Science.gov

Sample records for radiation-induced apoptotic cell

  1. Anti-apoptotic peptides protect against radiation-induced cell death.

    PubMed

    McConnell, Kevin W; Muenzer, Jared T; Chang, Kathy C; Davis, Chris G; McDunn, Jonathan E; Coopersmith, Craig M; Hilliard, Carolyn A; Hotchkiss, Richard S; Grigsby, Perry W; Hunt, Clayton R

    2007-04-06

    The risk of terrorist attacks utilizing either nuclear or radiological weapons has raised concerns about the current lack of effective radioprotectants. Here it is demonstrated that the BH4 peptide domain of the anti-apoptotic protein Bcl-xL can be delivered to cells by covalent attachment to the TAT peptide transduction domain (TAT-BH4) and provide protection in vitro and in vivo from radiation-induced apoptotic cell death. Isolated human lymphocytes treated with TAT-BH4 were protected against apoptosis following exposure to 15Gy radiation. In mice exposed to 5Gy radiation, TAT-BH4 treatment protected splenocytes and thymocytes from radiation-induced apoptotic cell death. Most importantly, in vivo radiation protection was observed in mice whether TAT-BH4 treatment was given prior to or after irradiation. Thus, by targeting steps within the apoptosis signaling pathway it is possible to develop post-exposure treatments to protect radio-sensitive tissues.

  2. SIGN-R1 and complement factors are involved in the systemic clearance of radiation-induced apoptotic cells in whole-body irradiated mice

    SciTech Connect

    Park, Jin-Yeon; Loh, SoHee; Cho, Eun-hee; Choi, Hyeong-Jwa; Na, Tae-Young; Nemeno, Judee Grace E.; Lee, Jeong Ik; Yoon, Taek Joon; Choi, In-Soo; Lee, Minyoung; Lee, Jae-Seon; Kang, Young-Sun

    2015-08-07

    Although SIGN-R1-mediated complement activation pathway has been shown to enhance the systemic clearance of apoptotic cells, the role of SIGN-R1 in the clearance of radiation-induced apoptotic cells has not been characterized and was investigated in this study. Our data indicated that whole-body γ-irradiation of mice increased caspase-3{sup +} apoptotic lymphocyte numbers in secondary lymphoid organs. Following γ-irradiation, SIGN-R1 and complements (C4 and C3) were simultaneously increased only in the mice spleen tissue among the assessed tissues. In particular, C3 was exclusively activated in the spleen. The delayed clearance of apoptotic cells was markedly prevalent in the spleen and liver of SIGN-R1 KO mice, followed by a significant increase of CD11b{sup +} cells. These results indicate that SIGN-R1 and complement factors play an important role in the systemic clearance of radiation-induced apoptotic innate immune cells to maintain tissue homeostasis after γ-irradiation. - Highlights: • Splenic SIGN-R1{sup +} macrophages are activated after γ-irradiation. • C3 and C4 levels increased and C3 was activated in the spleen after γ-irradiation. • SIGN-R1 mediated the systemic clearance of radiation-induced apoptotic cells in spleen and liver.

  3. Podophyllotoxin and Rutin Modulates Ionizing Radiation-Induced Oxidative Stress and Apoptotic Cell Death in Mice Bone Marrow and Spleen.

    PubMed

    Singh, Abhinav; Yashavarddhan, M H; Kalita, Bhargab; Ranjan, Rajiv; Bajaj, Sania; Prakash, Hridayesh; Gupta, Manju Lata

    2017-01-01

    The present study is aimed to investigate the radioprotective efficacy of G-003M (combination of podophyllotoxin and rutin) against gamma radiation-induced oxidative stress and subsequent cell death in mice bone marrow and spleen. Prophylactic administration of G-003M (-1 h) rendered more than 85% survival in mice exposed to 9 Gy (lethal dose) with dose reduction factor of 1.26. G-003M pretreated mice demonstrated significantly reduced level of reactive oxygen species, membrane lipid peroxidation, and retained glutathione level. In the same group, we obtained increased expression of master redox regulator, nuclear factor erythroid-derived like-2 factor (Nrf-2), and its downstream targets (heme oxygenase-1, Nqo-1, glutathione S-transferase, and thioredoxin reductase-1). In addition, G-003M preadministration has also shown a significant reduction in Keap-1 level (Nrf-2 inhibitor). Radiation-induced lethality was significantly amended in combination-treated (G-003M) mice as demonstrated by reduced 8-OHdG, annexin V FITC(+) cells, and restored mitochondrial membrane potential. Expression of antiapoptotic protein Bcl-2 and Bcl-xL was restored in G-003M pretreated group. However, proapoptotic proteins (Puma, Bax, Bak, Caspase-3, and Caspase-7) were significantly declined in this group. Further analysis of immune cells revealed G-003M-mediated restoration of CD3 and CD19 receptor, which was found decreased to significant level following irradiation. Similarly, Gr-1, a marker of granulocytes, was also retained by G-003M administration prior to radiation. Modulatory potential of this formulation (G-003M) can be exploited as a safe and effective countermeasure against radiation-induced lymphohemopoietic injury.

  4. Podophyllotoxin and Rutin Modulates Ionizing Radiation-Induced Oxidative Stress and Apoptotic Cell Death in Mice Bone Marrow and Spleen

    PubMed Central

    Singh, Abhinav; Yashavarddhan, M. H.; Kalita, Bhargab; Ranjan, Rajiv; Bajaj, Sania; Prakash, Hridayesh; Gupta, Manju Lata

    2017-01-01

    The present study is aimed to investigate the radioprotective efficacy of G-003M (combination of podophyllotoxin and rutin) against gamma radiation-induced oxidative stress and subsequent cell death in mice bone marrow and spleen. Prophylactic administration of G-003M (−1 h) rendered more than 85% survival in mice exposed to 9 Gy (lethal dose) with dose reduction factor of 1.26. G-003M pretreated mice demonstrated significantly reduced level of reactive oxygen species, membrane lipid peroxidation, and retained glutathione level. In the same group, we obtained increased expression of master redox regulator, nuclear factor erythroid-derived like-2 factor (Nrf-2), and its downstream targets (heme oxygenase-1, Nqo-1, glutathione S-transferase, and thioredoxin reductase-1). In addition, G-003M preadministration has also shown a significant reduction in Keap-1 level (Nrf-2 inhibitor). Radiation-induced lethality was significantly amended in combination-treated (G-003M) mice as demonstrated by reduced 8-OHdG, annexin V FITC+ cells, and restored mitochondrial membrane potential. Expression of antiapoptotic protein Bcl-2 and Bcl-xL was restored in G-003M pretreated group. However, proapoptotic proteins (Puma, Bax, Bak, Caspase-3, and Caspase-7) were significantly declined in this group. Further analysis of immune cells revealed G-003M-mediated restoration of CD3 and CD19 receptor, which was found decreased to significant level following irradiation. Similarly, Gr-1, a marker of granulocytes, was also retained by G-003M administration prior to radiation. Modulatory potential of this formulation (G-003M) can be exploited as a safe and effective countermeasure against radiation-induced lymphohemopoietic injury. PMID:28289414

  5. Progesterone prevents radiation-induced apoptosis in breast cancer cells.

    PubMed

    Vares, Guillaume; Ory, Katherine; Lectard, Bruno; Levalois, Céline; Altmeyer-Morel, Sandrine; Chevillard, Sylvie; Lebeau, Jérôme

    2004-06-03

    Sex steroid hormones play an essential role in the control of homeostasis in the mammary gland. Although the involvement of progesterone in cellular proliferation and differentiation is well established, its exact role in the control of cell death still remains unclear. As dysregulation of the apoptotic process plays an important role in the pathogenesis of breast cancer, we investigated the regulation of apoptosis by progesterone in various breast cancer cell lines. Our results show that progesterone treatment protects against radiation-induced apoptosis. This prevention appears to be mediated by the progesterone receptor and is unrelated to p53 status. There is also no correlation with the intrinsic hormonal effect on cell proliferation, as the presence of cells in a particular phase of the cell cycle. Surprisingly, progesterone partly allows bypassing of the irradiation-induced growth arrest in G(2)/M in PgR+ cells, leading to an increase in cell proliferation after irradiation. One consequence of this effect is a higher rate of chromosome damage in these proliferating progesterone-treated cells compared to what is observed in untreated irradiated cells. We propose that progesterone, by inhibiting apoptosis and promoting the proliferation of cells with DNA damage, potentially facilitates the emergence of genetic mutations that may play a role in malignant transformation.

  6. Effects of ceramide inhibition on radiation-induced apoptosis in human leukemia MOLT-4 cells.

    PubMed

    Takahashi, Eriko; Inanami, Osamu; Asanuma, Taketoshi; Kuwabara, Mikinori

    2006-03-01

    In the present study, using inhibitors of ceramide synthase (fumonisin B1), ketosphinganine synthetase (L-cycloserine), acid sphingomyelinase (D609 and desipramine) and neutral sphingomyelinase (GW4869), the role of ceramide in X-ray-induced apoptosis was investigated in MOLT-4 cells. The diacylglycerol kinase (DGK) assay showed that the intracellular concentration of ceramide increased time-dependently after X irradiation of cells, and this radiation-induced accumulation of ceramide did not occur prior to the appearance of apoptotic cells. Treatment with D609 significantly inhibited radiation-induced apoptosis, but did not inhibit the increase of intracellular ceramide. Treatment with desipramine or GW4869 prevented neither radiation-induced apoptosis nor the induced increase of ceramide. On the other hand, fumonisin B1 and L-cycloserine had no effect on the radiation-induced induction of apoptosis, in spite of significant inhibition of the radiation-induced ceramide. From these results, it was suggested that the increase of the intracellular concentration of ceramide was not essential for radiation-induced apoptosis in MOLT-4 cells.

  7. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  8. Acidic polysaccharide of Panax ginseng regulates the mitochondria/caspase-dependent apoptotic pathway in radiation-induced damage to the jejunum in mice.

    PubMed

    Bing, So Jin; Kim, Min Ju; Ahn, Ginnae; Im, Jaehak; Kim, Dae Seung; Ha, Danbee; Cho, Jinhee; Kim, Areum; Jee, Youngheun

    2014-04-01

    Owing to its susceptibility to radiation, the small intestine of mice is valuable for studying radioprotective effects. When exposed to radiation, intestinal crypt cells immediately go through apoptosis, which impairs swift differentiation necessary for the regeneration of intestinal villi. Our previous studies have elucidated that acidic polysaccharide of Panax ginseng (APG) protects the mouse small intestine from radiation-induced damage by lengthening villi with proliferation and repopulation of crypt cells. In the present study, we identified the molecular mechanism involved. C57BL/6 mice were irradiated with gamma-rays with or without APG and the expression levels of apoptosis-related molecules in the jejunum were investigated using immunohistochemistry. APG pretreatment strongly decreased the radiation-induced apoptosis in the jejunum. It increased the expression levels of anti-apoptotic proteins (Bcl-2 and Bcl-XS/L) and dramatically reduced the expression levels of pro-apoptotic proteins (p53, BAX, cytochrome c and caspase-3). Therefore, APG attenuated the apoptosis through the intrinsic pathway, which is controlled by p53 and Bcl-2 family members. Results presented in this study suggest that APG protects the mouse small intestine from irradiation-induced apoptosis through inhibition of the p53-dependent pathway and the mitochondria/caspase pathway. Thus, APG may be a potential agent for preventing radiation induced injuries in intestinal cells during radio-therapy such as in cancer treatment.

  9. PAI-1-Dependent Endothelial Cell Death Determines Severity of Radiation-Induced Intestinal Injury

    PubMed Central

    Abderrahmani, Rym; François, Agnes; Buard, Valerie; Tarlet, Georges; Blirando, Karl; Hneino, Mohammad; Vaurijoux, Aurelie; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2012-01-01

    Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 −/− mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 −/− compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 −/− mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 −/− mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury. PMID:22563394

  10. Inactivation of Kupffer Cells by Gadolinium Chloride Protects Murine Liver From Radiation-Induced Apoptosis

    SciTech Connect

    Du Shisuo; Qiang Min; Zeng Zhaochong; Ke Aiwu; Ji Yuan; Zhang Zhengyu; Zeng Haiying; Liu Zhongshan

    2010-03-15

    Purpose: To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. Materials and Methods: A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. Results: The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Conclusion: Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage.

  11. Radiation-induced bystander effect in non-irradiated glioblastoma spheroid cells.

    PubMed

    Faqihi, Fahime; Neshastehriz, Ali; Soleymanifard, Shokouhozaman; Shabani, Robabeh; Eivazzadeh, Nazila

    2015-09-01

    Radiation-induced bystander effects (RIBEs) are detected in cells that are not irradiated but receive signals from treated cells. The present study explored these bystander effects in a U87MG multicellular tumour spheroid model. A medium transfer technique was employed to induce the bystander effect, and colony formation assay was used to evaluate the effect. Relative changes in expression of BAX, BCL2, JNK and ERK genes were analysed using RT-PCR to investigate the RIBE mechanism. A significant decrease in plating efficiency was observed for both bystander and irradiated cells. The survival fraction was calculated for bystander cells to be 69.48% and for irradiated cells to be 34.68%. There was no change in pro-apoptotic BAX relative expression, but anti-apoptotic BCL2 showed downregulation in both irradiated and bystander cells. Pro-apoptotic JNK in bystander samples and ERK in irradiated samples were upregulated. The clonogenic survival data suggests that there was a classic RIBE in U87MG spheroids exposed to 4 Gy of X-rays, using a medium transfer technique. Changes in the expression of pro- and anti-apoptotic genes indicate involvement of both intrinsic apoptotic and MAPK pathways in inducing these effects.

  12. Radiation induced genomic instability in bystander cells

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Gu, S.; Randers-Pehrson, G.; Hei, T.

    There is considerable evidence that exposure to ionizing radiation may induce a heritable genomic instability that leads to a persisting increased frequency of genetic and functional changes in the non-irradiated progeny of a wide variety of irradiated cells Genomic instability is measured as delayed expressions in chromosomal alterations micronucleus formation gene mutations and decreased plating efficiency During the last decade numerous studies have shown that radiation could induce bystander effect in non-irradiated neighboring cells similar endpoints have also been used in genomic instability studies Both genomic instability and the bystander effect are phenomena that result in a paradigm shift in our understanding of radiation biology In the past it seemed reasonable to assume that the production of single- and double-strand DNA breaks are due to direct energy deposition of energy by a charged particle to the nucleus It turns out that biology is not quite that simple Using the Columbia University charged particle microbeam and the highly sensitive human hamster hybrid AL cell mutagenic assay we irradiated 10 of the cells with a lethal dose of 30 alpha particles through the nucleus After overnight incubation the remaining viable bystander cells were replated in dishes for colony formation Clonal isolates were expanded and cultured for 6 consecutive weeks to assess plating efficiency and mutation frequency Preliminary results indicated that there was no significant decrease in plating efficiency among the bystander colonies when compared with

  13. Mensenchymal stem cells can delay radiation-induced crypt death: impact on intestinal CD44(+) fragments.

    PubMed

    Chang, Peng-Yu; Jin, Xing; Jiang, Yi-Yao; Wang, Li-Xian; Liu, Yong-Jun; Wang, Jin

    2016-05-01

    Intestinal stem cells are primitive cells found within the intestinal epithelium that play a central role in maintaining epithelial homeostasis through self-renewal and commitment into functional epithelial cells. Several markers are available to identify intestinal stem cells, such as Lgr5, CD24 and EphB2, which can be used to sort intestinal stem cells from mammalian gut. Here, we identify and isolate intestinal stem cells from C57BL/6 mice by using a cell surface antigen, CD44. In vitro, some CD44(+) crypt cells are capable of forming "villus-crypt"-like structures (organoids). A subset strongly positive for CD44 expresses high levels of intestinal stem-cell-related genes, including Lgr5, Bmi1, Hopx, Lrig1, Ascl2, Smoc2 and Rnf43. Cells from this subset are more capable of developing into organoids in vitro, compared with the subset weakly positive for CD44. However, the organoids are sensitive to ionizing irradiation. We investigate the specific roles of mesenchymal stem cells in protecting organoids against radiation-induced crypt death. When co-cultured with mesenchymal stem cells, the crypt domains of irradiated organoids possess more proliferative cells and fewer apoptotic cells than those not co-cultured with mesenchymal stem cells. Cd44v6 continues to be expressed in the crypt domains of irradiated organoids co-cultured with mesenchymal stem cells. Our results indicate specific roles of mesenchymal stem cells in delaying radiation-induced crypt death in vitro.

  14. Mesenchymal stem cell-conditioned medium prevents radiation-induced liver injury by inhibiting inflammation and protecting sinusoidal endothelial cells.

    PubMed

    Chen, Yi-Xing; Zeng, Zhao-Chong; Sun, Jing; Zeng, Hai-Ying; Huang, Yan-; Zhang, Zhen-Yu

    2015-07-01

    Current management of radiation-induced liver injury is limited. Sinusoidal endothelial cell (SEC) apoptosis and inflammation are considered to be initiating events in hepatic damage. We hypothesized that mesenchymal stem cells (MSCs) possess anti-apoptotic and anti-inflammatory actions during hepatic irradiation, acting via paracrine mechanisms. This study aims to examine whether MSC-derived bioactive components are protective against radiation-induced liver injury in rats. MSC-conditioned medium (MSC-CM) was generated from rat bone marrow-derived MSCs. The effect of MSC-CM on the viability of irradiated SECs was examined by flow cytometric analysis. Activation of the Akt and ERK pathways was analyzed by western blot. MSC-CM was also delivered to Sprague-Dawley rats immediately before receiving liver irradiation, followed by testing for pathological features, changes in serum hyaluronic acid, ALT, and inflammatory cytokine levels, and liver cell apoptosis. MSC-CM enhanced the viability of irradiated SECs in vitro and induced Akt and ERK phosphorylation in these cells. Infusion of MSC-CM immediately before liver irradiation provided a significant anti-apoptotic effect on SECs and improved the histopathological features of injury in the irradiated liver. MSC-CM also reduced the secretion and expression of inflammatory cytokines and increased the expression of anti-inflammatory cytokines. MSC-derived bioactive components could be a novel therapeutic approach for treating radiation-induced liver injury.

  15. Immunosuppressive effects of apoptotic cells

    NASA Astrophysics Data System (ADS)

    Voll, Reinhard E.; Herrmann, Martin; Roth, Edith A.; Stach, Christian; Kalden, Joachim R.; Girkontaite, Irute

    1997-11-01

    Apoptotic cell death is important in the development and homeostasis of multicellular organisms and is a highly controlled means of eliminating dangerous, damaged or unnecessary cells without causing an inflammatory response or tissue damage,. We now show that the presence of apoptotic cells during monocyte activation increases their secretion of the anti-inflammatory and immunoregulatory cytokine interleukin 10 (IL-10) and decreases secretion of the proinflammatory cytokines tumour necrosis factor-α (TNF-α), IL-1 and IL-12. This may inhibit inflammation and contribute to impaired cell-mediated immunity in conditions associated with increased apoptosis, such as viral infections, pregnancy, cancer and exposure to radiation.

  16. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  17. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  18. Induction of Excess Centrosomes in Neural Progenitor Cells during the Development of Radiation-Induced Microcephaly

    PubMed Central

    Shimada, Mikio; Matsuzaki, Fumio; Kato, Akihiro; Kobayashi, Junya; Matsumoto, Tomohiro; Komatsu, Kenshi

    2016-01-01

    The embryonic brain is one of the tissues most vulnerable to ionizing radiation. In this study, we showed that ionizing radiation induces apoptosis in the neural progenitors of the mouse cerebral cortex, and that the surviving progenitor cells subsequently develop a considerable amount of supernumerary centrosomes. When mouse embryos at Day 13.5 were exposed to γ-rays, brains sizes were reduced markedly in a dose-dependent manner, and these size reductions persisted until birth. Immunostaining with caspase-3 antibodies showed that apoptosis occurred in 35% and 40% of neural progenitor cells at 4 h after exposure to 1 and 2 Gy, respectively, and this was accompanied by a disruption of the apical layer in which mitotic spindles were positioned in unirradiated mice. At 24 h after 1 Gy irradiation, the apoptotic cells were completely eliminated and proliferation was restored to a level similar to that of unirradiated cells, but numerous spindles were localized outside the apical layer. Similarly, abnormal cytokinesis, which included multipolar division and centrosome clustering, was observed in 19% and 24% of the surviving neural progenitor cells at 48 h after irradiation with 1 and 2 Gy, respectively. Because these cytokinesis aberrations derived from excess centrosomes result in growth delay and mitotic catastrophe-mediated cell elimination, our findings suggest that, in addition to apoptosis at an early stage of radiation exposure, radiation-induced centrosome overduplication could contribute to the depletion of neural progenitors and thereby lead to microcephaly. PMID:27367050

  19. Original Research: Label-free detection for radiation-induced apoptosis in glioblastoma cells.

    PubMed

    Qi, Dandan; Feng, Jingwen; Yang, Chengwen; Jin, Changrong; Sa, Yu; Feng, Yuanming

    2016-10-01

    Current flow cytometry (FCM) requires fluorescent dyes labeling cells which make the procedure costly and time consuming. This manuscript reports a feasibility study of detecting the cell apoptosis with a label-free method in glioblastoma cells. A human glioma cell line M059K was exposed to 8 Gy dose of radiation, which enables the cells to undergo radiation-induced apoptosis. The rates of apoptosis were studied at different time points post-irradiation with two different methods: FCM in combination with Annexin V-FITC/PI staining and a newly developed technique named polarization diffraction imaging flow cytometry. Totally 1000 diffraction images were acquired for each sample and the gray level co-occurrence matrix (GLCM) algorithm was used in morphological characterization of the apoptotic cells. Among the feature parameters extracted from each image pair, we found that the two GLCM parameters of angular second moment (ASM) and sum entropy (SumEnt) exhibit high sensitivities and consistencies as the apoptotic rates (Pa) measured with FCM method. In addition, no significant difference exists between Pa and ASM_S, Pa and SumEnt_S, respectively (P > 0.05). These results demonstrated that the new label-free method can detect cell apoptosis effectively. Cells can be directly used in the subsequent biochemical experiments as the structure and function of cells and biomolecules are well-preserved with this new method.

  20. The Effects of Fenugreek on Radiation Induced Toxicity for Human Blood T-Cells in Radiotherapy

    PubMed Central

    Tavakoli, Mohamed Bagher; Kiani, Ali; Roayaei, Mahnaz

    2015-01-01

    Many cellular damages either in normal or cancerous tissues are the outcome of molecular events affected by ionizing radiation. T-cells are the most important among immune system agents and are used for biological radiation dose measurement in recommended standard methods. The herbs with immune modulating properties may be useful to reduce the risk of the damages and subsequently the diseases. The T-cells as the most important immune cells being targeted for biological dosimetry of radiation. This study proposes a flowcytometric-method based on fluorescein isothiocyanate- and propidium iodide (PI)-labeled annexin-V to assess apoptosis in blood T-cells after irradiation in both presence and absence of fenugreek extract. T-cells peripheral blood lymphocyte isolated from blood samples of healthy individuals with no irradiated job background. The media of cultured cells was irradiated 1-h after the fenugreek extract was added. The number of apoptotic cells was assessed by annexin-V protocol and multicolor flowcytometry. An obvious variation in apoptotic cells number was observed in presence of fenugreek extract (>80%). The results suggest that fenugreek extract can potentiate the radiation induced apoptosis or radiation toxicity in blood T-cells (P < 0.05). PMID:26284174

  1. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  2. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  3. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  4. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  5. Cholecystokinin attenuates radiation-induced lung cancer cell apoptosis by modulating p53 gene transcription

    PubMed Central

    Han, Yi; Su, Chongyu; Yu, Daping; Zhou, Shijie; Song, Xiaoyun; Liu, Shuku; Qin, Ming; Li, Yunsong; Xiao, Ning; Cao, Xiaoqing; Shi, Kang; Cheng, Xu; Liu, Zhidong

    2017-01-01

    The deregulation of p53 in cancer cells is one of the important factors by which cancer cells escape from the immune surveillance. Cholecystokinin (CCK) has strong bioactivity in the regulation of a number of cell activities. This study tests a hypothesis that CCK interferes with p53 expression to affect the apoptotic process in lung cancer (tumor) cells. In this study, tumor-bearing mice and A549 cells (a tumor cell line) were irradiated. The expression of CCK and p53 in tumor cells was assessed with RT-qPCR and Western blotting. The binding of p300 to the promoter of p53 was evaluated by chromatin immunoprecipitation. We observed that, with a given amount and within a given period, small doses/more sessions of irradiation markedly increased the levels of CCK in the sera and tumor cells, which were positively correlated with the tumor growth in mice and negatively correlated with tumor cell apoptosis. CCK increased the levels of histone acetyltransferase p300 and repressed the levels of nuclear factor-kB at the p53 promoter locus in tumor cells, which suppressed the expression of p53. In conclusion, CCK plays an important role in attenuating the radiation-induced lung cancer cell apoptosis. CCK may be a novel therapeutic target in the treatment of lung cancers. PMID:28337291

  6. Low dose radiation-induced endothelial cell retraction.

    PubMed

    Kantak, S S; Diglio, C A; Onoda, J M

    1993-09-01

    We characterized in vitro the effects of gamma-radiation (12.5-100 cGy) on pulmonary microvascular endothelial cell (PMEC) morphology and F-actin organization. Cellular retraction was documented by phase-contrast microscopy and the organization of actin microfilaments was determined by immunofluorescence. Characterization included radiation dose effects, their temporal duration and reversibility of the effects. A dose-dependent relationship between the level of exposure (12.5-100 cGy) and the rate and extent of endothelial retraction was observed. Moreover, analysis of radiation-induced depolymerization of F-actin microfilament stress fibres correlated positively with the changes in PMEC morphology. The depolymerization of the stress fibre bundles was dependent on radiation dose and time. Cells recovered from exposure to reform contact inhibited monolayers > or = 24 h post-irradiation. Concomitantly, the depolymerized microfilaments reorganized to their preirradiated state as microfilament stress fibres arrayed parallel to the boundaries of adjacent contact-inhibited cells. The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Our data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema.

  7. Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury

    PubMed Central

    Gong, Wei; Guo, Mengzheng; Han, Zhibo; Wang, Yan; Yang, Ping; Xu, Chang; Wang, Qin; Du, Liqing; Li, Qian; Zhao, Hui; Fan, Feiyue; Liu, Qiang

    2016-01-01

    The loss of stem cells residing in the base of the intestinal crypt has a key role in radiation-induced intestinal injury. In particular, Lgr5+ intestinal stem cells (ISCs) are indispensable for intestinal regeneration following exposure to radiation. Mesenchymal stem cells (MSCs) have previously been shown to improve intestinal epithelial repair in a mouse model of radiation injury, and, therefore, it was hypothesized that this protective effect is related to Lgr5+ ISCs. In this study, it was found that, following exposure to radiation, transplantation of MSCs improved the survival of the mice, ameliorated intestinal injury and increased the number of regenerating crypts. Furthermore, there was a significant increase in Lgr5+ ISCs and their daughter cells, including Ki67+ transient amplifying cells, Vil1+ enterocytes and lysozyme+ Paneth cells, in response to treatment with MSCs. Crypts isolated from mice treated with MSCs formed a higher number of and larger enteroids than those from the PBS group. MSC transplantation also reduced the number of apoptotic cells within the small intestine at 6 h post-radiation. Interestingly, Wnt3a and active β-catenin protein levels were increased in the small intestines of MSC-treated mice. In addition, intravenous delivery of recombinant mouse Wnt3a after radiation reduced damage in the small intestine and was radioprotective, although not to the same degree as MSC treatment. Our results show that MSCs support the growth of endogenous Lgr5+ ISCs, thus promoting repair of the small intestine following exposure to radiation. The molecular mechanism of action mediating this was found to be related to increased activation of the Wnt/β-catenin signaling pathway. PMID:27685631

  8. Rhubarb extract has a protective role against radiation-induced brain injury and neuronal cell apoptosis.

    PubMed

    Lu, Kui; Zhang, Cheng; Wu, Wenjun; Zhou, Min; Tang, Yamei; Peng, Ying

    2015-08-01

    Oxidative stress caused by ionizing radiation is involved in neuronal damage in a number of disorders, including trauma, stroke, Alzheimer's disease and amyotrophic lateral sclerosis. Ionizing radiation can lead to the formation of free radicals, which cause neuronal apoptosis and have important roles in the development of some types of chronic brain disease. The present study evaluated the effects of varying concentrations (2, 5 and 10 µg/ml) of ethanolic rhubarb extract on the neuronal damage caused by irradiation in primary neuronal cultures obtained from the cortices of rat embryos aged 20 days. Brain damage was induced with a single dose of γ-irradiation that induced DNA fragmentation, increased lactate dehydrogenase release in neuronal cells and acted as a trigger for microglial cell proliferation. Treatment with rhubarb extract significantly decreased radiation-induced lactate dehydrogenase release and DNA fragmentation, which are important in the process of cell apoptosis. The rhubarb extract exhibited dose-dependent inhibition of lactate dehydrogenase release and neuronal cell apoptosis that were induced by the administration of ionizing radiation. The effect of a 10 µg/ml dose of rhubarb extract on the generation of reactive oxygen species (ROS) induced by radiation was also investigated. This dose led to significant inhibition of ROS generation. In conclusion, the present study showed a protective role of rhubarb extract against irradiation-induced apoptotic neuronal cell death and ROS generation.

  9. Apoptotic cells enhance pathogenesis of Listeria monocytogenes.

    PubMed

    Pattabiraman, Goutham; Palasiewicz, Karol; Visvabharathy, Lavanya; Freitag, Nancy E; Ucker, David S

    2017-04-01

    Infections by pathogenic microorganisms elicit host immune responses, which crucially limit those infections. Pathogens employ various strategies to evade host immunity. We have identified the exploitation of the repertoire of potent immunosuppressive responses elicited normally by apoptotic cells ("Innate Apoptotic Immunity"; IAI) as one of these strategies. In the case of Listeria monocytogenes, an environmentally ubiquitous, foodborne bacterial pathogen capable of causing life-threatening invasive disease in immunocompromised and elderly individuals, the induction of host cell apoptosis appears to play an important role in pathogenesis. Previous studies have documented extensive lymphocyte apoptosis resulting from L. monocytogenes infection and demonstrated paradoxically that lymphocyte-deficient animals exhibit diminished susceptibility to listerial pathogenicity. We speculated that the triggering of IAI following the induction of host cell apoptosis was responsible for enhanced pathogenesis, and that the administration of exogenous apoptotic cells would serve to exert this effect. Importantly, apoptotic cells, which are not susceptible to L. monocytogenes infection, do not provide a niche for bacterial replication. Our experiments confirm that apoptotic cells, including exogenous apoptotic cells induced to die independently of the pathogen, specifically enhance pathogenesis. The recognition of a role of apoptotic cells and Innate Apoptotic Immunity in microbial pathogenesis provides an intriguing and novel insight for therapeutic approaches for the control of pathogenic infections.

  10. Radiation-induced glioblastoma signaling cascade regulates viability, apoptosis and differentiation of neural stem cells (NSC).

    PubMed

    Ivanov, Vladimir N; Hei, Tom K

    2014-12-01

    Ionizing radiation alone or in combination with chemotherapy is the main treatment modality for brain tumors including glioblastoma. Adult neurons and astrocytes demonstrate substantial radioresistance; in contrast, human neural stem cells (NSC) are highly sensitive to radiation via induction of apoptosis. Irradiation of tumor cells has the potential risk of affecting the viability and function of NSC. In this study, we have evaluated the effects of irradiated glioblastoma cells on viability, proliferation and differentiation potential of non-irradiated (bystander) NSC through radiation-induced signaling cascades. Using media transfer experiments, we demonstrated significant effects of the U87MG glioblastoma secretome after gamma-irradiation on apoptosis in non-irradiated NSC. Addition of anti-TRAIL antibody to the transferred media partially suppressed apoptosis in NSC. Furthermore, we observed a dramatic increase in the production and secretion of IL8, TGFβ1 and IL6 by irradiated glioblastoma cells, which could promote glioblastoma cell survival and modify the effects of death factors in bystander NSC. While differentiation of NSC into neurons and astrocytes occurred efficiently with the corresponding differentiation media, pretreatment of NSC for 8 h with medium from irradiated glioblastoma cells selectively suppressed the differentiation of NSC into neurons, but not into astrocytes. Exogenous IL8 and TGFβ1 increased NSC/NPC survival, but also suppressed neuronal differentiation. On the other hand, IL6 was known to positively affect survival and differentiation of astrocyte progenitors. We established a U87MG neurosphere culture that was substantially enriched by SOX2(+) and CD133(+) glioma stem-like cells (GSC). Gamma-irradiation up-regulated apoptotic death in GSC via the FasL/Fas pathway. Media transfer experiments from irradiated GSC to non-targeted NSC again demonstrated induction of apoptosis and suppression of neuronal differentiation of NSC. In

  11. Stabilization of apoptotic cells: generation of zombie cells.

    PubMed

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-08-14

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn(2+) (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy.

  12. Stabilization of apoptotic cells: generation of zombie cells

    PubMed Central

    Oropesa-Ávila, M; Andrade-Talavera, Y; Garrido-Maraver, J; Cordero, M D; de la Mata, M; Cotán, D; Paz, M V; Pavón, A D; Alcocer-Gómez, E; de Lavera, I; Lema, R; Zaderenko, A P; Rodríguez-Moreno, A; Sánchez-Alcázar, J A

    2014-01-01

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy. PMID:25118929

  13. The influence of TRP53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells

    DOE PAGES

    Lemon, Jennifer A.; Taylor, Kristina; Verdecchia, Kyle; ...

    2014-01-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levelsmore » of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.« less

  14. The influence of Trp53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells.

    PubMed

    Lemon, Jennifer A; Taylor, Kristina; Verdecchia, Kyle; Phan, Nghi; Boreham, Douglas R

    2014-07-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levels of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.

  15. Stabilization Of Apoptotic Cells: Generation Of Zombie Cells.

    PubMed

    Sánchez Alcázar, José A; Oropesa Ávila, Manuel; Andrade Talavera, Yuniesky; Garrido Maraver, Juan; de Lavera, Isabel; de la Mata, Mario; Cotán, David; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer Gómez, Elisabet; Rodríguez Moreno, Antonio

    2015-08-01

    Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. We were able by using a cocktail composed of taxol (a microtubule stabilizer), Zn(2+) (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant) to stabilize H460 apoptotic cells in cell cultures for at least 72hours preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cells characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels, plasma membrane potential, PS externalization and ability of being phagocytosed. Stabilized apoptotic cells can be considered as dying cells in which the cellular cortex and plasma membrane are maintained intact or alive. In a metaphorical sense, we can consider them as "living dead" or "zombie cells". Stabilization of apoptotic cells can be used for reliable detection and quantification of apoptosis in cultured cells and may allow a safer administration of apoptotic cells in clinical applications. Furthermore, it opens new avenues in the functional reconstruction of apoptotic cells for longer preservation.

  16. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells.

    PubMed

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin; Jeong, Jae-Hoon; Kang, Seongman; Lim, Young-Bin

    2014-07-25

    Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  17. Detection of apoptotic cells using immunohistochemistry.

    PubMed

    Newbold, Andrea; Martin, Ben P; Cullinane, Carleen; Bots, Michael

    2014-11-03

    Immunohistochemistry is commonly used to show the presence of apoptotic cells in situ. In this protocol, B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples are fixed and sectioned, and fragmented DNA (a feature of apoptotic cells) is end-labeled by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Immunohistochemical methods are then used to detect the labeled DNA and identify B-cell lymphoma cells in the last stage of apoptosis. Because the assay can lead to false-positive results, it is advisable to carry out an additional assay (e.g., immunohistochemistry for active caspase-3) to confirm the presence of apoptotic cells.

  18. RhoA GTPase regulates radiation-induced alterations in endothelial cell adhesion and migration

    SciTech Connect

    Rousseau, Matthieu; Gaugler, Marie-Helene; Rodallec, Audrey; Bonnaud, Stephanie; Paris, Francois; Corre, Isabelle

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We explore the role of RhoA in endothelial cell response to ionizing radiation. Black-Right-Pointing-Pointer RhoA is rapidly activated by single high-dose of radiation. Black-Right-Pointing-Pointer Radiation leads to RhoA/ROCK-dependent actin cytoskeleton remodeling. Black-Right-Pointing-Pointer Radiation-induced apoptosis does not require the RhoA/ROCK pathway. Black-Right-Pointing-Pointer Radiation-induced alteration of endothelial adhesion and migration requires RhoA/ROCK. -- Abstract: Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial

  19. Early radiation-induced endothelial cell loss and blood-spinal cord barrier breakdown in the rat spinal cord.

    PubMed

    Li, Yu-Qing; Chen, Paul; Jain, Vipan; Reilly, Raymond M; Wong, C Shun

    2004-02-01

    Using a rat spinal cord model, this study was designed to characterize radiation-induced vascular endothelial cell loss and its relationship to early blood-brain barrier disruption in the central nervous system. Adult rats were given a single dose of 0, 2, 8, 19.5, 22, 30 or 50 Gy to the cervical spinal cord. At various times up to 2 weeks after irradiation, the spinal cord was processed for histological and immunohistochemical analysis. Radiation-induced apoptosis was assessed by morphology and TdT-mediated dUTP nick end labeling combined with immunohistochemical markers for endothelial and glial cells. Image analysis was performed to determine endothelial cell and microvessel density using immunohistochemistry with endothelial markers, namely endothelial barrier antigen, glucose transporter isoform 1, laminin and zonula occludens 1. Blood-spinal cord barrier permeability was assessed using immunohistochemistry for albumin and (99m)Tc-diethylenetriamine pentaacetic acid as a vascular tracer. Endothelial cell proliferation was assessed using in vivo BrdU labeling. During the first 24 h after irradiation, apoptotic endothelial cells were observed in the rat spinal cord. The decrease in endothelial cell density at 24 h after irradiation was associated with an increase in albumin immunostaining around microvessels. The decrease in the number of endothelial cells persisted for 7 days and recovery of endothelial density was apparent by day 14. A similar pattern of blood-spinal cord barrier disruption and recovery of permeability was observed over the 2 weeks, and an increase in BrdU-labeled endothelial cells was seen at day 3. These results are consistent with an association between endothelial cell death and acute blood-spinal cord barrier disruption in the rat spinal cord after irradiation.

  20. Chemical chaperones reduce ionizing radiation-induced endoplasmic reticulum stress and cell death in IEC-6 cells

    SciTech Connect

    Lee, Eun Sang; Lee, Hae-June; Lee, Yoon-Jin; Jeong, Jae-Hoon; Kang, Seongman; Lim, Young-Bin

    2014-07-25

    Highlights: • UPR activation precedes caspase activation in irradiated IEC-6 cells. • Chemical ER stress inducers radiosensitize IEC-6 cells. • siRNAs that targeted ER stress responses ameliorate IR-induced cell death. • Chemical chaperons prevent cell death in irradiated IEC-6 cells. - Abstract: Radiotherapy, which is one of the most effective approaches to the treatment of various cancers, plays an important role in malignant cell eradication in the pelvic area and abdomen. However, it also generates some degree of intestinal injury. Apoptosis in the intestinal epithelium is the primary pathological factor that initiates radiation-induced intestinal injury, but the mechanism by which ionizing radiation (IR) induces apoptosis in the intestinal epithelium is not clearly understood. Recently, IR has been shown to induce endoplasmic reticulum (ER) stress, thereby activating the unfolded protein response (UPR) signaling pathway in intestinal epithelial cells. However, the consequences of the IR-induced activation of the UPR signaling pathway on radiosensitivity in intestinal epithelial cells remain to be determined. In this study, we investigated the role of ER stress responses in IR-induced intestinal epithelial cell death. We show that chemical ER stress inducers, such as tunicamycin or thapsigargin, enhanced IR-induced caspase 3 activation and DNA fragmentation in intestinal epithelial cells. Knockdown of Xbp1 or Atf6 with small interfering RNA inhibited IR-induced caspase 3 activation. Treatment with chemical chaperones prevented ER stress and subsequent apoptosis in IR-exposed intestinal epithelial cells. Our results suggest a pro-apoptotic role of ER stress in IR-exposed intestinal epithelial cells. Furthermore, inhibiting ER stress may be an effective strategy to prevent IR-induced intestinal injury.

  1. Impaired repair of ionizing radiation-induced DNA damage in Cockayne syndrome cells.

    PubMed

    Cramers, Patricia; Verhoeven, Esther E; Filon, A Ronald; Rockx, Davy A P; Santos, Susy J; van der Leer, Anneke A; Kleinjans, Jos C S; van Zeeland, Albert A; Mullenders, Leon H F

    2011-04-01

    Cockayne syndrome (CS) cells are defective in transcription-coupled repair (TCR) and sensitive to oxidizing agents, including ionizing radiation. We examined the hypothesis that TCR plays a role in ionizing radiation-induced oxidative DNA damage repair or alternatively that CS plays a role in transcription elongation after irradiation. Irradiation with doses up to 100 Gy did not inhibit RNA polymerase II-dependent transcription in normal and CS-B fibroblasts. In contrast, RNA polymerase I-dependent transcription was severely inhibited at 5 Gy in normal cells, indicating different mechanisms of transcription response to X rays. The frequency of radiation-induced base damage was 2 × 10(-7) lesions/base/Gy, implying that 150 Gy is required to induce one lesion/30-kb transcription unit; no TCR of X-ray-induced base damage in the p53 gene was observed. Therefore, it is highly unlikely that defective TCR underlies the sensitivity of CS to ionizing radiation. Overall genome repair levels of radiation-induced DNA damage measured by repair replication were significantly reduced in CS-A and CS-B cells. Taken together, the results do not provide evidence for a key role of TCR in repair of radiation-induced oxidative damages in human cells; rather, impaired repair of oxidative lesions throughout the genome may contribute to the CS phenotype.

  2. The Therapeutic Effect of Adipose-Derived Mesenchymal Stem Cells for Radiation-Induced Bladder Injury

    PubMed Central

    Qiu, Xuefeng; Zhang, Shiwei; Zhao, Xiaozhi; Fu, Kai; Guo, Hongqian

    2016-01-01

    This study was designed to investigate the protective effect of adipose derived mesenchymal stem cells (AdMSCs) against radiation-induced bladder injury (RIBI). Female rats were divided into 4 groups: (a) controls, consisting of nontreated rats; (b) radiation-treated rats; (c) radiation-treated rats receiving AdMSCs; and (d) radiation-treated rats receiving AdMSCs conditioned medium. AdMSCs or AdMSCs conditioned medium was injected into the muscular layer of bladder 24 h after radiation. Twelve weeks after radiation, urinary bladder tissue was collected for histological assessment and enzyme-linked immunosorbent assay (ELISA) after metabolic cage investigation. At the 1 w, 4 w, and 8 w time points following cells injection, 3 randomly selected rats in RC group and AdMSCs group were sacrificed to track injected AdMSCs. Metabolic cage investigation revealed that AdMSCs showed protective effect for radiation-induced bladder dysfunction. The histological and ELISA results indicated that the fibrosis and inflammation within the bladder were ameliorated by AdMSCs. AdMSCs conditioned medium showed similar effects in preventing radiation-induced bladder dysfunction. In addition, histological data indicated a time-dependent decrease in the number of AdMSCs in the bladder following injection. AdMSCs prevented radiation induced bladder dysfunction and histological changes. Paracrine effect might be involved in the protective effects of AdMSCs for RIBI. PMID:27051426

  3. Ionizing radiation induces tumor cell lysyl oxidase secretion

    PubMed Central

    2014-01-01

    Background Ionizing radiation (IR) is a mainstay of cancer therapy, but irradiation can at times also lead to stress responses, which counteract IR-induced cytotoxicity. IR also triggers cellular secretion of vascular endothelial growth factor, transforming growth factor β and matrix metalloproteinases, among others, to promote tumor progression. Lysyl oxidase is known to play an important role in hypoxia-dependent cancer cell dissemination and metastasis. Here, we investigated the effects of IR on the expression and secretion of lysyl oxidase (LOX) from tumor cells. Methods LOX-secretion along with enzymatic activity was investigated in multiple tumor cell lines in response to irradiation. Transwell migration assays were performed to evaluate invasive capacity of naïve tumor cells in response to IR-induced LOX. In vivo studies for confirming IR-enhanced LOX were performed employing immunohistochemistry of tumor tissues and ex vivo analysis of murine blood serum derived from locally irradiated A549-derived tumor xenografts. Results LOX was secreted in a dose dependent way from several tumor cell lines in response to irradiation. IR did not increase LOX-transcription but induced LOX-secretion. LOX-secretion could not be prevented by the microtubule stabilizing agent patupilone. In contrast, hypoxia induced LOX-transcription, and interestingly, hypoxia-dependent LOX-secretion could be counteracted by patupilone. Conditioned media from irradiated tumor cells promoted invasiveness of naïve tumor cells, while conditioned media from irradiated, LOX- siRNA-silenced cells did not stimulate their invasive capacity. Locally applied irradiation to tumor xenografts also increased LOX-secretion in vivo and resulted in enhanced LOX-levels in the murine blood serum. Conclusions These results indicate a differential regulation of LOX-expression and secretion in response to IR and hypoxia, and suggest that LOX may contribute towards an IR-induced migratory phenotype in

  4. Ionizing radiation induces heritable disruption of epithelial cell interactions

    NASA Technical Reports Server (NTRS)

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen; Chatterjee, A. (Principal Investigator)

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, beta-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell-cell communication, aberrant cell-extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization.

  5. Ionizing radiation induces heritable disruption of epithelial cell interactions

    PubMed Central

    Park, Catherine C.; Henshall-Powell, Rhonda L.; Erickson, Anna C.; Talhouk, Rabih; Parvin, Bahram; Bissell, Mina J.; Barcellos-Hoff, Mary Helen

    2003-01-01

    Ionizing radiation (IR) is a known human breast carcinogen. Although the mutagenic capacity of IR is widely acknowledged as the basis for its action as a carcinogen, we and others have shown that IR can also induce growth factors and extracellular matrix remodeling. As a consequence, we have proposed that an additional factor contributing to IR carcinogenesis is the potential disruption of critical constraints that are imposed by normal cell interactions. To test this hypothesis, we asked whether IR affected the ability of nonmalignant human mammary epithelial cells (HMEC) to undergo tissue-specific morphogenesis in culture by using confocal microscopy and imaging bioinformatics. We found that irradiated single HMEC gave rise to colonies exhibiting decreased localization of E-cadherin, β-catenin, and connexin-43, proteins necessary for the establishment of polarity and communication. Severely compromised acinar organization was manifested by the majority of irradiated HMEC progeny as quantified by image analysis. Disrupted cell–cell communication, aberrant cell–extracellular matrix interactions, and loss of tissue-specific architecture observed in the daughters of irradiated HMEC are characteristic of neoplastic progression. These data point to a heritable, nonmutational mechanism whereby IR compromises cell polarity and multicellular organization. PMID:12960393

  6. The influence of TRP53 in the dose response of radiation-induced apoptosis, DNA repair and genomic stability in murine haematopoietic cells

    SciTech Connect

    Lemon, Jennifer A.; Taylor, Kristina; Verdecchia, Kyle; Phan, Nghi; Boreham, Douglas R.

    2014-01-01

    Apoptotic and DNA damage endpoints are frequently used as surrogate markers of cancer risk, and have been well-studied in the Trp53+/- mouse model. We report the effect of differing Trp53 gene status on the dose response of ionizing radiation exposures (0.01-2 Gy), with the unique perspective of determining if effects of gene status remain at extended time points. Here we report no difference in the dose response for radiation-induced DNA double-strand breaks in bone marrow and genomic instability (MN-RET levels) in peripheral blood, between wild-type (Trp53+/+) and heterozygous (Trp53+/-) mice. The dose response for Trp53+/+ mice showed higher initial levels of radiation-induced lymphocyte apoptosis relative to Trp53+/- between 0 and 1 Gy. Although this trend was observed up to 12 hours post-irradiation, both genotypes ultimately reached the same level of apoptosis at 14 hours, suggesting the importance of late-onset p53-independent apoptotic responses in this mouse model. Expected radiation-induced G1 cell cycle delay was observed in Trp53+/+ but not Trp53+/-. Although p53 has an important role in cancer risk, we have shown its influence on radiation dose response can be temporally variable. This research highlights the importance of caution when using haematopoietic endpoints as surrogates to extrapolate radiation-induced cancer risk estimation.

  7. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    SciTech Connect

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C.

