6-36) Gy. Kaplan-Meier estimates of progression-free survival and overall survival in the RT cohort were 39% and 43%, respectively, at 5 years. At a median follow-up of 11 months since RT, only 1 patient developed progressive disease at the irradiated site and 4 patients developed chloromas at other sites. RT was well tolerated without significant acute or late effects and provided symptom relief in 95% of cases. Conclusions: The majority of patients with chloromas were referred for RT when there was extramedullary progression, marrow relapse, or rapid symptom relief required. RT resulted in excellent local disease control and palliation of symptoms without significant toxicity. We recommend irradiating chloromas to at least 20 Gy, and propose 24 Gy in 12 fractions as an appropriate regimen.

  1. On probabilistically defined margins in radiation therapy

    NASA Astrophysics Data System (ADS)

    Papiez, Lech; Langer, Mark

    2006-08-01

    Margins about a target volume subject to external beam radiation therapy are designed to assure that the target volume of tissue to be sterilized by treatment is adequately covered by a lethal dose. Thus, margins are meant to guarantee that all potential variation in tumour position relative to beams allows the tumour to stay within the margin. Variation in tumour position can be broken into two types of dislocations, reducible and irreducible. Reducible variations in tumour position are those that can be accommodated with the use of modern image-guided techniques that derive parameters for compensating motions of patient bodies and/or motions of beams relative to patient bodies. Irreducible variations in tumour position are those random dislocations of a target that are related to errors intrinsic in the design and performance limitations of the software and hardware, as well as limitations of human perception and decision making. Thus, margins in the era of image-guided treatments will need to accommodate only random errors residual in patient setup accuracy (after image-guided setup corrections) and in the accuracy of systems designed to track moving and deforming tissues of the targeted regions of the patient's body. Therefore, construction of these margins will have to be based on purely statistical data. The characteristics of these data have to be determined through the central limit theorem and Gaussian properties of limiting error distributions. In this paper, we show how statistically determined margins are to be designed in the general case of correlated distributions of position errors in three-dimensional space. In particular, we show how the minimal margins for a given level of statistical confidence are found. Then, how they are to be used to determine geometrically minimal PTV that provides coverage of GTV at the assumed level of statistical confidence. Our results generalize earlier recommendations for statistical, central limit theorem

  2. Geometric accuracy in radiation therapy: Dosimetric, imaging and economic considerations

    NASA Astrophysics Data System (ADS)

    Ploquin, Nicolas P.

    In 2007 in Canada, 159,900 men and women will be diagnosed with cancer. Radiation Therapy (RT) is the treatment of cancer by irradiating malignant tissue with ionizing radiation and it is used on up to 50% of all cancers. The objective of radiation therapy is to deliver a lethal dose of radiation to the tumour while sparing the surrounding healthy tissues and organs at risks (OARs). Thus, the accuracy with which the radiation therapy process must be carried out is critical. The presence of setup errors and uncertainties throughout the RT process impacts the dose received by the tumour and OARs and can compromise the outcome for the patient. This thesis focuses on the study of the limiting geometrical accuracy imposed by factors present in radiation therapy process (such as setup errors and uncertainties or the spatial resolution of the imaging systems that we use) and its consequences for the patient. The consequences are quantified through the use of a physical outcome surrogate, the Equivalent Uniform Dose (EUD), which numerically describes the dose distribution received by the target and normal structures surrounding it. A cost-outcome analysis is presented in which the incremental cost of radiation therapy is directly related to the patients outcome (using the EUD) for using various imaging modalities and correction protocols in Image Guided Adaptive Radiation Therapy (IGART).

  3. Basic physics and biology of radiation therapy.

    PubMed

    Crocker, I R; Popowski, Y

    1997-06-01

    The therapeutic use of ionizing radiation followed shortly after the discovery of X-rays by Roentgen in 1895. The radiobiological principles that underlie the clinical use of ionizing radiation have been ablated slowly over the past century. Ionizing radiation, which is used therapeutically for benign and malignant conditions, is characterized by the localized release of large amounts of energy. These radiations may be electromagnetic (X- or gamma rays) or particulate (electrons, protons, alpha particles, neutrons, etc.). In this paper we will review some basic radiation physics and radiation biology principles which might be unfamiliar to the interventional cardiologist interested in this evolving application of radiation to prevent restenosis. PMID:9546997

  4. Malignant glioma - timing of response to radiation therapy

    SciTech Connect

    Gaspar, L.E.; Fisher, B.J.; MacDonald, D.R.; Cairncross, J.G. London Regional Cancer Centre, Ontario ); LeBer, D.V. ); Halperin, E.C.; Schold, S.C. Jr. )

    1993-04-02

    The response of malignant gliomas to radiation was examined retrospectively in 71 patients with newly diagnosed supratentorial malignant gliomas. Questions asked included frequency, timing and clinical significance of response. After surgery, all were treated with whole brain plus boost radiotherapy followed 8 weeks later by chemotherapy. The rate, degree, and timing of response to radiation were determined by comparing postoperative, end of radiation, and prechemotherapy CT scans on each patient. Postoperative residual tumor was evident on 63/71 postoperative scans. Twenty-two of 63 tumors (35%) had a partial or complete response to radiation. Twenty (32%) had responded by the end of radiation; 17 maximally. Six to 8 weeks later, three responding tumors had responded further and two previously stable ones had begun to respond. Only three tumors (5%) responded completely. A greater proportion of anaplastic gliomas than glioblastomas responded to radiation (52% vs. 26%). Protracted or delayed responses were only observed in patients with anaplastic glioma. Patients who responded to radiation did not live significantly longer than non-responders. However, tumor progression prior to chemotherapy was associated with significantly shorter survival. This CT scan-based analysis demonstrates that malignant gliomas are only moderately radioresponsive tumors and also demonstrates that response to radiation, if it is going to occur, is usually evident by the end of treatment. 6 refs., 1 fig., 1 tab.

  5. Mesenchymal stem cell therapy for acute radiation syndrome.

    PubMed

    Fukumoto, Risaku

    2016-01-01

    Acute radiation syndrome affects military personnel and civilians following the uncontrolled dispersal of radiation, such as that caused by detonation of nuclear devices and inappropriate medical treatments. Therefore, there is a growing need for medical interventions that facilitate the improved recovery of victims and patients. One promising approach may be cell therapy, which, when appropriately implemented, may facilitate recovery from whole body injuries. This editorial highlights the current knowledge regarding the use of mesenchymal stem cells for the treatment of acute radiation syndrome, the benefits and limitations of which are under investigation. Establishing successful therapies for acute radiation syndrome may require using such a therapeutic approach in addition to conventional approaches. PMID:27182446

  6. Practice and Educational Gaps in Radiation Therapy in Dermatology.

    PubMed

    Cognetta, Armand B; Wolfe, Christopher M; Goldberg, David J; Hong, Hyokyoung Grace

    2016-07-01

    Guidelines for appropriate use of superficial radiation therapy are based on decades of research; although no formal appropriate use criteria have been developed, they are warranted. Superficial radiation in the outpatient dermatologic setting is the least expensive form of radiation treatment. Although higher cure rates may be possible with Mohs surgery, this should never argue against dermatologists retaining and refining a modality, nor should we limit its use by our successors. Most important, our elderly and infirm patients should continue to benefit from superficial radiation therapy in outpatient dermatologic settings. PMID:27363889

  7. Proton minibeam radiation therapy: Experimental dosimetry evaluation

    SciTech Connect

    Peucelle, C.; Martínez-Rovira, I.; Prezado, Y.; Nauraye, C.; Patriarca, A.; Hierso, E.; Fournier-Bidoz, N.

    2015-12-15

    Purpose: Proton minibeam radiation therapy (pMBRT) is a new radiotherapy (RT) approach that allies the inherent physical advantages of protons with the normal tissue preservation observed when irradiated with submillimetric spatially fractionated beams. This dosimetry work aims at demonstrating the feasibility of the technical implementation of pMBRT. This has been performed at the Institut Curie - Proton Therapy Center in Orsay. Methods: Proton minibeams (400 and 700 μm-width) were generated by means of a brass multislit collimator. Center-to-center distances between consecutive beams of 3200 and 3500 μm, respectively, were employed. The (passive scattered) beam energy was 100 MeV corresponding to a range of 7.7 cm water equivalent. Absolute dosimetry was performed with a thimble ionization chamber (IBA CC13) in a water tank. Relative dosimetry was carried out irradiating radiochromic films interspersed in a IBA RW3 slab phantom. Depth dose curves and lateral profiles at different depths were evaluated. Peak-to-valley dose ratios (PVDR), beam widths, and output factors were also assessed as a function of depth. Results: A pattern of peaks and valleys was maintained in the transverse direction with PVDR values decreasing as a function of depth until 6.7 cm. From that depth, the transverse dose profiles became homogeneous due to multiple Coulomb scattering. Peak-to-valley dose ratio values extended from 8.2 ± 0.5 at the phantom surface to 1.08 ± 0.06 at the Bragg peak. This was the first time that dosimetry in such small proton field sizes was performed. Despite the challenge, a complete set of dosimetric data needed to guide the first biological experiments was achieved. Conclusions: pMBRT is a novel strategy in order to reduce the side effects of RT. This works provides the experimental proof of concept of this new RT method: clinical proton beams might allow depositing a (high) uniform dose in a brain tumor located in the center of the brain (7.5 cm depth

  8. Performance Boost in Industrial Multifilamentary Nb3Sn Wires due to Radiation Induced Pinning Centers

    PubMed Central

    Baumgartner, T.; Eisterer, M.; Weber, H. W.; Flükiger, R.; Scheuerlein, C.; Bottura, L.

    2015-01-01

    We report non-Cu critical current densities of 4 . 09 ⋅ 109 A/m2 at 12 T and 2.27 ⋅ 109 A/m2 at 15 T obtained from transport measurements on a Ti-alloyed RRP Nb3Sn wire after irradiation to a fast neutron fluence of 8.9 ⋅ 1021 m−2. These values are to our knowledge unprecedented in multifilamentary Nb3Sn, and they correspond to a Jc enhancement of approximately 60% relative to the unirradiated state. Our magnetometry data obtained on short wire samples irradiated to fast neutron fluences of up to 2.5 ⋅ 1022 m−2 indicate the possibility of an even better performance, whereas earlier irradiation studies on bronze-processed Nb3Sn wires with a Sn content further from stoichiometry attested a decline of the critical current density at such high fluences. We show that radiation induced point-pinning centers rather than an increase of the upper critical field are responsible for this Jc enhancement, and argue that these results call for further research on pinning landscape engineering. PMID:26030255

  9. Intensity-Modulated Radiation Therapy (IMRT)

    MedlinePlus

    ... modulating—or controlling—the intensity of the radiation beam in multiple small volumes. IMRT also allows higher ... of multiple intensity-modulated fields coming from different beam directions produce a custom tailored radiation dose that ...

  10. Pineal and ectopic pineal tumors: the role of radiation therapy. [X ray; /sup 60/Co

    SciTech Connect

    Rao, Y.T.R.; Medini, E.; Haselow, R.E.; Jones, T.K. Jr.; Levitt, S.H.

    1981-08-01

    Seventeen patients with pineal tumors and one ectopic (suprasellar) germinoma were treated with radiation therapy. Surgery was restricted to decompression in 16 patients, and only two patients had resection of the tumor. Thirteen of 18 patients are alive without evidence for disease with a ten-year surrvival rate of 88%. The tumor dose ranged from 4000 rads to 6000 rads. No age or dose dependence in survival was noted, but patients with whole brain irradiation or generous volume to include ventricular system had better survival. No case of spinal metastasis was noted. The possibility of increased incidence of meningeal seeding following surgical intervention is considered. From their data, the authors feel that radiation therapy with or without surgical decompression should be the primary treatment for pinealoma. Surgery can be used for diagnosis and/or treatment of patients who show delayed response to radiation. Recommendation is made for the use of whole brain irradiation to 4000 rads followed by a boost to the tumor area to 5000 rads.

  11. Superficial Radiation Therapy for the Treatment of Nonmelanoma Skin Cancers.

    PubMed

    McGregor, Sean; Minni, John; Herold, David

    2015-12-01

    Superficial radiation therapy has become more widely available to dermatologists. With the advent of more portable machines, it has become more convenient for dermatology practices to employ in an office-based setting. The goal of this paper is to provide a deeper insight into the role of superficial radiation therapy in dermatology practice and to review the current literature surrounding its use in the treatment of both basal and squamous cell carcinomas.

  12. Advanced Interventional Therapy for Radiation-Induced Cardiovascular Disease

    PubMed Central

    2016-01-01

    This report describes the case of a 61-year-old woman who presented with dyspnea, aortic stenosis, and coronary artery disease—typical side effects of radiation therapy for Hodgkin lymphoma. A poor candidate for surgery, she underwent successful high-risk percutaneous coronary intervention and subsequent transcatheter aortic valve replacement. This report highlights some of the cardiovascular-specific sequelae of radiation therapy for cancer treatment; in addition, possible directions for future investigations are discussed. PMID:27547140

  13. Thyroid neoplasia following radiation therapy for Hodgkin's lymphoma

    SciTech Connect

    McHenry, C.; Jarosz, H.; Calandra, D.; McCall, A.; Lawrence, A.M.; Paloyan, E.

    1987-06-01

    The question of thyroid neoplasia following high-dose radiation treatment to the neck and mediastinum for malignant neoplasms such as Hodgkin's lymphoma in children and young adults has been raised recently. Five patients, 19 to 39 years old, were operated on for thyroid neoplasms that developed following cervical and mediastinal radiation therapy for Hodgkin's lymphoma. Three patients had papillary carcinomas and two had follicular adenomas. The latency period between radiation exposure and the diagnosis of thyroid neoplasm ranged from eight to 16 years. This limited series provided strong support for the recommendation that children and young adults who are to receive high-dose radiation therapy to the head, neck, and mediastinum should receive suppressive doses of thyroxine prior to radiation therapy in order to suppress thyrotropin (thyroid-stimulating hormone) and then be maintained on a regimen of suppression permanently.

  14. Music therapy CD creation for initial pediatric radiation therapy: a mixed methods analysis.

    PubMed

    Barry, Philippa; O'Callaghan, Clare; Wheeler, Greg; Grocke, Denise

    2010-01-01

    A mixed methods research design was used to investigate the effects of a music therapy CD (MTCD) creation intervention on pediatric oncology patients' distress and coping during their first radiation therapy treatment. The music therapy method involved children creating a music CD using interactive computer-based music software, which was "remixed" by the music therapist-researcher to extend the musical material. Eleven pediatric radiation therapy outpatients aged 6 to 13 years were randomly assigned to either an experimental group, in which they could create a music CD prior to their initial treatment to listen to during radiation therapy, or to a standard care group. Quantitative and qualitative analyses generated multiple perceptions from the pediatric patients, parents, radiation therapy staff, and music therapist-researcher. Ratings of distress during initial radiation therapy treatment were low for all children. The comparison between the two groups found that 67% of the children in the standard care group used social withdrawal as a coping strategy, compared to 0% of the children in the music therapy group; this trend approached significance (p = 0.076). MTCD creation was a fun, engaging, and developmentally appropriate intervention for pediatric patients, which offered a positive experience and aided their use of effective coping strategies to meet the demands of their initial radiation therapy treatment. PMID:21275334

  15. Radiation therapy among atomic bomb survivors, Hiroshima and Nagasaki.

    PubMed

    Kato, K; Antoku, S; Russell, W J; Fujita, S; Pinkston, J A; Hayabuchi, N; Hoshi, M; Kodama, K

    1998-06-01

    As a follow-up to the two previous surveys of radiation therapy among the atomic bomb survivors, a large-scale survey was performed to document (1) the number of radiation therapy treatments received by the atomic bomb survivors and (2) the types of radiation treatments conducted in Hiroshima and Nagasaki. The previous two surveys covered the radiation treatments among the Radiation Effects Research Foundation Adult Health Study (AHS) population, which is composed of 20,000 persons. In the present survey, the population was expanded to include the Life Span Study (LSS), including 93,611 atomic bomb survivors and 26,517 Hiroshima and Nagasaki citizens who were not in the cities at the times of the bombings. The LSS population includes the AHS population. The survey was conducted from 1981 to 1984. The survey teams reviewed all the medical records for radiation treatments of 24,266 patients at 11 large hospitals in Hiroshima and Nagasaki. Among them, the medical records for radiation treatments of 1556 LSS members were reviewed in detail. By analyzing the data obtained in the present and previous surveys, the number of patients receiving radiation therapy was estimated to be 4501 (3.7%) in the LSS population and 1026 (5.1%) in the AHS population between 1945-1980. During 1945-1965, 98% of radiation treatments used medium-voltage X rays, and 66% of the treatments were for benign diseases. During 1966-1980, 94% of the radiation treatments were for malignant neoplasms. During this period, 60Co gamma-ray exposure apparatus and high-energy electron accelerators were the prevalent mode of treatment in Hiroshima and in Nagasaki, respectively. The mean frequency of radiation therapy among the LSS population was estimated to have been 158 courses/year during 1945-1965 and 110 courses/year during 1966-1980. The present survey revealed that 377 AHS members received radiation therapy. The number was approximately twice the total number of cases found in the previous two surveys

  16. Pelvic Normal Tissue Contouring Guidelines for Radiation Therapy: A Radiation Therapy Oncology Group Consensus Panel Atlas

    SciTech Connect

    Gay, Hiram A.; Barthold, H. Joseph; O'Meara, Elizabeth; Bosch, Walter R.; El Naqa, Issam; Al-Lozi, Rawan; Rosenthal, Seth A.; Lawton, Colleen; Lee, W. Robert; Sandler, Howard; Zietman, Anthony; Myerson, Robert; Dawson, Laura A.; Willett, Christopher; Kachnic, Lisa A.; Jhingran, Anuja; Portelance, Lorraine; Ryu, Janice; and others

    2012-07-01

    Purpose: To define a male and female pelvic normal tissue contouring atlas for Radiation Therapy Oncology Group (RTOG) trials. Methods and Materials: One male pelvis computed tomography (CT) data set and one female pelvis CT data set were shared via the Image-Guided Therapy QA Center. A total of 16 radiation oncologists participated. The following organs at risk were contoured in both CT sets: anus, anorectum, rectum (gastrointestinal and genitourinary definitions), bowel NOS (not otherwise specified), small bowel, large bowel, and proximal femurs. The following were contoured in the male set only: bladder, prostate, seminal vesicles, and penile bulb. The following were contoured in the female set only: uterus, cervix, and ovaries. A computer program used the binomial distribution to generate 95% group consensus contours. These contours and definitions were then reviewed by the group and modified. Results: The panel achieved consensus definitions for pelvic normal tissue contouring in RTOG trials with these standardized names: Rectum, AnoRectum, SmallBowel, Colon, BowelBag, Bladder, UteroCervix, Adnexa{sub R}, Adnexa{sub L}, Prostate, SeminalVesc, PenileBulb, Femur{sub R}, and Femur{sub L}. Two additional normal structures whose purpose is to serve as targets in anal and rectal cancer were defined: AnoRectumSig and Mesorectum. Detailed target volume contouring guidelines and images are discussed. Conclusions: Consensus guidelines for pelvic normal tissue contouring were reached and are available as a CT image atlas on the RTOG Web site. This will allow uniformity in defining normal tissues for clinical trials delivering pelvic radiation and will facilitate future normal tissue complication research.

  17. Can radiation therapy treatment planning system accurately predict surface doses in postmastectomy radiation therapy patients?

    SciTech Connect

    Wong, Sharon; Back, Michael; Tan, Poh Wee; Lee, Khai Mun; Baggarley, Shaun; Lu, Jaide Jay

    2012-07-01

    Skin doses have been an important factor in the dose prescription for breast radiotherapy. Recent advances in radiotherapy treatment techniques, such as intensity-modulated radiation therapy (IMRT) and new treatment schemes such as hypofractionated breast therapy have made the precise determination of the surface dose necessary. Detailed information of the dose at various depths of the skin is also critical in designing new treatment strategies. The purpose of this work was to assess the accuracy of surface dose calculation by a clinically used treatment planning system and those measured by thermoluminescence dosimeters (TLDs) in a customized chest wall phantom. This study involved the construction of a chest wall phantom for skin dose assessment. Seven TLDs were distributed throughout each right chest wall phantom to give adequate representation of measured radiation doses. Point doses from the CMS Xio Registered-Sign treatment planning system (TPS) were calculated for each relevant TLD positions and results correlated. There were no significant difference between measured absorbed dose by TLD and calculated doses by the TPS (p > 0.05 (1-tailed). Dose accuracy of up to 2.21% was found. The deviations from the calculated absorbed doses were overall larger (3.4%) when wedges and bolus were used. 3D radiotherapy TPS is a useful and accurate tool to assess the accuracy of surface dose. Our studies have shown that radiation treatment accuracy expressed as a comparison between calculated doses (by TPS) and measured doses (by TLD dosimetry) can be accurately predicted for tangential treatment of the chest wall after mastectomy.

  18. Stereotactic body radiation therapy for lung cancer: achievements and perspectives.

    PubMed

    Hiraoka, Masahiro; Matsuo, Yukinori; Takayama, Kenji

    2010-09-01

    Stereotactic body radiation therapy is a new treatment modality where narrow beams from several directions focus on the target while sparing the adjacent normal tissues with high accuracy. This technique basically derived from that of radiosurgery for intracranial lesions allows us to deliver high dose to the target leading to high control of the tumor without causing significant cytotoxicities associated with the treatment. Early-stage non-small cell lung cancers are regarded as most appropriate malignancies for this modality and accordingly have most intensively been investigated. With many encouraging outcomes in retrospective studies, several prospective clinical trials have been started world-wide. Japan Clinical Oncology Group protocol 0403 is a phase II trial of stereotactic body radiation therapy for T1N0M0 non-small cell lung cancer including both inoperable and operable patients. The results for operable patients are to be disclosed this year after 3 years of follow-up. It is highly probable that stereotactic body radiation therapy can be a standard treatment modality for inoperable patients for early-stage non-small cell lung cancer. The role of stereotactic body radiation therapy for operable patients is expected to be clarified by the outcomes of coming clinical trials. Tremendous advance in stereotactic body radiation therapy is expected when four-dimensional radiation therapy coping with tumor movement is realized. Among several approaches, tumor tracking appears most ideal. The new image-guided radiotherapy system which has the capability of tumor tracking has been developed in Japan.

  19. Radiation-induced undifferentiated pleomorphic sarcoma after radiation therapy for a desmoid tumour.

    PubMed

    Di Marco, J; Kaci, R; Orcel, P; Nizard, R; Laredo, J-D

    2016-02-01

    Radiation-induced sarcoma is a long-term complication of radiation therapy. The most common secondary neoplasia is the undifferentiated pleomorphic sarcoma, which is usually described in the deep soft tissue of the trunk or extremities. Radiation-induced sarcomas have a poor prognosis. An early diagnosis and management are needed to improve the survival rate of such patients. We presently report a case of a radiation-induced undifferentiated pleomorphic sarcoma of the left gluteus maximus muscle, which developed 25 years after an initial diagnosis of aggressive fibromatosis and 21 years after a tumour recurrence. This case study illustrates the risk of developing a sarcoma in a radiation field and the need for long-term follow-up after radiation therapy. Unnecessary radiation therapy, in particular in the case of benign conditions in young patients, should be avoided.

  20. Radiation therapy: model standards for determination of need

    SciTech Connect

    Lagasse, L.G.; Devins, T.B.

    1982-03-01

    Contents: Health planning process; Health care requirements (model for projecting need for megavoltage radiation therapy); Operational objectives (manpower, megavoltage therapy and treatment planning equipment, support services, management and evaluation of patient care, organization and administration); Compliance with other standards imposed by law; Financial feasibility and capability; Reasonableness of expenditures and costs; Relative merit; Environmental impact.

  1. An Investigation of Vascular Strategies to Augment Radiation Therapy

    NASA Astrophysics Data System (ADS)

    El Kaffas, Ahmed Nagy

    Radiation therapy is administered to more than 50% of patients diagnosed with cancer. Mechanisms of interaction between radiation and tumour cells are relatively well understood on a molecular level, but much remains uncertain regarding how radiation interacts with the tumour as a whole. Recent studies have suggested that tumour response to radiation may in fact be regulated by endothelial cell response, consequently stressing the role of tumour blood vessels in radiation treatment response. As a result, various treatment regimens have been proposed to strategically combine radiation with vascular targeting agents. A great deal of effort has been aimed towards developing efficient vascular targeting agents. Nonetheless, no optimal method has yet been devised to strategically deliver such agents. Recent evidence suggesting that these drugs may "normalize" tumour blood vessels and enhance radiosensitivity, is supporting experiments where anti-angiogenic drugs are combined with cytotoxic therapies such as radiotherapy. In contrast, ultrasound-stimulated microbubbles have recently been demonstrated to enhance radiation therapy by biophysically interacting with endothelial cells. When combined with single radiation doses, these microbubbles are believed to cause localized vascular destruction followed by tumour cell death. Finally, a new form of 'pro-angiogenics' has also been demonstrated to induce a therapeutic tumour response. The overall aim of this thesis is to study the role of tumour blood vessels in treatment responses to single-dose radiation therapy and to investigate radiation-based vascular targeting strategies. Using pharmacological and biophysical agents, blood vessels were altered to determine how they influence tumour cell death, clonogenicity, and tumour growth, and to study how these may be optimally combined with radiation. Three-dimensional high-frequency power Doppler ultrasound was used throughout these studies to investigate vascular response to

  2. Cranial Radiation Therapy and Damage to Hippocampal Neurogenesis

    ERIC Educational Resources Information Center

    Monje, Michelle

    2008-01-01

    Cranial radiation therapy is associated with a progressive decline in cognitive function, prominently memory function. Impairment of hippocampal neurogenesis is thought to be an important mechanism underlying this cognitive decline. Recent work has elucidated the mechanisms of radiation-induced failure of neurogenesis. Potential therapeutic…

  3. Runaway implantable defibrillator--a rare complication of radiation therapy.

    PubMed

    Nemec, Jan

    2007-05-01

    A case of a patient with runaway implantable cardioverter defibrillator (ICD) due to radiation therapy of a lung cancer is reported. This manifested as poorly tolerated wide complex tachycardia due to inappropriate rapid ventricular pacing, The event terminated with polymorphic VT, which inhibited pacing and ceased spontaneously before ICD discharge. The likely cause was corruption of device random access memory by ionizing radiation.

  4. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  5. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  6. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  7. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  8. 21 CFR 892.5050 - Medical charged-particle radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Medical charged-particle radiation therapy system...-particle radiation therapy system. (a) Identification. A medical charged-particle radiation therapy system...) intended for use in radiation therapy. This generic type of device may include signal analysis and...

  9. [The application of total quality management (TQM) in quality management of radiation therapy].

    PubMed

    Jiang, Rui-yao; Fu, Shen; Li, Bin

    2009-03-01

    The strategies and methods of the total quality management (TQM) need to applied in quality management of radiation therapy. We should improve the level of quality control and quality assurance in radiation therapy. By establishing quality control system in radiation therapy, standardization of radiation therapy workflow, strengthening quality control of devices and physical technique and paying attention to safety protection and staff training.

  10. A systems biology approach to radiation therapy optimization.

    PubMed

    Brahme, Anders; Lind, Bengt K

    2010-05-01

    During the last 20 years, the field of cellular and not least molecular radiation biology has been developed substantially and can today describe the response of heterogeneous tumors and organized normal tissues to radiation therapy quite well. An increased understanding of the sub-cellular and molecular response is leading to a more general systems biological approach to radiation therapy and treatment optimization. It is interesting that most of the characteristics of the tissue infrastructure, such as the vascular system and the degree of hypoxia, have to be considered to get an accurate description of tumor and normal tissue responses to ionizing radiation. In the limited space available, only a brief description of some of the most important concepts and processes is possible, starting from the key functional genomics pathways of the cell that are not only responsible for tumor development but also responsible for the response of the cells to radiation therapy. The key mechanisms for cellular damage and damage repair are described. It is further more discussed how these processes can be brought to inactivate the tumor without severely damaging surrounding normal tissues using suitable radiation modalities like intensity-modulated radiation therapy (IMRT) or light ions. The use of such methods may lead to a truly scientific approach to radiation therapy optimization, particularly when invivo predictive assays of radiation responsiveness becomes clinically available at a larger scale. Brief examples of the efficiency of IMRT are also given showing how sensitive normal tissues can be spared at the same time as highly curative doses are delivered to a tumor that is often radiation resistant and located near organs at risk. This new approach maximizes the probability to eradicate the tumor, while at the same time, adverse reactions in sensitive normal tissues are as far as possible minimized using IMRT with photons and light ions. PMID:20191284

  11. Prototype demonstration of radiation therapy planning code system

    SciTech Connect

    Little, R.C.; Adams, K.J.; Estes, G.P.; Hughes, L.S. III; Waters, L.S.

    1996-09-01

    This is the final report of a one-year, Laboratory-Directed Research and Development project at the Los Alamos National Laboratory (LANL). Radiation therapy planning is the process by which a radiation oncologist plans a treatment protocol for a patient preparing to undergo radiation therapy. The objective is to develop a protocol that delivers sufficient radiation dose to the entire tumor volume, while minimizing dose to healthy tissue. Radiation therapy planning, as currently practiced in the field, suffers from inaccuracies made in modeling patient anatomy and radiation transport. This project investigated the ability to automatically model patient-specific, three-dimensional (3-D) geometries in advanced Los Alamos radiation transport codes (such as MCNP), and to efficiently generate accurate radiation dose profiles in these geometries via sophisticated physics modeling. Modem scientific visualization techniques were utilized. The long-term goal is that such a system could be used by a non-expert in a distributed computing environment to help plan the treatment protocol for any candidate radiation source. The improved accuracy offered by such a system promises increased efficacy and reduced costs for this important aspect of health care.

  12. Radiation therapy for nasopharyngeal carcinoma: the predictive value of interim survival assessment

    PubMed Central

    Toya, Ryo; Murakami, Ryuji; Saito, Tetsuo; Murakami, Daizo; Matsuyama, Tomohiko; Baba, Yuji; Nishimura, Ryuichi; Hirai, Toshinori; Semba, Akiko; Yumoto, Eiji; Yamashita, Yasuyuki; Oya, Natsuo

    2016-01-01

    Pretreatment characteristics are suggested as predictive and/or prognostic factors for nasopharyngeal carcinoma (NPC); however, individual tumor radiosensitivities have previously not been considered. As boost planning is recommended for NPC, we performed interim assessments of magnetic resonance (MR) images for boost planning and retrospectively evaluated their predictive value for the survival of NPC patients. Radiation therapy via elective nodal irradiation (median dose: 39.6 Gy) with/without chemotherapy was used to treat 63 NPC patients. Boost irradiation (median total dose: 70 Gy) was performed based on the interim assessment. The largest lymph node (LN) was measured on MR images acquired at the time of interim assessment. The site of first failure was local in 8 (12.7%), regional in 7 (11.1%), and distant in 12 patients (19.0%). All 7 patients with regional failure harbored LNs ≥15 mm at interim assessment. We divided the 63 patients into two groups based on LN size [large (≥15 mm), n = 10 and small (<15 mm), n = 53]. Univariate analysis showed that 5-year overall survival (OS) and cause-specific survival (CSS) rates for large LNs were significantly lower than for small LNs (OS: 12.5% vs 70.5%, P < 0.001 and CSS: 25.0% vs 80.0%, P < 0.001). Multivariate analysis showed that large LNs were a significantly unfavorable factor for both OS (hazard ratio = 4.543, P = 0.002) and CSS (hazard ratio = 6.020, P = 0.001). The results suggest that LN size at interim assessment could predict survival in NPC patients. PMID:27242338

  13. Radiation therapy for adjunctive treatment of adrenal cortical carcinoma

    SciTech Connect

    Markoe, A.M.; Serber, W.; Micaily, B.; Brady, L.W. )

    1991-04-01

    Adrenocortical carcinoma is a rare disease which is primarily approached surgically. There have been few reports of the efficacy of radiation therapy and, for the most part, these have been anecdotal. This paper reports on the potential adjuvant role of radiation therapy after surgical excision of primary adrenal cortical carcinoma and also comments about the efficacy of palliative radiation therapy for metastases. We have identified eight patients treated for adrenal cortical carcinomas at Hahnemann University Hospital (HUH) from 1962 until the present and have also identified five patients with the same diagnosis at Philadelphia General Hospital (PGH) from 1962 until its close in 1975. These two groups are examined separately. In the PGH group, in which two patients were diagnosed at autopsy and only one patient was treated by radiation therapy, the median survival was between 0 and 1 month for Stage IV disease with the only patient surviving to 6 months being that patient receiving radiation therapy. In the HUH group, five of eight patients were treated adjunctively after diagnosis, one was not and two received palliative therapy. The median survival for treated Stage III patients was between 34 months and 7 years. The suggestion, based on a limited patient series, is that patients treated postoperatively to the tumor bed and nodal areas in Stage III disease may have improved survival over historic series and improved local control.

  14. Radiation Therapy for Neovascular Age-related Macular Degeneration

    SciTech Connect

    Kishan, Amar U.; Modjtahedi, Bobeck S.; Morse, Lawrence S.; Lee, Percy

    2013-03-01

    In the enormity of the public health burden imposed by age-related macular degeneration (ARMD), much effort has been directed toward identifying effective and efficient treatments. Currently, anti-vascular endothelial growth factor (VEGF) injections have demonstrated considerably efficacy in treating neovascular ARMD, but patients require frequent treatment to fully benefit. Here, we review the rationale and evidence for radiation therapy of ARMD. The results of early photon external beam radiation therapy are included to provide a framework for the sequential discussion of evidence for the usage of stereotactic radiation therapy, proton therapy, and brachytherapy. The evidence suggests that these 3 modern modalities can provide a dose-dependent benefit in the treatment of ARMD. Most importantly, preliminary data suggest that all 3 can be used in conjunction with anti-VEGF therapeutics, thereby reducing the frequency of anti-VEGF injections required to maintain visual acuity.

  15. Rationale for combining surgery and radiation therapy

    SciTech Connect

    Suit, H.D.; Todoroki, T.

    1985-05-01

    The combination of radiation and surgery is being employed increasingly in preference to radical surgery alone or high radiation dose alone in the treatment of malignant epithelial and mesenchymal neoplasms. The basis for this interest is that the scope of the surgery and/or the radiation dose level are less than if either were employed alone. A reduction in treatment related morbidity, improved cosmetic and functional status, and in some instances a lower local failure rate may be achieved by this approach. The rationale for combining radiation and surgery is that radiation at moderate dose levels is effective in the eradication of microscopic extensions of tumor beyond the clearly obvious mass while the surgery (usually more conservative) removes the principal mass.

  16. Radiation therapy generates platelet-activating factor agonists

    PubMed Central

    Sahu, Ravi P.; Harrison, Kathleen A.; Weyerbacher, Jonathan; Murphy, Robert C.; Konger, Raymond L.; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R.; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F.; Travers, Jeffrey B.

    2016-01-01

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  17. Radiation therapy generates platelet-activating factor agonists.

    PubMed

    Sahu, Ravi P; Harrison, Kathleen A; Weyerbacher, Jonathan; Murphy, Robert C; Konger, Raymond L; Garrett, Joy Elizabeth; Chin-Sinex, Helen Jan; Johnston, Michael Edward; Dynlacht, Joseph R; Mendonca, Marc; McMullen, Kevin; Li, Gengxin; Spandau, Dan F; Travers, Jeffrey B

    2016-04-12

    Pro-oxidative stressors can suppress host immunity due to their ability to generate oxidized lipid agonists of the platelet-activating factor-receptor (PAF-R). As radiation therapy also induces reactive oxygen species, the present studies were designed to define whether ionizing radiation could generate PAF-R agonists and if these lipids could subvert host immunity. We demonstrate that radiation exposure of multiple tumor cell lines in-vitro, tumors in-vivo, and human subjects undergoing radiation therapy for skin tumors all generate PAF-R agonists. Structural characterization of radiation-induced PAF-R agonistic activity revealed PAF and multiple oxidized glycerophosphocholines that are produced non-enzymatically. In a murine melanoma tumor model, irradiation of one tumor augmented the growth of the other (non-treated) tumor in a PAF-R-dependent process blocked by a cyclooxygenase-2 inhibitor. These results indicate a novel pathway by which PAF-R agonists produced as a byproduct of radiation therapy could result in tumor treatment failure, and offer important insights into potential therapeutic strategies that could improve the overall antitumor effectiveness of radiation therapy regimens. PMID:26959112

  18. Application of Histogram Analysis in Radiation Therapy (HART) in Intensity Modulation Radiation Therapy (IMRT) Treatments

    NASA Astrophysics Data System (ADS)

    Pyakuryal, Anil

    2009-03-01

    A carcinoma is a malignant cancer that emerges from epithelial cells in structures through out the body.It invades the critical organs, could metastasize or spread to lymph nodes.IMRT is an advanced mode of radiation therapy treatment for cancer. It delivers more conformal doses to malignant tumors sparing the critical organs by modulating the intensity of radiation beam.An automated software, HART (S. Jang et al.,2008,Med Phys 35,p.2812) was used for efficient analysis of dose volume histograms (DVH) for multiple targets and critical organs in four IMRT treatment plans for each patient. IMRT data for ten head and neck cancer patients were exported as AAPM/RTOG format files from a commercial treatment planning system at Northwestern Memorial Hospital (NMH).HART extracted DVH statistics were used to evaluate plan indices and to analyze dose tolerance of critical structures at prescription dose (PD) for each patient. Mean plan indices (n=10) were found to be in good agreement with published results for Linac based plans. The least irradiated volume at tolerance dose (TD50) was observed for brainstem and the highest volume for larynx in SIB treatment techniques. Thus HART, an open source platform, has extensive clinical implications in IMRT treatments.

  19. [Radiation therapy and immunomodulation: Focus on experimental data].

    PubMed

    Deutsch, É; Lévy, A; Chargari, C

    2015-10-01

    The immunosuppressive effects of radiation therapy have long been the only ones considered. It has been demonstrated that exposure to ionizing radiation induces the release of tumour antigens which activates both the innate immune system and the adaptive immune response of the host. The purpose of tumour immunotherapy is based on the principle that reversal of tolerance to immunogenic tumours would be able to activate an immune response against tumour cells. Preclinical data and clinical studies early phase suggest a potential therapeutic benefit of immunotherapy combined with radiation therapy. The objective of this article is to review how tumour cells interact with the immune system and how ionizing radiation modulate this interaction and finally the combination of perspectives of immunotherapy and ionizing radiation by focusing on existing clinical data.

  20. Complications following radiation therapy to the head

    SciTech Connect

    Helpin, M.L.; Krejmas, N.L.; Krolls, S.O.

    1986-03-01

    A case is presented in which a child who received therapeutic radiation as part of his treatment regimen for rhabdomyosarcoma of the infratemporal and parapharyngeal region demonstrated undesirable sequelae in the dentition and the mandible.

  1. Quantitative analysis of tomotherapy, linear-accelerator-based 3D conformal radiation therapy, intensity-modulated radiation therapy, and 4D conformal radiation therapy

    NASA Astrophysics Data System (ADS)

    Cho, Jae-Hwan; Lee, Hae-Kag; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Jong-Woong; Park, Hoon-Hee

    2012-04-01

    This study quantified, evaluated and analyzed the radiation dose to which tumors and normal tissues were exposed in 3D conformal radiation therapy (CRT), intensity-modulated radiation therapy (IMRT) and tomotherapy by using a dose volume histogram (DVH) that represented the volume dose and the dose distribution of anatomical structures in the evaluation of treatment planning. Furthermore, a comparison was made for the dose to the gross tumor volume (GTV) and the planning target volume (PTV) of organ to be treated based on the change in field size for three- and four-dimensional computed tomography (3D-CT and 4D-CT) (gating based) and in the histogram with a view to proving the usefulness of 4D-CT therapy, which corresponds to respiration-gated radiation therapy. According to the study results, a comparison of 3D CRT, IMRT with a linear accelerator (LINAC), and tomotherapy demonstrated that the GTV of the cranium was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 5.2% and 4.6%, respectively. The GTV of the neck was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 6.5% and 2.0%, respectively. The GTV of the pelvis was higher for tomotherapy than for 3D CRT and IMRT with a LINAC by 8.6% and 3.7%, respectively. When the comparison was made for the 3D-CT and the 4D-CT (gating based) treatment equipment, the GTV and the PTV became smaller for 4D-CT treatment planning than for 3D-CT, which could reduce the area in which normal tissues in the surroundings are exposed to an unnecessary radiation dose. In addition, when 4D-CT treatment planning (gating based) was used, the radiation dose could be concentrated on the GTV, CTV or PTV, which meant that the treatment area exceeded that when 3D-CT's treatment planning was used. Moreover, the radiation dose on nearby normal tissues could be reduced. When 4D-CT treatment planning (gating based) was utilized, unnecessary areas that were exposed to a radiation dose could be reduced more than they could

  2. Radiation Therapy for Primary Carcinoma of the Extrahepatic Biliary System

    PubMed Central

    Flickinger, John C.; Epstein, Alan H.; Iwatsuki, Shunzaburo; Carr, Brian I.; Starzl, Thomas E.

    2010-01-01

    From 1976 to 1988, 63 patients received radiation therapy for primary cancers of the extrahepatic biliary system (eight gallbladder and 55 extrahepatic biliary duct). Twelve patients underwent orthotopic liver transplantation. Chemotherapy was administered to 13 patients. Three patients underwent intraluminal brachytherapy alone (range, 28 to 55 Gy). Sixty patients received megavoltage external-beam radiation therapy (range, 5.4 to 61.6 Gy; median, 45 Gy), of whom nine received additional intraluminal brachytherapy (range, 14 to 45 Gy; median, 30 Gy). The median survival of all patients was 7 months. Sixty patients died, all within 39 months of radiation therapy. One patient is alive 11 months after irradiation without surgical resection, and two are alive 50 months after liver transplantation and irradiation. Symptomatic duodenal ulcers developed after radiation therapy in seven patients but were not significantly related to any clinical variable tested. Extrahepatic biliary duct cancers, the absence of metastases, increasing calendar year of treatment, and liver transplantation with postoperative radiation therapy were factors significantly associated with improved survival. PMID:2070327

  3. Radiation-induced fibrosis: mechanisms and implications for therapy

    PubMed Central

    Straub, Jeffrey M.; New, Jacob; Hamilton, Chase D.; Lominska, Chris; Shnayder, Yelizaveta

    2015-01-01

    Purpose Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. Methods A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other closely related terms. Results RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Conclusion Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies. PMID:25910988

  4. Radiation therapy for localized duodenal low-grade follicular lymphoma

    PubMed Central

    Harada, Arisa; Oguchi, Masahiko; Terui, Yasuhito; Takeuchi, Kengo; Igarashi, Masahiro; Kozuka, Takuyo; Harada, Ken; Uno, Takashi; Hatake, Kiyohiko

    2016-01-01

    The aim of this study was to evaluate the initial treatment results and toxicities of radiation therapy for patients with early stage low-grade follicular lymphoma (FL) arising from the duodenum. We reviewed 21 consecutive patients with early stage duodenal FL treated with radiation therapy between January 2005 and December 2013 at the Cancer Institute Hospital, Tokyo. The characteristics of patients were: median age 62 years (range, 46–79 years), gender (male, 6; female, 15), clinical stage (I, 20; II1, 1), histological grade (I, 17; II, 4). All patients were treated with radiation therapy alone. The median radiation dose was 30.6 Gy (range, 30.6–39.6) in 17 fractions. The involved-site radiation therapy was delivered to the whole duodenum. The median follow-up time was 43.2 months (range 21.4–109.3). The 3-year overall survival (OS), relapse-free survival (RFS) and local control (LC) rates were 94.7%, 79.3% and 100%, respectively. There were four relapses documented outside the treated volumes: two in the gastrointestinal tract (jejunum, terminal ileum), one in an abdominal lymph node (mesenteric lymph node) and one in the bone marrow. None died of the disease; one death was due to acute myeloid leukemia. No toxicities greater than Grade 1 were observed during treatment and over the follow-up time. The 30.6 Gy of involved-site radiation therapy provided excellent local control with very low toxicities. Radiation therapy could be an effective and safe treatment option for patients with localized low grade FL arising from the duodenum. PMID:27009323

  5. Advanced multimodal nanoparticles delay tumor progression with clinical radiation therapy.

    PubMed

    Detappe, Alexandre; Kunjachan, Sijumon; Sancey, Lucie; Motto-Ros, Vincent; Biancur, Douglas; Drane, Pascal; Guieze, Romain; Makrigiorgos, G Mike; Tillement, Olivier; Langer, Robert; Berbeco, Ross

    2016-09-28

    Radiation therapy is a major treatment regimen for more than 50% of cancer patients. The collateral damage induced on healthy tissues during radiation and the minimal therapeutic effect on the organ-of-interest (target) is a major clinical concern. Ultra-small, renal clearable, silica based gadolinium chelated nanoparticles (SiGdNP) provide simultaneous MR contrast and radiation dose enhancement. The high atomic number of gadolinium provides a large photoelectric cross-section for increased photon interaction, even for high-energy clinical radiation beams. Imaging and therapy functionality of SiGdNP were tested in cynomolgus monkeys and pancreatic tumor-bearing mice models, respectively. A significant improvement in tumor cell damage (double strand DNA breaks), growth suppression, and overall survival under clinical radiation therapy conditions were observed in a human pancreatic xenograft model. For the first time, safe systemic administration and systematic renal clearance was demonstrated in both tested species. These findings strongly support the translational potential of SiGdNP for MR-guided radiation therapy in cancer treatment. PMID:27423325

  6. Predicting Radiation Pneumonitis After Stereotactic Ablative Radiation Therapy in Patients Previously Treated With Conventional Thoracic Radiation Therapy

    SciTech Connect

    Liu Hui; Zhang Xu; Vinogradskiy, Yevgeniy Y.; Swisher, Stephen G.; Komaki, Ritsuko; Chang, Joe Y.

    2012-11-15

    Purpose: To determine the incidence of and risk factors for radiation pneumonitis (RP) after stereotactic ablative radiation therapy (SABR) to the lung in patients who had previously undergone conventional thoracic radiation therapy. Methods and Materials: Seventy-two patients who had previously received conventionally fractionated radiation therapy to the thorax were treated with SABR (50 Gy in 4 fractions) for recurrent disease or secondary parenchymal lung cancer (T <4 cm, N0, M0, or Mx). Severe (grade {>=}3) RP and potential predictive factors were analyzed by univariate and multivariate logistic regression analyses. A scoring system was established to predict the risk of RP. Results: At a median follow-up time of 16 months after SABR (range, 4-56 months), 15 patients had severe RP (14 [18.9%] grade 3 and 1 [1.4%] grade 5) and 1 patient (1.4%) had a local recurrence. In univariate analyses, Eastern Cooperative Oncology Group performance status (ECOG PS) before SABR, forced expiratory volume in 1 second (FEV1), and previous planning target volume (PTV) location were associated with the incidence of severe RP. The V{sub 10} and mean lung dose (MLD) of the previous plan and the V{sub 10}-V{sub 40} and MLD of the composite plan were also related to RP. Multivariate analysis revealed that ECOG PS scores of 2-3 before SABR (P=.009), FEV1 {<=}65% before SABR (P=.012), V{sub 20} {>=}30% of the composite plan (P=.021), and an initial PTV in the bilateral mediastinum (P=.025) were all associated with RP. Conclusions: We found that severe RP was relatively common, occurring in 20.8% of patients, and could be predicted by an ECOG PS score of 2-3, an FEV1 {<=}65%, a previous PTV spanning the bilateral mediastinum, and V{sub 20} {>=}30% on composite (previous RT+SABR) plans. Prospective studies are needed to validate these predictors and the scoring system on which they are based.

  7. Imaging and Data Acquisition in Clinical Trials for Radiation Therapy.

    PubMed

    FitzGerald, Thomas J; Bishop-Jodoin, Maryann; Followill, David S; Galvin, James; Knopp, Michael V; Michalski, Jeff M; Rosen, Mark A; Bradley, Jeffrey D; Shankar, Lalitha K; Laurie, Fran; Cicchetti, M Giulia; Moni, Janaki; Coleman, C Norman; Deye, James A; Capala, Jacek; Vikram, Bhadrasain

    2016-02-01

    Cancer treatment evolves through oncology clinical trials. Cancer trials are multimodal and complex. Assuring high-quality data are available to answer not only study objectives but also questions not anticipated at study initiation is the role of quality assurance. The National Cancer Institute reorganized its cancer clinical trials program in 2014. The National Clinical Trials Network (NCTN) was formed and within it was established a Diagnostic Imaging and Radiation Therapy Quality Assurance Organization. This organization is Imaging and Radiation Oncology Core, the Imaging and Radiation Oncology Core Group, consisting of 6 quality assurance centers that provide imaging and radiation therapy quality assurance for the NCTN. Sophisticated imaging is used for cancer diagnosis, treatment, and management as well as for image-driven technologies to plan and execute radiation treatment. Integration of imaging and radiation oncology data acquisition, review, management, and archive strategies are essential for trial compliance and future research. Lessons learned from previous trials are and provide evidence to support diagnostic imaging and radiation therapy data acquisition in NCTN trials.

  8. Five-year Results of Whole Breast Intensity Modulated Radiation Therapy for the Treatment of Early Stage Breast Cancer: The Fox Chase Cancer Center Experience

    SciTech Connect

    Keller, Lanea M.M.; Sopka, Dennis M.; Li Tianyu; Klayton, Tracy; Li Jinsheng; Anderson, Penny R.; Bleicher, Richard J.; Sigurdson, Elin R.; Freedman, Gary M.

    2012-11-15

    Purpose: To report the 5-year outcomes using whole-breast intensity-modulated radiation therapy (IMRT) for the treatment of early-stage-breast cancer at the Fox Chase Cancer Center. Methods and Materials: A total of 946 women with early-stage breast cancer (stage 0, I, or II) were treated with IMRT after surgery with or without systemic therapy from 2003-2010. Whole-breast radiation was delivered via an IMRT technique with a median whole-breast radiation dose of 46 Gy and median tumor bed boost of 14 Gy. Endpoints included local-regional recurrence, cosmesis, and late complications. Results: With a median follow-up of 31 months (range, 1-97 months), there were 12 ipsilateral breast tumor recurrences (IBTR) and one locoregional recurrence. The 5-year actuarial IBTR and locoregional recurrence rates were 2.0% and 2.4%. Physician-reported cosmestic outcomes were available for 645 patients: 63% were considered 'excellent', 33% 'good', and <1.5% 'fair/poor'. For physician-reported cosmesis, boost doses {>=}16 Gy, breast size >900 cc, or boost volumes >34 cc were significantly associated with a 'fair/poor' cosmetic outcome. Fibrosis, edema, erythema, and telangectasia were also associated with 'fair/poor' physician-reported cosmesis; erythema and telangectasia remained significant on multivariate analysis. Patient-reported cosmesis was available for 548 patients, and 33%, 50%, and 17% of patients reported 'excellent', 'good', and 'fair/poor' cosmesis, respectively. The use of a boost and increased boost volume: breast volume ratio were significantly associated with 'fair/poor' outcomes. No parameter for patient-reported cosmesis was significant on multivariate analysis. The chances of experiencing a treatment related effect was significantly associated with a boost dose {>=}16 Gy, receipt of chemotherapy and endocrine therapy, large breast size, and electron boost energy. Conclusions: Whole-breast IMRT is associated with very low rates of local recurrence at 5 years, 83

  9. Progress and controversies: Radiation therapy for prostate cancer.

    PubMed

    Martin, Neil E; D'Amico, Anthony V

    2014-01-01

    Radiation therapy remains a standard treatment option for men with localized prostate cancer. Alone or in combination with androgen-deprivation therapy, it represents a curative treatment and has been shown to prolong survival in selected populations. In this article, the authors review recent advances in prostate radiation-treatment techniques, photon versus proton radiation, modification of treatment fractionation, and brachytherapy-all focusing on disease control and the impact on morbidity. Also discussed are refinements in the risk stratification of men with prostate cancer and how these are better for matching patients to appropriate treatment, particularly around combined androgen-deprivation therapy. Many of these advances have cost and treatment burden implications, which have significant repercussions given the prevalence of prostate cancer. The discussion includes approaches to improve value and future directions for research. PMID:25234700

  10. Determinants of job satisfaction among radiation therapy faculty.

    PubMed

    Swafford, Larry G; Legg, Jeffrey S

    2009-01-01

    Job satisfaction is one of the most significant predictors of employee retention in a variety of occupational settings, including health care and education. A national survey of radiation therapy educators (n = 90) has indicated that respondents are not satisfied with their jobs based on data collected using the Minnesota Satisfaction Questionnaire (MSQ). To predict the factors associated with job satisfaction or dissatisfaction, the authors used a nine-item questionnaire derived from the MSQ. Educators were grouped according to their job satisfaction scores, and multiple discriminant analysis was used to determine which factors were predictive of satisfaction among groups of educators. Statistical results indicate that ability utilization, institutional support, compensation, personnel, and job characteristics were key determinants of job satisfaction among radiation therapy educators. These results may better inform faculty and administration of important factors that can promote job satisfaction and retain faculty in radiation therapy education programs.

  11. The physical basis and future of radiation therapy.

    PubMed

    Bortfeld, T; Jeraj, R

    2011-06-01

    The remarkable progress in radiation therapy over the last century has been largely due to our ability to more effectively focus and deliver radiation to the tumour target volume. Physics discoveries and technology inventions have been an important driving force behind this progress. However, there is still plenty of room left for future improvements through physics, for example image guidance and four-dimensional motion management and particle therapy, as well as increased efficiency of more compact and cheaper technologies. Bigger challenges lie ahead of physicists in radiation therapy beyond the dose localisation problem, for example in the areas of biological target definition, improved modelling for normal tissues and tumours, advanced multicriteria and robust optimisation, and continuous incorporation of advanced technologies such as molecular imaging. The success of physics in radiation therapy has been based on the continued "fuelling" of the field with new discoveries and inventions from physics research. A key to the success has been the application of the rigorous scientific method. In spite of the importance of physics research for radiation therapy, too few physicists are currently involved in cutting-edge research. The increased emphasis on more "professionalism" in medical physics will tip the situation even more off balance. To prevent this from happening, we argue that medical physics needs more research positions, and more and better academic programmes. Only with more emphasis on medical physics research will the future of radiation therapy and other physics-related medical specialties look as bright as the past, and medical physics will maintain a status as one of the most exciting fields of applied physics. PMID:21606068

  12. Radiation Therapy for Soft Tissue Sarcoma: Indications and Controversies for Neoadjuvant Therapy, Adjuvant Therapy, Intraoperative Radiation Therapy, and Brachytherapy.

    PubMed

    Larrier, Nicole A; Czito, Brian G; Kirsch, David G

    2016-10-01

    Soft tissue sarcomas are rare mesenchymal cancers that pose a treatment challenge. Although small superficial soft tissue sarcomas can be managed by surgery alone, adjuvant radiotherapy in addition to limb-sparing surgery substantially increases local control of extremity sarcomas. Compared with postoperative radiotherapy, preoperative radiotherapy doubles the risk of a wound complication, but decreases the risk for late effects, which are generally irreversible. For retroperitoneal sarcomas, intraoperative radiotherapy can be used to safely escalate the radiation dose to the tumor bed. Patients with newly diagnosed sarcoma should be evaluated before surgery by a multidisciplinary team that includes a radiation oncologist. PMID:27591502

  13. Radiation therapy - questions to ask your doctor

    MedlinePlus

    ... stools or diarrhea? How long after I start radiation treatment might these problems start? What can I do if I am sick to my stomach or have diarrhea often? What should I be eating to keep my weight and strength up? Are there any foods I should avoid? ...

  14. The Role for Radiation Therapy in the Management of Sarcoma.

    PubMed

    Leachman, Brooke K; Galloway, Thomas J

    2016-10-01

    Although there is no consensus regarding the optimal sequencing of external beam radiotherapy and surgery for extremity soft tissue sarcoma, radiation therapy delivered before or after limb-sparing surgery significantly improves local control, particularly for high-grade tumors. Large database analyses suggest that improved local control may translate into an overall survival benefit. Best practices require ample communication between the radiation and surgical teams to ensure appropriate tissues are targeted, unnecessary radiation is avoided, and patients are afforded the best opportunity for cure while maintaining function. Modern experiences with intensity-modulated radiotherapy/image-guided radiation therapy suggest toxicity is reduced through field size reduction and precise targeting, improving the therapeutic ratio. PMID:27542646

  15. The Impact of Radiation Therapy on the Risk of Lymphedema After Treatment for Breast Cancer: A Prospective Cohort Study

    SciTech Connect

    Warren, Laura E.G.; Miller, Cynthia L.; Horick, Nora; Skolny, Melissa N.; Jammallo, Lauren S.; Sadek, Betro T.; Shenouda, Mina N.; O'Toole, Jean A.; MacDonald, Shannon M.; Specht, Michelle C.; Taghian, Alphonse G.

    2014-03-01

    Purpose/Objective: Lymphedema after breast cancer treatment can be an irreversible condition with a negative impact on quality of life. The goal of this study was to identify radiation therapy-related risk factors for lymphedema. Methods and Materials: From 2005 to 2012, we prospectively performed arm volume measurements on 1476 breast cancer patients at our institution using a Perometer. Treating each breast individually, 1099 of 1501 patients (73%) received radiation therapy. Arm measurements were performed preoperatively and postoperatively. Lymphedema was defined as ≥10% arm volume increase occurring >3 months postoperatively. Univariate and multivariate Cox proportional hazard models were used to evaluate risk factors for lymphedema. Results: At a median follow-up time of 25.4 months (range, 3.4-82.6 months), the 2-year cumulative incidence of lymphedema was 6.8%. Cumulative incidence by radiation therapy type was as follows: 3.0% no radiation therapy, 3.1% breast or chest wall alone, 21.9% supraclavicular (SC), and 21.1% SC and posterior axillary boost (PAB). On multivariate analysis, the hazard ratio for regional lymph node radiation (RLNR) (SC ± PAB) was 1.7 (P=.025) compared with breast/chest wall radiation alone. There was no difference in lymphedema risk between SC and SC + PAB (P=.96). Other independent risk factors included early postoperative swelling (P<.0001), higher body mass index (P<.0001), greater number of lymph nodes dissected (P=.018), and axillary lymph node dissection (P=.0001). Conclusions: In a large cohort of breast cancer patients prospectively screened for lymphedema, RLNR significantly increased the risk of lymphedema compared with breast/chest wall radiation alone. When considering use of RLNR, clinicians should weigh the potential benefit of RLNR for control of disease against the increased risk of lymphedema.

  16. Complications of head and neck radiation therapy and their management

    SciTech Connect

    Engelmeier, R.L.; King, G.E.

    1983-04-01

    Patients who receive radiation therapy to the head and neck suffer potential complications and undesirable side-effects of this therapy. The extent of undesirable responses is dependent on the source of irradiation, the fields of irradiation, and the dose. The radiotherapist determines these factors by the extent, location, and radiosensitivity of the tumor. The potential undesirable side-effects are xerostomia, mucositis, fibrosis, trismus, dermatitis, photosensitivity, radiation caries, soft tissue necrosis, and osteoradionecrosis. Each of these clinical entities and their proposed management have been discussed.

  17. Enhanced radiation therapy with internalized polyelectrolyte modified nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Peipei; Qiao, Yong; Wang, Chaoming; Ma, Liyuan; Su, Ming

    2014-08-01

    A challenge of X-ray radiation therapy is that high dose X-ray under therapeutic conditions damages normal cells. This paper describes a nanoparticle-based method to enhance X-ray radiation therapy by delivering radio-sensitizing gold nanoparticles into cancer cells. The nanoparticles have been modified with cationic polyelectrolytes to allow internalization. Upon X-ray irradiation of nanoparticles, more photoelectrons and Auger electrons are generated to cause water ionization, leading to formation of free radicals that damage DNA of cancer cells. The X-ray dose required for DNA damage and cell killing is reduced by delivering gold nanoparticles inside cancer cells.

  18. Radiation beam therapy evolution: From X-rays to hadrons

    SciTech Connect

    Khoroshkov, V. S.

    2006-10-15

    The history of external radiation beam therapy (radiotherapy)-in particular, proton therapy (PT)-is brietly outlined. Two possible strategies in increasing the efficacy of radiotherapy are considered. The radiotherapy methods and techniques are brietly described. The possibilities of PT in providing effective treatment and the main achievements are demonstrated. The state of the art in the PT development involving the active creation of large clinical PT centers since 1990 is analyzed.

  19. Synchrotron Radiation Therapy from a Medical Physics point of view

    NASA Astrophysics Data System (ADS)

    Prezado, Y.; Adam, J. F.; Berkvens, P.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Vautrin, M.; Deman, P.; Bräuer-Krisch, E.; Renier, M.; Elleaume, H.; Estève, F.; Bravin, A.

    2010-07-01

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT). The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  20. Synchrotron Radiation Therapy from a Medical Physics point of view

    SciTech Connect

    Prezado, Y.; Berkvens, P.; Braeuer-Krisch, E.; Renier, M.; Bravin, A.; Adam, J. F.; Martinez-Rovira, I.; Fois, G.; Thengumpallil, S.; Edouard, M.; Deman, P.; Vautrin, M.

    2010-07-23

    Synchrotron radiation (SR) therapy is a promising alternative to treat brain tumors, whose management is limited due to the high morbidity of the surrounding healthy tissues. Several approaches are being explored by using SR at the European Synchrotron Radiation Facility (ESRF), where three techniques are under development Synchrotron Stereotactic Radiation Therapy (SSRT), Microbeam Radiation Therapy (MRT) and Minibeam Radiation Therapy (MBRT).The sucess of the preclinical studies on SSRT and MRT has paved the way to clinical trials currently in preparation at the ESRF. With this aim, different dosimetric aspects from both theoretical and experimental points of view have been assessed. In particular, the definition of safe irradiation protocols, the beam energy providing the best balance between tumor treatment and healthy tissue sparing in MRT and MBRT, the special dosimetric considerations for small field dosimetry, etc will be described. In addition, for the clinical trials, the definition of appropiate dosimetry protocols for patients according to the well established European Medical Physics recommendations will be discussed. Finally, the state of the art of the MBRT technical developments at the ESRF will be presented. In 2006 A. Dilmanian and collaborators proposed the use of thicker microbeams (0.36-0.68 mm). This new type of radiotherapy is the most recently implemented technique at the ESRF and it has been called MBRT. The main advantage of MBRT with respect to MRT is that it does not require high dose rates. Therefore it can be more easily applied and extended outside synchrotron sources in the future.

  1. Phenytoin Induced Erythema Multiforme after Cranial Radiation Therapy

    PubMed Central

    Tekkök, İsmail Hakkı

    2015-01-01

    The prophylactic use of phenytoin during and after brain surgery and cranial irradiation is a common measure in brain tumor therapy. Phenytoin has been associated with variety of adverse skin reactions including urticaria, erythroderma, erythema multiforme (EM), Stevens-Johnson syndrome, and toxic epidermal necrolysis. EM associated with phenytoin and cranial radiation therapy (EMPACT) is a rare specific entity among patients with brain tumors receiving radiation therapy while on prophylactic anti-convulsive therapy. Herein we report a 41-year-old female patient with left temporal glial tumor who underwent surgery and then received whole brain radiation therapy and chemotherapy. After 24 days of continous prophylactic phenytoin therapy the patient developed minor skin reactions and 2 days later the patient returned with generalized erythamatous and itchy maculopapuler rash involving neck, chest, face, trunk, extremities. There was significant periorbital and perioral edema. Painful mucosal lesions consisting of oral and platal erosions also occurred and prevented oral intake significantly. Phenytoin was discontinued gradually. Systemic admistration of corticosteroids combined with topical usage of steroids for oral lesions resulted in complete resolution of eruptions in 3 weeks. All cutaneous lesions in patients with phenytoin usage with the radiotherapy must be evoluated with suspicion for EM. PMID:26361537

  2. Switching to boosted protease inhibitor plus a second antiretroviral drug (dual therapy) for treatment simplification: a multicenter analysis

    PubMed Central

    Zaccarelli, Mauro; Fabbiani, Massimiliano; Pinnetti, Carmela; Borghi, Vanni; Giannetti, Alberto; Sterrantino, Gaetana; Lorenzini, Patrizia; Latini, Alessandra; Loiacono, Laura; Colafigli, Manuela; Ammassari, Adriana; D'Ettorre, Gabriella; Plazzi, Maddalena; Di Giambenedetto, Simona; Antinori, Andrea

    2014-01-01

    Background To assess the role of drugs used in dual therapy (DT), as cART simplification, over the risk of treatment failure. Materials and Methods Patients starting DT regimen composed by a boosted protease inhibitor (PI/r): darunavir (DRV/r), lopinavir (LPVr) or atazanavir (ATV/r) plus a second drug: raltegravir (RAL), maraviroc (MRV) etravirine (ETR), lamivudine (3TC) or tenofovir (TDF), this one generally used in HBV co-infected patients, were included. The effect of each drug as well as other clinical and virological cofactors over treatment failure was assessed using survival analysis. Results Overall, 480 patients from six reference Italian centres were included: all switched to DT with HIV-RNA <500 cp/µL, 376 of them at <50 cp/µL. Patients who switched at <50 cp/µL showed a significant lower risk of treatment failure (13.3% versus 23.3% at 1 year and 28.0% versus 44.6% at 3 years, p=0.005), thus the analysis was focused on this subgroup. Among the patients who switched at <50 cp/µL, the proportion of drug used in DT was: DRV/r 63.0%, RAL 53.7%, ETR 19.4%, ATV/r 18.4%, MRV 17.3%, LPV/r 12.8%, TDF 6.4% and 3TC 5.9%; DRV/r-RAL was the most widely used combination: 32.5%. Treatment failure was observed in 78 patients, of whom 38 virological and 35 for toxicity/intolerance, one patient died during follow-up and four patients interrupted for personal decision with undetectable HIV-RNA. At Cox Model, adjusted by gender, age, non-Italian origin, AIDS diagnosis, time on cART, number of regimens, CD4 nadir, baseline CD4, all the drugs had a positive effect on probability of failure (Figure), however the effect was significant for DRV/r (HR:0.21, 95% CI 0.07–0.59, p=0.03), ATV/r (0.30, 0.09–0.97, p=0.044) and RAL (0.37, 0.15–0.93, p=0.034); higher CD4 count at baseline was also associated with lower risk of failure while number of previous regimens with a higher risk. Moreover, ATV/r was found significant associated with significant higher risk of failure by

  3. Maxillary sinus carcinoma: result of radiation therapy

    SciTech Connect

    Shibuya, H.; Horiuchi, J.; Suzuki, S.; Shioda, S.; Enomoto, S.

    1984-07-01

    This hundred and sixteen patients with carcinoma of the maxillary sinus received primary therapy consisting of external beam irradiation alone or in combination with surgery and/or chemotherapy at the Department of Radiology, Tokyo Medical and Dental University Hospital, between 1953 and 1982. In our institution, methods of treating cancer of the maxillary sinus have been changed from time to time and showed different control rates and clinical courses. An actuarial 10-year survival rate of 21% has been obtained by the megavoltage irradiation alone as well as 34% actuarial 10-year survival rate by megavoltage irradiation with surgery. After the introduction of conservative surgery followed by conventional trimodal combination therapy, the local control rate has been improved. The amount of functional, cosmetic, and brain damages have been remarkably decreased by this mode of therapy. The actuarial five year survival rate was 67%. In addition, along with the improvement of the local control rate, the control of nodal and distant organ metastases have been emerging as one of the important contributions to the prognosis of this disease.

  4. Pelvic radiation therapy: Between delight and disaster

    PubMed Central

    Morris, Kirsten AL; Haboubi, Najib Y

    2015-01-01

    In the last few decades radiotherapy was established as one of the best and most widely used treatment modalities for certain tumours. Unfortunately that came with a price. As more people with cancer survive longer an ever increasing number of patients are living with the complications of radiotherapy and have become, in certain cases, difficult to manage. Pelvic radiation disease (PRD) can result from ionising radiation-induced damage to surrounding non-cancerous tissues resulting in disruption of normal physiological functions and symptoms such as diarrhoea, tenesmus, incontinence and rectal bleeding. The burden of PRD-related symptoms, which impact on a patient’s quality of life, has been under appreciated and sub-optimally managed. This article serves to promote awareness of PRD and the vast potential there is to improve current service provision and research activities. PMID:26649150

  5. Phototherapy cabinet for ultraviolet radiation therapy

    SciTech Connect

    Horwitz, S.N.; Frost, P.

    1981-08-01

    A newly designed cabinet can be used for the treatment of psoriasis with fluorescent ultraviolet (UV) lamps. the new design provides more uniform distribution of UV radiation in both the horizontal and vertical axes, and several safety features have been added. The distribution and uniformity of UV output in this and in a previously described cabinet are compared. The UV output at the vertical center of the older UV light cabinet was six times greater than that at either the top or bottom, while the design of the present cabinet provides uniform UV radiation except for a slight increase at head height and at the level of the lower legs compared with the middle third of the cabinet. The variation in output of the older cabinet may, in part, explain the commonly encountered difficulty in the phototherapy of psoriasis of the scalp and lower extremities.

  6. A dosimetric analysis of dose escalation using two intensity-modulated radiation therapy techniques in locally advanced pancreatic carcinoma

    SciTech Connect

    Brown, Michael W.; Ning, Holly; Arora, Barbara; Albert, Paul S.; Poggi, Matthew; Camphausen, Kevin; Citrin, Deborah . E-mail: citrind@mail.nih.gov

    2006-05-01

    Purpose: To perform an analysis of three-dimensional conformal radiation therapy (3D-CRT), sequential boost intensity-modulated radiation therapy (IMRTs), and integrated boost IMRT (IMRTi) for dose escalation in unresectable pancreatic carcinoma. Methods and Materials: Computed tomography images from 15 patients were used. Treatment plans were generated using 3D-CRT, IMRTs, and IMRTi for dose levels of 54, 59.4, and 64.8 Gy. Plans were analyzed for target coverage, doses to liver, kidneys, small bowel, and spinal cord. Results: Three-dimensional-CRT exceeded tolerance to small bowel in 1 of 15 (6.67%) patients at 54 Gy, and 4 of 15 (26.7%) patients at 59.4 and 64.8 Gy. 3D-CRT exceeded spinal cord tolerance in 1 of 15 patients (6.67%) at 59.4 Gy and liver constraints in 1 of 15 patients (6.67%) at 64.8 Gy; no IMRT plans exceeded tissue tolerance. Both IMRT techniques reduced the percentage of total kidney volume receiving 20 Gy (V20), the percentage of small bowel receiving 45 Gy (V45), and the percentage of liver receiving 35 Gy (V35). IMRTi appeared superior to IMRTs in reducing the total kidney V20 (p < 0.0001), right kidney V20 (p < 0.0001), and small bowel V45 (p = 0.02). Conclusions: Sequential boost IMRT and IMRTi improved the ability to achieve normal tissue dose goals compared with 3D-CRT. IMRTi allowed dose escalation to 64.8 Gy with acceptable normal tissue doses and superior dosimetry compared with 3D-CRT and IMRTs.

  7. Comparison of three dimensional conformal radiation therapy, intensity modulated radiation therapy and volumetric modulated arc therapy for low radiation exposure of normal tissue in patients with prostate cancer.

    PubMed

    Cakir, Aydin; Akgun, Zuleyha; Fayda, Merdan; Agaoglu, Fulya

    2015-01-01

    Radiotherapy has an important role in the treatment of prostate cancer. Three-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques are all applied for this purpose. However, the risk of secondary radiation-induced bladder cancer is significantly elevated in irradiated patients compared surgery-only or watchful waiting groups. There are also reports of risk of secondary cancer with low doses to normal tissues. This study was designed to compare received volumes of low doses among 3D-CRT, IMRT and VMAT techniques for prostate patients. Ten prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated using 3D-CRT, IMRT and VMAT techniques. Conformity index (CI), homogenity index (HI), receiving 5 Gy of the volume (V5%), receiving 2 Gy of the volume (V2%), receiving 1 Gy of the volume (V1%) and monitor units (MUs) were compared. This study confirms that VMAT has slightly better CI while thev olume of low doses was higher. VMAT had lower MUs than IMRT. 3D-CRT had the lowest MU, CI and HI. If target coverage and normal tissue sparing are comparable between different treatment techniques, the risk of second malignancy should be a important factor in the selection of treatment.

  8. Radiation Dose to the Esophagus From Breast Cancer Radiation Therapy, 1943-1996: An International Population-Based Study of 414 Patients

    SciTech Connect

    Lamart, Stephanie; Stovall, Marilyn; Simon, Steven L.; Smith, Susan A.; Weathers, Rita E.; Howell, Rebecca M.; Curtis, Rochelle E.; Aleman, Berthe M.P.; Travis, Lois; Kwon, Deukwoo; Morton, Lindsay M.

    2013-07-15

    Purpose: To provide dosimetric data for an epidemiologic study on the risk of second primary esophageal cancer among breast cancer survivors, by reconstructing the radiation dose incidentally delivered to the esophagus of 414 women treated with radiation therapy for breast cancer during 1943-1996 in North America and Europe. Methods and Materials: We abstracted the radiation therapy treatment parameters from each patient’s radiation therapy record. Treatment fields included direct chest wall (37% of patients), medial and lateral tangentials (45%), supraclavicular (SCV, 64%), internal mammary (IM, 44%), SCV and IM together (16%), axillary (52%), and breast/chest wall boosts (7%). The beam types used were {sup 60}Co (45% of fields), orthovoltage (33%), megavoltage photons (11%), and electrons (10%). The population median prescribed dose to the target volume ranged from 21 Gy to 40 Gy. We reconstructed the doses over the length of the esophagus using abstracted patient data, water phantom measurements, and a computational model of the human body. Results: Fields that treated the SCV and/or IM lymph nodes were used for 85% of the patients and delivered the highest doses within 3 regions of the esophagus: cervical (population median 38 Gy), upper thoracic (32 Gy), and middle thoracic (25 Gy). Other fields (direct chest wall, tangential, and axillary) contributed substantially lower doses (approximately 2 Gy). The cervical to middle thoracic esophagus received the highest dose because of its close proximity to the SCV and IM fields and less overlying tissue in that part of the chest. The location of the SCV field border relative to the midline was one of the most important determinants of the dose to the esophagus. Conclusions: Breast cancer patients in this study received relatively high incidental radiation therapy doses to the esophagus when the SCV and/or IM lymph nodes were treated, whereas direct chest wall, tangentials, and axillary fields contributed lower

  9. Clinical Response of Pelvic and Para-aortic Lymphadenopathy to a Radiation Boost in the Definitive Management of Locally Advanced Cervical Cancer

    SciTech Connect

    Rash, Dominique L.; Lee, Yongsook C.; Kashefi, Amir; Durbin-Johnson, Blythe; Mathai, Mathew; Valicenti, Richard; Mayadev, Jyoti S.

    2013-10-01

    Purpose: Optimal treatment with radiation for metastatic lymphadenopathy in locally advanced cervical cancer remains controversial. We investigated the clinical dose response threshold for pelvic and para-aortic lymph node boost using radiographic imaging and clinical outcomes. Methods and Materials: Between 2007 and 2011, 68 patients were treated for locally advanced cervical cancer; 40 patients had clinically involved pelvic and/or para-aortic lymph nodes. Computed tomography (CT) or 18F-labeled fluorodeoxyglucose-positron emission tomography scans obtained pre- and postchemoradiation for 18 patients were reviewed to assess therapeutic radiographic response of individual lymph nodes. External beam boost doses to involved nodes were compared to treatment response, assessed by change in size of lymph nodes by short axis and change in standard uptake value (SUV). Patterns of failure, time to recurrence, overall survival (OS), and disease-free survival (DFS) were determined. Results: Sixty-four lymph nodes suspicious for metastatic involvement were identified. Radiation boost doses ranged from 0 to 15 Gy, with a mean total dose of 52.3 Gy. Pelvic lymph nodes were treated with a slightly higher dose than para-aortic lymph nodes: mean 55.3 Gy versus 51.7 Gy, respectively. There was no correlation between dose delivered and change in size of lymph nodes along the short axis. All lymph nodes underwent a decrease in SUV with a complete resolution of abnormal uptake observed in 68%. Decrease in SUV was significantly greater for lymph nodes treated with ≥54 Gy compared to those treated with <54 Gy (P=.006). Median follow-up was 18.7 months. At 2 years, OS and DFS for the entire cohort were 78% and 50%, respectively. Locoregional control at 2 years was 84%. Conclusions: A biologic response, as measured by the change in SUV for metastatic lymph nodes, was observed at a dose threshold of 54 Gy. We recommend that involved lymph nodes be treated to this minimum dose.

  10. The Application of FLUKA to Dosimetry and Radiation Therapy

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas L.; Andersen, Victor; Pinsky, Lawrence; Ferrari, Alfredo; Battistoni, Giusenni

    2005-01-01

    Monte Carlo transport codes like FLUKA are useful for many purposes, and one of those is the simulation of the effects of radiation traversing the human body. In particular, radiation has been used in cancer therapy for a long time, and recently this has been extended to include heavy ion particle beams. The advent of this particular type of therapy has led to the need for increased capabilities in the transport codes used to simulate the detailed nature of the treatment doses to the Y O U S tissues that are encountered. This capability is also of interest to NASA because of the nature of the radiation environment in space.[l] While in space, the crew members bodies are continually being traversed by virtually all forms of radiation. In assessing the risk that this exposure causes, heavy ions are of primary importance. These arise both from the primary external space radiation itself, as well as fragments that result from interactions during the traversal of that radiation through any intervening material including intervening body tissue itself. Thus the capability to characterize the details of the radiation field accurately within a human body subjected to such external 'beams" is of critical importance.

  11. QA in Radiation Therapy: The RPC Perspective

    NASA Astrophysics Data System (ADS)

    Ibbott, G. S.

    2010-11-01

    The Radiological Physics Center (RPC) is charged with assuring the consistent delivery of radiation doses to patients on NCI-sponsored clinical trials. To accomplish this, the RPC conducts annual mailed audits of machine calibration, dosimetry audit visits to institutions, reviews of treatment records, and credentialing procedures requiring the irradiation of anthropomorphic phantoms. Through these measurements, the RPC has gained an understanding of the level of quality assurance practiced in this cohort of institutions, and a database of measurements of beam characteristics of a large number of treatment machines. The results of irradiations of phantoms have yielded insight into the delivery of advanced technology treatment procedures.

  12. Immunomodulatory effects of radiation: what is next for cancer therapy?

    PubMed

    Kumari, Anita; Simon, Samantha S; Moody, Tomika D; Garnett-Benson, Charlie

    2016-01-01

    Despite its former reputation as being immunosuppressive, it has become evident that radiation therapy can enhance antitumor immune responses. This quality can be harnessed by utilizing radiation as an adjuvant to cancer immunotherapies. Most studies combine the standard radiation dose and regimens indicated for the given disease state, with novel cancer immunotherapies. It has become apparent that low-dose radiation, as well as doses within the hypofractionated range, can modulate tumor cells making them better targets for immune cell reactivity. Herein, we describe the range of phenotypic changes induced in tumor cells by radiation, and explore the diverse mechanisms of immunogenic modulation reported at these doses. We also review the impact of these doses on the immune cell function of cytotoxic cells in vivo and in vitro.

  13. Radiation therapy for primary optic nerve meningiomas

    SciTech Connect

    Smith, J.L.; Vuksanovic, M.M.; Yates, B.M.; Bienfang, D.C.

    1981-06-01

    Optic nerve sheath meningiomas, formerly thought to be rare, have been encountered with surprising frequency since the widespread use of computed tomography. Early diagnosis led to an enthusiastic surgical approach to these lesions, but this has been tempered by the realization that even in the best of hands, blindness followed such surgery with distressing frequency. Optic nerve sheath meningiomas may be divided into primary, secondary, and multiple meningioma groups. Five patients with primary optic nerve sheath meningiomas treated with irradiation therapy are presented in this report. Improvement in visual acuity, stabilization to increase in the visual field, and decrease in size to total regression of optociliary veins, have been documented following irradiation therapy of the posterior orbital and intracanalicular portions of the optic nerve in some of these cases. Although each patient must be carefully individualized, there is no question that visual palliation can be achieved in some cases of optic nerve sheath meningioma. Further investigation of this therapeutic modality in selected cases in advised.

  14. Factors influencing radiation therapy student clinical placement satisfaction

    SciTech Connect

    Bridge, Pete; Carmichael, Mary-Ann

    2014-02-15

    Introduction: Radiation therapy students at Queensland University of Technology (QUT) attend clinical placements at five different clinical departments with varying resources and support strategies. This study aimed to determine the relative availability and perceived importance of different factors affecting student support while on clinical placement. The purpose of the research was to inform development of future support mechanisms to enhance radiation therapy students’ experience on clinical placement. Methods: This study used anonymous Likert-style surveys to gather data from years 1 and 2 radiation therapy students from QUT and clinical educators from Queensland relating to availability and importance of support mechanisms during clinical placements in a semester. Results: The study findings demonstrated student satisfaction with clinical support and suggested that level of support on placement influenced student employment choices. Staff support was perceived as more important than physical resources; particularly access to a named mentor, a clinical educator and weekly formative feedback. Both students and educators highlighted the impact of time pressures. Conclusions: The support offered to radiation therapy students by clinical staff is more highly valued than physical resources or models of placement support. Protected time and acknowledgement of the importance of clinical education roles are both invaluable. Joint investment in mentor support by both universities and clinical departments is crucial for facilitation of effective clinical learning.

  15. Radiation therapy in the management of patients with mesothelioma

    SciTech Connect

    Gordon, W. Jr.; Antman, K.H.; Greenberger, J.S.; Weichselbaum, R.R.; Chaffey, J.T.

    1982-01-01

    The results of radiation therapy in the management of 27 patients with malignant mesothelioma were reviewed. Eight patients were treated with a curative intent combining attempted surgical excision of tumor (thoracic in 6 and peritoneal in 2), aggressive radiation therapy, and combination chemotherapy using an adriamycin-containing regimen. One patient achieved a 2-year disease-free inteval followed by recurrence of tumor above the thoracic irradiation field. This patient was retreated with localized irradiation and is disease-free after 5 years of initial diagnosis. One patient has persistent abdominal disease at 18 months; the other 6 patients suffered local recurrence within 8-13 months of initiation of treatment. Radiation therapy was used in 19 other patients who received 29 courses for palliation of dyspnea, superior vena cava syndrome, dysphagia, or neurological symptoms of brain metastasis. A palliation index was used to determine the effectiveness of irradiation and revealed that relief of symptoms was complete or substantial in 5 treatment courses, moderately effective in 6 courses and inadequate in 18 treatment courses. Adequate palliation strongly correlated with a dose at or above 4,000 rad in 4 weeks. The management of patients with mesothelioma requires new and innovative approaches to increase the effectiveness of radiation therapy and minimize the significant potential combined toxicity of pulmonary irradiation and adriamycin.

  16. Pregnancy after radiation therapy for carcinoma of the cervix.

    PubMed

    Browde, S; Friedman, M; Nissenbaum, M

    1986-01-01

    A successful pregnancy after intracavitary radiation therapy for carcinoma of the cervix is described. An additional 13 similar cases from the literature are reviewed. The possible reasons for the occurrence of these pregnancies despite irradiation to the ovaries, cervical canal and endometrium are discussed. The fact is emphasized that no genetic damage to the child was expected.

  17. Acute parotitis and hyperamylasemia following whole-brain radiation therapy

    SciTech Connect

    Cairncross, J.G.; Salmon, J.; Kim, J.H.; Posner, J.B.