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  8. Ferulic acid inhibits UVB-radiation induced photocarcinogenesis through modulating inflammatory and apoptotic signaling in Swiss albino mice.

    PubMed

    Ambothi, Kanagalakshmi; Prasad, N Rajendra; Balupillai, Agilan

    2015-08-01

    The aim of this study was to evaluate the photochemopreventive effects of ferulic acid (FA) against chronic ultraviolet-B (290-320 nm) induced oxidative stress, inflammation and angiogenesis in the skin of Swiss albino mice. Chronic UVB exposure (180 mJ/cm(2) for 30 weeks; thrice in a week) induced tumor formation in the mice skin that showed increased expression of carcinogenic and inflammatory markers when compared with the control animals. The intraperitoneal (FAIP) and topical (FAT) administration of FA significantly reduced the incidence of UVB-induced tumor volume and tumor weight in the mice skin. Histopathological studies revealed that both FAIP and FAT administration prevented the UVB-induced hyperplasia, squamous cell carcinoma (SCC) and dysplastic feature in the mice skin. Further, it has been observed that FA treatment reverted chronic UVB-induced oxidative damage (thiobarbituric acid reactive substances, superoxide dismutase, catalase, glutathione peroxidase) accompanied with modulation of vascular endothelial growth factor (VEGF), inducible nitric oxide synthase (iNOS), TNF-α and IL-6 in the mice skin tumor. FA treatment also modulates mutated p53, Bcl-2 and Bax expressions in the UVB-induced mice skin tumor. Thus, the results of the present study indicate ferulic acid has potential against UVB-induced carcinogenesis in the Swiss albino mice.

  9. Effects of NOX1 on fibroblastic changes of endothelial cells in radiation-induced pulmonary fibrosis

    PubMed Central

    CHOI, SEO-HYUN; KIM, MISEON; LEE, HAE-JUNE; KIM, EUN-HO; KIM, CHUN-HO; LEE, YOON-JIN

    2016-01-01

    Lung fibrosis is a major complication in radiation-induced lung damage following thoracic radiotherapy, while the underlying mechanism has remained to be elucidated. The present study performed immunofluorescence and immunoblot assays on irradiated human pulmonary artery endothelial cells (HPAECs) with or without pre-treatment with VAS2870, a novel NADPH oxidase (NOX) inhibitor, or small hairpin (sh)RNA against NOX1, -2 or -4. VAS2870 reduced the cellular reactive oxygen species content induced by 5 Gy radiation in HPAECs and inhibited phenotypic changes in fibrotic cells, including increased alpha smooth muscle actin and vimentin, and decreased CD31 and vascular endothelial cadherin expression. These fibrotic changes were significantly inhibited by treatment with NOX1 shRNA, but not by NOX2 or NOX4 shRNA. Next, the role of NOX1 in pulmonary fibrosis development was assessed in the lung tissues of C57BL/6J mice following thoracic irradiation using trichrome staining. Administration of an NOX1-specific inhibitor suppressed radiation-induced collagen deposition and fibroblastic changes in the endothelial cells (ECs) of these mice. The results suggested that radiation-induced pulmonary fibrosis may be efficiently reduced by specific inhibition of NOX1, an effect mediated by reduction of fibrotic changes of ECs. PMID:27053172

  10. Modulation of radiation-induced apoptosis and G{sub 2}/M block in murine T-lymphoma cells

    SciTech Connect

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N.

    1995-03-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to {sup 137}Cs {gamma} irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of {gamma} radiation. We studied the effect of several pharmacological agents on the radiation-induced G{sub 2}/M block and DNA fragmentation. The agents which reduced the radiation-induced G{sub 2}/M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G{sub 2}/M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G{sub 2}/M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G{sub 2}/M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs.

  11. Radiation induced bystander effect by GAP junction channels in human fibroblast cell

    NASA Astrophysics Data System (ADS)

    Furusawa, Y.; Shao, C.; Aoki, M.; Kobayashi, Y.; Funayama, T.; Ando, K.

    The chemical factor involved in bystander effect and its transfer pathway were investigated in a confluent human fibroblast cell (AG1522) population. Micronuclei (MN) and G1-phase arrest were detected in cells irradiated by carbon (~100 keV/μm) ions at HIMAC. A very low dose irradiation showed a high effectiveness in producing MN, suggesting a bystander effect. This effectiveness was enhanced by 8-Br-cAMP treatment that increases gap junctional intercellular communication (GJIC). On the other hand, the effect was reduced by 5% DMSO treatment, which reduce the reactive oxygen species (ROS), and suppressed by 100 μM lindane treatment, an inhibitor of GJIC. In addition, the radiation-induced G1-phase arrest was also enhanced by cAMP, and reduced or suppressed by DMSO or lindane. A microbeam device (JAERI) was also used for these studies. It was found that exposing one single cell in a confluent cell population to exactly one argon (~1260 keV/μm) or neon (~430 keV/ μm) ion, additional MN could be detected in many other unirradiated cells. The yield of MN increased with the number of irradiated cells. However, there was no significant difference in the MN induction when the cells were irradiated by increasing number of particles. MN induction by bystander effect was partly reduced by DMSO, and effectively suppressed by lindane. Our results obtained from both random irradiation and precise numbered irradiation indicate that both GJIC and ROS contributed to the radiation-induced bystander effect, but the cell gap junction channels likely play an essential role in the release and transfer of radiation-induced chemical factors.

  12. Low-dose spiruchostatin-B, a potent histone deacetylase inhibitor enhances radiation-induced apoptosis in human lymphoma U937 cells via modulation of redox signaling.

    PubMed

    Rehman, Mati Ur; Jawaid, Paras; Zhao, Qing Li; Li, Peng; Narita, Koichi; Katoh, Tadashi; Shimizu, Tadamichi; Kondo, Takashi

    2016-06-01

    Spiruchostatin B (SP-B), is a potent histone deacetylase (HDAC) inhibitor, in addition to HDAC inhibition, the pharmacological effects of SP-B are also attributed to its ability to produce intracellular reactive oxygen species (ROS), particularly H2O2. In this study, we investigated the effects of low dose (non-toxic) SP-B on radiation-induced apoptosis in human lymphoma U937 cells in vitro. The treatment of cells with low-dose SP-B induced the acetylation of histones, however, does not induce apoptosis. Whereas, the combined treatment with SP-B and radiation significantly enhanced the radiation-induced apoptosis, suggesting the potential role of this combined treatment for future radiation therapy. Interestingly, the enhancement of apoptosis was accompanied by significant increased in the ROS generation. Pre-treatment with an antioxidant, N-acetyl-l-cysteine (NAC) significantly inhibited the enhancement of apoptosis induced by combined treatment, indicating that ROS play an essential role. It was also found that SP-B combined with radiation caused the activation of death receptor and intrinsic apoptotic pathways, via modulation of ROS-mediated signaling. Moreover, SP-B also significantly enhanced the radiation-induced apoptosis in other lymphoma cell lines such as Molt-4 and HL-60. Taken together, our findings suggest that the low-dose SP-B enhances radiation-induced apoptosis via modulation of redox signaling because of its ability to serve as an intracellular ROS generating agent, mainly (H2O2 or [Formula: see text]). This study provides further insights into the mechanism of action of SP-B with radiation and demonstrates that SP-B can be used as a future novel sensitizer for radiation therapy.

  13. Reduction of radiation-induced cell cycle blocks by caffeine does not necessarily lead to increased cell killing

    SciTech Connect

    Musk, S.R. )

    1991-03-01

    The effect of caffeine upon the radiosensitivities of three human tumor lines was examined and correlated with its action upon the radiation-induced S-phase and G2-phase blocks. Caffeine was found to reduce at least partially the S-phase and G2-phase blocks in all the cell lines examined but potentiated cytotoxicity in only one of the three tumor lines. That reductions have been demonstrated to occur in the absence of increased cell killing provides supporting evidence for the hypothesis that reductions may not be causal in those cases when potentiation of radiation-induced cytotoxicity is observed in the presence of caffeine.

  14. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    SciTech Connect

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong; Donahue, Jeremiah J.; Guan, Jun; Kennedy, Ann R. . E-mail: akennedy@mail.med.upenn.edu

    2006-04-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, {alpha}-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, {gamma}-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treating the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects.

  15. Consequences of ionizing radiation-induced damage in human neural stem cells.

    PubMed

    Acharya, Munjal M; Lan, Mary L; Kan, Vickie H; Patel, Neal H; Giedzinski, Erich; Tseng, Bertrand P; Limoli, Charles L

    2010-12-15

    Cranial irradiation remains a frontline treatment for brain cancer, but also leads to normal tissue damage. Although low-dose irradiation (≤10 Gy) causes minimal histopathologic change, it can elicit variable degrees of cognitive dysfunction that are associated with the depletion of neural stem cells. To decipher the mechanisms underlying radiation-induced stem cell dysfunction, human neural stem cells (hNSCs) subjected to clinically relevant irradiation (0-5 Gy) were analyzed for survival parameters, cell-cycle alterations, DNA damage and repair, and oxidative stress. hNSCs showed a marked sensitivity to low-dose irradiation that was in part due to elevated apoptosis and the inhibition of cell-cycle progression that manifested as a G2/M checkpoint delay. Efficient removal of DNA double-strand breaks was indicated by the disappearance of γ-H2AX nuclear foci. A dose-responsive and persistent increase in oxidative and nitrosative stress was found in irradiated hNSCs, possibly the result of a higher metabolic activity in the fraction of surviving cells. These data highlight the marked sensitivity of hNSCs to low-dose irradiation and suggest that long-lasting perturbations in the CNS microenvironment due to radiation-induced oxidative stress can compromise the functionality of neural stem cells.

  16. Radiation induces the generation of cancer stem cells: A novel mechanism for cancer radioresistance

    PubMed Central

    Li, Fengsheng; Zhou, Kunming; Gao, Ling; Zhang, Bin; Li, Wei; Yan, Weijuan; Song, Xiujun; Yu, Huijie; Wang, Sinian; Yu, Nan; Jiang, Qisheng

    2016-01-01

    Radioresistance remains a major obstacle for the radiotherapy treatment of cancer. Previous studies have demonstrated that the radioresistance of cancer is due to the existence of intrinsic cancer stem cells (CSCs), which represent a small, but radioresistant cell subpopulation that exist in heterogeneous tumors. By contrast, non-stem cancer cells are considered to be radiosensitive and thus, easy to kill. However, recent studies have revealed that under conditions of radiation-induced stress, theoretically radiosensitive non-stem cancer cells may undergo dedifferentiation subsequently obtaining the phenotypes and functions of CSCs, including high resistance to radiotherapy, which indicates that radiation may directly result in the generation of novel CSCs from non-stem cancer cells. These findings suggest that in addition to intrinsic CSCs, non-stem cancer cells may also contribute to the relapse and metastasis of cancer following transformation into CSCs. This review aims to investigate the radiation-induced generation of CSCs, its association with epithelial-mesenchymal transition and its significance with regard to the radioresistance of cancer. PMID:27899964

  17. Apoptotic cell clearance: basic biology and therapeutic potential

    PubMed Central

    Poon, Ivan K. H.; Lucas, Christopher D.

    2014-01-01

    Prompt removal of apoptotic cells by phagocytes is important for maintaining tissue homeostasis. The molecular and cellular events that underpin apoptotic cell recognition and uptake, and the subsequent biological responses are increasingly better defined. The detection and disposal of apoptotic cells generally promote an anti-inflammatory response at the tissue level, as well as immunological tolerance. Consequently, defects in apoptotic cell clearance have been linked with a variety of inflammatory diseases and autoimmunity. Conversely, under certain conditions such as killing tumour cells by specific cell death inducers, the recognition of apoptotic tumour cells can promote an immunogenic response and anti-tumour immunity. Here, we review the current understanding of the complex process of apoptotic cell clearance in physiology and pathology, and discuss how this knowledge could be harnessed for new therapeutic strategies. PMID:24481336

  18. Live cell microscopy analysis of radiation-induced DNA double-strand break motion

    PubMed Central

    Jakob, B.; Splinter, J.; Durante, M.; Taucher-Scholz, G.

    2009-01-01

    We studied the spatiotemporal organization of DNA damage processing by live cell microscopy analysis in human cells. In unirradiated U2OS osteosarcoma and HeLa cancer cells, a fast confined and Brownian-like motion of DNA repair protein foci was observed, which was not altered by radiation. By analyzing the motional activity of GFP-53BP1 foci in live cells up to 12-h after irradiation, we detected an additional slower mobility of damaged chromatin sites showing a mean square displacement of ≈0.6 μm2/h after exposure to densely- or sparsely-ionizing radiation, most likely driven by normal diffusion of chromatin. Only occasionally, larger translational motion connected to morphological changes of the whole nucleus could be observed. In addition, there was no general tendency to form repair clusters in the irradiated cells. We conclude that long-range displacements of damaged chromatin domains do not generally occur during DNA double-strand break repair after introduction of multiple damaged sites by charged particles. The occasional and in part transient appearance of cluster formation of radiation-induced foci may represent a higher mobility of chromatin along the ion trajectory. These observations support the hypothesis that spatial proximity of DNA breaks is required for the formation of radiation-induced chromosomal exchanges. PMID:19221031

  19. Enhanced radiation-induced cytotoxic effect by 2-ME in glioma cells is mediated by induction of cell cycle arrest and DNA damage via activation of ATM pathways.

    PubMed

    Zou, Huichao; Zhao, Shiguang; Zhang, Jianhua; Lv, Gongwei; Zhang, Xu; Yu, Hongwei; Wang, Huibo; Wang, Ligang

    2007-12-14

    Glioblastoma multiform is the most common malignant primary brain tumor in adults, but there remains no effective therapeutic approach. 2-methoxyestradiol (2-ME), which is a naturally occurring metabolite of 17beta-estradiol, was shown to enhance radiotherapeutic effect in certain tumors; however, whether 2-ME can also enhance the sensitivity of glioma cells to radiotherapy remains unknown. The present study, therefore, was to address this issue using two human glioma cell lines (T98G and U251MG). These cells were irradiated with and without 2-ME and then clonogenic assay, apoptosis assay, DNA damage, and cell cycle change were examined. Results showed that 2-ME significantly enhances radiation-induced cell death in both glioma cells, shown by decreasing cell viability and increasing apoptotic cell death. No such radiosensitizing effect was observed if cells pre-treated with Estrodiol, suggesting the specifically radiosensitizing effect of 2-ME rather than a general effect of estrodials. The enhanced radio-cytotoxic effect in glioma cells by 2-ME was found to be associated with its enhancement of G(2)/M arrest and DNA damage, and phosphorylated ATM protein kinases as well as cell cycle checkpoint protein Chk2. Furthermore, inhibition of ATM by ATM inhibitor abolished 2-ME-activated Chk2 and enhanced radio-cytotoxic effects. These results suggest that 2-ME enhancement of the sensitivity of glioma cell lines to radiotherapy is mediated by induction of G2/M cell cycle arrest and increased DNA damage via activation of ATM kinases.

  20. Protective effect of mild endoplasmic reticulum stress on radiation-induced bystander effects in hepatocyte cells.

    PubMed

    Xie, Yuexia; Ye, Shuang; Zhang, Jianghong; He, Mingyuan; Dong, Chen; Tu, Wenzhi; Liu, Peifeng; Shao, Chunlin

    2016-12-13

    Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the defense and self-protective mechanisms of bystander normal cells are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 cells under either normoxia or hypoxia, where the ratio of the yield of bystander MN induction to the yield of radiation-induced MN formation under hypoxia was much higher than that of normoxia. Nonetheless, thapsigargin induced endoplasmic reticulum (ER) stress and dramatically suppressed this bystander response manifested as the decrease of MN and apoptosis inductions. Meanwhile, the interference of BiP gene, a major ER chaperone, amplified the detrimental RIBE. More precisely, thapsigargin provoked ER sensor of PERK to initiate an instantaneous and moderate ER stress thus defensed the hazard form RIBE, while BiP depletion lead to persistently destroyed homeostasis of ER and exacerbated cell injury. These findings provide new insights that the mild ER stress through BiP-PERK-p-eIF2α signaling pathway has a profound role in protecting cellular damage from RIBE and hence may decrease the potential secondary cancer risk after cancer radiotherapy.

  1. Protective effect of mild endoplasmic reticulum stress on radiation-induced bystander effects in hepatocyte cells

    PubMed Central

    Xie, Yuexia; Ye, Shuang; Zhang, Jianghong; He, Mingyuan; Dong, Chen; Tu, Wenzhi; Liu, Peifeng; Shao, Chunlin

    2016-01-01

    Radiation-induced bystander effect (RIBE) has important implications for secondary cancer risk assessment during cancer radiotherapy, but the defense and self-protective mechanisms of bystander normal cells are still largely unclear. The present study found that micronuclei (MN) formation could be induced in the non-irradiated HL-7702 hepatocyte cells after being treated with the conditioned medium from irradiated hepatoma HepG2 cells under either normoxia or hypoxia, where the ratio of the yield of bystander MN induction to the yield of radiation-induced MN formation under hypoxia was much higher than that of normoxia. Nonetheless, thapsigargin induced endoplasmic reticulum (ER) stress and dramatically suppressed this bystander response manifested as the decrease of MN and apoptosis inductions. Meanwhile, the interference of BiP gene, a major ER chaperone, amplified the detrimental RIBE. More precisely, thapsigargin provoked ER sensor of PERK to initiate an instantaneous and moderate ER stress thus defensed the hazard form RIBE, while BiP depletion lead to persistently destroyed homeostasis of ER and exacerbated cell injury. These findings provide new insights that the mild ER stress through BiP-PERK-p-eIF2α signaling pathway has a profound role in protecting cellular damage from RIBE and hence may decrease the potential secondary cancer risk after cancer radiotherapy. PMID:27958308

  2. Radiation induced endothelial cell retraction in vitro: correlation with acute pulmonary edema.

    PubMed

    Onoda, J M; Kantak, S S; Diglio, C A

    1999-01-01

    We determined the effects of low dose radiation (<200 cGy) on the cell-cell integrity of confluent monolayers of pulmonary microvascular endothelial cells (PMEC). We observed dose- and time-dependent reversible radiation induced injuries to PMEC monolayers characterized by retraction (loss of cell-cell contact) mediated by cytoskeletal F-actin reorganization. Radiation induced reorganization of F-actin microfilament stress fibers was observed > or =30 minutes post irradiation and correlated positively with loss of cell-cell integrity. Cells of irradiated monolayers recovered to form contact inhibited monolayers > or =24 hours post irradiation; concomitantly, the depolymerized microfilaments organized to their pre-irradiated state as microfilament stress fibers arrayed parallel to the boundaries of adjacent contact-inhibited cells. Previous studies by other investigators have measured slight but significant increases in mouse lung wet weight >1 day post thoracic or whole body radiation (> or =500 cGy). Little or no data is available concerning time intervals <1 day post irradiation, possibly because of the presumption that edema is mediated, at least in part, by endothelial cell death or irreversible loss of barrier permeability functions which may only arise 1 day post irradiation. However, our in vitro data suggest that loss of endothelial barrier function may occur rapidly and at low dose levels (< or =200 cGy). Therefore, we determined radiation effects on lung wet weight and observed significant increases in wet weight (standardized per dry weight or per mouse weight) in < or =5 hours post thoracic exposure to 50 200 cGy x-radiation. We suggest that a single fraction of radiation even at low dose levels used in radiotherapy, may induce pulmonary edema by a reversible loss of endothelial cell-cell integrity and permeability barrier function.

  3. Transmission of persistent ionizing radiation-induced foci through cell division in human primary cells.

    PubMed

    Vaurijoux, Aurelie; Voisin, Pascale; Freneau, Amelie; Barquinero, Joan Francesc; Gruel, Gaetan

    2017-03-10

    Unrepaired DNA double-strand breaks (DSBs) induced by ionizing radiation are associated with lethal effects and genomic instability. After the initial breaks and chromatin destabilization, a set of post-translational modifications of histones occurs, including phosphorylation of serine 139 of histone H2AX (γH2AX), which leads to the formation of ionizing radiation-induced foci (IRIF). DSB repair results in the disappearance of most IRIF within hours after exposure, although some remain 24h after irradiation. Their relation to unrepaired DSBs is generally accepted but still controversial. This study evaluates the frequency and kinetics of persistent IRIF and analyzes their impact on cell proliferation. We observed persistent IRIF up to 7 days postirradiation, and more than 70% of cells exposed to 5Gy had at least one of these persistent IRIF 24h after exposure. Moreover we demonstrated that persistent IRIF did not block cell proliferation definitively. The frequency of IRIF was lower in daughter cells, due to asymmetric distribution of IRIF between some of them. We report a positive association between the presence of IRIF and the likelihood of DNA missegregation. Hence, the structure formed after the passage of a persistent IRI focus across the S and G2 phases may impede the correct segregation of the affected chromosome's sister chromatids. The ensuing abnormal resolution of anaphase might therefore cause the nature of IRIF in daughter-cell nuclei to differ before and after the first cell division. The resulting atypical chromosomal assembly may be lethal or result in a gene dosage imbalance and possibly enhanced genomic instability, in particular in the daughter cells.

  4. Radiation-Induced Dermatitis is Mediated by IL17-Expressing γδ T Cells.

    PubMed

    Liao, Wupeng; Hei, Tom K; Cheng, Simon K

    2017-02-08

    Radiation dermatitis is a serious cutaneous injury caused by radiation therapy or upon accidental nuclear exposure. However, the pathogenic immune mechanisms underlying this injury are still poorly understood. We seek to discover how the dysregulated immune response after irradiation orchestrates skin inflammation. The skin on the left flank of C57BL/6J wild-type and C57BL/6J Tcrd(-/-) mice, which are deficit in γδ T cells, was exposed to a single X-ray dose of 25 Gy, and the right-flank skin was used as a sham-irradiated control. At 4 weeks postirradiation, the wild-type skin exhibited signs of depilation, erythema and desquamation. Histological analysis showed hyperproliferation of keratinocytes and acanthosis. Dramatic elevation of IL17-expressing T cells was identified from the irradiated skin, which was mainly contributed by γδ T cells and innate lymphoid cells, rather than Th17 cells. Furthermore, protein levels of critical cytokines for IL17-expressing γδ T cell activation, IL1β and IL23 were found markedly upregulated. Lastly, radiation-induced dermatitis was significantly attenuated in γδ T cell knockout mice. In vitro, normal human epidermal keratinocytes (NHEKs) could be initiator cells of inflammation by providing a great number of pro-inflammatory mediators upon radiation, and as well as effector cells of epidermal hyperplasia in response to exogenous IL17 and/or IL22 treatment. Our findings implicate a novel role of IL17-expressing γδ T cells in mediating radiation-induced skin inflammation. This study reveals the innate immune response pathway as a potential therapeutic target for radiation skin injury.

  5. Radiation-Induced Dermatitis is Mediated by IL17-Expressing γδ T Cells.

    PubMed

    Liao, Wupeng; Hei, Tom K; Cheng, Simon K

    2017-04-01

    Radiation dermatitis is a serious cutaneous injury caused by radiation therapy or upon accidental nuclear exposure. However, the pathogenic immune mechanisms underlying this injury are still poorly understood. We seek to discover how the dysregulated immune response after irradiation orchestrates skin inflammation. The skin on the left flank of C57BL/6J wild-type and C57BL/6J Tcrd(-/-) mice, which are deficit in γδ T cells, was exposed to a single X-ray dose of 25 Gy, and the right-flank skin was used as a sham-irradiated control. At 4 weeks postirradiation, the wild-type skin exhibited signs of depilation, erythema and desquamation. Histological analysis showed hyperproliferation of keratinocytes and acanthosis. Dramatic elevation of IL17-expressing T cells was identified from the irradiated skin, which was mainly contributed by γδ T cells and innate lymphoid cells, rather than Th17 cells. Furthermore, protein levels of critical cytokines for IL17-expressing γδ T cell activation, IL1β and IL23 were found markedly upregulated. Lastly, radiation-induced dermatitis was significantly attenuated in γδ T cell knockout mice. In vitro, normal human epidermal keratinocytes (NHEKs) could be initiator cells of inflammation by providing a great number of pro-inflammatory mediators upon radiation, and as well as effector cells of epidermal hyperplasia in response to exogenous IL17 and/or IL22 treatment. Our findings implicate a novel role of IL17-expressing γδ T cells in mediating radiation-induced skin inflammation. This study reveals the innate immune response pathway as a potential therapeutic target for radiation skin injury.

  6. Radiation-induced division delay in Chinese hamster ovary fibroblast and carcinoma cells: dose effect and ploidy. [X-ray

    SciTech Connect

    Kimler, B.F.; Leeper, D.B.; Schneiderman, M.H.

    1981-02-01

    The mitotic selection procedure for cell cycle analysis was utilized to investigate the G/sub 2/ transition point for and the duration of radiation-induced division delay in diploid and tetraploid Chinese hamster ovary (CHO) fibroblasts and in Chinese hamster ovarian carcinoma cells. The location of the radiation-induced division delay transition point was dose independent at high doses and located approximately 42 min before division. At lower doses only an estimate of the point of blockade was possible; but the G/sub 2/ transition point appeared to be earlier in the cell cycle. The duration of radiation-induced division delay was dose dependent. This response is consistent with a sensitive population of cells in late G/sub 2/ that define the location of the transition point and the length of division delay. There was no difference observed in the dose response for radiation-induced division delay between the pseudotetraploid cell line of CHO and the pseudodiploid parent strain. However, in the cell line derived from a spontaneous Chinese hamster ovarian carcinoma the division delay was 39 +- 4 min/Gy. Therefore, radiation-induced division delay is independent of chromosome ploidy, but can show intraspecies cell line specificity.

  7. BK K+ channel blockade inhibits radiation-induced migration/brain infiltration of glioblastoma cells

    PubMed Central

    Klumpp, Lukas; Haehl, Erik; Schilbach, Karin; Lukowski, Robert; Kühnle, Matthias; Bernhardt, Günther; Buschauer, Armin; Zips, Daniel; Ruth, Peter; Huber, Stephan M.

    2016-01-01

    Infiltration of the brain by glioblastoma cells reportedly requires Ca2+ signals and BK K+ channels that program and drive glioblastoma cell migration, respectively. Ionizing radiation (IR) has been shown to induce expression of the chemokine SDF-1, to alter the Ca2+ signaling, and to stimulate cell migration of glioblastoma cells. Here, we quantified fractionated IR-induced migration/brain infiltration of human glioblastoma cells in vitro and in an orthotopic mouse model and analyzed the role of SDF-1/CXCR4 signaling and BK channels. To this end, the radiation-induced migratory phenotypes of human T98G and far-red fluorescent U-87MG-Katushka glioblastoma cells were characterized by mRNA and protein expression, fura-2 Ca2+ imaging, BK patch-clamp recording and transfilter migration assay. In addition, U-87MG-Katushka cells were grown to solid glioblastomas in the right hemispheres of immunocompromised mice, fractionated irradiated (6 MV photons) with 5 × 0 or 5 × 2 Gy, and SDF-1, CXCR4, and BK protein expression by the tumor as well as glioblastoma brain infiltration was analyzed in dependence on BK channel targeting by systemic paxilline application concomitant to IR. As a result, IR stimulated SDF-1 signaling and induced migration of glioblastoma cells in vitro and in vivo. Importantly, paxilline blocked IR-induced migration in vivo. Collectively, our data demonstrate that fractionated IR of glioblastoma stimulates and BK K+ channel targeting mitigates migration and brain infiltration of glioblastoma cells in vivo. This suggests that BK channel targeting might represent a novel approach to overcome radiation-induced spreading of malignant brain tumors during radiotherapy. PMID:26893360

  8. Dying Cells Protect Survivors from Radiation-Induced Cell Death in Drosophila

    PubMed Central

    Bilak, Amber; Uyetake, Lyle; Su, Tin Tin

    2014-01-01

    We report a phenomenon wherein induction of cell death by a variety of means in wing imaginal discs of Drosophila larvae resulted in the activation of an anti-apoptotic microRNA, bantam. Cells in the vicinity of dying cells also become harder to kill by ionizing radiation (IR)-induced apoptosis. Both ban activation and increased protection from IR required receptor tyrosine kinase Tie, which we identified in a genetic screen for modifiers of ban. tie mutants were hypersensitive to radiation, and radiation sensitivity of tie mutants was rescued by increased ban gene dosage. We propose that dying cells activate ban in surviving cells through Tie to make the latter cells harder to kill, thereby preserving tissues and ensuring organism survival. The protective effect we report differs from classical radiation bystander effect in which neighbors of irradiated cells become more prone to death. The protective effect also differs from the previously described effect of dying cells that results in proliferation of nearby cells in Drosophila larval discs. If conserved in mammals, a phenomenon in which dying cells make the rest harder to kill by IR could have implications for treatments that involve the sequential use of cytotoxic agents and radiation therapy. PMID:24675716

  9. Radiofrequency radiation-induced calcium ion efflux enhancement from human and other neuroblastoma cells in culture

    SciTech Connect

    Dutta, S.K.; Ghosh, B.; Blackman, C.F.

    1989-01-01

    To test the generality of radiofrequency radiation-induced changes in /sup 45/Ca2+ efflux from avian and feline brain tissues, human neuroblastoma cells were exposed to electromagnetic radiation at 147 MHz, amplitude-modulated (AM) at 16 Hz, at specific absorption rates (SAR) of 0.1, 0.05, 0.01, 0.005, 0.001, and 0.0005 W/kg. Significant /sup 45/Ca2+ efflux was obtained at SAR values of 0.05 and 0.005 W/kg. Enhanced efflux at 0.05 W/kg peaked at the 13-16 Hz and at the 57.5-60 Hz modulation ranges. A Chinese hamster-mouse hybrid neuroblastoma was also shown to exhibit enhanced radiation-induced /sup 45/Ca2+ efflux at an SAR of 0.05 W/kg, using 147 MHz, AM at 16 Hz. These results confirm that amplitude-modulated radiofrequency radiation can induce responses in cells of nervous tissue origin from widely different animal species, including humans. The results are also consistent with the reports of similar findings in avian and feline brain tissues and indicate the general nature of the phenomenon.

  10. Sialylation of Integrin beta1 is Involved in Radiation-Induced Adhesion and Migration in Human Colon Cancer Cells

    SciTech Connect

    Lee, Minyoung; Lee, Hae-June; Seo, Woo Duck; Park, Ki Hun; Lee, Yun-Sil

    2010-04-15

    Purpose: Previously, we reported that radiation-induced ST6 Gal I gene expression was responsible for an increase of integrin beta1 sialylation. In this study, we have further investigated the function of radiation-mediated integrin beta1 sialylation in colon cancer cells. Methods and Materials: We performed Western blotting and lectin affinity assay to analyze the expression and level of sialylated integrin beta1. After exposure to ionizing radiation (IR), adhesion and migration of cells were measured by in vitro adhesion and migration assay. Results: IR increased sialylation of integrin beta1 responsible for its increased protein stability and adhesion and migration of colon cancer cells. However, for cells with an N-glycosylation site mutant of integrin beta1 located on the I-like domain (Mu3), these effects were dramatically inhibited. In addition, integrin beta1-mediated radioresistance was not observed in cells containing this mutant. When sialylation of integrin beta1 was targeted with a sulfonamide chalcone compound, inhibition of radiation-induced sialylation of integrin beta1 and inhibition of radiation-induced adhesion and migration occurred. Conclusion: The increase of integrin beta1 sialylation by ST6 Gal I is critically involved in radiation-mediated adhesion and migration of colon cancer cells. From these findings, integrin beta1 sialylation may be a novel target for overcoming radiation-induced survival, especially radiation-induced adhesion and migration.

  11. Ionizing radiation-induced instant pairing of heterochromatin of homologous chromosomes in human cells.

    PubMed

    Abdel-Halim, H I; Imam, S A; Badr, F M; Natarajan, A T; Mullenders, L H F; Boei, J J W A

    2004-01-01

    Using fluorescence in situ hybridization with human band-specific DNA probes we examined the effect of ionizing radiation on the intra-nuclear localization of the heterochromatic region 9q12-->q13 and the euchromatic region 8p11.2 of similar sized chromosomes 9 and 8 respectively in confluent (G1) primary human fibroblasts. Microscopic analysis of the interphase nuclei revealed colocalization of the homologous heterochromatic regions from chromosome 9 in a proportion of cells directly after exposure to 4 Gy X-rays. The percentage of cells with paired chromosomes 9 gradually decreased to control levels during a period of one hour. No significant changes in localization were observed for chromosome 8. Using 2-D image analysis, radial and inter-homologue distances were measured for both chromosome bands. In unexposed cells, a random distribution of the chromosomes over the interphase nucleus was found. Directly after irradiation, the average inter-homologue distance decreased for chromosome 9 without alterations in radial distribution. The percentage of cells with inter-homologue distance <3 micro m increased from 11% in control cells to 25% in irradiated cells. In contrast, irradiation did not result in significant changes in the inter-homologue distance for chromosome 8. Colocalization of the heterochromatic regions of homologous chromosomes 9 was not observed in cells irradiated on ice. This observation, together with the time dependency of the colocalization, suggests an underlying active cellular process. The biological relevance of the observed homologous pairing remains unclear. It might be related to a homology dependent repair process of ionizing radiation induced DNA damage that is specific for heterochromatin. However, also other more general cellular responses to radiation-induced stress or change in chromatin organization might be responsible for the observed pairing of heterochromatic regions.

  12. The suppression of radiation-induced NF-{kappa}B activity by dexamethasone correlates with increased cell death in vivo

    SciTech Connect

    Nam, Seon Young; Chung, Hee-Yong . E-mail: hychung@hanyang.ac.kr

    2005-10-21

    In this study, we show that dexamethasone treatment increases ionizing radiation-induced cell death by inducing the inhibitory {kappa}B{alpha} (I{kappa}B{alpha}) pathway in mice. The effect of dexamethasone on radiation-induced cell death was assessed by changes in total spleen cellularity and bone marrow colony-forming unit-granulocyte-macrophage (CFU-GM) contents after total body irradiation. While in vivo treatment of mice with dexamethasone alone (1 mg/kg/day, for 2 days) failed to elicit cell death in spleen cells, the combined treatment with dexamethasone (1 mg/kg/day, for 2 days) and {gamma}-rays (1 or 5 Gy) caused a 50-80% reduction in total cellularity in spleen and CFU-GM contents in bone marrow. These results demonstrate that dexamethasone has a synergistic effect on radiation-induced cellular damages in vivo. Immunoblot analysis showed that dexamethasone treatment significantly increases I{kappa}B{alpha} expression in the spleens of irradiated mice. In addition, the dexamethasone treatment significantly reduced radiation-induced nuclear translocation of the nucleus factor-{kappa}B in the spleens of irradiated mice. These results indicate that dexamethasone treatment in vivo may increase radiation-induced cell damages by increasing I{kappa}B{alpha} expression in hematopoietic organs such as spleen and bone marrow.

  13. Radiation-inducible immunotherapy for cancer: senescent tumor cells as a cancer vaccine.

    PubMed

    Meng, Yuru; Efimova, Elena V; Hamzeh, Khaled W; Darga, Thomas E; Mauceri, Helena J; Fu, Yang-Xin; Kron, Stephen J; Weichselbaum, Ralph R

    2012-05-01

    Radiotherapy offers an effective treatment for advanced cancer but local and distant failures remain a significant challenge. Here, we treated melanoma and pancreatic carcinoma in syngeneic mice with ionizing radiation (IR) combined with the poly(ADP-ribose) polymerase inhibitor (PARPi) veliparib to inhibit DNA repair and promote accelerated senescence. Based on prior work implicating cytotoxic T lymphocytes (CTLs) as key mediators of radiation effects, we discovered that senescent tumor cells induced by radiation and veliparib express immunostimulatory cytokines to activate CTLs that mediate an effective antitumor response. When these senescent tumor cells were injected into tumor-bearing mice, an antitumor CTL response was induced which potentiated the effects of radiation, resulting in elimination of established tumors. Applied to human cancers, radiation-inducible immunotherapy may enhance radiotherapy responses to prevent local recurrence and distant metastasis.

  14. Methylglyoxal-bis(guanylhydrazone), a polyamine analogue, sensitized γ-radiation-induced cell death in HL-60 leukemia cells Sensitizing effect of MGBG on γ-radiation-induced cell death.

    PubMed

    Kim, Jin Sik; Lee, Jin; Chung, Hai Won; Choi, Han; Paik, Sang Gi; Kim, In Gyu

    2006-09-01

    Methylglyoxal-bis(guanylhydrazone) (MGBG), a polyamine analogue, has been known to inhibit the biosynthesis of polyamines, which are important in cell proliferation. We showed that MGBG treatment significantly affected γ-radiation-induced cell cycle transition (G(1)/G(0)→S→G(2)/M) and thus γ-radiation-induced cell death. As determined by micronuclei and comet assay, we showed that it sensitized the cytotoxic effect induced by γ-radiation. One of the reasons is that polyamine depletion by MGBG treatment did not effectively protect against the chemical (OH) or physical damage to DNA caused by γ-radiation. Through in vitro experiment, we confirmed that DNA strand breaks induced by γ-radiation was prevented more effectively in the presence of polyamines (spermine and spermidine) than in the absence of polyamines. MGBG also blocks the cell cycle transition caused by γ-radiation (G(2) arrest), which helps protect cells by allowing time for DNA repair before entry into mitosis or apoptosis, via the down regulation of cyclin D1, which mediates the transition from G(1) to S phase of cell cycle, and ataxia telangiectasia mutated, which is involved in the DNA sensing, repair and cell cycle check point. Therefore, the abrogation of G(2) arrest sensitizes cells to the effect of γ-radiation. As a result, γ-radiation-induced cell death increased by about 2.5-3.0-fold in cells treated with MGBG. However, exogenous spermidine supplement partially relieved this γ-radiation-induced cytotoxicity and cell death. These findings suggest a potentially therapeutic strategy for increasing the cytotoxic efficacy of γ-radiation.

  15. The role of mitochondria in the radiation-induced bystander effect in human lymphoblastoid cells.

    PubMed

    Rajendran, Sountharia; Harrison, Scott H; Thomas, Robert A; Tucker, James D

    2011-02-01

    Cells without intact mitochondrial DNA have been shown to lack the bystander effect, which is an energy-dependent process. We hypothesized that cells harboring mutations in mitochondrial genes responsible for ATP synthesis would show a decreased bystander effect compared to normal cells. Radiation-induced bystander effects were analyzed in two normal and four mitochondrial mutant human lymphoblastoid cells. Medium from previously irradiated cells (conditioned medium) was transferred to unirradiated cells from the respective cell lines and evaluated for the bystander effect using the cytokinesis-block micronucleus assay. Unlike normal cells that were used as a control, mitochondrial mutant cells neither generated nor responded to the bystander signals. The bystander effect was inhibited in normal cells by adding the mitochondrial inhibitors rotenone and oligomycin to the culture medium. Time-controlled blocking of the bystander effect by inhibitors was found to occur either for prolonged exposure to the inhibitor prior to irradiation with an immediate and subsequent removal of the inhibitors or immediate post-application of the inhibitor. Adding the inhibitors just prior to irradiation and removing them immediately after irradiation was uneventful. Fully functional mitochondrial metabolic capability may therefore be essential for the bystander effect.

  16. Organotypic culture in three dimensions prevents radiation-induced transformation in human lung epithelial cells

    PubMed Central

    El-Ashmawy, Mariam; Coquelin, Melissa; Luitel, Krishna; Batten, Kimberly; Shay, Jerry W.

    2016-01-01

    The effects of radiation in two-dimensional (2D) cell culture conditions may not recapitulate tissue responses as modeled in three-dimensional (3D) organotypic culture. In this study, we determined if the frequency of radiation-induced transformation and cancer progression differed in 3D compared to 2D culture. Telomerase immortalized human bronchial epithelial cells (HBECs) with shTP53 and mutant KRas expression were exposed to various types of radiation (gamma, +H, 56Fe) in either 2D or 3D culture. After irradiation, 3D structures were dissociated and passaged as a monolayer followed by measurement of transformation, cell growth and expression analysis. Cells irradiated in 3D produced significantly fewer and smaller colonies in soft agar than their 2D-irradiated counterparts (gamma P = 0.0004; +H P = 0.049; 56Fe P < 0.0001). The cell culture conditions did not affect cell killing, the ability of cells to survive in a colony formation assay, and proliferation rates after radiation—implying there was no selection against cells in or dissociated from 3D conditions. However, DNA damage repair and apoptosis markers were increased in 2D cells compared to 3D cells after radiation. Ideally, expanding the utility of 3D culture will allow for a better understanding of the biological consequences of radiation exposure. PMID:27539227

  17. Organotypic culture in three dimensions prevents radiation-induced transformation in human lung epithelial cells

    NASA Astrophysics Data System (ADS)

    El-Ashmawy, Mariam; Coquelin, Melissa; Luitel, Krishna; Batten, Kimberly; Shay, Jerry W.

    2016-08-01

    The effects of radiation in two-dimensional (2D) cell culture conditions may not recapitulate tissue responses as modeled in three-dimensional (3D) organotypic culture. In this study, we determined if the frequency of radiation-induced transformation and cancer progression differed in 3D compared to 2D culture. Telomerase immortalized human bronchial epithelial cells (HBECs) with shTP53 and mutant KRas expression were exposed to various types of radiation (gamma, +H, 56Fe) in either 2D or 3D culture. After irradiation, 3D structures were dissociated and passaged as a monolayer followed by measurement of transformation, cell growth and expression analysis. Cells irradiated in 3D produced significantly fewer and smaller colonies in soft agar than their 2D-irradiated counterparts (gamma P = 0.0004 +H P = 0.049 56Fe P < 0.0001). The cell culture conditions did not affect cell killing, the ability of cells to survive in a colony formation assay, and proliferation rates after radiation—implying there was no selection against cells in or dissociated from 3D conditions. However, DNA damage repair and apoptosis markers were increased in 2D cells compared to 3D cells after radiation. Ideally, expanding the utility of 3D culture will allow for a better understanding of the biological consequences of radiation exposure.

  18. Vascular endothelial growth factor enhances macrophage clearance of apoptotic cells

    PubMed Central

    Dalal, Samay; Horstmann, Sarah A.; Richens, Tiffany R.; Tanaka, Takeshi; Doe, Jenna M.; Boe, Darren M.; Voelkel, Norbert F.; Taraseviciene-Stewart, Laimute; Janssen, William J.; Lee, Chun G.; Elias, Jack A.; Bratton, Donna; Tuder, Rubin M.; Henson, Peter M.; Vandivier, R. William

    2012-01-01

    Efficient clearance of apoptotic cells from the lung by alveolar macrophages is important for the maintenance of tissue structure and function. Lung tissue from humans with emphysema contains increased numbers of apoptotic cells and decreased levels of vascular endothelial growth factor (VEGF). Mice treated with VEGF receptor inhibitors have increased numbers of apoptotic cells and develop emphysema. We hypothesized that VEGF regulates apoptotic cell clearance by alveolar macrophages (AM) via its interaction with VEGF receptor 1 (VEGF R1). Our data show that the uptake of apoptotic cells by murine AMs and human monocyte-derived macrophages is inhibited by depletion of VEGF and that VEGF activates Rac1. Antibody blockade or pharmacological inhibition of VEGF R1 activity also decreased apoptotic cell uptake ex vivo. Conversely, overexpression of VEGF significantly enhanced apoptotic cell uptake by AMs in vivo. These results indicate that VEGF serves a positive regulatory role via its interaction with VEGF R1 to activate Rac1 and enhance AM apoptotic cell clearance. PMID:22307908

  19. Apoptotic regulation and mutagenesis in human cells exposes to charged particles of importance for spaceflight

    NASA Astrophysics Data System (ADS)

    Kronenberg, A.; Gauny, S.; Hain, J.; Wu, P.; Wiese, C.

    Exposure to ionizing radiation can elicit two modes of cell death - necrosis or apoptosis. In human lymphoid cells, the predominant mechanism of radiation- induced cell death is apoptosis. The most likely exposure of individual human cells to heavy ions (e.g. Fe or Si) during spaceflight will result from single particle traversals. Here we report the fluence-response for apoptosis in human TK6 B- lymp hoblasts and provide evidence that single Fe ion traversals can stimulate an apoptotic response. The apoptotic response to charged particle exposures includes scrambling of the phospholipid bilayer in the cell membrane, activation of caspase signaling cascades and degradation of DNA into oligonucleosomes. We have also explored the importance of apoptotic regulation on the frequency and spectrum of mutations arising after exposure to charged particles. We used isogenic derivatives of TK6 cells stably transfected with pSFFV-neo-bcl-xL (encoding the anti-apoptotic gene BCL-XL and the neomycin resistance gene) or with pSFFV neo (encoding only- the neomycin resistance gene). TK6-bclxL cells were more susceptible to mutations at the TK1 locus than TK6-neo cells following exposure to protons, silicon ions or Fe ions. Molecular analysis demonstrated that most Fe-ion-induced mutations arose by loss of heterozygosity (LOH). In TK6-bclxL cells, more of the LOH occurred via mitotic recombination than in TK6-neo cells where the predominant mode of LOH was via deletion. We are currently mapping the LOH tracts to further define the biological bases for the differential sensitivity to Fe-ion-induced mutagenesis as a function of the genotype of the cell at risk. Supported by NASA grant T-964W to A. Kronenberg

  20. Acute high-dose X-radiation-induced genomic changes in A549 cells.

    PubMed

    Muradyan, A; Gilbertz, K; Stabentheiner, S; Klause, S; Madle, H; Meineke, V; Ullmann, R; Scherthan, H

    2011-06-01

    Accidents with ionizing radiation often involve single, acute high-dose exposures that can lead to acute radiation syndrome and late effects such as carcinogenesis. To study such effects at the cellular level, we investigated acute ionizing radiation-induced chromosomal aberrations in A549 adenocarcinoma cells at the genome-wide level by exposing the cells to an acute dose of 6 Gy 240 kV X rays. One sham-irradiated clone and four surviving irradiated clones were recovered by minimal dilution and further expanded and analyzed by chromosome painting and tiling-path array CGH, with the nonirradiated clone 0 serving as the control. Acute X-ray exposure induced specific translocations and changes in modal chromosome number in the four irradiated clones. Array CGH disclosed unique and recurrent genomic changes, predominantly losses, and revealed that the fragile sites FRA3B and FRA16D were preferential regions of genomic alterations in all irradiated clones, which is likely related to radioresistant S-phase progression and genomic stress. Furthermore, clone 4 displayed an increased radiosensitivity at doses >5 Gy. Pairwise comparisons of the gene expression patterns of all irradiated clones to the sham-irradiated clone 0 revealed an enrichment of the Gene Ontology term "M Phase" (P = 6.2 × 10(-7)) in the set of differentially expressed genes of clone 4 but not in those of clones 1-3. Ionizing radiation-induced genomic changes and fragile site expression highlight the capacity of a single acute radiation exposure to affect the genome of exposed cells by inflicting genomic stress.

  1. Repair of radiation-induced damage to the cell division mechanism of Escherichia coli.

    PubMed

    Adler, H I; Fisher, W D; Hardigree, A A; Stapleton, G E

    1966-02-01

    Adler, Howard I. (Oak Ridge National Laboratory, Oak Ridge, Tenn.), William D. Fisher, Alice A. Hardigree, and George E. Stapleton. Repair of radiation-induced damage to the cell division mechanism of Escherichia coli. J. Bacteriol. 91:737-742. 1966.-Microscopic observations of irradiated populations of filamentous Escherichia coli cells indicated that filaments can be induced to divide by a substance donated by neighboring cells. We have made this observation the basis for a quantitative technique in which filaments are incubated in the presence of nongrowing donor cells. The presence of "donor" organisms promotes division and subsequent colony formation in filaments. "Donor" bacteria do not affect nonfilamentous cells. An extract of "donor" cells retains the division-promoting activity. The extract has been partially fractionated, and consists of a heat-stable and a heat-labile component. The heat-stable component is inactive in promoting cell division, but enhances the activity of the heat-labile component. The division-promoting system is discussed as a radiation repair mechanism and as a normal component of the cell division system in E. coli.

  2. A Human Espophageal Epithelial Cell Model for Study of Radiation Induced Cancer and DNA Damage Repair

    NASA Technical Reports Server (NTRS)

    Huff, Janice L.; Patel, Zarana S.; Hada, Megumi; Cucinotta, Francis A.