    1980-04-01

    Parotitis, an infrequent, previously unreported complication of whole-brain radiation therapy, was observed in 4 patients. The acute symptoms, which include fever, dry mouth, pain, swelling, and tenderness, are accompanied by hyperamylasemia. Among 10 patients receiving whole-brain irradiation, 8 had serum amylase elevations without symptoms. Both acute parotitis and asymptomatic hyperamylasemia result from irradiation of the parotid glands.

  18. A Dosimetric Comparison of Tomotherapy and Volumetric Modulated Arc Therapy in the Treatment of High-Risk Prostate Cancer With Pelvic Nodal Radiation Therapy

    SciTech Connect

    Pasquier, David; Cavillon, Fabrice; Lacornerie, Thomas; Touzeau, Claire; Tresch, Emmanuelle; Lartigau, Eric

    2013-02-01

    Purpose: To compare the dosimetric results of volumetric modulated arc therapy (VMAT) and helical tomotherapy (HT) in the treatment of high-risk prostate cancer with pelvic nodal radiation therapy. Methods and Materials: Plans were generated for 10 consecutive patients treated for high-risk prostate cancer with prophylactic whole pelvic radiation therapy (WPRT) using VMAT and HT. After WPRT, a sequential boost was delivered to the prostate. Plan quality was assessed according to the criteria of the International Commission on Radiation Units and Measurements 83 report: the near-minimal (D98%), near-maximal (D2%), and median (D50%) doses; the homogeneity index (HI); and the Dice similarity coefficient (DSC). Beam-on time, integral dose, and several organs at risk (OAR) dosimetric indexes were also compared. Results: For WPRT, HT was able to provide a higher D98% than VMAT (44.3 {+-} 0.3 Gy and 43.9 {+-} 0.5 Gy, respectively; P=.032) and a lower D2% than VMAT (47.3 {+-} 0.3 Gy and 49.1 {+-} 0.7 Gy, respectively; P=.005), leading to a better HI. The DSC was better for WPRT with HT (0.89 {+-} 0.009) than with VMAT (0.80 {+-} 0.02; P=.002). The dosimetric indexes for the prostate boost did not differ significantly. VMAT provided better rectum wall sparing at higher doses (V70, V75, D2%). Conversely, HT provided better bladder wall sparing (V50, V60, V70), except at lower doses (V20). The beam-on times for WPRT and prostate boost were shorter with VMAT than with HT (3.1 {+-} 0.1 vs 7.4 {+-} 0.6 min, respectively; P=.002, and 1.5 {+-} 0.05 vs 3.7 {+-} 0.3 min, respectively; P=.002). The integral dose was slightly lower for VMAT. Conclusion: VMAT and HT provided very similar and highly conformal plans that complied well with OAR dose-volume constraints. Although some dosimetric differences were statistically significant, they remained small. HT provided a more homogeneous dose distribution, whereas VMAT enabled a shorter delivery time.

  19. Fiber-optic Cerenkov radiation sensor for proton therapy dosimetry.

    PubMed

    Jang, Kyoung Won; Yoo, Wook Jae; Shin, Sang Hun; Shin, Dongho; Lee, Bongsoo

    2012-06-18

    In proton therapy dosimetry, a fiber-optic radiation sensor incorporating a scintillator must undergo complicated correction processes due to the quenching effect of the scintillator. To overcome the drawbacks of the fiber-optic radiation sensor, we proposed an innovative method using the Cerenkov radiation generated in plastic optical fibers. In this study, we fabricated a fiber-optic Cerenkov radiation sensor without an organic scintillator to measure Cerenkov radiation induced by therapeutic proton beams. Bragg peaks and spread-out Bragg peaks of proton beams were measured using the fiber-optic Cerenkov radiation sensor and the results were compared with those of an ionization chamber and a fiber-optic radiation sensor incorporating an organic scintillator. From the results, we could obtain the Bragg peak and the spread-out Bragg peak of proton beams without quenching effects induced by the scintillator, and these results were in good agreement with those of the ionization chamber. We also measured the Cerenkov radiation generated from the fiber-optic Cerenkov radiation sensor as a function of the dose rate of the proton beam.

  20. [Cutaneous radiation syndrome: clinical features, diagnosis and therapy].

    PubMed

    Gottlöber, P; Krähn, G; Peter, R U

    2000-08-01

    Accidental exposure to ionizing radiation may occur during such catastrophic events as the Chernobyl accident in 1986 or over days to weeks as in Goiania in 1987 and in the military camp during the training of soldiers in Lilo/Georgia in 1997, as well as in medical institutions. The cutaneous symptoms after radiation exposure are based on a combination of inflammatory processes and alteration of cellular proliferation as a result of a specific pattern of transcriptionally activated proinflammatory cytokines and growth factors. They follow a time course consisting of prodromal erythema, latency period, acute stage, chronic stage and late stage. The entire complex is referred to as cutaneous radiation syndrome. The time course depends on several factors such as the radiation dose, radiation quality, individual radiation sensitivity, the extent of contamination and absorption and amount of skin exposed. For the diagnosis of the cutaneous radiation syndrome the following procedures are used: 7.5 MHz to 20 MHz-B-scan sonography, thermography, capillary microscopy, profilometry, nuclear magnetic resonance imaging, bone scintigraphy and histology. Based on the results of experimental and clinical research, today treatment may include topical or systemic corticosteroids, gamma-interferon, pentoxifylline, vitamin E and superoxide dismutase. The treatment depends on the stage of the cutaneous radiation syndrome. Due to the complexity of the clinical manifestations of radiation disease, most patients require interdisciplinary treatment in specialized centres. Dermatologists are essential partners in the life-long follow-up and therapy of such patients.

  1. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    SciTech Connect

    Kan, Charlene; Zhang, Junran

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations.

  2. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    PubMed

    Kan, Charlene; Zhang, Junran

    2015-10-01

    DNA repair, in particular, DNA double-strand break (DSB) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells to efficiently repair the damaged DNA. The pathways predominately involved in DSB repair are homologous recombination and classic nonhomologous end-joining, although the alternative NHEJ pathway, a third DSB repair pathway, could also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSB repair pathways. Given that DSBs represent the most biologically significant lesions induced by ionizing radiation and that impaired DSB repair leads to radiation sensitivity, it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy. However, the clinical data have been conflicting and inconclusive. We provide an overview about the current status of the data regarding BRCA1 deficiency and radiation therapy sensitivity in both experimental models and clinical investigations. In addition, we discuss a strategy to potentiate the effects of radiation therapy by poly(ADP-ribose) polymerase inhibitors, the pharmacologic drugs being investigated as monotherapy for the treatment of patients with BRCA1/2 mutations. PMID:26383678

  3. Stereotactic Body Radiation Therapy for Recurrent Head and Neck Cancer.

    PubMed

    Ling, Diane C; Vargo, John A; Heron, Dwight E

    2016-01-01

    Stereotactic body radiation therapy (SBRT) offers a promising opportunity for cure and/or palliation to patients with recurrent head and neck cancer whose comorbidities, performance status, and history of prior treatment may preclude many other salvage options. Stereotactic body radiation therapy appears to have a favorable response and toxicity profile compared with other nonoperative salvage options for recurrent head and neck cancer. However, the risk of severe toxicity remains, with carotid blowout syndrome a unique concern, although the incidence of this complication may be minimized with alternating-day fractionation. The short overall treatment time and low rates of acute toxicity make SBRT an optimal vehicle to integrate with novel systemic therapies, and several phase II studies have used concurrent cetuximab as a radiosensitizer with SBRT with promising results. Ongoing studies aim to evaluate the potential synergistic effect of SBRT with immune checkpoint inhibitors in recurrent head and neck cancer. PMID:27441751

  4. Evaluation of neutron radiation field in carbon ion therapy

    NASA Astrophysics Data System (ADS)

    Xu, Jun-Kui; Su, You-Wu; Li, Wu-Yuan; Yan, Wei-Wei; Chen, Xi-Meng; Mao, Wang; Pang, Cheng-Guo

    2016-01-01

    Carbon ions have significant advantages in tumor therapy because of their physical and biological properties. In view of the radiation protection, the safety of patients is the most important issue in therapy processes. Therefore, the effects of the secondary particles produced by the carbon ions in the tumor therapy should be carefully considered, especially for the neutrons. In the present work, the neutron radiation field induced by carbon ions was evaluated by using the FLUKA code. The simulated results of neutron energy spectra and neutron dose was found to be in good agreement with the experiment data. In addition, energy deposition of carbon ions and neutrons in tissue-like media was studied, it is found that the secondary neutron energy deposition is not expected to exceed 1% of the carbon ion energy deposition in a typical treatment.

  5. Radiation Therapy for Liver Tumors: Ready for Inclusion in Guidelines?

    PubMed Central

    Tanguturi, Shyam K.; Wo, Jennifer Y.; Zhu, Andrew X.; Dawson, Laura A.

    2014-01-01

    Despite the historically limited role of radiotherapy in the management of primary hepatic malignancies, modern advances in treatment design and delivery have renewed enthusiasm for radiation as a potentially curative treatment modality. Surgical resection and/or liver transplantation are traditionally regarded as the most effective forms of therapy, although the majority of patients with hepatocellular carcinoma and intrahepatic cholangiocarcinoma present with locally advanced or unresectable disease on the basis of local vascular invasion or inadequate baseline hepatobiliary function. In this context, many efforts have focused on nonoperative treatment approaches including novel systemic therapies, transarterial chemoembolization, ethanol ablation, radiofrequency ablation, and stereotactic body radiation therapy (SBRT). This review aims to summarize modern advances in radiotherapy, particularly SBRT, in the treatment of primary hepatic malignancies. PMID:25001265

  6. The influence of radiation therapy on dental implantology.

    PubMed

    Anderson, Lauren; Meraw, Stephen; Al-Hezaimi, Khalid; Wang, Hom-Lay

    2013-02-01

    Patients with a history of head and neck cancer resection require extensive prosthodontic rehabilitation following cancer treatment. The oral anatomy drastically changes from ablative therapy, and the oral tissue response becomes altered as a consequence of radiation and chemotherapy. Successful restoration of oral function in this specific patient population was increasingly difficult before the widespread use of dental implants. Implant-borne prosthetics are now often used. However, surgical guidelines remain unclear with regard to oncology-related parameters. In this article, guidelines are introduced for implant therapy in the cancer patients according to radiation dosage and timing. Indications for hyperbaric oxygen treatment are highlighted along with risk assessment associated with implant placement. These guidelines are intended to augment knowledge obtained through oncology consultation; moreover, provide a rationale for implant therapy within the course of cancer treatment.

  7. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    SciTech Connect

    Pollom, Erqi L.; Deng, Lei; Pai, Reetesh K.; Brown, J. Martin; Giaccia, Amato; Loo, Billy W.; Shultz, David B.; Le, Quynh Thu; Koong, Albert C.; Chang, Daniel T.

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action of toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.

  8. Research Findings on Radiation Hormesis and Radon Therapy

    SciTech Connect

    Hattori, Sadao

    1999-06-06

    Radiation hormesis research in Japan to determine the validity of Luckey's claims has revealed information on the health effects of low-level radiation. The scientific data of animal tests we obtained and successful results actually brought by radon therapy on human patients show us a clearer understanding of the health effects of low-level radiation. We obtained many animal test results and epidemiological survey data through our research activities cooperating with more than ten universities in Japan, categorized as follows: 1. suppression of cancer by enhancement of the immune system based on gene activation; 2. rejuvenation and suppression of aging by increasing cell membrane permeability and enzyme syntheses; 3. adaptive response by activation of gene expression on DNA repair and cell apoptosis; 4. pain relief and stress moderation by hormone formation in the brain and central nervous system; 5. avoidance and therapy of obstinate diseases by enhancing damage control systems and form one formation.

  9. Radiation therapy for breast cancer: Literature review.

    PubMed

    Balaji, Karunakaran; Subramanian, Balaji; Yadav, Poonam; Anu Radha, Chandrasekaran; Ramasubramanian, Velayudham

    2016-01-01

    Concave shape with variable size target volume makes treatment planning for the breast/chest wall a challenge. Conventional techniques used for the breast/chest wall cancer treatment provided better sparing of organs at risk (OARs), with poor conformity and uniformity to the target volume. Advanced technologies such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) improve the target coverage at the cost of higher low dose volumes to OARs. Novel hybrid techniques present promising results in breast/chest wall irradiation in terms of target coverage as well as OARs sparing. Several published data compared these technologies for the benefit of the breast/chest wall with or without nodal volumes. The aim of this article is to review relevant data and identify the scope for further research in developing optimal treatment plan for breast/chest wall cancer treatment. PMID:27545009

  10. Radiation therapy for breast cancer: Literature review.

    PubMed

    Balaji, Karunakaran; Subramanian, Balaji; Yadav, Poonam; Anu Radha, Chandrasekaran; Ramasubramanian, Velayudham

    2016-01-01

    Concave shape with variable size target volume makes treatment planning for the breast/chest wall a challenge. Conventional techniques used for the breast/chest wall cancer treatment provided better sparing of organs at risk (OARs), with poor conformity and uniformity to the target volume. Advanced technologies such as intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) improve the target coverage at the cost of higher low dose volumes to OARs. Novel hybrid techniques present promising results in breast/chest wall irradiation in terms of target coverage as well as OARs sparing. Several published data compared these technologies for the benefit of the breast/chest wall with or without nodal volumes. The aim of this article is to review relevant data and identify the scope for further research in developing optimal treatment plan for breast/chest wall cancer treatment.

  11. [Stereotactic body radiation therapy for spinal metastases].

    PubMed

    Pasquier, D; Martinage, G; Mirabel, X; Lacornerie, T; Makhloufi, S; Faivre, J-C; Thureau, S; Lartigau, É

    2016-10-01

    After the liver and lungs, bones are the third most common sites of cancer metastasis. Palliative radiotherapy for secondary bone tumours helps relieve pain, improve the quality of life and reduce the risk of fractures. Stereotactic body radiotherapy can deliver high radiation doses with very tight margins, which has significant advantages when treating tumours close to the spinal cord. Strict quality control is essential as dose gradient at the edge of the spinal cord is important. Optimal schedule is not defined. A range of dose-fractionation schedules have been used. Pain relief and local control are seen in over 80%. Toxicity rates are low, although vertebral fracture may occur. Ongoing prospective studies will help clarify its role in the management of oligometastatic patients.

  12. [Stereotactic body radiation therapy for spinal metastases].

    PubMed

    Pasquier, D; Martinage, G; Mirabel, X; Lacornerie, T; Makhloufi, S; Faivre, J-C; Thureau, S; Lartigau, É

    2016-10-01

    After the liver and lungs, bones are the third most common sites of cancer metastasis. Palliative radiotherapy for secondary bone tumours helps relieve pain, improve the quality of life and reduce the risk of fractures. Stereotactic body radiotherapy can deliver high radiation doses with very tight margins, which has significant advantages when treating tumours close to the spinal cord. Strict quality control is essential as dose gradient at the edge of the spinal cord is important. Optimal schedule is not defined. A range of dose-fractionation schedules have been used. Pain relief and local control are seen in over 80%. Toxicity rates are low, although vertebral fracture may occur. Ongoing prospective studies will help clarify its role in the management of oligometastatic patients. PMID:27614511

  13. Stereotactic Body Radiation Therapy in Spinal Metastases

    SciTech Connect

    Ahmed, Kamran A.; Stauder, Michael C.; Miller, Robert C.; Bauer, Heather J.; Rose, Peter S.; Olivier, Kenneth R.; Brown, Paul D.; Brinkmann, Debra H.; Laack, Nadia N.

    2012-04-01

    Purpose: Based on reports of safety and efficacy, stereotactic body radiotherapy (SBRT) for treatment of malignant spinal tumors was initiated at our institution. We report prospective results of this population at Mayo Clinic. Materials and Methods: Between April 2008 and December 2010, 85 lesions in 66 patients were treated with SBRT for spinal metastases. Twenty-two lesions (25.8%) were treated for recurrence after prior radiotherapy (RT). The mean age of patients was 56.8 {+-} 13.4 years. Patients were treated to a median dose of 24 Gy (range, 10-40 Gy) in a median of three fractions (range, 1-5). Radiation was delivered with intensity-modulated radiotherapy (IMRT) and prescribed to cover 80% of the planning target volume (PTV) with organs at risk such as the spinal cord taking priority over PTV coverage. Results: Tumor sites included 48, 22, 12, and 3 in the thoracic, lumbar, cervical, and sacral spine, respectively. The mean actuarial survival at 12 months was 52.2%. A total of 7 patients had both local and marginal failure, 1 patient experienced marginal but not local failure, and 1 patient had local failure only. Actuarial local control at 1 year was 83.3% and 91.2% in patients with and without prior RT. The median dose delivered to patients who experienced local/marginal failure was 24 Gy (range, 18-30 Gy) in a median of three fractions (range, 1-5). No cases of Grade 4 toxicity were reported. In 1 of 2 patients experiencing Grade 3 toxicity, SBRT was given after previous radiation. Conclusion: The results indicate SBRT to be an effective measure to achieve local control in spinal metastases. Toxicity of treatment was rare, including those previously irradiated. Our results appear comparable to previous reports analyzing spine SBRT. Further research is needed to determine optimum dose and fractionation to further improve local control and prevent toxicity.

  14. Complementary strategies for the management of radiation therapy side effects.

    PubMed

    Stubbe, Christine E; Valero, Meighan

    2013-07-01

    Patients with cancer utilize complementary and alternative medicine (CAM) for a variety of purposes, one of which is the reduction of side effects of conventional treatment. With a large number of their patients using CAM, it is important for advanced practitioners in oncology to have an understanding of these therapies to better guide their patients. Side effects of radiation therapy that may have dose-limiting poten-tial include diarrhea, mucositis, skin toxicity, and xerostomia. A com-mon side effect that is not necessarily dose-limiting but considerably troublesome to patients is cancer- and treatment-related fatigue. The CAM therapies that may alleviate some of the side effects of radiation therapy include probiotics, psyllium, exercise, melatonin, honey, acu-puncture, and calendula. Therapies that require more research or have been shown to be ineffective include aloe vera, glutamine, and deglyc-yrrhizinated licorice. This article provides an overview of these thera-pies as well as related research and analysis. PMID:25032003

  15. Complementary strategies for the management of radiation therapy side effects.

    PubMed

    Stubbe, Christine E; Valero, Meighan

    2013-07-01

    Patients with cancer utilize complementary and alternative medicine (CAM) for a variety of purposes, one of which is the reduction of side effects of conventional treatment. With a large number of their patients using CAM, it is important for advanced practitioners in oncology to have an understanding of these therapies to better guide their patients. Side effects of radiation therapy that may have dose-limiting poten-tial include diarrhea, mucositis, skin toxicity, and xerostomia. A com-mon side effect that is not necessarily dose-limiting but considerably troublesome to patients is cancer- and treatment-related fatigue. The CAM therapies that may alleviate some of the side effects of radiation therapy include probiotics, psyllium, exercise, melatonin, honey, acu-puncture, and calendula. Therapies that require more research or have been shown to be ineffective include aloe vera, glutamine, and deglyc-yrrhizinated licorice. This article provides an overview of these thera-pies as well as related research and analysis.

  16. Stereotactic Body Radiation Therapy for Patients With Lung Cancer Previously Treated With Thoracic Radiation

    SciTech Connect

    Kelly, Patrick; Balter, Peter A.; Rebueno, Neal; Sharp, Hadley J.; Liao Zhongxing; Komaki, Ritsuko; Chang, Joe Y.

    2010-12-01

    Purpose: Stereotactic body radiation therapy (SBRT) provides excellent local control with acceptable toxicity for patients with early-stage non-small cell lung cancer. However, the efficacy and safety of SBRT for patients previously given thoracic radiation therapy is not known. In this study, we retrospectively reviewed outcomes after SBRT for recurrent disease among patients previously given radiation therapy to the chest. Materials and Methods: A search of medical records for patients treated with SBRT to the thorax after prior fractionated radiation therapy to the chest at The University of Texas M. D. Anderson Cancer Center revealed 36 such cases. The median follow-up time after SBRT was 15 months. The endpoints analyzed were overall survival, local control, and the incidence and severity of treatment-related toxicity. Results: SBRT provided in-field local control for 92% of patients; at 2 years, the actuarial overall survival rate was 59%, and the actuarial progression-free survival rate was 26%, with the primary site of failure being intrathoracic relapse. Fifty percent of patients experienced worsening of dyspnea after SBRT, with 19% requiring oxygen supplementation; 30% of patients experienced chest wall pain and 8% Grade 3 esophagitis. No Grade 4 or 5 toxic effects were noted. Conclusions: SBRT can provide excellent in-field tumor control in patients who have received prior radiation therapy. Toxicity was significant but manageable. The high rate of intrathoracic failure indicates the need for further study to identify patients who would derive the most benefit from SBRT for this purpose.

  17. Radiation therapy in the treatment of aggressive fibromatoses (desmoid tumors).

    PubMed

    Kiel, K D; Suit, H D

    1984-11-15

    Twenty-five patients with aggressive fibromatoses (desmoid tumors) have been treated or followed in the Department of Radiation Medicine at the Massachusetts General Hospital between 1972 and 1982. Seventeen patients were treated by radiation, 4 for primary and 13 for recurrent disease. Seven patients were treated in conjunction with surgery. Partial or complete regression was achieved in 76%, and 59% are without evidence of disease (NED) at 9 to 94 months follow-up. Eight of ten patients treated primarily with radiation have achieved complete response without an attempt at resection (five) or have achieved stabilization (three) of their disease after some regression. Consistent complete control was seen with doses above 60 Gy. Periods to 27 months were required to observe complete responses. Only three failures within the radiation field were observed, two after low doses (22 and 24 Gy, respectively). Eight patients were seen after resection but with uncertain or histologically minimum positive margins, and were followed regularly and not treated. One patient has failed to date and is NED after resection. Radiation therapy is recommended in those situations where wide-field resection without significant morbidity is not possible for gross local disease. If minimally positive margins exist after resection in a patient who may be followed carefully, frequent follow-up and prompt treatment at recurrence may be an effective alternative to immediate radiation therapy.

  18. Targeted iron oxide nanoparticles for the enhancement of radiation therapy.

    PubMed

    Hauser, Anastasia K; Mitov, Mihail I; Daley, Emily F; McGarry, Ronald C; Anderson, Kimberly W; Hilt, J Zach

    2016-10-01

    To increase the efficacy of radiation, iron oxide nanoparticles can be utilized for their ability to produce reactive oxygen species (ROS). Radiation therapy promotes leakage of electrons from the electron transport chain and leads to an increase in mitochondrial production of the superoxide anion which is converted to hydrogen peroxide by superoxide dismutase. Iron oxide nanoparticles can then catalyze the reaction from hydrogen peroxide to the highly reactive hydroxyl radical. Therefore, the overall aim of this project was to utilize iron oxide nanoparticles conjugated to a cell penetrating peptide, TAT, to escape lysosomal encapsulation after internalization by cancer cells and catalyze hydroxyl radical formation. It was determined that TAT functionalized iron oxide nanoparticles and uncoated iron oxide nanoparticles resulted in permeabilization of the lysosomal membranes. Additionally, mitochondrial integrity was compromised when A549 cells were treated with both TAT-functionalized nanoparticles and radiation. Pre-treatment with TAT-functionalized nanoparticles also significantly increased the ROS generation associated with radiation. A long term viability study showed that TAT-functionalized nanoparticles combined with radiation resulted in a synergistic combination treatment. This is likely due to the TAT-functionalized nanoparticles sensitizing the cells to subsequent radiation therapy, because the nanoparticles alone did not result in significant toxicities. PMID:27521615

  19. Some computer graphical user interfaces in radiation therapy.

    PubMed

    Chow, James C L

    2016-03-28

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  20. Some computer graphical user interfaces in radiation therapy

    PubMed Central

    Chow, James C L

    2016-01-01

    In this review, five graphical user interfaces (GUIs) used in radiation therapy practices and researches are introduced. They are: (1) the treatment time calculator, superficial X-ray treatment time calculator (SUPCALC) used in the superficial X-ray radiation therapy; (2) the monitor unit calculator, electron monitor unit calculator (EMUC) used in the electron radiation therapy; (3) the multileaf collimator machine file creator, sliding window intensity modulated radiotherapy (SWIMRT) used in generating fluence map for research and quality assurance in intensity modulated radiation therapy; (4) the treatment planning system, DOSCTP used in the calculation of 3D dose distribution using Monte Carlo simulation; and (5) the monitor unit calculator, photon beam monitor unit calculator (PMUC) used in photon beam radiation therapy. One common issue of these GUIs is that all user-friendly interfaces are linked to complex formulas and algorithms based on various theories, which do not have to be understood and noted by the user. In that case, user only needs to input the required information with help from graphical elements in order to produce desired results. SUPCALC is a superficial radiation treatment time calculator using the GUI technique to provide a convenient way for radiation therapist to calculate the treatment time, and keep a record for the skin cancer patient. EMUC is an electron monitor unit calculator for electron radiation therapy. Instead of doing hand calculation according to pre-determined dosimetric tables, clinical user needs only to input the required drawing of electron field in computer graphical file format, prescription dose, and beam parameters to EMUC to calculate the required monitor unit for the electron beam treatment. EMUC is based on a semi-experimental theory of sector-integration algorithm. SWIMRT is a multileaf collimator machine file creator to generate a fluence map produced by a medical linear accelerator. This machine file controls

  1. Hepatocellular Carcinoma Radiation Therapy: Review of Evidence and Future Opportunities

    SciTech Connect

    Klein, Jonathan

    2013-09-01

    Hepatocellular carcinoma (HCC) is a leading cause of global cancer death. Curative therapy is not an option for most patients, often because of underlying liver disease. Experience in radiation therapy (RT) for HCC is rapidly increasing. Conformal RT can deliver tumoricidal doses to focal HCC with low rates of toxicity and sustained local control in HCC unsuitable for other locoregional treatments. Stereotactic body RT and particle therapy have been used with long-term control in early HCC or as a bridge to liver transplant. RT has also been effective in treating HCC with portal venous thrombosis. Patients with impaired liver function and extensive disease are at increased risk of toxicity and recurrence. More research on how to combine RT with other standard and novel therapies is warranted. Randomized trials are also needed before RT will be generally accepted as a treatment option for HCC. This review discusses the current state of the literature and opportunities for future research.

  2. RADIATION THERAPY IN DISEASES OF THE EYE

    PubMed Central

    Sherman, Robert S.; Hogan, Michael J.

    1954-01-01

    Because of the wide variety of x-rays now available, selectivity is possible and important in treatment of diseases of the eye. By the use of short-range radiation, newly developed eye shields and the insulation of the eyelid itself, and by careful angulation of the beam, the desired irradiation can be given where it is needed without injury to surrounding tissues. The authors have found the 50 kv x-ray unit to be the most reliable and adaptable for most circumstances. The skin of the eyelid reacts to irradiation more sensitively than other tissues. The cornea reacts with keratitis and sometimes intractable ulceration. The iris, uveal tract and retina are less seriously affected. At the University of California Hospital irradiation has been found satisfactory for treatment of corneal ulcer, keratitis, pterygium, certain types of conjunctivitis, episcleritis, corneal vascularization, iritis, uveitis, and hemangioma. Irradiation may be of great benefit in absolute glaucoma with pain and blindness. Of 42 patients with carcinoma of the eyelid treated between 1935 and 1946, 27 had no recurrence in five years, 5 had recurrence, 7 died of other causes and follow-up was incomplete on 3. Good cosmetic result was usually achieved. No recurrence has been observed in 22 patients treated since 1946. Irradiation has been used with success in other kinds of cancer of the eye structures. PMID:13126810

  3. Simultaneous integrated boost plan comparison of volumetric-modulated arc therapy and sliding window intensity-modulated radiotherapy for whole pelvis irradiation of locally advanced prostate cancer.

    PubMed

    Riou, Olivier; Regnault de la Mothe, Pauline; Azria, David; Aillères, Norbert; Dubois, Jean-Bernard; Fenoglietto, Pascal

    2013-07-08

    Concurrent radiotherapy to the pelvis plus a prostate boost with long-term androgen deprivation is a standard of care for locally advanced prostate cancer. IMRT has the ability to deliver highly conformal dose to the target while lowering irradiation of critical organs around the prostate. Volumetric-modulated arc therapy is able to reduce treatment time, but its impact on organ sparing is still controversial when compared to static gantry IMRT. We compared the two techniques in simultaneous integrated boost plans. Ten patients with locally advanced prostate cancer were included. The planning target volume (PTV) 1 was defined as the pelvic lymph nodes, the prostate, and the seminal vesicles plus setup margins. The PTV2 consisted of the prostate with setup margins. The prescribed doses to PTV1 and PTV2 were 54 Gy in 37 fractions and 74 Gy in 37 fractions, respectively. We compared simultaneous integrated boost plans by means of either a seven coplanar static split fields IMRT, or a one-arc (RA1) and a two-arc (RA2) RapidArc planning. All three techniques allowed acceptable homogeneity and PTV coverage. Static IMRT enabled a better homogeneity for PTV2 than RapidArc techniques. Sliding window IMRT and VMAT permitted to maintain doses to OAR within acceptable levels with a low risk of side effects for each organ. VMAT plans resulted in a clinically and statistically significant reduction in doses to bladder (mean dose IMRT: 50.1 ± 4.6Gy vs. mean dose RA2: 47.1 ± 3.9 Gy, p = 0.037), rectum (mean dose IMRT: 44± 4.5 vs. mean dose RA2: 41.6 ± 5.5 Gy, p = 0.006), and small bowel (V30 IMRT: 76.47 ± 14.91% vs. V30 RA2: 47.49 ± 16.91%, p = 0.002). Doses to femoral heads were higher with VMAT but within accepted constraints. Our findings suggest that simultaneous integrated boost plans using VMAT and sliding window IMRT allow good OAR sparing while maintaining PTV coverage within acceptable levels.

  4. Strategies for combining immunotherapy with radiation for anticancer therapy.

    PubMed

    Seyedin, Steven N; Schoenhals, Jonathan E; Lee, Dean A; Cortez, Maria A; Wang, Xiaohong; Niknam, Sharareh; Tang, Chad; Hong, David S; Naing, Aung; Sharma, Padmanee; Allison, James P; Chang, Joe Y; Gomez, Daniel R; Heymach, John V; Komaki, Ritsuko U; Cooper, Laurence J; Welsh, James W

    2015-01-01

    Radiation therapy controls local disease but also prompts the release of tumor-associated antigens and stress-related danger signals that primes T cells to promote tumor regression at unirradiated sites known as the abscopal effect. This may be enhanced by blocking inhibitory immune signals that modulate immune activity through a variety of mechanisms. Indeed, abscopal responses have occurred in patients with lung cancer or melanoma when given anti-CTLA4 antibody and radiation. Other approaches involve expanding and reinfusing T or NK cells or engineered T cells to express receptors that target specific tumor peptides. These approaches may be useful for immunocompromised patients receiving radiation. Preclinical and clinical studies are testing both immune checkpoint-based strategies and adoptive immunotherapies with radiation. PMID:26310908

  5. Complementary Strategies for the Management of Radiation Therapy Side Effects

    PubMed Central

    Stubbe, Christine E.; Valero, Meighan

    2013-01-01

    Patients with cancer utilize complementary and alternative medicine (CAM) for a variety of purposes, one of which is the reduction of side effects of conventional treatment. With a large number of their patients using CAM, it is important for advanced practitioners in oncology to have an understanding of these therapies to better guide their patients. Side effects of radiation therapy that may have dose-limiting poten­tial include diarrhea, mucositis, skin toxicity, and xerostomia. A com­mon side effect that is not necessarily dose-limiting but considerably troublesome to patients is cancer- and treatment-related fatigue. The CAM therapies that may alleviate some of the side effects of radiation therapy include probiotics, psyllium, exercise, melatonin, honey, acu­puncture, and calendula. Therapies that require more research or have been shown to be ineffective include aloe vera, glutamine, and deglyc­yrrhizinated licorice. This article provides an overview of these thera­pies as well as related research and analysis. PMID:25032003

  6. Gold Nanoparticles and Their Alternatives for Radiation Therapy Enhancement

    NASA Astrophysics Data System (ADS)

    Cooper, Daniel; Bekah, Devesh; Nadeau, Jay

    2014-10-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy. Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions.

  7. Gold nanoparticles and their alternatives for radiation therapy enhancement

    PubMed Central

    Cooper, Daniel R.; Bekah, Devesh; Nadeau, Jay L.

    2014-01-01

    Radiation therapy is one of the most commonly used treatments for cancer. The dose of delivered ionizing radiation can be amplified by the presence of high-Z materials via an enhancement of the photoelectric effect; the most widely studied material is gold (atomic number 79). However, a large amount is needed to obtain a significant dose enhancement, presenting a challenge for delivery. In order to make this technique of broader applicability, the gold must be targeted, or alternative formulations developed that do not rely solely on the photoelectric effect. One possible approach is to excite scintillating nanoparticles with ionizing radiation, and then exploit energy transfer between these particles and attached dyes in a manner analogous to photodynamic therapy (PDT). Doped rare-earth halides and semiconductor quantum dots have been investigated for this purpose. However, although the spectrum of emitted light after radiation excitation is usually similar to that seen with light excitation, the yield is not. Measurement of scintillation yields is challenging, and in many cases has been done only for bulk materials, with little understanding of how the principles translate to the nanoscale. Another alternative is to use local heating using gold or iron, followed by application of ionizing radiation. Hyperthermia pre-sensitizes the tumors, leading to an improved response. Another approach is to use chemotherapeutic drugs that can radiosensitize tumors. Drugs may be attached to high-Z nanoparticles or encapsulated. This article discusses each of these techniques, giving an overview of the current state of nanoparticle-assisted radiation therapy and future directions. PMID:25353018

  8. Advances in three-dimensional conformal radiation therapy physics with intensity modulation.

    PubMed

    Webb, S

    2000-09-01

    Intensity-modulated radiation therapy, a specific form of conformal radiation therapy, is currently attracting a lot of attention, and there are high expectations for this class of treatment techniques. Several new technologies are in development, but physicists are still working to improve the physical basis of radiation therapy.

  9. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  10. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  11. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  12. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  13. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  14. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  15. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  16. 21 CFR 892.5770 - Powered radiation therapy patient support assembly.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Powered radiation therapy patient support assembly... SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5770 Powered radiation therapy patient support assembly. (a) Identification. A powered radiation therapy patient support...

  17. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  18. 21 CFR 892.5710 - Radiation therapy beam-shaping block.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy beam-shaping block. 892.5710... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5710 Radiation therapy beam-shaping block. (a) Identification. A radiation therapy beam-shaping block is a device made of a...

  19. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  20. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  1. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  2. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  3. 21 CFR 892.5900 - X-ray radiation therapy system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false X-ray radiation therapy system. 892.5900 Section... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5900 X-ray radiation therapy system. (a) Identification. An x-ray radiation therapy system is a device intended to produce and control...

  4. Proton Radiation Therapy for Pediatric Medulloblastoma and Supratentorial Primitive Neuroectodermal Tumors: Outcomes for Very Young Children Treated With Upfront Chemotherapy

    SciTech Connect

    Jimenez, Rachel B.; Sethi, Roshan; Depauw, Nicolas; Pulsifer, Margaret B.; Adams, Judith; McBride, Sean M.; Ebb, David; Fullerton, Barbara C.; Tarbell, Nancy J.; Yock, Torunn I.; MacDonald, Shannon M.

    2013-09-01

    Purpose: To report the early outcomes for very young children with medulloblastoma or supratentorial primitive neuroectodermal tumor (SPNET) treated with upfront chemotherapy followed by 3-dimensional proton radiation therapy (3D-CPT). Methods and Materials: All patients aged <60 months with medulloblastoma or SPNET treated with chemotherapy before 3D-CPT from 2002 to 2010 at our institution were included. All patients underwent maximal surgical resection, chemotherapy, and adjuvant 3D-CPT with either craniospinal irradiation followed by involved-field radiation therapy or involved-field radiation therapy alone. Results: Fifteen patients (median age at diagnosis, 35 months) were treated with high-dose chemotherapy and 3D-CPT. Twelve of 15 patients had medulloblastoma; 3 of 15 patients had SPNET. Median time from surgery to initiation of radiation was 219 days. Median craniospinal irradiation dose was 21.6 Gy (relative biologic effectiveness); median boost dose was 54.0 Gy (relative biologic effectiveness). At a median of 39 months from completion of radiation, 1 of 15 was deceased after a local failure, 1 of 15 had died from a non-disease-related cause, and the remaining 13 of 15 patients were alive without evidence of disease recurrence. Ototoxicity and endocrinopathies were the most common long-term toxicities, with 2 of 15 children requiring hearing aids and 3 of 15 requiring exogenous hormones. Conclusions: Proton radiation after chemotherapy resulted in good disease outcomes for a small cohort of very young patients with medulloblastoma and SPNET. Longer follow-up and larger numbers of patients are needed to assess long-term outcomes and late toxicity.

  5. Radiation therapy in the treatment of metastatic renal cell carcinoma

    SciTech Connect

    Onufrey, V.; Mohiuddin, M.

    1985-11-01

    Adenocarcinoma of the kidney is an unusual tumor, both in its biological behavior and in its response to radiation treatment. Historically, these tumors have been considered to be radioresistant, and the role of radiation therapy remains questionable in the primary management of this disease. However, radiation treatment is routinely used in the palliation of metastatic lesions for relief of symptoms. Therefore, we have undertaken a review of our experience in the treatment of this disease to determine the effectiveness of radiation in its palliation. From 1956 to 1981, 125 patients with metastatic lesions from hypernephroma have been treated in the Department of Radiation Therapy at Thomas Jefferson University Hospital. Most patients were referred for relief of bone pain (86), brain metastasis (12), spinal cord compression (9), and soft tissue masses (18). Total doses varied from 2000 rad to a maximum of 6000 rad. Response to treatment was evaluated on the basis of relief of symptoms, either complete, partial or no change. Our results indicate a significantly higher response rate of 65% for total doses equal to or greater than a TDF of 70, as compared to 25% for doses lower than a TDF of 70. No difference in response was observed either for bone or soft tissue metastasis or visceral disease. This leads us to believe that metastatic lesions from adenocarcinomas of the kidney should be treated to higher doses to obtain maximum response rates. Analysis of these results are presented in detail.

  6. The radiation techniques of tomotherapy & intensity-modulated radiation therapy applied to lung cancer

    PubMed Central

    Zhu, Zhengfei

    2015-01-01

    Radiotherapy (RT) plays an important role in the management of lung cancer. Development of radiation techniques is a possible way to improve the effect of RT by reducing toxicities through better sparing the surrounding normal tissues. This article will review the application of two forms of intensity-modulated radiation therapy (IMRT), fixed-field IMRT and helical tomotherapy (HT) in lung cancer, including dosimetric and clinical studies. The advantages and potential disadvantages of these two techniques are also discussed. PMID:26207214

  7. Role of radiation therapy in the treatment of olfactory neuroblastoma

    SciTech Connect

    Ahmad, K.; Fayos, J.V.

    1980-03-01

    Nine patients with olfactory neuroblastoma were treated at the Radiation Therapy Service of the University of Michigan Medical Center (UMMC); their case histories are presented. There was a slight female predominance and the peak age distribution was between 60 to 69 years (4 patients). One patient developed sudden visual loss in one eye and partial loss in the other resulting from a hematoma at the optic chiasmal region. We have ascribed it to radiation damage. Our results show that this tumor is radiocontrollable; control at primary site occurs in 66.6% of patients. We recommend postoperative irradiation in all tumors that are extensive initially.

  8. Shielding and Radiation Protection in Ion Beam Therapy Facilities

    NASA Astrophysics Data System (ADS)

    Wroe, Andrew J.; Rightnar, Steven

    Radiation protection is a key aspect of any radiotherapy (RT) department and is made even more complex in ion beam therapy (IBT) by the large facility size, secondary particle spectra and intricate installation of these centers. In IBT, large and complex radiation producing devices are used and made available to the public for treatment. It is thus the responsibility of the facility to put in place measures to protect not only the patient but also the general public, occupationally and nonoccupationally exposed personnel working within the facility, and electronics installed within the department to ensure maximum safety while delivering maximum up-time.