    2008-01-01

    For cancer risk assessment in astronauts and for countermeasure development, it is essential to understand the molecular mechanisms of radiation carcinogenesis and how these mechanisms are influenced by exposure to the types of radiation found in space. We are developing an in vitro model system for the study of radiation-induced initiation and progression of esophageal carcinoma, a type of cancer found to have a significant enhancement in incidence in the survivors of the atomic bomb detonations in Japan. Here we present the results of our preliminary characterization of both normal and hTERT immortalized esophageal epithelial cells grown in 2-dimensional culture. We analyzed DNA repair capacity by measuring the kinetics of formation and loss of - H2AX foci following radiation exposure. Additionally, we analyzed induction of chromosomal aberrations using 3-color fluorescence in situ hybridization (FISH). Data were generated using both low LET (gamma rays) and high LET ions (1000 MeV/nucleon iron).

  3. Polymeric nanocomposite proton exchange membranes prepared by radiation-induced polymerization for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Kim, Young-Seok; Seo, Kwang-Seok; Choi, Seong-Ho

    2016-01-01

    The vinyl group-modified montmorillonite clay (F-MMT), vinyl group-modified graphene oxide (F-GO), and vinyl group-modified multi-walled carbon nanotube (F-MWNT) were first prepared by ion exchange reaction of 1-[(4-ethylphenyl)methyl]-3-butyl-imidazolium chloride in order to use the materials for protection against methanol cross-over in direct methanol fuel cell (DMFC) membrane. Then polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were prepared by the solvent casting method after radiation-induced polymerization of vinyl monomers in water-methanol mixture solvents. The proton conductivity, water uptake, ion-exchange capacity, methanol permeability, and DMFC performance of the polymeric nanocomposite membranes with F-MMT, F-GO, and F-MWNT were evaluated.

  4. Apoptotic Cell Death of Human Interstitial Cells of Cajal

    PubMed Central

    De Giorgio, Roberto; Faussone Pellegrini, Maria Simonetta; Garrity-Park, Megan M.; Miller, Steven M.; Schmalz, Philip F.; Young-Fadok, Tonia M.; Larson, David W.; Dozois, Eric J.; Camilleri, Michael; Stanghellini, Vincenzo; Szurszewski, Joseph H.; Farrugia, Gianrico

    2008-01-01

    Interstitial cells of Cajal (ICC) are specialized mesenchyme-derived cells that regulate contractility and excitability of many smooth muscles with loss of ICC seen in a variety of gut motility disorders. Maintenance of ICC numbers is tightly regulated, with several factors known to regulate proliferation. In contrast, the fate of ICC is not established. The aim of this study was to investigate whether apoptosis plays a role in the regulation of ICC numbers in the normal colon. ICC were identified by immunolabeling for the c-Kit receptor tyrosine kinase and by electron microscopy. Apoptosis was detected in colon tissue by immunolabeling for activated caspase-3, terminal dUTP nucleotide end labeling, and ultrastructural changes in the cells. Apoptotic ICC were identified and counted in double labeled tissue sections. Apoptotic ICC were identified in all layers of the colonic muscle. In the muscularis propria 1.5 ± 0.2% of ICC were positive for activated caspase-3 and in the circular muscle layer 2.1 ± 0.9% of ICC were positive for TUNEL. Apoptotic ICC were identified by electron microscopy. Apoptotic cell death is ongoing in ICC. The level of apoptosis in ICC in healthy colon indicates that these cells must be continually regenerated to maintain intact networks. PMID:18798796

  5. Repeated Autologous Bone Marrow-Derived Mesenchymal Stem Cell Injections Improve Radiation-Induced Proctitis in Pigs

    PubMed Central

    Busson, Elodie; Holler, Valerie; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Lhomme, Bruno; Prat, Marie; Devauchelle, Patrick; Sabourin, Jean-Christophe; Simon, Jean-Marc; Bonneau, Michel; Lataillade, Jean-Jacques; Benderitter, Marc

    2013-01-01

    The management of proctitis in patients who have undergone very-high-dose conformal radiotherapy is extremely challenging. The fibrosis-necrosis, fistulae, and hemorrhage induced by pelvic overirradiation have an impact on morbidity. Augmenting tissue repair by the use of mesenchymal stem cells (MSCs) may be an important advance in treating radiation-induced toxicity. Using a preclinical pig model, we investigated the effect of autologous bone marrow-derived MSCs on high-dose radiation-induced proctitis. Irradiated pigs received repeated intravenous administrations of autologous bone marrow-derived MSCs. Immunostaining and real-time polymerase chain reaction analysis were used to assess the MSCs' effect on inflammation, extracellular matrix remodeling, and angiogenesis, in radiation-induced anorectal and colon damages. In humans, as in pigs, rectal overexposure induces mucosal damage (crypt depletion, macrophage infiltration, and fibrosis). In a pig model, repeated administrations of MSCs controlled systemic inflammation, reduced in situ both expression of inflammatory cytokines and macrophage recruitment, and augmented interleukin-10 expression in rectal mucosa. MSC injections limited radiation-induced fibrosis by reducing collagen deposition and expression of col1a2/col3a1 and transforming growth factor-β/connective tissue growth factor, and by modifying the matrix metalloproteinase/TIMP balance. In a pig model of proctitis, repeated injections of MSCs effectively reduced inflammation and fibrosis. This treatment represents a promising therapy for radiation-induced severe rectal damage. PMID:24068742

  6. Radiation-induced bystander effects enhanced by elevated sodium chloride through sensitizing cells to bystander factors.

    PubMed

    Zhu, Lingyan; Han, Wei; Chen, Shaopeng; Zhao, Ye; Jiang, Erkang; Bao, Lingzhi; Pei, Bei; Yang, Gen; Zhao, Guoping; Wang, Jun; Xu, An; Wu, Lijun

    2008-09-26

    Radiation-induced bystander effects (RIBE) have been demonstrated to occur widely in various cell lines. However, very little data is available on the genotoxic effects of RIBE combined with other factor(s). We reported previously that with a low dose of alpha-particle irradiation, the fraction of gamma-H2AX foci-positive cells in non-irradiated bystander cells was significantly increased under elevated NaCl culture conditions. In this study, we further investigated the functional role of NaCl in the enhancement of RIBE using a specially designed co-culture system and micronucleus (MN) test. It was shown that the MN frequency was not increased significantly by elevated NaCl (9.0 g/L) alone or by medium exposure. However, with 1.0 cGy alpha-particle irradiation, the induced MN frequency increased significantly in both irradiated and non-irradiated bystander regions. Additional studies showed that elevated NaCl made the non-irradiated bystander cells more vulnerable to bystander factors. Furthermore, it was found that the induced MN frequency in cells both in irradiated and non-irradiated bystander regions was weakened when the hypertonic medium was changed to normotonic medium for 2h before irradiation. Such observations were quite similar to the co-effect of NaCl and hydrogen peroxide (H(2)O(2)), indicating that elevated NaCl might sensitize non-irradiated cells to bystander factors-induced oxidative stress.

  7. Genistein prevents ultraviolet B radiation-induced nitrosative skin injury and promotes cell proliferation.

    PubMed

    Terra, V A; Souza-Neto, F P; Frade, M A C; Ramalho, L N Z; Andrade, T A M; Pasta, A A C; Conchon, A C; Guedes, F A; Luiz, R C; Cecchini, R; Cecchini, A L

    2015-03-01

    Nitric oxide (NO) levels increase considerably after 24h of exposure of skin to ultraviolet B (UVB) radiation, which leads to nitrosative skin injury. In addition, increased NO levels after exposure to UVB radiation are associated with inhibition of cell proliferation. Compared to the UV-control group, UV-genistein at 10 mg/kg (UV-GEN10) group showed tissue protection, decreased lipid peroxide and nitrotyrosine formation, and low CAT activity. Furthermore, NO levels and iNOS labeling remained high. In this group, the reduction in lipid peroxides and nitrotyrosine was accompanied by upregulation of cell proliferation factors (Ki67 and PCNA), which indicated that prevention of nitrosative skin injury promoted cell proliferation and DNA repair. Genistein also prevented nitrosative events, inhibited ONOO(-) formation, which leads to tissue protection and cell proliferation. The UV-GEN15 group did not result in a greater protective effect compared to that with UV-GEN10 group. In the UV-GEN15 group, histological examination of the epidermis showed morphological alterations without efficient protection against lipid peroxide formation, as well as inhibition of Ki67 and PCNA, and VEGF labeling, which suggested inhibition of cell proliferation. These results help to elucidate the mechanisms underlying the photoprotective effect of genistein and reveal the importance of UVB radiation-induced nitrosative damage.

  8. Ionizing radiation-induced mutant frequencies increase transiently in male germ cells of older mice.

    PubMed

    Xu, Guogang; McMahan, C Alex; Hildreth, Kim; Garcia, Rebecca A; Herbert, Damon C; Walter, Christi A

    2012-05-15

    Spontaneous mutant frequency in the male germline increases with age, thereby increasing the risk of siring offspring with genetic disorders. In the present study we investigated the effect of age on ionizing radiation-induced male germline mutagenesis. lacI transgenic mice were treated with ionizing radiation at 4-, 15- and 26-month-old, and mutant frequencies were determined for pachytene spermatocytes and round spermatids at 15 days or 49 days after ionizing radiation treatment. Cells collected 15 days after treatment were derivatives of irradiated differentiating spermatogenic cells while cells collected 49 days later were derivatives of spermatogonial stem cells. The results showed that (1) spontaneous mutant frequency increased in spermatogenic cells recovered from nonirradiated old mice (26-months-old), particularly in the round spermatids; (2) mutant frequencies were significantly increased in round spermatids obtained from middle-aged mice (15-months-old) and old age mice (26-months-old) at 15 and 49 days after irradiation compared to the sham-treated old mice; and (3) pachytene spermatocytes obtained from 15- or 26-month-old mice displayed a significantly increased mutant frequency at 15 days post irradiation. This study indicates that age modulates the mutagenic response to ionizing radiation in the male germline.

  9. Regulatory T Cells Promote β-Catenin–Mediated Epithelium-to-Mesenchyme Transition During Radiation-Induced Pulmonary Fibrosis

    SciTech Connect

    Xiong, Shanshan; Pan, Xiujie; Xu, Long; Yang, Zhihua; Guo, Renfeng; Gu, Yongqing; Li, Ruoxi; Wang, Qianjun; Xiao, Fengjun; Du, Li; Zhou, Pingkun; Zhu, Maoxiang

    2015-10-01

    Purpose: Radiation-induced pulmonary fibrosis results from thoracic radiation therapy and severely limits radiation therapy approaches. CD4{sup +}CD25{sup +}FoxP3{sup +} regulatory T cells (Tregs) as well as epithelium-to-mesenchyme transition (EMT) cells are involved in pulmonary fibrosis induced by multiple factors. However, the mechanisms of Tregs and EMT cells in irradiation-induced pulmonary fibrosis remain unclear. In the present study, we investigated the influence of Tregs on EMT in radiation-induced pulmonary fibrosis. Methods and Materials: Mice thoraxes were irradiated (20 Gy), and Tregs were depleted by intraperitoneal injection of a monoclonal anti-CD25 antibody 2 hours after irradiation and every 7 days thereafter. Mice were treated on days 3, 7, and 14 and 1, 3, and 6 months post irradiation. The effectiveness of Treg depletion was assayed via flow cytometry. EMT and β-catenin in lung tissues were detected by immunohistochemistry. Tregs isolated from murine spleens were cultured with mouse lung epithelial (MLE) 12 cells, and short interfering RNA (siRNA) knockdown of β-catenin in MLE 12 cells was used to explore the effects of Tregs on EMT and β-catenin via flow cytometry and Western blotting. Results: Anti-CD25 antibody treatment depleted Tregs efficiently, attenuated the process of radiation-induced pulmonary fibrosis, hindered EMT, and reduced β-catenin accumulation in lung epithelial cells in vivo. The coculture of Tregs with irradiated MLE 12 cells showed that Tregs could promote EMT in MLE 12 cells and that the effect of Tregs on EMT was partially abrogated by β-catenin knockdown in vitro. Conclusions: Tregs can promote EMT in accelerating radiation-induced pulmonary fibrosis. This process is partially mediated through β-catenin. Our study suggests a new mechanism for EMT, promoted by Tregs, that accelerates radiation-induced pulmonary fibrosis.

  10. Ionizing radiation-induced mutagenesis: radiation studies in Neurospora predictive for results in mammalian cells

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; DeMarini, D. M.

    1999-01-01

    Ionizing radiation was the first mutagen discovered and was used to develop the first mutagenicity assay. In the ensuing 70+ years, ionizing radiation became a fundamental tool in understanding mutagenesis and is still a subject of intensive research. Frederick de Serres et al. developed and used the Neurospora crassa ad-3 system initially to explore the mutagenic effects of ionizing radiation. Using this system, de Serres et al. demonstrated the dependence of the frequency and spectra of mutations induced by ionizing radiation on the dose, dose rate, radiation quality, repair capabilities of the cells, and the target gene employed. This work in Neurospora predicted the subsequent observations of the mutagenic effects of ionizing radiation in mammalian cells. Modeled originally on the mouse specific-locus system developed by William L. Russell, the N. crassa ad-3 system developed by de Serres has itself served as a model for interpreting the results in subsequent systems in mammalian cells. This review describes the primary findings on the nature of ionizing radiation-induced mutagenesis in the N. crassa ad-3 system and the parallel observations made years later in mammalian cells.

  11. Protective Role of Hsp27 Protein Against Gamma Radiation-Induced Apoptosis and Radiosensitization Effects of Hsp27 Gene Silencing in Different Human Tumor Cells

    SciTech Connect

    Aloy, Marie-Therese Hadchity, Elie; Bionda, Clara; Diaz-Latoud, Chantal; Claude, Line; Rousson, Robert; Arrigo, Andre-Patrick; Rodriguez-Lafrasse, Claire

    2008-02-01

    Purpose: The ability of heat shock protein 27 (Hsp27) to protect cells from stressful stimuli and its increased levels in tumors resistant to anticancer therapeutics suggest that it may represent a target for sensitization to radiotherapy. In this study, we investigate the protective role of Hsp27 against radiation-induced apoptosis and the effect of its attenuation in highly expressing radioresistant cancer cell lines. Methods and Materials: We examined clonogenic death and the kinetics of apoptotic events in different tumor cell lines overexpressing or underexpressing Hsp27 protein irradiated with photons. The radiosensitive Jurkat cell line, which does not express Hsp27 constitutively or in response to {gamma}-rays, was stably transfected with Hsp27 complementary DNA. Attenuation of Hsp27 expression was accomplished by antisense or RNAi (interfering RNA) strategies in SQ20B head-and-neck squamous carcinoma, PC3 prostate cancer, and U87 glioblastoma radioresistant cells. Results: We measured concentration-dependent protection against the cytotoxic effects of radiation in Jurkat-Hsp27 cells, which led to a 50% decrease in apoptotic cells at 48 hours in the highest expressing cells. Underlying mechanisms leading to radiation resistance involved a significant increase in glutathione levels associated with detoxification of reactive oxygen species, a delay in mitochondrial collapse, and caspase activation. Conversely, attenuation of Hsp27 in SQ20B cells, characterized by their resistance to apoptosis, sensitizes cells to irradiation. This was emphasized by increased apoptosis, decreased glutathione basal level, and clonogenic cell death. Sensitization to irradiation was confirmed in PC3 and U87 radioresistant cells. Conclusion: Hsp27 gene therapy offers a potential adjuvant to radiation-based therapy of resistant tumors.

  12. The Role of Deoxycytidine Kinase (dCK) in Radiation-Induced Cell Death

    PubMed Central

    Zhong, Rui; Xin, Rui; Chen, Zongyan; Liang, Nan; Liu, Yang; Ma, Shumei; Liu, Xiaodong

    2016-01-01

    Deoxycytidine kinase (dCK) is a key enzyme in deoxyribonucleoside salvage and the anti-tumor activity for many nucleoside analogs. dCK is activated in response to ionizing radiation (IR)-induced DNA damage and it is phosphorylated on Serine 74 by the Ataxia-Telangiectasia Mutated (ATM) kinase in order to activate the cell cycle G2/M checkpoint. However, whether dCK plays a role in radiation-induced cell death is less clear. In this study, we genetically modified dCK expression by knocking down or expressing a WT (wild-type), S74A (abrogates phosphorylation) and S74E (mimics phosphorylation) of dCK. We found that dCK could decrease IR-induced total cell death and apoptosis. Moreover, dCK increased IR-induced autophagy and dCK-S74 is required for it. Western blotting showed that the ratio of phospho-Akt/Akt, phospho-mTOR/mTOR, phospho-P70S6K/P70S6K significantly decreased in dCK-WT and dCK-S74E cells than that in dCK-S74A cells following IR treatment. Reciprocal experiment by co-immunoprecipitation showed that mTOR can interact with wild-type dCK. IR increased polyploidy and decreased G2/M arrest in dCK knock-down cells as compared with control cells. Taken together, phosphorylated and activated dCK can inhibit IR-induced cell death including apoptosis and mitotic catastrophe, and promote IR-induced autophagy through PI3K/Akt/mTOR pathway. PMID:27879648

  13. Human CD14 mediates recognition and phagocytosis of apoptotic cells.

    PubMed

    Devitt, A; Moffatt, O D; Raykundalia, C; Capra, J D; Simmons, D L; Gregory, C D

    1998-04-02

    Cells undergoing programmed cell death (apoptosis) are cleared rapidly in vivo by phagocytes without inducing inflammation. Here we show that the glycosylphosphatidylinositol-linked plasma-membrane glycoprotein CD14 on the surface of human macrophages is important for the recognition and clearance of apoptotic cells. CD14 can also act as a receptor that binds bacterial lipopolysaccharide (LPS), triggering inflammatory responses. Overstimulation of CD14 by LPS can cause the often fatal toxic-shock syndrome. Here we show that apoptotic cells interact with CD14, triggering phagocytosis of the apoptotic cells. This interaction depends on a region of CD14 that is identical to, or at least closely associated with, a region known to bind LPS. However, apoptotic cells, unlike LPS, do not provoke the release of pro-inflammatory cytokines from macrophages. These results indicate that clearance of apoptotic cells is mediated by a receptor whose interactions with 'non-self' components (LPS) and 'self' components (apoptotic cells) produce distinct macrophage responses.

  14. A role for TRAIL/TRAIL-R2 in radiation-induced apoptosis and radiation-induced bystander response of human neural stem cells.

    PubMed

    Ivanov, Vladimir N; Hei, Tom K

    2014-03-01

    Adult neurons, which are terminally differentiated cells, demonstrate substantial radioresistance. In contrast, human neural stem cells (NSC), which have a significant proliferative capacity, are highly sensitive to ionizing radiation. Cranial irradiation that is widely used for treatment of brain tumors may induce death of NSC and further cause substantial cognitive deficits such as impairing learning and memory. The main goal of our study was to determine a mechanism of NSC radiosensitivity. We observed a constitutive high-level expression of TRAIL-R2 in human NSC. On the other hand, ionizing radiation through generation of reactive oxygen species targeted cell signaling pathways and dramatically changed the pattern of gene expression, including upregulation of TRAIL. A significant increase of endogenous expression and secretion of TRAIL could induce autocrine/paracrine stimulation of the TRAIL-R2-mediated signaling cascade with activation of caspase-3-driven apoptosis. Furthermore, paracrine stimulation could initiate bystander response of non-targeted NSC that is driven by death ligands produced by directly irradiated NSC. Experiments with media transfer from directly irradiated NSC to non-targeted (bystander) NSC confirmed a role of secreted TRAIL for induction of a death signaling cascade in non-targeted NSC. Subsequently, TRAIL production through elimination of bystander TRAIL-R-positive NSC might substantially restrict a final yield of differentiating young neurons. Radiation-induced TRAIL-mediated apoptosis could be partially suppressed by anti-TRAIL antibody added to the cell media. Interestingly, direct gamma-irradiation of SK-N-SH human neuroblastoma cells using clinical doses (2-5 Gy) resulted in low levels of apoptosis in cancer cells that was accompanied however by induction of a strong bystander response in non-targeted NSC. Numerous protective mechanisms were involved in the maintenance of radioresistance of neuroblastoma cells, including

  15. Relief of delayed oxidative stress by ascorbic acid can suppress radiation-induced cellular senescence in mammalian fibroblast cells.

    PubMed

    Kobashigawa, Shinko; Kashino, Genro; Mori, Hiromu; Watanabe, Masami

    2015-03-01

    Ionizing radiation-induced cellular senescence is thought to be caused by nuclear DNA damage that cannot be repaired. However, here we found that radiation induces delayed increase of intracellular oxidative stress after irradiation. We investigated whether the relief of delayed oxidative stress by ascorbic acid would suppress the radiation-induced cellular senescence in Syrian golden hamster embryo (SHE) cells. We observed that the level of oxidative stress was drastically increased soon after irradiation, then declined to the level in non-irradiated cells, and increased again with a peak on day 3 after irradiation. We found that the inductions of cellular senescence after X-irradiation were reduced along with suppression of the delayed induction of oxidative stress by treatment with ascorbic acid, but not when oxidative stress occurred immediately after irradiation. Moreover, treatment of ascorbic acid inhibited p53 accumulation at 3 days after irradiation. Our data suggested a delayed increase of intracellular oxidative stress levels plays an important role in the process of radiation-induced cellular senescence by p53 accumulation.

  16. A human esophageal epithelial cell model for study of radiation induced cancer and DNA repair

    NASA Astrophysics Data System (ADS)

    Huff, Janice; Patel, Zarana; Hada, Megumi; Cucinotta, Francis A.

    For cancer risk assessment in astronauts and for countermeasure development, it is essential to understand the molecular mechanisms of radiation carcinogenesis and how these mechanisms are influenced by exposure to the types of radiation found in space. We are developing an in vitro model system for the study of radiation-induced initiation and progression of esophageal carcinoma. Development of squamous cell carcinoma of the esophagus is associated with radiation exposure, as revealed by the significant enhanced in incidence rates for this type of cancer in the survivors of the atomic bomb detonations in Japan. It is also associated with poor nutritional status and micronutrient deficiencies, which are also important issues for long duration spaceflight. The possible synergies between nutritional issues and radiation exposure are unknown. Here we present the results of preliminary characterization of both normal and hTERT-immortalized esophageal epithelial cells grown in 2-dimensional culture. We analyzed DNA repair capacity by measuring the kinetics of formation and loss of gamma-H2AX foci following radiation exposure. Additionally, we analyzed induction of chromosomal aberrations using 3-color fluorescence in situ hybridization (FISH). Data were generated using both low LET (gamma rays) and high LET ions (1000 MeV/nucleon iron.

  17. Directional delivery of RSPO1 by mesenchymal stem cells ameliorates radiation-induced intestinal injury.

    PubMed

    Chen, Wei; Ju, Songwen; Lu, Ting; Xu, Yongfang; Zheng, Xiaocui; Wang, Haiyan; Ge, Yan; Ju, Songguang

    2017-02-16

    Radiation-induced intestinal injury (RIII) commonly occurs in patients who received radiotherapy for pelvic or abdominal cancer, or who suffered from whole-body irradiation during a nuclear accident. RIII can lead to intestinal disorders and even death given its integrity damage that results from intestinal stem cell (ISC) loss. Recovery from RIII relies on the intensity of supportive treatment, which can attenuate lethal infection and give surviving stem cells an opportunity to regenerate. It has been reported that RSPO1 is a cytokine with potent and specific proliferative effects on intestinal crypt cells. MSCs have multiple RIII-healing effects, including anti-inflammatory and anti-irradiation injury properties, due to its negative immune regulation and its homing ability to the damaged intestinal epithelia. To combine the comprehensive anti-injury potential of MSCs, and the potent ability of RSPO1 as a mitogenic factor for ISCs, we constructed RSPO1-modified C3H10 T1/2 cells and expected that RSPO1, the ISC-proliferative cytokine, could be delivered to the site of injury in a targeted manner. In this study, we transferred C3H10/RSPO1 intravenously via the retro-orbital sinus into mice suffering from abdominal irradiation at lethal dosages. Our findings demonstrated that C3H10/RSPO1 cells are able to directionally migrate to the injury site; enhance ISC survival, proliferation, and differentiation; and effectively repair the radiation-damaged intestinal epithelial cells. This study suggests that the directional delivery of RSPO1 by MSCs is a promising strategy to ameliorate, and even cure, RIII.

  18. Silibinin attenuates ionizing radiation-induced pro-angiogenic response and EMT in prostate cancer cells

    SciTech Connect

    Nambiar, Dhanya K.; Rajamani, Paulraj; Singh, Rana P.

    2015-01-02

    Graphical abstract: Potential model showing mechanism of silibinin-mediated attenuation of IR-induced angiogenic phenotype and EMT in tumor cells. Silibinin counters radiation induced invasive and migratory phenotype of cancer cells by down-regulating mitogenic pathways activated by IR, leading to inhibition of molecules including VEGF, iNOS, MMPs and N-cadherin. Silibinin also reverses IR mediated E-cadherin down-regulation, inhibiting EMT in tumor cells. Silibinin also radiosensitizes endothelial cells, reduces capillary tube formation by targeting various pro-angiogenic molecules. Further, silibinin may inhibit autocrine and paracrine signaling between tumor and endothelial cells by decreasing the levels of VEGF and other signaling molecules activated in response to IR. - Highlights: • Silibinin radiosensitizes endothelial cells. • Silibinin targets ionization radiation (IR)-induced EMT in PCa cells. • Silibinin is in phase II clinical trial in PCa patients, hence clinically relevant. - Abstract: Radiotherapy of is well established and frequently utilized in prostate cancer (PCa) patients. However, recurrence following therapy and distant metastases are commonly encountered problems. Previous studies underline that, in addition to its therapeutic effects, ionizing radiation (IR) increases the vascularity and invasiveness of surviving radioresistant cancer cells. This invasive phenotype of radioresistant cells is an upshot of IR-induced pro-survival and mitogenic signaling in cancer as well as endothelial cells. Here, we demonstrate that a plant flavonoid, silibinin can radiosensitize endothelial cells by inhibiting expression of pro-angiogenic factors. Combining silibinin with IR not only strongly down-regulated endothelial cell proliferation, clonogenicity and tube formation ability rather it strongly (p < 0.001) reduced migratory and invasive properties of PCa cells which were otherwise marginally affected by IR treatment alone. Most of the pro

  19. Radiation Induced Apoptosis of Murine Bone Marrow Cells Is Independent of Early Growth Response 1 (EGR1)

    PubMed Central

    Oben, Karine Z.; Gachuki, Beth W.; Alhakeem, Sara S.; McKenna, Mary K.; Liang, Ying; St. Clair, Daret K.; Rangnekar, Vivek M.; Bondada, Subbarao

    2017-01-01

    An understanding of how each individual 5q chromosome critical deleted region (CDR) gene contributes to malignant transformation would foster the development of much needed targeted therapies for the treatment of therapy related myeloid neoplasms (t-MNs). Early Growth Response 1 (EGR1) is a key transcriptional regulator of myeloid differentiation located within the 5q chromosome CDR that has been shown to regulate HSC (hematopoietic stem cell) quiescence as well as the master regulator of apoptosis—p53. Since resistance to apoptosis is a hallmark of malignant transformation, we investigated the role of EGR1 in apoptosis of bone marrow cells; a cell population from which myeloid malignancies arise. We evaluated radiation induced apoptosis of Egr1+/+ and Egr1-/- bone marrow cells in vitro and in vivo. EGR1 is not required for radiation induced apoptosis of murine bone marrow cells. Neither p53 mRNA (messenger RNA) nor protein expression is regulated by EGR1 in these cells. Radiation induced apoptosis of bone marrow cells by double strand DNA breaks induced p53 activation. These results suggest EGR1 dependent signaling mechanisms do not contribute to aberrant apoptosis of malignant cells in myeloid malignancies. PMID:28081176

  20. Gene expression profiling in MOLT-4 cells during gamma-radiation-induced apoptosis.

    PubMed

    Lindgren, Theres; Stigbrand, Torgny; Riklund, Katrine; Johansson, Lennart; Eriksson, David

    2012-06-01

    This study aims to identify the temporal changes in gene expression in MOLT-4, a leukemia cell line, in response to radiation and to present a comprehensive description of the pathways and processes that most significantly relate to the cellular biological responses. A global gene expression profile of 24,500 genes was performed on MOLT-4 tumor cells following exposure to 5 Gy of ionizing radiation ((60)Co) using a bead chip array (Illumina). Signaling pathways and processes significantly altered following irradiation were explored using MetaCore. Cellular viability [3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide], activation of cell cycle checkpoints [fluorescence activated cell sorting (FACS)], and induction of apoptosis (FACS, caspase assays) were evaluated to correlate these biological responses to the gene expression changes. Totally, 698 different genes displayed a significantly altered expression following radiation, and out of these transcripts, all but one showed increased expression. One hour following irradiation, the expression was changed only for a few genes. Striking changes appeared at later time-points. From 3 to 24 h post-irradiation, a significant fraction of the genes with altered expression were found to be involved in cell cycle checkpoints and their regulation (CDKN1A), DNA repair (GADD45A, DDB2, XPC), apoptosis induction (DR5, FasR, Apo-2L, Bax), and T-cell activation/proliferation (CD70, OX40L). Irradiated MOLT-4 cells were arrested at the G2-checkpoint, followed by a decrease in cell viability, most pronounced 48 h after exposure. The cell death was executed by induced apoptosis and was visualized by an increase in subG1 cells and an increased activation of initiator (caspase-8 and caspase-9) and execution (caspase-3) caspases. Activation of cell cycle arrest and apoptosis correlated well in time with the changes in gene expression of those genes important for these biological processes. Activation of the apoptotic signaling

  1. Gamma tocotrienol, a potent radioprotector, preferentially upregulates expression of anti-apoptotic genes to promote intestinal cell survival.

    PubMed

    Suman, Shubhankar; Datta, Kamal; Chakraborty, Kushal; Kulkarni, Shilpa S; Doiron, Kathryn; Fornace, Albert J; Sree Kumar, K; Hauer-Jensen, Martin; Ghosh, Sanchita P

    2013-10-01

    Gamma tocotrienol (GT3) has been reported as a potent ameliorator of radiation-induced gastrointestinal (GI) toxicity when administered prophylactically. This study aimed to evaluate the role of GT3 mediated pro- and anti-apoptotic gene regulation in protecting mice from radiation-induced GI damage. Male 10- to 12-weeks-old CD2F1 mice were administered with a single dose of 200 mg/kg of GT3 or equal volume of vehicle (5% Tween-80) 24 h before exposure to 11 Gy of whole-body γ-radiation. Mouse jejunum was surgically removed 4 and 24h after radiation exposure, and was used for PCR array, histology, immunohistochemistry, and immunoblot analysis. Results were compared among vehicle pre-treated no radiation, vehicle pre-treated irradiated, and GT3 pre-treated irradiated groups. GT3 pretreated irradiated groups, both 4h and 24h after radiation, showed greater upregulation of anti-apoptotic gene expression than vehicle pretreated irradiated groups. TUNEL staining and intestinal crypt analysis showed protection of jejunum after GT3 pre-treatment and immunoblot results were supportive of PCR data. Our study demonstrated that GT3-mediated protection of intestinal cells from a GI-toxic dose of radiation occurred via upregulation of antiapoptotic and downregulation of pro-apoptotic factors, both at the transcript as well as at the protein levels.

  2. Surface code—biophysical signals for apoptotic cell clearance

    NASA Astrophysics Data System (ADS)

    Biermann, Mona; Maueröder, Christian; Brauner, Jan M.; Chaurio, Ricardo; Janko, Christina; Herrmann, Martin; Muñoz, Luis E.

    2013-12-01

    Apoptotic cell death and the clearance of dying cells play an important and physiological role in embryonic development and normal tissue turnover. In contrast to necrosis, apoptosis proceeds in an anti-inflammatory manner. It is orchestrated by the timed release and/or exposure of so-called ‘find-me’, ‘eat me’ and ‘tolerate me’ signals. Mononuclear phagocytes are attracted by various ‘find-me’ signals, including proteins, nucleotides, and phospholipids released by the dying cell, whereas the involvement of granulocytes is prevented via ‘stay away’ signals. The exposure of anionic phospholipids like phosphatidylserine (PS) by apoptotic cells on the outer leaflet of the plasma membrane is one of the main ‘eat me’ signals. PS is recognized by a number of innate receptors as well as by soluble bridging molecules on the surface of phagocytes. Importantly, phagocytes are able to discriminate between viable and apoptotic cells both exposing PS. Due to cytoskeleton remodeling PS has a higher lateral mobility on the surfaces of apoptotic cells thereby promoting receptor clustering on the phagocyte. PS not only plays an important role in the engulfment process, but also acts as ‘tolerate me’ signal inducing the release of anti-inflammatory cytokines by phagocytes. An efficient and fast clearance of apoptotic cells is required to prevent secondary necrosis and leakage of intracellular danger signals into the surrounding tissue. Failure or prolongation of the clearance process leads to the release of intracellular antigens into the periphery provoking inflammation and development of systemic inflammatory autoimmune disease like systemic lupus erythematosus. Here we review the current findings concerning apoptosis-inducing pathways, important players of apoptotic cell recognition and clearance as well as the role of membrane remodeling in the engulfment of apoptotic cells by phagocytes.

  3. Carbocisteine promotes phagocytosis of apoptotic cells by alveolar macrophages.

    PubMed

    Inoue, Masako; Ishibashi, Yuji; Nogawa, Hisashi; Yasue, Tokutaro

    2012-02-29

    Clearance of apoptotic cells, so-called efferocytosis, by alveolar macrophages (AMs) is important for lung homeostasis and is impaired in pulmonary inflammatory diseases, such as chronic obstructive pulmonary disease and asthma. Carbocisteine, a mucoregulatory drug, corrects the contents of fucose in airway mucus and has anti-inflammatory properties in airway inflammation. Thus, we conducted the present study to better understand the anti-inflammatory properties of carbocisteine. First, we induced airway inflammation in mice with lipopolysaccharide intratracheally. Carbocisteine significantly decreased neutrophil numbers in bronchoalveolar lavage fluid at the resolution phase of inflammation, implying the promotion of neutrophil clearance. Then, we investigated whether carbocisteine would enhance the efferocytosis by AMs isolated from mice and found that this drug promoted not only the phagocytosis but also the binding of apoptotic cells to AMs in vitro. Furthermore, carbocisteine decreased the fucose residues stained with fluorescent fucose-binding lectin, Lens culinaris agglutinin, on the cell surface of AMs. We found here that removing fucose residues from cell surfaces of AMs by fucosidase markedly enhanced both the binding and phagocytosis of apoptotic cells. Finally, AMs from mice orally given carbocisteine also promoted both the binding and phagocytosis ex vivo similarly to in vitro. These results suggest that carbocisteine could promote the clearance of apoptotic cells by AMs in airway. In addition, the present findings suggest that the binding and phagocytosis of apoptotic cells may be modulated by fucose residues on the cell surface of AMs.

  4. Innate and Adaptive Immune Response to Apoptotic Cells

    PubMed Central

    Peng, YuFeng; Martin, David A; Kenkel, Justin; Zhang, Kang; Ogden, Carol Anne; Elkon, Keith B.

    2007-01-01

    The immune system is constantly exposed to dying cells, most of which arise during central tolerance and from effete circulating immune cells. Under homeostatic conditions, phagocytes (predominantly macrophages and dendritic cells) belonging to the innate immune system, rapidly ingest cells and their debris. Apoptotic cell removal requires recognition of altered self on the apoptotic membrane, a process which is facilitated by natural antibodies and serum opsonins. Recognition, may be site and context specific. Uptake and ingestion of apoptotic cells promotes an immunosuppressive environment that avoids inflammatory responses to self antigens. However, it does not preclude a T cell response and it is likely that constant exposure to self antigen, particularly by immature dendritic cells, leads to T cell tolerance. Tolerance occurs by several different mechanisms including anergy and deletion (for CD8+ T cells) and induction of T regulatory cells (for CD4+ T cells). Failed apoptotic cell clearance promotes immune responses to self antigens, especially when the cellular contents are leaked from the cell (necrosis). Inflammatory responses may be induced by nucleic acid stimulation of toll like receptors and other immune sensors, specific intracellular proteins and non protein (uric acid) stimulation of inflammasomes. PMID:17888627

  5. Radiation induced esophageal adenocarcinoma in a woman previously treated for breast cancer and renal cell carcinoma

    PubMed Central

    2012-01-01

    Background Secondary radiation-induced cancers are rare but well-documented as long-term side effects of radiation in large populations of breast cancer survivors. Multiple neoplasms are rare. We report a case of esophageal adenocarcinoma in a patient treated previously for breast cancer and clear cell carcinoma of the kidney. Case presentation A 56 year-old non smoking woman, with no alcohol intake and no familial history of cancer; followed in the National Institute of Oncology of Rabat Morocco since 1999 for breast carcinoma, presented on consultation on January 2011 with dysphagia. Breast cancer was treated with modified radical mastectomy, 6 courses of chemotherapy based on CMF regimen and radiotherapy to breast, inner mammary chain and to pelvis as castration. Less than a year later, a renal right mass was discovered incidentally. Enlarged nephrectomy realized and showed renal cell carcinoma. A local and metastatic breast cancer recurrence occurred in 2007. Patient had 2 lines of chemotherapy and 2 lines of hormonotherapy with Letrozole and Tamoxifen assuring a stable disease. On January 2011, the patient presented dysphagia. Oesogastric endoscopy showed middle esophagus stenosing mass. Biopsy revealed adenocarcinoma. No evidence of metastasis was noticed on computed tomography and breast disease was controlled. Palliative brachytherapy to esophagus was delivered. Patient presented dysphagia due to progressive disease 4 months later. Jejunostomy was proposed but the patient refused any treatment. She died on July 2011. Conclusion We present here a multiple neoplasm in a patient with no known family history of cancers. Esophageal carcinoma is most likely induced by radiation. However the presence of a third malignancy suggests the presence of genetic disorders. PMID:22873795

  6. Apoptotic cell death in rat epididymis following epichlorohydrin treatment.

    PubMed

    Lee, I-C; Kim, K-H; Kim, S-H; Baek, H-S; Moon, C; Kim, S-H; Yun, W-K; Nam, K-H; Kim, H-C; Kim, J-C

    2013-06-01

    Epichlorohydrin (ECH) is an antifertility agent that acts both as an epididymal toxicant and an agent capable of directly affecting sperm motility. This study identified the time course of apoptotic cell death in rat epididymides after ECH treatment. Rats were administrated with a single oral dose of ECH (50 mg/kg). ECH-induced apoptotic changes were evaluated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and its related mechanism was confirmed by Western blot analysis and colorimetric assay. The TUNEL assay showed that the number of apoptotic cells increased at 8 h, reached a maximum level at 12 h, and then decreased progressively. The Western blot analysis demonstrated no significant changes in proapoptotic Bcl-2-associated X (Bax) and anti-apoptotic Bcl-2 expression during the time course of the study. However, phospho-p38 mitogen-activated protein kinase (p-p38 MAPK) and phospho-c-Jun amino-terminal kinase (p-JNK) expression increased at 8-24 h. Caspase-3 and caspase-8 activities also increased at 8-48 h and 12-48 h, respectively, in the same manner as p-p38 MAPK and p-JNK expression. These results indicate that ECH induced apoptotic changes in rat epididymides and that the apoptotic cell death may be related more to the MAPK pathway than to the mitochondrial pathway.

  7. Radiation-induced glioma following CyberKnife® treatment of metastatic renal cell carcinoma: a case report

    PubMed Central

    2012-01-01

    Introduction Post-stereotactic radiation-induced neoplasms, although relatively rare, have raised the question of benefit regarding CyberKnife® treatments versus the risk of a secondary malignancy. The incidence of such neoplasms arising in the nervous system is thought to be low, given the paucity of case reports regarding such secondary lesions. Case presentation Here we describe a case of a 43-year-old Middle Eastern woman with primary clear cell renal cell carcinoma and a metastatic focus to the left brain parenchyma who presented with focal neurologic deficits. Following post-surgical stereotactic radiation in the region of the brain metastasis, the patient developed a secondary high-grade astrocytoma nearly 5 years after the initial treatment. Conclusion Although the benefit of CyberKnife® radiotherapy treatments continues to outweigh the relatively low risk of a radiation-induced secondary malignancy, knowledge of such risks and a review of the literature are warranted. PMID:22943305

  8. Endoplasmic reticulum stress protects human thyroid carcinoma cell lines against ionizing radiation-induced apoptosis.

    PubMed

    Wu, Xin-Yu; Fan, Rui-Tai; Yan, Xin-Hui; Cui, Jing; Xu, Jun-Ling; Gu, Hao; Gao, Yong-Ju

    2015-03-01

    Radiotherapy is one of the most effective forms of cancer treatment, used in the treatment of a number of malignant tumors. However, the resistance of tumor cells to ionizing radiation remains a major therapeutic problem and the critical mechanisms determining radiation resistance are poorly defined. In the present study, a cellular endoplasmic reticulum (ER) stress microenvironment was established through the pretreatment of cultured thyroid cancer cells with tunicamycin (TM) and thapsigargin (TG), in order to mimic the ER stress response in a tumor microenvironment. This microenviroment was confirmed through the X‑box binding protein 1 splice process, glucose‑regulated protein 78 kD and ER degradation‑enhancing α‑mannosidase‑like mRNA expression. A clonogenic assay was used to measure cancer cell resistance to 60Co‑γ following TM pretreatment; in addition, human C/EBP homologous protein (CHOP) mRNA expression was determined and apoptosis assays were performed. The results showed that TM or TG pretreatment inhibited CHOP expression and reduced the apoptotic rate of cells. Furthermore, the results demonstrated that the induced ER stress response rendered cancer cells more resistant to ionizing radiation‑induced apoptosis. Therefore, the ER stress pathway may be a potential therapeutic target in order to improve the clinical efficiency of radiotherapy.

  9. Marrow-derived stromal cell delivery on fibrin microbeads can correct radiation-induced wound-healing deficits.

    PubMed

    Xie, Michael W; Gorodetsky, Raphael; Micewicz, Ewa D; Micevicz, Ewa D; Mackenzie, Natalia C; Gaberman, Elena; Levdansky, Lilia; McBride, William H

    2013-02-01

    Skin that is exposed to radiation has an impaired ability to heal wounds. This is especially true for whole-body irradiation, where even moderate nonlethal doses can result in wound-healing deficits. Our previous attempts to administer dermal cells locally to wounds to correct radiation-induced deficits were hampered by poor cell retention. Here we improve the outcome by using biodegradable fibrin microbeads (FMBs) to isolate a population of mesenchymal marrow-derived stromal cells (MSCs) from murine bone marrow by their specific binding to the fibrin matrix, culture them to high density in vitro, and deliver them as MSCs on FMBs at the wound site. MSCs are retained locally, proliferate in site, and assist wounds in gaining tensile strength in whole-body irradiated mice with or without additional skin-only exposure. MSC-FMBs were effective in two different mouse strains but were ineffective across a major histocompatability barrier. Remarkably, irradiated mice whose wounds were treated with MSC-FMBs showed enhanced hair regrowth, suggesting indirect effect on the correction of radiation-induced follicular damage. Further studies showed that additional wound-healing benefit could be gained by administration of granulocyte colony-stimulating factor and AMD3100. Collagen strips coated with haptides and MSCs were also highly effective in correcting radiation-induced wound-healing deficits.

  10. Suppression of radiation-induced migration of non-small cell lung cancer through inhibition of Nrf2-Notch Axis.

    PubMed

    Zhao, Qiuyue; Mao, Aihong; Guo, Ruoshui; Zhang, Liping; Yan, Jiawei; Sun, Chao; Tang, Jinzhou; Ye, Yancheng; Zhang, Yanshan; Zhang, Hong

    2017-03-28

    Nuclear factor E2 related factor 2 (Nrf2) is a transcription factor that is associated with tumor growth and resistance to radiation. The canonical Notch signaling pathway is also crucial for maintaining non-small cell lung cancer (NSCLC). Aberrant Nrf2 and Notch signaling has repeatedly been showed to facilitate metastasis of NSCLC. Here, we show that radiation induce Nrf2 and Notch1 expression in NSCLC. Knockdown of Nrf2 enhanced radiosensitivity of NSCLC and reduced epithelial-to-mesenchymal transition. Importantly, we found that knockdown of Nrf2 dramatically decreased radiation-induced NSCLC invasion and significantly increased E-cadherin, but reduced N-cadherin and matrix metalloproteinase (MMP)-2/9 expression. We found that Notch1 knockdown also upregulated E-cadherin and suppressed N-cadherin expression. Nrf2 contributes to NSCLC cell metastatic properties and this inhibition correlated with reduced Notch1 expression. These results establish that Nrf2 and Notch1 downregulation synergistically inhibit radiation-induced migratory and invasive properties of NSCLC cells.

  11. Rho kinase regulates fragmentation and phagocytosis of apoptotic cells

    SciTech Connect

    Orlando, Kelly A.; Stone, Nicole L.; Pittman, Randall N. . E-mail: pittman@pharm.med.upenn.edu

    2006-01-01

    During the execution phase of apoptosis, a cell undergoes cytoplasmic and nuclear changes that prepare it for death and phagocytosis. The end-point of the execution phase is condensation into a single apoptotic body or fragmentation into multiple apoptotic bodies. Fragmentation is thought to facilitate phagocytosis; however, mechanisms regulating fragmentation are unknown. An isoform of Rho kinase, ROCK-I, drives membrane blebbing through its activation of actin-myosin contraction; this raises the possibility that ROCK-I may regulate other execution phase events, such as cellular fragmentation. Here, we show that COS-7 cells fragment into a number of small apoptotic bodies during apoptosis; treating with ROCK inhibitors (Y-27632 or H-1152) prevents fragmentation. Latrunculin B and blebbistatin, drugs that interfere with actin-myosin contraction, also inhibit fragmentation. During apoptosis, ROCK-I is cleaved and activated by caspases, while ROCK-II is not activated, but rather translocates to a cytoskeletal fraction. siRNA knock-down of ROCK-I but not ROCK-II inhibits fragmentation of dying cells, consistent with ROCK-I being required for apoptotic fragmentation. Finally, cells dying in the presence of the ROCK inhibitor Y-27632 are not efficiently phagocytized. These data show that ROCK plays an essential role in fragmentation and phagocytosis of apoptotic cells.

  12. The Sound of Silence: Signaling by Apoptotic Cells

    PubMed Central

    Fogarty, Caitlin E.; Bergmann, Andreas

    2016-01-01

    Apoptosis is a carefully choreographed process of cellular self-destruction in the absence of inflammation. During the death process, apoptotic cells actively communicate with their environment, signaling to both their immediate neighbors as well as distant sentinels. Some of these signals direct the anti-inflammatory immune response, instructing specific subsets of phagocytes to participate in the limited and careful clearance of dying cellular debris. These immunomodulatory signals can also regulate the activation state of the engulfing phagocytes. Other signals derived from apoptotic cells contribute to tissue growth control with the common goal of maintaining tissue integrity. Derangements in these growth control signals during prolonged apoptosis can lead to excessive cell loss or proliferation. Here, we highlight some of the most intriguing signals produced by apoptotic cells during the course of normal development as well as during physiological disturbances such as atherosclerosis and cancer. PMID:26431570

  13. Effects of Caffeine on Radiation-Induced Phenomena Associated with Cell-Cycle Traverse of Mammalian Cells

    PubMed Central

    Walters, Ronald A.; Gurley, Lawrence R.; Tobey, Robert A.

    1974-01-01

    Caffeine induced a state of G1 arrest when added to an exponentially growing culture of Chinese hamster cells (line CHO). In addition to its effect on cell-cycle traverse, caffeine ameliorated a number of the responses of cells to ionizing radiation. The duration of the division delay period following X-irradiation of caffeine-treated cells was reduced, and the magnitude of reduction was dependent on caffeine concentration. Cells irradiated during the DNA synthetic phase in the presence of caffeine were delayed less in their exit from S, measured autoradiographically, and the radiation-induced reduction of radioactive thymidine incorporation into DNA was lessened. Cells synchronized by isoleucine deprivation, while being generally less sensitive to the effects of ionizing radiation than mitotically synchronized cells, were equally responsive to the effects of caffeine. The X-ray-induced reduction of phosphorylation of lysine-rich histone F1 was less in caffeine-treated cells than in untreated cells. Finally, survival after irradiation was only slightly reduced in caffeine-treated cells. A possible role of cyclic AMP in cell-cycle traverse of irradiated cells is discussed. PMID:4360269

  14. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice

    PubMed Central

    Luo, Lan; Yan, Chen; Urata, Yoshishige; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Zhang, Shouhua; Li, Tao-Sheng

    2017-01-01

    We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs. PMID:28098222

  15. Visualizing the effect of tumor microenvironments on radiation-induced cell kinetics in multicellular spheroids consisting of HeLa cells

    SciTech Connect

    Kaida, Atsushi; Miura, Masahiko

    2013-10-04

    Highlights: •We visualized radiation-induced cell kinetics in spheroids. •HeLa-Fucci cells were used for detection of cell-cycle changes. •Radiation-induced G2 arrest was prolonged in the spheroid. •The inner and outer cell fractions behaved differently. -- Abstract: In this study, we visualized the effect of tumor microenvironments on radiation-induced tumor cell kinetics. For this purpose, we utilized a multicellular spheroid model, with a diameter of ∼500 μm, consisting of HeLa cells expressing the fluorescent ubiquitination-based cell-cycle indicator (Fucci). In live spheroids, a confocal laser scanning microscope allowed us to clearly monitor cell kinetics at depths of up to 60 μm. Surprisingly, a remarkable prolongation of G2 arrest was observed in the outer region of the spheroid relative to monolayer-cultured cells. Scale, an aqueous reagent that renders tissues optically transparent, allowed visualization deeper inside spheroids. About 16 h after irradiation, a red fluorescent cell fraction, presumably a quiescent G0 cell fraction, became distinct from the outer fraction consisting of proliferating cells, most of which exhibited green fluorescence indicative of G2 arrest. Thereafter, the red cell fraction began to emit green fluorescence and remained in prolonged G2 arrest. Thus, for the first time, we visualized the prolongation of radiation-induced G2 arrest in spheroids and the differences in cell kinetics between the outer and inner fractions.

  16. Monitoring circulating apoptotic cells by in-vivo flow cytometry

    NASA Astrophysics Data System (ADS)

    Wei, Xunbin; Tan, Yuan; Chen, Yun; Zhang, Li; Li, Yan; Liu, Guangda; Wu, Bin; Wang, Chen

    2008-02-01

    Chemotherapies currently constitute one main venue of cancer treatment. For a large number of adult and elderly patients, however, treatment options are poor. These patients may suffer from disease that is resistant to conventional chemotherapy or may not be candidates for curative therapies because of advanced age or poor medical conditions. To control disease in these patients, new therapies must be developed that are selectively targeted to unique characteristics of tumor cell growth and metastasis. A reliable early evaluation and prediction of response to the chemotherapy is critical to its success. Chemotherapies induce apoptosis in tumor cells and a portion of such apoptotic cancer cells may be present in the circulation. However, the fate of circulating tumor cells is difficult to assess with conventional methods that require blood sampling. We report the in situ measurement of circulating apoptotic cells in live animals using in vivo flow cytometry, a novel method that enables real-time detection and quantification of circulating cells without blood extraction. Apoptotic cells are rapidly cleared from the circulation with a half-life of ~10 minutes. Real-time monitoring of circulating apoptotic cells can be useful for detecting early changes in disease processes, as well as for monitoring response to therapeutic intervention.

  17. Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry

    SciTech Connect

    Miller, John H.; Jin, Shuangshuang; Morgan, William F.; Yang, Austin; Wan, Yunhu; Aypar, Umut; Peters, Jonathan S.; Springer, David L.

    2008-06-01

    Radiation-induced genome instability (RIGI) is a response to radiation exposure in which the progeny of surviving cells exhibit increased frequency of chromosomal changes many generations after the initial insult. Persistently elevated oxidative stress accompanying RIGI and the ability of free-radical scavengers, given before irradiation, to reduce the incidence of instability suggest that radiation induced alterations to mitochondrial function likely play a role in RIGI. To further elucidate this mechanism, we performed high-throughput quantitative mass spectrometry on samples enriched in mitochondrial proteins from three chromosomally-unstable GM10115 Chinese-hamster-ovary cell lines and their stable parental cell line. Out of several hundred identified proteins, sufficient data were collected on 74 mitochondrial proteins to test for statistically significant differences in their abundance between unstable and stable cell lines. Each of the unstable cell lines showed a distinct profile of statistically-significant differential abundant mitochondrial proteins. The LS-12 cell line was characterized by 8 downregulated proteins, whereas the CS-9 cell line exhibited 5 distinct up-regulated proteins. The unstable 115 cell line had two down-regulated proteins, one of which was also downregulated in LS-12, and one up-regulated protein relative to stable parental cells. The mitochondrial protein profiles for LS-12 and C-9 provide further evidence that mitochondrial dysfunction is involved in the genome instability of these cell lines.

  18. Amelioration of radiation-induced hematopoietic syndrome by an antioxidant chlorophyllin through increased stem cell activity and modulation of hematopoiesis.

    PubMed

    Suryavanshi, Shweta; Sharma, Deepak; Checker, Rahul; Thoh, Maikho; Gota, Vikram; Sandur, Santosh K; Sainis, Krishna B

    2015-08-01

    Hematopoietic stem cells and progenitor cells (HSPC) are low in abundance and exhibit high radiosensitivity and their ability to divide dramatically decreases following exposure to ionizing radiation. Our earlier studies have shown antiapoptotic, immune-stimulatory, and antioxidant effects of chlorophyllin, a constituent of the over the counter drug derifil. Here we describe the beneficial effects of chlorophyllin against radiation-induced hematopoietic syndrome. Chlorophyllin administration significantly enhanced the abundance of HSPC in vivo. It induced a transient cell cycle arrest in lineage-negative cells in the bone marrow. However, the chlorophyllin-treated mice exposed to whole body irradiation (WBI) had a significantly higher proportion of actively dividing HSPC in the bone marrow as compared to only WBI-exposed mice. It significantly increased the number of colony forming units (CFUs) by bone marrow cells in vitro and spleen CFUs in irradiated mice in vivo. Pharmacokinetic study showed that chlorophyllin had a serum half-life of 141.8 min in mice. Chlorophyllin upregulated antiapoptotic genes and antioxidant machinery via activation of prosurvival transcription factors Nrf-2 and NF-κB and increased the survival and recovery of bone marrow cells in mice exposed to WBI. Chlorophyllin stimulated granulocyte production in bone marrow and increased the abundance of peripheral blood neutrophils by enhancing serum levels of granulocyte-colony stimulation factor (GCSF). Most importantly, prophylactic treatment of mice with chlorophyllin significantly abrogated radiation-induced mortality. Chlorophyllin mitigates radiation-induced hematopoietic syndrome by increasing the abundance of hematopoietic stem cells, enhancing granulopoiesis, and stimulating prosurvival pathways in bone marrow cells and lymphocytes.

  19. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells

    SciTech Connect

    Marianne B. Sowa; Wilfried Goetz; Janet E. Baulch; Dinah N. Pyles; Jaroslaw Dziegielewski; Susannah Yovino; Andrew R. Snyder; Sonia M. de Toledo; Edouard I. Azzam; William F. Morgan

    2008-06-30

    Purpose: To investigate radiation induced bystander responses and to determine the role of gap junction intercellular communication and the radiation environment in propagating this response. Materials and Methods: We use medium transfer and targeted irradiation to examine radiation induced bystander effects in primary human fibroblast (AG1522) and human colon carcinoma (RKO36) cells. We examined the effect of variables such as gap junction intercellular communication, linear energy transfer (LET), and the role of the radiation environment in non-targeted responses. Endpoints included clonogenic survival, micronucleus formation and foci formation at histone 2AX over doses ranging from 10 to 100 cGy. Results: The results show no evidence of a low-LET radiation induced bystander response for the endpoints of clonogenic survival and induction of DNA damage. Nor do we see evidence of a high-LET, Fe ion radiation (1 GeV/n) induced bystander effect. However, direct comparison for 3.2 MeV α-particle exposures showed a statistically significant medium transfer bystander effect for this high-LET radiation. Conclusions: From our results, it is evident that there are many confounding factors influencing bystander responses as reported in the literature. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.

  20. Radiation damage and repair in cells and cell components. Radiation-induced repair. Progress report, 1981-1982

    SciTech Connect

    Not Available

    1982-01-01

    Progress in research on the description and interpretation of radiation-induced repair in cells is reported. It has been found that for the p-recA data induction seems to follow a model of fractional site occupancy rather than being all-or-none. Other areas investigated include: (1) the induction of the RecA-gene product; (2) the effect of uv-phage lambda infection on Rec-A protein synthesis; (3) induced uv radioresistance; (4) cold-shock effects; (5) lambda-prophage induction by x-rays and uv; (6) photoreactivation of uv-induced dimers; and (7) a comparative study of S.O.S. phenomena in various strains of E. coli. (ACR)

  1. Porphyromonas gingivalis gingipains cause defective macrophage migration towards apoptotic cells and inhibit phagocytosis of primary apoptotic neutrophils.

    PubMed

    Castro, Sowmya A; Collighan, Russell; Lambert, Peter A; Dias, Irundika Hk; Chauhan, Parbata; Bland, Charlotte E; Milic, Ivana; Milward, Michael R; Cooper, Paul R; Devitt, Andrew

    2017-03-02

    Periodontal disease is a prevalent chronic inflammatory condition characterised by an aberrant host response to a pathogenic plaque biofilm resulting in local tissue damage and frustrated healing that can result in tooth loss. Cysteine proteases (gingipains) from the key periodontal pathogen Porphyromonas gingivalis have been implicated in periodontal disease pathogenesis by inhibiting inflammation resolution and are linked with systemic chronic inflammatory conditions such as rheumatoid arthritis. Efficient clearance of apoptotic cells is essential for the resolution of inflammation and tissue restoration. Here we sought to characterise the innate immune clearance of apoptotic cells and its modulation by gingipains. We examined the capacity of gingipain-treated macrophages to migrate towards and phagocytose apoptotic cells. Lysine gingipain treatment of macrophages impaired macrophage migration towards apoptotic neutrophils. Furthermore, lysine gingipain treatment reduced surface expression levels of CD14, a key macrophage receptor for apoptotic cells, which resulted in reduced macrophage interactions with apoptotic cells. Additionally, while apoptotic cells and their derived secretome were shown to inhibit TNF-α-induced expression by P. gingivalis lipopolysaccharide, we demonstrated that gingipain preparations induced a rapid inflammatory response in macrophages that was resistant to the anti-inflammatory effects of apoptotic cells or their secretome. Taken together, these data indicate that P. gingivalis may promote the chronic inflammation seen in periodontal disease patients by multiple mechanisms, including rapid, potent gingipain-mediated inflammation, coupled with receptor cleavage leading to defective clearance of apoptotic cells and reduced anti-inflammatory responses. Thus, gingipains represent a potential therapeutic target for intervention in the management of chronic periodontal disease.

  2. Harnessing the apoptotic programs in cancer stem-like cells.

    PubMed

    Wang, Ying-Hua; Scadden, David T

    2015-09-01

    Elimination of malignant cells is an unmet challenge for most human cancer types even with therapies targeting specific driver mutations. Therefore, a multi-pronged strategy to alter cancer cell biology on multiple levels is increasingly recognized as essential for cancer cure. One such aspect of cancer cell biology is the relative apoptosis resistance of tumor-initiating cells. Here, we provide an overview of the mechanisms affecting the apoptotic process in tumor cells emphasizing the differences in the tumor-initiating or stem-like cells of cancer. Further, we summarize efforts to exploit these differences to design therapies targeting that important cancer cell population.

  3. Involvement of DNA-PK and ATM in radiation- and heat-induced DNA damage recognition and apoptotic cell death.

    PubMed

    Tomita, Masanori

    2010-01-01

    Exposure to ionizing radiation and hyperthermia results in important biological consequences, e.g. cell death, chromosomal aberrations, mutations, and DNA strand breaks. There is good evidence that the nucleus, specifically cellular DNA, is the principal target for radiation-induced cell lethality. DNA double-strand breaks (DSBs) are considered to be the most serious type of DNA damage induced by ionizing radiation. On the other hand, verifiable mechanisms which can lead to heat-induced cell death are damage to the plasma membrane and/or inactivation of heat-labile proteins caused by protein denaturation and subsequent aggregation. Recently, several reports have suggested that DSBs can be induced after hyperthermia because heat-induced phosphorylated histone H2AX (γ-H2AX) foci formation can be observed in several mammalian cell lines. In mammalian cells, DSBs are repaired primarily through two distinct and complementary mechanisms: non-homologous end joining (NHEJ), and homologous recombination (HR) or homology-directed repair (HDR). DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) are key players in the initiation of DSB repair and phosphorylate and/or activate many substrates, including themselves. These phosphorylated substrates have important roles in the functioning of cell cycle checkpoints and in cell death, as well as in DSB repair. Apoptotic cell death is a crucial cell suicide mechanism during development and in the defense of homeostasis. If DSBs are unrepaired or misrepaired, apoptosis is a very important system which can protect an organism against carcinogenesis. This paper reviews recently obtained results and current topics concerning the role of DNA-PK and ATM in heat- or radiation-induced apoptotic cell death.

  4. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death

    NASA Astrophysics Data System (ADS)

    Gago-Arias, Araceli; Aguiar, Pablo; Espinoza, Ignacio; Sánchez-Nieto, Beatriz; Pardo-Montero, Juan

    2016-02-01

    The resistance of hypoxic cells to radiation, due to the oxygen dependence of radiosensitivity, is well known and must be taken into account to accurately calculate the radiation induced cell death. A proper modelling of the response of tumours to radiation requires deriving the distribution of oxygen at a microscopic scale. This usually involves solving the reaction-diffusion equation in tumour voxels using a vascularization distribution model. Moreover, re-oxygenation arises during the course of radiotherapy, one reason being the increase of available oxygen caused by cell killing, which can turn hypoxic tumours into oxic. In this work we study the effect of cell death kinetics in tumour oxygenation modelling, analysing how it affects the timing of re-oxygenation, surviving fraction and tumour control. Two models of cell death are compared, an instantaneous cell killing, mimicking early apoptosis, and a delayed cell death scenario in which cells can die shortly after being damaged, as well as long after irradiation. For each of these scenarios, the decrease in oxygen consumption due to cell death can be computed globally (macroscopic voxel average) or locally (microscopic). A re-oxygenation model already used in the literature, the so called full re-oxygenation, is also considered. The impact of cell death kinetics and re-oxygenation on tumour responses is illustrated for two radiotherapy fractionation schemes: a conventional schedule, and a hypofractionated treatment. The results show large differences in the doses needed to achieve 50% tumour control for the investigated cell death models. Moreover, the models affect the tumour responses differently depending on the treatment schedule. This corroborates the complex nature of re-oxygenation, showing the need to take into account the kinetics of cell death in radiation response models.

  5. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death.

    PubMed

    Gago-Arias, Araceli; Aguiar, Pablo; Espinoza, Ignacio; Sánchez-Nieto, Beatriz; Pardo-Montero, Juan

    2016-02-07

    The resistance of hypoxic cells to radiation, due to the oxygen dependence of radiosensitivity, is well known and must be taken into account to accurately calculate the radiation induced cell death. A proper modelling of the response of tumours to radiation requires deriving the distribution of oxygen at a microscopic scale. This usually involves solving the reaction-diffusion equation in tumour voxels using a vascularization distribution model. Moreover, re-oxygenation arises during the course of radiotherapy, one reason being the increase of available oxygen caused by cell killing, which can turn hypoxic tumours into oxic. In this work we study the effect of cell death kinetics in tumour oxygenation modelling, analysing how it affects the timing of re-oxygenation, surviving fraction and tumour control. Two models of cell death are compared, an instantaneous cell killing, mimicking early apoptosis, and a delayed cell death scenario in which cells can die shortly after being damaged, as well as long after irradiation. For each of these scenarios, the decrease in oxygen consumption due to cell death can be computed globally (macroscopic voxel average) or locally (microscopic). A re-oxygenation model already used in the literature, the so called full re-oxygenation, is also considered. The impact of cell death kinetics and re-oxygenation on tumour responses is illustrated for two radiotherapy fractionation schemes: a conventional schedule, and a hypofractionated treatment. The results show large differences in the doses needed to achieve 50% tumour control for the investigated cell death models. Moreover, the models affect the tumour responses differently depending on the treatment schedule. This corroborates the complex nature of re-oxygenation, showing the need to take into account the kinetics of cell death in radiation response models.

  6. The Protective Roles of ROS-Mediated Mitophagy on 125I Seeds Radiation Induced Cell Death in HCT116 Cells

    PubMed Central

    Hu, Lelin; Wang, Hao; Huang, Li; Zhao, Yong

    2016-01-01

    For many unresectable carcinomas and locally recurrent cancers (LRC), 125I seeds brachytherapy is a feasible, effective, and safe treatment. Several studies have shown that 125I seeds radiation exerts anticancer activity by triggering DNA damage. However, recent evidence shows mitochondrial quality to be another crucial determinant of cell fate, with mitophagy playing a central role in this control mechanism. Herein, we found that 125I seeds irradiation injured mitochondria, leading to significantly elevated mitochondrial and intracellular ROS (reactive oxygen species) levels in HCT116 cells. The accumulation of mitochondrial ROS increased the expression of HIF-1α and its target genes BINP3 and NIX (BINP3L), which subsequently triggered mitophagy. Importantly, 125I seeds radiation induced mitophagy promoted cells survival and protected HCT116 cells from apoptosis. These results collectively indicated that 125I seeds radiation triggered mitophagy by upregulating the level of ROS to promote cellular homeostasis and survival. The present study uncovered the critical role of mitophagy in modulating the sensitivity of tumor cells to radiation therapy and suggested that chemotherapy targeting on mitophagy might improve the efficiency of 125I seeds radiation treatment, which might be of clinical significance in tumor therapy. PMID:28119765

  7. Protein Kinase CK2 Regulates Cytoskeletal Reorganization during Ionizing Radiation-Induced Senescence of Human Mesenchymal Stem Cells

    SciTech Connect

    Wang, Daojing; Jang, Deok-Jin

    2009-08-21

    Human mesenchymal stem cells (hMSC) are critical for tissue regeneration. How hMSC respond to genotoxic stresses and potentially contribute to aging and cancer remain underexplored. We demonstrated that ionizing radiation induced cellular senescence of hMSC over a period of 10 days, showing a critical transition between day 3 and day 6. This was confirmed by senescence-associated beta-galactosidase (SA-{beta}-gal) staining, protein expression profiles of key cell cycle regulators (retinoblastoma (Rb) protein, p53, p21{sup waf1/Cip1}, and p16{sup INK4A}), and senescence-associated secretory phenotypes (SASPs) (IL-8, IL-12, GRO, and MDC). We observed dramatic cytoskeletal reorganization of hMSC through reduction of myosin-10, redistribution of myosin-9, and secretion of profilin-1. Using a SILAC-based phosphoproteomics method, we detected significant reduction of myosin-9 phosphorylation at Ser1943, coinciding with its redistribution. Importantly, through treatment with cell permeable inhibitors (4,5,6,7-tetrabromo-1H-benzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT)), and gene knockdown using RNA interference, we identified CK2, a kinase responsible for myosin-9 phosphorylation at Ser1943, as a key factor contributing to the radiation-induced senescence of hMSC. We showed that individual knockdown of CK2 catalytic subunits CK2{alpha} and CK2{alpha}{prime} induced hMSC senescence. However, only knockdown of CK2{alpha} resulted in morphological phenotypes resembling those of radiation-induced senescence. These results suggest that CK2{alpha} and CK2{alpha}{prime} play differential roles in hMSC senescence progression, and their relative expression might represent a novel regulatory mechanism for CK2 activity.

  8. M-BAND Study of Radiation-Induced Chromosome Aberrations in Human Epithelial Cells: Radiation Quality and Dose Rate Effects

    NASA Technical Reports Server (NTRS)

    Hada, Megumi; Cucinotta, Francis; Wu, Honglu

    2009-01-01

    The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome

  9. Evidence for apoptotic cell death in Alzheimer's disease.

    PubMed

    Smale, G; Nichols, N R; Brady, D R; Finch, C E; Horton, W E

    1995-06-01

    We provide evidence for apoptosis in Alzheimer's disease using the in situ labeling technique TUNEL (terminal transferase-mediated dUTP-biotin nick end labeling). The technique specifically detects apoptotic cells by utilizing terminal transferase to incorporate biotinylated nucleotides into the fragmented DNA of apoptotic cells. The labeled cells are visualized by reaction with avidin peroxidase and a suitable substrate. Sections from the hippocampus of Alzheimer-diseased (AD) brains and non-AD brains were examined for apoptosis. While considerable variation in the quantity of apoptotic cells was observed among individual samples, the incidence of apoptosis in AD brains was elevated in comparison to age-matched, non-AD brains in specific regions of the hippocampal formation. Immunostaining indicated that both neurons and astrocytes were undergoing apoptosis, although the majority of the TUNEL-positive cells appeared to be glial, based on the location of the stained cells. These data suggest that apoptosis may be involved in both the primary neuronal cell loss and in the glial response that is a component of AD.

  10. Apoptotic cell signaling in cancer progression and therapy†

    PubMed Central

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-01-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed. PMID:21340093

  11. Apoptotic cell signaling in cancer progression and therapy.

    PubMed

    Plati, Jessica; Bucur, Octavian; Khosravi-Far, Roya

    2011-04-01

    Apoptosis is a tightly regulated cell suicide program that plays an essential role in the development and maintenance of tissue homeostasis by eliminating unnecessary or harmful cells. Impairment of this native defense mechanism promotes aberrant cellular proliferation and the accumulation of genetic defects, ultimately resulting in tumorigenesis, and frequently confers drug resistance to cancer cells. The regulation of apoptosis at several levels is essential to maintain the delicate balance between cellular survival and death signaling that is required to prevent disease. Complex networks of signaling pathways act to promote or inhibit apoptosis in response to various cues. Apoptosis can be triggered by signals from within the cell, such as genotoxic stress, or by extrinsic signals, such as the binding of ligands to cell surface death receptors. Various upstream signaling pathways can modulate apoptosis by converging on, and thereby altering the activity of, common central control points within the apoptotic signaling pathways, which involve the BCL-2 family proteins, inhibitor of apoptosis (IAP) proteins, and FLICE-inhibitory protein (c-FLIP). This review highlights the role of these fundamental regulators of apoptosis in the context of both normal apoptotic signaling mechanisms and dysregulated apoptotic pathways that can render cancer cells resistant to cell death. In addition, therapeutic strategies aimed at modulating the activity of BCL-2 family proteins, IAPs, and c-FLIP for the targeted induction of apoptosis are briefly discussed.

  12. PDT-apoptotic tumor cells induce macrophage immune response

    NASA Astrophysics Data System (ADS)

    Zhou, Fei-fan; Xing, Da; Chen, Wei R.

    2008-02-01

    Photodynamic therapy (PDT) functions as a cancer therapy through two major cell death mechanisms: apoptosis and necrosis. Immunological responses induced by PDT has been mainly associated with necrosis while apoptosis associated immune responses have not fully investigated. Heat shock proteins (HSPs) play an important role in regulating immune responses. In present study, we studied whether apoptotic tumor cells could induce immune response and how the HSP70 regulates immune response. The endocytosis of tumor cells by the activated macrophages was observed at single cell level by LSM. The TNF-α release of macrophages induced by co-incubated with PDT-apoptotic tumor cells was detected by ELISA. We found that apoptotic tumor cells treated by PDT could activate the macrophages, and the immune effect decreased evidently when HSP70 was blocked. These findings not only show that apoptosis can induce immunological responses, but also show HSP70 may serves as a danger signal for immune cells and induce immune responses to regulate the efficacy of PDT.

  13. Naphthazarin enhances ionizing radiation-induced cell cycle arrest and apoptosis in human breast cancer cells.

    PubMed

    Kim, Min Young; Park, Seong-Joon; Shim, Jae Woong; Yang, Kwangmo; Kang, Ho Sung; Heo, Kyu

    2015-04-01

    Naphthazarin (Naph, DHNQ, 5,8-dihydroxy-l,4-naphthoquinone) is one of the naturally available 1,4-naphthoquinone derivatives that are well-known for their anti-inflammatory, antioxidant, antibacterial and antitumor cytotoxic effects in cancer cells. Herein, we investigated whether Naph has effects on cell cycle arrest and apoptosis in MCF-7 human breast cancer cells exposed to ionizing radiation (IR). Naph reduced the MCF-7 cell viability in a dose-dependent manner. We also found that Naph and/or IR increased the p53-dependent p21 (CIP/WAF1) promoter activity. Noteworthy, our ChIP assay results showed that Naph and IR combined treatment activated the p21 promoter via inhibition of binding of multi-domain proteins, DNMT1, UHRF1 and HDAC1. Apoptosis and cell cycle analyses demonstrated that Naph and IR combined treatment induced cell cycle arrest and apoptosis in MCF-7 cells. Herein, we showed that Naph treatment enhances IR-induced cell cycle arrest and death in MCF-7 human breast cancer cells through the p53-dependent p21 activation mechanism. These results suggest that Naph might sensitize breast cancer cells to radiotherapy by enhancing the p53-p21 mechanism activity.

  14. Different mechanisms of radiation-induced loss of heterozygosity in two human lymphoid cell lines from a single donor

    NASA Technical Reports Server (NTRS)

    Wiese, C.; Gauny, S. S.; Liu, W. C.; Cherbonnel-Lasserre, C. L.; Kronenberg, A.

    2001-01-01

    Allelic loss is an important mutational mechanism in human carcinogenesis. Loss of heterozygosity (LOH) at an autosomal locus is one outcome of the repair of DNA double-strand breaks (DSBs) and can occur by deletion or by mitotic recombination. We report that mitotic recombination between homologous chromosomes occurred in human lymphoid cells exposed to densely ionizing radiation. We used cells derived from the same donor that express either normal TP53 (TK6 cells) or homozygous mutant TP53 (WTK1 cells) to assess the influence of TP53 on radiation-induced mutagenesis. Expression of mutant TP53 (Met 237 Ile) was associated with a small increase in mutation frequencies at the hemizygous HPRT (hypoxanthine phosphoribosyl transferase) locus, but the mutation spectra were unaffected at this locus. In contrast, WTK1 cells (mutant TP53) were 30-fold more susceptible than TK6 cells (wild-type TP53) to radiation-induced mutagenesis at the TK1 (thymidine kinase) locus. Gene dosage analysis combined with microsatellite marker analysis showed that the increase in TK1 mutagenesis in WTK1 cells could be attributed, in part, to mitotic recombination. The microsatellite marker analysis over a 64-cM region on chromosome 17q indicated that the recombinational events could initiate at different positions between the TK1 locus and the centromere. Virtually all of the recombinational LOH events extended beyond the TK1 locus to the most telomeric marker. In general, longer LOH tracts were observed in mutants from WTK1 cells than in mutants from TK6 cells. Taken together, the results demonstrate that the incidence of radi-ation-induced mutations is dependent on the genetic background of the cell at risk, on the locus examined, and on the mechanisms for mutation available at the locus of interest.

  15. Enhancement of radiation-induced cell kill by platinum complexes (carboplatin and iproplatin) in V79 cells

    SciTech Connect

    O'Hara, J.A.; Douple, E.B.; Richmond, R.C.

    1986-08-01

    Two second generation platinum complexes currently undergoing clinical chemotherapeutic trials, carboplatin (CBDCA) and iproplatin (CHIP), were evaluated for their ability to alter the survival of cultured Chinese hamster V79 cells following irradiation. Two protocols were employed. In the first, the drug was added to preplated cells, some of which were subsequently made hypoxic with nitrogen gas. These hypoxic cells were irradiated following 1 hour exposure to drug and survival was assessed by standard colony forming unit (CFU) methods. Enhancement ratios (ER) of approximately 1.4 were obtained for irradiation under hypoxic conditions, if the cells were exposed to equitoxic doses of CBDCA (500 microM) CHIP (50 microM). In the second series of experiments, cells were treated with 10 Gy in air and then incubated for various times prior to trypsinization and serial dilution of single cell suspensions. Six hours after irradiation, cells treated with X rays alone had recovered to produce a surviving fraction twice that of cells trypsinized immediately after irradiation (not held). Post-irradiation administration of CBDCA (50 microM) or CHIP (20 microM), at a time when free radical-mediated radiosensitization would not be possible, operationally inhibited this recovery from radiation-induced potentially lethal damage (PLD). Inhibition, expressed as recovery inhibition factor (RIF) after 6 hr with drug, was 2.0 for CBDCA and 1.2 for CHIP. These results suggest that the rationale for designing clinical trials to exploit interactions between cisplatin and radiation might also extend to include combined modality therapy using radiation with either of these two platinum complexes.

  16. Cycloheximide suppresses radiation-induced apoptosis in MOLT-4 cells with Arg72 variant of p53 through translational inhibition of p53 accumulation.

    PubMed

    Ito, Azusa; Morita, Akinori; Ohya, Soichiro; Yamamoto, Shinichi; Enomoto, Atsushi; Ikekita, Masahiko

    2011-01-01

    The human T-cell leukemia cell line MOLT-4 is highly radiosensitive, and thus it is often used as a model of p53-dependent radiation-induced apoptosis. Two branches of the p53-mediated apoptotic pathway are reported: "transcription-dependent" and "transcription-independent." However, the relative contribution of each in different types of cells is not yet clearly defined. Moreover, recent studies have shown that the codon 72 polymorphic variants of p53 show different sensitivities to apoptosis signals. The Arg72 variant has a more potent apoptosis-inducing activity in mitochondria than the Pro72 variant. Here, we initially investigated the codon 72 polymorphism of p53 in MOLT-4 cells. Analysis of the p53 exon 4 genomic DNA sequence, which includes codon 72, revealed that MOLT-4 cells are homozygous for the allele encoding Arg72. We next investigated the involvement of the transcription-independent function of p53 using an RNA synthesis inhibitor, actinomycin D (ActD), and a protein synthesis inhibitor, cycloheximide (CHX), and found that the apoptosis was suppressed by CHX but not by ActD. We also revealed that the suppressive effect of CHX on apoptosis was specifically mediated by p53, using a p53-knockdown MOLT-4 transfectant. Furthermore, the suppressive effect of CHX on apoptosis was highly correlated with the suppression of p53 protein accumulation, and less correlated with the suppression of p53 target genes expression. These results indicated that p53 transactivation is not necessary to induce apoptosis, and that p53 protein accumulation itself is both necessary and sufficient to do so.

  17. Necdin modulates proliferative cell survival of human cells in response to radiation-induced genotoxic stress

    PubMed Central

    2012-01-01

    Background The finite replicative lifespan of cells, termed cellular senescence, has been proposed as a protective mechanism against the proliferation of oncogenically damaged cells, that fuel cancer. This concept is further supported by the induction of premature senescence, a process which is activated when an oncogene is expressed in normal primary cells as well as following intense genotoxic stresses. Thus, deregulation of genes that control this process, like the tumor suppressor p53, may contribute to promoting cancer by allowing cells to bypass senescence. A better understanding of the genes that contribute to the establishment of senescence is therefore warranted. Necdin interacts with p53 and is also a p53 target gene, although the importance of Necdin in the p53 response is not clearly understood. Methods In this study, we first investigated Necdin protein expression during replicative senescence and premature senescence induced by gamma irradiation and by the overexpression of oncogenic RasV12. Gain and loss of function experiments were used to evaluate the contribution of Necdin during the senescence process. Results Necdin expression declined during replicative aging of IMR90 primary human fibroblasts or following induction of premature senescence. Decrease in Necdin expression seemed to be a consequence of the establishment of senescence since the depletion of Necdin in human cells did not induce a senescence-like growth arrest nor a flat morphology or SA-β-galactosidase activity normally associated with senescence. Similarly, overexpression of Necdin did not affect the life span of IMR90 cells. However, we demonstrate that in normal human cells, Necdin expression mimicked the effect of p53 inactivation by increasing radioresistance. Conclusion This result suggests that Necdin potentially attenuate p53 signaling in response to genotoxic stress in human cells and supports similar results describing an inhibitory function of Necdin over p53-dependent

  18. Middle infrared radiation induces G2/M cell cycle arrest in A549 lung cancer cells.

    PubMed

    Chang, Hsin-Yi; Shih, Meng-Her; Huang, Hsuan-Cheng; Tsai, Shang-Ru; Juan, Hsueh-Fen; Lee, Si-Chen

    2013-01-01

    There were studies investigating the effects of broadband infrared radiation (IR) on cancer cell, while the influences of middle-infrared radiation (MIR) are still unknown. In this study, a MIR emitter with emission wavelength band in the 3-5 µm region was developed to irradiate A549 lung adenocarcinoma cells. It was found that MIR exposure inhibited cell proliferation and induced morphological changes by altering the cellular distribution of cytoskeletal components. Using quantitative PCR, we found that MIR promoted the expression levels of ATM (ataxia telangiectasia mutated), ATR (ataxia-telangiectasia and Rad3-related and Rad3-related), TP53 (tumor protein p53), p21 (CDKN1A, cyclin-dependent kinase inhibitor 1A) and GADD45 (growth arrest and DNA-damage inducible), but decreased the expression levels of cyclin B coding genes, CCNB1 and CCNB2, as well as CDK1 (Cyclin-dependent kinase 1). The reduction of protein expression levels of CDC25C, cyclin B1 and the phosphorylation of CDK1 at Thr-161 altogether suggest G(2)/M arrest occurred in A549 cells by MIR. DNA repair foci formation of DNA double-strand breaks (DSB) marker γ-H2AX and sensor 53BP1 was induced by MIR treatment, it implies the MIR induced G(2)/M cell cycle arrest resulted from DSB. This study illustrates a potential role for the use of MIR in lung cancer therapy by initiating DSB and blocking cell cycle progression.

  19. Progressive behavioral changes during the maturation of rats with early radiation-induced hypoplasia of fascia dentata granule cells

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.; Mulvihill, M.A.; Nemeth, T.J.

    1989-01-01

    Localized exposure of the neonatal rat brain to x rays produces neuronal hypoplasia specific to the granule cell layer of the hippocampal dentate gyrus. This brain damage causes locomotor hyperactivity, slowed acquisition of passive avoidance tasks and long bouts of spontaneous turning (without reversals) in a bowl apparatus. The authors report here how these behavioral deficits change as a function of subject aging and behavioral test replications. Portions of the neonatal rat cerebral hemispheres were X-irradiated in order to selectively damage the granule cells of the dentate gyrus. Rats between the ages of 71-462 days were tested 3 separate times on each of the following 3 behavioral tests: (1) spontaneous locomotion, (2) passive avoidance acquisition, and (3) spontaneous circling in a large plastic hemisphere. Rats with radiation-induced damage to the fascia dentata exhibited long bouts of slow turns without reversals. Once they began, irradiated subjects perseverated in turning to an extent significantly greater than sham-irradiated control subjects. The hyperactivity of the irradiated animals decreased significantly as they matured. These data suggest that radiation-induced damage to the fascia dentata produces task-dependent behavioral deficits that change as a function of subject age and/or behavioral testing.

  20. Autophagy Promotes the Repair of Radiation-Induced DNA Damage in Bone Marrow Hematopoietic Cells via Enhanced STAT3 Signaling.

    PubMed

    Xu, Fei; Li, Xin; Yan, Lili; Yuan, Na; Fang, Yixuan; Cao, Yan; Xu, Li; Zhang, Xiaoying; Xu, Lan; Ge, Chaorong; An, Ni; Jiang, Gaoyue; Xie, Jialing; Zhang, Han; Jiang, Jiayi; Li, Xiaotian; Yao, Lei; Zhang, Suping; Zhou, Daohong; Wang, Jianrong

    2017-03-01

    Autophagy protects hematopoietic cells from radiation damage in part by promoting DNA damage repair. However, the molecular mechanisms by which autophagy regulates DNA damage repair remain largely elusive. Here, we report that this radioprotective effect of autophagy depends on STAT3 signaling in murine bone marrow mononuclear cells (BM-MNCs). Specifically, we found that STAT3 activation and nuclear translocation in BM-MNCs were increased by activation of autophagy with an mTOR inhibitor and decreased by knockout of the autophagy gene Atg7. The autophagic regulation of STAT3 activation is likely mediated by induction of KAP1 degradation, because we showed that KAP1 directly interacted with STAT3 in the cytoplasm and knockdown of KAP1 increased the phosphorylation and nuclear translocation of STAT3. Subsequently, activated STAT3 transcriptionally upregulated the expression of BRCA1, which increased the ability of BM-MNCs to repair radiation-induced DNA damage. This novel finding that activation of autophagy can promote DNA damage repair in BM-MNCs via the ATG-KAP1-STAT3-BRCA1 pathway suggests that autophagy plays an important role in maintaining genomic integrity of BM-MNCs and its activation may confer protection of BM-MNCs against radiation-induced genotoxic stress.

  1. The effect of ultraviolet radiation-induced suppressor cells on T-cell activity.

    PubMed Central

    Ullrich, S E

    1987-01-01

    The suppression of contact hypersensitivity (CHS) after a single exposure to ultraviolet (UV) radiation provides an excellent model system with which to study both the activation and the mode of action of suppressor T cells. Suppression of CHS after UV radiation is mediated by hapten-specific suppressor T cells (UVTs). These cells have a broad range of activity: CHS and antibody production in vivo and the generation of cytolytic T lymphocytes (CTL) and T-cell proliferative responses in vitro are suppressed by UVTs. The present study is concerned with determining the target of UVTs. The UVTs could suppress the response to hapten-modified T-dependent antigens, such as trinitrophenyl (TNP)-modified sheep erythrocytes (TNP-SRBC) or TNP-conjugated bovine serum albumin (TNP-BSA), but had no suppressive effect on the response to a T-independent antigen, TNP-conjugated lipopolysaccharide (TNP-LPS). The UVTs also suppressed the generation of interleukin-2 (IL-2) in vitro. The suppression of CTL generation in vitro and CHS in vivo could be overcome by the addition of exogenous IL-2. These data suggest that UVTs suppress the immune response by affecting T-helper cell function. PMID:2952584

  2. Diallyl disulfide enhances carbon ion beams–induced apoptotic cell death in cervical cancer cells through regulating Tap73 /ΔNp73

    PubMed Central

    Di, Cuixia; Sun, Chao; Li, Hongyan; Si, Jing; Zhang, Hong; Han, Lu; Zhao, Qiuyue; Liu, Yang; Liu, Bin; Miao, Guoying; Gan, Lu; Liu, Yuanyuan

    2015-01-01

    Diallyl disulfide (DADS), extracted from crushed garlic by steam-distillation, has been reported to provide the anticancer activity in several cancer types. However, the effect of DADS on high-LET carbon beams - induced cell death remains unknown. Therefore, we used human cervical cancer cells to elucidate the molecular effects of this dallyl sulfide. Radiotherapy remains the mainstay of treatment, especially in advanced cervical cancer and there is still space to improve the radiosensitivity to reduce radiation dosage. In this study, we found that radiation effects evoked by high-LET carbon beam was marked by inhibition of cell viability, cell cycle arrest, significant rise of apoptotic cells, regulation of transcription factor, such as p73, as well as alterations of crucial mediator of the apoptosis pathway. We further demonstrated that pretreatment of 10 µM DADS in HeLa cells exposed to radiation resulted in decrease in cell viability and increased radiosensitivity. Additionally, cells pretreated with DADS obviously inhibited the radiation-induced G2/M phase arrest, but promoted radiation-induced apoptosis.  Moreover, combination DADS and the radiation exacerbated the activation of apoptosis pathways through up-regulated ration of pro-apoptotic Tap73 to anti-apoptotic ΔNp73, and its downstream proteins, such as FASLG, and APAF1. Taken together, these results suggest that DADS is a potential candidate as radio sensitive agent for cervical cancer. PMID:26505313

  3. The role of hypoxia-inducible factor-1α in radiation-induced autophagic cell death in breast cancer cells.

    PubMed

    Zhong, Rui; Xu, Huiying; Chen, Ge; Zhao, Gang; Gao, Yan; Liu, Xiaodong; Ma, Shumei; Dong, Lihua

    2015-09-01

    Hypoxia-inducible factor-1α (HIF-1α) is a major effector in cell survival response to hypoxia, while the roles of HIF-1α in radiation-induced autophagy are still unclear in breast cancer cells. Human breast cancer carcinoma MCF-7 cells were stably transfected with pSUPER-shRNA against human HIF-1α or a scrambled sequence with no homology to mammalian genes, named as pSUPER-HIF-1α and pSUPER-SC, respectively. Cell Counting Kit-8 (CCK-8) assay and colony formation assay were used to detect cell viability, Western blot was used to detect protein expression, monodansylcadaverine (MDC) staining was used to analyze autophagy, and Hoechts/PI staining was used to assess apoptosis. Ionizing radiation (IR) and cobalt chloride (CoCl2) could induce HIF-1α expression and increase the microtubule-associated protein 1 light chain 3 (MAPLC3)-II/MAPLC3-I ratio, especially in radiation + CoCl2 group. After the silencing of HIF-1α, the radiosensitivity of MCF-7 cells increased and the autophagy level decreased in response to DNA damage induced by ionizing radiation, but there was no influence on IR-induced apoptosis. HIF-1α silencing also increased the expression of phospho-Akt, mTOR, and P70S6K and activated the mTOR signals significantly. Hypoxia can induce autophagy and also improve the IR-induced autophagy via the suppression of Akt/mTOR/P70S6K pathway, which consequently lead to radioresistance.

  4. Lipophilic triphenylphosphonium derivatives enhance radiation-induced cell killing via inhibition of mitochondrial energy metabolism in tumor cells.

    PubMed

    Yasui, Hironobu; Yamamoto, Kumiko; Suzuki, Motofumi; Sakai, Yuri; Bo, Tomoki; Nagane, Masaki; Nishimura, Eri; Yamamori, Tohru; Yamasaki, Toshihide; Yamada, Ken-Ichi; Inanami, Osamu

    2017-04-01

    It has recently been reported that radiation enhances mitochondrial energy metabolism in various tumor cell lines. To examine how this radiation-induced alteration in mitochondrial function influences tumor cell viability, various lipophilic triphenylphosphonium (TPP(+)) cation derivatives and related compounds such as 4-hydroxy-2,2,6,6-tetramethyl-1-oxy-piperidin (Tempol) with TPP(+) (named "Mito-") were designed to inhibit the mitochondrial electron transport chain. Mito-(CH2)10-Tempol (M10T) and its derivatives, Mito-(CH2)5-Tempol (M5T), Mito-(CH2)10-Tempol-Methyl (M10T-Me), Mito-C10H21 (M10), and C10H21-Tempol (10T), were prepared. In HeLa human cervical adenocarcinoma cells and A549 human lung carcinoma cells, the fractional uptake of the compound into mitochondria was highest among the TTP(+) analogs conjugated with Tempol (M10T, M5T, and 10T). M10T, M10T-Me, and M10 exhibited strong cytotoxicity and enhanced X-irradiation-induced reproductive cell death, while 10T and M5T did not. Furthermore, M10T, M10T-Me, and M10 decreased basal mitochondrial membrane potential and intracellular ATP. M10T treatment inhibited X-ray-induced increases in ATP production. These results indicate that the TPP cation and a long hydrocarbon linker are essential for radiosensitization of tumor cells. The reduction in intracellular ATP by lipophilic TPP(+) is partly responsible for the observed radiosensitization.

  5. Mechanisms of Ionizing Radiation-Induced Cell Death in Primary Lung Cells

    DTIC Science & Technology

    2013-03-05

    journal of radiation biology:epublished ahead of print 35. Coggle JE, Lambert BE, Moores SR. 1986. Radiation effects in the lung. Environmental health...caspases and mitochondria. Cell Death Differ 8:829-40 46. Dimri GP, Lee X, Basile G, Acosta M, Scott G, et al. 1995. A biomarker that identifies senescent

  6. Dose and time dependent apoptotic response in a human melanoma cell line exposed to accelerated boron ions at four different LET.

    PubMed

    Meijer, A E; Jernberg, A R-M; Heiden, T; Stenerlöw, B; Persson, L M; Tilly, N; Lind, B K; Edgren, M R

    2005-04-01

    The aim was to investigate and compare the influence of linear energy transfer (LET), dose and time on the induction of apoptosis in a human melanoma cell line exposed to accelerated light boron ((10)B) ions and photons. Cells were exposed in vitro to doses up to 6 Gy accelerated boron ions (40, 80, 125 and 160 eV nm(-1)) and up to 12 Gy photons (0.2 eV nm(-1)). The induction of apoptosis was measured up to 9 days after irradiation using morphological characterization of apoptotic cells and bodies. In parallel, measurements of cell-cycle distribution, monitored by DNA flow cytometry, and cell survival based on the clonogenic cell survival assay, were performed. In addition, the induction and repair of DNA double-strand breaks (DSB), using pulsed-field gel electrophoresis (PFGE) were studied. Accelerated boron ions induced a significant increase in apoptosis as compared with photons at all time points studied. At 1-5 h the percentage of radiation-induced apoptotic cells increased with both dose and LET. At the later time points (24-216 h) the apoptotic response was more complex and did not increase in a strictly LET-dependent manner. The early premitotic apoptotic cells disappeared at 24 h following exposure to the highest LET (160 eV nm(-1)). A postmitotic apoptotic response was seen after release of the dose-, time- and LET-dependent G2/M accumulations. The loss of clonogenic ability was dose- and LET-dependent and the fraction of un-rejoined DSB increased with increasing LET. Despite the LET-dependent clonogenic cell killing, it was not possible to measure quantitatively a LET-dependent apoptotic response. This was due to the different time course of appearance and disappearance of apoptotic cells.

  7. Radiation-induced xerostomia: pathophysiology, clinical course and supportive treatment.

    PubMed

    Guchelaar, H J; Vermes, A; Meerwaldt, J H

    1997-07-01

    Xerostomia, or oral dryness, is one of the most common complaints experienced by patients who have had radiotherapy of the oral cavity and neck region. The hallmarks of radiation-induced damage are acinar atrophy and chronic inflammation of the salivary glands. The early response, resulting in atrophy of the secretory cells without inflammation might be due to radiation-induced apoptosis. In contrast, the late response with inflammation could be a result of radiation-induced necrosis. The subjective complaint of a dry mouth appears to be poorly correlated with objective findings of salivary gland dysfunction. Xerostomia, with secondary symptoms of increased dental caries, difficulty in chewing, swallowing and speaking, and an increased incidence of oral candidiasis, can have a significant effect on the quality of life. At present there is no causal treatment for radiation-induced xerostomia. Temporary symptomatic relief can be offered by moistening agents and saliva substitutes, and is the only option for patients without residual salivary function. In patients with residual salivary function, oral administration of pilocarpine 5-10 mg three times a day is effective in increasing salivary flow and improving the symptoms of xerostomia, and this therapy should be considered as the treatment of choice. Effectiveness of sialogogue treatment requires residual salivary function, which emphasizes the potential benefit from sparing normal tissue during irradiation. The hypothesis concerning the existence of early apoptotic and late necrotic effects of irradiation on the salivary glands theoretically offers a way of achieving this goal.

  8. Caspase-independent cell death mediated by apoptosis-inducing factor (AIF) nuclear translocation is involved in ionizing radiation induced HepG2 cell death.

    PubMed

    Sun, Hengwen; Yang, Shana; Li, Jianhua; Zhang, Yajie; Gao, Dongsheng; Zhao, Shenting

    2016-03-25

    Hepatocellular carcinoma (HCC) is the fifth most common cancer in the world. The aim of radiotherapy is to eradicate cancer cells with ionizing radiation. Except for the caspase-dependent mechanism, several lines of evidence demonstrated that caspase-independent mechanism is directly involved in the cell death responding to irradiation. For this reason, defining the contribution of caspase-independent molecular mechanisms represents the main goal in radiotherapy. In this study, we focused on the role of apoptosis-inducing factor (AIF), the caspase-independent molecular, in ionizing radiation induced hepatocellular carcinoma cell line (HepG2) cell death. We found that ionizing radiation has no function on AIF expression in HepG2 cells, but could induce AIF release from the mitochondria and translocate into nuclei. Inhibition of AIF could reduce ionizing radiation induced HepG2 cell death. These studies strongly support a direct relationship between AIF nuclear translocation and radiation induced cell death. What's more, AIF nuclear translocation is caspase-independent manner, but not caspase-dependent manner, in this process. These new findings add a further attractive point of investigation to better define the complex interplay between caspase-independent cell death and radiation therapy.

  9. Study of radiation induced deep-level defects in proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1980-01-01

    Radiation induced deep-level defects (both electron and hole traps) in proton irradiated AlGaAs-GaAs p-n junction solar cells are investigated along with the correlation between the measured defect parameters and the solar cell performance parameters. The range of proton energies studied was from 50 KeV to 10 MeV and the proton fluence was varied from 10 to the 10th power to 10 to the 13th power P/sq cm. Experimental tools employed include deep-level transient spectroscopy, capacitance-voltage, current voltage, and SEM-EBIC methods. Defect and recombination parameters such as defect density and energy level, capture cross section, carrier lifetimes and effective hole diffusion lengths in n-GaAs LPE layers were determined from these measurements.