  9. Whole Abdominopelvic Intensity-Modulated Radiation Therapy for Desmoplastic Small Round Cell Tumor After Surgery

    SciTech Connect

    Pinnix, Chelsea C.; Fontanilla, Hiral P.; Hayes-Jordan, Andrea; Subbiah, Vivek; Bilton, Stephen D.; Chang, Eric L.; Grosshans, David R.; McAleer, Mary F.; Sulman, Eric P.; Woo, Shiao Y.; Anderson, Peter; Green, Holly L.; Mahajan, Anita

    2012-05-01

    Purpose: Desmoplastic small round cell tumor (DSCRT) is an uncommon pediatric tumor with a poor prognosis. Aggressive multimodality therapy is the current treatment approach; however. treatment toxicity is of concern. We report our results with whole abdominopelvic intensity-modulated radiation therapy (WAP-IMRT) as a component of multimodality therapy for DSCRT at a single institution. Materials/Methods: Medical records of all patients with DSCRT who received WAP-IMRT as part of definitive treatment at MD Anderson (2006-2010) were identified and reviewed. Results: Eight patients with DSRCT received WAP-IMRT with a median follow-up of 15.2 months. All patients received multiple courses of chemotherapy followed by surgical debulking of intra-abdominal disease; seven also had intraoperative hyperthermic cisplatin. WAP-IMRT was delivered to a total dose of 30 Gy postoperatively; four patients received a simultaneous boost (6-10 Gy) to sites of gross residual disease. Seven patients received concurrent chemotherapy during WAP-IMRT. No Radiation Therapy Oncology Group Grade 4 nausea, vomiting, or diarrhea occurred during RT. Red-cell transfusions were given to two patients to maintain hemoglobin levels >10 g/dL. Grade 4 cytopenia requiring growth factor support occurred in only one patient; no other significant cytopenias were noted. WAP-IMRT resulted in 25% lower radiation doses to the lumbosacral vertebral bodies and pelvic bones than conventional RT plans. The median time to local or distant failure after WAP-IMRT was 8.73 months in seven patients. One patient who had completed RT 20 months before the last follow-up remains alive without evidence of disease. Five patients (63%) experienced treatment failure in the abdomen. Distant failure occurred in three patients (37.5%). Conclusions: WAP-IMRT with concurrent radiosensitizing chemotherapy was well tolerated after aggressive surgery for DSCRT. Enhanced bone sparing with IMRT probably accounts for the low hematologic

  10. Factors Predictive of Protracted Course of Radiation Therapy in Patients Treated with Definitive Chemoradiation for Cervical Cancer

    PubMed Central

    Dominello, Michael; Morris, Robert; Miller, Steven

    2016-01-01

    Background There is a benefit to completing definitive chemoradiotherapy (CRT) for cervical cancer within 56 days. However, many patients experience delays due to missed radiation treatments that prolong the overall course of therapy. In order to improve patient care, we performed a quality improvement project to determine factors predictive of protracted treatment and develop strategies to enable timely treatment completion. Methods  Seventy-one patients treated for cervical cancer with CRT were identified. Medical records were reviewed to gather demographic, clinical, and treatment data. Prolonged treatment was defined as >56 days per the American Brachytherapy Society guidelines. The following variables were evaluated using paired t-tests and univariate logistic regression: demographics, Intensity Modulated Radiotherapy (IMRT) versus conventional radiation technique, use of a boost, time to stent placement, time to first brachytherapy (BT), and genitourinary (GU) or gastrointestinal (GI) toxicity. Results The median treatment length for all patients was 59 days. Factors associated with prolonged treatment were time to cervical stent placement (p=0.001), delay ≥2 days between final external beam radiation therapy (EBRT) and initial BT (p=0.0195), any grade GU toxicity (p=0.0007), or GI toxicity (p=0.0002), and the presence of a boost (p=0.0006). Age, stage, and IMRT versus conventional technique were not associated with protracted treatment. Conclusion  In this series of patients, acute toxicity, increased time to cervical stent placement, and time to first BT treatment were associated with prolonged treatment time. The patients who completed treatment in ≤56 days had a lower average time to cervical stent placement, 27 versus 31 days. Our results suggest that cervical stent placement during week four of treatment can enhance patient care and improve outcomes.  PMID:27182472

  11. Speak, Move, Play and Learn with Children on the Autism Spectrum: Activities to Boost Communication Skills, Sensory Integration and Coordination Using Simple Ideas from Speech and Language Pathology and Occupational Therapy

    ERIC Educational Resources Information Center

    Brady, Lois Jean; Gonzalez, America X.; Zawadzki, Maciej; Presley, Corinda

    2012-01-01

    This practical resource is brimming with ideas and guidance for using simple ideas from speech and language pathology and occupational therapy to boost communication, sensory integration, and coordination skills in children on the autism spectrum. Suitable for use in the classroom, at home, and in community settings, it is packed with…

  12. Impact of dose calculation algorithm on radiation therapy

    PubMed Central

    Chen, Wen-Zhou; Xiao, Ying; Li, Jun

    2014-01-01

    The quality of radiation therapy depends on the ability to maximize the tumor control probability while minimize the normal tissue complication probability. Both of these two quantities are directly related to the accuracy of dose distributions calculated by treatment planning systems. The commonly used dose calculation algorithms in the treatment planning systems are reviewed in this work. The accuracy comparisons among these algorithms are illustrated by summarizing the highly cited research papers on this topic. Further, the correlation between the algorithms and tumor control probability/normal tissue complication probability values are manifested by several recent studies from different groups. All the cases demonstrate that dose calculation algorithms play a vital role in radiation therapy. PMID:25431642

  13. Stereotactic body radiation therapy for metastasis to the adrenal glands.

    PubMed

    Shiue, Kevin; Song, Andrew; Teh, Bin S; Ellis, Rodney J; Yao, Min; Mayr, Nina A; Huang, Zhibin; Sohn, Jason; Machtay, Mitchell; Lo, Simon S

    2012-12-01

    Many primary cancers can metastasize to the adrenal glands. Adrenalectomy via an open or laparoscopic approach is the current definitive treatment, but not all patients are eligible or wish to undergo surgery. There are only limited studies on the use of conventional radiation therapy for palliation of symptoms from adrenal metastasis. However, the advent of stereotactic body radiation therapy (SBRT) - also named stereotactic ablative radiotherapy for primary lung cancer, metastases to the lung, and metastases to the liver - have prompted some investigators to consider the use of SBRT for metastases to the adrenal glands. This review focuses on the emerging data on SBRT of metastasis to the adrenal glands, while also providing a brief discussion of the overall management of adrenal metastasis.

  14. Adaptive radiation therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Wen, Ning

    standard deviation of markers after rigid registration in L-R direction was 0 and 1 mm. But the mean was 2--4 mm in the A-P and S-I direction and standard deviation was about 2 mm. After DIR, the mean in all three directions became 0 and standard deviation was within sub millimeter. UE images were generated for each CT set and carefully reviewed in the prostate region. DIR provided accurate transformation matrix to be used for dose reconstruction. The delivered dose was evaluated with radiobiological models. TCP for the CTV was calculated to evaluate tumor control in different margin settings. TCP calculated from the reconstructed dose agreed within 5% of the value in the plan for all patients with three different margins. EUD and NTCP were calculated to evaluate reaction of rectum to radiation. Similar biological evaluation was performed for bladder. EUD of actual dose was 3%--9% higher than that of planned dose of patient 1--3, 11%--20% higher of patient 4--5. Smaller margins could not reduce late GU toxicity effectively since bladder complication was directly related to Dmax which was at the same magnitude in the bladder no matter which margin was applied. Re-optimization was performed at the 10th, 20th , 30th, and 40th fraction to evaluate the effectiveness to limit OAR dose while maintaining the target coverage. Reconstructed dose was added to dose from remaining fractions after optimization to show the total dose patient would receive. It showed that if the plan was re-optimized at 10th or 20th fraction, total dose to rectum and bladder were very similar to planned dose with minor deviations. If the plan was re-optimized at the 30th fraction, since there was a large deviation between reconstructed dose and planned dose to OAR, optimization could not limit the OAR dose to the original plan with only 12 fractions left. If the re-optimization was done at the 40th fraction, it was impossible to compensate in the last 2 fractions. Large deviations of total dose to bladder

  15. Radiation pneumonitis in breast cancer patients treated with conservative surgery and radiation therapy

    SciTech Connect

    Lingos, T.I.; Recht, A.; Vicini, F.; Abner, A.; Silver, B.; Harris, J.R. )

    1991-07-01

    The likelihood of radiation pneumonitis and factors associated with its development in breast cancer patients treated with conservative surgery and radiation therapy have not been well established. To assess these, the authors retrospectively reviewed 1624 patients treated between 1968 and 1985. Median follow-up for patients without local or distant failure was 77 months. Patients were treated with either tangential fields alone (n = 508) or tangents with a third field to the supraclavicular (SC) or SC-axillary (AX) region (n = 1116). Lung volume treated in the tangential fields was generally limited by keeping the perpendicular distance (demagnified) at the isocenter from the deep field edges to the posterior chest wall (CLD) to 3 cm or less. Seventeen patients with radiation pneumonitis were identified (1.0%). Radiation pneumonitis was diagnosed when patients presented with cough (15/17, 88%), fever (9/17, 53%), and/or dyspnea (6/17, 35%) and radiographic changes (17/17) following completion of RT. Radiographic infiltrates corresponded to treatment portals in all patients, and in 12 of the 17 patients, returned to baseline within 1-12 months. Five patients had permanent scarring on chest X ray. No patient had late or persistent pulmonary symptoms. The incidence of radiation pneumonitis was correlated with the combined use of chemotherapy (CT) and a third field. Three percent (11/328) of patients treated with a 3-field technique who received chemotherapy developed radiation pneumonitis compared to 0.5% (6 of 1296) for all other patients (p = 0.0001). When patients treated with a 3-field technique received chemotherapy concurrently with radiation therapy, the incidence of radiation pneumonitis was 8.8% (8/92) compared with 1.3% (3/236) for those who received sequential chemotherapy and radiation therapy (p = 0.002).

  16. Urethral strictures after radiation therapy for prostate cancer

    PubMed Central

    Dal Pra, Alan; Furrer, Marc; Thalmann, George; Spahn, Martin

    2016-01-01

    Urethral stricture after radiation therapy for localized prostate cancer is a delicate problem as the decreased availability of tissue healing and the close relation to the sphincter complicates any surgical approach. We here review the pathophysiology, dosimetry, and the disease specific aspects of urethral strictures after radiotherapy. Moreover we discuss different treatment option such as direct vision internal urethrotomy as well as techniques for open reconstruction with and without tissue transfer.

  17. Sick sinus syndrome as a complication of mediastinal radiation therapy

    SciTech Connect

    Pohjola-Sintonen, S.; Toetterman, K.J.K.; Kupari, M. )

    1990-06-01

    A 33-year-old man who had received mediastinal radiation therapy for Hodgkin's disease 12 years earlier developed a symptomatic sick sinus syndrome requiring the implantation of a permanent pacemaker. The sick sinus syndrome and a finding of an occult constrictive pericarditis were considered to be due to the previous mediastinal irradiation. A ventricular pacemaker was chosen because mediastinal radiotherapy also increases the risk of developing atrioventricular conduction defects.

  18. Radiation therapy of lymphoblastic renal masses - benefit or hazard

    SciTech Connect

    Saarinen, U.M.

    1985-05-01

    A child with non-Hodgkin lymphoma and massively enlarged kidneys received a single dose of 300 rad (3 Gy) to the right kidney before initiation of chemotherapy. Measurement of the split renal function with 99m-Tc-DTPA four days postirradiation revealed that the function of the right kidney had substantially deteriorated, suggesting that hazards may be involved with the use of radiation therapy for lymphoblastic renal masses.

  19. Wound healing after radiation therapy: Review of the literature

    PubMed Central

    2012-01-01

    Radiation therapy is an established modality in the treatment of head and neck cancer patients. Compromised wound healing in irradiated tissues is a common and challenging clinical problem. The pathophysiology and underlying cellular mechanisms including the complex interaction of cytokines and growth factors are still not understood completely. In this review, the current state of research regarding the pathomechanisms of compromised wound healing in irradiated tissues is presented. Current and possible future treatment strategies are critically reviewed. PMID:23006548

  20. Massive osteolysis of the right clavicle developing after radiation therapy

    SciTech Connect

    Skinner, W.L.; Buzdar, A.U.; Libshitz, H.I.

    1988-07-15

    This report describes an unusual case of clavicular osteolysis, a late complication of radiation therapy for breast cancer, and demonstrates the diagnostic implications that radiotherapy changes can pose. Radiotherapy to the chest wall produces a spectrum of alterations in bone over time, ranging from early roentgenographic findings of osteoporosis and trabecular thickening to spontaneous fractures and changes that may be confused with metastatic disease or postirradiation sarcoma.

  1. Urethral strictures after radiation therapy for prostate cancer

    PubMed Central

    Dal Pra, Alan; Furrer, Marc; Thalmann, George; Spahn, Martin

    2016-01-01

    Urethral stricture after radiation therapy for localized prostate cancer is a delicate problem as the decreased availability of tissue healing and the close relation to the sphincter complicates any surgical approach. We here review the pathophysiology, dosimetry, and the disease specific aspects of urethral strictures after radiotherapy. Moreover we discuss different treatment option such as direct vision internal urethrotomy as well as techniques for open reconstruction with and without tissue transfer. PMID:27617311

  2. Urethral strictures after radiation therapy for prostate cancer.

    PubMed

    Moltzahn, Felix; Dal Pra, Alan; Furrer, Marc; Thalmann, George; Spahn, Martin

    2016-09-01

    Urethral stricture after radiation therapy for localized prostate cancer is a delicate problem as the decreased availability of tissue healing and the close relation to the sphincter complicates any surgical approach. We here review the pathophysiology, dosimetry, and the disease specific aspects of urethral strictures after radiotherapy. Moreover we discuss different treatment option such as direct vision internal urethrotomy as well as techniques for open reconstruction with and without tissue transfer. PMID:27617311

  3. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    PubMed Central

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-01-01

    Introduction Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. Methods A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. Results The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. Conclusion The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques. PMID:26229623

  4. Carcinoma of the anal canal: Intensity modulated radiation therapy (IMRT) versus three-dimensional conformal radiation therapy (3DCRT)

    SciTech Connect

    Sale, Charlotte; Moloney, Phillip; Mathlum, Maitham

    2013-12-15

    Patients with anal canal carcinoma treated with standard conformal radiotherapy frequently experience severe acute and late toxicity reactions to the treatment area. Roohipour et al. (Dis Colon Rectum 2008; 51: 147–53) stated a patient's tolerance of chemoradiation to be an important prediction of treatment success. A new intensity modulated radiation therapy (IMRT) technique for anal carcinoma cases has been developed at the Andrew Love Cancer Centre aimed at reducing radiation to surrounding healthy tissue. A same-subject repeated measures design was used for this study, where five anal carcinoma cases at the Andrew Love Cancer Centre were selected. Conformal and IMRT plans were generated and dosimetric evaluations were performed. Each plan was prescribed a total of 54 Gray (Gy) over a course of 30 fractions to the primary site. The IMRT plans resulted in improved dosimetry to the planning target volume (PTV) and reduction in radiation to the critical structures (bladder, external genitalia and femoral heads). Statistically there was no difference between the IMRT and conformal plans in the dose to the small and large bowel; however, the bowel IMRT dose–volume histogram (DVH) doses were consistently lower. The IMRT plans were superior to the conformal plans with improved dose conformity and reduced radiation to the surrounding healthy tissue. Anecdotally it was found that patients tolerated the IMRT treatment better than the three-dimensional (3D) conformal radiation therapy. This study describes and compares the planning techniques.

  5. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance.

    PubMed

    Western, Craig; Hristov, Dimitre; Schlosser, Jeffrey

    2015-06-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included.

  6. Analytical probabilistic modeling for radiation therapy treatment planning

    NASA Astrophysics Data System (ADS)

    Bangert, Mark; Hennig, Philipp; Oelfke, Uwe

    2013-08-01

    This paper introduces the concept of analytical probabilistic modeling (APM) to quantify uncertainties in quality indicators of radiation therapy treatment plans. Assuming Gaussian probability densities over the input parameters of the treatment plan quality indicators, APM enables the calculation of the moments of the induced probability density over the treatment plan quality indicators by analytical integration. This paper focuses on analytical probabilistic dose calculation algorithms and the implications of APM regarding treatment planning. We derive closed-form expressions for the expectation value and the (co)variance of (1) intensity-modulated photon and proton dose distributions based on a pencil beam algorithm and (2) the standard quadratic objective function used in inverse planning. Complex correlation models of high dimensional uncertain input parameters and the different nature of random and systematic uncertainties in fractionated radiation therapy are explicitly incorporated into APM. APM variance calculations on phantom data sets show that the correlation assumptions and the difference of random and systematic uncertainties of the input parameters have a crucial impact on the uncertainty of the resulting dose. The derivations regarding the quadratic objective function show that APM has the potential to enable robust planning at almost the same computational cost like conventional inverse planning after a single probabilistic dose calculation. Beneficial applications of APM in the context of radiation therapy treatment planning are feasible.

  7. Role of radiation therapy in lung cancer management - a review.

    PubMed

    Shi, J-G; Shao, H-J; Jiang, F-E; Huang, Y-D

    2016-07-01

    Lung cancer is the leading cause of cancer death worldwide. Furthermore, more than 50% of lung cancer patients are found affected by distant metastases at the time of diagnosis. On the other hand, 20% of these patients are without regional spread and are good candidates for surgical operation. The remaining 30% represent an intermediate group whose tumors have metastasized up to regional lymph nodes. These remain 30% are the most appropriate candidates for radiation therapy. These patients are also called as "locally advanced lung cancer" or stage III lung cancer patients. In these patients strategy of combination therapy viz. radiation therapy in combination with chemotherapy is also tried by various groups in the recent past for this better management. However, long-term survival is still poor with a 5-year survival in 5-25% of patients. During the last decades, there has been a development in radiation strategies. The present review article focuses on different approaches to optimize radiotherapy for these patients. PMID:27466995

  8. Intraoperative radiation therapy in malignant glioma: early clinical results.

    PubMed

    Ortiz de Urbina, D; Santos, M; Garcia-Berrocal, I; Bustos, J C; Samblas, J; Gutierrez-Diaz, J A; Delgado, J M; Donckaster, G; Calvo, F A

    1995-08-01

    Intraoperative radiation therapy (IORT) with high energy electron beams is a treatment modality that has been included in multimodal programs in oncology to improve local tumor control. From August 1991 to December 1993, 17 patients with primary (8) or recurrent (9) high grade malignant gliomas, anaplastic astrocytoma (4), anaplastic oligodendroglioma (6) and glioblastoma multiforme (7), underwent surgical resection and a single dose of 10-20 Gy intraoperative radiation therapy was delivered in tumor bed. Fourteen patients received either pre-operative (8) or post-operative (6) external beam radiation therapy. Primary gliomas: 18-months actuarial survival rate has been 56% (range: 1-21+ months) and the median survival time has not yet been achieved. Four patients developed tumor progression (median time to tumor progression: 9 months). Recurrent gliomas: 18-months actuarial survival rate and median survival time has been 47% and 13 months (range: 6-32+ months) respectively. The median time to tumor progression was 11 months. No IORT related mortality has been observed. IORT is an attractive, tolerable and feasible treatment modality as antitumoral intensification procedure in high grade malignant gliomas.

  9. CT evaluation of effects of cranial radiation therapy in children

    SciTech Connect

    Davis, P.C.; Hoffman, J.C. Jr.; Pearl, G.S.; Braun, I.F.

    1986-09-01

    A retrospective evaluation was completed of 49 children who received conventional cranial radiation therapy for primary central nervous system and/or skull-base neoplasia and who had follow-up CT studies. In these children, abnormalities in normal parenchyma away from the tumor itself were surprisingly frequent, with or without chemotherapy. Generalized volume loss or atrophy was the most frequent abnormality (51%), but in this population it may have resulted from a variety of causes. Calcification in nontumorous parenchyma was common (28%) with or without chemotherapy. The most frequent site of calcification was subcortical at the gray-white junction. Calcification was progressive over 1-2 years and correlated pathologically with mineralizing microangiopathy and dystrophic calcification with demyelination. White-matter abnormalities other than those associated with shunt malfunction and tumor edema occurred in 26% of the patients. Both white-matter abnormalities and calcification occurred predominantly in younger children, particularly those under 3 years old at the time of radiation therapy. Of the 21 children who received chemotherapy in this series, only two received methotrexate. White-matter abnormalities and calcifications occurred with similar frequency in children with and without chemotherapy; thus, radiation therapy is the most likely cause of these findings.

  10. Ultrasound Imaging in Radiation Therapy: From Interfractional to Intrafractional Guidance

    PubMed Central

    Western, Craig; Hristov, Dimitre

    2015-01-01

    External beam radiation therapy (EBRT) is included in the treatment regimen of the majority of cancer patients. With the proliferation of hypofractionated radiotherapy treatment regimens, such as stereotactic body radiation therapy (SBRT), interfractional and intrafractional imaging technologies are becoming increasingly critical to ensure safe and effective treatment delivery. Ultrasound (US)-based image guidance systems offer real-time, markerless, volumetric imaging with excellent soft tissue contrast, overcoming the limitations of traditional X-ray or computed tomography (CT)-based guidance for abdominal and pelvic cancer sites, such as the liver and prostate. Interfractional US guidance systems have been commercially adopted for patient positioning but suffer from systematic positioning errors induced by probe pressure. More recently, several research groups have introduced concepts for intrafractional US guidance systems leveraging robotic probe placement technology and real-time soft tissue tracking software. This paper reviews various commercial and research-level US guidance systems used in radiation therapy, with an emphasis on hardware and software technologies that enable the deployment of US imaging within the radiotherapy environment and workflow. Previously unpublished material on tissue tracking systems and robotic probe manipulators under development by our group is also included. PMID:26180704

  11. Limited Stage Follicular Lymphoma: Current Role of Radiation Therapy.

    PubMed

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Ricardi, Umberto

    2016-01-01

    Radiation therapy (RT) alone has been considered for a long time as the standard therapeutic option for limited stage FL, due to its high efficacy in terms of local disease control with a quite significant proportion of "cured" patients (without further relapses at 10-15 years). Multiple therapeutic choices are currently accepted for the management of early stage FL at diagnosis, and better staging procedures as well as better systemic therapy partially modified the role of RT in this setting. RT has also changed in terms of prescribed dose as well as treatment volumes. In this review, we present and discuss the current role of RT for limited stage FL in light of the historical data and the modern RT concepts along with the possible combination with systemic therapy. PMID:27648204

  12. Boron neutron capture therapy (BNCT): A radiation oncology perspective

    SciTech Connect

    Dorn, R.V. III Idaho National Engineering Lab., Idaho Falls, ID )

    1994-03-30

    Boron neutron capture therapy (BNCT) offers considerable promise in the search for the ideal cancer therapy, a therapy which selectively and maximally damages malignant cells while sparing normal tissue. This bimodal treatment modality selectivity concentrates a boron compound in malignant cells, and then [open quotes]activates[close quotes] this compound with slow neutrons resulting in a highly lethal event within the cancer cell. This article reviews this treatment modality from a radiation oncology, biology, and physics perspective. The remainder of the articles in this special issue provide a survey of the current [open quotes]state-of-the-art[close quotes] in this rapidly expanding field, including information with regard to boron compounds and their localization. 118 refs., 3 figs.

  13. Limited Stage Follicular Lymphoma: Current Role of Radiation Therapy

    PubMed Central

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Ricardi, Umberto

    2016-01-01

    Radiation therapy (RT) alone has been considered for a long time as the standard therapeutic option for limited stage FL, due to its high efficacy in terms of local disease control with a quite significant proportion of “cured” patients (without further relapses at 10–15 years). Multiple therapeutic choices are currently accepted for the management of early stage FL at diagnosis, and better staging procedures as well as better systemic therapy partially modified the role of RT in this setting. RT has also changed in terms of prescribed dose as well as treatment volumes. In this review, we present and discuss the current role of RT for limited stage FL in light of the historical data and the modern RT concepts along with the possible combination with systemic therapy. PMID:27648204

  14. Limited Stage Follicular Lymphoma: Current Role of Radiation Therapy

    PubMed Central

    Filippi, Andrea Riccardo; Ciammella, Patrizia; Ricardi, Umberto

    2016-01-01

    Radiation therapy (RT) alone has been considered for a long time as the standard therapeutic option for limited stage FL, due to its high efficacy in terms of local disease control with a quite significant proportion of “cured” patients (without further relapses at 10–15 years). Multiple therapeutic choices are currently accepted for the management of early stage FL at diagnosis, and better staging procedures as well as better systemic therapy partially modified the role of RT in this setting. RT has also changed in terms of prescribed dose as well as treatment volumes. In this review, we present and discuss the current role of RT for limited stage FL in light of the historical data and the modern RT concepts along with the possible combination with systemic therapy.

  15. Adjuvant and Salvage Radiation Therapy After Prostatectomy: American Society for Radiation Oncology/American Urological Association Guidelines

    SciTech Connect

    Valicenti, Richard K.; Thompson, Ian; Albertsen, Peter; Davis, Brian J.; Goldenberg, S. Larry; Wolf, J. Stuart; Sartor, Oliver; Klein, Eric; Hahn, Carol; Michalski, Jeff; Roach, Mack; Faraday, Martha M.

    2013-08-01

    Purpose: The purpose of this guideline was to provide a clinical framework for the use of radiation therapy after radical prostatectomy as adjuvant or salvage therapy. Methods and Materials: A systematic literature review using PubMed, Embase, and Cochrane database was conducted to identify peer-reviewed publications relevant to the use of radiation therapy after prostatectomy. The review yielded 294 articles; these publications were used to create the evidence-based guideline statements. Additional guidance is provided as Clinical Principles when insufficient evidence existed. Results: Guideline statements are provided for patient counseling, use of radiation therapy in the adjuvant and salvage contexts, defining biochemical recurrence, and conducting a restaging evaluation. Conclusions: Physicians should offer adjuvant radiation therapy to patients with adverse pathologic findings at prostatectomy (ie, seminal vesicle invastion, positive surgical margins, extraprostatic extension) and salvage radiation therapy to patients with prostate-specific antigen (PSA) or local recurrence after prostatectomy in whom there is no evidence of distant metastatic disease. The offer of radiation therapy should be made in the context of a thoughtful discussion of possible short- and long-term side effects of radiation therapy as well as the potential benefits of preventing recurrence. The decision to administer radiation therapy should be made by the patient and the multidisciplinary treatment team with full consideration of the patient's history, values, preferences, quality of life, and functional status. The American Society for Radiation Oncology and American Urological Association websites show this guideline in its entirety, including the full literature review.

  16. Radiation therapy for neovascular age-related macular degeneration

    PubMed Central

    Petrarca, Robert; Jackson, Timothy L

    2011-01-01

    Antivascular endothelial growth factor (anti-VEGF) therapies represent the standard of care for most patients presenting with neovascular (wet) age-related macular degeneration (neovascular AMD). Anti-VEGF drugs require repeated injections and impose a considerable burden of care, and not all patients respond. Radiation targets the proliferating cells that cause neovascular AMD, including fibroblastic, inflammatory, and endothelial cells. Two new neovascular AMD radiation treatments are being investigated: epimacular brachytherapy and stereotactic radiosurgery. Epimacular brachytherapy uses beta radiation, delivered to the lesion via a pars plana vitrectomy. Stereotactic radiosurgery uses low voltage X-rays in overlapping beams, directed onto the lesion. Feasibility data for epimacular brachytherapy show a greatly reduced need for anti-VEGF therapy, with a mean vision gain of 8.9 ETDRS letters at 12 months. Pivotal trials are underway (MERLOT, CABERNET). Preliminary stereotactic radiosurgery data suggest a mean vision gain of 8 to 10 ETDRS letters at 12 months. A large randomized sham controlled stereotactic radiosurgery feasibility study is underway (CLH002), with pivotal trials to follow. While it is too early to conclude on the safety and efficacy of epimacular brachytherapy and stereotactic radiosurgery, preliminary results are positive, and these suggest that radiation offers a more durable therapeutic effect than intraocular injections. PMID:21311657

  17. Aesthetic results following partial mastectomy and radiation therapy

    SciTech Connect

    Matory, W.E. Jr.; Wertheimer, M.; Fitzgerald, T.J.; Walton, R.L.; Love, S.; Matory, W.E.

    1990-05-01

    This study was undertaken to determine the aesthetic changes inherent in partial mastectomy followed by radiation therapy in the treatment of stage I and stage II breast cancer. A retrospective analysis of breast cancer patients treated according to the National Surgical Adjuvant Breast Project Protocol B-06 was undertaken in 57 patients from 1984 to the present. The size of mastectomy varied between 2 x 1 cm and 15 x 8 cm. Objective aesthetic outcome, as determined by physical and photographic examination, was influenced primarily by surgical technique as opposed to the effects of radiation. These technical factors included orientation of resections, breast size relative to size of resection, location of tumor, and extent and orientation of axillary dissection. Regarding cosmesis, 80 percent of patients treated in this study judged their result to be excellent or good, in comparison to 50 percent excellent or good as judged by the plastic surgeon. Only 10 percent would consider mastectomy with reconstruction for contralateral disease. Asymmetry and contour abnormalities are far more common than noted in the radiation therapy literature. Patients satisfaction with lumpectomy and radiation, however, is very high. This satisfaction is not necessarily based on objective criteria defining aesthetic parameters, but is strongly influenced by retainment of the breast as an original body part.

  18. Vocal changes in patients undergoing radiation therapy for glottic carcinoma.

    PubMed

    Miller, S; Harrison, L B; Solomon, B; Sessions, R B

    1990-06-01

    A prospective evaluation of vocal changes in patients receiving radiation therapy for T1 and T2 (AJC) glottic carcinoma was undertaken in January 1987. Vocal analysis was performed prior to radiotherapy and at specific intervals throughout the radiation treatment program. The voicing ratio was extrapolated from a sustained vowel phonation using the Visipitch interfaced with the IBM-PC. Preliminary observations suggested three distinct patterns of vocal behavior: 1. reduced voicing ratio with precipitous improvement within the course of treatment, 2. high initial voicing ratio with reduction secondary to radiation induced edema, with rapid improvement in the voicing component after the edema subsided, and 3. fluctuating voicing ratio during and following treatment. Enrollment of new patients and a 2-year follow-up of current patients was undertaken. PMID:2348739

  19. Vocal changes in patients undergoing radiation therapy for glottic carcinoma

    SciTech Connect

    Miller, S.; Harrison, L.B.; Solomon, B.; Sessions, R.B. )

    1990-06-01

    A prospective evaluation of vocal changes in patients receiving radiation therapy for T1 and T2 (AJC) glottic carcinoma was undertaken in January 1987. Vocal analysis was performed prior to radiotherapy and at specific intervals throughout the radiation treatment program. The voicing ratio was extrapolated from a sustained vowel phonation using the Visipitch interfaced with the IBM-PC. Preliminary observations suggested three distinct patterns of vocal behavior: 1. reduced voicing ratio with precipitous improvement within the course of treatment, 2. high initial voicing ratio with reduction secondary to radiation induced edema, with rapid improvement in the voicing component after the edema subsided, and 3. fluctuating voicing ratio during and following treatment. Enrollment of new patients and a 2-year follow-up of current patients was undertaken.

  20. Intensity modulating and other radiation therapy devices for dose painting.

    PubMed

    Galvin, James M; De Neve, Wilfried

    2007-03-10

    The introduction of intensity-modulated radiation therapy (IMRT) in the early 1990s created the possibility of generating dramatically improved dose distributions that could be tailored to fit a complex geometric arrangement of targets that push against or even surround healthy critical structures. IMRT is a new treatment paradigm that goes beyond the capabilities of the earlier technology called three-dimensional radiation therapy (3DCRT). IMRT took the older approach of using fields that conformed to the silhouette of the target to deliver a relatively homogeneous intensity of radiation and separated the conformal fields into many subfields so that intensity could be varied to better control the final dose distribution. This technique makes it possible to generate radiation dose clouds that have indentations in their surface. Initially, this technology was mainly used to avoid and thus control the dose delivered to critical structures so that they are not seriously damaged in the process of irradiating nearby targets to an appropriately high dose. Avoidance of critical structures allowed homogeneous dose escalation that led to improved local control for small tumors. However, the normal tissue component of large tumors often prohibits homogeneous dose escalation. A newer concept of dose-painting IMRT is aimed at exploiting inhomogeneous dose distributions adapted to tumor heterogeneity. Tumor regions of increased radiation resistance receive escalated dose levels, whereas radiation-sensitive regions receive conventional or even de-escalated dose levels. Dose painting relies on biologic imaging such as positron emission tomography, functional magnetic resonance imaging, and magnetic resonance spectroscopy. This review will describe the competing techologies for dose painting with an emphasis on their commonalities.

  1. Imaging Changes in Pediatric Intracranial Ependymoma Patients Treated With Proton Beam Radiation Therapy Compared to Intensity Modulated Radiation Therapy

    SciTech Connect

    Gunther, Jillian R.; Sato, Mariko; Chintagumpala, Murali; Ketonen, Leena; Jones, Jeremy Y.; Allen, Pamela K.; Paulino, Arnold C.; Okcu, M. Fatih; Su, Jack M.; Weinberg, Jeffrey; Boehling, Nicholas S.; Khatua, Soumen; Adesina, Adekunle; Dauser, Robert; Whitehead, William E.; Mahajan, Anita

    2015-09-01

    Purpose: The clinical significance of magnetic resonance imaging (MRI) changes after radiation therapy (RT) in children with ependymoma is not well defined. We compared imaging changes following proton beam radiation therapy (PBRT) to those after photon-based intensity modulated RT (IMRT). Methods and Materials: Seventy-two patients with nonmetastatic intracranial ependymoma who received postoperative RT (37 PBRT, 35 IMRT) were analyzed retrospectively. MRI images were reviewed by 2 neuroradiologists. Results: Sixteen PBRT patients (43%) developed postradiation MRI changes at 3.8 months (median) with resolution by 6.1 months. Six IMRT patients (17%) developed changes at 5.3 months (median) with 8.3 months to resolution. Mean age at radiation was 4.4 and 6.9 years for PBRT and IMRT, respectively (P=.06). Age at diagnosis (>3 years) and time of radiation (≥3 years) was associated with fewer imaging changes on univariate analysis (odds ratio [OR]: 0.35, P=.048; OR: 0.36, P=.05). PBRT (compared to IMRT) was associated with more frequent imaging changes, both on univariate (OR: 3.68, P=.019) and multivariate (OR: 3.89, P=.024) analyses. Seven (3 IMRT, 4 PBRT) of 22 patients with changes had symptoms requiring intervention. Most patients were treated with steroids; some PBRT patients also received bevacizumab and hyperbaric oxygen therapy. None of the IMRT patients had lasting deficits, but 2 patients died from recurrent disease. Three PBRT patients had persistent neurological deficits, and 1 child died secondarily to complications from radiation necrosis. Conclusions: Postradiation MRI changes are more common with PBRT and in patients less than 3 years of age at diagnosis and treatment. It is difficult to predict causes for development of imaging changes that progress to clinical significance. These changes are usually self-limiting, but some require medical intervention, especially those involving the brainstem.

  2. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer

    PubMed Central

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy. PMID:26783511

  3. Influential Factors and Synergies for Radiation-Gene Therapy on Cancer.

    PubMed

    Lin, Mei; Huang, Junxing; Shi, Yujuan; Xiao, Yanhong; Guo, Ting

    2015-01-01

    Radiation-gene therapy, a dual anticancer strategy of radiation therapy and gene therapy through connecting radiation-inducible regulatory sequence to therapeutic gene, leading to the gene being induced to express by radiation while radiotherapy is performed and finally resulting in a double synergistic antitumor effect of radiation and gene, has become one of hotspots in the field of cancer treatment in recent years. But under routine dose of radiation, especially in the hypoxia environment of solid tumor, it is difficult for this therapy to achieve desired effect because of low activity of radiation-inducible regulatory elements, low level and transient expression of target gene induced by radiation, inferior target specificity and poor biosecurity, and so on. Based on the problems existing in radiation-gene therapy, many efforts have been devoted to the curative effect improvement of radiation-gene therapy by various means to increase radiation sensitivity or enhance target gene expression and the expression's controllability. Among these synergistic techniques, gene circuit, hypoxic sensitization, and optimization of radiation-induced sequence exhibit a good application potential. This review provides the main influential factors to radiation-gene therapy on cancer and the synergistic techniques to improve the anticancer effect of radiation-gene therapy.

  4. Melanoma Therapy via Peptide-Targeted a-Radiation

    SciTech Connect

    Miao, Yubin; Hylarides, Mark; Fisher, Darrell R.; Shelton, Tiffani; Moore, Herbert A.; Wester, Dennis W.; Fritzberg, Alan R.; Winkelmann, Christopher T.; Hoffman, Timothy J.; Quinn, Thomas P.

    2005-08-01

    Malignant melanoma is the most lethal form of skin cancer. Current chemotherapy and external beam radiation therapy regimens are ineffective agents against melanoma, as shown by a 10-year survival rate for patients with disseminated disease of approximately 5% (reference?). In this study, the unique combination of a melanoma targeting peptide and an in vivo generated a-particle emitting radioisotope was investigated for its melanoma therapy potential. Alpha-radiation is densely ionizing and energy is locally absorbed, resulting in high concentrations of destructive free radicals and irreparable DNA double strand breaks. This high linear-energy-transfer overcomes radiation resistant tumor cells and oxygen-enhancement effects. The melanoma targeting peptide DOTA-Re(Arg11)CCMSH was radiolabeled with 212Pb, the parent of 212Bi, which decays via alpha and beta decay. Biodistribution and therapy studies were performed in the B16/F1 melanoma bearing C57 mouse flank tumor model. 212Pb[DOTA]-R e(Arg11)CCMSH exhibited rapid tumor uptake and extended retention coupled with rapid whole body disappearance. Radiation dose delivered to the tumor was estimated to be 61 cGy/uCi 212Pb administered. Treatment of melanoma-bearing mice with 50, 100 and 200 uCi of 212Pb[DOTA]-Re(Arg11)CCMSH extended mean survival of mice to 22, 28, and 49.8 days, respectively, compared to the 14.6 day mean survival of the placebo control group. Forty-five percent of the mice receiving 200 uCi survived the study disease-free.

  5. Anonymization of DICOM electronic medical records for radiation therapy.

    PubMed

    Newhauser, Wayne; Jones, Timothy; Swerdloff, Stuart; Newhauser, Warren; Cilia, Mark; Carver, Robert; Halloran, Andy; Zhang, Rui

    2014-10-01

    Electronic medical records (EMR) and treatment plans are used in research on patient outcomes and radiation effects. In many situations researchers must remove protected health information (PHI) from EMRs. The literature contains several studies describing the anonymization of generic Digital Imaging and Communication in Medicine (DICOM) files and DICOM image sets but no publications were found that discuss the anonymization of DICOM radiation therapy plans, a key component of an EMR in a cancer clinic. In addition to this we were unable to find a commercial software tool that met the minimum requirements for anonymization and preservation of data integrity for radiation therapy research. The purpose of this study was to develop a prototype software code to meet the requirements for the anonymization of radiation therapy treatment plans and to develop a way to validate that code and demonstrate that it properly anonymized treatment plans and preserved data integrity. We extended an open-source code to process all relevant PHI and to allow for the automatic anonymization of multiple EMRs. The prototype code successfully anonymized multiple treatment plans in less than 1min/patient. We also tested commercial optical character recognition (OCR) algorithms for the detection of burned-in text on the images, but they were unable to reliably recognize text. In addition, we developed and tested an image filtering algorithm that allowed us to isolate and redact alpha-numeric text from a test radiograph. Validation tests verified that PHI was anonymized and data integrity, such as the relationship between DICOM unique identifiers (UID) was preserved. PMID:25147130

  6. Effects of radiation therapy and chemotherapy on testicular function

    SciTech Connect

    Kinsella, T.J. )

    1989-01-01

    Chemotherapy and radiation therapy are commonly used alone or in combination in the curative management of many malignancies in adolescent and adult males. Over the last 15-20 years, the striking success in the treatment of some common cancers in reproductive males has led to increasing concern for damage to normal tissues, such as the testes, resulting from curative cancer treatment. Indeed, a major future goal for cancer treatment will be to improve on the complication-free cure rate. Inherent in achieving this goal is to understand the pathophysiology and clinical expression of testicular injury. Both chemotherapy and radiation therapy result in germ cell depletion with the development of oligo- to azoospermia and testicular atrophy. The type of drug (particularly the alkylating agents), duration of treatment, intensity of treatment, and drug combination are major variables in determining the extent and duration of testicular injury. Testicular injury with chemotherapy also appears to vary with the age of the patient at the time of treatment. Newer drug combinations are now being used which appear to have curative potential in tumors such as Hodgkin's disease and germ cell testicular cancer with less potential for testicular injury. The most accurate and complete information on radiation injury to the testes is derived from two studies of normal volunteers who received graded single doses directly to the testes. A clear dose-response relationship of clinical and histological testicular damage was found with gradual recovery occurring following doses of up to 600 cGy. While these two studies provide an important clinical data base, radiation therapy used in treating cancers involves multiple daily treatments, usually 25-35 delivered over several weeks. Additionally, direct testicular irradiation is seldom used clinically. 37 references.

  7. Medical factors influencing decision making regarding radiation therapy for breast cancer

    PubMed Central

    Dilaveri, Christina A; Sandhu, Nicole P; Neal, Lonzetta; Neben-Wittich, Michelle A; Hieken, Tina J; Mac Bride, Maire Brid; Wahner-Roedler, Dietlind L; Ghosh, Karthik

    2014-01-01

    Radiation therapy is an important and effective adjuvant therapy for breast cancer. Numerous health conditions may affect medical decisions regarding tolerance of breast radiation therapy. These factors must be considered during the decision-making process after breast-conserving surgery or mastectomy for breast cancer. Here, we review currently available evidence focusing on medical conditions that may affect the patient–provider decision-making process regarding the use of radiation therapy. PMID:25429241

  8. TH-A-BRD-01: Radiation Biology for Radiation Therapy Physicists

    SciTech Connect

    Orton, C; Borras, C; Carlson, D

    2014-06-15

    Mechanisms by which radiation kills cells and ways cell damage can be repaired will be reviewed. The radiobiological parameters of dose, fractionation, delivery time, dose rate, and LET will be discussed. The linear-quadratic model for cell survival for high and low dose rate treatments and the effect of repopulation will be presented and discussed. The rationale for various radiotherapy techniques such as conventional fractionation, hyperfractionation, hypofractionation, and low and high dose rate brachytherapy, including permanent implants, will be presented. The radiobiological principles underlying radiation protection guidelines and the different radiation dosimetry terms used in radiation biology and in radiation protection will be reviewed. Human data on radiation induced cancer, including increases in the risk of second cancers following radiation therapy, as well as data on radiation induced tissue reactions, such as cardiovascular effects, for follow up times up to 20–40 years, published by ICRP, NCRP and BEIR Committees, will be examined. The latest risk estimates per unit dose will be presented. Their adoption in recent radiation protection standards and guidelines and their impact on patient and workers safety in radiotherapy will be discussed. Biologically-guided radiotherapy (BGRT) provides a systematic method to derive prescription doses that integrate patient-specific information about tumor and normal tissue biology. Treatment individualization based on patient-specific biology requires the identification of biological objective functions to facilitate the design and comparison of competing treatment modalities. Biological objectives provide a more direct approach to plan optimization instead of relying solely on dose-based surrogates and can incorporate factors that alter radiation response, such as DNA repair, tumor hypoxia, and relative biological effectiveness. We review concepts motivating biological objectives and provide examples of how

  9. A dual energy CT study on vascular effects of gold nanoparticles in radiation therapy

    NASA Astrophysics Data System (ADS)

    Ashton, Jeffrey R.; Hoye, Jocelyn; Deland, Katherine; Whitley, Melodi; Qi, Yi; Moding, Everett; Kirsch, David G.; West, Jennifer; Badea, Cristian T.

    2016-03-01

    Gold nanoparticles (AuNPs) are emerging as promising agents for both cancer therapy and CT imaging. AuNPs are delivered to tumors via the enhanced permeability and retention effect and they preferentially accumulate in close proximity to the tumor blood vessels. AuNPs produce low-energy, short-range photoelectrons during external beam radiation therapy (RT), boosting dose. This work is focused on understanding how tumor vascular permeability is influenced by AuNP-augmented radiation therapy (RT), and how this knowledge can potentially improve the delivery of additional nanoparticle-based chemotherapeutics. We use dual energy (DE) CT to detect accumulation of AuNPs and increased vascular permeability to liposomal iodine (i.e. a surrogate for chemotherapeutics with liposome encapsulation) following RT. We used sarcoma tumors generated in LSL-KrasG12D; p53FL/FL conditional mutant mice. A total of n=37 mice were used in this study. The treated mice were injected with 20 mg AuNP (0.1 ml/25 g mouse) 24 hours before delivery of 5 Gy RT (n=5), 10 Gy RT (n=3) or 20 Gy RT (n=6). The control mice received no AuNP injection and either no RT (n=6), 5 Gy RT (n=3), 10 Gy RT (n=3), 20 Gy RT (n=11). Twenty four hours post-RT, the mice were injected with liposomal iodine (0.3 ml/25 mouse) and imaged with DE-CT three days later. The results suggest that independent of any AuNP usage, RT levels of 10 Gy and 20 Gy increase the permeability of tumor vasculature to liposomal iodine and that the increase in permeability is dose-dependent. We found that the effect of RT on vasculature may already be at its maximum response i.e. saturated at 20 Gy, and therefore the addition of AuNPs had almost no added benefit. Similarly, at 5 Gy RT, our data suggests that there was no effect of AuNP augmentation on tumor vascular permeability. However, by using AuNPs with 10 Gy RT, we observed an increase in the vascular permeability, however this is not yet statistically significant due to the small

  10. Accuracy of Marketing Claims by Providers of Stereotactic Radiation Therapy

    PubMed Central

    Narang, Amol K.; Lam, Edwin; Makary, Martin A.; DeWeese, Theodore L.; Pawlik, Timothy M.; Pronovost, Peter J.; Herman, Joseph M.

    2013-01-01

    Purpose: Direct-to-consumer advertising by industry has been criticized for encouraging overuse of unproven therapies, but advertising by health care providers has not been as carefully scrutinized. Stereotactic radiation therapy is an emerging technology that has sparked controversy regarding the marketing campaigns of some manufacturers. Given that this technology is also being heavily advertised on the Web sites of health care providers, the accuracy of providers' marketing claims should be rigorously evaluated. Methods: We reviewed the Web sites of all US hospitals and private practices that provide stereotactic radiation using two leading brands of stereotactic radiosurgery technology. Centers were identified by using data from the manufacturers. Centers without Web sites were excluded. The final study population consisted of 212 centers with online advertisements for stereotactic radiation. Web sites were evaluated for advertisements that were inconsistent with advertising guidelines provided by the American Medical Association. Results: Most centers (76%) had individual pages dedicated to the marketing of their brand of stereotactic technology that frequently contained manufacturer-authored images (50%) or text (55%). Advertising for the treatment of tumors that have not been endorsed by professional societies was present on 66% of Web sites. Centers commonly claimed improved survival (22%), disease control (20%), quality of life (17%), and toxicity (43%) with stereotactic radiation. Although 40% of Web sites championed the center's regional expertise in delivering stereotactic treatments, only 15% of Web sites provided data to support their claims. Conclusion: Provider advertisements for stereotactic radiation were prominent and aggressive. Further investigation of provider advertising, its effects on quality of care, and potential oversight mechanisms is needed. PMID:23633973

  11. Strategies for quality assurance of intensity modulated radiation therapy

    NASA Astrophysics Data System (ADS)

    Benedek, Hunor; Isacsson, Ulf; Olevik-Dunder, Maria; Westermark, Mathias; Hållström, Per; Olofsson, Jörgen; Gustafsson, Magnus

    2015-01-01

    In late 2011 The Swedish Society of Radiation Physics formed a working group to concentrate on the Quality Assurance of modern radiation therapy techniques. The given task was to identify and summarise the different QA strategies in Sweden and also the international recommendations. This was used to formulate recommendations for practical guidelines within Sweden. In this paper a brief summery of the group's work is presented. All the Swedish radiation therapy centres do a pre treatment verification measurement as QA for every new IMRT and VMAT plan. Physicists do it and they believe it to be time consuming. A general standpoint from all the centres was that new guidelines and legislation is needed to allow QA that does not require a measurement. Based on various international publications and recommendations the working group has presented two strategies, one where all new plans are checked through measurement and one where no measurement is needed. The measurement- based strategy is basically the same as the one used today with an extended machine QA part. The other presented strategy is process oriented where all the different parts of the treatment chain are checked separately. The final report can be found in Swedish on http://www.radiofysik.org.

  12. Third generation gold nanoplatform optimized for radiation therapy

    PubMed Central

    Kumar, Rajiv; Korideck, Houari; Ngwa, Wilfred; Berbeco, Ross I.; Makrigiorgos, G. Mike; Sridhar, Srinivas

    2013-01-01

    We report the design and fabrication of third generation ultrasmall PEGylated gold nanoparticles based platform (AuRad™) optimized for applications in radiation therapy. The AuRad™ nanoplatform has the following key features: (I) surface coating of hetero-bifunctional-PEG with amine, carboxyl, methoxy functional groups, which make this a versatile nanoplatform to conjugate various moieties like fluorophores, peptides, drugs, radiolabels; (II) size that is optimized for longer circulation, higher tumor uptake and modulated clearance; (III) high radiation enhancement. We have synthesized ultrasmall 2–3 nm gold nanoparticles, followed by attachment of hetero-bifunctional PEG and further conjugation of fluorophore AlexaFlour 647 for optical imaging, with a stability of more than 6 months. Confocal bioimaging with HeLa cells showed robust uptake of biocompatible nanoparticles in cells. Irradiation experiments X-rays showed greater than 2.8-fold cell kill enhancement as demonstrated by clonogenic survival assays. The results indicate that AuRad nanoplatform can act as potential theranostic agent in radiation therapy. PMID:24392307

  13. Radiation Therapy for the Management of Brain Metastases.

    PubMed

    Garrett, Matthew D; Wu, Cheng-Chia; Yanagihara, Ted K; Jani, Ashish; Wang, Tony J C

    2016-08-01

    Brain metastases are the most common malignant intracranial tumors and carry a poor prognosis. The management of brain metastases may include a variety of treatment modalities including surgical resection, radiation therapy, and/or systemic therapy. The traditional treatment for brain metastasis involved whole brain irradiation. However, improved systemic control of primary cancers has led to longer survival for some groups of patients and there is increasing need to consider the late effects of radiation to the entire brain. With advances in imaging and radiation treatment planning and delivery stereotactic radiosurgery has become more frequently utilized and may be delivered through Gamma Knife Stereotactic Radiosurgery or linear accelerator-based systems. Furthermore, experience in treating thousands of patients on clinical trials has led to diagnosis-specific prognostic assessment systems that help guide our approach to the management of this common clinical scenario. This review provides an overview of the literature supporting radiotherapy for brain metastasis and an update on current radiotherapeutic options that is tailored for the nonradiation oncologist. PMID:27213494

  14. Peripheral Doses from Noncoplanar IMRT for Pediatric Radiation Therapy

    SciTech Connect

    Kan, Monica W.K.; Leung, Lucullus H.T.; Kwong, Dora L.W.; Wong, Wicger; Lam, Nelson

    2010-01-01

    The use of noncoplanar intensity-modulated radiation therapy (IMRT) might result in better sparing of some critical organs because of a higher degree of freedom in beam angle optimization. However, this can lead to a potential increase in peripheral dose compared with coplanar IMRT. The peripheral dose from noncoplanar IMRT has not been previously quantified. This study examines the peripheral dose from noncoplanar IMRT compared with coplanar IMRT for pediatric radiation therapy. Five cases with different pediatric malignancies in head and neck were planned with both coplanar and noncoplanar IMRT techniques. The plans were performed such that the tumor coverage, conformality, and dose uniformity were comparable for both techniques. To measure the peripheral doses of the 2 techniques, thermoluminescent dosimeters (TLD) were placed in 10 different organs of a 5-year-old pediatric anthropomorphic phantom. With the use of noncoplanar beams, the peripheral doses to the spinal cord, bone marrow, lung, and breast were found to be 1.8-2.5 times of those using the coplanar technique. This is mainly because of the additional internal scatter dose from the noncoplanar beams. Although the use of noncoplanar technique can result in better sparing of certain organs such as the optic nerves, lens, or inner ears depending on how the beam angles were optimized on each patient, oncologists should be alert of the possibility of significantly increasing the peripheral doses to certain radiation-sensitive organs such as bone marrow and breast. This might increase the secondary cancer risk to patients at young age.

  15. Implementation of Remote 3-Dimensional Image Guided Radiation Therapy Quality Assurance for Radiation Therapy Oncology Group Clinical Trials

    SciTech Connect

    Cui Yunfeng; Galvin, James M.; Parker, William; Breen, Stephen; Yin Fangfang; Cai Jing; Papiez, Lech S.; Li, X. Allen; Bednarz, Greg; Chen Wenzhou; Xiao Ying

    2013-01-01

    Purpose: To report the process and initial experience of remote credentialing of three-dimensional (3D) image guided radiation therapy (IGRT) as part of the quality assurance (QA) of submitted data for Radiation Therapy Oncology Group (RTOG) clinical trials; and to identify major issues resulting from this process and analyze the review results on patient positioning shifts. Methods and Materials: Image guided radiation therapy datasets including in-room positioning CT scans and daily shifts applied were submitted through the Image Guided Therapy QA Center from institutions for the IGRT credentialing process, as required by various RTOG trials. A centralized virtual environment is established at the RTOG Core Laboratory, containing analysis tools and database infrastructure for remote review by the Physics Principal Investigators of each protocol. The appropriateness of IGRT technique and volumetric image registration accuracy were evaluated. Registration accuracy was verified by repeat registration with a third-party registration software system. With the accumulated review results, registration differences between those obtained by the Physics Principal Investigators and from the institutions were analyzed for different imaging sites, shift directions, and imaging modalities. Results: The remote review process was successfully carried out for 87 3D cases (out of 137 total cases, including 2-dimensional and 3D) during 2010. Frequent errors in submitted IGRT data and challenges in the review of image registration for some special cases were identified. Workarounds for these issues were developed. The average differences of registration results between reviewers and institutions ranged between 2 mm and 3 mm. Large discrepancies in the superior-inferior direction were found for megavoltage CT cases, owing to low spatial resolution in this direction for most megavoltage CT cases. Conclusion: This first experience indicated that remote review for 3D IGRT as part of QA

  16. Radiation hardness of the storage phosphor europium doped potassium chloride for radiation therapy dosimetry

    SciTech Connect

    Driewer, Joseph P.; Chen, Haijian; Osvet, Andres; Low, Daniel A.; Li, H. Harold

    2011-08-15

    Purpose: An important property of a reusable dosimeter is its radiation hardness, that is, its ability to retain its dosimetric merits after irradiation. The radiation hardness of europium doped potassium chloride (KCl:Eu{sup 2+}), a storage phosphor material recently proposed for radiation therapy dosimetry, is examined in this study. Methods: Pellet-style KCl:Eu{sup 2+} dosimeters, 6 mm in diameter, and 1 mm thick, were fabricated in-house for this study. The pellets were exposed by a 6 MV photon beam or in a high dose rate {sup 137}Cs irradiator. Macroscopic properties, such as radiation sensitivity, dose response linearity, and signal stability, were studied with a laboratory photostimulated luminescence (PSL) readout system. Since phosphor performance is related to the state of the storage centers and the activator, Eu{sup 2+}, in the host lattice, spectroscopic and temporal measurements were carried out in order to explore radiation-induced changes at the microscopic level. Results: KCl:Eu{sup 2+} dosimeters retained approximately 90% of their initial signal strength after a 5000 Gy dose history. Dose response was initially supralinear over the dose range of 100-700 cGy but became linear after 60 Gy. Linearity did not change significantly in the 0-5000 Gy dose history spanned in this study. Annealing high dose history chips resulted in a return of supralinearity and a recovery of sensitivity. There were no significant changes in the PSL stimulation spectra, PSL emission spectra, photoluminescence spectra, or luminescence lifetime, indicating that the PSL signal process remains intact after irradiation but at a reduced efficiency due to reparable radiation-induced perturbations in the crystal lattice. Conclusions: Systematic studies of KCl:Eu{sup 2+} material are important for understanding how the material can be optimized for radiation therapy dosimetry purposes. The data presented here indicate that KCl:Eu{sup 2+} exhibits strong radiation hardness and

  17. Genetic predictors of acute toxicities related to radiation therapy following lumpectomy for breast cancer: a case-series study

    PubMed Central

    Ambrosone, Christine B; Tian, Chunqiao; Ahn, Jiyoung; Kropp, Silke; Helmbold, Irmgard; von Fournier, Dietrich; Haase, Wulf; Sautter-Bihl, Marie Luise; Wenz, Frederik; Chang-Claude, Jenny

    2006-01-01

    Introduction The cytotoxic effects of radiation therapy are mediated primarily through increased formation of hydroxyl radicals and reactive oxygen species, which can damage cells, proteins and DNA; the glutathione S-transferases (GSTs) function to protect against oxidative stress. We hypothesized that polymorphisms encoding reduced or absent activity in the GSTs might result in greater risk for radiation-associated toxicity. Methods Women receiving therapy in radiation units in Germany following lumpectomy for breast cancer (1998–2001) provided a blood sample and completed an epidemiological questionnaire (n = 446). Genotypes were determined using Sequonom MALDI-TOF (GSTA1, GSTP1) and Masscode (GSTM1, GSTT1). Biologically effective radiotherapy dose (BED) was calculated, accounting for differences in fractionation and overall treatment time. Side effects considered were grade 2c and above, as classified using the modified Common Toxicity Criteria. Predictors of toxicity were modelled using Cox regression models in relation to BED, with adjustment for treating clinic, photon field, beam energy and boost method, and potential confounding variables. Results Low activity GSTP1 genotypes were associated with a greater than twofold increase in risk for acute skin toxicities (adjusted hazard ratio 2.28, 95% confidence interval 1.04–4.99). No associations were noted for the other GST genotypes. Conclusion These data indicate that GSTP1 plays an important role in protecting normal cells from damage associated with radiation therapy. Studies examining the effects of GSTP1 polymorphisms on toxicity, recurrence and survival will further inform individualized therapeutics based on genotypes. PMID:16848913

  18. The New Radiation Therapy Clinical Practice: The Emerging Role of Clinical Peer Review for Radiation Therapists and Medical Dosimetrists

    SciTech Connect

    Adams, Robert D.; Marks, Lawrence B.; Pawlicki, Todd; Hayman, James; Church, Jessica

    2010-01-01

    The concept of peer review for radiation therapists and medical dosimetrists has been studied very little in radiation oncology practice. The purpose of this manuscript is to analyze the concept of peer review in the clinical setting for both radiation therapists and medical dosimetrists. The literature reviewed both the percentages and causes of radiation therapy deviations. The results indicate that peer review can be both implemented and evaluated into both the radiation therapist and medical dosimetrist clinical practice patterns.

  19. The new radiation therapy clinical practice: the emerging role of clinical peer review for radiation therapists and medical dosimetrists.

    PubMed

    Adams, Robert D; Marks, Lawrence B; Pawlicki, Todd; Hayman, James; Church, Jessica

    2010-01-01

    The concept of peer review for radiation therapists and medical dosimetrists has been studied very little in radiation oncology practice. The purpose of this manuscript is to analyze the concept of peer review in the clinical setting for both radiation therapists and medical dosimetrists. The literature reviewed both the percentages and causes of radiation therapy deviations. The results indicate that peer review can be both implemented and evaluated into both the radiation therapist and medical dosimetrist clinical practice patterns. PMID:21055612

  20. Cancer stem cells, cancer cell plasticity and radiation therapy.

    PubMed

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  1. Cancer Stem Cells, Cancer Cell Plasticity and Radiation Therapy

    PubMed Central

    Vlashi, Erina; Pajonk, Frank

    2014-01-01

    Summary Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms. PMID:25025713

  2. Cherenkov imaging and biochemical sensing in vivo during radiation therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Rongxiao

    While Cherenkov emission was discovered more than eighty years ago, the potential applications of imaging this during radiation therapy have just recently been explored. With approximately half of all cancer patients being treated by radiation at some point during their cancer management, there is a constant challenge to ensure optimal treatment efficiency is achieved with maximal tumor to normal tissue therapeutic ratio. To achieve this, the treatment process as well as biological information affecting the treatment should ideally be effective and directly derived from the delivery of radiation to the patient. The value of Cherenkov emission imaging was examined here, primarily for visualization of treatment monitoring and then secondarily for Cherenkov-excited luminescence for tissue biochemical sensing within tissue. Through synchronized gating to the short radiation pulses of a linear accelerator (200Hz & 3 micros pulses), and applying a gated intensified camera for imaging, the Cherenkov radiation can be captured near video frame rates (30 frame per sec) with dim ambient room lighting. This procedure, sometimes termed Cherenkoscopy, is readily visualized without affecting the normal process of external beam radiation therapy. With simulation, phantoms and clinical trial data, each application of Cherenkoscopy was examined: i) for treatment monitoring, ii) for patient position monitoring and motion tracking, and iii) for superficial dose imaging. The temporal dynamics of delivered radiation fields can easily be directly imaged on the patient's surface. Image registration and edge detection of Cherenkov images were used to verify patient positioning during treatment. Inter-fraction setup accuracy and intra-fraction patient motion was detectable to better than 1 mm accuracy. Cherenkov emission in tissue opens up a new field of biochemical sensing within the tissue environment, using luminescent agents which can be activated by this light. In the first study of

  3. Intra-operative radiation therapy for osteosarcoma in the extremities.

    PubMed

    Tsuboyama, T; Toguchida, J; Kotoura, Y; Kasahara, K; Hiraoka, M; Nakamura, T

    2000-01-01

    The outcome following intra-operative radiation therapy in the treatment of osteosarcoma in the extremity in 33 patients was evaluated for oncological and functional results. Local recurrence occurred in seven cases, six of which were in a non-irradiated region, indicating inappropriate planning of the radiation field. Twenty-one patients underwent either prosthetic replacement (14) or amputation (7). Irradiated tumours were left in situ in the remaining 12 patients. In this latter group no degenerative joint changes were observed radiologically. Twenty-six patients experienced local complications, of which fracture of the irradiated bone was the most significant. Associated intramedullary nailing showed encouraging results in preventing fracture. Although IORT is effective for the local control of osteosarcoma in extremities, critical patient selection and improvements of treatment protocol are required in order to obtain a satisfactory outcome.

  4. [Radiation-induced and therapy-related AML/MDS].

    PubMed

    Inaba, Toshiya

    2009-10-01

    Radiation induced acute myeloid leukemia (AML) was recognized a century ago, soon after mankind found radiation. Atomic bomb survivors developed de novo AML with relatively short latency with very high frequency. By contrast, excess occurrence of myelodysplastic syndrome (MDS) as well as solid tumors was found decades late. This difference may be due to etiology that many de novo AML patients harbor chimeric leukemogenic genes caused by chromosomal translocations, while MDS patients rarely carry chimeras. In addition, epigenetic change would play important roles. Therapy related leukemia is mainly caused by topoisomerase II inhibitors that cause de novo AML with an 11q23 translocation or by alkyrating agents that induce MDS/AML with an AML1 point mutation and monosomy 7. PMID:19860183

  5. 3D Monte Carlo radiation transfer modelling of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Campbell, C. Louise; Christison, Craig; Brown, C. Tom A.; Wood, Kenneth; Valentine, Ronan M.; Moseley, Harry

    2015-06-01

    The effects of ageing and skin type on Photodynamic Therapy (PDT) for different treatment methods have been theoretically investigated. A multilayered Monte Carlo Radiation Transfer model is presented where both daylight activated PDT and conventional PDT are compared. It was found that light penetrates deeper through older skin with a lighter complexion, which translates into a deeper effective treatment depth. The effect of ageing was found to be larger for darker skin types. The investigation further strengthens the usage of daylight as a potential light source for PDT where effective treatment depths of about 2 mm can be achieved.

  6. ROENTGEN: case-based reasoning and radiation therapy planning.

    PubMed

    Berger, J

    1992-01-01

    ROENTGEN is a design assistant for radiation therapy planning which uses case-based reasoning, an artificial intelligence technique. It learns both from specific problem-solving experiences and from direct instruction from the user. The first sort of learning is the normal case-based method of storing problem solutions so that they can be reused. The second sort is necessary because ROENTGEN does not, initially, have an internal model of the physics of its problem domain. This dependence on explicit user instruction brings to the forefront representational questions regarding indexing, failure definition, failure explanation and repair. This paper presents the techniques used by ROENTGEN in its knowledge acquisition and design activities.

  7. Role of Local Radiation Therapy in Cancer Immunotherapy.

    PubMed

    Demaria, Sandra; Golden, Encouse B; Formenti, Silvia C

    2015-12-01

    The recent success of cancer immunotherapy has demonstrated the power of the immune system to clear tumors, generating renewed enthusiasm for identifying ways to induce antitumor immune responses in patients. Natural antitumor immune responses are detectable in a fraction of patients across multiple malignant neoplasms and can be reactivated by targeting rate-limiting immunosuppressive mechanisms. In most patients, however, interventions to induce a de novo antitumor immune response are necessary. We review growing evidence that radiation therapy targeted to the tumor can convert it into an in situ tumor vaccine by inducing release of antigens during cancer cell death in association with proinflammatory signals that trigger the innate immune system to activate tumor-specific T cells. In addition, radiation's effects on the tumor microenvironment enhance infiltration of activated T cells and can overcome some of the barriers to tumor rejection. Thus, the complementary effects of radiation on priming and effector phases of antitumor immunity make it an appealing strategy to generate immunity against a patient's own individual tumor, that through immunological memory, can result in long-lasting systemic responses. Several anecdotal cases have demonstrated the efficacy of combining radiation with available immunotherapies, and results of prospective trials are forthcoming.

  8. Fast Monte Carlo for radiation therapy: the PEREGRINE Project

    SciTech Connect

    Hartmann Siantar, C.L.; Bergstrom, P.M.; Chandler, W.P.; Cox, L.J.; Daly, T.P.; Garrett, D.; House, R.K.; Moses, E.I.; Powell, C.L.; Patterson, R.W.; Schach von Wittenau, A.E.

    1997-11-11

    The purpose of the PEREGRINE program is to bring high-speed, high- accuracy, high-resolution Monte Carlo dose calculations to the desktop in the radiation therapy clinic. PEREGRINE is a three- dimensional Monte Carlo dose calculation system designed specifically for radiation therapy planning. It provides dose distributions from external beams of photons, electrons, neutrons, and protons as well as from brachytherapy sources. Each external radiation source particle passes through collimator jaws and beam modifiers such as blocks, compensators, and wedges that are used to customize the treatment to maximize the dose to the tumor. Absorbed dose is tallied in the patient or phantom as Monte Carlo simulation particles are followed through a Cartesian transport mesh that has been manually specified or determined from a CT scan of the patient. This paper describes PEREGRINE capabilities, results of benchmark comparisons, calculation times and performance, and the significance of Monte Carlo calculations for photon teletherapy. PEREGRINE results show excellent agreement with a comprehensive set of measurements for a wide variety of clinical photon beam geometries, on both homogeneous and heterogeneous test samples or phantoms. PEREGRINE is capable of calculating >350 million histories per hour for a standard clinical treatment plan. This results in a dose distribution with voxel standard deviations of <2% of the maximum dose on 4 million voxels with 1 mm resolution in the CT-slice plane in under 20 minutes. Calculation times include tracking particles through all patient specific beam delivery components as well as the patient. Most importantly, comparison of Monte Carlo dose calculations with currently-used algorithms reveal significantly different dose distributions for a wide variety of treatment sites, due to the complex 3-D effects of missing tissue, tissue heterogeneities, and accurate modeling of the radiation source.

  9. Delineation of Supraclavicular Target Volumes in Breast Cancer Radiation Therapy

    SciTech Connect

    Brown, Lindsay C.; Diehn, Felix E.; Boughey, Judy C.; Childs, Stephanie K.; Park, Sean S.; Yan, Elizabeth S.; Petersen, Ivy A.; Mutter, Robert W.

    2015-07-01

    Purpose: To map the location of gross supraclavicular metastases in patients with breast cancer, in order to determine areas at highest risk of harboring subclinical disease. Methods and Materials: Patients with axial imaging of gross supraclavicular disease were identified from an institutional breast cancer registry. Locations of the metastatic lymph nodes were transferred onto representative axial computed tomography images of the supraclavicular region and compared with the Radiation Therapy Oncology Group (RTOG) breast cancer atlas for radiation therapy planning. Results: Sixty-two patients with 161 supraclavicular nodal metastases were eligible for study inclusion. At the time of diagnosis, 117 nodal metastases were present in 44 patients. Forty-four nodal metastases in 18 patients were detected at disease recurrence, 4 of whom had received prior radiation to the supraclavicular fossa. Of the 161 nodal metastases, 95 (59%) were within the RTOG consensus volume, 4 nodal metastases (2%) in 3 patients were marginally within the volume, and 62 nodal metastases (39%) in 30 patients were outside the volume. Supraclavicular disease outside the RTOG consensus volume was located in 3 regions: at the level of the cricoid and thyroid cartilage (superior to the RTOG volume), in the posterolateral supraclavicular fossa (posterolateral to the RTOG volume), and in the lateral low supraclavicular fossa (lateral to the RTOG volume). Only women with multiple supraclavicular metastases had nodal disease that extended superiorly to the level of the thyroid cartilage. Conclusions: For women with risk of harboring subclinical supraclavicular disease warranting the addition of supraclavicular radiation, coverage of the posterior triangle and the lateral low supraclavicular region should be considered. For women with known supraclavicular disease, extension of neck coverage superior to the cricoid cartilage may be warranted.

  10. Monte Carlo dose enhancement studies in microbeam radiation therapy

    SciTech Connect

    Martinez-Rovira, I.; Prezado, Y.

    2011-07-15

    Purpose: A radical radiation therapy treatment for gliomas requires extremely high absorbed doses resulting in subsequent deleterious side effects in healthy tissue. Microbeam radiation therapy (MRT) is an innovative technique based on the fact that normal tissue can withstand high radiation doses in small volumes without any significant damage. The synchrotron-generated x-ray beam is collimated and delivered to an array of narrow micrometer-sized planar rectangular fields. Several preclinical experiments performed at the Brookhaven National Laboratory (BNL) and at the European Synchrotron Radiation Facility (ESRF) confirmed that MRT yields a higher therapeutic index than nonsegmented beams of the same characteristics. This index can be greatly improved by loading the tumor with high atomic number (Z) contrast agents. The aim of this work is to find the high-Z element that provides optimum dose enhancement. Methods: Monte Carlo simulations (PENELOPE/penEasy) were performed to assess the peak and valley doses as well as their ratio (PVDR) in healthy tissue and in the tumor, loaded with different contrast agents. The optimization criteria used were maximization of the ratio between the PVDR values in healthy tissue respect to the PVDR in the tumor and minimization of bone and brain valley doses. Results: Dose enhancement factors, PVDR, and valley doses were calculated for different high-Z elements. A significant decrease of PVDR values in the tumor, accompanied by a gain in the valley doses, was found in the presence of high-Z elements. This enables the deposited dose in the healthy tissue to be reduced. The optimum high-Z element depends on the irradiation configuration. As a general trend, the best outcome is provided by the highest Z contrast agents considered, i.e., gold and thallium. However, lanthanides (especially Lu) and hafnium also offer a satisfactory performance. Conclusions: The remarkable therapeutic index in microbeam radiation therapy can be further

  11. Hypofractionated Dose-Painting Intensity Modulated Radiation Therapy With Chemotherapy for Nasopharyngeal Carcinoma: A Prospective Trial

    SciTech Connect

    Bakst, Richard L.; Lee, Nancy; Pfister, David G.; Zelefsky, Michael J.; Hunt, Margie A.; Kraus, Dennis H.; Wolden, Suzanne L.

    2011-05-01

    Purpose: To evaluate the feasibility of dose-painting intensity-modulated radiation therapy (DP-IMRT) with a hypofractionated regimen to treat nasopharyngeal carcinoma (NPC) with concomitant toxicity reduction. Methods and Materials: From October 2002 through April 2007, 25 newly diagnosed NPC patients were enrolled in a prospective trial. DP-IMRT was prescribed to deliver 70.2 Gy using 2.34-Gy fractions to the gross tumor volume for the primary and nodal sites while simultaneously delivering 54 Gy in 1.8-Gy fractions to regions at risk of microscopic disease. Patients received concurrent and adjuvant platin-based chemotherapy similar to the Intergroup 0099 trial. Results: Patient and disease characteristics are as follows: median age, 46; 44% Asian; 68% male; 76% World Health Organization III; 20% T1, 52% T2, 16% T3, 12% T4; 20% N0, 36% N1, 36% N2, 8% N3. With median follow-up of 33 months, 3-year local control was 91%, regional control was 91%, freedom from distant metastases was 91%, and overall survival was 89%. The average mean dose to each cochlea was 43 Gy. With median audiogram follow-up of 14 months, only one patient had clinically significant (Grade 3) hearing loss. Twelve percent of patients developed temporal lobe necrosis; one patient required surgical resection. Conclusions: Preliminary findings using a hypofractionated DP-IMRT regimen demonstrated that local control, freedom from distant metastases, and overall survival compared favorably with other series of IMRT and chemotherapy. The highly conformal boost to the tumor bed resulted low rates of severe ototoxicity (Grade 3-4). However, the incidence of in-field brain radiation necrosis indicates that 2.34 Gy per fraction is not safe in this setting.

  12. A planning study of simultaneous integrated boost with forward IMRT for multiple brain metastases

    SciTech Connect

    Liang, Xiaodong; Ni, Lingqin; Hu, Wei; Chen, Weijun; Ying, Shenpeng; Gong, Qiangjun; Liu, Yanmei

    2013-07-01

    The objective of this study was to evaluate the dose conformity and feasibility of whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in patients with 1 to 3 brain metastases. Forward intensity-modulated radiation therapy plans were generated for 10 patients with 1 to 3 brain metastases on Pinnacle 6.2 Treatment Planning System. The prescribed dose was 30 Gy to the whole brain (planning target volume [PTV]{sub wbrt}) and 40 Gy to individual brain metastases (PTV{sub boost}) simultaneously, and both doses were given in 10 fractions. The maximum diameters of individual brain metastases ranged from 1.6 to 6 cm, and the summated PTVs per patient ranged from 1.62 to 69.81 cm{sup 3}. Conformity and feasibility were evaluated regarding conformation number and treatment delivery time. One hundred percent volume of the PTV{sub boost} received at least 95% of the prescribed dose in all cases. The maximum doses were less than 110% of the prescribed dose to the PTV{sub boost}, and all of the hot spots were within the PTV{sub boost}. The volume of the PTV{sub wbrt} that received at least 95% of the prescribed dose ranged from 99.2% to 100%. The mean values of conformation number were 0.682. The mean treatment delivery time was 2.79 minutes. Ten beams were used on an average in these plans. Whole-brain radiotherapy with a simultaneous integrated boost by forward intensity-modulated radiation therapy in 1 to 3 brain metastases is feasible, and treatment delivery time is short.

  13. Monitoring the radiation dose to a multiprogrammable pacemaker during radical radiation therapy: A case report

    SciTech Connect

    Muller-Runkel, R.; Orsolini, G.; Kalokhe, U.P. )

    1990-11-01

    Multiprogrammable pacemakers, using complimentary metaloxide semiconductor (CMOS) circuitry, may fail during radiation therapy. We report about a patient who received 6,400 cGy for unresectable carcinoma of the left lung. In supine treatment position, arms raised above the head, the pacemaker was outside the treated area by a margin of at least 1 cm, shielded by cerrobend blocking mounted on a tray. From thermoluminescent dosimeter (TLD) measurements, we estimate that the pacemaker received 620 cGy in scatter doses. Its function was monitored before, during, and after completion of radiation therapy. The pacemaker was functioning normally until the patient's death 5 months after completion of treatment. The relevant electrocardiograms (ECGs) are presented.

  14. Brain tumors and synchrotron radiation: Methodological developments in quantitative brain perfusion imaging and radiation therapy

    SciTech Connect

    Adam, Jean-Francois

    2005-04-01

    High-grade gliomas are the most frequent type of primary brain tumors in adults. Unfortunately, the management of glioblastomas is still mainly palliative and remains a difficult challenge, despite advances in brain tumor molecular biology and in some emerging therapies. Synchrotron radiation opens fields for medical imaging and radiation therapy by using monochromatic intense x-ray beams. It is now well known that angiogenesis plays a critical role in the tumor growth process and that brain perfusion is representative of the tumor mitotic activity. Synchrotron radiation quantitative computed tomography (SRCT) is one of the most accurate techniques for measuring in vivo contrast agent concentration and thus computing precise and accurate absolute values of the brain perfusion key parameters. The methodological developments of SRCT absolute brain perfusion measurements as well as their preclinical validation are detailed in this thesis. In particular, absolute cerebral volume and blood brain barrier permeability high-resolution (pixel size <50x50 {mu}m{sup 2}) parametric maps were reported. In conventional radiotherapy, the treatment of these tumors remains a delicate challenge, because the damages to the surrounding normal brain tissue limit the amount of radiation that can be delivered. One strategy to overcome this limitation is to infuse an iodinated contrast agent to the patient during the irradiation. The contrast agent accumulates in the tumor, through the broken blood brain barrier, and the irradiation is performed with kilovoltage x rays, in tomography mode, the tumor being located at the center of rotation and the beam size adjusted to the tumor dimensions. The dose enhancement results from the photoelectric effect on the heavy element and from the irradiation geometry. Synchrotron beams, providing high intensity, tunable monochromatic x rays, are ideal for this treatment. The beam properties allow the selection of monochromatic irradiation, at the optimal

  15. Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry

    SciTech Connect

    Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi

    2012-11-15

    Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of

  16. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers.

    PubMed

    Das, R; Rinaldi-Montes, N; Alonso, J; Amghouz, Z; Garaio, E; García, J A; Gorria, P; Blanco, J A; Phan, M H; Srikanth, H

    2016-09-28

    Over the past two decades, magnetic hyperthermia and photothermal therapy are becoming very promising supplementary techniques to well-established cancer treatments such as radiotherapy and chemotherapy. These techniques have dramatically improved their ability to perform controlled treatments, relying on the procedure of delivering nanoscale objects into targeted tumor tissues, which can release therapeutic killing doses of heat either upon AC magnetic field exposure or laser irradiation. Although an intense research effort has been made in recent years to study, separately, magnetic hyperthermia using iron oxide nanoparticles and photothermal therapy based on gold or silver plasmonic nanostructures, the full potential of combining both techniques has not yet been systematically explored. Here we present a proof-of-principle experiment showing that designing multifunctional silver/magnetite (Ag/Fe3O4) nanoflowers acting as dual hyperthermia agents is an efficient route for enhancing their heating ability or specific absorption rate (SAR). Interestingly, the SAR of the nanoflowers is increased by at least 1 order of magnitude under the application of both an external magnetic field of 200 Oe and simultaneous laser irradiation. Furthermore, our results show that the synergistic exploitation of the magnetic and photothermal properties of the nanoflowers reduces the magnetic field and laser intensities that would be required in the case that both external stimuli were applied separately. This constitutes a key step toward optimizing the hyperthermia therapy through a combined multifunctional magnetic and photothermal treatment and improving our understanding of the therapeutic process to specific applications that will entail coordinated efforts in physics, engineering, biology, and medicine. PMID:27589410

  17. Subacute brain atrophy after radiation therapy for malignant brain tumor

    SciTech Connect

    Asai, A.; Matsutani, M.; Kohno, T.; Nakamura, O.; Tanaka, H.; Fujimaki, T.; Funada, N.; Matsuda, T.; Nagata, K.; Takakura, K.

    1989-05-15

    Brain atrophy with mental and neurologic deterioration developing a few months after radiation therapy in patients without residual or recurrent brain tumors has been recognized. Two illustrative case reports of this pathologic entity are presented. Six autopsy cases with this entity including the two cases were reviewed neurologically, radiographically, and histopathologically. All patients presented progressive disturbances of mental status and consciousness, akinesia, and tremor-like involuntary movement. Computerized tomography (CT) demonstrated marked enlargement of the ventricles, moderate widening of the cortical sulci, and a moderately attenuated CT number for the white matter in all six patients. Four of the six patients had CSF drainage (ventriculoperitoneal shunt or continuous lumbar drainage), however, none of them improved. Histologic examination demonstrated swelling and loss of the myelin sheath in the white matter in all patients, and reactive astrocytosis in three of the six patients. Neither prominent neuronal loss in the cerebral cortex or basal ganglia, nor axonal loss in the white matter was generally identified. The blood vessels of the cerebral cortex and white matter were normal. Ependymal layer and the surrounding brain tissue were normal in all patients. These findings suggested that this pathologic condition results from demyelination secondary to direct neurotoxic effect of irradiation. The authors' previous report was reviewed and the differential diagnoses, the risk factors for this pathologic entity, and the indication for radiation therapy in aged patients with a malignant brain tumor are discussed.

  18. Effect of endobronchial radiation therapy on malignant bronchial obstruction

    SciTech Connect

    Mehta, M.; Shahabi, S.; Jarjour, N.; Steinmetz, M.; Kubsad, S. )

    1990-03-01

    We evaluated the effect of endobronchial radiation therapy in 52 patients with malignant airway occlusion. Fifty-five endobronchial applications of the radioisotope iridium 192 were carried out. Response was assessed by change in performance status, symptom resolution, duration of symptom relief, roentgenographic reaeration, pulmonary function tests, and postimplant bronchoscopy. Thirty-three patients showed at least a one-level improvement in performance status. Of a total of 166 symptoms present prior to therapy, 131 resolved or improved. Approximately 70 percent of a patient's lifetime was rendered symptom improved or symptom free. A roentgenographic reaeration response of 30/41 (73 percent) was achieved. The average FEV1 and FVC improved from 1.5 to 2.1 L and from 2.3 to 2.9 L, respectively. Posttherapy bronchoscopy was performed between one and two months following the implant in 15 patients who agreed to undergo the procedure. Eleven (73 percent) of 15 had complete tumor regression. Major long-term complications were noted in seven patients. Endobronchial radiation, therefore, appears to be a safe and effective technique to palliate malignant airway occlusion.

  19. Sexual function after surgical and radiation therapy for cervical carcinoma

    SciTech Connect

    Seibel, M.; Freeman, M.G.; Graves, W.L.

    1982-10-01

    One hundred women treated for carcinoma of the cervix were interviewed more than one year later to establish the effects of radiation or surgical therapy on sexual function. Forty-three had received irradiation, 44 nonradical surgery, six combined surgery and irradiation, and seven radical surgery. The irradiation and nonradical surgery groups were each further subdivided into subgroups of patients aged 30 to 49 for age-controlled comparison. Patients in the irradiation group had statistically significant decreases in sexual enjoyment, ability to attain orgasm, coital opportunity, frequency of intercourse, and coital desire. The group who had nonradical surgical procedures had no significant change in sexual function after treatment. Similar results were found in both age-controlled subgroups, eliminating age as a major etiologic factor. Marked vaginal alterations were recorded in the majority of irradiated patients, but were not present among the groups treated with nonradical surgery. The vaginal changes alone could not be held accountable for the significant decrease in sexual function among women who received pelvic irradiation. The origin of decreased sexual desire after radiation therapy is complex, and not yet completely understood. We propose therapeutic programs to help women deal with the emotional and physical consequences of pelvic irradiation.

  20. Application of Volumetric Modulated Arc Therapy and Simultaneous Integrated Boost Techniques to Prepare “Safe Margin” in the Rabbit VX2 Limb Tumor Model

    PubMed Central

    Wang, Chong-Wen; Zhou, Yang; Bai, Jing-Ping; Liu, Hao; Liu, Yan; Shi, Guang-Li; Ding, Jiao-Jiao; Ma, Dong-Hui; Li, Wen-Ting; Xie, Peng-Ming; Yan, Yue

    2015-01-01

    Background In this study, we aimed to establish the rabbit VX2 limb tumor model, and then prepare a “necrotic zone” as a safe margin by volumetric modulated arc therapy and simultaneous integrated boost (VMAT-SIB) technique applied in the areas where the tumor is located adjacent to the bone (GTVboost area). Material/Methods Rabbits in the control group (n=10) were not treated, while those in the test group (n=10) were treated with the SIB schedule delivering a dose of 40Gy, 35Gy, 30Gy, and 25Gy to the GTVboost, GTV (gross tumor volume), CTV (clinical target volume), and PTV (planning target volume) in 10 fractions. Magnetic resonance diffusion-weighted imaging (MRDWI), 3-dimensional power Doppler angiography (3D-PDA), and histological changes were observed after radiotherapy. Results After radiotherapy, the two groups showed a significant difference in the GTVboost area. In the test group, the tumor necrosis showed a significantly low signal in DWI and high signal in apparent diffusion coefficient (ADC) maps. The 3D-PDA observation showed that tumor vascular structures decreased significantly. Histological analysis demonstrated that a necrotic zone could be generated in the GTVboost area, and microscopic examination observed cell necrosis and fibroplasia. Conclusions This studies demonstrated the feasibility of using VMAT-SIB technique in the rabbit VX2 limb tumor model. The formation of a necrotic zone can be effectively defined as safe margin in the GTVboost area. showing potential clinical applicability. PMID:26280694

  1. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  2. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    SciTech Connect

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W.; Komarnicky, Lydia T.