  10. The complexity of apoptotic cell death in mollusks: An update.

    PubMed

    Romero, A; Novoa, B; Figueras, A

    2015-09-01

    Apoptosis is a type of programmed cell death that produces changes in cell morphology and in biochemical intracellular processes without inflammatory reactions. The components of the apoptotic pathways are conserved throughout evolution. Caspases are key molecules involved in the transduction of the death signal and are responsible for many of the biochemical and morphological changes associated with apoptosis. Nowadays, It is known that caspases are activated through two major apoptotic pathways (the extrinsic or death receptor pathway and the intrinsic or mitochondrial pathway), but there are also evidences of at least other alternative pathway (the perforin/granzyme pathway). Apoptosis in mollusks seems to be similar in complexity to apoptosis in vertebrates but also has unique features maybe related to their recurrent exposure to environmental changes, pollutants, pathogens and also related to the sedentary nature of some stages in the life cycle of mollusks bivalves and gastropods. As in other animals, apoptotic process is involved in the maintenance of tissue homeostasis and also constitutes an important immune response that can be triggered by a variety of stimuli, including cytokines, hormones, toxic insults, viruses, and protozoan parasites. The main goal of this work is to present the current knowledge of the molecular mechanisms of apoptosis in mollusks and to highlight those steps that need further study.

  11. Thymoquinone restores radiation-induced TGF-β expression and abrogates EMT in chemoradiotherapy of breast cancer cells.

    PubMed

    Rajput, Shashi; Kumar, B N Prashanth; Banik, Payel; Parida, Sheetal; Mandal, Mahitosh

    2015-03-01

    Radiotherapy remains a prime approach to adjuvant therapies in patients with early and advanced breast cancer. In spite of therapeutic success, metastatic progression in patients undergoing therapy, limits its application. However, effective therapeutic strategies to understand the cellular and molecular machinery in inhibiting radiation-induced metastatic progression, which is poorly understood so far, need to be strengthened. Ionizing radiation was known to prompt cancer cell's metastatic ability by eliciting Transforming Growth Factor-beta (TGF-β), a key regulator in epithelial-mesenchymal transdifferentiation and radio-resistance. In this viewpoint, we employed thymoquinone as a radiosensitizer to investigate its migration and invasion reversal abilities in irradiated breast cancer cell lines by assessing their respective attributes. The role of metastasis regulatory molecules like TGF-β, E-cadherin, and integrin αV and its downstream molecules were determined using RT-PCR, western blotting, immunofluorescence, and extracellular TGF-β levels affirmed through ELISA assays. These studies affirmed the TGF-β restoring ability of thymoquinone in radiation-driven migration and invasion. Also, results demonstrated that the epithelial markers E-cadherin and cytokeratin 19 were downregulated whereas mesenchymal markers like integrin αV, MMP9, and MMP2 were upregulated by irradiation treatment; however thymoquinone pre-sensitization has reverted the expression of these proteins back to control proteins expression. Here, paclitaxel was chosen as an apoptosis inducer in TGF-β restored cells and confirmed its cytotoxic effects in radiation alone and thymoquinone sensitized irradiated cells. We conclude that this therapeutic modality is effective in preventing radiation-induced epithelial-mesenchymal transdifferentiation and concomitant induction of apoptosis in breast cancer.

  12. Detection of apoptotic cells using propidium iodide staining.

    PubMed

    Newbold, Andrea; Martin, Ben P; Cullinane, Carleen; Bots, Michael

    2014-11-03

    Flow cytometry assays are often used to detect apoptotic cells in in vitro cultures. Depending on the experimental model, these assays can also be useful in evaluating apoptosis in vivo. In this protocol, we describe a propidium iodide (PI) flow cytometry assay to evaluate B-cell lymphomas that have undergone apoptosis in vivo. B-cell lymphoma cells are injected into recipient mice and, on tumor formation, the mice are treated with the apoptosis inducer vorinostat (a histone deacetylase inhibitor). Tumor samples collected from the lymph nodes and/or the spleen are used to prepare a single-cell suspension that is exposed to a hypotonic solution containing the fluorochrome PI. The DNA content of the cells, now labeled with PI, is analyzed by flow cytometry. Nuclear DNA content is lost during apoptosis, resulting in a hypodiploid (or sub-G1) DNA profile during flow cytometry. In contrast, healthy cells display a sharp diploid DNA profile.

  13. YThe BigH3 Tumor Suppressor Gene in Radiation-Induced Malignant Transformation of Human Bronchial Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Shao, G.; Piao, C.; Hei, T.

    Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate

  14. Post Treatment With an FGF Chimeric Growth Factor Enhances Epithelial Cell Proliferation to Improve Recovery From Radiation-Induced Intestinal Damage

    SciTech Connect

    Nakayama, Fumiaki; Hagiwara, Akiko; Umeda, Sachiko; Asada, Masahiro; Goto, Megumi; Oki, Junko; Suzuki, Masashi; Imamura, Toru; Akashi, Makoto

    2010-11-01

    Purpose: A fibroblast growth factor (FGF) 1-FGF2 chimera (FGFC) was created previously and showed greater structural stability than FGF1. This chimera was capable of stimulating epithelial cell proliferation much more strongly than FGF1 or FGF2 even without heparin. Therefore FGFC was expected to have greater biologic activity in vivo. This study evaluated and compared the protective activity of FGFC and FGF1 against radiation-induced intestinal injuries. Methods and Materials: We administered FGFC and FGF1 intraperitoneally to BALB/c mice 24 h before or after total-body irradiation (TBI). The numbers of surviving crypts were determined 3.5 days after TBI with gamma rays at doses ranging from 8 to 12 Gy. Results: The effect of FGFC was equal to or slightly superior to FGF1 with heparin. However, FGFC was significantly more effective in promoting crypt survival than FGF1 (p < 0.01) when 10 {mu}g of each FGF was administered without heparin before irradiation. In addition, FGFC was significantly more effective at promoting crypt survival (p < 0.05) than FGF1 even when administered without heparin at 24 h after TBI at 10, 11, or 12 Gy. We found that FGFC post treatment significantly promoted 5-bromo-2'-deoxyuridine incorporation into crypts and increased crypt depth, resulting in more epithelial differentiation. However, the number of apoptotic cells in FGFC-treated mice decreased to almost the same level as that in FGF1-treated mice. Conclusions: These findings suggest that FGFC strongly enhanced radioprotection with the induction of epithelial proliferation without exogenous heparin after irradiation and is useful in clinical applications for both the prevention and post treatment of radiation injuries.

  15. Parallel single-cell analysis of active caspase-3/7 in apoptotic and non-apoptotic cells.

    PubMed

    Ledvina, Vojtěch; Janečková, Eva; Matalová, Eva; Klepárník, Karel

    2017-01-01

    Analysing the chemical content of individual cells has already been proven to reveal unique information on various biological processes. Single-cell analysis provides more accurate and reliable results for biology and medicine than analyses of extracts from cell populations, where a natural heterogeneity is averaged. To meet the requirements in the research of important biologically active molecules, such as caspases, we have developed a miniaturized device for simultaneous analyses of individual cells. A stainless steel body with a carousel holder enables high-sensitivity parallel detections in eight microvials. The holder is mounted in front of a photomultiplier tube with cooled photocathode working in photon counting mode. The detection of active caspase-3/7, central effector caspases in apoptosis, in single cells is based on the bioluminescence chemistry commercially available as Caspase-Glo(®) 3/7 reagent developed by Promega. Individual cells were captured from a culture medium under microscope and transferred by micromanipulator into detection microvial filled with the reagent. As a result of testing, the limits of detection and quantification were determined to be 0.27/0.86 of active caspase-3/7 content in an average apoptotic cell and 0.46/2.92 for non-apoptotic cells. Application potential of this technology in laboratory diagnostics and related medical research is discussed. Graphical abstract Miniaturized device for simultaneous analyses of individual cells.

  16. Novel Regenerative Peptide TP508 Mitigates Radiation-Induced Gastrointestinal Damage By Activating Stem Cells and Preserving Crypt Integrity

    PubMed Central

    Kantara, Carla; Moya, Stephanie M.; Houchen, Courtney W.; Umar, Shahid; Ullrich, Robert L.; Singh, Pomila; Carney, Darrell H.

    2015-01-01

    In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post-exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin®) 24h after lethal radiation exposure (9Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post-exposure prevents the disintegration of gastrointestinal crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also up-regulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24h post-exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment. PMID:26280221

  17. Novel regenerative peptide TP508 mitigates radiation-induced gastrointestinal damage by activating stem cells and preserving crypt integrity.

    PubMed

    Kantara, Carla; Moya, Stephanie M; Houchen, Courtney W; Umar, Shahid; Ullrich, Robert L; Singh, Pomila; Carney, Darrell H

    2015-11-01

    In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis, and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin) 24 h after lethal radiation exposure (9 Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post exposure prevents the disintegration of GI crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also upregulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24 h post exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment.

  18. Enhanced survival of Leishmania major in neutrophil granulocytes in the presence of apoptotic cells

    PubMed Central

    Hellberg, Lars; Köhl, Jörg; Laskay, Tamás

    2017-01-01

    Neutrophil granulocytes are the first leukocytes that encounter and phagocytose Leishmania major (L. major) parasites in the infected skin. The parasites can nonetheless survive within neutrophils. However, the mechanisms enabling the survival of Leishmania within neutrophils are still elusive. Previous findings indicated that human neutrophils can engulf apoptotic cells. Since apoptotic neutrophils are abundant in infected tissues, we hypothesized that the uptake of apoptotic cells results in diminished anti-leishmanial activity and, consequently, contributes to enhanced survival of the parasites at the site of infection. In the present study, we demonstrated that L. major-infected primary human neutrophils acquire enhanced capacity to engulf apoptotic cells. This was associated with increased expression of the complement receptors 1 and 3 involved in phagocytosis of apoptotic cells. Next, we showed that ingestion of apoptotic cells affects neutrophil antimicrobial functions. We observed that phagocytosis of apoptotic cells by neutrophils downregulates the phosphorylation of p38 MAPK and PKCδ, the kinases involved in activation of NADPH oxidase and hence reactive oxygen species (ROS) production. In line, uptake of apoptotic cells inhibits TNF- and L. major-induced ROS production by neutrophils. Importantly, we found that the survival of Leishmania in neutrophils is strongly enhanced in neutrophils exposed to apoptotic cells. Together, our findings reveal that apoptotic cells promote L. major survival within neutrophils by downregulating critical antimicrobial functions. This suggests that the induction of enhanced uptake of apoptotic cells represents a novel evasion mechanism of the parasites that facilitates their survival in neutrophil granulocytes. PMID:28187163

  19. Volume increase and spatial shifts of chromosome territories in nuclei of radiation-induced polyploidizing tumour cells.

    PubMed

    Schwarz-Finsterle, Jutta; Scherthan, Harry; Huna, Anda; González, Paula; Mueller, Patrick; Schmitt, Eberhard; Erenpreisa, Jekaterina; Hausmann, Michael

    2013-08-30

    The exposure of tumour cells to high doses of ionizing radiation can induce endopolyploidization as an escape route from cell death. This strategy generally results in mitotic catastrophe during the first few days after irradiation. However, some cells escape mitotic catastrophe, polyploidize and attempt to undergo genome reduction and de-polyploidization in order to create new, viable para-diploid tumour cell sub-clones. In search for the consequences of ionizing radiation induced endopolyploidization, genome and chromosome architecture in nuclei of polyploid tumour cells, and sub-nuclei after division of bi- or multi-nucleated cells were investigated during 7 days following irradiation. Polyploidization was induced in p53-function deficient HeLa cells by exposure to 10Gy of X-irradiation. Chromosome territories #1, #4, #12 and centromeres of chromosomes #6, #10, #X were labelled by FISH and analysed for chromosome numbers, volumes and spatial distribution during 7 days post irradiation. The numbers of interphase chromosome territories or centromeres, respectively, the positions of the most peripherally and centrally located chromosome territories, and the territory volumes were compared to non-irradiated controls over this time course. Nuclei with three copies of several chromosomes (#1, #6, #10, #12, #X) were found in the irradiated as well as non-irradiated specimens. From day 2 to day 5 post irradiation, chromosome territories (#1, #4, #12) shifted towards the nuclear periphery and their volumes increased 16- to 25-fold. Consequently, chromosome territories returned towards the nuclear centre during day 6 and 7 post irradiation. In comparison to non-irradiated cells (∼500μm(3)), the nuclear volume of irradiated cells was increased 8-fold (to ∼4000μm(3)) at day 7 post irradiation. Additionally, smaller cell nuclei with an average volume of about ∼255μm(3) were detected on day 7. The data suggest a radiation-induced generation of large intra

  20. Effect of Tinospora cordifolia on the reduction of ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells.

    PubMed

    Masuma, Runa; Okuno, Tsutomu; Kabir Choudhuri, Mohammad Shahabuddin; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    The safety of Tinospora cordifolia and its potential to protect against ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells were investigated. To evaluate the safety of T. cordifolia, cell viability and agarose gel electrophoresis were carried out using PC12 cells treated with 0 to 100 μg mL(-1) of methanol extract of T. cordifolia. T. cordifolia extracts did not show cytotoxicity ranging 0 to 100 μg mL(-1). In addition, T. cordifolia extracts significantly increased cell viability at 1 ng, 10 ng and 1 μg mL(-1) concentrations in serum-deprived medium compared to control. To confirm the protective role against UV-induced damage, PC12 cells alone or in the presence of 10 ng, 100 ng, or 1 μg mL(-1) of T. cordifolia extract were exposed to 250, 270 and 290 nm of UV radiation, which corresponded to doses of 120, 150 and 300 mJ cm(-2), respectively. Treatment with T. cordifolia extracts significantly increased the cell survival rate irradiated at 290 nm. In addition, T. cordifolia extracts significantly reduced cyclobutane pyrimidine dimer formation induced by UV irradiation at all wavelengths. In conclusion, T. cordifolia is not toxic and safe for cells. Our findings can support its application as phototherapy in the medical sector.

  1. Autophagy genes function sequentially to promote apoptotic cell corpse degradation in the engulfing cell

    PubMed Central

    Li, Wei; Zou, Wei; Yang, Yihong; Chai, Yongping; Chen, Baohui; Cheng, Shiya; Tian, Dong

    2012-01-01

    Apoptotic cell degradation is a fundamental process for organism development, and impaired clearance causes inflammatory or autoimmune disease. Although autophagy genes were reported to be essential for exposing the engulfment signal on apoptotic cells, their roles in phagocytes for apoptotic cell removal are not well understood. In this paper, we develop live-cell imaging techniques to study apoptotic cell clearance in the Caenorhabditis elegans Q neuroblast lineage. We show that the autophagy proteins LGG-1/LC3, ATG-18, and EPG-5 were sequentially recruited to internalized apoptotic Q cells in the phagocyte. In atg-18 or epg-5 mutants, apoptotic Q cells were internalized but not properly degraded; this phenotype was fully rescued by the expression of autophagy genes in the phagocyte. Time-lapse analysis of autophagy mutants revealed that recruitment of the small guanosine triphosphatases RAB-5 and RAB-7 to the phagosome and the formation of phagolysosome were all significantly delayed. Thus, autophagy genes act within the phagocyte to promote apoptotic cell degradation. PMID:22451698

  2. The different radiation response and radiation-induced bystander effects in colorectal carcinoma cells differing in p53 status.

    PubMed

    Widel, Maria; Lalik, Anna; Krzywon, Aleksandra; Poleszczuk, Jan; Fujarewicz, Krzysztof; Rzeszowska-Wolny, Joanna

    2015-08-01

    Radiation-induced bystander effect, appearing as different biological changes in cells that are not directly exposed to ionizing radiation but are under the influence of molecular signals secreted by irradiated neighbors, have recently attracted considerable interest due to their possible implication for radiotherapy. However, various cells present diverse radiosensitivity and bystander responses that depend, inter alia, on genetic status including TP53, the gene controlling the cell cycle, DNA repair and apoptosis. Here we compared the ionizing radiation and bystander responses of human colorectal carcinoma HCT116 cells with wild type or knockout TP53 using a transwell co-culture system. The viability of exposed to X-rays (0-8 Gy) and bystander cells of both lines showed a roughly comparable decline with increasing dose. The frequency of micronuclei was also comparable at lower doses but at higher increased considerably, especially in bystander TP53-/- cells. Moreover, the TP53-/- cells showed a significantly elevated frequency of apoptosis, while TP53+/+ counterparts expressed high level of senescence. The cross-matched experiments where irradiated cells of one line were co-cultured with non-irradiated cells of opposite line show that both cell lines were also able to induce bystander effects in their counterparts, however different endpoints revealed with different strength. Potential mediators of bystander effects, IL-6 and IL-8, were also generated differently in both lines. The knockout cells secreted IL-6 at lower doses whereas wild type cells only at higher doses. Secretion of IL-8 by TP53-/- control cells was many times lower than that by TP53+/+ but increased significantly after irradiation. Transcription of the NFκBIA was induced in irradiated TP53+/+ mainly, but in bystanders a higher level was observed in TP53-/- cells, suggesting that TP53 is required for induction of NFκB pathway after irradiation but another mechanism of activation must operate in

  3. A transcriptome signature of endothelial lymphatic cells coexists with the chronic oxidative stress signature in radiation-induced post-radiotherapy breast angiosarcomas.

    PubMed

    Hadj-Hamou, Nabila-Sandra; Laé, Marick; Almeida, Anna; de la Grange, Pierre; Kirova, Youlia; Sastre-Garau, Xavier; Malfoy, Bernard

    2012-07-01

    Radiation-induced breast angiosarcomas are rare but recognized complication of breast cancer radiotherapy and are of poor prognosis. Little is known about the genetic abnormalities present in these secondary tumors. Herein, we investigated the differences in the genome and in the transcriptome that discriminate these tumors as a function of their etiology. Seven primary breast angiosarcomas and 18 secondary breast angiosarcomas arising in the irradiation field of a radiotherapy were analyzed. Copy number alterations and gene expression were analyzed using Affymetrix SNP 6.0 Array and Affymetrix Exon Arrays, respectively. We showed that two transcriptome signatures of the radiation tumorigenesis coexisted in these tumors. One was histology specific and correctly discriminated 100% of the primary tumors from the radiation-induced tumors. The deregulation of marker genes, including podoplanin (PDPN), prospero homeobox 1 (PROX-1), vascular endothelial growth factor 3 (VEGFR3) and endothelin receptor A (EDNRA), suggests that the radiation-induced breast angiosarcomas developed from radiation-stimulated lymphatic endothelial cells. None of the genes of the histology-specific signature were present in our previously published signature of the radiation tumorigenesis which shows the presence of a chronic oxidative stress in radiation-induced sarcomas of various histologies. Nevertheless, this oxidative stress signature classified correctly 88% of the breast angiosarcomas as a function of the etiology. In contrast, MYC amplification, which is observed in all radiation-induced tumors but also at a low rate in primary tumors, was not a marker of the radiation tumorigenesis.

  4. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model.

    PubMed

    Wu, Wenqing; Nie, Lili; Yu, K N; Wu, Lijun; Kong, Peizhong; Bao, Lingzhi; Chen, Guodong; Yang, Haoran; Han, Wei

    2016-12-08

    During radiotherapy procedures, radiation-induced bystander effect (RIBE) can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO) was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2), at a relatively low concentration (20 µM), effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB) and micronucleus (MN). In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2) of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2) with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1), MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS) andcyclooxygenase-2 (COX-2). The results can help mitigate RIBE-induced hazards during radiotherapy procedures.

  5. Low Concentration of Exogenous Carbon Monoxide Modulates Radiation-Induced Bystander Effect in Mammalian Cell Cluster Model

    PubMed Central

    Wu, Wenqing; Nie, Lili; Yu, K. N.; Wu, Lijun; Kong, Peizhong; Bao, Lingzhi; Chen, Guodong; Yang, Haoran; Han, Wei

    2016-01-01

    During radiotherapy procedures, radiation-induced bystander effect (RIBE) can potentially lead to genetic hazards to normal tissues surrounding the targeted regions. Previous studies showed that RIBE intensities in cell cluster models were much higher than those in monolayer cultured cell models. On the other hand, low-concentration carbon monoxide (CO) was previously shown to exert biological functions via binding to the heme domain of proteins and then modulating various signaling pathways. In relation, our previous studies showed that exogenous CO generated by the CO releasing molecule, tricarbonyldichlororuthenium (CORM-2), at a relatively low concentration (20 µM), effectively attenuated the formation of RIBE-induced DNA double-strand breaks (DSB) and micronucleus (MN). In the present work, we further investigated the capability of a low concentration of exogenous CO (CORM-2) of attenuating or inhibiting RIBE in a mixed-cell cluster model. Our results showed that CO (CORM-2) with a low concentration of 30 µM could effectively suppress RIBE-induced DSB (p53 binding protein 1, p53BP1), MN formation and cell proliferation in bystander cells but not irradiated cells via modulating the inducible nitric oxide synthase (iNOS) andcyclooxygenase-2 (COX-2). The results can help mitigate RIBE-induced hazards during radiotherapy procedures. PMID:27941646

  6. Activation-induced CD154 expression abrogates tolerance induced by apoptotic cells*

    PubMed Central

    Gurung, Prajwal; Kucaba, Tamara A.; Ferguson, Thomas A.; Griffith, Thomas S.

    2009-01-01

    The decision to generate a productive immune response or tolerance often depends on the context in which T cells first see Ag. Using a classical system of tolerance induction, we examined the immunological consequence of Ag encountered in the presence of naïve or activated apoptotic cells. Naïve apoptotic cells induced tolerance when injected i.v.; however, previously activated apoptotic cells induced immunity. Further analysis revealed a key role for CD154, as tolerance resulted after i.v. injection of either naïve or activated apoptotic CD154−/− T cells, while co-injection of an agonistic anti-CD40 mAb with naïve apoptotic T cells induced robust immunity. DC fed activated apoptotic T cells in vitro produced IL-12p40 in a CD154-dependent manner, and the use of IL-12p40−/− mice or mAb-mediated neutralization of IL-12 revealed a link between CD154, IL-12, and the ability of activated apoptotic T cells to induce immunity rather than tolerance. Collectively these results show that CD154 expression on apoptotic T cells can determine the outcome of an immune response to Ag recognized within the context of the apoptotic cells, and suggest the balance between naïve and activated apoptotic T cells may dictate whether a productive immune response is encouraged. PMID:19841180

  7. Reciprocal Paracrine Interactions Between Normal Human Epithelial and Mesenchymal Cells Protect Cellular DNA from Radiation-Induced Damage

    SciTech Connect

    Nakazawa, Yuka; Saenko, Vladimir Rogounovitch, Tatiana; Suzuki, Keiji; Mitsutake, Norisato; Matsuse, Michiko; Yamashita, Shunichi

    2008-06-01

    Purpose: To explore whether interactions between normal epithelial and mesenchymal cells can modulate the extent of radiation-induced DNA damage in one or both types of cells. Methods and Materials: Human primary thyrocytes (PT), diploid fibroblasts BJ, MRC-5, and WI-38, normal human mammary epithelial cells (HMEC), and endothelial human umbilical cord vein endothelial cells (HUV-EC-C), cultured either individually or in co-cultures or after conditioned medium transfer, were irradiated with 0.25 to 5 Gy of {gamma}-rays and assayed for the extent of DNA damage. Results: The number of {gamma}-H2AX foci in co-cultures of PT and BJ fibroblasts was approximately 25% lower than in individual cultures at 1 Gy in both types of cells. Reciprocal conditioned medium transfer to individual cultures before irradiation resulted in approximately a 35% reduction of the number {gamma}-H2AX foci at 1 Gy in both types of cells, demonstrating the role of paracrine soluble factors. The DNA-protected state of cells was achieved within 15 min after conditioned medium transfer; it was reproducible and reciprocal in several lines of epithelial cells and fibroblasts, fibroblasts, and endothelial cells but not in epithelial and endothelial cells. Unlike normal cells, human epithelial cancer cells failed to establish DNA-protected states in fibroblasts and vice versa. Conclusions: The results imply the existence of a network of reciprocal interactions between normal epithelial and some types of mesenchymal cells mediated by soluble factors that act in a paracrine manner to protect DNA from genotoxic stress.

  8. Differential modulation of a radiation-induced bystander effect in glioblastoma cells by pifithrin-α and wortmannin

    NASA Astrophysics Data System (ADS)

    Shao, Chunlin; Zhang, Jianghong; Prise, Kevin M.

    2010-03-01

    The implication of radiation-induced bystander effect (RIBE) for both radiation protection and radiotherapy has attracted significant attention, but a key question is how to modulate the RIBE. The present study found that, when a fraction of glioblastoma cells in T98G population were individually targeted with precise helium particles through their nucleus, micronucleus (MN) were induced and its yield increased non-linearly with radiation dose. After co-culturing with irradiated cells, additional MN could be induced in the non-irradiated bystander cells and its yield was independent of irradiation dose, giving direct evidence of a RIBE. Further results showed that the RIBE could be eliminated by pifithrin-α (p53 inhibitor) but enhanced by wortmannin (PI3K inhibitor). Moreover, it was found that nitric oxide (NO) contributed to this RIBE, and the levels of NO of both irradiated cells and bystander cells could be extensively diminished by pifithrin-α but insignificantly reduced by wortmannin. Our results indicate that RIBE can be modulated by p53 and PI3K through a NO-dependent and NO-independent pathway, respectively.

  9. Evidence for involvement of cytosolic thioredoxin peroxidase in the excessive resistance of Sf9 Lepidopteran insect cells against radiation-induced apoptosis.

    PubMed

    Hambarde, Shashank; Singh, Vijaypal; Chandna, Sudhir

    2013-01-01

    Lepidopteran insect cells display 50-100 times higher radioresistance compared to human cells, and reportedly have more efficient antioxidant system that can significantly reduce radiation-induced oxidative stress and cell death. However, the antioxidant mechanisms that contribute substantially to this excessive resistance still need to be understood thoroughly. In this study, we investigated the role of thioredoxin peroxidase (TPx) in high-dose γ-radiation response of Sf9 cell line derived from Spodoptera frugiperda, the Fall armyworm. We identified a TPx orthologue (Sf-TPx) in Spodoptera system, with primarily cytosolic localization. Gamma-irradiation at 500 Gy dose significantly up-regulated Sf-TPx, while higher doses (1000 Gy-2000 Gy) had no such effect. G2/M checkpoint induced following 500 Gy was associated with transition of Sf-TPx decamer into enzymatically active dimer. Same effect was observed during G2/M block induced by 5 nM okadaic acid or 10 µM CDK1 (cycline dependent kinase-1) inhibitor roscovitine, thus indicating that radiation-induced Sf-TPx activity is mediated by CDKs. Accumulation of TPx dimer form during G2/M checkpoint might favour higher peroxidase activity facilitating efficient survival at this dose. Confirming this, higher lethal doses (1000 Gy-2000 Gy) caused significantly less accumulation of dimer form and induced dose-dependent apoptosis. A ∼50% knock-down of Sf-TPx by siRNA caused remarkable increase in radiation-induced ROS as well as caspase-3 dependent radiation-induced apoptosis, clearly implying TPx role in the radioresistance of Sf9 cells. Quite importantly, our study demonstrates for the first time that thioredoxin peroxidase contributes significantly in the radioresistance of Lepidopteran Sf9 insect cells, especially in their exemplary resistance against radiation-induced apoptosis. This is an important insight into the antioxidant mechanisms existing in this highly stress-resistant model cell system.

  10. Radiation-induced cell lethality of samonella typhimurium ATCC 14028: Cooperative effect of hydroxyl radical and oxygen

    SciTech Connect

    Kim, Y.A.; Thayer, D.W.

    1995-10-01

    The lethality of {gamma}-radiation doses of 0.2 to 1.0 kGy for Salmonella typhimurium ATCC 14028 was measured in the presence of air, N{sub 2} and N{sub 2}O and with the hydroxyl radical scavengers formate and polyethylene glycol (PEG), M{sub r} 8,000. Saturation of cell suspensions with either N{sub 2}O or N{sub 2}/N{sub 2}/N{sub 2}O (1:1, v/v) gas was expected to double the number of hydroxyl radicals (OH{center_dot}) and to produce an equivalent increase in lethality, but this did not occur. Adding 10% (v/v) O{sub 2} to either N{sub 2}/N{sub 2}O gas produced approximately the same {gamma}-irradiation lethality for S. typhimurium as did air. Addition of hydroxyl radical scavengers, 40 mM formate and 1.5% (w/v) PEG, significantly reduced the lethality of {gamma} radiation for S. typhimurium in the presence of air but not in the presence of N{sub 2} or N{sub 2}O gases. Membrane-permeable formate provided slightly better protection than nonpermeable PEG. Cells of S. typhimurium grown under anaerobic conditions were more sensitive to radiation, and were less protected by hydroxyl radical scavengers, especially formate, than when cells grown under aerobic conditions were irradiated in the presence of oxygen. Hydroxyl radical scavengers provided no further protection during irradiation in the absence of oxygen. These results indicated that the increased radiation sensitivity of cells grown under anaerobic conditions may be related to superoxide radicals which could increase intercellular damage during irradiation in the presence of oxygen. However, endogenous superoxide dismutase and catalase activities did not protect cells from the radiation-induced lethality of S. typhimurium. Cytoplasmic extracts protected bacterial DNA in vitro in either the presence of absence of oxygen, and no radiation-induced lipid peroxidation of the cellular components was identified by measuring the levels of 2-thiobarbituric acid. 38 refs., 4 figs., 2 tabs.

  11. Effect of intercellular contact on DNA conformation, radiation-induced DNA damage, and mutation in Chinese hamster V79 cells

    SciTech Connect

    Olive, P.L.; Durand, R.E.

    1985-01-01

    Chinese hamster V79 cells, when grown as small spheroids in suspension culture, are more resistant to killing by ionizing radiation than when grown as monolayers. The authors have attempted to determine whether this enhanced survival following irradiation is reflected in DNA damage and repair at the structural level (by measuring alkali-induced DNA unwinding rates from strand breaks) and at the functional level (by measuring resistance to forward mutation at the HGPRT locus). For a given dose of radiation, the unwinding of DNA in high salt/weak alkali was less complete for spheroid DNA than for monolayer DNA, and the rate of repair of radiation damage was faster in spheroid DNA. These differential responses were lost 8 hr after separation of spheroids into single cells, coinciding with loss of radioresistance measured by clonogenicity. In addition, spheroid cells showed fewer numbers of induced mutants per Gray, although, for a given level of survival, the mutation frequency for monolayers and spheroids was identical. These results suggest that conformational changes in DNA resulting from cell growth as spheroids might enhance repair of radiation-induced lesions.

  12. Use of Human Cadaveric Mesenchymal Stem Cells for Cell Therapy of a Chronic Radiation-Induced Skin Lesion: A Case Report.

    PubMed

    Portas, M; Mansilla, E; Drago, H; Dubner, D; Radl, A; Coppola, A; Di Giorgio, M

    2016-09-01

    Acute and late radiation-induced injury on skin and subcutaneous tissues are associated with substantial morbidity in radiation therapy, interventional procedures and also are of concern in the context of nuclear or radiological accidents. Pathogenesis is initiated by depletion of acutely responding epithelial tissues and damage to vascular endothelial microvessels. Efforts for medical management of severe radiation-induced lesions have been made. Nevertheless, the development of strategies to promote wound healing, including stem cell therapy, is required. From 1997 to 2014, over 248 patients were referred to the Radiopathology Committee of Hospital de Quemados del Gobierno de la Ciudad de Buenos Aires (Burns Hospital) for the diagnosis and therapy of radiation-induced localized lesions. As part of the strategies for the management of severe cases, there is an ongoing research and development protocol on 'Translational Clinical Trial phases I/II to evaluate the safety and efficacy of adult mesenchymal stem cells from bone marrow for the treatment of large burns and radiological lesions'. The object of this work was to describe the actions carried out by the Radiopathology Committee of the Burns Hospital in a chronic case with more than 30 years of evolution without positive response to conventional treatments. The approach involved the evaluation of the tissular compromise of the lesion, the prognosis and the personalized treatment, including regenerative therapy.

  13. Mitochondrial staining allows robust elimination of apoptotic and damaged cells during cell sorting.

    PubMed

    Barteneva, Natasha S; Ponomarev, Eugeny D; Tsytsykova, Alla; Armant, Myriam; Vorobjev, Ivan A

    2014-04-01

    High-speed fluorescence-activated cell sorting is relevant for a plethora of applications, such as PCR-based techniques, microarrays, cloning, and propagation of selected cell populations. We suggest a simple cell-sorting technique to eliminate early and late apoptotic and necrotic cells, with good signal-to-noise ratio and a high-purity yield. The mitochondrial potential dye, TMRE (tetramethylrhodamine ethyl ester perchlorate), was used to separate viable and non-apoptotic cells from the cell sorting samples. TMRE staining is reversible and does not affect cell proliferation and viability. Sorted TMRE(+) cells contained a negligible percentage of apoptotic and damaged cells and had a higher proliferative potential as compared with their counterpart cells, sorted on the basis of staining with DNA viability dye. This novel sorting technique using TMRE does not interfere with subsequent functional assays and is a method of choice for the enrichment of functionally active, unbiased cell populations.

  14. Inhibition of hematopoietic recovery from radiation-induced myelosuppression by natural killer cells

    SciTech Connect

    Pantel, K.; Boertman, J.; Nakeff, A. )

    1990-05-01

    We have examined the role of natural killer (NK) cells in situ in the recovery of marrow hematopoiesis in B6D2F1 mice receiving various doses of total-body irradiation (TBI) as a well-characterized model for treatment-induced myelosuppression. Applying an in situ cytotoxic approach for ablating NK 1.1 cells, we have demonstrated that NK 1.1 cells differentially inhibit the recovery of hematopoietic stem cells (CFU-S) and their progenitor cells committed to granulocyte-macrophage differentiation from a sublethal dose of TBI (9 Gy) while not affecting the recovery of progenitor cells committed to either erythroid or megakaryocyte differentiation from TBI. However, recoveries of CFU-S and progenitor cells were unaffected by the ablation of NK cells prior to a moderate dose of TBI (2 Gy). These findings provide in situ evidence that NK cells are potential inhibitors of hematopoietic recovery from treatment-induced myelosuppression.

  15. CDC42 Gtpase Activation Affects Hela Cell DNA Repair and Proliferation Following UV Radiation-Induced Genotoxic Stress.

    PubMed

    Ascer, Liv G; Magalhaes, Yuli T; Espinha, Gisele; Osaki, Juliana H; Souza, Renan C; Forti, Fabio L

    2015-09-01

    Cell division control protein 42 (CDC42) homolog is a small Rho GTPase enzyme that participates in such processes as cell cycle progression, migration, polarity, adhesion, and transcription. Recent studies suggest that CDC42 is a potent tumor suppressor in different tissues and is related to aging processes. Although DNA damage is crucial in aging, a potential role for CDC42 in genotoxic stress remains to be explored. Migration, survival/proliferation and DNA damage/repair experiments were performed to demonstrate CDC42 involvement in the recovery of HeLa cells exposed to ultraviolet radiation-induced stress. Sub-lines of HeLa cells ectopically expressing the constitutively active CDC42-V12 mutant were generated to examine whether different CDC42-GTP backgrounds might reflect different sensitivities to UV radiation. Our results show that CDC42 constitutive activation does not interfere with HeLa cell migration after UV radiation. However, the minor DNA damage exhibited by the CDC42-V12 mutant exposed to UV radiation most likely results in cell cycle arrest at the G2/M checkpoint and reduced proliferation and survival. HeLa cells and Mock clones, which express endogenous wild-type CDC42 and show normal activity, are more resistant to UV radiation. None of these effects are altered by pharmacological CDC42 inhibition. Finally, the phosphorylation status of the DNA damage response proteins γ-H2AX and p-Chk1 was found to be delayed and attenuated, respectively, in CDC42-V12 clones. In conclusion, the sensitivity of HeLa cells to ultraviolet radiation increases with CDC42 over-activation due to inadequate DNA repair signaling, culminating in G2/M cell accumulation, which is translated into reduced cellular proliferation and survival.

  16. Ultraviolet-A radiation induces changes in cyclin G gene expression in mouse melanoma B16-F1 cells

    PubMed Central

    Pastila, Riikka; Leszczynski, Dariusz

    2007-01-01

    Background We have previously shown that ultraviolet-A (UVA) radiation enhances metastatic lung colonization capacity of B16-F1 melanoma cells. The aim of this study was to examine changes in expression profile of genes in mouse melanoma B16-F1 cells exposed to UVA radiation. Results B16-F1 melanoma cells were exposed to a single UVA radiation dose of 8 J/cm2 and mRNA was isolated 4 h after the end of UVA exposure. Atlas™ Mouse Cancer 1.2 cDNA expression arrays were used for the large-scale screening to identify the genes involved in the regulation of carcinogenesis, tumor progression and metastasis. Physiologically relevant UVA dose induced differential expression in 9 genes in the UVA exposed melanoma cells as compared to the unexposed control cells. The expression of seven genes out of nine was upregulated (HSC70, HSP86, α-B-crystallin, GST mu2, Oxidative stress induced protein OSI, VEGF, cyclin G), whereas the expression of two genes was down-regulated (G-actin, non-muscle cofilin). The gene expression of cyclin G was mostly affected by UVA radiation, increasing by 4.85-folds 4 hour after exposure. The analysis of cyclin G protein expression revealed 1.36-fold increase at the 6 hour time point after UVA exposure. Cell cycle arrest in G2/M phase, which is known to be regulated by cyclin G, occurred at 4-h hour time-point, peaking 8 hours after the end of UVA irradiation, suggesting that cyclin G might play a role in the cell cycle arrest. Conclusion Our results suggest that UVA radiation-induces changes in the expression of several genes. Some of these changes, e.g. in expression of cyclin G, possibly might affect cell physiology (cell cycle arrest). PMID:17474990

  17. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells

    NASA Technical Reports Server (NTRS)

    Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard

    2003-01-01

    The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.

  18. Apoptotic effect of noscapine in breast cancer cell lines.

    PubMed

    Quisbert-Valenzuela, Edwin O; Calaf, Gloria M

    2016-06-01

    Cancer is a public health problem in the world and breast cancer is the most frequently cancer in women. Approximately 15% of the breast cancers are triple-negative. Apoptosis regulates normal growth, homeostasis, development, embryogenesis and appropriate strategy to treat cancer. Bax is a protein pro-apoptotic enhancer of apoptosis in contrast to Bcl-2 with antiapoptotic properties. Initiator caspase-9 and caspase-8 are features of intrinsic and extrinsic apoptosis pathway, respectively. NF-κB is a transcription factor known to be involved in the initiation and progression of breast cancer. Noscapine, an alkaloid derived from opium is used as antitussive and showed antitumor properties that induced apoptosis in cancer cell lines. The aim of the present study was to determine the apoptotic effect of noscapine in breast cancer cell lines compared to breast normal cell line. Three cell lines were used: i) a control breast cell line MCF-10F; ii) a luminal-like adenocarcinoma triple-positive breast cell line MCF-7; iii) breast cancer triple-negative cell line MDA-MB-231. Our results showed that noscapine had lower toxicity in normal cells and was an effective anticancer agent that induced apoptosis in breast cancer cells because it increases Bax gene and protein expression in three cell lines, while decreases Bcl-xL gene expression, and Bcl-2 protein expression decreased in breast cancer cell lines. Therefore, Bax/Bcl-2 ratio increased in the three cell lines. This drug increased caspase-9 gene expression in breast cancer cell lines and caspase-8 gene expression increased in MCF-10F and MDA-MB-231. Furthermore, it increased cleavage of caspase-8, suggesting that noscapine-induced apoptosis is probably due to the involvement of extrinsic and intrinsic apoptosis pathways. Antiapoptotic gene and protein expression diminished and proapoptotic gene and protein expression increased noscapine-induced expression, probably due to decrease in NF-κB gene and protein expression

  19. Differential expression of cell adhesion molecules in an ionizing radiation-induced breast cancer model system.

    PubMed

    Calaf, Gloria M; Roy, Debasish; Narayan, Gopeshwar; Balajee, Adayabalam S

    2013-07-01

    Cell-cell adhesion is mediated by members of the cadherin-catenin system and among them E-cadherin and β-catenin are important adhesion molecules for epithelial cell function and preservation of tissue integrity. To investigate the importance of cell adhesion molecules in breast carcinogenesis, we developed an in vitro breast cancer model system wherein immortalized human breast epithelial cell line, MCF-10F, was malignantly transformed by exposure to low doses of high linear energy transfer (LET) α particle radiation (150 keV/µm) and subsequent growth in the presence or absence of 17β-estradiol. This model consisted of human breast epithelial cells in different stages of transformation: i) parental cell line MCF-10F; ii) MCF-l0F continuously grown with estradiol at 10(-8) (Estrogen); iii) a non-malignant cell line (Alpha3); and iv) a malignant and tumorigenic cell line (Alpha5) and the Tumor2 cell line derived from the nude mouse xenograft of the Alpha5 cell line. Expression levels of important cell adhesion molecules such as α-catenin, β-catenin, γ-catenin, E-cadherin and integrin were found to be higher at the protein level in the Alpha5 and Tumor2 cell lines relative to these levels in the non-tumorigenic MCF-10F, Estrogen and Alpha3 cell lines. In corroboration, cDNA expression analysis revealed elevated levels of genes involved in the cell adhesion function [E-cadherin, integrin β6 and desmocollin3 (DSc3)] in the Alpha5 and Tumor2 cell lines relative to the levels in the MCF-10F, Estrogen and Alpha3 cell lines. Collectively, our results suggest that cell adhesion molecules are expressed at higher levels in malignantly transformed breast epithelial cells relative to levels in non-malignant cells. However, reduced levels of adhesion molecules observed in the mouse xenograft-derived Tumor 2 cell line compared to the pre-tumorigenic Alpha5 cell line suggests that the altered expression levels of adhesion molecules depend on the tumor tissue

  20. Cell cycle age dependence for radiation-induced G/sub 2/ arrest: evidence for time-dependent repair

    SciTech Connect

    Rowley, R.

    1985-09-01

    Exponentially growing eucaryotic cells, irradiated in interphase, are delayed in progression to mitosis chiefly by arrest in G/sub 2/. The sensitivity of Chinese hamster ovary cells to G/sub 2/ arrest induction by X rays increases through the cell cycle, up to the X-ray transition point (TP) in G/sub 2/. This age response can be explained by cell cycle age-dependent changes in susceptibility of the target(s) for G/sub 2/ arrest and/or by changes in capability for postirradiation recovery from G/sub 2/ arrest damage. Discrimination between sensitivity changes and repair phenomena is possible only if the level of G/sub 2/ arrest-causing damage sustained by a cell at the time of irradiation and the level ultimately expressed as arrest can be determined. The ability of caffeine to ameliorate radiation-induced G/sub 2/ arrest, while inhibiting repair of G/sub 2/ arrest-causing damage makes such an analysis possible. In the presence of caffeine, progression of irradiated cells was relatively unperturbed, but on caffeine removal, G/sub 2/ arrest was expressed. The duration of G/sub 2/ arrest was independent of the length of the prior caffeine exposure. This finding indicates that the target for G/sub 2/ arrest induction is present throughout the cell cycle and that the level of G/sub 2/ arrest damage incurred is initially constant for all cell cycle phases. The data are consistent with the existence of a time-dependent recovery mechanism to explain the age dependence for radiation induction of G/sub 2/ arrest.

  1. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  2. Cell culture on polymers prepared by radiation-induced grafting of various monomers.

    PubMed

    Yoshii, F; Kaetsu, I

    1983-12-01

    The adhesion and growth of tissue cells on polymers prepared by radiation grafting was investigated. The apparent rates of initial attachment and growth of Chang liver and C6 cells were promoted on surfaces with increased wettability and with a heterogeneous structure for grafted polyvinyl fluoride film. The degree of cell attachment and growth on surfaces having a dense microblock structure, formed by grafting of methyl methacrylate in acetone solvent, was greater than that caused by other factors, such as wettability.

  3. IGFBP3 and BAG1 enhance radiation-induced apoptosis in squamous esophageal cancer cells

    SciTech Connect

    Yoshino, Kei; Motoyama, Satoru; Koyota, Souichi; Shibuya, Kaori; Usami, Shuetsu; Maruyama, Kiyotomi; Saito, Hajime; Minamiya, Yoshihiro; Sugiyama, Toshihiro; Ogawa, Jun-ichi

    2011-01-28

    Research highlights: {yields} TE-12 cell had greater radiosensitivity and higher levels of caspase 3/7 activity for radiotherapy than TE-5 or TE-9 cells. {yields} The expression of IGFBP3 and BAG1 was five or more times higher in TE-12 cell in DNA microarrays analysis. {yields} Knocking down IGFBP3 and/or BAG1 expression using targeted siRNA diminished their susceptibility to radiation. -- Abstract: Identification of reliable markers of radiosensitivity and the key molecules that enhance the susceptibility of esophageal cancer cells to anticancer treatments would be highly desirable. To identify molecules that confer radiosensitivity to esophageal squamous carcinoma cells, we assessed the radiosensitivities of the TE-5, TE-9 and TE-12 cloneA1 cell lines. TE-12 cloneA1 cells showed significantly greater susceptibility to radiotherapy at 5 and 10 Gy than either TE-5 or TE-9 cells. Consistent with that finding, 24 h after irradiation (5 Gy), TE-12 cloneA1 cells showed higher levels of caspase 3/7 activity than TE-5 or TE-9 cells. When we used DNA microarrays to compare the gene expression profiles of TE-5 and TE-12 cloneA1 cells, we found that the mRNA and protein expression of insulin-like growth factor binding protein 3 (IGFBP3) and Bcl-2-associated athanogene 1 (BAG1) was five or more times higher in TE-12 cloneA1 cells than TE-5 cells. Conversely, knocking down expression of IGFBP3 and BAG1 mRNA in TE-12 cloneA1 cells using small interfering RNA (siRNA) significantly reduced radiosensitivity. These data suggest that IGFBP3 and BAG1 may be key markers of radiosensitivity that enhance the susceptibility of squamous cell esophageal cancer to radiotherapy. IGFBP3 and BAG1 may thus be useful targets for improved and more individualized treatments for patients with esophageal squamous cell carcinoma.

  4. Intestinal and peri-tumoral lymphatic endothelial cells are resistant to radiation-induced apoptosis

    SciTech Connect

    Sung, Hoon Ki; Morisada, Tohru; Cho, Chung-Hyun; Oike, Yuichi; Lee, Jayhun; Sung, Eon Ki; Chung, Jae Hoon; Suda, Toshio; Koh, Gou Young . E-mail: gykoh@kaist.ac.kr

    2006-06-30

    Radiation therapy is a widely used cancer treatment, but it is unable to completely block cancer metastasis. The lymphatic vasculature serves as the primary route for metastatic spread, but little is known about how lymphatic endothelial cells respond to radiation. Here, we show that lymphatic endothelial cells in the small intestine and peri-tumor areas are highly resistant to radiation injury, while blood vessel endothelial cells in the small intestine are relatively sensitive. Our results suggest the need for alternative therapeutic modalities that can block lymphatic endothelial cell survival, and thus disrupt the integrity of lymphatic vessels in peri-tumor areas.

  5. Comparative studies on radiation-induced micronuclei and chromosomal aberrations in V79 cells

    SciTech Connect

    Keshava, C.; Ong., T. |; Nath, J.

    1994-12-31

    Induction of micronuclei (MN) and structural chromosomal aberrations (SCA) by physical agents extensively in a variety of cell lines for genotoxicity assessment. However, comparative data on the relationship between these two cytogenetic endpoints are limited. This study compares MN and SCA formation in V79 Chinese hamster lung cells treated with X-rays and UV radiation. Four replicate cultures of exponentially growing cells were exposed to four doses of X-rays (100 to 800 rad). For two replicate cultures, cytochalasin B (3 {mu}g/ml) was added and cells harvested 16 h later for MN and cell cycle kinetics assessments. For the remaining two replicate cultures, colcemid (0.025{mu}g/ml) was added 16 h post-treatment and harvested 2 h later for SCA and mitotic index (MI) analysis. This experiment was duplicated using four doses of UV radiation (100 to 800 {mu}joules x 10{sup 2}/cm{sup 2}). In the x-ray experiment, a dose-related decrease in the % of binucleated (BN) cells and MI was noted. Also, there was a clear dose-related increase in micronucleated binucleate (MNBN) and aberrant cells. Similar dose-response, but with lower frequencies, was observed in the UV radiation treatment. These data suggest that there is a good relationship between chromosome damage as measured by the % of MNBN and aberrant cells and cytotoxicity as measured by the % of BN cells and MI in these assays.

  6. Apoptotic pathway induced by noscapine in human myelogenous leukemic cells.

    PubMed

    Heidari, Nastaran; Goliaei, Bahram; Moghaddam, Parvaneh Rahimi; Rahbar-Roshandel, Nahid; Mahmoudian, Massoud

    2007-11-01

    It has been shown that noscapine, an opium-derived phthalideisoquinoline alkaloid that is currently being used as an oral antitussive drug, induces apoptosis in myeloid leukemia cells. The molecular mechanism responsible for the anticancer effects of noscapine is poorly understood. In the current study, the apoptotic effects of noscapine on two myeloid cell lines, apoptosis-proficient HL60 cells and apoptosis-resistant K562 cells, were analyzed. An increase in the activity of caspase-2, -3, -6, -8 and -9, poly(ADP ribose) polymerase cleavage, detection of phosphatidylserine on the outer layer of the cell membrane, nucleation of chromatin, and DNA fragmentation suggested the induction of apoptosis. Noscapine increased the Bax/Bcl-2 ratio with a significant decrease of Bcl-2 expression accompanied with Bcl-2 phosphorylation. Using an inhibitory approach, the activation of the caspase cascade involved in the noscapine-induced apoptosis was analyzed. We observed no inhibitory effect of the caspase-8 inhibitor on caspase-9 activity. In view of these results and taking into consideration that K562 cells are Fas-null, we suggested that caspase-8 is activated in a Fas-independent manner downstream of caspase-9. In conclusion, noscapine can induce apoptosis in both apoptosis-proficient and apoptosis-resistant leukemic cells, and it can be a novel candidate in the treatment of hematological malignancies.

  7. High-LET Radiation Induced Chromosome Aberrations in Normal and Ataxia Telangiectasia Fibroblast Cells

    NASA Astrophysics Data System (ADS)

    Kawata, Tetsuya; George, Ms Kerry; Cucinotta, Francis A.; Shigematsu, Naoyuki; Ito, Hisao; Furusawa, Yoshiya; Uno, Takashi

    We investigated the effects of heavy ions beams on chromosomal aberrations in normal and AT cells. Normal and AT fibroblast cells arrested at G0/G1 phase were irradiated with 2 Gy of X-rays, 490 MeV/u Silicon (LET 55 keV/micron), 500 MeV/u Iron (LET 185 keV/micron) and 200 MeV/u Iron (LET 440 keV/micron) particles, and then cells were allowed to repair for 24 hours at 37 degrees before subculture. Calyculin-A induced PCC method was employed to collect G2/M chromosomes and whole DNA probes 1 and 3 were used to analyze chromosomal aberrations such as color-junctions, deletions, simple exchanges (incomplete and reciprocal exchanges) and complex-type exchanges. The percentages of aberrant cells were higher when normal and AT cells were exposed to heavy ions compared to X-rays, and had a tendency to increase with increasing LET up to 185 keV/micron and then decreased at 440 keV/micron. When the frequency of color-junctions per cell was compared after X-ray exposure, AT cells had around three times higher frequency of color-junctions (mis-rejoining) than normal cells. However, at 185 keV/micron there was no difference in the frequency of color-junctions between two cell lines. It was also found that the frequency of simple exchanges per cell was almost constant in AT cells regardless LET levels, but it was LET dependent for normal cells. Interestingly, the frequency of simple exchanges was higher for normal fibroblast cells when it was compared at 185 keV/micron, but AT cells had more complex-type exchanges at the same LET levels. Heavy ions are more efficient in inducing chromosome aberrations in normal and AT cells compared to X-rays, and the aberration types between normal and AT fibroblast appeared different probably due to difference in the ATM gene function.

  8. Radiation-Induced Bystander Effects in A549 Cells Exposed to 6 MV X-rays.

    PubMed

    Yang, Shuning; Xu, Jing; Shao, Weixian; Geng, Chong; Li, Jia; Guo, Feng; Miao, Hui; Shen, Wenbin; Ye, Tao; Liu, Yazhou; Xu, Haiting; Zhang, Xuguang

    2015-07-01

    The aim of the study is to explore the bystander effects in A549 cells that have been exposed to 6MV X-ray. Control group, irradiated group, irradiated conditioned medium (ICM)-received group, and fresh medium group were designed in this study. A549 cells in the logarithmic growth phase were irradiated with 6MV X-ray at 0, 0.5, 1, 1.5, and 2. In ICM-received group, post-irradiation A549 cells were cultured for 3 h and were transferred into non-irradiated A549 cells for further cultivation. Clone forming test was applied to detect the survival fraction of cells. Annexin V-FITC/PI double-staining assay was used to detect the apoptosis of A549 cells 24, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation, and the curves of apoptosis were drawn. The changes in the cell cycles 4, 48, 72, and 96 h after 2-Gy 6MV X-ray irradiation were detected using PI staining flow cytometry. With the increase of irradiation dose, the survival fraction of A549 cells after the application of 0.5 Gy irradiation was decreasing continuously. In comparison to the control group, the apoptosis rate of the ICM-received group was increased in a time-dependent pattern, with the highest apoptosis rate observed at 72 h (p < 0.05). Cell count in G2/M stages was obviously increased compared with that of the control group (p < 0.05), with the highest count observed at 72 h, after which G2/M stage arrest was diminished. ICM can cause apparent A549 cell damage, indicating that 6MV X-ray irradiation can induce bystander effect on A549 cells, which reaches a peak at 72 h.

  9. Cell-Assisted Lipotransfer Improves Volume Retention in Irradiated Recipient Sites and Rescues Radiation-Induced Skin Changes

    PubMed Central

    Luan, Anna; Duscher, Dominik; Whittam, Alexander J.; Paik, Kevin J.; Zielins, Elizabeth R.; Brett, Elizabeth A.; Atashroo, David A.; Hu, Michael S.; Lee, Gordon K.; Gurtner, Geoffrey C.; Longaker, Michael T.; Wan, Derrick C.

    2016-01-01

    Radiation therapy is not only a mainstay in the treatment of many malignancies but also results in collateral obliteration of microvasculature and dermal/subcutaneous fibrosis. Soft tissue reconstruction of hypovascular, irradiated recipient sites through fat grafting remains challenging; however, a coincident improvement in surrounding skin quality has been noted. Cell-assisted lipotransfer (CAL), the enrichment of fat with additional adipose-derived stem cells (ASCs) from the stromal vascular fraction, has been shown to improve fat volume retention, and enhanced outcomes may also be achieved with CAL at irradiated sites. Supplementing fat grafts with additional ASCs may also augment the regenerative effect on radiation-damaged skin. In this study, we demonstrate the ability for CAL to enhance fat graft volume retention when placed beneath the irradiated scalps of immunocompromised mice. Histologic metrics of fat graft survival were also appreciated, with improved structural qualities and vascularity. Finally, rehabilitation of radiation-induced soft tissue changes were also noted, as enhanced amelioration of dermal thickness, collagen content, skin vascularity, and biomechanical measures were all observed with CAL compared to unsupplemented fat grafts. Supplementation of fat grafts with ASCs therefore shows promise for reconstruction of complex soft tissue defects following adjuvant radiotherapy. PMID:26661694

  10. Effect of caffeine on radiation-induced apoptosis in TK6 cells

    SciTech Connect

    Zhen, W.; Vaughan, A.T.M.

    1995-02-01

    Apoptosis has been measured in cells of the human TK6 lymphoblastoid cell line by recording the release of endonuclease-digested DNA from affected cells using flow cytometry. In asynchronously dividing cells, DNA degradation characteristic of apoptosis was first seen 12 h after irradiation as a defined DNA fluorescent peak of sub-G{sub 1}-phase content, reaching a maximum of 30-50% of the population by 24-72 h. Treating cells with 2 mM caffeine either before or up to 3 h after irradiation eliminated the degradation of DNA entirely. In addition, the percentage of cells in which apoptosis could be detected microscopically decreased from 62.4 {+-} 0.95% to 16.7 {+-} 1.5% 72 h after caffeine treatment. Delaying caffeine treatment for 12 h after irradiation reduced DNA degradation by approximately 50% compared to cells receiving radiation alone. DNA degradation induced by serum deprivation was unaffected by caffeine treatment. These data support the contention that irradiation of TK6 cells produces a long-lived cellular signal which triggers apoptosis. Apoptosis produced by serum deprivation does not operate through the same pathway. 36 refs., 5 figs.

  11. Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation.

    PubMed

    Theise, N D; Badve, S; Saxena, R; Henegariu, O; Sell, S; Crawford, J M; Krause, D S

    2000-01-01

    Following a report of skeletal muscle regeneration from bone marrow cells, we investigated whether hepatocytes could also derive in vivo from bone marrow cells. A cohort of lethally irradiated B6D2F1 female mice received whole bone marrow transplants from age-matched male donors and were sacrificed at days 1, 3, 5, and 7 and months 2, 4, and 6 posttransplantation (n = 3 for each time point). Additionally, 2 archival female mice of the same strain who had previously been recipients of 200 male fluorescence-activated cell sorter (FACS)-sorted CD34(+)lin(-) cells were sacrificed 8 months posttransplantation under the same protocol. Fluorescence in situ hybridization (FISH) for the Y-chromosome was performed on liver tissue. Y-positive hepatocytes, up to 2.2% of total hepatocytes, were identified in 1 animal at 7 days posttransplantation and in all animals sacrificed 2 months or longer posttransplantation. Simultaneous FISH for the Y-chromosome and albumin messenger RNA (mRNA) confirmed male-derived cells were mature hepatocytes. These animals had received lethal doses of irradiation at the time of bone marrow transplantation, but this induced no overt, histologically demonstrable, acute hepatic injury, including inflammation, necrosis, oval cell proliferation, or scarring. We conclude that hepatocytes can derive from bone marrow cells after irradiation in the absence of severe acute injury. Also, the small subpopulation of CD34(+)lin(-) bone marrow cells is capable of such hepatic engraftment.

  12. Susceptibility of BRCA2 Heterozygous Normal Mammary Epithelial Cells to Radiation-Induced Transformation

    DTIC Science & Technology

    2005-10-01

    mouse embryonic fibroblasts (MEF) with less severe BRCA2 truncations (22-24). Particularly, spontaneous accumulation of chromosomal abnormalities ...Scully, R. Stable interaction between the products of the BRCA1 and BRCA2 tumor suppressor genes in mitotic and meiotic cells, Mol Cell. 2: 317-28

  13. Nonimmunogenic radiation-induced lymphoma: immunity induction by a somatic cell hybrid

    SciTech Connect

    Yefenof, E.; Goldapfel, M.; Ber, R.

    1982-05-01

    The cell line designated PIR-2 is a nonimmunogenic X-ray-induced thymoma of C57BL/6 origin that is unable to induce antitumor immunity in syngeneic lymphocytes in vitro and in mice in vivo. Fusion of PIR-2 with an allogeneic universal fuser A9HT (clone 3c) resulted in the establishment of a somatic cell hybrid designated A9/PIR. C57BL/6 lymphocytes sensitized in vitro with A9/PIR could lyse parental PIR-2 cells, as well as other syngeneic tumors. However, immunization of mice with the hybrid significantly enhanced PIR-2 tumor takes while it partially protected the animals against a challenge with unrelated syngeneic tumors. The results imply that somatic cell hybridization can increase the immunogenicity of an otherwise nonimmunogenic tumor. However, in view of the enhancing effects of hybrid preimmunization on parental tumor cell growth, the possible application of this approach for immunotherapy is questionable.

  14. Ionizing Radiation-Induced DNA Damage and Its Repair in Human Cells

    SciTech Connect

    Dizdaroglu, Miral

    1999-05-12

    DNA damage in mammalian chromatin in vitro and in cultured mammalian cells including human cells was studied. In the first phase of these studies, a cell culture laboratory was established. Necessary equipment including an incubator, a sterile laminar flow hood and several centrifuges was purchased. We have successfully grown several cell lines such as murine hybridoma cells, V79 cells and human K562 leukemia cells. This was followed by the establishment of a methodology for the isolation of chromatin from cells. This was a very important step, because a routine and successful isolation of chromatin was a prerequisite for the success of the further studies in this project, the aim of which was the measurement of DNA darnage in mammalian chromatin in vitro and in cultured cells. Chromatin isolation was accomplished using a slightly modified procedure of the one described by Mee & Adelstein (1981). For identification and quantitation of DNA damage in cells, analysis of chromatin was preferred over the analysis of "naked DNA" for the following reasons: i. DNA may not be extracted efficiently from nucleoprotein in exposed cells, due to formation of DNA-protein cross-links, ii. the extractability of DNA is well known to decrease with increasing doses of radiation, iii. portions of DNA may not be extracted due to fragmentation, iv. unextracted DNA may contain a significant portion of damaged DNA bases and DNA-protein cross-links. The technique of gas chromatography/mass spectrometry (GC/MS), which was used in the present project, permits the identification and quantitation of modified DNA bases in chromatin in the presence of proteins without the necessity of first isolating DNA from chromatin. This has been demonstrated previously by the results from our laboratory and by the results obtained during the course of the present project. The quality of isolated chromatin was tested by measurement of its content of DNA, proteins, and RNA, by analysis of its protein

  15. Clinical significance of radiation-induced CD133 expression in residual rectal cancer cells after chemoradiotherapy.

    PubMed

    Kawamoto, Aya; Tanaka, Koji; Saigusa, Susumu; Toiyama, Yuji; Morimoto, Yuhki; Fujikawa, Hiroyuki; Iwata, Takashi; Matsushita, Kohei; Yokoe, Takeshi; Yasuda, Hiromi; Inoue, Yasuhiro; Miki, Chikao; Kusunoki, Masato

    2012-03-01

    CD133 and CD44 have been considered as markers for colorectal cancer stem cells (CSCs). The association of CD133 and CD44 expression with radiation has not been fully examined in rectal cancer. Both CD133 (PROM) and CD44 mRNA levels were measured in post-chemoradiotherapy (CRT) specimens of 52 rectal cancer patients using real-time RT-PCR and compared to clinicopathological variables and clinical outcome. Their protein levels were examined in the radiation-treated HT29 human colon cancer cell line. Post-CRT CD133 in residual cancer cells was significantly higher than matched pre-CRT CD133 in biopsy specimens (n=30). By contrast, CD44 was significantly lower in post-CRT specimens (P<0.01). CD133 was associated with distant recurrence after CRT followed by surgery (P<0.05). Patients with elevated CD133 in residual cancer cells showed poor disease-free survival (P<0.05). No significant association between post-CRT CD44 and clinical outcome was found. The in vitro study showed that CD133 protein was increased in a radiation dose-dependent manner, despite of the decreased number of clonogenic radiation-surviving cells. CD44 protein was decreased after irradiation. CD133, but not CD44, was increased in radiation-resistant surviving colon cancer cells. Post-CRT CD133 in residual cancer cells may predict metachronous distant recurrence and poor survival of rectal cancer patients after CRT.

  16. [Radiation-induces increased tumor cell aggressiveness of tumors of the glioblastomas?].

    PubMed

    Falk, Alexander T; Moncharmont, Coralie; Guilbert, Matthieu; Guy, Jean-Baptiste; Alphonse, Gersende; Trone, Jane-Chloé; Rivoirard, Romain; Gilormini, Marion; Toillon, Robert-Alain; Rodriguez-Lafrasse, Claire; Magné, Nicolas

    2014-09-01

    Glioblastoma multiform is the most common and aggressive brain tumor with a worse prognostic. Ionizing radiation is a cornerstone in the treatment of glioblastome with chemo-radiation association being the actual standard. As a paradoxal effect, it has been suggested that radiotherapy could have a deleterious effect on local recurrence of cancer. In vivo studies have studied the effect of radiotherapy on biological modification and pathogenous effect of cancer cells. It seems that ionizing radiations with photon could activate oncogenic pathways in glioblastoma cell lines. We realized a review of the literature of photon-enhanced effect on invasion and migration of glioblastoma cells by radiotherapy.

  17. Cooperative binding of Annexin A5 to phosphatidylserine on apoptotic cell membranes

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Jeremic, Ivica; Biermann, Mona; Chaurio, Ricardo; Schorn, Christine; Muñoz, Luis E.; Herrmann, Martin

    2013-12-01

    Healthy cells exhibit an asymmetric plasma membrane with phosphatidylserine (PS) located on the cytoplasmic leaflet of the plasma membrane bilayer. Annexin A5-FITC, a PS binding protein, is commonly used to evaluate apoptosis in flow cytometry. PS exposed by apoptotic cells serves as a major ‘eat-me’ signal for phagocytes. Although exposition of PS has been observed after alternative stimuli, no clearance of viable, PS exposing cells has been detected. Thus, besides PS exposure, membranes of viable and apoptotic cells might exhibit specific characteristics. Here, we show that Annexin A5 binds in a cooperative manner to different types of dead cells. Shrunken apoptotic cells thereby showed the highest Hill coefficient values. Contrarily, parafomaldehyde fixation of apoptotic cells completely abrogates the cooperativity effect seen with dead and dying cells. We tend to speculate that the cooperative binding of Annexin A5 to the membranes of apoptotic cells reflects higher fluidity of the exposed membranes facilitating PS clustering.

  18. The scavenger receptor SCARF1 mediates apoptotic cell clearance and prevents autoimmunity

    PubMed Central

    Ramirez-Ortiz, Zaida G.; Pendergraft, William F.; Prasad, Amit; Byrne, Michael H.; Iram, Tal; Blanchette, Christopher J.; Luster, Andrew D.; Hacohen, Nir; Khoury, Joseph El; Means, Terry K.

    2013-01-01

    Clearance of apoptotic cells is critical for control of tissue homeostasis however the full range of receptor(s) on phagocytes responsible for recognition of apoptotic cells remains to be identified. Here we show that dendritic cells (DCs), macrophages and endothelial cells use scavenger receptor type F family member 1 (SCARF1) to recognize and engulf apoptotic cells via C1q. Loss of SCARF1 impairs uptake of apoptotic cells. Consequently, in SCARF1-deficient mice, dying cells accumulate in tissues leading to a lupus-like disease with the spontaneous generation of autoantibodies to DNA-containing antigens, immune cell activation, dermatitis and nephritis. The discovery of SCARF1 interactions with C1q and apoptotic cells provides insights into molecular mechanisms involved in maintenance of tolerance and prevention of autoimmune disease. PMID:23892722

  19. Galleria mellonella lysozyme induces apoptotic changes in Candida albicans cells.

    PubMed

    Sowa-Jasiłek, Aneta; Zdybicka-Barabas, Agnieszka; Stączek, Sylwia; Wydrych, Jerzy; Skrzypiec, Krzysztof; Mak, Paweł; Deryło, Kamil; Tchórzewski, Marek; Cytryńska, Małgorzata

    2016-12-01

    The greater wax moth Galleria mellonella has been increasingly used as a model host to determine Candida albicans virulence and efficacy of antifungal treatment. The G. mellonella lysozyme, similarly to its human counterpart, is a member of the c-type family of lysozymes that exhibits antibacterial and antifungal activity. However, in contrast to the relatively well explained bactericidal action, the mechanism of fungistatic and/or fungicidal activity of lysozymes is still not clear. In the present study we provide the direct evidences that the G. mellonella lysozyme binds to the protoplasts as well as to the intact C. albicans cells and decreases the survival rate of both these forms in a time-dependent manner. No enzymatic activity of the lysozyme towards typical chitinase and β-glucanase substrates was detected, indicating that hydrolysis of main fungal cell wall components is not responsible for anti-Candida activity of the lysozyme. On the other hand, pre-treatment of cells with tetraethylammonium, a potassium channel blocker, prevented them from the lysozyme action, suggesting that lysozyme acts by induction of programmed cell death. In fact, the C. albicans cells treated with the lysozyme exhibited typical apoptotic features, i.e. loss of mitochondrial membrane potential, phosphatidylserine exposure in the outer leaflet of the cell membrane, as well as chromatin condensation and DNA fragmentation.

  20. Radiation-induced bystander effect and adaptive response in mammalian cells

    NASA Technical Reports Server (NTRS)

    Zhou, H.; Randers-Pehrson, G.; Waldren, C. A.; Hei, T. K.

    2004-01-01

    Two conflicting phenomena, bystander effect and adaptive response, are important in determining the biological responses at low doses of radiation and have the potential to impact the shape of the dose-response relationship. Using the Columbia University charged-particle microbeam and the highly sensitive AL cell mutagenic assay, we show here that non-irradiated cells acquire mutagenesis through direct contact with cells whose nuclei have been traversed with a single alpha particle each. Pretreatment of cells with a low dose of X-rays four hours before alpha particle irradiation significantly decreased this bystander mutagenic response. Results from the present study address some of the fundamental issues regarding both the actual target and radiation dose effect and can contribute to our current understanding in radiation risk assessment. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  1. Radiation-Induced Germ Cell Mutations-Their Detection and Modification.

    DTIC Science & Technology

    1987-06-30

    representative of cells irradiated as differentiating spermatogonia . No reduction in the fertilization * rate was detected in animals mated 100 or more days... spermatogonia . This damage is manifest only as a failure to differentiate and proliferate an inner cell mass atop the trophectoderm outgrowth. The nature of...Ford, C.E., Searle, A.G., Evans, E.P. and B.J. West. Differential transmission of translocation induced in spermatogonia of mice by irradiation

  2. Ionizing Radiation-Induced Responses in Human Cells with Differing TP53 Status

    PubMed Central

    Mirzayans, Razmik; Andrais, Bonnie; Scott, April; Wang, Ying W.; Murray, David

    2013-01-01

    Ionizing radiation triggers diverse responses in human cells encompassing apoptosis, necrosis, stress-induced premature senescence (SIPS), autophagy, and endopolyploidy (e.g., multinucleation). Most of these responses result in loss of colony-forming ability in the clonogenic survival assay. However, not all modes of so-called clonogenic cell “death” are necessarily advantageous for therapeutic outcome in cancer radiotherapy. For example, the crosstalk between SIPS and autophagy is considered to influence the capacity of the tumor cells to maintain a prolonged state of growth inhibition that unfortunately can be succeeded by tumor regrowth and disease recurrence. Likewise, endopolyploid giant cells are able to segregate into near diploid descendants that continue mitotic activities. Herein we review the current knowledge on the roles that the p53 and p21WAF1 tumor suppressors play in determining the fate of human fibroblasts (normal and Li-Fraumeni syndrome) and solid tumor-derived cells after exposure to ionizing radiation. In addition, we discuss the important role of WIP1, a p53-regulated oncogene, in the temporal regulation of the DNA damage response and its contribution to p53 dynamics post-irradiation. This article highlights the complexity of the DNA damage response and provides an impetus for rethinking the nature of cancer cell resistance to therapeutic agents. PMID:24232458

  3. X-ray radiation-induced effects in human mammary epithelial cells investigated by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Risi, R.; Manti, L.; Perna, G.; Lasalvia, M.; Capozzi, V.; Delfino, I.; Lepore, M.

    2012-06-01

    Micro-Raman technique can be particularly useful to investigate the chemical changes induced in structure, protein, nucleic acid, lipid, and carbohydrate contents of cells. The aim of this work is to inspect the possibility to employ Raman microspectroscopy to detect biochemical modifications in human mammary epithelial cells after exposure to different Xray doses. The samples consisted of cells cultured on polylysine-coated glass coverslips. After the exposition, control and treated cells were washed in phosphate-buffered saline (PBS) and then fixed in paraformaldehyde 3.7%. They were examined using a confocal micro-Raman system equipped with a He-Ne laser (λ = 632.8 nm; power on the sample= 3.5mW). Differences in the intensity ratio of specific Raman vibrational markers commonly assigned to phenylalanine and tyrosine amino acids (at 1000, 1030, 1618 cm-1), DNA bases (787, 1090, 1305 cm-1), and amide III (1237, and 1265 cm-1) with respect a reference peak (the one of lipids at 1450 cm-1) were evidenced between control and exposed cells. These differences may be indicative of damage in exposed cells as the fragmentation of individual amino acids and DNA bases, crosslink effects in molecular structure of DNA and protein conformational change that especially tend to "unwind" the protein due to the breaking of hydrogen bonds between peptide chains.

  4. Radiation induces premature chromatid separation via the miR-142-3p/Bod1 pathway in carcinoma cells

    PubMed Central

    Pan, Dong; Du, Yarong; Ren, Zhenxin; Chen, Yaxiong; Li, Xiaoman; Wang, Jufang; Hu, Burong

    2016-01-01

    Radiation-induced genomic instability plays a vital role in carcinogenesis. Bod1 is required for proper chromosome biorientation, and Bod1 depletion increases premature chromatid separation. MiR-142-3p influences cell cycle progression and inhibits proliferation and invasion in cervical carcinoma cells. We found that radiation induced premature chromatid separation and altered miR-142-3p and Bod1 expression in 786-O and A549 cells. Overexpression of miR-142-3p increased premature chromatid separation and G2/M cell cycle arrest in 786-O cells by suppressing Bod1 expression. We also found that either overexpression of miR-142-3p or knockdown of Bod1 sensitized 786-O and A549 cells to X-ray radiation. Overexpression of Bod1 inhibited radiation- and miR-142-3p-induced premature chromatid separation and increased resistance to radiation in 786-O and A549 cells. Taken together, these results suggest that radiation alters miR-142-3p and Bod1 expression in carcinoma cells, and thus contributes to early stages of radiation-induced genomic instability. Combining ionizing radiation with epigenetic regulation may help improve cancer therapies. PMID:27527863

  5. Role of ion transport in control of apoptotic cell death.

    PubMed

    Lang, Florian; Hoffmann, Else K

    2012-07-01

    Cell shrinkage is a hallmark and contributes to signaling of apoptosis. Apoptotic cell shrinkage requires ion transport across the cell membrane involving K(+) channels, Cl(-) or anion channels, Na(+)/H(+) exchange, Na(+),K(+),Cl(-) cotransport, and Na(+)/K(+)ATPase. Activation of K(+) channels fosters K(+) exit with decrease of cytosolic K(+) concentration, activation of anion channels triggers exit of Cl(-), organic osmolytes, and HCO3(-). Cellular loss of K(+) and organic osmolytes as well as cytosolic acidification favor apoptosis. Ca(2+) entry through Ca(2+)-permeable cation channels may result in apoptosis by affecting mitochondrial integrity, stimulating proteinases, inducing cell shrinkage due to activation of Ca(2+)-sensitive K(+) channels, and triggering cell-membrane scrambling. Signaling involved in the modification of cell-volume regulatory ion transport during apoptosis include mitogen-activated kinases p38, JNK, ERK1/2, MEKK1, MKK4, the small G proteins Cdc42, and/or Rac and the transcription factor p53. Osmosensing involves integrin receptors, focal adhesion kinases, and tyrosine kinase receptors. Hyperosmotic shock leads to vesicular acidification followed by activation of acid sphingomyelinase, ceramide formation, release of reactive oxygen species, activation of the tyrosine kinase Yes with subsequent stimulation of CD95 trafficking to the cell membrane. Apoptosis is counteracted by mechanisms involved in regulatory volume increase (RVI), by organic osmolytes, by focal adhesion kinase, and by heat-shock proteins. Clearly, our knowledge on the interplay between cell-volume regulatory mechanisms and suicidal cell death is still far from complete and substantial additional experimental effort is needed to elucidate the role of cell-volume regulatory mechanisms in suicidal cell death.

  6. Radiation-induced senescence-like terminal growth arrest in thyroid cells.

    PubMed

    Podtcheko, Alexei; Namba, Hiroyuki; Saenko, Vladimir; Ohtsuru, Akira; Starenki, Dmitriy; Meirmanov, Serik; Polona, Iryna; Rogounovitch, Tatiana; Yamashita, Shunichi

    2005-04-01

    Premature senescence may play an important role as an acute, drug-, or ionizing radiation (IR)-inducible growth arrest program along with interphase apoptosis and mitotic catastrophe. The aim of the study was to evaluate whether IR can induce senescence-like phenotype (SLP) associated with terminal growth arrest in the thyroid cells, and if so, to evaluate impact of terminal growth arrest associated with SLP in intrinsic radiosensitivity of various thyroid carcinomas. The induction of SLP in thyroid cells were identified by: (1) senescence associated beta-galactosidase (SA-beta-Gal) staining method, (2) dual-flow cytometric analysis of cell proliferation and side light scatter using vital staining with PKH-2 fluorescent dye, (3) double labeling for 5-bromodeoxyuridine and SA- beta-Gal, (4) Staining for SA-beta-Gal with consequent antithyroglobulin immunohistochemistry. IR induced SLP associated with terminal growth arrest in four thyroid cancer cells lines and in primary thyrocytes in time- and dose-dependent manner. Analysis of relationship between induction of SLP and radiosensitivity revealed a trend in which more radioresistant cell lines strongly tended to show lower specific SLP yields (r = -0.93, p = 0.068). We find out that SA-beta-Gal staining is detectable in irradiated ARO xenotransplants, but not in control tumors. We, therefore, conclude that induction of SLP with terminal growth arrest contribute to the elimination of clonogenic populations after IR.

  7. Hypoxia- and radiation-inducible, breast cell-specific targeting of retroviral vectors

    SciTech Connect

    Lipnik, Karoline; Greco, Olga; Scott, Simon; Knapp, Elzbieta; Mayrhofer, Elisabeth; Rosenfellner, Doris; Guenzburg, Walter H.; Salmons, Brian; Hohenadl, Christine . E-mail: christine.hohenadl@vu-wien.ac.at

    2006-05-25

    To facilitate a more efficient radiation and chemotherapy of mammary tumours, synthetic enhancer elements responsive to hypoxia and ionizing radiation were coupled to the mammary-specific minimal promoter of the murine whey acidic protein (WAP) encoding gene. The modified WAP promoter was introduced into a retroviral promoter conversion (ProCon) vector. Expression of a transduced reporter gene in response to hypoxia and radiation was analysed in stably infected mammary cancer cell lines and an up to 9-fold increase in gene expression demonstrated in comparison to the respective basic vector. Expression analyses in vitro, moreover, demonstrated a widely preserved mammary cell-specific promoter activity. For in vivo analyses, xenograft tumours consisting of infected human mammary adenocarcinoma cells were established in SCID/beige mice. Immunohistochemical analyses demonstrated a hypoxia-specific, markedly increased WAP promoter-driven expression in these tumours. Thus, this retroviral vector will facilitate a targeted gene therapeutic approach exploiting the unique environmental condition in solid tumours.

  8. Radiation-induced cell inactivation as a cause for cancer promotion

    NASA Astrophysics Data System (ADS)

    Heidenreich, W. F.; Paretzke, H. G.

    In space research, estimates of health risks from high-LET radiation, as well as from mixed fields are needed. Features of several applications of the biologically based two step clonal expansion (TSCE) model on data with high-LET radiation, normally α-particles from radon and from Thorotrast, are reviewed. One conclusion is that radiation might not only influence the initiating event in carcinogenesis, but may also act as a promoter. A possible mechanism which gives a promoting action from cell inactivation is presented for the organs "lung", with a two-dimensional arrangement of the cells at risk, and for "liver" where the sensitive cells are distributed in all three dimensions. Inferences for dose-response curves at low doses and dose rates are drawn. For liver, the number and size of premalignant clones is estimated from the cancer data.

  9. Molecular Mechanisms of Radiation-Induced Genomic Instability in Human Cells

    SciTech Connect

    Howard L. Liber; Jeffrey L. Schwartz

    2005-10-31

    There are many different model systems that have been used to study chromosome instability. What is clear from all these studies is that conclusions concerning chromosome instability depend greatly on the model system and instability endpoint that is studied. The model system for our studies was the human B-lymphoblastoid cell line TK6. TK6 was isolated from a spontaneously immortalized lymphoblast culture. Thus there was no outside genetic manipulation used to immortalize them. TK6 is a relatively stable p53-normal immortal cell line (37). It shows low gene and chromosome mutation frequencies (19;28;31). Our general approach to studying instability in TK6 cells has been to isolate individual clones and analyze gene and chromosome mutation frequencies in each. This approach maximizes the possibility of detecting low frequency events that might be selected against in mass cultures.

  10. Catalase inhibits ionizing radiation-induced apoptosis in hematopoietic stem and progenitor cells.

    PubMed

    Xiao, Xia; Luo, Hongmei; Vanek, Kenneth N; LaRue, Amanda C; Schulte, Bradley A; Wang, Gavin Y

    2015-06-01

    Hematologic toxicity is a major cause of mortality in radiation emergency scenarios and a primary side effect concern in patients undergoing chemo-radiotherapy. Therefore, there is a critical need for the development of novel and more effective approaches to manage this side effect. Catalase is a potent antioxidant enzyme that coverts hydrogen peroxide into hydrogen and water. In this study, we evaluated the efficacy of catalase as a protectant against ionizing radiation (IR)-induced toxicity in hematopoietic stem and progenitor cells (HSPCs). The results revealed that catalase treatment markedly inhibits IR-induced apoptosis in murine hematopoietic stem cells and hematopoietic progenitor cells. Subsequent colony-forming cell and cobble-stone area-forming cell assays showed that catalase-treated HSPCs can not only survive irradiation-induced apoptosis but also have higher clonogenic capacity, compared with vehicle-treated cells. Moreover, transplantation of catalase-treated irradiated HSPCs results in high levels of multi-lineage and long-term engraftments, whereas vehicle-treated irradiated HSPCs exhibit very limited hematopoiesis reconstituting capacity. Mechanistically, catalase treatment attenuates IR-induced DNA double-strand breaks and inhibits reactive oxygen species. Unexpectedly, we found that the radioprotective effect of catalase is associated with activation of the signal transducer and activator of transcription 3 (STAT3) signaling pathway and pharmacological inhibition of STAT3 abolishes the protective activity of catalase, suggesting that catalase may protect HSPCs against IR-induced toxicity via promoting STAT3 activation. Collectively, these results demonstrate a previously unrecognized mechanism by which catalase inhibits IR-induced DNA damage and apoptosis in HSPCs.

  11. Insights into the apoptotic death of immune cells in sepsis.

    PubMed

    Luan, Ying-yi; Yao, Yong-ming; Xiao, Xian-zhong; Sheng, Zhi-yong

    2015-01-01

    Sepsis with subsequent multiple-organ dysfunction is a distinct systemic inflammatory response to concealed or obvious infection, and it is a leading cause of death in intensive care units. Thus, one of the key goals in critical care medicine is to develop novel therapeutic strategies that will affect favorably on outcome of septic patients. In addition to systemic response to infection, apoptosis is implicated to be an important mechanism of the death of immune cells, including neutrophils, macrophages, T lymphocytes, and dendritic cells, and it is usually followed by the development of multiple-organ failure in sepsis. The implication of apoptosis of immune cells is now highlighted by multiple studies that demonstrate that prevention of cell apoptosis can improve survival in relevant animal models of severe sepsis. In this review, we focus on major apoptotic death pathways and molecular mechanisms that regulate apoptosis of different immune cells, and advances in these areas that may be translated into more promising therapies for the prevention and treatment of severe sepsis.

  12. Radiation-induced PGE2 sustains human glioma cells growth and survival through EGF signaling.

    PubMed

    Brocard, Emeline; Oizel, Kristell; Lalier, Lisenn; Pecqueur, Claire; Paris, François; Vallette, François M; Oliver, Lisa

    2015-03-30

    Glioblastoma Multiforme (GBM) is the most common brain cancer in adults. Radiotherapy (RT) is the most effective post-operative treatment for the patients even though GBM is one of the most radio-resistant tumors. Dead or dying cells within the tumor are thought to promote resistance to treatment through mechanisms that are very poorly understood. We have evaluated the role of Prostaglandin E2 (PGE2), a versatile bioactive lipid, in GBM radio-resistance. We used an in vitro approach using 3D primary cultures derived from representative GBM patients. We show that irradiated glioma cells produced and released PGE2 in important quantities independently of the induction of cell death. We demonstrate that the addition of PGE2 enhances cell survival and proliferation though its ability to trans-activate the Epithelial Growth Factor receptor (EGFR) and to activate β-catenin. Indeed, PGE2 can substitute for EGF to promote primary cultures survival and growth in vitro and the effect is likely to occur though the Prostaglandin E2 receptor EP2.

  13. Radiation-induced PGE2 sustains human glioma cell growth and survival through EGF signaling

    PubMed Central

    Lalier, Lisenn; Pecqueur, Claire; Paris, François; Vallette, François M.; Oliver, Lisa

    2015-01-01

    Glioblastoma Multiforme (GBM) is the most common brain cancer in adults. Radiotherapy (RT) is the most effective post-operative treatment for the patients even though GBM is one of the most radio-resistant tumors. Dead or dying cells within the tumor are thought to promote resistance to treatment through mechanisms that are very poorly understood. We have evaluated the role of Prostaglandin E2 (PGE2), a versatile bioactive lipid, in GBM radio-resistance. We used an in vitro approach using 3D primary cultures derived from representative GBM patients. We show that irradiated glioma cells produced and released PGE2 in important quantities independently of the induction of cell death. We demonstrate that the addition of PGE2 enhances cell survival and proliferation though its ability to trans-activate the Epithelial Growth Factor receptor (EGFR) and to activate β-catenin. Indeed, PGE2 can substitute for EGF to promote primary cultures survival and growth in vitro and the effect is likely to occur though the Prostaglandin E2 receptor EP2. PMID:25749386

  14. A novel multitarget model of radiation-induced cell killing based on the Gaussian distribution.

    PubMed

    Zhao, Lei; Mi, Dong; Sun, Yeqing

    2017-03-08

    The multitarget version of the traditional target theory based on the Poisson distribution is still used to describe the dose-survival curves of cells after ionizing radiation in radiobiology and radiotherapy. However, noting that the usual ionizing radiation damage is the result of two sequential stochastic processes, the probability distribution of the damage number per cell should follow a compound Poisson distribution, like e.g. Neyman's distribution of type A (N. A.). In consideration of that the Gaussian distribution can be considered as the approximation of the N. A. in the case of high flux, a multitarget model based on the Gaussian distribution is proposed to describe the cell inactivation effects in low linear energy transfer (LET) radiation with high dose-rate. Theoretical analysis and experimental data fitting indicate that the present theory is superior to the traditional multitarget model and similar to the Linear - Quadratic (LQ) model in describing the biological effects of low-LET radiation with high dose-rate, and the parameter ratio in the present model can be used as an alternative indicator to reflect the radiation damage and radiosensitivity of the cells.

  15. Mast Cell Growth Factor Enhances Multilineage Hematopoietic Recovery in Vivo Following Radiation-Induced Aplasia

    DTIC Science & Technology

    1994-01-01

    lymphocyte, monocyte, tributing to morbidity and mortality associated with hemato- eosinophil , and basophil numbers, as well as an increase in...factor (ligand for c-kit) administered in murine mast cell growth factor (c-kit figand) on colony vivo to mice either alone or in combination with granu

  16. Radiation-induced DNA double-strand break rejoining in human tumour cells.

    PubMed Central

    Núñez, M. I.; Villalobos, M.; Olea, N.; Valenzuela, M. T.; Pedraza, V.; McMillan, T. J.; Ruiz de Almodóvar, J. M.

    1995-01-01

    Five established human breast cancer cell lines and one established human bladder cancer cell line of varying radiosensitivity have been used to determine whether the rejoining of DNA double-strand breaks (dsbs) shows a correlation with radiosensitivity. The kinetics of dsb rejoining was biphasic and both components proceeded exponentially with time. The half-time (t1/2) of rejoining ranged from 18.0 +/- 1.4 to 36.4 +/- 3.2 min (fast rejoining process) and from 1.5 +/- 0.2 to 5.1 +/- 0.2 h (slow rejoining process). We found a statistically significant relationship between the survival fraction at 2 Gy (SF2) and the t1/2 of the fast rejoining component (r = 0.949, P = 0.0039). Our results suggest that cell lines which show rapid rejoining are more radioresistant. These results support the view that, as well as the level of damage induction that we have reported previously, the repair process is a major determinant of cellular radiosensitivity. It is possible that the differences found in DNA dsb rejoining and the differences in DNA dsb induction are related by a common mechanism, e.g. conformation of chromatin in the cell. PMID:7841046

  17. Ionizing radiation-induced mutation of human cells with different DNA repair capacities

    NASA Astrophysics Data System (ADS)

    Amundson, S. A.; Chen, D. J.

    We have observed significant differences in the response to ionizing radiation of two closely related human cell lines, and now compare the effects on these lines of both low and intermediate LET radiation. Compared to TK6, WTK1 has an enhanced X-ray survival, and is also more resistant to cell killing by alpha-particles. The hprt locus is more mutable in WTK1 than in TK6 by both X-rays and alpha-particles. WTK1 is also more mutable by alpha-particles than by X-rays at the hprt locus. X-ray-induced mutation at the heterozygous tk locus in WTK1 is about 25 fold higher than in TK6, while alpha-particle-induced mutation is nearly 50 fold higher at this locus. Also, the slowly growing tk- mutants, which comprise the majority of spontaneous and X-ray-inducedtk - mutants of TK6, were not induced significantly by alpha-particles. Previously, we showed that TK6 has a reduced capacity for recombination compared with WTK1, and therefore, these results indicate that recombinational repair may contribute to both cell survival and mutation-induction following exposure to ionizing radiation. Such a mechanism may aid cell survival, but could also result in increased deleterious effects such as the unmasking of recessive mutations in cancer suppresser genes.

  18. Ionizing radiation-induced mutation of human cells with different DNA repair capacities

    SciTech Connect

    Amundson, S.A.; Chen, D.J.

    1994-12-31

    We have observed significant differences in the response to ionizing radiation of two closely related human cell lines, and now compare the effects on these lines of both low and intermediate LET radiation. Compared to TK6, WTK1 has an enhanced X-ray survival, and is also more resistant to cell killing by {alpha}-particles. The hprt locus is more mutable in WTK1 than in TK6 by both X-rays and {alpha}-particles. WTK1 is also more mutable by {alpha}-particles than by X-rays at the hprt locus. X-ray-induced mutation at the heterozygous tk locus in WTK1 is about 25 fold higher than in TK6, while {alpha}-particle-induced mutation is nearly 50 fold higher at this locus. Also, the slowly growing tk- mutants, which comprise the majority of spontaneous and X-ray-induced tk- mutants of TK6, were not induced significantly by {alpha}-particles. Previously, we showed that TK6 has a reduced capacity for recombination compared with WTK1, and therefore, these results indicate that recombinational repair may contribute to both cell survival and mutation-induction following exposure to ionizing radiation. Such a mechanism may aid cell survival, but could also result in increased deleterious effects such as the unmasking of recessive mutations in cancer suppresser genes.

  19. Barium inhibits arsenic-mediated apoptotic cell death in human squamous cell carcinoma cells.

    PubMed

    Yajima, Ichiro; Uemura, Noriyuki; Nizam, Saika; Khalequzzaman, Md; Thang, Nguyen D; Kumasaka, Mayuko Y; Akhand, Anwarul A; Shekhar, Hossain U; Nakajima, Tamie; Kato, Masashi

    2012-06-01

    Our fieldwork showed more than 1 μM (145.1 μg/L) barium in about 3 μM (210.7 μg/L) arsenic-polluted drinking well water (n = 72) in cancer-prone areas in Bangladesh, while the mean concentrations of nine other elements in the water were less than 3 μg/L. The types of cancer include squamous cell carcinomas (SCC). We hypothesized that barium modulates arsenic-mediated biological effects, and we examined the effect of barium (1 μM) on arsenic (3 μM)-mediated apoptotic cell death of human HSC-5 and A431 SCC cells in vitro. Arsenic promoted SCC apoptosis with increased reactive oxygen species (ROS) production and JNK1/2 and caspase-3 activation (apoptotic pathway). In contrast, arsenic also inhibited SCC apoptosis with increased NF-κB activity and X-linked inhibitor of apoptosis protein (XIAP) expression level and decreased JNK activity (antiapoptotic pathway). These results suggest that arsenic bidirectionally promotes apoptotic and antiapoptotic pathways in SCC cells. Interestingly, barium in the presence of arsenic increased NF-κB activity and XIAP expression and decreased JNK activity without affecting ROS production, resulting in the inhibition of the arsenic-mediated apoptotic pathway. Since the anticancer effect of arsenic is mainly dependent on cancer apoptosis, barium-mediated inhibition of arsenic-induced apoptosis may promote progression of SCC in patients in Bangladesh who keep drinking barium and arsenic-polluted water after the development of cancer. Thus, we newly showed that barium in the presence of arsenic might inhibit arsenic-mediated cancer apoptosis with the modulation of the balance between arsenic-mediated promotive and suppressive apoptotic pathways.

  20. Influence of the circadian rhythm in cell division on radiation-induced mitotic delay in vivo

    SciTech Connect

    Rubin, N.H.

    1982-01-01

    Mitotic delay is described as a classical response to radiation; however, circadian rhythmicity in cell division in vivo has not been considered by many authors. The present study investigated the relation between fluctuations reported as mitotic delay and recovery in vivo and circadian oscillations in mitotic index in mouse corneal epithelium. One aspect involved single doses (approximately 600 rad) given to mice at different circadian stages. The normal circadian rhythm in cell division was never obliterated. Inhibition of mitosis was evident but unpredictable, ranging from 6 to 15 hr after irradiation. Recovery was evident only during the daily increase in mitotic index of controls. The classical interpretation of recovery from mitotic delay may be in an in vitro phenomenon not reflecting in vivo responses, which are apparently strongly circadian stage dependent. The second portion of the study demonstrated a dose-response effect on length of mitotic delay and, to a lesser extent, degree of recovery.

  1. Particle Radiation-Induced Nontargeted Effects in Bone-Marrow-Derived Endothelial Progenitor Cells

    PubMed Central

    Sasi, Sharath P.; Park, Daniel; Muralidharan, Sujatha; Wage, Justin; Kiladjian, Albert; Onufrak, Jillian; Enderling, Heiko; Yan, Xinhua; Goukassian, David A.

    2015-01-01

    Bone-marrow- (BM-) derived endothelial progenitor cells (EPCs) are critical for endothelial cell maintenance and repair. During future space exploration missions astronauts will be exposed to space irradiation (IR) composed of a spectrum of low-fluence protons (1H) and high charge and energy (HZE) nuclei (e.g., iron-56Fe) for extended time. How the space-type IR affects BM-EPCs is limited. In media transfer experiments in vitro we studied nontargeted effects induced by 1H- and 56Fe-IR conditioned medium (CM), which showed significant increase in the number of p-H2AX foci in nonirradiated EPCs between 2 and 24 h. A 2–15-fold increase in the levels of various cytokines and chemokines was observed in both types of IR-CM at 24 h. Ex vivo analysis of BM-EPCs from single, low-dose, full-body 1H- and 56Fe-IR mice demonstrated a cyclical (early 5–24 h and delayed 28 days) increase in apoptosis. This early increase in BM-EPC apoptosis may be the effect of direct IR exposure, whereas late increase in apoptosis could be a result of nontargeted effects (NTE) in the cells that were not traversed by IR directly. Identifying the role of specific cytokines responsible for IR-induced NTE and inhibiting such NTE may prevent long-term and cyclical loss of stem and progenitors cells in the BM milieu. PMID:26074973

  2. Radiation-Induced Micro-RNA Expression Changes in Peripheral Blood Cells of Radiotherapy Patients

    SciTech Connect

    Templin, Thomas; Paul, Sunirmal; Amundson, Sally A.; Young, Erik F.; Barker, Christopher A.; Wolden, Suzanne L.; Smilenov, Lubomir B.

    2011-06-01

    Purpose: MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene expression, are involved in numerous physiologic processes in normal and malignant cells. Our in vivo study measured miRNA and gene expression changes in human blood cells in response to ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation exposure. Methods and Materials: Blood from 8 radiotherapy patients in complete remission 1 or 2 was collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both miRNA and gene expression changes were measured by means of quantitative polymerase chain reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional scaling, class prediction, and gene ontology analysis were performed to investigate the potential of miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the radiation response. Results: The expression levels of 45 miRNAs were statistically significantly upregulated 4 hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling. Out of 223 differentially expressed genes, 37 were both downregulated and predicted targets of the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can predict the class membership of a sample with unknown irradiation status, with accuracies of 100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene involvement in biologic processes such as hemopoiesis and the immune response are increased after irradiation, whereas metabolic processes are underrepresented among all differentially expressed genes and the genes controlled by miRNAs. Conclusions: Exposure to ionizing radiation leads to the upregulation of the expression of a considerable proportion of the human miRNAome of peripheral blood cells

  3. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    PubMed Central

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  4. Enhanced acoustic startle responding in rats with radiation-induced hippocampal granule cell hypoplasia

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.