    2012-11-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  3. Radiation Therapy for Primary Eyelid Cancers in Tunisia.

    PubMed

    Belaid, A; Nasr, C; Benna, M; Cherif, A; Jmour, O; Bouguila, H; Benna, F

    2016-01-01

    Management of eyelid cancers is based on surgery and/or radiotherapy (RT). The treatment objective is to control tumors with acceptable functional and esthetic outcomes. The aim of this study was to evaluate the results of radiation therapy in management of epithelial eyelid cancers, reviewing retrospectively the clinical records of patients treated in our institution from January 1989 to December 2013. We focused on clinical and histological features, treatment characteristics, tolerance and disease control. One hundred and eight patients (62 men and 46 women) were enrolled, with a mean age of 61 years [ranges 1587]. The most frequent tumor location was the inner canthus (42.6%). Median tumor size was 21 mm [ranges 470]. Histological type was basal cell carcinoma in 88 cases (81.5%), squamous cell carcinoma in 16 (14.8%) and sebaceous carcinoma in 4 (3.7%). Radiation therapy was exclusive in 67 cases (62%) and postoperative for positive or close margins in the remaining cases. Kilovoltage external beam radiotherapy (KVRT) was used in 63 patients (58.3%) and lowdoserate interstitial brachytherapy in 37 (34.3%). Eight (7.4%) were treated with cobalt or with a combination of KVRTcobalt, KVRTelectron beams, KVRTbrachytherapy or cobaltelectron beams. The total delivered radiation doses were 70 Gy (2 Gy/fraction) in 62 patients (57.4%), 66 Gy (2 Gy/fraction) in 37 (34.3%) and 61.2 Gy (3.4Gy/fraction) in 9 (8.3%). After a median followup of 64 months, we noted 10 cases of local recurrences(9.2%): 7 after exclusive and 3 after postoperative RT. No local recurrence occurred in patients treated with brachytherapy. Actuarial 5year local recurrencefree rate, diseasefree survival and overall survival were respectively 90%, 90% and 97%. Tstage was found to be a significant factor for recurrence (p=0.047). All acute radiationrelated reactions were scored grade I or II. Delayed effects were eye watering in 24 cases (22.2%), eye dryness in 19 (17.6%), unilateral cataract in 7 (6

  4. Has the use of computers in radiation therapy improved the accuracy in radiation dose delivery?

    NASA Astrophysics Data System (ADS)

    Van Dyk, J.; Battista, J.

    2014-03-01

    Purpose: It is well recognized that computer technology has had a major impact on the practice of radiation oncology. This paper addresses the question as to how these computer advances have specifically impacted the accuracy of radiation dose delivery to the patient. Methods: A review was undertaken of all the key steps in the radiation treatment process ranging from machine calibration to patient treatment verification and irradiation. Using a semi-quantitative scale, each stage in the process was analysed from the point of view of gains in treatment accuracy. Results: Our critical review indicated that computerization related to digital medical imaging (ranging from target volume localization, to treatment planning, to image-guided treatment) has had the most significant impact on the accuracy of radiation treatment. Conversely, the premature adoption of intensity-modulated radiation therapy has actually degraded the accuracy of dose delivery compared to 3-D conformal radiation therapy. While computational power has improved dose calibration accuracy through Monte Carlo simulations of dosimeter response parameters, the overall impact in terms of percent improvement is relatively small compared to the improvements accrued from 3-D/4-D imaging. Conclusions: As a result of computer applications, we are better able to see and track the internal anatomy of the patient before, during and after treatment. This has yielded the most significant enhancement to the knowledge of "in vivo" dose distributions in the patient. Furthermore, a much richer set of 3-D/4-D co-registered dose-image data is thus becoming available for retrospective analysis of radiobiological and clinical responses.

  5. Surgical and radiation therapy management of recurrent anal melanoma

    PubMed Central

    Ling, Ted C.; Slater, Jason M.; Senthil, Maheswari; Kazanjian, Kevork; Howard, Frank; Garberoglio, Carlos A.; Slater, Jerry D.

    2014-01-01

    Background Melanoma of the anorectal mucosa is a rare but highly aggressive tumor. Its presenting symptoms are frequently confused with hemorrhoids, thereby causing a delay in diagnosis. Anorectal melanoma carries with it a very poor prognosis. There is a paucity of data investigating management options for anorectal melanoma, and even fewer data reporting recurrent or refractory cases. Case presentation This case documents a 41-year-old female with a long history of hemorrhoids presenting with anorectal discharge. She was incidentally found have anorectal melanoma following surgical resection. Systemic diagnostic work-up demonstrated PET-avid lymphadenopathy in her right groin. She underwent right groin dissection. However, seven months later she recurred in her right groin and a new recurrent mass was found in her pelvis. She underwent a second groin dissection and resection of the pelvic recurrence. This was followed by a course of hypofractionated radiation therapy then systemic immunotherapy. Discussion Surgery has been the mainstay of treatment. However, the extent of surgery has been the topic of investigation. Historically, radical resections have been performed but they result in high rates of post-operative morbidity. Newer studies have compared radical resection with wide local excisions and found comparable outcomes. Anorectal melanoma is frequently a systemic disease. The ideal systemic therapy regimen has not yet been determined but numerous studies show a benefit to multi-agent treatments. Radiation therapy is typically given in the post-operative or palliative setting. Conclusions Anorectal mucosal melanoma is a very rare but aggressive disease with a poor prognosis. The overall treatment goal should strive to optimize quality of life and tumor control while minimizing treatment-related morbidities. PMID:24490051

  6. Results of conservative surgery and radiation therapy for breast cancer

    SciTech Connect

    Osteen, R.T.; Smith, B.L. )

    1990-10-01

    For stage I or II breast cancer, conservative surgery and radiation therapy are as effective as modified radical or radical mastectomy. In most cases, cosmetic considerations and the availability of therapy are the primary concerns. The extent of a surgical resection less than a mastectomy has not been a subject of a randomized trial and is controversial. It appears that removal of a quadrant of the breast for small lesions is safe but excessive. It may be possible to limit the breast resection to gross tumor removal for most patients while using wider resections for patients with an extensive intraductal component or for invasive lobular carcinoma. It also appears that excluding patients from breast conservation on the basis of positive margins on the first attempt at tumor excision may be unnecessarily restrictive. Although patients with an extensive intraductal component or invasive lobular carcinoma should have negative margins, it appears that a patient with predominantly invasive ductal carcinoma can be treated without re-excision if all gross tumor has been resected and there is no reason to suspect extensive microscopic disease. Patients with indeterminate margins should have a re-excision. Axillary dissection provides prognostic information and prevents progression of the disease within the axilla. Axillary dissections limited to level I will accurately identify a substantial number of patients who have pathologically positive but clinically negative nodes. When combined with radiation therapy to the axilla, a level I dissection results in a limited number of patients with progressive axillary disease. Patients with pathologically positive axillas and patients at particularly high risk for systemic disease because of the extent of axillary node involvement can be identified by dissections of levels I and II. 60 references.

  7. Molecular Pathways: Targeted α-Particle Radiation Therapy

    PubMed Central

    Baidoo, Kwamena E.; Yong, Kwon; Brechbiel, Martin W.

    2012-01-01

    An α-particle, a 4He nucleus, is exquisitely cytotoxic, and indifferent to many limitations associated with conventional chemo- and radiotherapy. The exquisite cytotoxicity of α radiation, the result of its high mean energy deposition (high linear energy transfer, LET) and limited range in tissue, provides for a highly controlled therapeutic modality that can be targeted to selected malignant cells (targeted α-therapy (TAT)) with minimal normal tissue effects. There is a burgeoning interest in the development of TAT that is buoyed by the increasing number of ongoing clinical trials worldwide. The short path length renders α-emitters suitable for treatment and management of minimal disease such as micrometastases or residual tumor after surgical debulking, hematological cancers, infections, and compartmental cancers such as ovarian cancer or neoplastic meningitis. Yet, despite decades of study of high-LET radiation, the mechanistic pathways of the effects of this modality remain not well defined. The modality is effectively presumed to follow a simple therapeutic mechanism centered on catastrophic double strand (ds) DNA breaks without full examination of the actual molecular pathways and targets that are activated that directly impact cell survival or death. This Molecular Pathways article provides an overview of the mechanisms and pathways that are involved in the response to and repair of TAT induced DNA damage as currently understood. Finally, this article highlights the current state of clinical translation of TAT as well as other high-LET radionuclide radiation therapy using α-emitters such as 225Ac, 211At, 213Bi, 212Pb and 223Ra. PMID:23230321

  8. Managing complications of radiation therapy in head and neck cancer patients: Part I. Management of xerostomia.

    PubMed

    Ngeow, Wei Cheong; Chai, Wen Lin; Rahman, Roslan Abdul; Ramli, Roszalina

    2006-12-01

    Head and neck cancer is becoming a more recognizable pathology to the general population and dentists. The modes of treatment include surgery and/or radiation therapy. Where possible, pretreatment dental assessment shall be provided for these patients before they receive radiation therapy. There are occasions, however, whereby head and neck cancer patients are not prepared optimally for radiation therapy. Because of this, they succumb to complicated oral adverse effects after radiation therapy. Part I of this series reviews the management of xerostomia. The management of the effect of xerostomia to the dentition/oral cavity is discussed in Part II. PMID:17378333

  9. BRCA1 Mutation: A Predictive Marker for Radiation Therapy?

    PubMed Central

    Kan, Charlene; Zhang, Junran

    2015-01-01

    DNA repair, particularly DNA double strand breaks (DSBs) repair, is essential for the survival of both normal and cancer cells. An elaborate repair mechanism has been developed in cells in order to efficiently repair the damaged DNA. The pathways that are predominately involved in DSBs repair are homologous recombination (HR) and classical nonhomologous end-joining (cNHEJ) although alternative NHEJ (aNHEJ), a third DSBs repair pathway, may also be important in certain contexts. The protein of BRCA1 encoded by the tumor suppressor gene BRCA1 regulates all DSBs repair pathways. Given the fact that DSBs represent the most biologically significant lesions induced by ionizing radiation (IR) and impaired DSBs repair leads to radiation sensitivity it has been expected that cancer patients with BRCA1 mutations should benefit from radiation therapy (RT). However, the clinical data are conflicting and inconclusive. Here, we provide an overview about the current status of the data regarding BRCA1 deficiency and RT sensitivity in both experimental models and clinical investigations. In addition, we will discuss a strategy to potentiate the effects of RT by poly(ADP ribose) polymerase (PARP) inhibitors, the pharmacologic drugs that are being investigated as a monotherapy for the treatment of patients with BRCA 1/2 mutations. PMID:26383678

  10. Stereotactic multibeam radiation therapy system in a PACS environment

    NASA Astrophysics Data System (ADS)

    Fresne, Francoise; Le Gall, G.; Barillot, Christian; Gibaud, Bernard; Manens, Jean-Pierre; Toumoulin, Christine; Lemoine, Didier; Chenal, C.; Scarabin, Jean-Marie

    1991-05-01

    A Multibeam radiation therapy treatment is a non-invasive technique devoted to treat a lesion within the cerebral medium by focusing photon-beams on the same target from a high number of entrance points. We present here a computer assisted dosimetric planning procedure which includes: (1) an analysis module to define the target volume by using 2D and 3D displays, (2) a planing module to issue a treatment strategy including the dosimetric simulations and (3) a treatment module setting up the parameters to order the robotized treatment system (i.e. chair- framework, radiation unit machine). Another important feature of this system is its connection to the PACS system SIRENE settled in the University hospital of Rennes which makes possible the archiving and the communication of the multimodal images (CT, MRI, Angiography) used by this application. The corporate use of stereotactic methods and the multimodality imagery ensures spatial coherence and makes the target definition and the cognition of the structures environment more accurate. The dosimetric planning suited to the spatial reference (i.e. the stereotactic frame) guarantees an optimal distribution of the dose computed by an original 3D volumetric algorithm. The robotic approach of the treatment stage has consisted to design a computer driven chair-framework cluster to position the target volume at the radiation unit isocenter.

  11. Skeletal sequelae of radiation therapy for malignant childhood tumors

    SciTech Connect

    Butler, M.S.; Robertson, W.W. Jr.; Rate, W.; D'Angio, G.J.; Drummond, D.S. )

    1990-02-01

    One hundred forty-three patients who received radiation therapy for childhood tumors, and survived to the age of skeletal maturity, were studied by retrospective review of oncology records and roentgenograms. Diagnoses for the patients were the following: Hodgkin's lymphoma (44), Wilms's tumor (30), acute lymphocytic leukemia (26), non-Hodgkin's lymphoma (18), Ewing's sarcoma (nine), rhabdomyosarcoma (six), neuroblastoma (six), and others (four). Age at the follow-up examination averaged 18 years (range, 14-28 years). Average length of follow-up study was 9.9 years (range, two to 18 years). Asymmetry of the chest and ribs was seen in 51 (36%) of these children. Fifty (35%) had scoliosis; 14 had kyphosis. In two children, the scoliosis was treated with a brace, while one developed significant kyphosing scoliosis after laminectomy and had spinal fusion. Twenty-three (16%) patients complained of significant pain at the radiation sites. Twelve of the patients developed leg-length inequality; eight of those were symptomatic. Three patients developed second primary tumors. Currently, the incidence of significant skeletal sequelae is lower and the manifestations are less severe than reported in the years from 1940 to 1970. The reduction in skeletal complications may be attributed to shielding of growth centers, symmetric field selection, decreased total radiation doses, and sequence changes in chemotherapy.

  12. Ultrasound Thermometry for Therapy-level Radiation Dosimetry

    NASA Astrophysics Data System (ADS)

    Taylor, Courtney

    2010-03-01

    Radiation oncology is the process of administering a specified dose of radiation to a patient currently receiving treatment for a form of cancer. In this process, it is vital to know the delivered dose for a given radiation beam to correctly treat a patient. The primary reference standard for absorbed dose is established using water calorimetry. The absorbed dose, typically of order 1 Gy (J/kg) at therapy levels, is realized by measuring sub-millikelvin temperature changes using a thermistor in a sensitive Wheatstone bridge. Ultrasound technology has been investigated as an alternative to thermistor measurements since the speed of sound propagation in water varies with temperature. With ultrasonic time-of-flight and highly sensitive phase detection techniques, temperature sensitivity comparable to that of the thermistor bridge has been achieved without introducing non-water materials into the test area. A single ultrasound transducer transmitting and receiving at 5.0 MHz throughout the length of the water phantom, and the phase change of the sound wave was used to determine temperature increase from an irradiative source at specified depths of the phantom. In this experiment, the exposure period was varied from 15s to 160s cyclically by modulating a heat lamp, and a profile of the measured temperature response as a function of the period was obtained using Fourier analysis. Due to the large temperature gradient in the water phantom, measurements are prone to convection which was indeed observed and will be discussed.

  13. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy.

    PubMed

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-11-10

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.

  14. Therapeutic Implications for Overcoming Radiation Resistance in Cancer Therapy

    PubMed Central

    Kim, Byeong Mo; Hong, Yunkyung; Lee, Seunghoon; Liu, Pengda; Lim, Ji Hong; Lee, Yong Heon; Lee, Tae Ho; Chang, Kyu Tae; Hong, Yonggeun

    2015-01-01

    Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR. PMID:26569225

  15. Postoperative intensity modulated radiation therapy in high risk prostate cancer: a dosimetric comparison.

    PubMed

    Digesú, Cinzia; Cilla, Savino; De Gaetano, Andrea; Massaccesi, Mariangela; Macchia, Gabriella; Ippolito, Edy; Deodato, Francesco; Panunzi, Simona; Iapalucci, Chiara; Mattiucci, Gian Carlo; D'Angelo, Elisa; Padula, Gilbert D A; Valentini, Vincenzo; Cellini, Numa; Piermattei, Angelo; Morganti, Alessio G

    2011-01-01

    The aim of this study was to compare intensity-modulated radiation therapy (IMRT) with 3D conformal technique (3D-CRT), with respect to target coverage and irradiation of organs at risk for high dose postoperative radiotherapy (PORT) of the prostate fossa. 3D-CRT and IMRT treatment plans were compared with respect to dose to the rectum and bladder. The dosimetric comparison was carried out in 15 patients considering 2 different scenarios: (1) exclusive prostate fossa irradiation, and (2) pelvic node irradiation followed by a boost on the prostate fossa. In scenario (1), a 3D-CRT plan (box technique) and an IMRT plan were calculated and compared for each patient. In scenario (2), 3 treatment plans were calculated and compared for each patient: (a) 3D-CRT box technique for both pelvic (prophylactic nodal irradiation) and prostate fossa irradiation (3D-CRT only); (b) 3D-CRT box technique for pelvic irradiation followed by an IMRT boost to the prostatic fossa (hybrid 3D-CRT and IMRT); and (c) IMRT for both pelvic and prostate fossa irradiation (IMRT only). For exclusive prostate fossa irradiation, IMRT significantly reduced the dose to the rectum (lower Dmean, V50%, V75%, V90%, V100%, EUD, and NTCP) and the bladder (lower Dmean, V50%, V90%, EUD and NTCP). When prophylactic irradiation of the pelvis was also considered, plan C (IMRT only) performed better than plan B (hybrid 3D-CRT and IMRT) as respect to both rectum and bladder irradiation (reduction of Dmean, V50%, V75%, V90%, equivalent uniform dose [EUD], and normal tissue complication probability [NTCP]). Plan (b) (hybrid 3D-CRT and IMRT) performed better than plan (a) (3D-CRT only) with respect to dose to the rectum (lower Dmean, V75%, V90%, V100%, EUD, and NTCP) and the bladder (Dmean, EUD, and NTCP). Postoperative IMRT in prostate cancer significantly reduces rectum and bladder irradiation compared with 3D-CRT.

  16. SmartArc-Based Volumetric Modulated Arc Therapy for Oropharyngeal Cancer: A Dosimetric Comparison With Both Intensity-Modulated Radiation Therapy and Helical Tomotherapy

    SciTech Connect

    Clemente, Stefania; Wu, BinBin; Sanguineti, Giuseppe; Fusco, Vincenzo; Ricchetti, Francesco; Wong, John; McNutt, Todd

    2011-07-15

    Purpose: To investigate the roles of volumetric modulated arc therapy with SmartArc (VMAT-S), intensity-modulated radiation therapy (IMRT), and helical tomotherapy (HT) for oropharyngeal cancer using a simultaneous integrated boost (SIB) approach. Methods and Materials: Eight patients treated with IMRT were selected at random. Plans were computed for both IMRT and VMAT-S (using Pinnacle TPS for an Elekta Infinity linac) along with HT. A three-dose level prescription was used to deliver 70 Gy, 63 Gy, and 58.1 Gy to regions of macroscopic, microscopic high-risk, and microscopic low-risk disease, respectively. All doses were given in 35 fractions. Comparisons were performed on dose-volume histogram data, monitor units per fraction (MU/fx), and delivery time. Results: VMAT-S target coverage was close to that achieved by IMRT, but inferior to HT. The conformity and homogeneity within the PTV were improved for HT over all strategies. Sparing of the organs at risk (OAR) was achieved with all modalities. VMAT-S (along with HT) shortened delivery time (mean, -38%) and reduced MU/fx (mean, -28%) compared with IMRT. Conclusion: VMAT-S represents an attractive solution because of the shorter delivery time and the lower number of MU/fx compared with IMRT. However, in this complex clinical setting, current VMAT-S does not appear to provide any distinct advantage compared with helical tomotherapy.

  17. Dosimetric study for cervix carcinoma treatment using intensity modulated radiation therapy (IMRT) compensation based on 3D intracavitary brachytherapy technique

    PubMed Central

    Yin, Gang; Wang, Pei; Lang, Jinyi; Tian, Yin; Luo, Yangkun; Fan, Zixuan

    2016-01-01

    Purpose Intensity modulated radiation therapy (IMRT) compensation based on 3D high-dose-rate (HDR) intracavitary brachytherapy (ICBT) boost technique (ICBT + IMRT) has been used in our hospital for advanced cervix carcinoma patients. The purpose of this study was to compare the dosimetric results of the four different boost techniques (the conventional 2D HDR intracavitary brachytherapy [CICBT], 3D optimized HDR intracavitary brachytherapy [OICBT], and IMRT-alone with the applicator in situ). Material and methods For 30 patients with locally advanced cervical carcinoma, after the completion of external beam radiotherapy (EBRT) for whole pelvic irradiation 45 Gy/25 fractions, five fractions of ICBT + IMRT boost with 6 Gy/fractions for high risk clinical target volume (HRCTV), and 5 Gy/fractions for intermediate risk clinical target volume (IRCTV) were applied. Computed tomography (CT) and magnetic resonance imaging (MRI) scans were acquired using an in situ CT/MRI-compatible applicator. The gross tumor volume (GTV), the high/intermediate-risk clinical target volume (HRCTV/IRCTV), bladder, rectum, and sigmoid were contoured by CT scans. Results For ICBT + IMRT plan, values of D90, D100 of HRCTV, D90, D100, and V100 of IRCTV significantly increased (p < 0.05) in comparison to OICBT and CICBT. The D2cc values for bladder, rectum, and sigmoid were significantly lower than that of CICBT and IMRT alone. In all patients, the mean rectum V60 Gy values generated from ICBT + IMRT and OICBT techniques were very similar but for bladder and sigmoid, the V60 Gy values generated from ICBT + IMRT were higher than that of OICBT. For the ICBT + IMRT plan, the standard deviations (SD) of D90 and D2cc were found to be lower than other three treatment plans. Conclusions The ICBT + IMRT technique not only provides good target coverage but also maintains low doses (D2cc) to the OAR. ICBT + IMRT is an optional technique to boost parametrial region or tumor of large size and irregular shape

  18. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  19. Predicting which patients actually receive radiation following breast conserving therapy in Canadian populations

    PubMed Central

    Guidolin, Keegan; Lock, Michael; Richard, Lucie; Boldt, Gabriel; Brackstone, Muriel

    2016-01-01

    Summary Canadian women with breast cancer may choose breast conserving therapy as their course of treatment, requiring both breast conserving surgery and adjuvant radiation therapy. However, more than 15% of Canadian women fail to receive the appropriate radiation therapy, putting them at increased risk for recurrence. Age, distance from their radiation therapy centre and stage of disease affect patients’ likelihood of receiving prescribed radiation therapy. We propose a nomogram that allows physicians to predict which patients will and will not receive radiation. This nomogram, once validated, could be used to guide decision making when choosing between breast conserving therapy and mastectomy as the treatment course and thereby change the practice of breast cancer management. PMID:27438052

  20. Combinations of Radiation Therapy and Immunotherapy for Melanoma: A Review of Clinical Outcomes

    SciTech Connect

    Barker, Christopher A.; Postow, Michael A.

    2014-04-01

    Radiation therapy has long played a role in the management of melanoma. Recent advances have also demonstrated the efficacy of immunotherapy in the treatment of melanoma. Preclinical data suggest a biologic interaction between radiation therapy and immunotherapy. Several clinical studies corroborate these findings. This review will summarize the outcomes of studies reporting on patients with melanoma treated with a combination of radiation therapy and immunotherapy. Vaccine therapies often use irradiated melanoma cells, and may be enhanced by radiation therapy. The cytokines interferon-α and interleukin-2 have been combined with radiation therapy in several small studies, with some evidence suggesting increased toxicity and/or efficacy. Ipilimumab, a monoclonal antibody which blocks cytotoxic T-lymphocyte antigen-4, has been combined with radiation therapy in several notable case studies and series. Finally, pilot studies of adoptive cell transfer have suggested that radiation therapy may improve the efficacy of treatment. The review will demonstrate that the combination of radiation therapy and immunotherapy has been reported in several notable case studies, series and clinical trials. These clinical results suggest interaction and the need for further study.

  1. Automatic CT simulation optimization for radiation therapy: A general strategy

    SciTech Connect

    Li, Hua Chen, Hsin-Chen; Tan, Jun; Gay, Hiram; Michalski, Jeff M.; Mutic, Sasa; Yu, Lifeng; Anastasio, Mark A.; Low, Daniel A.

    2014-03-15

    Purpose: In radiation therapy, x-ray computed tomography (CT) simulation protocol specifications should be driven by the treatment planning requirements in lieu of duplicating diagnostic CT screening protocols. The purpose of this study was to develop a general strategy that allows for automatically, prospectively, and objectively determining the optimal patient-specific CT simulation protocols based on radiation-therapy goals, namely, maintenance of contouring quality and integrity while minimizing patient CT simulation dose. Methods: The authors proposed a general prediction strategy that provides automatic optimal CT simulation protocol selection as a function of patient size and treatment planning task. The optimal protocol is the one that delivers the minimum dose required to provide a CT simulation scan that yields accurate contours. Accurate treatment plans depend on accurate contours in order to conform the dose to actual tumor and normal organ positions. An image quality index, defined to characterize how simulation scan quality affects contour delineation, was developed and used to benchmark the contouring accuracy and treatment plan quality within the predication strategy. A clinical workflow was developed to select the optimal CT simulation protocols incorporating patient size, target delineation, and radiation dose efficiency. An experimental study using an anthropomorphic pelvis phantom with added-bolus layers was used to demonstrate how the proposed prediction strategy could be implemented and how the optimal CT simulation protocols could be selected for prostate cancer patients based on patient size and treatment planning task. Clinical IMRT prostate treatment plans for seven CT scans with varied image quality indices were separately optimized and compared to verify the trace of target and organ dosimetry coverage. Results: Based on the phantom study, the optimal image quality index for accurate manual prostate contouring was 4.4. The optimal tube

  2. Use of Image-Guided Stereotactic Body Radiation Therapy in Lieu of Intracavitary Brachytherapy for the Treatment of Inoperable Endometrial Neoplasia

    SciTech Connect

    Kemmerer, Eric; Hernandez, Enrique; Ferriss, James S.; Valakh, Vladimir; Miyamoto, Curtis; Li, Shidong; Micaily, Bizhan

    2013-01-01

    Purpose: Retrospective analysis of patients with invasive endometrial neoplasia who were treated with external beam radiation therapy followed by stereotactic body radiation therapy (SBRT) boost because of the inability to undergo surgery or brachytherapy. Methods and Materials: We identified 11 women with stage I-III endometrial cancer with a median age of 78 years that were not candidates for hysterectomy or intracavitary brachytherapy secondary to comorbidities (91%) or refusal (9%). Eight patients were American Joint Committee on Cancer (AJCC) stage I (3 stage IA, 5 stage IB), and 3 patients were AJCC stage III. Patients were treated to a median of 4500 cGy at 180 cGy per fraction followed by SBRT boost (600 cGy per fraction Multiplication-Sign 5). Results: The most common side effect was acute grade 1 gastrointestinal toxicity in 73% of patients, with no late toxicities observed. With a median follow-up of 10 months since SBRT, 5 patients (45%) experienced locoregional disease progression, with 3 patients (27%) succumbing to their malignancy. At 12 and 18 months from SBRT, the overall freedom from progression was 68% and 41%, respectively. Overall freedom from progression (FFP) was 100% for all patients with AJCC stage IA endometrial carcinoma, whereas it was 33% for stage IB at 18 months. The overall FFP was 100% for International Federation of Obstetrics and Gynecology grade 1 disease. The estimated overall survival was 57% at 18 months from diagnosis. Conclusion: In this study, SBRT boost to the intact uterus was feasible, with encouragingly low rates of acute and late toxicity, and favorable disease control in patients with early-stage disease. Additional studies are needed to provide better insight into the best management of these clinically challenging cases.

  3. Implementation of Image-Guidance Techniques in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Thomas, Michael; Clark, Brenda; MacPherson, Miller; Montgomery, Lynn; Gerig, Lee

    2008-06-01

    For more than 100 years, physicists have been a vital part of the medical team required to deliver radiation therapy. Their role encompasses the verification of dose accuracy to the development and implementation of new techniques, the most recent of which is the incorporation of daily image guidance to account for inter- and intra-fraction target changes. For example, computed tomography (CT) integrated into radiotherapy treatment units allows the image-guided treatment of the prostate where the target location depends on the degree of rectal filling--a parameter that changes on timescales from minutes to weeks. Different technology is required for the adequate treatment of small lung tumours since respiration occurs on timescales of seconds. This presentation will review current image-guided techniques.

  4. Head and Neck Soft Tissue Sarcomas Treated with Radiation Therapy

    PubMed Central

    Vitzthum, Lucas K.; Brown, Lindsay C.; Rooney, Jessica W.; Foote, Robert L.

    2016-01-01

    Head and neck soft tissue sarcomas (HNSTSs) are rare and heterogeneous cancers in which radiation therapy (RT) has an important role in local tumor control (LC). The purpose of this study was to evaluate outcomes and patterns of treatment failure in patients with HNSTS treated with RT. A retrospective review was performed of adult patients with HNSTS treated with RT from January 1, 1998, to December 31, 2012. LC, locoregional control (LRC), disease-free survival (DFS), overall survival (OS), and predictors thereof were assessed. Forty-eight patients with HNSTS were evaluated. Five-year Kaplan-Meier estimates of LC, LRC, DFS, and OS were 87, 73, 63, and 83%, respectively. Angiosarcomas were found to be associated with worse LC, LRC, DFS, and OS. Patients over the age of 60 had lower rates of DFS. HNSTSs comprise a diverse group of tumors that can be managed with various treatment regimens involving RT. Angiosarcomas have higher recurrence and mortality rates. PMID:27441072

  5. Low Level Laser Therapy: laser radiation absorption in biological tissues

    NASA Astrophysics Data System (ADS)

    Di Giacomo, Paola; Orlando, Stefano; Dell'Ariccia, Marco; Brandimarte, Bruno

    2013-07-01

    In this paper we report the results of an experimental study in which we have measured the transmitted laser radiation through dead biological tissues of various animals (chicken, adult and young bovine, pig) in order to evaluate the maximum thickness through which the power density could still produce a reparative cellular effect. In our experiments we have utilized a pulsed laser IRL1 ISO model (based on an infrared diode GaAs, λ=904 nm) produced by BIOMEDICA s.r.l. commonly used in Low Level Laser Therapy. Some of the laser characteristics have been accurately studied and reported in this paper. The transmission results suggest that even with tissue thicknesses of several centimeters the power density is still sufficient to produce a cell reparative effect.

  6. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters.

    PubMed

    Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel

    2015-01-01

    This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development.

  7. Nanoparticles for Radiation Therapy Enhancement: the Key Parameters

    PubMed Central

    Retif, Paul; Pinel, Sophie; Toussaint, Magali; Frochot, Céline; Chouikrat, Rima; Bastogne, Thierry; Barberi-Heyob, Muriel

    2015-01-01

    This review focuses on the radiosensitization strategies that use high-Z nanoparticles. It does not establish an exhaustive list of the works in this field but rather propose constructive criticisms pointing out critical factors that could improve the nano-radiation therapy. Whereas most reviews show the chemists and/or biologists points of view, the present analysis is also seen through the prism of the medical physicist. In particular, we described and evaluated the influence of X-rays energy spectra using a numerical analysis. We observed a lack of standardization in preclinical studies that could partially explain the low number of translation to clinical applications for this innovative therapeutic strategy. Pointing out the critical parameters of high-Z nanoparticles radiosensitization, this review is expected to contribute to a larger preclinical and clinical development. PMID:26155318

  8. Palliative radiation therapy in a dog with malignant trichoepithelioma.

    PubMed

    Hoshino, Y; Mori, T; Sakai, H; Murakami, M; Maruo, K

    2012-06-01

    An 11-year-old male Bearded Collie was brought to the Gifu University Animal Medical Centre with a skin mass on the lateral right thigh. Physical examination revealed a 30 × 65-mm oval mass with an alopecic and ulcerated surface. Histopathology of the surgically excised sample confirmed malignant trichoepithelioma. Five months after the surgery, the dog experienced lumbar pain resulting from metastasis to the lumbar vertebrae. Radiation therapy (RT) was performed and it alleviated the lumbar pain. Nine months after the surgery, multiple skin metastases were identified. RT was performed at each occurrence, which reduced the size of each tumour and resulted in a partial response; however, systemic metastasis occurred and the dog died 17 months after the initial surgery. Canine malignant trichoepithelioma is a rare tumour, so an effective treatment has not been determined. Data from our case study indicate that RT has potential for pain control of primary and metastatic malignant trichoepithelioma.

  9. Cancer of the glottis: prognostic factors in radiation therapy

    SciTech Connect

    Mantravadi, R.V.P.; Liebner, E.J.; Haas, R.E.; Skolnik, E.M.; Applebaum, E.L.

    1983-10-01

    The authors conducted a multivariate analysis of the prognostic factors in 96 patients with early glottic cancer treated by radiation therapy. Of these, 73 had T/sub 1/ and 23 had T/sub 2/ tumor. The primary tumor was controlled in 82% of T/sub 1/ amd 74% for T/sub 2/. Carcinoma of the anterior commissure associated with bilateral vocal cord involvement, subglottic tumor extension, persistent or recurrent laryngeal edema, and impaired cord mobility was found to adversely influence the prognosis. The data suggest that irradiation is the treatment of choice for glottic cancer limited to the vocal cords or with minimal extension to the anterior commissure or gupraglottic larynx.

  10. Cancer of the glottis: prognostic factors in radiation therapy

    SciTech Connect

    Mantravadi, R.V.; Liebner, E.J.; Haas, R.E.; Skolnik, E.M.; Applebaum, E.L.

    1983-10-01

    The authors conducted a multivariate analysis of the prognostic factors in 96 patients with early glottic cancer treated by radiation therapy. Of these, 73 had T1 and 23 had T2 tumor. The primary tumor was controlled in 82% of T1 and 74% of T2 lesions. Actuarial five-year survival rates were 87% for T1 and 74% for T2. Carcinoma of the anterior commissure associated with bilateral vocal cord involvement, subglottic tumor extension, persistent or recurrent laryngeal edema, and impaired cord mobility was found to adversely influence the prognosis. The data suggest that irradiation is the treatment of choice for glottic cancer limited to the vocal cords or with minimal extension to the anterior commissure or supraglottic larynx.

  11. Effects of radiation therapy on skeletal growth in childhood

    SciTech Connect

    Goldwein, J.W. )

    1991-01-01

    Ionizing radiation was used to treat childhood cancer long before the advent of chemotherapy, and it took little time for physicians to appreciate the deleterious effects it had on skeletal growth. The cause of this complication results predominantly from alteration of chondroblastic activity. This may stem directly from irradiation at the epiphyseal plate or indirectly from irradiation of glands that secrete growth-mediating hormones. The complication can go far beyond the obvious physical afflictions and extend into the psychologic domain, rendering deeper, more permanent scars. Presently, many of these effects are predictable, reducible, and treatable without compromising the cure that so often depends on the use of irradiation. Because of the complexities of childhood cancer therapy, strategies aimed at diminishing these effects are challenging. It is imperative that these effects be understood so that they can be reduced in current patients and prevented in future patients.33 references.

  12. Carcinoma of the nasal vestibule treated with radiation therapy

    SciTech Connect

    Mendenhall, N.P.; Parsons, J.T.; Cassisi, N.J.; Million, R.R.

    1987-05-01

    Twenty-two patients with squamous carcinoma of the nasal vestibule were treated at the University of Florida Division of Radiation Therapy with curative intent. Fifteen lesions were de novo and seven recurrent after surgery. By AJCC classification, 7 lesions were Tx or T1, 2 were T2, 2 were T3, and 11 were T4. Management of the primary tumor and regional lymphatic drainage was highly individualized. Local control was achieved in 19 out of 22 lesions. The ultimate regional lymph node control rate was 22 out of 22, although two patients required radical neck dissection after development of lymph node disease in untreated regional lymphatics. Two patients have died of cancer and three of intercurrent disease. Cosmetic results are generally excellent but may be compromised by previous surgery in recurrent lesions or tumor destruction of normal tissues in advanced lesions. Complications of treatment are minimal.

  13. Intensity-modulated radiation therapy: supportive data for prostate cancer.

    PubMed

    Cahlon, Oren; Hunt, Margie; Zelefsky, Michael J

    2008-01-01

    Since its introduction into clinical use in the mid-1990s, intensity-modulated radiation therapy (IMRT) has emerged as the most effective and widely used form of external-beam radiotherapy for localized prostate cancer. Multiple studies have confirmed the importance of delivering sufficiently high doses to the prostate to achieve cure. The dosimetric superiority of IMRT over conventional techniques to produce conformal dose distributions that allow for organ sparing has been shown. A growing number of reports have confirmed that IMRT is the safest way to deliver high doses of external-beam irradiation to the prostate and the regional lymph nodes. Advances in imaging and onboard verification systems continue to advance the capabilities of IMRT and have potential implications with regards to further dose escalation and hypofractionated regimens. The clinical data in support of IMRT and the associated technical aspects of IMRT treatment planning and implementation are highlighted in this review.

  14. Hyperbaric Oxygen Therapy in Treating Long-Term Gastrointestinal Adverse Effects Caused by Radiation Therapy in Patients With Pelvic Cancer

    ClinicalTrials.gov

    2011-07-14

    Bladder Cancer; Cervical Cancer; Colorectal Cancer; Endometrial Cancer; Gastrointestinal Complications; Long-term Effects Secondary to Cancer Therapy in Adults; Ovarian Cancer; Prostate Cancer; Radiation Toxicity; Sarcoma; Testicular Germ Cell Tumor; Vaginal Cancer

  15. Proton-minibeam radiation therapy: A proof of concept

    SciTech Connect

    Prezado, Y.; Fois, G. R.

    2013-03-15

    Purpose: This Monte Carlo simulation work aims at studying a new radiotherapy approach called proton-minibeam radiation therapy (pMBRT). The main objective of this proof of concept was the evaluation of the possible gain in tissue sparing, thanks to the spatial fractionation of the dose, which could be used to deposit higher and potentially curative doses in clinical cases where tissue tolerances are a limit for conventional methods. Methods: Monte Carlo simulations (GATE v.6) have been used as a method to calculate the ratio of the peak-to-valley doses (PVDR) for arrays of proton minibeams of 0.7 mm width and several center-to-center distances, at different depths in a water phantom. The beam penumbras were also evaluated as an important parameter for tissue sparing, for example, in the treatment of non-cancer diseases like epilepsy. Two proton energies were considered in this study: a clinically relevant energy (105 MeV) and a very high energy (1 GeV), to benefit from a reduced lateral scattering. For the latter case, an interlaced geometry was also evaluated. Results: Higher or similar PVDR than the ones obtained in x-rays minibeam radiation therapy were achieved in several pMBRT configurations. In addition, for the two energies studied, the beam penumbras are smaller than in the case of Gamma Knife radiosurgery. Conclusions: The high PVDR obtained for some configurations and the small penumbras in comparison with existing radiosurgery techniques, suggest a potential gain in healthy tissue sparing in this new technique. Biological studies are warranted to assess the effects of pMBRT on both normal and tumoral tissues.

  16. Frameless stereotactic body radiation therapy for multiple lung metastases.

    PubMed

    Li, Qilin; Mu, Jinming; Gu, Wendong; Chen, Yuan; Ning, Zhonghua; Jin, Jianxue; Pei, Honglei

    2014-07-08

    Two patients with multiple lung metastases (≥ 5) were treated using frameless stereotactic body radiation therapy (SBRT) on an Elekta Axesse linear accelerator equipped with an interdigitation-capable multileaf collimator and four-dimensional cone-beam CT (4D CBCT). The technique and the early clinical outcomes were evaluated. Patient A with five lung metastases and Patient B with seven lung metastases underwent SBRT (48 Gy/8 fractions for Patient A, 42 Gy/7 fractions for Patient B). The treatments were administered using a 6 MV photon beam. The nominal dose rate was 660 MUs/min. Patients were positioned and immobilized using thermoplastic masks and image guidance was done using 4D CBCT. The targets were delineated on the images of the 4D CT, and the positron emission tomography-computed tomography (PET-CT) images were taken as references. A two-step, volumetric-modulated arc therapy (VMAT) plan was designed for each patient. Step 1: the lesions in one lung were irradiated by a 210° arc field; Step 2: the rest of the lesions in the other lung were irradiated by a 120° arc field. Plans were evaluated using conformity index (CI) and homogeneity index (HI). Patients were followed up and adverse events were graded according to the Common Terminology Criteria for Adverse Events v4.0 (CTCAE v4.0). The beam-on time of each treatment was less than 10 min. The CI and HI for the two plans were 0.562, 0.0709 and 0.513, 0.0794, respectively. Pulmonary function deteriorated slightly in both patients, and the patient with seven lung lesions was confirmed to have Grade 1 radiation pneumonitis. The technique was fast, accurate, and well tolerated by patients, and the two-step plan is a helpful design in reducing the dose to the lungs.

  17. Ultrasound-based guidance of intensity-modulated radiation therapy.

    PubMed

    Fung, Albert Y C; Ayyangar, Komanduri M; Djajaputra, David; Nehru, Ramasamy M; Enke, Charles A

    2006-01-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  18. Ultrasound-based guidance of intensity-modulated radiation therapy

    SciTech Connect

    Fung, Albert Y.C. . E-mail: afung@unmc.edu; Ayyangar, Komanduri M.; Djajaputra, David; Nehru, Ramasamy M.; Enke, Charles A.