    1989-01-01

    Irradiation of the neonatal rat hippocampus reduces the proliferation of granule cells in the dentate gyrus and results in locomotor hyperactivity, behavioral preservation, and deficits on some learned tasks. In order to address the role of changes in stimulus salience and behavioral inhibition in animals with this type of brain damage, irradiated and normal rats were compared in their startle reactions to an acoustic stimulus. Irradiated rats startled with a consistently higher amplitude than control and were more likely to exhibit startle responses. These animals with hippocampal damage also failed to habituate to the startle stimulus and, under certain circumstances, showed potentiated startle responses after many tone presentations.

  5. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    SciTech Connect

    Gridley, Daila S.

    2008-10-31

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of “dirty bombs” by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to

  6. Radiation induced nuclear factor kappa-B signaling cascade study in mammalian cells by improved detection systems

    NASA Astrophysics Data System (ADS)

    Chishti, Arif Ali; Baumstark-Khan, Christa; Hellweg, Christine; Reitz, Guenther

    To enable long-term human space flight cellular radiation response to densely ionizing radiation needs to be better understood for developing appropriate countermeasures to mitigate acute effects and late radiation risks for the astronaut. The biological effectiveness of accelerated heavy ions with high linear energy transfer (LET) for effecting DNA damage response pathways as a gateway to cell death or survival is of major concern, not only for tumor radiotherapy but also for new regimes of space missions. Ionizing radiation modulates several signaling pathways resulting in transcription factor activation. NF-kappaB is one of the important transcription factors that respond to changes in the environment of a mammalian cell and plays a key role in many biological processes relevant to radiation response, such as apoptosis, inflammation and carcinogenesis. From medical and biological point of view it is important to understand radiation induced NF-kappaB signaling cascade. For studying NF-kappaB signaling, green fluorescent proteins EGFP and d2EGFP were used previously (Advances in Space Research, 36: 1673-1679, 2005). The current study aims to improve reporter assays by the use of a destabilized variant of red fluorescent protein tdTomato (DD-tdTomato) which gives high fluorescence signals and a better signal/noise ratio for NF-kappaB activation. The reporter system HEK-pNFkappaB-DD-tdTomato-C8 is a dual reporter system which can provide both discrete and cumulative signals after exposure to ionizing radiation (X-rays, heavy ions). In the presence of Shield-1, the fluorescent protein DD-tdTomato is not degraded but accumulated inside the cell which helps to quantify the fold induction of NF-kappaB-dependent gene expression. The minimum dose required to activate NF-kappaB is 6 Gy but accumulated signals data shows that NF-kappaB is activated after 3 Gy in the presence of Shield-1. Average dose and number of heavy ions’ hits per nucleus necessary to double the NF

  7. RADIATION-INDUCED MICRO-RNA EXPRESSION CHANGES IN PERIPHERAL BLOOD CELLS OF RADIOTHERAPY PATIENTS

    PubMed Central

    Templin, Thomas; Paul, Sunirmal; Amundson, Sally A.; Young, Erik F.; Barker, Christopher A.; Wolden, Suzanne L.; Smilenov, Lubomir B.

    2013-01-01

    Purpose MicroRNAs (miRNAs), a class of noncoding small RNAs that regulate gene expression, are involved in numerous physiologic processes in normal and malignant cells. Our in vivo study measured miRNA and gene expression changes in human blood cells in response to ionizing radiation, to develop miRNA signatures that can be used as biomarkers for radiation exposure. Methods and Materials Blood from 8 radiotherapy patients in complete remission 1 or 2 was collected immediately before and 4 hours after total body irradiation with 1.25 Gy x-rays. Both miRNA and gene expression changes were measured by means of quantitative polymerase chain reaction and microarray hybridization, respectively. Hierarchic clustering, multidimensional scaling, class prediction, and gene ontology analysis were performed to investigate the potential of miRNAs to serve as radiation biomarkers and to elucidate their likely physiologic roles in the radiation response. Results The expression levels of 45 miRNAs were statistically significantly upregulated 4 hours after irradiation with 1.25 Gy x-rays, 27 of them in every patient. Nonirradiated and irradiated samples form separate clusters in hierarchic clustering and multidimensional scaling. Out of 223 differentially expressed genes, 37 were both down-regulated and predicted targets of the upregulated miRNAs. Paired and unpaired miRNA-based classifiers that we developed can predict the class membership of a sample with unknown irradiation status, with accuracies of 100% when all 45 upregulated miRNAs are included. Both miRNA control of and gene involvement in biologic processes such as hemopoiesis and the immune response are increased after irradiation, whereas metabolic processes are underrepresented among all differentially expressed genes and the genes controlled by miRNAs. Conclusions Exposure to ionizing radiation leads to the upregulation of the expression of a considerable proportion of the human miRNAome of peripheral blood cells

  8. Regulatory T Cells Contribute to the Inhibition of Radiation-Induced Acute Lung Inflammation via Bee Venom Phospholipase A2 in Mice

    PubMed Central

    Shin, Dasom; Lee, Gihyun; Sohn, Sung-Hwa; Park, Soojin; Jung, Kyung-Hwa; Lee, Ji Min; Yang, Jieun; Cho, Jaeho; Bae, Hyunsu

    2016-01-01

    Bee venom has long been used to treat various inflammatory diseases, such as rheumatoid arthritis and multiple sclerosis. Previously, we reported that bee venom phospholipase A2 (bvPLA2) has an anti-inflammatory effect through the induction of regulatory T cells. Radiotherapy is a common anti-cancer method, but often causes adverse effects, such as inflammation. This study was conducted to evaluate the protective effects of bvPLA2 in radiation-induced acute lung inflammation. Mice were focally irradiated with 75 Gy of X-rays in the lung and administered bvPLA2 six times after radiation. To evaluate the level of inflammation, the number of immune cells, mRNA level of inflammatory cytokine, and histological changes in the lung were measured. BvPLA2 treatment reduced the accumulation of immune cells, such as macrophages, neutrophils, lymphocytes, and eosinophils. In addition, bvPLA2 treatment decreased inflammasome-, chemokine-, cytokine- and fibrosis-related genes’ mRNA expression. The histological results also demonstrated the attenuating effect of bvPLA2 on radiation-induced lung inflammation. Furthermore, regulatory T cell depletion abolished the therapeutic effects of bvPLA2 in radiation-induced pneumonitis, implicating the anti-inflammatory effects of bvPLA2 are dependent upon regulatory T cells. These results support the therapeutic potential of bvPLA2 in radiation pneumonitis and fibrosis treatments. PMID:27144583

  9. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  10. Increased sensitivity of early apoptotic cells to complement-mediated lysis.

    PubMed

    Attali, Gitit; Gancz, Dana; Fishelson, Zvi

    2004-11-01

    Opsonization of apoptotic cells with complement proteins contributes to their clearance by phagocytes. Little is known about the lytic effects of complement on apoptotic cells. Sensitivity of cells treated with anti-Fas antibody (Jurkat cells), staurosporine or etoposide (Raji cells) to lysis by complement was examined. As shown here, early apoptotic cells are more sensitive to lysis by antibody and complement than control cells. More complement C3 and C9 bound to apoptotic than to control cells, even though antibody binding was similar. Enhanced killing and C3/C9 deposition were blocked by benzyloxy-Val-Ala-Asp-fluoromethylketone, a pan-caspase inhibitor. Complement-mediated lysis of early apoptotic cells was also prevented by inhibitors of caspases 6, 8, 9 or 10. In contrast, caspase inhibitors had no effect on the lysis of non-apoptotic Jurkat and Raji cells. Early apoptotic Jurkat cells were also more sensitive to lysis by the pore formers streptolysin O and melittin. Sensitivity of Jurkat Bcl-2 transfectants to lysis by complement was analyzed. Enhanced Bcl-2 expression was associated with reduced C3 deposition and lower sensitivity to complement-mediated lysis. These results demonstrate that at an early stage in apoptosis, following caspase activation, cells become sensitive to necrotic-type death by complement and other pore formers. Furthermore, they suggest that Bcl-2 is actively protecting Jurkat cells from complement-mediated lysis.

  11. Dinitrophenol Inhibits the Rejoining of Radiation-Induced DNA Breaks by L-Cells

    PubMed Central

    Moss, A. J.; Dalrymple, Glenn V.; Sanders, J. L.; Wilkinson, K. P.; Nash, John C.

    1971-01-01

    The production and rejoining of X-ray-induced single-stranded DNA breaks was studied using the alkaline sucrose density gradient technique and by measuring the disappearance of both 5′ termini and 3′-OH termini using polynucleotide kinase and DNA polymerase, respectively. All studies were conducted using L-cell suspensions irradiated both in the presence and absence of 2,4-dinitrophenol (DNP), an uncoupler of oxidative phosphorylation. Results show that the induction of single-stranded DNA breaks probably includes a nucleolytic component in addition to indirect free radical effects. A greater number of breaks were produced in the absence of DNP, suggesting that depressed adenosine triphosphate (ATP) levels reduce endogenous nucleolytic activity. The rejoining mechanism is enzymatic and requires an available ATP supply for operation. In the presence of DNP no DNA rejoining was observed following 30 min incubation after 10,000 rad. These results suggest that DNA breaks produced may be characterized by 5′-PO4-3′-OH termini and are rejoined by DNA ligase. PMID:5542611

  12. Abdominal {gamma}-Radiation Induces an Accumulation of Function-Impaired Regulatory T Cells in the Small Intestine

    SciTech Connect

    Billiard, Fabienne; Buard, Valerie; Benderitter, Marc; Linard, Christine

    2011-07-01

    Purpose: To assess the frequency and the functional characteristics of one major component of immune tolerance, the CD4{sup +}FoxP3{sup +} regulatory T cells (Tregs) in a mouse model of abdominal irradiation. Methods and Materials: Mice were exposed to a single abdominal dose of {gamma}-radiation (10 Gy). We evaluated small intestine Treg infiltration by Foxp3 immunostaining and the functional suppressive activity of Tregs isolated from mesenteric lymph nodes. Results: Foxp3 immunostaining showed that radiation induced a long-term infiltration of the intestine by Tregs (levels 5.5 times greater than in controls). Co-culture of Tregs from mesenteric lymph nodes with CD4{sup +} effector cells showed that the Tregs had lost their suppressive function. This loss was associated with a significant decrease in the levels of Foxp3, TGF-{beta}, and CTLA-4 mRNA, all required for optimal Treg function. At Day 90 after irradiation, Tregs regained their suppressive activity as forkhead box P3 (Foxp3), transforming growth factor beta (TGF-{beta}), and cytotoxic T-lymphocyte antigen 4 (CTLA-4) expression returned to normal. Analysis of the secretory function of mesenteric lymph node Tregs, activated in vitro with anti-CD3/anti-CD28 Abs, showed that this dysfunction was independent of a defect in interleukin-10 secretion. Conclusion: Radiation caused a long-term accumulation of function-impaired Foxp3{sup +}CD4{sup +} Tregs in the intestine. Our study provides new insights into how radiation affects the immune tolerance in peripheral tissues.

  13. Upregulation of NRF2 through autophagy/ERK 1/2 ameliorates ionizing radiation induced cell death of human osteosarcoma U-2 OS.

    PubMed

    Chen, Ni; Zhang, Rui; Konishi, Teruaki; Wang, Jun

    2017-01-01

    The antioxidative response mediated by transcription factor NRF2 is thought to be a pivotal cellular defense system against various extrinsic stresses. It has been reported that activation of the NRF2 pathway confers cells with resistance to ionizing radiation-induced damage. However, the underlying mechanism remains largely unknown. In the current research, it was found that α-particle radiation has the ability to stimulate NRF2 expression in human osteosarcoma U-2 OS cells. Knockdown of cellular NRF2 level by shRNA-mediated gene silencing decreased the survival rate, increased the micronucleus formation rate and apoptosis rate in irradiated cells. Consistently, knockdown of NRF2 resulted in decreased expression of p65 and Bcl-2, and increased expression of p53 and Bax. Besides, it was observed that increased expression of NRF2 was partially dependent on radiation induced phosphorylation of ERK 1/2. Further results showed that radiation promoted autophagy flux which leads to the enhanced phosphorylation of ERK 1/2, as evidenced by the resultls that knockdown of ATG5 (Autophagy protein 5) gene by shRNA suppressed both radiation induced ERK 1/2 phosphorylation and NRF2 upregulation. Based on these results, it is proposed that attenuation of NRF2 antioxidative pathway can sensitize U-2 OS cells to radiation, where NRF2 antioxidative response is regulated by autophagy mediated activation of ERK 1/2 kinases.

  14. Distinct roles of Ape1 protein, an enzyme involved in DNA repair, in high or low linear energy transfer ionizing radiation-induced cell killing.

    PubMed

    Wang, Hongyan; Wang, Xiang; Chen, Guangnan; Zhang, Xiangming; Tang, Xiaobing; Park, Dongkyoo; Cucinotta, Francis A; Yu, David S; Deng, Xingming; Dynan, William S; Doetsch, Paul W; Wang, Ya

    2014-10-31

    High linear energy transfer (LET) radiation from space heavy charged particles or a heavier ion radiotherapy machine kills more cells than low LET radiation, mainly because high LET radiation-induced DNA damage is more difficult to repair. Relative biological effectiveness (RBE) is the ratio of the effects generated by high LET radiation to low LET radiation. Previously, our group and others demonstrated that the cell-killing RBE is involved in the interference of high LET radiation with non-homologous end joining but not homologous recombination repair. This effect is attributable, in part, to the small DNA fragments (≤40 bp) directly produced by high LET radiation, the size of which prevents Ku protein from efficiently binding to the two ends of one fragment at the same time, thereby reducing non-homologous end joining efficiency. Here we demonstrate that Ape1, an enzyme required for processing apurinic/apyrimidinic (known as abasic) sites, is also involved in the generation of small DNA fragments during the repair of high LET radiation-induced base damage, which contributes to the higher RBE of high LET radiation-induced cell killing. This discovery opens a new direction to develop approaches for either protecting astronauts from exposure to space radiation or benefiting cancer patients by sensitizing tumor cells to high LET radiotherapy.

  15. Gamma-radiation-induced ATM-dependent signalling in human T-lymphocyte leukemic cells, MOLT-4.

    PubMed

    Tichý, Ales; Záskodová, Darina; Rezácová, Martina; Vávrová, Jirina; Vokurková, Doris; Pejchal, Jaroslav; Vilasová, Zdena; Cerman, Jaroslav; Osterreicher, Jan

    2007-01-01

    ATM kinase (ATM) is essential for activation of cell cycle check points and DNA repair in response to ionizing radiation (IR). In this work we studied the molecular mechanisms regulating DNA repair and cell death in human T-lymphocyte leukemic cells, MOLT-4. Apoptosis was evaluated by flow-cytometric detection of annexin V. Early apoptotic cells were determined as sub-G1 cells and late apoptotic cells were determined as APO2.7-positive ones. Proteins involved in ATM signalling pathway were analysed by Western-blotting. We observed a rapid (0.5 h) phosphorylation of ATM declining after 6 h after irradiation by all the doses studied (1.5, 3.0, and 7.5 Gy). Checkpoint kinase-2 (Chk-2) was also phosphorylated after 0.5 h but its phosphorylated form persisted 4, 2, and 1 h after the doses of 1.5, 3.0, and 7.5 Gy, respectively. The amount of p53 protein and its form phosphorylated on Ser-392 increased 1 h after irradiation (1-10 Gy). The lethal dose of 7.5 Gy caused an immediate induction and phosphorylation of p53 after 0.5 h post-irradiation. At the time of phosphorylation of p53, we found simultaneous phosphorylation of the oncoprotein Mdm2 on Ser-166. Neither ATM nor its downstream targets showed a dose-dependent response after 1 h when irradiated by the doses of 1-10 Gy. MOLT-4 cells were very sensitive to the effect of IR. Even low doses, such as 1.5 Gy, induced apoptosis 16 h after irradiation (evaluated according to the cleavage of nuclear lamin B to a 48-kDa fragment). IR-induced molecular signalling after exposure to all the tested doses was triggered by rapid phosphorylation of ATM and Chk-2. Subsequent induction of p53 protein and its phosphorylation was accompanied by concomitant phosphorylation of its negative regulator, oncoprotein Mdm2, and followed by induction of apoptosis.

  16. Arbutin, an intracellular hydroxyl radical scavenger, protects radiation-induced apoptosis in human lymphoma U937 cells.

    PubMed

    Wu, Li-Hua; Li, Peng; Zhao, Qing-Li; Piao, Jin-Lan; Jiao, Yu-Fei; Kadowaki, Makoto; Kondo, Takashi

    2014-11-01

    Ionizing radiation (IR) can generate reactive oxygen species (ROS). Excessive ROS have the potential to damage cellular macromolecules including DNA, proteins, and lipids and eventually lead to cell death. In this study, we evaluated the potential of arbutin, a drug chosen from a series of traditional herbal medicine by measuring intracellular hydroxyl radical scavenging ability in X-irradiated U937 cells. Arbutin (hydroquinone-β-D-glucopyranoside), a naturally occurring glucoside of hydroquinone, has been traditionally used to treat pigmentary disorders. However, there are no reports describing the effect of arbutin on IR-induced apoptosis. We confirmed that arbutin can protect cells from apoptosis induced by X-irradiation. The combination of arbutin and X-irradiation could reduce intracellular hydroxyl radical production and prevent mitochondrial membrane potential loss. It also could down-regulate the expression of phospho-JNK, phospho-p38 in whole cell lysate and activate Bax in mitochondria. Arbutin also inhibits cytochrome C release from mitochondria to cytosol. To verify the role of JNK in X-irradiation-induced apoptosis, the cells were pretreated with a JNK inhibitor, and found that JNK inhibitor could reduce apoptosis induced by X-irradiation. Taken together, our data indicate that arbutin plays an anti-apoptotic role via decreasing intracellular hydroxyl radical production, inhibition of Bax-mitochondria pathway and activation of the JNK/p38 MAPK pathway.

  17. Defining the optimal window for cranial transplantation of human induced pluripotent stem cell-derived cells to ameliorate radiation-induced cognitive impairment.

    PubMed

    Acharya, Munjal M; Martirosian, Vahan; Christie, Lori-Ann; Riparip, Lara; Strnadel, Jan; Parihar, Vipan K; Limoli, Charles L

    2015-01-01

    Past preclinical studies have demonstrated the capability of using human stem cell transplantation in the irradiated brain to ameliorate radiation-induced cognitive dysfunction. Intrahippocampal transplantation of human embryonic stem cells and human neural stem cells (hNSCs) was found to functionally restore cognition in rats 1 and 4 months after cranial irradiation. To optimize the potential therapeutic benefits of human stem cell transplantation, we have further defined optimal transplantation windows for maximizing cognitive benefits after irradiation and used induced pluripotent stem cell-derived hNSCs (iPSC-hNSCs) that may eventually help minimize graft rejection in the host brain. For these studies, animals given an acute head-only dose of 10 Gy were grafted with iPSC-hNSCs at 2 days, 2 weeks, or 4 weeks following irradiation. Animals receiving stem cell grafts showed improved hippocampal spatial memory and contextual fear-conditioning performance compared with irradiated sham-surgery controls when analyzed 1 month after transplantation surgery. Importantly, superior performance was evident when stem cell grafting was delayed by 4 weeks following irradiation compared with animals grafted at earlier times. Analysis of the 4-week cohort showed that the surviving grafted cells migrated throughout the CA1 and CA3 subfields of the host hippocampus and differentiated into neuronal (∼39%) and astroglial (∼14%) subtypes. Furthermore, radiation-induced inflammation was significantly attenuated across multiple hippocampal subfields in animals receiving iPSC-hNSCs at 4 weeks after irradiation. These studies expand our prior findings to demonstrate that protracted stem cell grafting provides improved cognitive benefits following irradiation that are associated with reduced neuroinflammation.

  18. [Direct assay of radiation-induced DNA base lesions to mammalian cells]. Final progress report, September 1, 1991--November 1, 1993

    SciTech Connect

    Not Available

    1993-12-31

    We have successfully developed the GC/MS technique so that an assessment of base damage in mammalian cells can be accomplished. The technique now has a sensitivity that will allow one to perform research in the low dose region suitable for hazards evaluation. The research on the hydrated DNA molecule has been seminal in generating a better understanding of the mechanisms by which low LET radiation induces DNA damage in mammalian cells. Also reported here are (1) the methodology for hydrating and irradiating DNA has been developed, (2) the procedures for identifying and quantitating radiation-induced DNA damage by HPLC and GC/MS have been mastered, (3) an hypotheses that radiation-induced damage in closely associated water molecules can result in DNA damage which is indistinguishable from that caused by direct ionization of the DNA has been generated and supported by experimental data, and (4) mathematical expressions that relate DNA lesion formation to the important parameters in the above hypotheses have been constructed so that the predictions of the hypotheses can now be tested.

  19. Radiation-induced gliomas

    PubMed Central

    Prasad, Gautam; Haas-Kogan, Daphne A.

    2013-01-01

    Radiation-induced gliomas represent a relatively rare but well-characterized entity in the neuro-oncologic literature. Extensive retrospective cohort data in pediatric populations after therapeutic intracranial radiation show a clearly increased risk in glioma incidence that is both patient age- and radiation dose/volume-dependent. Data in adults are more limited but show heightened risk in certain groups exposed to radiation. In both populations, there is no evidence linking increased risk associated with routine exposure to diagnostic radiation. At the molecular level, recent studies have found distinct genetic differences between radiation-induced gliomas and their spontaneously-occurring counterparts. Clinically, there is understandable reluctance on the part of clinicians to re-treat patients due to concern for cumulative neurotoxicity. However, available data suggest that aggressive intervention can lead to improved outcomes in patients with radiation-induced gliomas. PMID:19831840

  20. Gingerol sensitizes TRAIL-induced apoptotic cell death of glioblastoma cells

    SciTech Connect

    Lee, Dae-Hee; Kim, Dong-Wook; Jung, Chang-Hwa; Lee, Yong J.; Park, Daeho

    2014-09-15

    Glioblastoma multiforme (GBM) is the most lethal and aggressive astrocytoma of primary brain tumors in adults. Although there are many clinical trials to induce the cell death of glioblastoma cells, most glioblastoma cells have been reported to be resistant to TRAIL-induced apoptosis. Here, we showed that gingerol as a major component of ginger can induce TRAIL-mediated apoptosis of glioblastoma. Gingerol increased death receptor (DR) 5 levels in a p53-dependent manner. Furthermore, gingerol decreased the expression level of anti-apoptotic proteins (survivin, c-FLIP, Bcl-2, and XIAP) and increased pro-apoptotic protein, Bax and truncate Bid, by generating reactive oxygen species (ROS). We also found that the sensitizing effects of gingerol in TRAIL-induced cell death were blocked by scavenging ROS or overexpressing anti-apoptotic protein (Bcl-2). Therefore, we showed the functions of gingerol as a sensitizing agent to induce cell death of TRAIL-resistant glioblastoma cells. This study gives rise to the possibility of applying gingerol as an anti-tumor agent that can be used for the purpose of combination treatment with TRAIL in TRAIL-resistant glioblastoma tumor therapy. - Highlights: • Most GBM cells have been reported to be resistant to TRAIL-induced apoptosis. • Gingerol enhances the expression level of anti-apoptotic proteins by ROS. • Gingerol enhances TRAIL-induced apoptosis through actions on the ROS–Bcl2 pathway.

  1. The Use of Lectin Histochemistry for Detecting Apoptotic Cells in the Seminiferous Epithelium.

    PubMed

    Seco-Rovira, Vicente; Beltrán-Frutos, Ester; Hernández-Martínez, Jesús; Ferrer, Concepción; Pastor, Luis Miguel

    2017-01-01

    Lectin histochemistry is commonly used to characterize the pattern of glycoconjugates in cells and tissues. Recent studies show that alterations in these glycoconjugates are associated with the entry of cells into apoptosis. A widely used technique for the detection of apoptotic cell death is TUNEL. In this chapter, we study the sensitivity of both techniques to identify apoptotic cells in the testis of photo-inhibited Syrian hamster.

  2. Measurement of phagocytic engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester.

    PubMed

    Aziz, Monowar; Yang, Weng-Lang; Wang, Ping

    2013-01-01

    Considerable interest has emerged towards phagocytosis of apoptotic cells, due to its intricate molecular mechanisms and important regulatory functions in development, homoeostasis, and immune tolerance. Impaired clearance of apoptotic cells leads to immune-mediated disorders. Current quantification methods of the engulfment of apoptotic cells by macrophages are potentially flawed by several limitations. Adherent macrophage populations are overlaid with apoptotic targets in suspension and then co-cultured for a definite period, which may give rise to two different features: (1) engulfed and (2) non-engulfed macrophages that are surface-bound cell populations. Rigorous washing to dislodge surface-bound apoptotic cells before assessment of phagocytosis may lead to loss of phagocytes, thereby skewing the apparent magnitude of the overall phagocytic response. There is a need for simple and reliable methods to clearly determine the internalization of apoptotic cells. In this unit, we demonstrate the use of pHrodo-succinimidyl ester (SE), a pH-sensitive fluorescent dye, to label the apoptotic cells for monitoring the phagocytosis. After engulfment, the intensity of pHrodo light emission will be elevated due to the pH change inside of macrophages. The shift of pHrodo light emission can be detected by a flow cytometer or using a fluorescence microscope.

  3. Apoptotic cells trigger a membrane-initiated pathway to increase ABCA1

    PubMed Central

    Fond, Aaron M.; Lee, Chang Sup; Schulman, Ira G.; Kiss, Robert S.; Ravichandran, Kodi S.

    2015-01-01

    Macrophages clear millions of apoptotic cells daily and, during this process, take up large quantities of cholesterol. The membrane transporter ABCA1 is a key player in cholesterol efflux from macrophages and has been shown via human genetic studies to provide protection against cardiovascular disease. How the apoptotic cell clearance process is linked to macrophage ABCA1 expression is not known. Here, we identified a plasma membrane–initiated signaling pathway that drives a rapid upregulation of ABCA1 mRNA and protein. This pathway involves the phagocytic receptor brain-specific angiogenesis inhibitor 1 (BAI1), which recognizes phosphatidylserine on apoptotic cells, and the intracellular signaling intermediates engulfment cell motility 1 (ELMO1) and Rac1, as ABCA1 induction was attenuated in primary macrophages from mice lacking these molecules. Moreover, this apoptotic cell–initiated pathway functioned independently of the liver X receptor (LXR) sterol–sensing machinery that is known to regulate ABCA1 expression and cholesterol efflux. When placed on a high-fat diet, mice lacking BAI1 had increased numbers of apoptotic cells in their aortic roots, which correlated with altered lipid profiles. In contrast, macrophages from engineered mice with transgenic BAI1 overexpression showed greater ABCA1 induction in response to apoptotic cells compared with those from control animals. Collectively, these data identify a membrane-initiated pathway that is triggered by apoptotic cells to enhance ABCA1 within engulfing phagocytes and with functional consequences in vivo. PMID:26075824

  4. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  5. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death

    PubMed Central

    Matsuzaki-Horibuchi, Shiori; Yasuda, Takeshi; Sakaguchi, Nagako; Yamaguchi, Yoshihiro; Akashi, Makoto

    2015-01-01

    One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries. PMID:25359904

  6. Cell-permeable intrinsic cellular inhibitors of apoptosis protect and rescue intestinal epithelial cells from radiation-induced cell death.

    PubMed

    Matsuzaki-Horibuchi, Shiori; Yasuda, Takeshi; Sakaguchi, Nagako; Yamaguchi, Yoshihiro; Akashi, Makoto

    2015-01-01

    One of the important mechanisms for gastrointestinal (GI) injury following high-dose radiation exposure is apoptosis of epithelial cells. X-linked inhibitor of apoptosis (XIAP) and cellular IAP2 (cIAP2) are intrinsic cellular inhibitors of apoptosis. In order to study the effects of exogenously added IAPs on apoptosis in intestinal epithelial cells, we constructed bacterial expression plasmids containing genes of XIAP (full-length, BIR2 domain and BIR3-RING domain with and without mutations of auto-ubiquitylation sites) and cIAP2 proteins fused to a protein-transduction domain (PTD) derived from HIV-1 Tat protein (TAT) and purified these cell-permeable recombinant proteins. When the TAT-conjugated IAPs were added to rat intestinal epithelial cells IEC6, these proteins were effectively delivered into the cells and inhibited apoptosis, even when added after irradiation. Our results suggest that PTD-mediated delivery of IAPs may have clinical potential, not only for radioprotection but also for rescuing the GI system from radiation injuries.

  7. [Ionizing radiation-induced DNA damage and its repair in human cells]. Progress report, [April 1, 1993--February 28, 1994

    SciTech Connect

    Not Available

    1994-07-01

    The excision of radiation-induced lesions in DNA by a DNA repair enzyme complex, namely the UvrABC nuclease complex, has been investigated. Irradiated DNA was treated with the enzyme complex. DNA fractions were analyzed by gas chromatography/isotope-dilution mass spectrometry. The results showed that a number pyrimidine- and purine-derived lesions in DNA were excised by the UvrABC nuclease complex and that the enzyme complex does not act on radiation-induced DNA lesions as a glycosylase. This means that it does not excise individual base products, but it excises oligomers containing these lesions. A number of pyrimidine-derived lesions that were no substrates for other DNA repair enzymes investigated in our laboratory were substrates for the UvrABC nuclease complex.

  8. Bioactive compounds from crocodile (Crocodylus siamensis) white blood cells induced apoptotic cell death in hela cells.

    PubMed

    Patathananone, Supawadee; Thammasirirak, Sompong; Daduang, Jureerut; Chung, Jing Gung; Temsiripong, Yosapong; Daduang, Sakda

    2016-08-01

    Crocodile (Crocodylus siamensis) white blood cell extracts (WBCex) were examined for anticancer activity in HeLa cell lines using the MTT assay. The percentage viability of HeLa cells significantly deceased after treatment with WBCex in a dose- and time-dependent manner. The IC50 dose was suggested to be approximately 225 μg/mL protein. Apoptotic cell death occurred in a time-dependent manner based on investigation by flow cytometry using annexin V-FITC and PI staining. DAPI nucleic acid staining indicated increased chromatin condensation. Caspase-3, -8 and -9 activities also increased, suggesting the induction of the caspase-dependent apoptotic pathway. Furthermore, the mitochondrial membrane potential (ΔΨm ) of HeLa cells was lost as a result of increasing levels of Bax and reduced levels of Bcl-2, Bcl-XL, Bcl-Xs, and XIAP. The decreased ΔΨm led to the release of cytochrome c and the activation of caspase-9 and -3. Apoptosis-inducing factor translocated into the nuclei, and endonuclease G (Endo G) was released from the mitochondria. These results suggest that anticancer agents in WBCex can induce apoptosis in HeLa cells via both caspase-dependent and -independent pathways. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 986-997, 2016.

  9. Ceramide synthases 2, 5, and 6 confer distinct roles in radiation-induced apoptosis in HeLa cells.

    PubMed

    Mesicek, Judith; Lee, Hyunmi; Feldman, Taya; Jiang, Xuejun; Skobeleva, Anastasia; Berdyshev, Evgeny V; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2010-09-01

    The role of ceramide neo-genesis in cellular stress response signaling is gaining increasing attention with recent progress in elucidating the novel roles and biochemical properties of the ceramide synthase (CerS) enzymes. Selective tissue and subcellular distribution of the six mammalian CerS isoforms, combined with distinct fatty acyl chain length substrate preferences, implicate differential functions of specific ceramide species in cellular signaling. We report here that ionizing radiation (IR) induces de novo synthesis of ceramide to influence HeLa cell apoptosis by specifically activating CerS isoforms 2, 5, and 6 that generate opposing anti- and pro-apoptotic ceramides in mitochondrial membranes. Overexpression of CerS2 resulted in partial protection from IR-induced apoptosis whereas overexpression of CerS5 increased apoptosis in HeLa cells. Knockdown studies determined that CerS2 is responsible for all observable IR-induced C(24:0) CerS activity, and while CerS5 and CerS6 each confer approximately 50% of the C(16:0) CerS baseline synthetic activity, both are required for IR-induced activity. Additionally, co-immunoprecipitation studies suggest that CerS2, 5, and 6 might exist as heterocomplexes in HeLa cells, providing further insight into the regulation of CerS proteins. These data add to the growing body of evidence demonstrating interplay among the CerS proteins in a stress stimulus-, cell type- and subcellular compartment-specific manner.

  10. Phototherapy-treated apoptotic tumor cells induce pro-inflammatory cytokines production in macrophage

    NASA Astrophysics Data System (ADS)

    Lu, Cuixia; Wei, Yanchun; Xing, Da

    2014-09-01

    Our previous studies have demonstrated that as a mitochondria-targeting cancer phototherapy, high fluence low-power laser irradiation (HF-LPLI) induces mitochondrial superoxide anion burst, resulting in oxidative damage to tumor cells. In this study, we further explored the immunological effects of HF-LPLI-induced apoptotic tumor cells. When macrophages were co-incubated with apoptotic cells induced by HF-LPLI, we observed the increased levels of TNF-α secretion and NO production in macrophages. Further experiments showed that NF-κB was activated in macrophages after co-incubation with HF-LPLI-induced apoptotic cells, and inhibition of NF-κB activity by pyrrolidinedithiocarbamic acid (PDTC) reduced the elevated levels of TNF-α secretion and NO production. These data indicate that HF-LPLI-induced apoptotic tumor cells induce the secretion of pro-inflammatory cytokines in macrophages, which may be helpful for better understanding the biological effects of cancer phototherapy.

  11. Isolation of cell type-specific apoptotic bodies by fluorescence-activated cell sorting

    PubMed Central

    Atkin-Smith, Georgia K.; Paone, Stephanie; Zanker, Damien J.; Duan, Mubing; Phan, Than K.; Chen, Weisan; Hulett, Mark D.; Poon, Ivan K. H.

    2017-01-01

    Apoptotic bodies (ApoBDs) are membrane-bound extracellular vesicles that can mediate intercellular communication in physiological and pathological settings. By combining recently developed analytical strategies with fluorescence-activated cell sorting (FACS), we have developed a method that enables the isolation of ApoBDs from cultured cells to 99% purity. In addition, this approach also enables the identification and isolation of cell type-specific ApoBDs from tissue, bodily fluid and blood-derived samples. PMID:28057919

  12. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells.

    PubMed

    Rodríguez-Hernández, A; Navarro-Villarán, E; González, R; Pereira, S; Soriano-De Castro, L B; Sarrias-Giménez, A; Barrera-Pulido, L; Álamo-Martínez, J M; Serrablo-Requejo, A; Blanco-Fernández, G; Nogales-Muñoz, A; Gila-Bohórquez, A; Pacheco, D; Torres-Nieto, M A; Serrano-Díaz-Canedo, J; Suárez-Artacho, G; Bernal-Bellido, C; Marín-Gómez, L M; Barcena, J A; Gómez-Bravo, M A; Padilla, C A; Padillo, F J; Muntané, J

    2015-12-01

    Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.

  13. Helicobacter pylori infection inhibits phagocyte clearance of apoptotic gastric epithelial cells.

    PubMed

    Bimczok, Diane; Smythies, Lesley E; Waites, Ken B; Grams, Jayleen M; Stahl, Richard D; Mannon, Peter J; Peter, Shajan; Wilcox, C Mel; Harris, Paul R; Das, Soumita; Ernst, Peter B; Smith, Phillip D

    2013-06-15

    Increased apoptotic death of gastric epithelial cells is a hallmark of Helicobacter pylori infection, and altered epithelial cell turnover is an important contributor to gastric carcinogenesis. To address the fate of apoptotic gastric epithelial cells and their role in H. pylori mucosal disease, we investigated phagocyte clearance of apoptotic gastric epithelial cells in H. pylori infection. Human gastric mononuclear phagocytes were analyzed for their ability to take up apoptotic epithelial cells (AECs) in vivo using immunofluorescence analysis. We then used primary human gastric epithelial cells induced to undergo apoptosis by exposure to live H. pylori to study apoptotic cell uptake by autologous monocyte-derived macrophages. We show that HLA-DR(+) mononuclear phagocytes in human gastric mucosa contain cytokeratin-positive and TUNEL-positive AEC material, indicating that gastric phagocytes are involved in AEC clearance. We further show that H. pylori both increased apoptosis in primary gastric epithelial cells and decreased phagocytosis of the AECs by autologous monocyte-derived macrophages. Reduced macrophage clearance of apoptotic cells was mediated in part by H. pylori-induced macrophage TNF-α, which was expressed at higher levels in H. pylori-infected, compared with uninfected, gastric mucosa. Importantly, we show that H. pylori-infected gastric mucosa contained significantly higher numbers of AECs and higher levels of nonphagocytosed TUNEL-positive apoptotic material, consistent with a defect in apoptotic cell clearance. Thus, as shown in other autoimmune and chronic inflammatory diseases, insufficient phagocyte clearance may contribute to the chronic and self-perpetuating inflammation in human H. pylori infection.

  14. Oncogenic Properties of Apoptotic Tumor Cells in Aggressive B Cell Lymphoma

    PubMed Central

    Ford, Catriona A.; Petrova, Sofia; Pound, John D.; Voss, Jorine J.L.P.; Melville, Lynsey; Paterson, Margaret; Farnworth, Sarah L.; Gallimore, Awen M.; Cuff, Simone; Wheadon, Helen; Dobbin, Edwina; Ogden, Carol Anne; Dumitriu, Ingrid E.; Dunbar, Donald R.; Murray, Paul G.; Ruckerl, Dominik; Allen, Judith E.; Hume, David A.; van Rooijen, Nico; Goodlad, John R.; Freeman, Tom C.; Gregory, Christopher D.

    2015-01-01

    Summary Background Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically, because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAMs) are often associated with poor prognosis in cancer. We hypothesized that, in progression of malignant disease, constitutive loss of a fraction of the tumor cell population through apoptosis could yield tumor-promoting effects. Results Here, we demonstrate that apoptotic tumor cells promote coordinated tumor growth, angiogenesis, and accumulation of TAMs in aggressive B cell lymphomas. Through unbiased “in situ transcriptomics” analysis—gene expression profiling of laser-captured TAMs to establish their activation signature in situ—we show that these cells are activated to signal via multiple tumor-promoting reparatory, trophic, angiogenic, tissue remodeling, and anti-inflammatory pathways. Our results also suggest that apoptotic lymphoma cells help drive this signature. Furthermore, we demonstrate that, upon induction of apoptosis, lymphoma cells not only activate expression of the tumor-promoting matrix metalloproteinases MMP2 and MMP12 in macrophages but also express and process these MMPs directly. Finally, using a model of malignant melanoma, we show that the oncogenic potential of apoptotic tumor cells extends beyond lymphoma. Conclusions In addition to its profound tumor-suppressive role, apoptosis can potentiate cancer progression. These results have important implications for understanding the fundamental biology of cell death, its roles in malignant disease, and the broader consequences of apoptosis-inducing anti-cancer therapy. PMID:25702581

  15. Adipose Mesenchymal Stem Cell Secretome Modulated in Hypoxia for Remodeling of Radiation-Induced Salivary Gland Damage

    PubMed Central

    An, Hye-Young; Shin, Hyun-Soo; Choi, Jeong-Seok; Kim, Hun Jung

    2015-01-01

    Background and Purpose This study was conducted to determine whether a secretome from mesenchymal stem cells (MSC) modulated by hypoxic conditions to contain therapeutic factors contributes to salivary gland (SG) tissue remodeling and has the potential to improve irradiation (IR)-induced salivary hypofunction in a mouse model. Materials and Methods Human adipose mesenchymal stem cells (hAdMSC) were isolated, expanded, and exposed to hypoxic conditions (O2 < 5%). The hypoxia-conditioned medium was then filtered to a high molecular weight fraction and prepared as a hAdMSC secretome. The hAdMSC secretome was subsequently infused into the tail vein of C3H mice immediately after local IR once a day for seven consecutive days. The control group received equal volume (500 μL) of vehicle (PBS) only. SG function and structural tissue remodeling by the hAdMSC secretome were investigated. Human parotid epithelial cells (HPEC) were obtained, expanded in vitro, and then irradiated and treated with either the hypoxia-conditioned medium or a normoxic control medium. Cell proliferation and IR-induced cell death were examined to determine the mechanism by which the hAdMSC secretome exerted its effects. Results The conditioned hAdMSC secretome contained high levels of GM-CSF, VEGF, IL-6, and IGF-1. Repeated systemic infusion with the hAdMSC secretome resulted in improved salivation capacity and increased levels of salivary proteins, including amylase and EGF, relative to the PBS group. The microscopic structural integrity of SG was maintained and salivary epithelial (AQP-5), endothelial (CD31), myoepithelial (α-SMA) and SG progenitor cells (c-Kit) were successfully protected from radiation damage and remodeled. The hAdMSC secretome strongly induced proliferation of HPEC and led to a significant decrease in cell death in vivo and in vitro. Moreover, the anti-apoptotic effects of the hAdMSC secretome were found to be promoted after hypoxia-preconditioning relative to normoxia

  16. Effect of Apoptotic Cell Recognition on Macrophage Polarization and Mycobacterial Persistence

    PubMed Central

    de Oliveira Fulco, Tatiana; Andrade, Priscila Ribeiro; de Mattos Barbosa, Mayara Garcia; Pinto, Thiago Gomes Toledo; Ferreira, Paula Fernandez; Ferreira, Helen; da Costa Nery, José Augusto; Real, Suzana Côrte; Borges, Valéria Matos; Moraes, Milton Ozório; Sarno, Euzenir Nunes; Sampaio, Elizabeth Pereira

    2014-01-01

    Intracellular Mycobacterium leprae infection modifies host macrophage programming, creating a protective niche for bacterial survival. The milieu regulating cellular apoptosis in the tissue plays an important role in defining susceptible and/or resistant phenotypes. A higher density of apoptotic cells has been demonstrated in paucibacillary leprosy lesions than in multibacillary ones. However, the effect of apoptotic cell removal on M. leprae-stimulated cells has yet to be fully elucidated. In this study, we investigated whether apoptotic cell removal (efferocytosis) induces different phenotypes in proinflammatory (Mϕ1) and anti-inflammatory (Mϕ2) macrophages in the presence of M. leprae. We stimulated Mϕ1 and Mϕ2 cells with M. leprae in the presence or absence of apoptotic cells and subsequently evaluated the M. leprae uptake, cell phenotype, and cytokine pattern in the supernatants. In the presence of M. leprae and apoptotic cells, Mϕ1 macrophages changed their phenotype to resemble the Mϕ2 phenotype, displaying increased CD163 and SRA-I expression as well as higher phagocytic capacity. Efferocytosis increased M. leprae survival in Mϕ1 cells, accompanied by reduced interleukin-15 (IL-15) and IL-6 levels and increased transforming growth factor beta (TGF-β) and IL-10 secretion. Mϕ1 cells primed with M. leprae in the presence of apoptotic cells induced the secretion of Th2 cytokines IL-4 and IL-13 in autologous T cells compared with cultures stimulated with M. leprae or apoptotic cells alone. Efferocytosis did not alter the Mϕ2 cell phenotype or cytokine secretion profile, except for TGF-β. Based on these data, we suggest that, in paucibacillary leprosy patients, efferocytosis contributes to mycobacterial persistence by increasing the Mϕ2 population and sustaining the infection. PMID:25024361

  17. Approaches to augment CAR T-cell therapy by targeting the apoptotic machinery.

    PubMed

    Karlsson, Hannah

    2016-04-15

    Chimaeric antigen receptor (CAR) T-cells have shown impressive results in patients with B-cell leukaemia. Yet, in patients with lymphoma durable responses are still rare and heavy preconditioning required. Apoptosis resistance is considered a hallmark of cancer, often conveyed by a halted apoptosis signalling. Tumours regularly skew the balance of the components of the apoptotic machinery either through up-regulating anti-apoptotic proteins or silencing pro-apoptotic ones. Malignant B-cells frequently up-regulate anti-apoptotic B-cell lymphoma 2 (Bcl-2) family proteins leading to therapy resistance. CAR T-cells kill tumour cells via apoptosis induction and their efficacy may be affected by the level of Bcl-2 family proteins. Hence, there is an interesting possibility to increase the effect of CAR T-cell therapy by combining it with apoptosis inhibitor blockade agents. Compounds that inhibit Bcl-2, B-cell lymphoma extra large (Bcl-xL) and Bcl-2-like protein 2 (Bcl-w), can restore execution of apoptosis in tumour cells or sensitize them to other apoptosis-dependent treatments. Hence, there is a great interest to combine such agents with CAR T-cell therapy to potentiate the effect of CAR T-cell killing. This review will focus on the potential of targeting the apoptotic machinery to sensitize tumour cells to CAR T-cell killing.

  18. Tolerance to apoptotic cells is regulated by indoleamine 2,3-dioxygenase

    PubMed Central

    Ravishankar, Buvana; Liu, Haiyun; Shinde, Rahul; Chandler, Phillip; Baban, Babak; Tanaka, Masato; Munn, David H.; Mellor, Andrew L.; Karlsson, Mikael C. I.; McGaha, Tracy L.