    2006-04-01

    In ultrasound-guided intensity-modulated radiation therapy (IMRT) of prostate cancer, ultrasound imaging ascertains the anatomical position of patients during x-ray therapy delivery. The ultrasound transducers are made of piezoelectric ceramics. The same crystal is used for both ultrasound production and reception. Three-dimensional (3D) ultrasound devices capture and correlate series of 2-dimensional (2D) B-mode images. The transducers are often arranged in a convex array for focusing. Lower frequency reaches greater depth, but results in low resolution. For clear image, some gel is usually applied between the probe and the skin contact surface. For prostate positioning, axial and sagittal scans are performed, and the volume contours from computed tomography (CT) planning are superimposed on the ultrasound images obtained before radiation delivery at the linear accelerator. The planning volumes are then overlaid on the ultrasound images and adjusted until they match. The computer automatically deduces the offset necessary to move the patient so that the treatment area is in the correct location. The couch is translated as needed. The currently available commercial equipment can attain a positional accuracy of 1-2 mm. Commercial manufacturer designs differ in the detection of probe coordinates relative to the isocenter. Some use a position-sensing robotic arm, while others have infrared light-emitting diodes or pattern-recognition software with charge-couple-device cameras. Commissioning includes testing of image quality and positional accuracy. Ultrasound is mainly used in prostate positioning. Data for 7825 daily fractions of 234 prostate patients indicated average 3D inter-fractional displacement of about 7.8 mm. There was no perceivable trend of shift over time. Scatter plots showed slight prevalence toward superior-posterior directions. Uncertainties of ultrasound guidance included tissue inhomogeneities, speckle noise, probe pressure, and inter

  19. Dosimetrically Triggered Adaptive Intensity Modulated Radiation Therapy for Cervical Cancer

    SciTech Connect

    Lim, Karen; Stewart, James; Kelly, Valerie; Xie, Jason; Brock, Kristy K.; Moseley, Joanne; Cho, Young-Bin; Fyles, Anthony; Lundin, Anna; Rehbinder, Henrik; Löf, Johan; Jaffray, David A.; Milosevic, Michael

    2014-09-01

    Purpose: The widespread use of intensity modulated radiation therapy (IMRT) for cervical cancer has been limited by internal target and normal tissue motion. Such motion increases the risk of underdosing the target, especially as planning margins are reduced in an effort to reduce toxicity. This study explored 2 adaptive strategies to mitigate this risk and proposes a new, automated method that minimizes replanning workload. Methods and Materials: Thirty patients with cervical cancer participated in a prospective clinical study and underwent pretreatment and weekly magnetic resonance (MR) scans over a 5-week course of daily external beam radiation therapy. Target volumes and organs at risk (OARs) were contoured on each of the scans. Deformable image registration was used to model the accumulated dose (the real dose delivered to the target and OARs) for 2 adaptive replanning scenarios that assumed a very small PTV margin of only 3 mm to account for setup and internal interfractional motion: (1) a preprogrammed, anatomy-driven midtreatment replan (A-IMRT); and (2) a dosimetry-triggered replan driven by target dose accumulation over time (D-IMRT). Results: Across all 30 patients, clinically relevant target dose thresholds failed for 8 patients (27%) if 3-mm margins were used without replanning. A-IMRT failed in only 3 patients and also yielded an additional small reduction in OAR doses at the cost of 30 replans. D-IMRT assured adequate target coverage in all patients, with only 23 replans in 16 patients. Conclusions: A novel, dosimetry-triggered adaptive IMRT strategy for patients with cervical cancer can minimize the risk of target underdosing in the setting of very small margins and substantial interfractional motion while minimizing programmatic workload and cost.

  20. Adjuvant Hypofractionated Versus Conventional Whole Breast Radiation Therapy for Early-Stage Breast Cancer: Long-Term Hospital-Related Morbidity From Cardiac Causes

    SciTech Connect

    Chan, Elisa K.; Woods, Ryan; McBride, Mary L.; Virani, Sean; Nichol, Alan; Speers, Caroline; Wai, Elaine S.; Tyldesley, Scott

    2014-03-15

    Purpose: The risk of cardiac injury with hypofractionated whole-breast/chest wall radiation therapy (HF-WBI) compared with conventional whole-breast/chest wall radiation therapy (CF-WBI) in women with left-sided breast cancer remains a concern. The purpose of this study was to determine if there is an increase in hospital-related morbidity from cardiac causes with HF-WBI relative to CF-WBI. Methods and Materials: Between 1990 and 1998, 5334 women ≤80 years of age with early-stage breast cancer were treated with postoperative radiation therapy to the breast or chest wall alone. A population-based database recorded baseline patient, tumor, and treatment factors. Hospital administrative records identified baseline cardiac risk factors and other comorbidities. Factors between radiation therapy groups were balanced using a propensity-score model. The first event of a hospital admission for cardiac causes after radiation therapy was determined from hospitalization records. Ten- and 15-year cumulative hospital-related cardiac morbidity after radiation therapy was estimated for left- and right-sided cases using a competing risk approach. Results: The median follow-up was 13.2 years. For left-sided cases, 485 women were treated with CF-WBI, and 2221 women were treated with HF-WBI. Mastectomy was more common in the HF-WBI group, whereas boost was more common in the CF-WBI group. The CF-WBI group had a higher prevalence of diabetes. The 15-year cumulative hospital-related morbidity from cardiac causes (95% confidence interval) was not different between the 2 radiation therapy regimens after propensity-score adjustment: 21% (19-22) with HF-WBI and 21% (17-25) with CF-WBI (P=.93). For right-sided cases, the 15-year cumulative hospital-related morbidity from cardiac causes was also similar between the radiation therapy groups (P=.76). Conclusions: There is no difference in morbidity leading to hospitalization from cardiac causes among women with left-sided early-stage breast

  1. Automated fiducial marker planning for thoracic stereotactic body radiation therapy

    NASA Astrophysics Data System (ADS)

    Gibbs, Jason D.; Rai, Lav; Wibowo, Henky; Tsalyuk, Serge; Anderson, Eric D.

    2012-02-01

    Stereotactic body-radiation therapy (SBRT) has gained acceptance in treating lung cancer. Localization of a thoracic lesion is challenging as tumors can move significantly with breathing. Some SBRT systems compensate for tumor motion with the intrafraction tracking of targets by two stereo fluoroscopy cameras. However, many lung tumors lack a fluoroscopic signature and cannot be directly tracked. Small radiopaque fiducial markers, acting as fluoroscopically visible surrogates, are instead implanted nearby. The spacing and configuration of the fiducial markers is important to the success of the therapy as SBRT systems impose constraints on the geometry of a fiducial-marker constellation. It is difficult even for experienced physicians mentally assess the validity of a constellation a priori. To address this challenge, we present the first automated planning system for bronchoscopic fiducial-marker placement. Fiducial-marker planning is posed as a constrained combinatoric optimization problem. Constraints include requiring access from a navigable airway, having sufficient separation in the fluoroscopic imaging planes to resolve each individual marker, and avoidance of major blood vessels. Automated fiducial-marker planning takes approximately fifteen seconds, fitting within the clinical workflow. The resulting locations are integrated into a virtual bronchoscopic planning system, which provides guidance to each location during the implantation procedure. To date, we have retrospectively planned over 50 targets for treatment, and have implanted markers according to the automated plan in one patient who then underwent SBRT treatment. To our knowledge, this approach is the first to address automated bronchoscopic fiducialmarker planning for SBRT.

  2. On bolus for megavoltage photon and electron radiation therapy

    SciTech Connect

    Vyas, Vedang; Palmer, Lisa; Mudge, Ray; Jiang, Runqing; Fleck, Andre; Schaly, Bryan; Osei, Ernest; Charland, Paule

    2013-10-01

    Frequently, in radiation therapy one must treat superficial lesions on cancer patients; these are at or adjacent to the skin. Megavoltage photon radiotherapy penetrates through the skin to irradiate deep-seated tumors, with skin-sparing property. Hence, to treat superficial lesions, one must use a layer of scattering material to feign as the skin surface. Although megavoltage electron beams are used for superficial treatments, one occasionally needs to enhance the dose near the surface. Such is the function of a “bolus,” a natural or synthetically developed material that acts as a layer of tissue to provide a more effective treatment to the superficial lesions. Other uses of boluses are to correct for varying surface contours and to add scattering material around the patient's surface. Materials used as bolus vary from simple water to metal and include various mixtures and compounds. Even with the modernization of the technology for external-beam therapy and the emergence of various commercial boluses, the preparation and utilization of a bolus in clinical radiotherapy remains an art. Considering the varying experiences and practices, this paper briefly summarizes available boluses that have been proposed and are employed in clinical radiotherapy. Although this review is not exhaustive, it provides some initial guidance and answers questions that may arise in clinical practice.

  3. Role of stereotactic body radiation therapy for hepatocellular carcinoma

    PubMed Central

    Sanuki, Naoko; Takeda, Atsuya; Kunieda, Etsuo

    2014-01-01

    The integration of new technologies has raised an interest in liver tumor radiotherapy, with literature evolving to support its efficacy. These advances, particularly stereotactic body radiation therapy (SBRT), have been critical in improving local control or potential cure in liver lesions not amenable to first-line surgical resection or radiofrequency ablation. Active investigation of SBRT, particularly for hepatocellular carcinoma (HCC), has recently started, yielding promising local control rates. In addition, data suggest a possibility that SBRT can be an alternative option for HCC unfit for other local therapies. However, information on optimal treatment indications, doses, and methods remains limited. In HCC, significant differences in patient characteristics and treatment availability exist by country. In addition, the prognosis of HCC is greatly influenced by underlying liver dysfunction and treatment itself in addition to tumor stage. Since they are closely linked to treatment approach, it is important to understand these differences in interpreting outcomes from various reports. Further studies are required to validate and maximize the efficacy of SBRT by a large, multi-institutional setting. PMID:24696597

  4. Direct aperture optimization for online adaptive radiation therapy

    SciTech Connect

    Mestrovic, Ante; Milette, Marie-Pierre; Nichol, Alan; Clark, Brenda G.; Otto, Karl

    2007-05-15

    This paper is the first investigation of using direct aperture optimization (DAO) for online adaptive radiation therapy (ART). A geometrical model representing the anatomy of a typical prostate case was created. To simulate interfractional deformations, four different anatomical deformations were created by systematically deforming the original anatomy by various amounts (0.25, 0.50, 0.75, and 1.00 cm). We describe a series of techniques where the original treatment plan was adapted in order to correct for the deterioration of dose distribution quality caused by the anatomical deformations. We found that the average time needed to adapt the original plan to arrive at a clinically acceptable plan is roughly half of the time needed for a complete plan regeneration, for all four anatomical deformations. Furthermore, through modification of the DAO algorithm the optimization search space was reduced and the plan adaptation was significantly accelerated. For the first anatomical deformation (0.25 cm), the plan adaptation was six times more efficient than the complete plan regeneration. For the 0.50 and 0.75 cm deformations, the optimization efficiency was increased by a factor of roughly 3 compared to the complete plan regeneration. However, for the anatomical deformation of 1.00 cm, the reduction of the optimization search space during plan adaptation did not result in any efficiency improvement over the original (nonmodified) plan adaptation. The anatomical deformation of 1.00 cm demonstrates the limit of this approach. We propose an innovative approach to online ART in which the plan adaptation and radiation delivery are merged together and performed concurrently--adaptive radiation delivery (ARD). A fundamental advantage of ARD is the fact that radiation delivery can start almost immediately after image acquisition and evaluation. Most of the original plan adaptation is done during the radiation delivery, so the time spent adapting the original plan does not

  5. Neutron, Proton, and Photonuclear Cross Sections for Radiation Therapy and Radiation Protection

    SciTech Connect

    Chadwick, M.B.

    1998-09-10

    The authors review recent work at Los Alamos to evaluate neutron, proton, and photonuclear cross section up to 150 MeV (to 250 MeV for protons), based on experimental data and nuclear model calculations. These data are represented in the ENDF format and can be used in computer codes to simulate radiation transport. They permit calculations of absorbed dose in the body from therapy beams, and through use of kerma coefficients allow absorbed dose to be estimated for a given neutron energy distribution. For radiation protection, these data can be used to determine shielding requirements in accelerator environments, and to calculate neutron, proton, gamma-ray, and radionuclide production. Illustrative comparisons of the evaluated cross section and kerma coefficient data with measurements are given.

  6. Radiation therapy of conjunctival and orbital lymphoid tumors

    SciTech Connect

    Jereb, B.; Lee, H.; Jakobiec, F.A.; Kutcher, J.

    1984-07-01

    Lymphoid tumors of the conjuctiva and orbit are rare and remain localized in the majority of cases. Sometimes it is not possible either clinically or histologically to differentiate between a non-Hodgkin's lymphoma (NHL) and benign lymphoid hyperplasia. A series of 24 patients is reported. Nineteen were classified as having malignant NHL and 5 benign hyperplasia; 1 of these 5 later developed metastases, however. All patients had systemic work-up: 18 had Stage I, 1 had Stage II, and 5 had Stage IV disease. All patients received local radiation therapy with doses of 2400 to 2750 rad in 2-3 weeks for lesions of the eyelid and conjunctiva, and between 3000 and 3750 rad in 3-4 weeks for retrobulbar lesions. A method of shielding the lens with a lead block mounted on a low vac lens is described, and the dose distribution within the eye and orbit is presented. Patients who were treated with doses higher than 3000 rad experienced conjunctivitis and skin erythema that resolved completely. No other effects of radiation on normal structures of the ocular adnexa were observed in the 20 patients who are alive and without signs of tumor 10-46 months with a median follow-up time of 22 months.

  7. Intensity-modulated radiation therapy for head and neck carcinoma.

    PubMed

    Grégoire, Vincent; De Neve, Wilfried; Eisbruch, Avraham; Lee, Nancy; Van den Weyngaert, Danielle; Van Gestel, Dirk

    2007-05-01

    Intensity-modulated radiation therapy (IMRT) for head and neck tumors refers to a new approach that aims at increasing the radiation dose gradient between the target tissues and the surrounding normal tissues at risk, thus offering the prospect of increasing the locoregional control probability while decreasing the complication rate. As a prerequisite, IMRT requires a proper selection and delineation of target volumes. For the latter, recent data indicate the potential of functional imaging to complement anatomic imaging modalities. Nonrandomized clinical series in paranasal sinuses and pharyngolaryngeal carcinoma have shown that IMRT was able to achieve a very high rate of locoregional control with less morbidity, such as dry-eye syndrome, xerostomia, and swallowing dysfunction. The promising results of IMRT are likely to be achieved when many treatment conditions are met, for example, optimal selection and delineation of the target volumes and organs at risk, appropriate physical quality control of the irradiation, and accurate patient setup with the use of onboard imaging. Because of the complexity of the various tasks, it is thus likely that these conditions will only be met in institutions having large patient throughput and experience with IMRT. Therefore, patient referral to those institutions is recommended.

  8. Whole Brain Radiotherapy With Hippocampal Avoidance and Simultaneous Integrated Boost for 1-3 Brain Metastases: A Feasibility Study Using Volumetric Modulated Arc Therapy

    SciTech Connect

    Hsu, Fred; Carolan, Hannah; Nichol, Alan; Cao, Fred; Nuraney, Nimet; Lee, Richard; Gete, Ermias; Wong, Frances; Schmuland, Moira; Heran, Manraj; Otto, Karl

    2010-04-15

    Purpose: To evaluate the feasibility of using volumetric modulated arc therapy (VMAT) to deliver whole brain radiotherapy (WBRT) with hippocampal avoidance and a simultaneous integrated boost (SIB) for one to three brain metastases. Methods and Materials: Ten patients previously treated with stereotactic radiosurgery for one to three brain metastases underwent repeat planning using VMAT. The whole brain prescription dose was 32.25 Gy in 15 fractions, and SIB doses to brain metastases were 63 Gy to lesions >=2.0 cm and 70.8 Gy to lesions <2.0 cm in diameter. The mean dose to the hippocampus was kept at <6 Gy{sub 2}. Plans were optimized for conformity and target coverage while minimizing hippocampal and ocular doses. Plans were evaluated on target coverage, prescription isodose to target volume ratio, conformity number, homogeneity index, and maximum dose to prescription dose ratio. Results: Ten patients had 18 metastases. Mean values for the brain metastases were as follows: conformity number = 0.73 +- 0.10, target coverage = 0.98 +- 0.01, prescription isodose to target volume = 1.34 +- 0.19, maximum dose to prescription dose ratio = 1.09 +- 0.02, and homogeneity index = 0.07 +- 0.02. For the whole brain, the mean target coverage and homogeneity index were 0.960 +- 0.002 and 0.39 +- 0.06, respectively. The mean hippocampal dose was 5.23 +- 0.39 Gy{sub 2}. The mean treatment delivery time was 3.6 min (range, 3.3-4.1 min). Conclusions: VMAT was able to achieve adequate whole brain coverage with conformal hippocampal avoidance and radiosurgical quality dose distributions for one to three brain metastases. The mean delivery time was under 4 min.

  9. Radiation-Induced Lymphocyte Apoptosis to Predict Radiation Therapy Late Toxicity in Prostate Cancer Patients

    SciTech Connect

    Schnarr, Kara; Boreham, Douglas; Sathya, Jinka; Julian, Jim; Dayes, Ian S.

    2009-08-01

    Purpose: To examine a potential correlation between the in vitro apoptotic response of lymphocytes to radiation and the risk of developing late gastrointestinal (GI)/genitourinary (GU) toxicity from radiotherapy for prostate cancer. Methods and Materials: Prostate cancer patients formerly enrolled in a randomized study were tested for radiosensitivity by using a radiation-induced lymphocyte apoptosis assay. Apoptosis was measured using flow cytometry-based Annexin-FITC/7AAD and DiOC{sub 6}/7AAD assays in subpopulations of lymphocytes (total lymphocytes, CD4+, CD8+ and CD4-/CD8-) after exposure to an in vitro dose of 0, 2, 4, or 8 Gy. Results: Patients with late toxicity after radiotherapy showed lower lymphocyte apoptotic responses to 8 Gy than patients who had not developed late toxicity (p = 0.01). All patients with late toxicity had apoptosis levels that were at or below the group mean. The negative predictive value in both apoptosis assays ranged from 95% to 100%, with sensitivity values of 83% to 100%. Apoptosis at lower dose points and in lymphocyte subpopulations had a weaker correlation with the occurrence of late toxicity. Conclusions: Lymphocyte apoptosis after 8 Gy of radiation has the potential to predict which patients will be spared late toxicity after radiation therapy. Further research should be performed to identify the specific subset of lymphocytes that correlates with late toxicity, followed by a corresponding prospective study.

  10. Radiation therapy for the palliation of multiple myeloma

    SciTech Connect

    Leigh, B.R.; Kurtts, T.A.; Mack, C.F.; Matzner, M.B.; Shimm, D.S. )

    1993-04-02

    This study reviews the experience at the University of Arizona in an effort to define the minimum effective radiation dose for durable pain relief in the majority of patients with symptomatic multiple myeloma. The records of 101 patients with multiple myeloma irradiated for palliation at the University of Arizona between 1975 and 1990 were reviewed. Three hundred sixteen sites were treated. Ten sites were asymptomatic, including six hemibody fields with advanced disease unresponsive to chemotherapy and four local fields with impending pathological fractures. Three hundred six evaluable symptomatic sites remained. The most common symptom was bone pain. Other symptoms included neurological impairment with a palpable mass. Total tumor dose ranged from 3.0 to 60 Gy, with a mean of 25 Gy. Symptom relief was obtained in 297 of 306 evaluable symptomatic sites (97%). Complete relief of symptoms was obtained in 26% and partial relief in 71%. Symptom relief was obtained in 92% of sites receiving a total dose less than 10 Gy (n = 13) and 98% of sites receiving 10 Gy or more (n = 293). No dose-response could be demonstrated. The likelihood of symptom relief was not influenced by the location of the lesion or the use of concurrent chemotherapy. Of the 297 responding sites, 6% (n = 19) relapsed after a median symptom-free interval of 16 months. Neither the probability of relapse nor the time to relapse was related to the radiation dose. Retreatment of relapsing sites provided effective palliation in all cases. Radiation therapy is effective in palliating local symptoms in multiple myeloma. A total dose of 10 Gy should provide durable symptom relief in the majority of patients. 16 refs., 3 figs., 4 tabs.

  11. [Modalities of breast cancer irradiation in 2016: Aims and indications of intensity modulated radiation therapy].

    PubMed

    Bourgier, C; Fenoglietto, P; Lemanski, C; Ducteil, A; Charissoux, M; Draghici, R; Azria, D

    2016-10-01

    Irradiation techniques for breast cancer (arctherapy, tomotherapy) are evolving and intensity-modulated radiation therapy is being increasingly considered for the management of these tumours. Here, we propose a review of intensity-modulated radiation therapy planning issues, clinical toxicities and indications for breast cancer. PMID:27614497

  12. Modern Radiation Therapy for Primary Cutaneous Lymphomas: Field and Dose Guidelines From the International Lymphoma Radiation Oncology Group

    SciTech Connect

    Specht, Lena; Dabaja, Bouthaina; Illidge, Tim; Wilson, Lynn D.; Hoppe, Richard T.

    2015-05-01

    Primary cutaneous lymphomas are a heterogeneous group of diseases. They often remain localized, and they generally have a more indolent course and a better prognosis than lymphomas in other locations. They are highly radiosensitive, and radiation therapy is an important part of the treatment, either as the sole treatment or as part of a multimodality approach. Radiation therapy of primary cutaneous lymphomas requires the use of special techniques that form the focus of these guidelines. The International Lymphoma Radiation Oncology Group has developed these guidelines after multinational meetings and analysis of available evidence. The guidelines represent an agreed consensus view of the International Lymphoma Radiation Oncology Group steering committee on the use of radiation therapy in primary cutaneous lymphomas in the modern era.

  13. The role of radiation therapy in uterine-confined endometrial carcinoma.

    PubMed

    Boyle, John M; Diavolitsis, Virginia M; Small, William

    2011-01-01

    The treatment of endometrial cancer begins with surgery, including total abdominal hysterectomy, bilateral salpingo-oophorectomy, peritoneal lavage, and a consideration for lymph node evaluation. Selection of adjuvant therapy is based on an approximation of the risk of recurrence with features such as stage, tumor histology, lymphovascular space invasion, and patient age. The role of adjuvant radiation therapy in patients with intermediate risk of recurrence is a matter of ongoing controversy. Several randomized trials indicate that adjuvant radiation therapy improves loco-regional control. However, the ideal form of radiation therapy in these patients continues to be under debate.

  14. The role of radiation therapy in uterine-confined endometrial carcinoma.

    PubMed

    Boyle, John M; Diavolitsis, Virginia M; Small, William

    2011-01-01

    The treatment of endometrial cancer begins with surgery, including total abdominal hysterectomy, bilateral salpingo-oophorectomy, peritoneal lavage, and a consideration for lymph node evaluation. Selection of adjuvant therapy is based on an approximation of the risk of recurrence with features such as stage, tumor histology, lymphovascular space invasion, and patient age. The role of adjuvant radiation therapy in patients with intermediate risk of recurrence is a matter of ongoing controversy. Several randomized trials indicate that adjuvant radiation therapy improves loco-regional control. However, the ideal form of radiation therapy in these patients continues to be under debate. PMID:24673950

  15. The Role of Hypofractionated Radiation Therapy with Photons, Protons, and Heavy Ions for Treating Extracranial Lesions

    PubMed Central

    Laine, Aaron Michael; Pompos, Arnold; Timmerman, Robert; Jiang, Steve; Story, Michael D.; Pistenmaa, David; Choy, Hak

    2016-01-01

    Traditionally, the ability to deliver large doses of ionizing radiation to a tumor has been limited by radiation-induced toxicity to normal surrounding tissues. This was the initial impetus for the development of conventionally fractionated radiation therapy, where large volumes of healthy tissue received radiation and were allowed the time to repair the radiation damage. However, advances in radiation delivery techniques and image guidance have allowed for more ablative doses of radiation to be delivered in a very accurate, conformal, and safe manner with shortened fractionation schemes. Hypofractionated regimens with photons have already transformed how certain tumor types are treated with radiation therapy. Additionally, hypofractionation is able to deliver a complete course of ablative radiation therapy over a shorter period of time compared to conventional fractionation regimens making treatment more convenient to the patient and potentially more cost-effective. Recently, there has been an increased interest in proton therapy because of the potential further improvement in dose distributions achievable due to their unique physical characteristics. Furthermore, with heavier ions the dose conformality is increased and, in addition, there is potentially a higher biological effectiveness compared to protons and photons. Due to the properties mentioned above, charged particle therapy has already become an attractive modality to further investigate the role of hypofractionation in the treatment of various tumors. This review will discuss the rationale and evolution of hypofractionated radiation therapy, the reported clinical success with initially photon and then charged particle modalities, and further potential implementation into treatment regimens going forward. PMID:26793619

  16. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    SciTech Connect

    Hodges, Joseph C.; Beg, Muhammad S.; Das, Prajnan; Meyer, Jeffrey

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  17. Adaptive Radiation Therapy for Postprostatectomy Patients Using Real-Time Electromagnetic Target Motion Tracking During External Beam Radiation Therapy

    SciTech Connect

    Zhu, Mingyao; Bharat, Shyam; Michalski, Jeff M.; Gay, Hiram A.; Hou, Wei-Hsien; Parikh, Parag J.

    2013-03-15

    Purpose: Using real-time electromagnetic (EM) transponder tracking data recorded by the Calypso 4D Localization System, we report inter- and intrafractional target motion of the prostate bed, describe a strategy to evaluate treatment adequacy in postprostatectomy patients receiving intensity modulated radiation therapy (IMRT), and propose an adaptive workflow. Methods and Materials: Tracking data recorded by Calypso EM transponders was analyzed for postprostatectomy patients that underwent step-and-shoot IMRT. Rigid target motion parameters during beam delivery were calculated from recorded transponder positions in 16 patients with rigid transponder geometry. The delivered doses to the clinical target volume (CTV) were estimated from the planned dose matrix and the target motion for the first 3, 5, 10, and all fractions. Treatment adequacy was determined by comparing the delivered minimum dose (D{sub min}) with the planned D{sub min} to the CTV. Treatments were considered adequate if the delivered CTV D{sub min} is at least 95% of the planned CTV D{sub min}. Results: Translational target motion was minimal for all 16 patients (mean: 0.02 cm; range: −0.12 cm to 0.07 cm). Rotational motion was patient-specific, and maximum pitch, yaw, and roll were 12.2, 4.1, and 10.5°, respectively. We observed inadequate treatments in 5 patients. In these treatments, we observed greater target rotations along with large distances between the CTV centroid and transponder centroid. The treatment adequacy from the initial 10 fractions successfully predicted the overall adequacy in 4 of 5 inadequate treatments and 10 of 11 adequate treatments. Conclusion: Target rotational motion could cause underdosage to partial volume of the postprostatectomy targets. Our adaptive treatment strategy is applicable to post-prostatectomy patients receiving IMRT to evaluate and improve radiation therapy delivery.

  18. A Phase III Study of Conventional Radiation Therapy Plus Thalidomide Versus Conventional Radiation Therapy for Multiple Brain Metastases (RTOG 0118)

    SciTech Connect

    Knisely, Jonathan P.S. Berkey, Brian; Chakravarti, Arnab; Yung, Al W.K.; Curran, Walter J.; Robins, H. Ian; Movsas, Benjamin; Brachman, David G.; Henderson, Randall H.; Mehta, Minesh P.

    2008-05-01

    Purpose: To compare whole-brain radiation therapy (WBRT) with WBRT combined with thalidomide for patients with brain metastases not amenable to resection or radiosurgery. Patients and Methods: Patients with Zubrod performance status 0-1, MRI-documented multiple (>3), large (>4 cm), or midbrain brain metastases arising from a histopathologically confirmed extracranial primary tumor, and an anticipated survival of >8 weeks were randomized to receive WBRT to a dose of 37.5 Gy in 15 fractions with or without thalidomide during and after WBRT. Prerandomization stratification used Radiation Therapy Oncology Group (RTOG) Recursive Partitioning Analysis (RPA) Class and whether post-WBRT chemotherapy was planned. Endpoints included overall survival, progression-free survival, time to neurocognitive progression, the cause of death, toxicities, and quality of life. A protocol-planned interim analysis documented that the trial had an extremely low probability of ever showing a significant difference favoring the thalidomide arm given the results at the time of the analysis, and it was therefore closed on the basis of predefined statistical guidelines. Results: Enrolled in the study were 332 patients. Of 183 accrued patients, 93 were randomized to receive WBRT alone and 90 to WBRT and thalidomide. Median survival was 3.9 months for both arms. No novel toxicities were seen, but thalidomide was not well tolerated in this population. Forty-eight percent of patients discontinued thalidomide because of side effects. Conclusion: Thalidomide provided no survival benefit for patients with multiple, large, or midbrain metastases when combined with WBRT; nearly half the patients discontinued thalidomide due to side effects.

  19. Quality of Intensity Modulated Radiation Therapy Treatment Plans Using a {sup 60}Co Magnetic Resonance Image Guidance Radiation Therapy System

    SciTech Connect

    Wooten, H. Omar Green, Olga; Yang, Min; DeWees, Todd; Kashani, Rojano; Olsen, Jeff; Michalski, Jeff; Yang, Deshan; Tanderup, Kari; Hu, Yanle; Li, H. Harold; Mutic, Sasa

    2015-07-15

    Purpose: This work describes a commercial treatment planning system, its technical features, and its capabilities for creating {sup 60}Co intensity modulated radiation therapy (IMRT) treatment plans for a magnetic resonance image guidance radiation therapy (MR-IGRT) system. Methods and Materials: The ViewRay treatment planning system (Oakwood Village, OH) was used to create {sup 60}Co IMRT treatment plans for 33 cancer patients with disease in the abdominal, pelvic, thorax, and head and neck regions using physician-specified patient-specific target coverage and organ at risk (OAR) objectives. Backup plans using a third-party linear accelerator (linac)-based planning system were also created. Plans were evaluated by attending physicians and approved for treatment. The {sup 60}Co and linac plans were compared by evaluating conformity numbers (CN) with 100% and 95% of prescription reference doses and heterogeneity indices (HI) for planning target volumes (PTVs) and maximum, mean, and dose-volume histogram (DVH) values for OARs. Results: All {sup 60}Co IMRT plans achieved PTV coverage and OAR sparing that were similar to linac plans. PTV conformity for {sup 60}Co was within <1% and 3% of linac plans for 100% and 95% prescription reference isodoses, respectively, and heterogeneity was on average 4% greater. Comparisons of OAR mean dose showed generally better sparing with linac plans in the low-dose range <20 Gy, but comparable sparing for organs with mean doses >20 Gy. The mean doses for all {sup 60}Co plan OARs were within clinical tolerances. Conclusions: A commercial {sup 60}Co MR-IGRT device can produce highly conformal IMRT treatment plans similar in quality to linac IMRT for a variety of disease sites. Additional work is in progress to evaluate the clinical benefit of other novel features of this MR-IGRT system.

  20. The efficacy of sucralfate suspension in the prevention of oral mucositis due to radiation therapy

    SciTech Connect

    Epstein, J.B.; Wong, F.L.W. )

    1994-02-01

    The purpose of this study was to assess the value of sucralfate suspension in prevention of oral mucositis and for reduction of oral pain in patients who develop mucositis during radiation therapy. The study was a double-blind, placebo-controlled, randomized prospective trial of a sucralfate suspension in the prevention and management of oral mucositis during radiation therapy. Oral mucositis was assessed using a quantitative scale and symptoms were assessed using visual analogue scales. The statistical model was developed to detect a 40% reduction in mucositis. No statistically significant reduction in mucositis was seen. Early during radiation therapy less oral pain was reported in the sucralfate group, but as treatment progressed all patients experienced pain. Patients in the sucralfate group were prescribed topical and systemic analgesics later in the course of radiation therapy. Prophylactic oral rinsing with sucralfate did not prevent oral ulcerative mucositis. Sucralfate may reduce the experience of pain during radiation therapy. 32 refs., 3 tabs.

  1. Nanoparticle Mediated Tumor Vascular Disruption: A Novel Strategy in Radiation Therapy.

    PubMed

    Kunjachan, Sijumon; Detappe, Alexandre; Kumar, Rajiv; Ireland, Thomas; Cameron, Lisa; Biancur, Douglas E; Motto-Ros, Vincent; Sancey, Lucie; Sridhar, Srinivas; Makrigiorgos, G Mike; Berbeco, Ross I

    2015-11-11

    More than 50% of all cancer patients receive radiation therapy. The clinical delivery of curative radiation dose is strictly restricted by the proximal healthy tissues. We propose a dual-targeting strategy using vessel-targeted-radiosensitizing gold nanoparticles and conformal-image guided radiation therapy to specifically amplify damage in the tumor neoendothelium. The resulting tumor vascular disruption substantially improved the therapeutic outcome and subsidized the radiation/nanoparticle toxicity, extending its utility to intransigent or nonresectable tumors that barely respond to standard therapies.

  2. A review on photoneutrons characteristics in radiation therapy with high-energy photon beams

    PubMed Central

    Naseri, Alireza; Mesbahi, Asghar

    2010-01-01

    In radiation therapy with high-energy photon beams (E > 10 MeV) neutrons are generated mainly in linacs head thorough (γ,n) interactions of photons with nuclei of high atomic number materials that constitute the linac head and the beam collimation system. These neutrons affect the shielding requirements in radiation therapy rooms and also increase the out-of-field radiation dose of patients undergoing radiation therapy with high-energy photon beams. In the current review, the authors describe the factors influencing the neutron production for different medical linacs based on the performed measurements and Monte Carlo studies in the literature. PMID:24376940

  3. Impact of CT CORRELATE ScoutView images on radiation therapy planning

    SciTech Connect

    Shuman, W.P.; Griffin, B.R.; Yoshy, C.S.; Listerud, J.A.; Mack, L.A.; Rowberg, A.H.; Moss, A.A.

    1985-09-01

    CORRELATE is a new computer software program for CT that enables a radiologist to mark tumor margins on traditional CT cross-sectional images and then display the outline of that same tumor on CT ScoutView images. This function is particularly useful for radiation therapy planning because CORRELATE ScoutView images are in the same longitudinal plane as simulation radiographs used for tumor localization in radiation therapy. The impact of CORRELATE on the radiation therapy planning process was measured in 83 patients with various tumors. Therapy planning was performed before and after CORRELATE information was made available to the radiation therapist. CORRELATE information caused a change in the therapy plan in 77% of the cases and increased confidence in the therapy plan in an additional 22%. CORRELATE provides a useful and accurate tool for tumor localization.

  4. Role of Definitive Radiation Therapy in Carcinoma of Unknown Primary in the Abdomen and Pelvis

    SciTech Connect

    Kelly, Patrick; Das, Prajnan; Varadhachary, Gauri R.; Fontanilla, Hiral P.; Krishnan, Sunil; Delclos, Marc E.; Jhingran, Anuja; Eifel, Patricia J.; Crane, Christopher H.

    2012-04-01

    Objectives: Carcinoma of unknown primary (CUP) in the abdomen and pelvis is a heterogeneous group of cancers with no standard treatment. Considered by many to be incurable, these patients are often treated with chemotherapy alone. In this study, we determined the effectiveness of radiation therapy in combination with chemotherapy in patients with CUP in the abdomen and pelvis. Patients and Methods: Medical records were reviewed for 37 patients with CUP treated with radiation therapy for disease located in the soft tissues and/or nodal basins of the abdomen and pelvis at University of Texas M.D. Anderson Cancer between 2002 and 2009. All patients underwent chemotherapy, either before or concurrent with radiation therapy. Patients were selected for radiation therapy on the basis of histologic type, disease extent, and prior therapy response. Twenty patients underwent definitive radiation therapy (defined as radiation therapy targeting all known disease sites with at least 45 Gy) and 17 patients underwent palliative radiation therapy. Only 6 patients had surgical resection of their disease. Patient and treatment characteristics were extracted and the endpoints of local disease control, progression-free survival (PFS), overall survival (OS), and treatment-related toxicity incidence were analyzed. Results: The 2-year PFS and OS rates for the entire cohort were 32% and 57%, respectively. However, in patients treated with definitive radiation therapy, the rates were 48% and 76%, and 7 patients lived more than 3 years after treatment with no evidence of disease progression. Nevertheless, radiation-associated toxicity was significant in this cohort, as 40% experienced Grade 2 or higher late toxicities. Conclusions: The use of definitive radiation therapy should be considered in selected patients with CUP in the soft tissues or nodal basins of the abdomen and pelvis.

  5. Increasing consistency and accuracy in radiation therapy via educational interventions is not just limited to radiation oncologists.

    PubMed

    Bell, Linda J

    2016-09-01

    This editorial is advocating that increasing consistency and accuracy in radiation therapy via educational interventions is important for radiation therapist. Education and training with ongoing refreshers is the key to maintaining consistency throughout the radiotherapy process, which in turn will ensure all patients receive accurate treatment. PMID:27648277

  6. Applications of Cherenkov Light Emission for Dosimetry in Radiation Therapy

    NASA Astrophysics Data System (ADS)

    Glaser, Adam Kenneth

    Since its discovery in the 1930's, the Cherenkov effect has been paramount in the development of high-energy physics research. It results in light emission from charged particles traveling faster than the local speed of light in a dielectric medium. The ability of this emitted light to describe a charged particle's trajectory, energy, velocity, and mass has allowed scientists to study subatomic particles, detect neutrinos, and explore the properties of interstellar matter. However, only recently has the phenomenon been considered in the practical context of medical physics and radiation therapy dosimetry, where Cherenkov light is induced by clinical x-ray photon, electron, and proton beams. To investigate the relationship between this phenomenon and dose deposition, a Monte Carlo plug-in was developed within the Geant4 architecture for medically-oriented simulations (GAMOS) to simulate radiation-induced optical emission in biological media. Using this simulation framework, it was determined that Cherenkov light emission may be well suited for radiation dosimetry of clinically used x-ray photon beams. To advance this application, several novel techniques were implemented to realize the maximum potential of the signal, such as time-gating for maximizing the signal to noise ratio (SNR) and Cherenkov-excited fluorescence for generating isotropic light release in water. Proof of concept experiments were conducted in water tanks to demonstrate the feasibility of the proposed method for two-dimensional (2D) projection imaging, three-dimensional (3D) parallel beam tomography, large field of view 3D cone beam tomography, and video-rate dynamic imaging of treatment plans for a number of common radiotherapy applications. The proposed dosimetry method was found to have a number of unique advantages, including but not limited to its non-invasive nature, water-equivalence, speed, high-resolution, ability to provide full 3D data, and potential to yield data in-vivo. Based on

  7. Survey of resident education in intensity-modulated radiation therapy.

    PubMed

    Malik, Renuka; Oh, Julia L; Roeske, John C; Mundt, Arno J

    2005-06-01

    Intensity-modulated radiation therapy (IMRT) has been gaining increasing popularity among practicing physicians in the U.S., but the extent to which radiation oncology residents are taught the principles of this technology and are trained to use IMRT remains unknown. In this paper, we assessed the current level of resident education in IMRT in the United States. Chief residents at all 77 accredited radiation oncology programs were sent a 13-question survey addressing formal didactics and hands-on experience in IMRT. The survey assessed the frequency, subject, and format of IMRT didactics. Questions also addressed the number of IMRT patients and anatomical sites treated, resident involvement in the IMRT process, and the intent of IMRT use. Finally, residents were asked for their opinions on their IMRT education. Sixty-one surveys (79%) were completed. Overall, forty-three respondents (71%) reported receiving formal IMRT didactics, with nearly one-third reporting extensive didactics (> or = 3 lectures/seminars et cetera per year). The most common didactic formats were lectures (95%) and journal clubs (63%), most commonly supervised by physicists (98%). Involvement by physicians and radiobiologists were reported by 63% and 7% of respondents, respectively. Overall, 87% of respondents had hands-on IMRT training, with nearly one-half having treated > 25 patients. The most common sites treated were head and neck (94%) and prostate (81%). Involvement in all aspects of the IMRT process was common, particularly target and tissue delineation (98%) and plan evaluation (93%). Most respondents (79%) with hands-on experience reported receiving formal didactics. However, nearly one-third received no or only minimal formal didactics. The percentage of respondents desiring increased IMRT didactics and hands-on experience were 70% and 47%, respectively. Our results suggest that the great majority of radiation oncology residents in the United States are currently exposed to didactics

  8. Selective Internal Radiation Therapy (SIRT) as Conversion Therapy for Unresectable Primary Liver Malignancies

    PubMed Central

    Cucchetti, Alessandro; Cappelli, Alberta; Ercolani, Giorgio; Mosconi, Cristina; Cescon, Matteo; Golfieri, Rita; Pinna, Antonio Daniele

    2016-01-01

    Background Many patients with primary liver cancers are not candidates for surgery, and systemic therapies are seldom effective. Selective internal radiation therapy (SIRT) has been shown to obtain partial and even complete response in unresectable primary tumors. As a “side effect”, SIRT can induce contra-lateral liver hypertrophy. Tumor response to SIRT can be sufficient to allow disengagement from normal vital structures whose involvement is the cause of the initial unresectability. The contra-lateral hypertrophy can thereby increase the future liver remnant (FLR) volume to over the safe threshold so that extended hepatectomy can be performed. Summary A review of the available literature was performed to assess the tumor response and liver hypertrophy that can be expected after SIRT, in order to delineate whether SIRTcan play a role in conversion therapy for resectability of primary liver malignancies. Key Message Available data suggest that SIRT in unresectable hepatocellular and cholangiocellular carcinomas can provide a considerable down-sizing of the tumors to possibly allow resection. Hypertrophy of the contra-lateral lobe represents a favorable collateral effect that can help in achieving safer subsequent major hepatectomy. In patients whose FLR volume represents the only surgical concern, portal vein embolization remains the treatment of choice. PMID:27781202

  9. Acute effects of radiation therapy on indium-111-labeled leukocyte uptake in bone marrow

    SciTech Connect

    Palestro, C.J.; Kim, C.K.; Vega, A.; Goldsmith, S.J. )

    1989-11-01

    We recently performed ({sup 99m}Tc)MDP bone and {sup 111}In-labeled leukocyte scintigraphy on a patient receiving radiation therapy to the lower cervical and upper thoracic spine. While the bone images revealed only minimally increased activity in the radiation port, leukocyte images revealed diffuse, intensely increased uptake in this same region. Radiation therapy should be included in the differential diagnosis of increased bone marrow activity on {sup 111}In leukocyte images.

  10. Television system for verification and documentation of treatment fields during intraoperative radiation therapy.

    PubMed

    Fraass, B A; Harrington, F S; Kinsella, T J; Sindelar, W F

    1983-09-01

    Intraoperative radiation therapy (IORT) involves direct treatment of tumors or tumor beds with large single doses of radiation. The verification of the area to be treated before irradiation and the documentation of the treated area are critical for IORT, just as for other types of radiation therapy. A television system which allows the target area to be directly imaged immediately before irradiation has been developed. Verification and documentation of treatment fields has made the IORT television system indispensable.

  11. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT)

    SciTech Connect

    Ding, Xuanfeng; Dionisi, Francesco; Tang, Shikui; Ingram, Mark; Hung, Chun-Yu; Prionas, Evangelos; Lichtenwalner, Phil; Butterwick, Ian; Zhai, Huifang; Yin, Lingshu; Lin, Haibo; Kassaee, Alireza; Avery, Stephen

    2014-07-01

    With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as well as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose

  12. Adaptive Replanning to Account for Lumpectomy Cavity Change in Sequential Boost After Whole-Breast Irradiation

    SciTech Connect

    Chen, Xiaojian; Qiao, Qiao; DeVries, Anthony; Li, Wenhui; Currey, Adam; Kelly, Tracy; Bergom, Carmen; Wilson, J. Frank; Li, X. Allen

    2014-12-01

    Purpose: To evaluate the efficiency of standard image-guided radiation therapy (IGRT) to account for lumpectomy cavity (LC) variation during whole-breast irradiation (WBI) and propose an adaptive strategy to improve dosimetry if IGRT fails to address the interfraction LC variations. Methods and Materials: Daily diagnostic-quality CT data acquired during IGRT in the boost stage using an in-room CT for 19 breast cancer patients treated with sequential boost after WBI in the prone position were retrospectively analyzed. Contours of the LC, treated breast, ipsilateral lung, and heart were generated by populating contours from planning CTs to boost fraction CTs using an auto-segmentation tool with manual editing. Three plans were generated on each fraction CT: (1) a repositioning plan by applying the original boost plan with the shift determined by IGRT; (2) an adaptive plan by modifying the original plan according to a fraction CT; and (3) a reoptimization plan by a full-scale optimization. Results: Significant variations were observed in LC. The change in LC volume at the first boost fraction ranged from a 70% decrease to a 50% increase of that on the planning CT. The adaptive and reoptimization plans were comparable. Compared with the repositioning plans, the adaptive plans led to an improvement in target coverage for an increased LC case (1 of 19, 7.5% increase in planning target volume evaluation volume V{sub 95%}), and breast tissue sparing for an LC decrease larger than 35% (3 of 19, 7.5% decrease in breast evaluation volume V{sub 50%}; P=.008). Conclusion: Significant changes in LC shape and volume at the time of boost that deviate from the original plan for WBI with sequential boost can be addressed by adaptive replanning at the first boost fraction.

  13. Radiation therapy for Bowen's disease of the skin

    SciTech Connect

    Lukas VanderSpek, Lauren A. . E-mail: lauren.vanderspek@lrcc.on.ca; Pond, Gregory R.; Wells, Woodrow; Tsang, Richard W.

    2005-10-01

    Purpose: To assess the clinical outcome in the radiation therapy (RT) of squamous carcinoma in situ of the skin (Bowen's disease). We focused on the local control rate and the toxicity according to the biologically effective dose (BED). Methods and Materials: A retrospective review was performed on 44 patients with Bowen's disease treated at Princess Margaret Hospital from April 1985 to November 2000. RT was the primary treatment for 32 patients, whereas 12 received RT for residual disease after local ablative therapy. Lesions were located as follows: scalp, 9 patients (20%); face, 12 (27%); trunk, 6 (14%), extremity, 12 (27%), perianal, 3 (7%), and penis, 2 (5%). Orthovoltage X-rays were used in the majority (39 of 44, 89%). There was no standard fractionation regimen: some physicians prescribed high doses, as for invasive skin cancer, whereas others prescribed lower doses because of the noninvasive nature of the disease, a sensitive anatomic location (e.g., extremity), or large treatment area. Because of the variations in fractionation regimens, BED was used as a common metric for biologic effect in the comparison of different regimens and analyzed for correlation with recurrence and toxicity. Local control was defined as the lack of persistent or recurrent disease at the treated site for the follow-up period. Grade 4 toxicity was defined as necrosis (cartilage/bone damage) and/or ulceration for a duration of >3 months. Results: The mean patient age was 67.7 years, and the male/female ratio was 29:15. The median pretreatment lesion size was 2.65 cm{sup 2} (range, 0.07-34.56 cm{sup 2}). Complete remission was achieved in 42 patients, with follow-up unavailable for the remaining 2 patients. Subsequently, 3 patients experienced recurrences at 0.2, 1.1, and 1-1.5 years after complete remission. One recurrence was Bowen's disease (local); the others were squamous cell carcinoma (one local, one marginal). Four patients experienced a new squamous lesion at a distant

  14. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  15. A practical three-dimensional dosimetry system for radiation therapy.

    PubMed

    Guo, Pengyi; Adamovics, John; Oldham, Mark

    2006-10-01

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE) and a commercial optical computed tomography (CT) scanning system (OCTOPUS). PRESAGE is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE/OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of < or = 1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R2 value of 0.9979 and a standard error of estimation of approximately 1%) relative to independent measurement. The overall performance of the PRESAGE/OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC EBT film and the calculated dose from a commissioned planning system. The "measured" dose distribution in a cylindrical PRESAGE dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE, EBT and calculated dose distributions, showed full agreement in measurable region of PRESAGE dosimeter (approximately 90% of radius). The EBT and PRESAGE distributions agreed

  16. A practical three-dimensional dosimetry system for radiation therapy

    SciTech Connect

    Guo Pengyi; Adamovics, John; Oldham, Mark

    2006-10-15

    There is a pressing need for a practical three-dimensional (3D) dosimetry system, convenient for clinical use, and with the accuracy and resolution to enable comprehensive verification of the complex dose distributions typical of modern radiation therapy. Here we introduce a dosimetry system that can achieve this challenge, consisting of a radiochromic dosimeter (PRESAGE trade mark sign ) and a commercial optical computed tomography (CT) scanning system (OCTOPUS trade mark sign ). PRESAGE trade mark sign is a transparent material with compelling properties for dosimetry, including insensitivity of the dose response to atmospheric exposure, a solid texture negating the need for an external container (reducing edge effects), and amenability to accurate optical CT scanning due to radiochromic optical contrast as opposed to light-scattering contrast. An evaluation of the performance and viability of the PRESAGE trade mark sign /OCTOPUS, combination for routine clinical 3D dosimetry is presented. The performance of the two components (scanner and dosimeter) was investigated separately prior to full system test. The optical CT scanner has a spatial resolution of {<=}1 mm, geometric accuracy within 1 mm, and high reconstruction linearity (with a R{sup 2} value of 0.9979 and a standard error of estimation of {approx}1%) relative to independent measurement. The overall performance of the PRESAGE trade mark sign /OCTOPUS system was evaluated with respect to a simple known 3D dose distribution, by comparison with GAFCHROMIC[reg] EBT film and the calculated dose from a commissioned planning system. The 'measured' dose distribution in a cylindrical PRESAGE trade mark sign dosimeter (16 cm diameter and 11 cm height) was determined by optical-CT, using a filtered backprojection reconstruction algorithm. A three-way Gamma map comparison (4% dose difference and 4 mm distance to agreement), between the PRESAGE trade mark sign , EBT and calculated dose distributions, showed full

  17. Image-guided radiation therapy for treatment delivery and verification

    NASA Astrophysics Data System (ADS)

    Schubert, Leah Kayomi

    Target conformity and normal tissue sparing provided by modern radiation therapy techniques often result in steep dose gradients, which increase the need for more accurate patient setup and treatment delivery. Image guidance is starting to play a major role in determining the accuracy of treatment setup. A typical objective of image-guided radiation therapy (IGRT) is to minimize differences between planned and delivered treatment by imaging the patient prior to delivery. This step verifies and corrects for patient setup and is referred to as setup verification. This dissertation evaluates the efficacy of daily imaging for setup verification and investigates new uses of IGRT for potential improvements in treatment delivery. The necessity of daily imaging can first be determined by assessing differences in setup corrections between patient groups. Therefore, the first objective of this investigation was to evaluate the application of IGRT for setup verification by quantifying differences in patient positioning for several anatomical disease sites. Detailed analysis of setup corrections for brain, head and neck, lung, and prostate treatments is presented. In this analysis, large setup errors were observed for prostate treatments. Further assessment of prostate treatments was performed, and patient-specific causes of setup errors investigated. Setup corrections are applied via rigid shifts or rotations of the patient or machine, but anatomical deformations occur for which rigid shifts cannot correct. Fortunately, IGRT provides images on which anatomical changes occurring throughout the course of treatment can be detected. From those images, the efficacy of IGRT in ensuring accurate treatment delivery can be evaluated and improved by determining delivered doses and adapting the plan during treatment. The second objective of this dissertation was to explore new applications of IGRT to further improve treatment. By utilizing daily IGRT images, a retrospective analysis of

  18. Projections onto the Pareto surface in multicriteria radiation therapy optimization

    SciTech Connect

    Bokrantz, Rasmus E-mail: rasmus.bokrantz@raysearchlabs.com; Miettinen, Kaisa

    2015-10-15

    Purpose: To eliminate or reduce the error to Pareto optimality that arises in Pareto surface navigation when the Pareto surface is approximated by a small number of plans. Methods: The authors propose to project the navigated plan onto the Pareto surface as a postprocessing step to the navigation. The projection attempts to find a Pareto optimal plan that is at least as good as or better than the initial navigated plan with respect to all objective functions. An augmented form of projection is also suggested where dose–volume histogram constraints are used to prevent that the projection causes a violation of some clinical goal. The projections were evaluated with respect to planning for intensity modulated radiation therapy delivered by step-and-shoot and sliding window and spot-scanned intensity modulated proton therapy. Retrospective plans were generated for a prostate and a head and neck case. Results: The projections led to improved dose conformity and better sparing of organs at risk (OARs) for all three delivery techniques and both patient cases. The mean dose to OARs decreased by 3.1 Gy on average for the unconstrained form of the projection and by 2.0 Gy on average when dose–volume histogram constraints were used. No consistent improvements in target homogeneity were observed. Conclusions: There are situations when Pareto navigation leaves room for improvement in OAR sparing and dose conformity, for example, if the approximation of the Pareto surface is coarse or the problem formulation has too permissive constraints. A projection onto the Pareto surface can identify an inaccurate Pareto surface representation and, if necessary, improve the quality of the navigated plan.

  19. Stereotactic Body Radiation Therapy in Recurrent Hepatocellular Carcinoma

    SciTech Connect

    Huang, Wen-Yen; Jen, Yee-Min; Lee, Meei-Shyuan; Chang, Li-Ping; Chen, Chang-Ming; Ko, Kai-Hsiung; Lin, Kuen-Tze; Lin, Jang-Chun; Chao, Hsing-Lung; Lin, Chun-Shu; Su, Yu-Fu; Fan, Chao-Yueh; Chang, Yao-Wen

    2012-10-01

    Purpose: To examine the safety and efficacy of Cyberknife stereotactic body radiation therapy (SBRT) and its effect on survival in patients of recurrent hepatocellular carcinoma (HCC). Methods and Materials: This was a matched-pair study. From January 2008 to December 2009, 36 patients with 42 lesions of unresectable recurrent HCC were treated with SBRT. The median prescribed dose was 37 Gy (range, 25 to 48 Gy) in 4-5 fractions over 4-5 consecutive working days. Another 138 patients in the historical control group given other or no treatments were selected for matched analyses. Results: The median follow-up time was 14 months for all patients and 20 months for those alive. The 1- and 2-year in-field failure-free rates were 87.6% and 75.1%, respectively. Out-field intrahepatic recurrence was the main cause of failure. The 2-year overall survival (OS) rate was 64.0%, and median time to progression was 8.0 months. In the multivariable analysis of all 174 patients, SBRT (yes vs. no), tumor size ({<=}4 cm vs. >4 cm), recurrent stage (stage IIIB/IV vs. I) and Child-Pugh classification (A vs. B/C) were independent prognostic factors for OS. Matched-pair analysis revealed that patients undergoing SBRT had better OS (2-year OS of 72.6% vs. 42.1%, respectively, p = 0.013). Acute toxicities were mild and tolerable. Conclusion: SBRT is a safe and efficacious modality and appears to be well-tolerated at the dose fractionation we have used, and its use correlates with improved survival in this cohort of patients with recurrent unresectable HCC. Out-field recurrence is the major cause of failure. Further studies of combinations of SBRT and systemic therapies may be reasonable.

  20. Proton Radiation Therapy for the Treatment of Retinoblastoma

    SciTech Connect

    Mouw, Kent W.; Sethi, Roshan V.; Yeap, Beow Y.; MacDonald, Shannon M.; Chen, Yen-Lin E.; Tarbell, Nancy J.; Yock, Torunn I.; Munzenrider, John E.; Adams, Judith; Grabowski, Eric; Mukai, Shizuo; Shih, Helen A.

    2014-11-15

    Purpose: To investigate long-term disease and toxicity outcomes for pediatric retinoblastoma patients treated with proton radiation therapy (PRT). Methods and Materials: This is a retrospective analysis of 49 retinoblastoma patients (60 eyes) treated with PRT between 1986 and 2012. Results: The majority (84%) of patients had bilateral disease, and nearly half (45%) had received prior chemotherapy. At a median follow-up of 8 years (range, 1-24 years), no patients died of retinoblastoma or developed metastatic disease. The post-PRT enucleation rate was low (18%), especially in patients with early-stage disease (11% for patients with International Classification for Intraocular Retinoblastoma [ICIR] stage A-B disease vs 23% for patients with ICIR stage C-D disease). Post-PRT ophthalmologic follow-up was available for 61% of the preserved eyes (30 of 49): 14 of 30 eyes (47%) had 20/40 visual acuity or better, 7 of 30 (23%) had moderate visual acuity (20/40-20/600), and 9 of 30 (30%) had little or no useful vision (worse than 20/600). Twelve of 60 treated eyes (20%) experienced a post-PRT event requiring intervention, with cataracts the most common (4 eyes). No patients developed an in-field second malignancy. Conclusions: Long-term follow-up of retinoblastoma patients treated with PRT demonstrates that PRT can achieve high local control rates, even in advanced cases, and many patients retain useful vision in the treated eye. Treatment-related ocular side effects were uncommon, and no radiation-associated malignancies were observed.

  1. Treatment of advanced head and neck cancer: multiple daily dose fractionated radiation therapy and sequential multimodal treatment approach.

    PubMed

    Nissenbaum, M; Browde, S; Bezwoda, W R; de Moor, N G; Derman, D P

    1984-01-01

    Fifty-eight patients with advanced head and neck cancer were entered into a randomised trial comparing chemotherapy (DDP + bleomycin) alone, multiple daily fractionated radiation therapy, and multimodality therapy consisting of chemotherapy plus multiple fractionated radiation therapy. Multimodal therapy gave a significantly higher response rate (69%) than either single-treatment modality. The use of a multiple daily dose fractionation allowed radiation therapy to be completed over 10 treatment days, and the addition of chemotherapy to the radiation treatment did not significantly increase toxicity. Patients receiving multimodal therapy also survived significantly longer (median 50 weeks) than those receiving single-modality therapy (median 24 weeks).

  2. Mometasone Furoate Cream Reduces Acute Radiation Dermatitis in Patients Receiving Breast Radiation Therapy: Results of a Randomized Trial

    SciTech Connect

    Hindley, Andrew; Zain, Zakiyah; Wood, Lisa; Whitehead, Anne; Sanneh, Alison; Barber, David; Hornsby, Ruth

    2014-11-15

    Purpose: We wanted to confirm the benefit of mometasone furoate (MF) in preventing acute radiation reactions, as shown in a previous study (Boström et al, Radiother Oncol 2001;59:257-265). Methods and Materials: The study was a double-blind comparison of MF with D (Diprobase), administered daily from the start of radiation therapy for 5 weeks in patients receiving breast radiation therapy, 40 Gy in 2.67-Gy fractions daily over 3 weeks. The primary endpoint was mean modified Radiation Therapy Oncology Group (RTOG) score. Results: Mean RTOG scores were significantly less for MF than for D (P=.046). Maximum RTOG and mean erythema scores were significantly less for MF than for D (P=.018 and P=.012, respectively). The Dermatology Life Quality Index (DLQI) score was significantly less for MF than for D at weeks 4 and 5 when corrected for Hospital Anxiety and Depression (HAD) questionnaire scores. Conclusions: MF cream significantly reduces radiation dermatitis when applied to the breast during and after radiation therapy. For the first time, we have shown a significantly beneficial effect on quality of life using a validated instrument (DLQI), for a topical steroid cream. We believe that application of this cream should be the standard of care where radiation dermatitis is expected.

  3. SU-C-16A-06: Optimum Radiation Source for Radiation Therapy of Skin Cancer

    SciTech Connect

    Safigholi, Habib; Meigooni, A S.

    2014-06-15

    Purpose: Recently, different applicators are designed for treatment of the skin cancer such as scalp and legs, using Ir-192 HDR Brachytherapy Sources (IR-HDRS), Miniature Electronic Brachytherapy Sources (MEBXS), and External Electron Beam Radiation Therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project the radiation dose delivered to the underlying bone has been evaluated as a function of the radiation source and thickness of the underlying bone. Methods: MC simulations were performed using MCNP5 code. In these simulations, the mono-energetic and non-divergent photon beams of 30 keV, 50 keV, and 70 keV for MEBXS, 380 keV photons for IR-HDRS, and 6 MeV mono-energetic electron beam for EEBRT were modeled. A 0.5 cm thick soft tissue (0.3 cm skin and 0.2 cm adipose) with underlying 0.5 cm cortical bone followed by 14 cm soft tissue are utilized for simulations. Results: Dose values to bone tissue as a function of beam energy and beam type, for a delivery of 5000 cGy dose to skin, were compared. These results indicate that for delivery of 5000 cGy dose to the skin surface with 30 keV, 50 keV, 70 keV of MEBXS, IR-HDRS, and EEBRT techniques, bone will receive 31750 cGy, 27450 cGy, 18550 cGy, 4875 cGy, and 10450 cGy, respectively. Conclusion: The results of these investigations indicate that, for delivery of the same skin dose, average doses received by the underlying bone are 5.2 and 2.2 times larger with a 50 keV MEBXS and EEBRT techniques than IR-HDRS, respectively.

  4. Acute myelogenous leukemia following radiation therapy and chemotherapy for osteogenic sarcoma

    SciTech Connect

    Jacobs, A.D.; Gale, R.P.

    1984-06-01

    Patients receiving ionizing radiation therapy or cytotoxic chemotherapy are at increased risk of developing acute myelogenous leukemia. Ten cases of therapy-linked myelogenous leukemia have been reported in patients with sarcoma, and the authors report here the first case in a patient who received combined-modality therapy for treatment of an osteogenic sarcoma. As treatment for this disease becomes more intensive and survival improves, the incidence of leukemia following therapy for osteogenic sarcoma may increase.

  5. A centralized dose calculation system for radiation therapy.

    PubMed

    Xiao, Y; Galvin, J

    2000-05-01

    Centralization of treatment planning in a radiation therapy department is a realistic strategy to achieve an integrated and quality-controlled planning system, especially for institutions with numerous affiliations. The rapid evolution of computer hardware and software technology makes this a distinct possibility. However, the procedure of three-dimensional treatment planning involves a number of steps, such as: (1) input of patient computed tomography (CT) images and contour information; (2) interactions with local devices such as a film digitizer; and (3) output of beam information to be integrated with the record and verify the system. A full-fledged realization of the web-based centralized three-dimensional treatment planning system will require an extensive commercial development effort. We have developed and incorporated a web-based Timer/Monitor Unit (MU) program as a first step towards the full implementation of a centralized treatment planning system. The software application was developed in JAVA language. It uses the internet server and client technology. With one server that can handle multiple threads, it is a simple process to access the application anywhere on the network with an internet browser. Both the essential data needed for the calculation and the results are stored on the server, which centralizes the maintenance of the software and the storage of patient information.

  6. Nuclear data needs for radiation protection and therapy dosimetry

    SciTech Connect

    Chadwick, M.B.; DeLuca, P.M. Jr.; Haight, R.C.

    1995-12-31

    New nuclear data are required for improved neutron and proton radiotherapy treatment planning as well as future applications of high-energy particle accelerators. Modern neutron radiotherapy employs energies extending to 70 MeV, while industrial applications such as transmutation and tritium breeding may generate neutrons exceeding energies of 100 MeV. Secondary neutrons produced by advanced proton therapy facilities can have energies as high as 250 MeV. Each use requires nuclear data for transport calculations and analysis of radiation effects (dosimetry). We discuss the nuclear data needs supportive of these applications including the different information requirements. As data in this energy region are sparse and likely to remain so, advanced nuclear model calculations can provide some of the needed information. ln this context, we present new evaluated nuclear data for C, N, and O. Additional experimental information, including integral and differential data, are required to confirm these results and to bound further calculations. We indicate the required new data to be measured and the difficulties in carrying out such experiments.

  7. Intensity-Modulated Radiation Therapy in Childhood Ependymoma

    SciTech Connect

    Schroeder, Thomas M.; Chintagumpala, Murali; Okcu, M. Fatih; Chiu, J. Kam; Teh, Bin S.; Woo, Shiao Y.; Paulino, Arnold C.

    2008-07-15

    Purpose: To determine the patterns of failure after intensity-modulated radiation therapy (IMRT) for localized intracranial ependymoma. Methods and Materials: From 1994 to 2005, 22 children with pathologically proven, localized, intracranial ependymoma were treated with adjuvant IMRT. Of the patients, 12 (55%) had an infratentorial tumor and 14 (64%) had anaplastic histology. Five patients had a subtotal resection (STR), as evidenced by postoperative magnetic resonance imaging. The clinical target volume encompassed the tumor bed and any residual disease plus margin (median dose 54 Gy). Median follow-up for surviving patients was 39.8 months. Results: The 3-year overall survival rate was 87% {+-} 9%. The 3-year local control rate was 68% {+-} 12%. There were six local recurrences, all in the high-dose region of the treatment field. Median time to recurrence was 21.7 months. Of the 5 STR patients, 4 experienced recurrence and 3 died. Patients with a gross total resection had significantly better local control (p = 0.024) and overall survival (p = 0.008) than those with an STR. At last follow-up, no patient had developed visual loss, brain necrosis, myelitis, or a second malignancy. Conclusions: Treatment with IMRT provides local control and survival rates comparable with those in historic publications using larger treatment volumes. All failures were within the high-dose region, suggesting that IMRT does not diminish local control. The degree of surgical resection was shown to be significant for local control and survival.

  8. Radiant{trademark} Liquid Radioisotope Intravascular Radiation Therapy System

    SciTech Connect

    Eigler, N.; Whiting, J.; Chernomorsky, A.; Jackson, J.; Knapp, F.F., Jr.; Litvack, F.

    1998-01-16

    RADIANT{trademark} is manufactured by United States Surgical Corporation, Vascular Therapies Division, (formerly Progressive Angioplasty Systems). The system comprises a liquid {beta}-radiation source, a shielded isolation/transfer device (ISAT), modified over-the-wire or rapid exchange delivery balloons, and accessory kits. The liquid {beta}-source is Rhenium-188 in the form of sodium perrhenate (NaReO{sub 4}), Rhenium-188 is primarily a {beta}-emitter with a physical half-life of 17.0 hours. The maximum energy of the {beta}-particles is 2.1 MeV. The source is produced daily in the nuclear pharmacy hot lab by eluting a Tungsten-188/Rhenium-188 generator manufactured by Oak Ridge National Laboratory (ORNL). Using anion exchange columns and Millipore filters the effluent is concentrated to approximately 100 mCi/ml, calibrated, and loaded into the (ISAT) which is subsequently transported to the cardiac catheterization laboratory. The delivery catheters are modified Champion{trademark} over-the-wire, and TNT{trademark} rapid exchange stent delivery balloons. These balloons have thickened polyethylene walls to augment puncture resistance; dual radio-opaque markers and specially configured connectors.

  9. Objective assessment of image quality VI: imaging in radiation therapy

    NASA Astrophysics Data System (ADS)

    Barrett, Harrison H.; Kupinski, Matthew A.; Müeller, Stefan; Halpern, Howard J.; Morris, John C., III; Dwyer, Roisin

    2013-11-01

    Earlier work on objective assessment of image quality (OAIQ) focused largely on estimation or classification tasks in which the desired outcome of imaging is accurate diagnosis. This paper develops a general framework for assessing imaging quality on the basis of therapeutic outcomes rather than diagnostic performance. By analogy to receiver operating characteristic (ROC) curves and their variants as used in diagnostic OAIQ, the method proposed here utilizes the therapy operating characteristic or TOC curves, which are plots of the probability of tumor control versus the probability of normal-tissue complications as the overall dose level of a radiotherapy treatment is varied. The proposed figure of merit is the area under the TOC curve, denoted AUTOC. This paper reviews an earlier exposition of the theory of TOC and AUTOC, which was specific to the assessment of image-segmentation algorithms, and extends it to other applications of imaging in external-beam radiation treatment as well as in treatment with internal radioactive sources. For each application, a methodology for computing the TOC is presented. A key difference between ROC and TOC is that the latter can be defined for a single patient rather than a population of patients.

  10. Carcinoma of the cervical esophagus treated with radiation therapy

    SciTech Connect

    Mendenhall, W.M.; Parsons, J.T.; Vogel, S.B.; Cassisi, N.J.; Million, R.R.

    1988-07-01

    This is an analysis of 34 patients with carcinoma of the cervical esophagus treated with radiation therapy with curative intent at the University of Florida between September 1966 and May 1985. All patients have a minimum 2-year follow-up and 28 (82%) have at least 5 years of follow-up. Patients were staged according to the recommendations of the AJCC. Patients who died within 2 years of treatment with the primary site continuously disease-free were excluded from the local control analysis; all patients were included in the analysis of complications and survival. Irradiation resulted in control of the primary lesion in 1 of 2 patients who presented with T1 lesions, in 4 of the 12 patients with T2 lesions, and 3 of 17 patients who presented with T3 lesions. One patient with a T3 lesion that recurred locally was successfully salvaged by an operation. The 5-year absolute survival rates by stage were as follows: no patients with stage I lesions survived; of 11 stage II patients, one survived; and of 16 stage III patients, three survived. Interestingly, all four of the 5-year survivors were women.

  11. Acid ceramidase in prostate cancer radiation therapy resistance and relapse

    NASA Astrophysics Data System (ADS)

    Cheng, Joseph C.

    Prostate tumor cell escape from ionizing radiation (IR)-induced killing can lead to disease progression and relapse. Sphingolipids such as ceramide and sphingosine 1-phosphate influence signal transduction pathways that regulate stress response in cancer cells. In particular, metabolism of apoptotic ceramide constitutes an important survival adaptation. Assessments of enzyme activity, mRNA, and protein demonstrated preferential upregulation of the ceramide deacylating enzyme acid ceramidase (AC) in irradiated cancer cells. Promoter-reporter and ChIP-qPCR assays revealed AC transcription by activator protein 1 (AP-1) is sensitive to pharmacological inhibition of de novo ceramide biosynthesis, identifying a protective feedback mechanism that mitigates the effects of IR-induced ceramide. Deregulation of c-Jun, in particular, induced marked radiosensitization in vitro and in vivo, which was rescued by ectopic AC over-expression. AC over-expression in prostate cancer clonogens surviving 80 Gray fractionated irradiation was associated with increased radioresistance and proliferation, suggesting a role in radiotherapy failure and relapse. Indeed, immunohistochemical analysis of human prostate cancer tissues revealed higher levels of AC after radiotherapy failure than therapy-naive adenocarcinoma, PIN, or benign tissues. By genetically downregulating AC with small interfering RNA (siRNA), we observed radiosensitization of cells using clonogenic and cytotoxicity assays. Finally, treatment with lysosomotropic small molecule inhibitors of AC, LCL385 or LCL521, induced prostate cancer xenograft radiosensitization and long-term suppression, suggesting AC is a tractable target for adjuvant radiotherapy.

  12. Cherenkov Video Imaging Allows for the First Visualization of Radiation Therapy in Real Time

    SciTech Connect

    Jarvis, Lesley A.; Zhang, Rongxiao; Gladstone, David J.; Jiang, Shudong; Hitchcock, Whitney; Friedman, Oscar D.; Glaser, Adam K.; Jermyn, Michael; Pogue, Brian W.

    2014-07-01

    Purpose: To determine whether Cherenkov light imaging can visualize radiation therapy in real time during breast radiation therapy. Methods and Materials: An intensified charge-coupled device (CCD) camera was synchronized to the 3.25-μs radiation pulses of the clinical linear accelerator with the intensifier set × 100. Cherenkov images were acquired continuously (2.8 frames/s) during fractionated whole breast irradiation with each frame an accumulation of 100 radiation pulses (approximately 5 monitor units). Results: The first patient images ever created are used to illustrate that Cherenkov emission can be visualized as a video during conditions typical for breast radiation therapy, even with complex treatment plans, mixed energies, and modulated treatment fields. Images were generated correlating to the superficial dose received by the patient and potentially the location of the resulting skin reactions. Major blood vessels are visible in the image, providing the potential to use these as biological landmarks for improved geometric accuracy. The potential for this system to detect radiation therapy misadministrations, which can result from hardware malfunction or patient positioning setup errors during individual fractions, is shown. Conclusions: Cherenkoscopy is a unique method for visualizing surface dose resulting in real-time quality control. We propose that this system could detect radiation therapy errors in everyday clinical practice at a time when these errors can be corrected to result in improved safety and quality of radiation therapy.

  13. Variation in the Cost of Radiation Therapy Among Medicare Patients With Cancer

    PubMed Central

    Paravati, Anthony J.; Boero, Isabel J.; Triplett, Daniel P.; Hwang, Lindsay; Matsuno, Rayna K.; Xu, Beibei; Mell, Loren K.; Murphy, James D.

    2015-01-01

    Purpose: Radiation therapy represents a major source of health care expenditure for patients with cancer. Understanding the sources of variability in the cost of radiation therapy is critical to evaluating the efficiency of the current reimbursement system and could shape future policy reform. This study defines the magnitude and sources of variation in the cost of radiation therapy for a large cohort of Medicare beneficiaries. Patients and Methods: We identified 55,288 patients within the SEER database diagnosed with breast, lung, or prostate cancer between 2004 and 2009. The cost of radiation therapy was estimated from Medicare reimbursements. Multivariable linear regression models were used to assess the influence of patient, tumor, and radiation therapy provider characteristics on variation in cost of radiation therapy. Results: For breast, lung, and prostate cancers, the median cost (interquartile range) of a course of radiation therapy was $8,600 ($7,300 to $10,300), $9,000 ($7,500 to $11,100), and $18,000 ($11,300 to $25,500), respectively. For all three cancer subtypes, patient- or tumor-related factors accounted for < 3% of the variation in cost. Factors unrelated to the patient, including practice type, geography, and individual radiation therapy provider, accounted for a substantial proportion of the variation in cost, ranging from 44% with breast, 43% with lung, and 61% with prostate cancer. Conclusion: In this study, factors unrelated to the individual patient accounted for the majority of variation in the cost of radiation therapy, suggesting potential inefficiency in health care expenditure. Future research should determine whether this variability translates into improved patient outcomes for further evaluation of current reimbursement practices. PMID:26265172

  14. Adjuvant Radiation Therapy Treatment Time Impacts Overall Survival in Gastric Cancer

    SciTech Connect

    McMillan, Matthew T.; Ojerholm, Eric; Roses, Robert E.; Plastaras, John P.; Metz, James M.; Mamtani, Ronac; Stripp, Diana; Ben-Josef, Edgar; Datta, Jashodeep

    2015-10-01

    Purpose: Prolonged radiation therapy treatment time (RTT) is associated with worse survival in several tumor types. This study investigated whether delays during adjuvant radiation therapy impact overall survival (OS) in gastric cancer. Methods and Materials: The National Cancer Data Base was queried for patients with resected gastric cancer who received adjuvant radiation therapy with National Comprehensive Cancer Network–recommended doses (45 or 50.4 Gy) between 1998 and 2006. RTT was classified as standard (45 Gy: 33-36 days, 50.4 Gy: 38-41 days) or prolonged (45 Gy: >36 days, 50.4 Gy: >41 days). Cox proportional hazards models evaluated the association between the following factors and OS: RTT, interval from surgery to radiation therapy initiation, interval from surgery to radiation therapy completion, radiation therapy dose, demographic/pathologic and operative factors, and other elements of adjuvant multimodality therapy. Results: Of 1591 patients, RTT was delayed in 732 (46%). Factors associated with prolonged RTT were non-private health insurance (OR 1.3, P=.005) and treatment at non-academic facilities (OR 1.2, P=.045). Median OS and 5-year actuarial survival were significantly worse in patients with prolonged RTT compared with standard RTT (36 vs 51 months, P=.001; 39 vs 47%, P=.005); OS worsened with each cumulative week of delay (P<.0004). On multivariable analysis, prolonged RTT was associated with inferior OS (hazard ratio 1.2, P=.002); the intervals from surgery to radiation therapy initiation or completion were not. Prolonged RTT was particularly detrimental in patients with node positivity, inadequate nodal staging (<15 nodes examined), and those undergoing a cycle of chemotherapy before chemoradiation therapy. Conclusions: Delays during adjuvant radiation therapy appear to negatively impact survival in gastric cancer. Efforts to minimize cumulative interruptions to <7 days should be considered.

  15. Optimization and quality assurance of an image-guided radiation therapy system for intensity-modulated radiation therapy radiotherapy

    SciTech Connect

    Tsai, Jen-San; Micaily, Bizhan; Miyamoto, Curtis

    2012-10-01

    To develop a quality assurance (QA) of XVI cone beam system (XVIcbs) for its optimal imaging-guided radiotherapy (IGRT) implementation, and to construe prostate tumor margin required for intensity-modulated radiation therapy (IMRT) if IGRT is unavailable. XVIcbs spatial accuracy was explored with a humanoid phantom; isodose conformity to lesion target with a rice phantom housing a soap as target; image resolution with a diagnostic phantom; and exposure validation with a Radcal ion chamber. To optimize XVIcbs, rotation flexmap on coincidency between gantry rotational axis and that of XVI cone beam scan was investigated. Theoretic correlation to image quality of XVIcbs rotational axis stability was elaborately studied. Comprehensive QA of IGRT using XVIcbs has initially been explored and then implemented on our general IMRT treatments, and on special IMRT radiotherapies such as head and neck (H and N), stereotactic radiation therapy (SRT), stereotactic radiosurgery (SRS), and stereotactic body radiotherapy (SBRT). Fifteen examples of prostate setup accounted for 350 IGRT cone beam system were analyzed. IGRT accuracy results were in agreement {+-} 1 mm. Flexmap 0.25 mm met the manufacturer's specification. Films confirmed isodose coincidence with target (soap) via XVIcbs, otherwise not. Superficial doses were measured from 7.2-2.5 cGy for anatomic diameters 15-33 cm, respectively. Image quality was susceptible to rotational stability or patient movement. IGRT using XVIcbs on general IMRT treatments such as prostate, SRT, SRS, and SBRT for setup accuracy were verified; and subsequently coordinate shifts corrections were recorded. The 350 prostate IGRT coordinate shifts modeled to Gaussian distributions show central peaks deviated off the isocenter by 0.6 {+-} 3.0 mm, 0.5 {+-} 4.5 mm in the X(RL)- and Z(SI)-coordinates, respectively; and 2.0 {+-} 3.0 mm in the Y(AP)-coordinate as a result of belly and bladder capacity variations. Sixty-eight percent of confidence was

  16. Dosimetric comparison of volumetric modulated arc therapy with robotic stereotactic radiation therapy in hepatocellular carcinoma

    PubMed Central

    Paik, Eun Kyung; Choi, Chul Won; Jang, Won Il; Lee, Sung Hyun; Choi, Sang Hyoun; Kim, Kum Bae; Lee, Dong Han

    2015-01-01

    Purpose To compare volumetric modulated arc therapy of RapidArc with robotic stereotactic body radiation therapy (SBRT) of CyberKnife in the planning and delivery of SBRT for hepatocellular carcinoma (HCC) treatment by analyzing dosimetric parameters. Materials and Methods Two radiation treatment plans were generated for 29 HCC patients, one using Eclipse for the RapidArc plan and the other using Multiplan for the CyberKnife plan. The prescription dose was 60 Gy in 3 fractions. The dosimetric parameters of planning target volume (PTV) coverage and normal tissue sparing in the RapidArc and the CyberKnife plans were analyzed. Results The conformity index was 1.05 ± 0.02 for the CyberKnife plan, and 1.13 ± 0.10 for the RapidArc plan. The homogeneity index was 1.23 ± 0.01 for the CyberKnife plan, and 1.10 ± 0.03 for the RapidArc plan. For the normal liver, there were significant differences between the two plans in the low-dose regions of V1 and V3. The normalized volumes of V60 for the normal liver in the RapidArc plan were drastically increased when the mean dose of the PTVs in RapidArc plan is equivalent to the mean dose of the PTVs in the CyberKnife plan. Conclusion CyberKnife plans show greater dose conformity, especially in small-sized tumors, while RapidArc plans show good dosimetric distribution of low dose sparing in the normal liver and body. PMID:26484307

  17. Age Disparity in Palliative Radiation Therapy Among Patients With Advanced Cancer

    SciTech Connect

    Wong, Jonathan; Xu, Beibei; Yeung, Heidi N.; Roeland, Eric J.; Martinez, Maria Elena; Le, Quynh-Thu; Mell, Loren K.; Murphy, James D.

    2014-09-01

    Purpose/Objective: Palliative radiation therapy represents an important treatment option among patients with advanced cancer, although research shows decreased use among older patients. This study evaluated age-related patterns of palliative radiation use among an elderly Medicare population. Methods and Materials: We identified 63,221 patients with metastatic lung, breast, prostate, or colorectal cancer diagnosed between 2000 and 2007 from the Surveillance, Epidemiology, and End Results (SEER)-Medicare linked database. Receipt of palliative radiation therapy was extracted from Medicare claims. Multivariate Poisson regression analysis determined residual age-related disparity in the receipt of palliative radiation therapy after controlling for confounding covariates including age-related differences in patient and demographic covariates, length of life, and patient preferences for aggressive cancer therapy. Results: The use of radiation decreased steadily with increasing patient age. Forty-two percent of patients aged 66 to 69 received palliative radiation therapy. Rates of palliative radiation decreased to 38%, 32%, 24%, and 14% among patients aged 70 to 74, 75 to 79, 80 to 84, and over 85, respectively. Multivariate analysis found that confounding covariates attenuated these findings, although the decreased relative rate of palliative radiation therapy among the elderly remained clinically and statistically significant. On multivariate analysis, compared to patients 66 to 69 years old, those aged 70 to 74, 75 to 79, 80 to 84, and over 85 had a 7%, 15%, 25%, and 44% decreased rate of receiving palliative radiation, respectively (all P<.0001). Conclusions: Age disparity with palliative radiation therapy exists among older cancer patients. Further research should strive to identify barriers to palliative radiation among the elderly, and extra effort should be made to give older patients the opportunity to receive this quality of life-enhancing treatment at the end

  18. Internal radiation therapy: a neglected aspect of nuclear medicine in the molecular era

    PubMed Central

    Lin, Yansong

    2015-01-01

    Abstract With increasing evidence, internal radiation therapy, also known as brachytherapy, has become a neglected aspect of nuclear medicine in the molecular era. In this paper, recent developments regarding internal radiation therapy, including developments in radioiodine-131 (131I) and thyroid, radioimmunotherapy (RIT) for non-Hodgkin lymphoma (NHL), and radiopharmaceuticals for bone metastases. Relevant differences and status of their applications in China were mentioned as well. These molecular mediated internal radiation therapies are gaining increasing importance by providing palliative and curative treatments for an increasing number of diseases and becoming one of the important parts of molecular nuclear medicine. PMID:26445567

  19. Opportunities for Radiosensitization in the Stereotactic Body Radiation Therapy (SBRT) Era.

    PubMed

    Moding, Everett J; Mowery, Yvonne M; Kirsch, David G

    2016-01-01

    Stereotactic body radiation therapy (SBRT) utilizing a small number of high-dose radiation therapy fractions continues to expand in clinical application. Although many approaches have been proposed to radiosensitize tumors with conventional fractionation, how these radiosensitizers will translate to SBRT remains largely unknown. Here, we review our current understanding of how SBRT eradicates tumors, including the potential contributions of endothelial cell death and immune system activation. In addition, we identify several new opportunities for radiosensitization generated by the move toward high dose per fraction radiation therapy. PMID:27441746

  20. Patterns of clinical care in radiation therapy in the United States

    SciTech Connect

    Kramer, S.

    1984-06-01

    Results of the first nationwide evaluation of radiation therapy in the United States with respect to its quality and accessibility are presented. The Patterns of Care Study (PCS) is financially supported by the National Cancer Institute and has served as a model for other oncology-related disciplines. The PCS has determined criteria by which to evaluate radiation therapy care in 10 disease sites in which curative radiation therapy plays a major role. The sampling design identified the institution to be surveyed and included all types of practice in the U.S. This paper examines results related to carcinomas of the cervix, larynx and prostate.