    2012-01-01

    Tolerance to self-antigens present in apoptotic cells is critical to maintain immune-homeostasis and prevent systemic autoimmunity. However, mechanisms that sustain self-tolerance are poorly understood. Here we show that systemic administration of apoptotic cells to mice induced splenic expression of the tryptophan catabolizing enzyme indoleamine 2,3-dioxygenase (IDO). IDO expression was confined to the splenic marginal zone and was abrogated by depletion of CD169+ cells. Pharmacologic inhibition of IDO skewed the immune response to apoptotic cells, resulting in increased proinflammatory cytokine production and increased effector T-cell responses toward apoptotic cell-associated antigens. Presymptomatic lupus-prone MRLlpr/lpr mice exhibited abnormal elevated IDO expression in the marginal zone and red pulp and inhibition of IDO markedly accelerated disease progression. Moreover, chronic exposure of IDO-deficient mice to apoptotic cells induced a lupus-like disease with serum autoreactivity to double-stranded DNA associated with renal pathology and increased mortality. Thus, IDO limits innate and adaptive immunity to apoptotic self-antigens and IDO-mediated regulation inhibits inflammatory pathology caused by systemic autoimmune disease. PMID:22355111

  19. Apoptotic Capacity and Risk of Squamous Cell Carcinoma of the Head and Neck

    PubMed Central

    Liu, Zhensheng; Liu, Hongliang; Han, Peng; Gao, Fengqin; Dahlstrom, Kristina R.; Li, Guojun; Owzar, Kouros; Zevallos, Jose P.; Sturgis, Erich M.; Wei, Qingyi

    2017-01-01

    Background Tobacco smoke and alcohol drinking are the major risk factors for squamous cell carcinoma of the head and neck (SCCHN). Smoking and drinking cause DNA damage leading to apoptosis, and insufficient apoptotic capacity may favor development of cancer because of the dysfunction of removing damaged cells. In the present study, we investigated the association between camptothecin (CPT)-induced apoptotic capacity and risk of SCCHN in a North American population. Methods In a case-control study of 708 SCCHN patients and 685 matched cancer-free controls, we measured apoptotic capacity in cultured peripheral blood lymphocytes (PBLs) in response to in vitro exposure to CPT by using the flow cytometry-based method. Results We found that the mean level of apoptotic capacity in the cases (45.9±23.3%) was significantly lower than that in the controls (49.0±23.1%) (P = 0.002). When we used the median level of apoptotic capacity in the controls as the cutoff value for calculating adjusted odds ratios (ORs), subjects with a reduced apoptotic capacity had an increased risk (adjusted OR = 1.42, 95% confidence interval [CI] = 1.13–1.78, P = 0.002), especially for those who were age ≥57 (1.73, 1.25–2.38, 0.0009), men (1.76, 1.36–2.27, < 0.0001) and ever drinkers (1.67, 1.27–2.21, 0.0003), and these variables significantly interacted with apoptotic capacity (Pinteraction = 0.015, 0.005 and 0.009, respectively). A further fitted prediction model suggested that the inclusion of apoptotic capacity significantly improved in the prediction of SCCHN risk. Conclusion Individuals with a reduced CPT-induced apoptotic capacity may be at an increased risk of developing SCCHN, and apoptotic capacity may be a biomarker for susceptibility to SCCHN. PMID:28033527

  20. Inhibition of radiation-induced apoptosis by dexamethasone in cervical carcinoma cell lines depends upon increased HPV E6/E7

    PubMed Central

    Kamradt, M C; Mohideen, N; Krueger, E; Walter, S; Vaughan, A T M

    2000-01-01

    Through a glucocorticoid-responsive promoter, glucocorticoids can regulate the transcription of the human papillomavirus (HPV) E6 and E7 viral genes which target the tumour suppressor proteins p53 and Rb respectively. In C4-1 cells, the glucocorticoid dexamethasone up-regulated HPV E6/E7 mRNA and decreased radiation-induced apoptosis. In contrast, dexamethasone had no effect on apoptosis of cells that either lack the HPV genome (C33-a) or in which HPV E6/E7 transcription is repressed by dexamethasone (SW756). Irradiated C4-1 cells showed increased p53 expression, while dexamethasone treatment prior to irradiation decreased p53 protein expression. In addition, p21 mRNA was regulated by irradiation and dexamethasone in accordance with the observed changes in p53. Overall, glucocorticoids decreased radiation-induced apoptosis in cervical carcinoma cells which exhibit increased HPV E6/E7 transcription and decreased p53 expression. Therefore, in HPV-infected cervical epithelial cells, p53-dependent apoptosis appears to depend upon the levels of HPV E6/E7 mRNA. © 2000 Cancer Research Campaign PMID:10817508

  1. Cell-Centric View of Apoptosis and Apoptotic Cell Death-Inducing Antitumoral Strategies

    PubMed Central

    Apraiz, Aintzane; Boyano, Maria Dolores; Asumendi, Aintzane

    2011-01-01

    Programmed cell death and especially apoptotic cell death, occurs under physiological conditions and is also desirable under pathological circumstances. However, the more we learn about cellular signaling cascades, the less plausible it becomes to find restricted and well-limited signaling pathways. In this context, an extensive description of pathway-connections is necessary in order to point out the main regulatory molecules as well as to select the most appropriate therapeutic targets. On the other hand, irregularities in programmed cell death pathways often lead to tumor development and cancer-related mortality is projected to continue increasing despite the effort to develop more active and selective antitumoral compounds. In fact, tumor cell plasticity represents a major challenge in chemotherapy and improvement on anticancer therapies seems to rely on appropriate drug combinations. An overview of the current status regarding apoptotic pathways as well as available chemotherapeutic compounds provides a new perspective of possible future anticancer strategies. PMID:24212653

  2. Effect of captopril on radiation-induced TGF-β1 secretion in EA.Hy926 human umbilical vein endothelial cells.

    PubMed

    Wei, Jingni; Xu, Hui; Liu, Yinyin; Li, Baiyu; Zhou, Fuxiang

    2017-02-15

    The pathophysiological mechanism involved in the sustained endothelial secretion of cytokines that leads to fibrosis 6-16 months after radiotherapy remains unclear. Angiotensin II (Ang II) is produced by the endothelium in response to stressing stimuli, like radiation, and may induce the synthesis of TGF-β, a profibrotic cytokine. In this study we tested the hypothesis that captopril, an angiotensin-converting enzyme (ACE) inhibitor, inhibits or attenuates radiation-induced endothelial TGF-β1 secretion. The human endothelial hybrid cell line EA.HY926 was irradiated with split doses of x-rays (28 Gy delivered in 14 fractions of 2 Gy). TGF-β1 mRNA, TNF-α mRNA and TGF-β1 protein levels were evaluated by RT-PCR and western blotting each month until the fifth month post radiation. Ang II was detected using radioimmunoassays, NF-κB activity was examined using EMSA, and western blotting was used to detect the expression of Iκ-Bα. To explore the role of Ang II on radiation-induced TGF-β1 release and Iκ-Bα expression, captopril was added to cultured cells before, during, or after irradiation. Sustained strong expression of TGF-β1 was observed after conventional fractionated irradiation. TNF-α, Ang II, and NF-κB activity were also increased in EA.Hy926 cells after radiation. Captopril decreased Ang II expression, inhibited the NF-κB pathway and reduced TGF-β1 expression. These data suggest that captopril might protect the endothelium from radiation-induced injury.

  3. Suppression of Sclerostin Alleviates Radiation-Induced Bone Loss by Protecting Bone-Forming Cells and Their Progenitors Through Distinct Mechanisms.

    PubMed

    Chandra, Abhishek; Lin, Tiao; Young, Tiffany; Tong, Wei; Ma, Xiaoyuan; Tseng, Wei-Ju; Kramer, Ina; Kneissel, Michaela; Levine, Michael A; Zhang, Yejia; Cengel, Keith; Liu, X Sherry; Qin, Ling

    2017-02-01

    Focal radiotherapy is frequently associated with skeletal damage within the radiation field. Our previous in vitro study showed that activation of Wnt/β-catenin pathway can overcome radiation-induced DNA damage and apoptosis of osteoblastic cells. Neutralization of circulating sclerostin with a monoclonal antibody (Scl-Ab) is an innovative approach for treating osteoporosis by enhancing Wnt/β-catenin signaling in bone. Together with the fact that focal radiation increases sclerostin amount in bone, we sought to determine whether weekly treatment with Scl-Ab would prevent focal radiotherapy-induced osteoporosis in mice. Micro-CT and histomorphometric analyses demonstrated that Scl-Ab blocked trabecular bone structural deterioration after radiation by partially preserving osteoblast number and activity. Consistently, trabecular bone in sclerostin null mice was resistant to radiation via the same mechanism. Scl-Ab accelerated DNA repair in osteoblasts after radiation by reducing the number of γ-H2AX foci, a DNA double-strand break marker, and increasing the amount of Ku70, a DNA repair protein, thus protecting osteoblasts from radiation-induced apoptosis. In osteocytes, apart from using similar DNA repair mechanism to rescue osteocyte apoptosis, Scl-Ab restored the osteocyte canaliculi structure that was otherwise damaged by radiation. Using a lineage tracing approach that labels all mesenchymal lineage cells in the endosteal bone marrow, we demonstrated that radiation damage to mesenchymal progenitors mainly involves shifting their fate to adipocytes and arresting their proliferation ability but not inducing apoptosis, which are different mechanisms from radiation damage to mature bone forming cells. Scl-Ab treatment partially blocked the lineage shift but had no effect on the loss of proliferation potential. Taken together, our studies provide proof-of-principle evidence for a novel use of Scl-Ab as a therapeutic treatment for radiation-induced osteoporosis and

  4. Effect of pretreatment with cysteamine on gamma-radiation-induced sister chromatid exchanges in mouse bone marrow cells in vivo

    SciTech Connect

    Mendiola-Cruz, M.T.; Morales-Ramirez, P.

    1989-04-01

    The effect of pretreatment with cysteamine on gamma-radiation-induced sister chromatid exchanges (SCEs) and on the mitotic index and average generation time was determined. Groups of mice were treated in one of the following regimens: (1) irradiated, (2) treated with cysteamine and irradiated, (3) treated with cysteamine only, or (4) left untreated. Intraperitoneal administration of cysteamine preceding gamma-radiation exposure protected against SCE induction. However, radioprotection was not reflected by change in the mitotic index or in the average generation time. The results suggest that, under the experimental conditions of this study, the SCEs are caused by free radicals produced by gamma radiation, but not the additional damage indices measured.

  5. Interleukin-38 is released from apoptotic cells to limit inflammatory macrophage responses.

    PubMed

    Mora, Javier; Schlemmer, Andrea; Wittig, Ilka; Richter, Florian; Putyrski, Mateusz; Frank, Ann-Christin; Han, Yingying; Jung, Michaela; Ernst, Andreas; Weigert, Andreas; Brüne, Bernhard

    2016-02-17

    Different modes of cell death regulate immunity. Whereas necrotic (necroptotic, pyroptotic) cell death triggers inflammation, apoptosis contributes to its resolution. Interleukin-1 (IL-1) family cytokines are key players in this interaction. A number of IL-1 family cytokines are produced by necrotic cells to induce sterile inflammation. However, release of IL-1 family proteins from apoptotic cells to regulate inflammation was not described. Here we show that IL-38, a poorly characterized IL-1 family cytokine, is produced selectively by human apoptotic cells to limit inflammation. Depletion of IL-38 in apoptotic cells provoked enhanced IL-6 and IL-8 levels and AP1 activation in co-cultured human primary macrophages, subsequently inducing Th17 cell expansion at the expense of IL-10-producing T cells. IL-38 was N-terminally processed in apoptotic cells to generate a mature cytokine with distinct properties. Both full-length and truncated IL-38 bound to X-linked interleukin-1 receptor accessory protein-like 1 (IL1RAPL1). However, whereas the IL-38 precursor induced an increase in IL-6 production by human macrophages, truncated IL-38 reduced IL-6 production by attenuating the JNK/AP1 pathway downstream of IL1RAPL1. In conclusion, we identified a mechanism of apoptotic cell-dependent immune regulation requiring IL-38 processing and secretion, which might be relevant in resolution of inflammation, autoimmunity, and cancer.

  6. Celecoxib Induced Tumor Cell Radiosensitization by Inhibiting Radiation Induced Nuclear EGFR Transport and DNA-Repair: A COX-2 Independent Mechanism

    SciTech Connect

    Dittmann, Klaus H. Mayer, Claus; Ohneseit, Petra A.; Raju, Uma; Andratschke, Nickolaus H.; Milas, Luka; Rodemann, H. Peter

    2008-01-01

    Purpose: The purpose of the study was to elucidate the molecular mechanisms mediating radiosensitization of human tumor cells by the selective cyclooxygenase (COX)-2 inhibitor celecoxib. Methods and Materials: Experiments were performed using bronchial carcinoma cells A549, transformed fibroblasts HH4dd, the FaDu head-and-neck tumor cells, the colon carcinoma cells HCT116, and normal fibroblasts HSF7. Effects of celecoxib treatment were assessed by clonogenic cell survival, Western analysis, and quantification of residual DNA damage by {gamma}H{sub 2}AX foci assay. Results: Celecoxib treatment resulted in a pronounced radiosensitization of A549, HCT116, and HSF7 cells, whereas FaDu and HH4dd cells were not radiosensitized. The observed radiosensitization could neither be correlated with basal COX-2 expression pattern nor with basal production of prostaglandin E2, but was depended on the ability of celecoxib to inhibit basal and radiation-induced nuclear transport of epidermal growth factor receptor (EGFR). The nuclear EGFR transport was strongly inhibited in A549-, HSF7-, and COX-2-deficient HCT116 cells, which were radiosensitized, but not in FaDu and HH4dd cells, which resisted celecoxib-induced radiosensitization. Celecoxib inhibited radiation-induced DNA-PK activation in A549, HSF7, and HCT116 cells, but not in FaDu and HH4dd cells. Consequentially, celecoxib increased residual {gamma}H2AX foci after irradiation, demonstrating that inhibition of DNA repair has occurred in responsive A549, HCT116, and HSF7 cells only. Conclusions: Celecoxib enhanced radiosensitivity by inhibition of EGFR-mediated mechanisms of radioresistance, a signaling that was independent of COX-2 activity. This novel observation may have therapeutic implications such that COX-2 inhibitors may improve therapeutic efficacy of radiation even in patients whose tumor radioresistance is not dependent on COX-2.

  7. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    SciTech Connect

    Matthews, Q; Lum, JJ; Isabelle, M; Harder, S; Jirasek, A; Brolo, AG

    2014-08-15

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.

  8. Apoptosis in Cellular Society: Communication between Apoptotic Cells and Their Neighbors.

    PubMed

    Kawamoto, Yuhei; Nakajima, Yu-Ichiro; Kuranaga, Erina

    2016-12-20

    Apoptosis is one of the cell-intrinsic suicide programs and is an essential cellular behavior for animal development and homeostasis. Traditionally, apoptosis has been regarded as a cell-autonomous phenomenon. However, recent in vivo genetic studies have revealed that apoptotic cells actively influence the behaviors of surrounding cells, including engulfment, proliferation, and production of mechanical forces. Such interactions can be bidirectional, and apoptosis is non-autonomously induced in a cellular community. Of note, it is becoming evident that active communication between apoptotic cells and living cells contributes to physiological processes during tissue remodeling, regeneration, and morphogenesis. In this review, we focus on the mutual interactions between apoptotic cells and their neighbors in cellular society and discuss issues relevant to future studies of apoptosis.

  9. Apoptosis in Cellular Society: Communication between Apoptotic Cells and Their Neighbors

    PubMed Central

    Kawamoto, Yuhei; Nakajima, Yu-ichiro; Kuranaga, Erina

    2016-01-01

    Apoptosis is one of the cell-intrinsic suicide programs and is an essential cellular behavior for animal development and homeostasis. Traditionally, apoptosis has been regarded as a cell-autonomous phenomenon. However, recent in vivo genetic studies have revealed that apoptotic cells actively influence the behaviors of surrounding cells, including engulfment, proliferation, and production of mechanical forces. Such interactions can be bidirectional, and apoptosis is non-autonomously induced in a cellular community. Of note, it is becoming evident that active communication between apoptotic cells and living cells contributes to physiological processes during tissue remodeling, regeneration, and morphogenesis. In this review, we focus on the mutual interactions between apoptotic cells and their neighbors in cellular society and discuss issues relevant to future studies of apoptosis. PMID:27999411

  10. Apoptotic effects of salinomycin on human ovarian cancer cell line (OVCAR-3).

    PubMed

    Kaplan, Fuat; Teksen, Fulya

    2016-03-01

    In this study, we studied the apoptotic and cytotoxic effects of salinomycin on human ovarian cancer cell line (OVCAR-3) as salinomycin is known as a selectively cancer stem cell killer agent. We used immortal human ovarian epithelial cell line (IHOEC) as control group. Ovarian cancer cells and ovarian epithelial cells were treated by different concentrations of salinomycin such as 0.1, 1, and 40 μM and incubated for 24, 48, and 72 h. Dimethylthiazol (MTT) cell viability assay was performed to determine cell viability and toxicity. On the other hand, the expression levels of some of the apoptosis-related genes, namely anti-apoptotic Bcl-2, apoptotic Bax, and Caspase-3 were determined by quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, Caspase-3 protein level was also determined. As a result, we concluded that incubation of human OVCAR-3 by 0.1 μM concentration of salinomycin for 24 h killed 40 % of the cancer cells by activating apoptosis but had no effect on normal cells. The apoptotic Bax gene expression was upregulated but anti-apoptotic Bcl-2 gene expression was downregulated. Active Caspase-3 protein level was increased significantly (p < 0.05).

  11. Paeoniflorin protects human EA.hy926 endothelial cells against gamma-radiation induced oxidative injury by activating the NF-E2-related factor 2/heme oxygenase-1 pathway.

    PubMed

    Yu, Jing; Zhu, Xiaoyun; Qi, Xin; Che, Juanjuan; Cao, Bangwei

    2013-04-26

    Pulmonary endothelial cells have been demonstrated to have a critical role in the pathogenesis of radiation-induced lung injury. Our preliminary experiments indicated that paeoniflorin protected human EA.hy926 endothelial cells from radiation-induced oxidative injury. This study was designed to confirm the protective effect of paeoniflorin against radiation-induced endothelial cellular damage and to elucidate the underlying mechanisms. Preincubation of EA.hy926 cells with paeoniflorin before γ-radiation resulted in significant inhibition of apoptosis, a decrease in mitochondrial membrane potential and enhanced cell viability. In particular, we showed that paeoniflorin significantly reduced the formation of intracellular reactive oxygen species (ROS), the level of malondialdehyde (MDA) and lactate dehydrogenase (LDH) leakage, and enhanced production of the endogenous antioxidants, glutathione (GSH) and superoxide dismutase (SOD) in EA.hy926 cells. Treatment of these cells with paeoniflorin significantly induced HO-1 expression. Moreover, paeoniflorin promoted the nuclear translocation of nuclear factor erythroid 2 related factor-2 (Nrf-2). The paeoniflorin-induced HO-1 expression was abrogated by Nrf2 siRNA. Furthermore, inhibition of HO-1 with zinc protoporphyrin IX (ZNPP) significantly reversed the protective effect of paeoniflorin against radiation-induced damage in EA.hy926 cells. Our findings confirmed that paeoniflorin protected EA.hy926 cells against radiation-induced injury through the Nrf2/HO-1 pathway.

  12. Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells.

    PubMed

    Ordoñez, Raquel; Fernández, Anna; Prieto-Domínguez, Néstor; Martínez, Laura; García-Ruiz, Carmen; Fernández-Checa, José C; Mauriz, José L; González-Gallego, Javier

    2015-09-01

    Autophagy is a process that maintains homeostasis during stress, although it also contributes to cell death under specific contexts. Ceramides have emerged as important effectors in the regulation of autophagy, mediating the crosstalk with apoptosis. Melatonin induces apoptosis of cancer cells; however, its role in autophagy and ceramide metabolism has yet to be clearly elucidated. This study was aimed to evaluate the effect of melatonin administration on autophagy and ceramide metabolism and its possible link with melatonin-induced apoptotic cell death in hepatocarcinoma (HCC) cells. Melatonin (2 mm) transiently induced autophagy in HepG2 cells through JNK phosphorylation, characterized by increased Beclin-1 expression, p62 degradation, and LC3II and LAMP-2 colocalization, which translated in decreased cell viability. Moreover, ATG5 silencing sensitized HepG2 cells to melatonin-induced apoptosis, suggesting a dual role of autophagy in cell death. Melatonin enhanced ceramide levels through both de novo synthesis and acid sphingomyelinase (ASMase) stimulation. Serine palmitoyltransferase (SPT) inhibition with myriocin prevented melatonin-induced autophagy and ASMase inhibition with imipramine-impaired autophagy flux. However, ASMase inhibition partially protected HepG2 cells against melatonin, while SPT inhibition significantly enhanced cell death. Findings suggest a crosstalk between SPT-mediated ceramide generation and autophagy in protecting against melatonin, while specific ASMase-induced ceramide production participates in melatonin-mediated cell death. Thus, dual blocking of SPT and autophagy emerges as a potential strategy to potentiate the apoptotic effects of melatonin in liver cancer cells.

  13. Elimination of Pseudomonas aeruginosa through Efferocytosis upon Binding to Apoptotic Cells

    PubMed Central

    Arias, Paula; Kierbel, Arlinet

    2016-01-01

    For opportunistic pathogens such as Pseudomonas aeruginosa, the mucosal barrier represents a formidable challenge. Infections develop only in patients with altered epithelial barriers. Here, we showed that P. aeruginosa interacts with a polarized epithelium, adhering almost exclusively at sites of multi-cellular junctions. In these sites, numerous bacteria attach to an extruded apoptotic cell or apoptotic body. This dead cell tropism is independent of the type of cell death, as P. aeruginosa also binds to necrotic cells. We further showed that P. aeruginosa is internalized through efferocytosis, a process in which surrounding epithelial cells engulf and dispose of extruded apoptotic cells. Intracellularly, along with apoptotic cell debris, P. aeruginosa inhabits an efferocytic phagosome that acquires lysosomal features, and is finally killed. We propose that elimination of P. aeruginosa through efferocytosis is part of a host defense mechanism. Our findings could be relevant for the study of cystic fibrosis, which is characterized by an exacerbated number of apoptotic cells and ineffective efferocytosis. PMID:27977793

  14. The Mannose Receptor Is Involved in the Phagocytosis of Mycobacteria-Induced Apoptotic Cells

    PubMed Central

    2016-01-01

    Upon Mycobacterium tuberculosis infection, macrophages may undergo apoptosis, which has been considered an innate immune response. The pathways underlying the removal of dead cells in homeostatic apoptosis have been extensively studied, but little is known regarding how cells that undergo apoptotic death during mycobacterial infection are removed. This study shows that macrophages induced to undergo apoptosis with mycobacteria cell wall proteins are engulfed by J-774A.1 monocytic cells through the mannose receptor. This demonstration was achieved through assays in which phagocytosis was inhibited with a blocking anti-mannose receptor antibody and with mannose receptor competitor sugars. Moreover, elimination of the mannose receptor by a specific siRNA significantly diminished the expression of the mannose receptor and the phagocytosis of apoptotic cells. As shown by immunofluorescence, engulfed apoptotic bodies are initially located in Rab5-positive phagosomes, which mature to express the phagolysosome marker LAMP1. The phagocytosis of dead cells triggered an anti-inflammatory response with the production of TGF-β and IL-10 but not of the proinflammatory cytokines IL-12 and TNF-α. This study documents the previously unreported participation of the mannose receptor in the removal of apoptotic cells in the setting of tuberculosis (TB) infection. The results challenge the idea that apoptotic cell phagocytosis in TB has an immunogenic effect. PMID:27413759

  15. Relaxin has anti-apoptotic effects on human trophoblast-derived HTR-8/SV neo cells.

    PubMed

    Lodhi, Romana S Z; Nakabayashi, Koji; Suzuki, Kaho; Yamada, Ai Y; Hazama, Rhoichi; Ebina, Yasuhiko; Yamada, Hideto

    2013-12-01

    The study was conducted to evaluate the effects of human relaxin on apoptosis in the human trophoblast derived HTR-8/SV neo cell line, which is a possible model of human extravillous trophoblasts (EVTs). HTR-8/SV neo cells, cultured in phenol red free RPMI1640 medium, were treated with different doses of human recombinant (rH2) relaxin in serum-deprived conditions. RT-PCR was used for evaluating relaxin receptor: RXFP1 and RXFP2 expression in HTR-8/SV neo cells. The cell death was examined by TUNEL assay. Furthermore, we investigated caspase-3, cleaved PARP and Bcl-2 expressions by Western blot analysis to recognize the translational effects of anti-apoptotic and pro-apoptotic proteins. RXFP1 and RXFP2 mRNA expression was observed in HTR-8/SV neo cells. Compared with untreated control cultures, treatment with rH2 relaxin, decreased TUNEL-positive rate in HTR-8/SV neo cells was observed. Western blot analysis revealed that treatment with rH2 relaxin decreased the expression of caspase-3 and cleaved PARP, but in contrast increased Bcl-2 expression in those cells. These results suggest that rH2 relaxin has anti-apoptotic effects on HTR8/SV neo cells by decreasing pro-apoptotic caspase-3 and cleaved PARP expression and up-regulating anti-apoptotic Bcl-2 expression.

  16. Radiation-induced DNA damage in canine hemopoietic cells and stromal cells as measured by the comet assay

    SciTech Connect

    Kreja, L.; Selig, C.; Plappert, U.; Nothdurft, W.

    1996-12-31

    Stromal cell progenitors (fibroblastoid colony-forming unit; CFU-Fs) are representative of the progenitor cell population of the hemopoietic microenvironment in bone marrow (BM). Previous studies of the radiation dose-effect relationships for colony formation have shown that canine CFU-Fs are relatively radioresistant as characterized by a D{sub 0} value of about 2.4 Gy. In contrast, hemopoietic progenitors are particularly radiosensitive (D{sub 0} values = 0.12-0.60 Gy). In the present study, the alkaline single-cell gel electrophoresis technique for the in situ quantitation of DNA strand breaks and alkalilabile site was employed. Canine buffy coat cells from BM aspirates and cells harvested from CFU-F colonies or from mixed populations of adherent BM stromal cell (SC) layers were exposed to increasing doses of X-rays, embedded in agarose gel on slides, lysed with detergents, and placed in an electric field. DNA migrating from single cells in the gel was made visible as {open_quotes}comets{close_quotes} by ethidium bromide staining. Immediate DNA damage was much less in cultured stromal cells than in hemopoietic cells in BM aspirates. These results suggest that the observed differences in clonogenic survival could be partly due to differences in the type of the initial DNA damage between stromal cells and hemopoietic cells. 37 refs., 2 figs., 1 tab.

  17. Impaired Clearance of Apoptotic Cells in Chronic Inflammatory Diseases: Therapeutic Implications

    PubMed Central

    Szondy, Zsuzsa; Garabuczi, Éva; Joós, Gergely; Tsay, Gregory J.; Sarang, Zsolt

    2014-01-01

    In healthy individuals, billions of cells die by apoptosis every day. Removal of the dead cells by phagocytosis (a process called efferocytosis) must be efficient to prevent secondary necrosis and the consequent release of pro-inflammatory cell contents that damages the tissue environment and provokes autoimmunity. In addition, detection and removal of apoptotic cells generally induces an anti-inflammatory response. As a consequence improper clearance of apoptotic cells, being the result of either genetic anomalies and/or a persistent disease state, contributes to the establishment and progression of a number of human chronic inflammatory diseases such as autoimmune and neurological disorders, inflammatory lung diseases, obesity, type 2 diabetes, or atherosclerosis. During the past decade, our knowledge about the mechanism of efferocytosis has significantly increased, providing therapeutic targets through which impaired phagocytosis of apoptotic cells and the consequent inflammation could be influenced in these diseases. PMID:25136342

  18. Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.

    1995-01-01

    Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.

  19. BRCA1, FANCD2 and Chk1 are potential molecular targets for the modulation of a radiation-induced DNA damage response in bystander cells.

    PubMed

    Burdak-Rothkamm, Susanne; Rothkamm, Kai; McClelland, Keeva; Al Rashid, Shahnaz T; Prise, Kevin M

    2015-01-28

    Radiotherapy is an important treatment option for many human cancers. Current research is investigating the use of molecular targeted drugs in order to improve responses to radiotherapy in various cancers. The cellular response to irradiation is driven by both direct DNA damage in the targeted cell and intercellular signalling leading to a broad range of bystander effects. This study aims to elucidate radiation-induced DNA damage response signalling in bystander cells and to identify potential molecular targets to modulate the radiation induced bystander response in a therapeutic setting. Stalled replication forks in T98G bystander cells were visualised via bromodeoxyuridine (BrdU) nuclear foci detection at sites of single stranded DNA. γH2AX co-localised with these BrdU foci. BRCA1 and FANCD2 foci formed in T98G bystander cells. Using ATR mutant F02-98 hTERT and ATM deficient GM05849 fibroblasts it could be shown that ATR but not ATM was required for the recruitment of FANCD2 to sites of replication associated DNA damage in bystander cells whereas BRCA1 bystander foci were ATM-dependent. Phospho-Chk1 foci formation was observed in T98G bystander cells. Clonogenic survival assays showed moderate radiosensitisation of directly irradiated cells by the Chk1 inhibitor UCN-01 but increased radioresistance of bystander cells. This study identifies BRCA1, FANCD2 and Chk1 as potential targets for the modulation of radiation response in bystander cells. It adds to our understanding of the key molecular events propagating out-of-field effects of radiation and provides a rationale for the development of novel molecular targeted drugs for radiotherapy optimisation.

  20. Sterile inflammation of endothelial cell-derived apoptotic bodies is mediated by interleukin-1α

    PubMed Central

    Berda-Haddad, Yaël; Robert, Stéphane; Salers, Paul; Zekraoui, Leila; Farnarier, Catherine; Dinarello, Charles A.; Dignat-George, Françoise; Kaplanski, Gilles

    2011-01-01

    Sterile inflammation resulting from cell death is due to the release of cell contents normally inactive and sequestered within the cell; fragments of cell membranes from dying cells also contribute to sterile inflammation. Endothelial cells undergoing stress-induced apoptosis release membrane microparticles, which become vehicles for proinflammatory signals. Here, we show that stress-activated endothelial cells release two distinct populations of particles: One population consists of membrane microparticles (<1 μm, annexin V positive without DNA and no histones) and another larger (1–3 μm) apoptotic body-like particles containing nuclear fragments and histones, representing apoptotic bodies. Contrary to present concepts, endothelial microparticles do not contain IL-1α and do not induce neutrophilic chemokines in vitro. In contrast, the large apoptotic bodies contain the full-length IL-1α precursor and the processed mature form. In vitro, these apoptotic bodies induce monocyte chemotactic protein-1 and IL-8 chemokine secretion in an IL-1α–dependent but IL-1β–independent fashion. Injection of these apoptotic bodies into the peritoneal cavity of mice induces elevated serum neutrophil-inducing chemokines, which was prevented by cotreatment with the IL-1 receptor antagonist. Consistently, injection of these large apoptotic bodies into the peritoneal cavity induced a neutrophilic infiltration that was prevented by IL-1 blockade. Although apoptosis is ordinarily considered noninflammatory, these data demonstrate that nonphagocytosed endothelial apoptotic bodies are inflammatory, providing a vehicle for IL-1α and, therefore, constitute a unique mechanism for sterile inflammation. PMID:22143786

  1. FSAP-mediated nucleosome release from late apoptotic cells is inhibited by autoantibodies present in SLE.

    PubMed

    Marsman, Gerben; Stephan, Femke; de Leeuw, Karina; Bulder, Ingrid; Ruinard, Jessica T; de Jong, Jan; Westra, Johanna; Bultink, Irene E M; Voskuyl, Alexandre E; Aarden, Lucien A; Luken, Brenda M; Kallenberg, Cees G M; Zeerleder, Sacha

    2016-03-01

    Inefficient clearance of apoptotic cells and the subsequent exposure of the immune system to nuclear contents are crucially involved in the pathogenesis of systemic lupus erythematosus (SLE). Factor VII-activating protease (FSAP) is activated in serum upon contact with dead cells, and releases nucleosomes from late apoptotic cells into the extracellular environment. We investigated whether FSAP-mediated nucleosome release from late apoptotic cells is affected in SLE patients. Nucleosome release in sera of 27 SLE patients and 30 healthy controls was investigated by incubating late apoptotic Jurkat cells with serum and analyzing the remaining DNA content by flow cytometry. We found that nucleosome release in sera of SLE patients with high disease activity was significantly decreased when compared with that in SLE sera obtained during low disease activity or from healthy individuals. Upon removal of IgG/IgM antibodies from SLE sera, nucleosome release was restored. Similarly, monoclonal antinuclear antibodies inhibited nucleosome release in healthy donor serum or by plasma-purified FSAP. This inhibition was lost when Fab fragments were used, suggesting that antigen cross-linking is involved. In conclusion, FSAP-mediated nucleosome release from late apoptotic cells is greatly impaired in SLE patient sera, possibly hampering the clearance of these cells and thereby propagating inflammation.

  2. Apico-basal forces exerted by apoptotic cells drive epithelium folding.

    PubMed

    Monier, Bruno; Gettings, Melanie; Gay, Guillaume; Mangeat, Thomas; Schott, Sonia; Guarner, Ana; Suzanne, Magali

    2015-02-12

    Epithelium folding is a basic morphogenetic event that is essential in transforming simple two-dimensional epithelial sheets into three-dimensional structures in both vertebrates and invertebrates. Folding has been shown to rely on apical constriction. The resulting cell-shape changes depend either on adherens junction basal shift or on a redistribution of myosin II, which could be driven by mechanical signals. Yet the initial cellular mechanisms that trigger and coordinate cell remodelling remain largely unknown. Here we unravel the active role of apoptotic cells in initiating morphogenesis, thus revealing a novel mechanism of epithelium folding. We show that, in a live developing tissue, apoptotic cells exert a transient pulling force upon the apical surface of the epithelium through a highly dynamic apico-basal myosin II cable. The apoptotic cells then induce a non-autonomous increase in tissue tension together with cortical myosin II apical stabilization in the surrounding tissue, eventually resulting in epithelium folding. Together our results, supported by a theoretical biophysical three-dimensional model, identify an apoptotic myosin-II-dependent signal as the initial signal leading to cell reorganization and tissue folding. This work further reveals that, far from being passively eliminated as generally assumed (for example, during digit individualization), apoptotic cells actively influence their surroundings and trigger tissue remodelling through regulation of tissue tension.

  3. Preventive efficacy of hydroalcoholic extract of Cymbopogon citratus against radiation-induced DNA damage on V79 cells and free radical scavenging ability against radicals generated in vitro.

    PubMed

    Rao, B S S; Shanbhoge, R; Rao, B N; Adiga, S K; Upadhya, D; Aithal, B K; Kumar, M R S

    2009-04-01

    This study presents the findings of free radical scavenging and antigenotoxic effect of hydroalcoholic extract of Cymbopogon citratus (CCE). The CCE at a concentration of 60 microg/mL resulted in a significant scavenging ability of 2,2-diphenyl-2-picryl hydrazyl (DPPH; (85%), 2,2-azinobis (3-ethyl benzothiazoline-6-sulphonic acid) (ABTS; 77%), hydroxyl (70%), superoxide (76%), nitric oxide (78%) free radicals generated using in vitro and also a moderate anti-lipid peroxidative effect (57%). Further, the radiation-induced antigenotoxic potential of CCE was assessed in Chinese hamster lung fibroblast cells (V79) using micronucleus assay. The CCE resulted in a dose-dependent decrease in the yield of radiation-induced micronuclei, with a maximum effect at 125 microg/mL CCE for 1 h before 2 Gy of radiation. Similarly, there was a significant (P < 0.05-0.0001) decrease in percentage of micronuclei when V79 cells were treated with optimal dose of CCE (125 microg/mL) before exposure to different doses of gamma radiation, that is, 0.5-4 Gy, compared with radiation alone groups. The results of the micronucleus study indicated antigenotoxic effect demonstrating the radioprotective potential of CCE and, which may partly due to its and antioxidant capacity as it presented its ability to scavenge various free radicals in vitro and anti-lipid peroxidative potential.

  4. Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Brauchle, Eva; Thude, Sibylle; Brucker, Sara Y.; Schenke-Layland, Katja

    2014-04-01

    Although apoptosis and necrosis have distinct features, the identification and discrimination of apoptotic and necrotic cell death in vitro is challenging. Immunocytological and biochemical assays represent the current gold standard for monitoring cell death pathways; however, these standard assays are invasive, render large numbers of cells and impede continuous monitoring experiments. In this study, both room temperature (RT)-induced apoptosis and heat-triggered necrosis were analyzed in individual Saos-2 and SW-1353 cells by utilizing Raman microspectroscopy. A targeted analysis of defined cell death modalities, including early and late apoptosis as well as necrosis, was facilitated based on the combination of Raman spectroscopy with fluorescence microscopy. Spectral shifts were identified in the two cell lines that reflect biochemical changes specific for either RT-induced apoptosis or heat-mediated necrosis. A supervised classification model specified apoptotic and necrotic cell death based on single cell Raman spectra. To conclude, Raman spectroscopy allows a non-invasive, continuous monitoring of cell death, which may help shedding new light on complex pathophysiological or drug-induced cell death processes.

  5. Prevention of ultraviolet radiation-induced suppression of accessory cell function of Langerhans cells by Aloe vera gel components.

    PubMed

    Lee, C K; Han, S S; Mo, Y K; Kim, R S; Chung, M H; Park, Y I; Lee, S K; Kim, Y S

    1997-10-01

    The active components of Aloe vera gel that can prevent ultraviolet B (UVB)-induced suppression of accessory cell function of Langerhans cells (LC) were purified by activity-guided sequential fractionation followed by in vitro functional assay. The functional assay was based on the fact that exposure of freshly isolated murine epidermal cells (EC) to UVB radiation resulted in impairment of accessory cell function of LC, as measured by their ability to support anti-CD3 monoclonal antibody (mAb)-primed T-cell mitogenesis. This UVB-suppressed LC accessory cell function was prevented by addition of partially purified Aloe gel components to cultures of UVB-irradiated EC. The Aloe gel components appeared to prevent events occurring within the first 24 h after UVB irradiation that lead to the impairment of accessory cell function. The Aloe gel components did not cause proliferation of anti-CD3 mAb-primed T-cells, nor did induce proliferation of normal EC. The activity-guided final purification of Aloe gel components resulted in the isolation of two components. Both of the components were small molecular weight (MW) substances with an apparent MW of less than 1,000 Da but different from each other in net charge characteristics at pH 7.4. These results suggest that Aloe vera gel contains at least two small molecular weight immunomodulators that may prevent UVB-induced immune suppression in the skin.

  6. Plasmacytoid Dendritic Cells Respond Directly to Apoptotic Cells by Secreting Immune Regulatory IL-10 or IFN-α

    PubMed Central

    Simpson, Joanne; Miles, Katherine; Trüb, Marta; MacMahon, Roisin; Gray, Mohini

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) play a pivotal role in driving the autoimmune disease systemic lupus erythematosus, via the secretion of IFN-α in response to nuclear self-antigens complexed with autoantibodies. Apoptotic cells, generated at sites of inflammation or secondary lymphoid organs, are exposed to activated pDCs and also express the same nuclear antigens on their cell surface. Here, we show that in the absence of autoantibodies, activated pDCs directly respond to apoptotic cell-expressed chromatin complexes by secreting IL-10 and IL-6, which also induces T cells to secrete IL-10. Conversely, when activated by the viral mimetic CpG-A, apoptotic cells enhance their secretion of IFN-α. This study demonstrates that activated pDCs respond directly to apoptotic cells and may maintain tolerance via IL-10, or promote inflammation through secretion of IFN-α, depending on the inflammatory context. PMID:28018356

  7. Thymol, a naturally occurring monocyclic dietary phenolic compound protects Chinese hamster lung fibroblasts from radiation-induced cytotoxicity.

    PubMed

    Archana, P R; Nageshwar Rao, B; Ballal, Mamatha; Satish Rao, B S

    2009-01-01

    The effect of thymol (TOH), a dietary compound was investigated for its ability to protect against radiation-induced cytotoxicity in Chinese hamster lung fibroblast (V79) cells growing in vitro. Treatment of V79 cells with 25 microg/ml of TOH prior to 10 Gy gamma radiation resulted increase in the cell viability than that of radiation alone as evaluated by MTT assay. Similarly, there was a significant increase in the surviving fraction observed with 25 microg/ml of TOH administered 1h prior to graded doses of gamma radiation. Further, 25 microg/ml TOH treatment before irradiation significantly decreased the percentage of radiation-induced apoptotic cells (sub-G(1) population) analyzed by flow cytometry as well as DNA ladder assay. TOH was found to inhibit various free radicals generated in vitro, viz., DPPH, O(2), ABTS(+) and OH in a concentration dependent manner. TOH also inhibited the radiation-induced decrease in intracellular glutathione, superoxide dismutase and catalase enzyme levels in V79 cells accompanied by the reduction in lipid peroxides. Our study demonstrated antagonistic potential of TOH against radiation-induced oxidative stress, lipid peroxidation resulting in increased cell viability.

  8. Low concentration of exogenous carbon monoxide protects mammalian cells against proliferation induced by radiation-induced bystander effect.

    PubMed

    Tong, Liping; Yu, K N; Bao, Lingzhi; Wu, Wenqing; Wang, Hongzhi; Han, Wei

    2014-01-01

    Radiation-induced bystander effect (RIBE) has been proposed to have tight relationship with the irradiation-caused secondary cancers beyond the irradiation-treated area after radiotherapy. Our previous studies demonstrated a protective effect of low concentration carbon monoxide (CO) on the genotoxicity of RIBE after α-particle irradiation. In the present work, a significant inhibitory effect of low-dose exogenous CO, generated by tricarbonyldichlororuthenium (II) dimer [CO-releasing molecule (CORM-2)], on both RIBE-induced proliferation and chromosome aberration was observed. Further studies on the mechanism revealed that the transforming growth factor β1/nitric oxide (NO) signaling pathway, which mediated RIBE signaling transduction, could be modulated by CO involved in the protective effects. Considering the potential of exogenous CO in clinical applications and its protective effect on RIBE, the present work aims to provide a foundation for potential application of CO in radiotherapy.

  9. Role of neurotensin in radiation-induced hypothermia in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H. )

    1991-05-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin.

  10. Effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 pathway.

    PubMed

    Zhang, Song-An; Niyazi, Hu-Er-Xi-Dan; Hong, Wen; Tuluwengjiang, Gu-Li-Xian; Zhang, Lei; Zhang, Yang; Su, Wei-Peng; Bao, Yong-Xing

    2017-03-01

    This study aimed to investigate the effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 signaling pathway. A total of 43 adult female Wistar rats were selected and injected with HeLa cells in the caudal vein to construct a rat model of cervical cancer. All model rats were randomly divided into the radiotherapy group ( n = 31) and the control group ( n = 12). The immunophenotype of Treg cells was detected by the flow cytometry. The protein expressions of EBI3, PD-1, and PD-L1 in cervical cancer tissues were tested by the streptavidin-peroxidase method. HeLa cells in the logarithmic growth phase were divided into four groups: the blank, the negative control group, the EBI3 mimics group, and the EBI3 inhibitors group. Western blotting was used to detect PD-1 and PD-L1 protein expressions. MTT assay was performed to measure the proliferation of Treg cells. Flow cytometry was used to detect cell cycle and apoptosis, and CD4(+)/CD8(+) T cell ratio in each group. Compared with before and 1 week after radiotherapy, the percentages of CD4(+)T cells and CD8(+)T cells were significantly decreased in the radiotherapy group at 1 month after radiotherapy. Furthermore, down-regulation of EBI3 and up-regulation of PD-1 and PD-L1 were observed in cervical cancer tissues at 1 month after radiotherapy. In comparison to the blank and negative control groups, increased expression of EBI3 and decreased expressions of PD-1 and PD-L1 were found in the EBI3 mimics group. However, the EBI3 inhibitors group had a lower expression of EBI3 and higher expressions of PD-1 and PD-L1 than those in the blank and negative control groups. The EBI3 mimics group showed an increase in the optical density value (0.43 ± 0.05), while a decrease in the optical density value (0.31 ± 0.02) was found in the EBI3 inhibitors group. Moreover, compared with the blank and negative control groups, the apoptosis rates

  11. Resin monomer 2-hydroxyethyl methacrylate (HEMA) is a potent inducer of apoptotic cell death in human and mouse cells.

    PubMed

    Paranjpe, A; Bordador, L C F; Wang, M-Y; Hume, W R; Jewett, A

    2005-02-01

    Mechanisms by which the resin monomer 2-hydroxyethyl methacrylate (HEMA) induces hypersensitivity reactions in humans are not well-established, nor have the direct effects of HEMA on cell death been fully characterized. The objective of this study was to establish whether HEMA is capable of inducing apoptotic cell death, and whether differences exist in the levels of apoptotic death induced by HEMA in cells obtained from healthy individuals and from patients with established HEMA hypersensitivity. HEMA induced apoptotic death in Peripheral Blood Mononuclear Cells (PBMCs) obtained from both healthy and HEMA-sensitized patients and in the murine RAW cells in a dose-dependent manner. However, induction of cell death by HEMA was lower in PBMCs obtained from patients in comparison with healthy individuals. Studies reported in this paper demonstrate that HEMA induces apoptotic death, and that decreased susceptibility of lymphocytes to HEMA-mediated death might be an important mechanism for the generation and persistence of hypersensitivity reactions in patients.

  12. Radiosensitivity and capacity for radiation-induced sublethal damage repair of canine transitional cell carcinoma (TCC) cell lines.

    PubMed

    Parfitt, S L; Milner, R J; Salute, M E; Hintenlang, D E; Farese, J P; Bacon, N J; Bova, F J; Rajon, D A; Lurie, D M

    2011-09-01

    Understanding the inherent radiosensitivity and repair capacity of canine transitional cell carcinoma (TCC) can aid in optimizing radiation protocols to treat this disease. The objective of this study was to evaluate the parameters surviving fraction at 2 Gy (SF(2) ), α/β ratio and capacity for sublethal damage repair (SLDR) in response to radiation. Dose-response and split-dose studies were performed using the clonogenic assay. The mean SF(2) for three established TCC cell lines was high at 0.61. All the three cell lines exhibited a low to moderate α/β ratio, with the mean being 3.27. Two cell lines exhibited statistically increased survival at 4 and 24 h in the dose-response assay. Overall, our results indicate that the cell lines are moderately radioresistant, have a high repair capacity and behave similarly to a late-responding normal tissue. These findings indicate that the radiation protocols utilizing higher doses with less fractionation may be more effective for treating TCC.

  13. Induction of apoptotic cell death in HL-60 cells by jacaranda seed oil derived fatty acids.

    PubMed

    Yamasaki, Masao; Motonaga, Chihiro; Yokoyama, Marino; Ikezaki, Aya; Kakihara, Tomoka; Hayasegawa, Rintaro; Yamasaki, Kaede; Sakono, Masanobu; Sakakibara, Yoichi; Suiko, Masahito; Nishiyama, Kazuo

    2013-01-01

    Various fatty acids are attracting considerable interest for their anticancer effects. Among them, fatty acids containing conjugated double bonds show one of the most potent cytotoxic effects on cancer cells. Here, we focused on the cancer cell killing activity of jacaranda seed oil. The seed oil of jacaranda harvested from Miyazaki in Japan contained 30.9% cis-8, trans-10, cis-12 octadecatrienoic acid, called jacaric acid (JA). Fatty acid prepared from this oil (JFA) and JA strongly induced cell death in human leukemia HL-60 cells. On the other hand, linoleic acid and trans-10, cis-12 conjugated linoleic acid (<10 μM) did not affect cell proliferation and viability. An increase in the sub-G₁ population and internucleosomal fragmentation of DNA was observed in JA- and JFA-treated cells, indicating induction of apoptotic cell death. Finally, the cytotoxic effects of JA and JFA were completely abolished by α-tocopherol. Taken together, these data suggest that jacaranda seed oil has potent apoptotic activity in HL-60 cells through induction of oxidative stress.

  14. Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids

    PubMed Central

    Lauber, K; Keppeler, H; Munoz, L E; Koppe, U; Schröder, K; Yamaguchi, H; Krönke, G; Uderhardt, S; Wesselborg, S; Belka, C; Nagata, S; Herrmann, M

    2013-01-01

    The phagocytic clearance of apoptotic cells is essential to prevent chronic inflammation and autoimmunity. The phosphatidylserine-binding protein milk fat globule-EGF factor 8 (MFG-E8) is a major opsonin for apoptotic cells, and MFG-E8−/− mice spontaneously develop a lupus-like disease. Similar to human systemic lupus erythematosus (SLE), the murine disease is associated with an impaired clearance of apoptotic cells. SLE is routinely treated with glucocorticoids (GCs), whose anti-inflammatory effects are consentaneously attributed to the transrepression of pro-inflammatory cytokines. Here, we show that the GC-mediated transactivation of MFG-E8 expression and the concomitantly enhanced elimination of apoptotic cells constitute a novel aspect in this context. Patients with chronic inflammation receiving high-dose prednisone therapy displayed substantially increased MFG-E8 mRNA levels in circulating monocytes. MFG-E8 induction was dependent on the GC receptor and several GC response elements within the MFG-E8 promoter. Most intriguingly, the inhibition of MFG-E8 induction by RNA interference or genetic knockout strongly reduced or completely abolished the phagocytosis-enhancing effect of GCs in vitro and in vivo. Thus, MFG-E8-dependent promotion of apoptotic cell clearance is a novel anti-inflammatory facet of GC treatment and renders MFG-E8 a prospective target for future therapeutic interventions in SLE. PMID:23832117

  15. Milk fat globule-EGF factor 8 mediates the enhancement of apoptotic cell clearance by glucocorticoids.

    PubMed

    Lauber, K; Keppeler, H; Munoz, L E; Koppe, U; Schröder, K; Yamaguchi, H; Krönke, G; Uderhardt, S; Wesselborg, S; Belka, C; Nagata, S; Herrmann, M

    2013-09-01

    The phagocytic clearance of apoptotic cells is essential to prevent chronic inflammation and autoimmunity. The phosphatidylserine-binding protein milk fat globule-EGF factor 8 (MFG-E8) is a major opsonin for apoptotic cells, and MFG-E8(-/-) mice spontaneously develop a lupus-like disease. Similar to human systemic lupus erythematosus (SLE), the murine disease is associated with an impaired clearance of apoptotic cells. SLE is routinely treated with glucocorticoids (GCs), whose anti-inflammatory effects are consentaneously attributed to the transrepression of pro-inflammatory cytokines. Here, we show that the GC-mediated transactivation of MFG-E8 expression and the concomitantly enhanced elimination of apoptotic cells constitute a novel aspect in this context. Patients with chronic inflammation receiving high-dose prednisone therapy displayed substantially increased MFG-E8 mRNA levels in circulating monocytes. MFG-E8 induction was dependent on the GC receptor and several GC response elements within the MFG-E8 promoter. Most intriguingly, the inhibition of MFG-E8 induction by RNA interference or genetic knockout strongly reduced or completely abolished the phagocytosis-enhancing effect of GCs in vitro and in vivo. Thus, MFG-E8-dependent promotion of apoptotic cell clearance is a novel anti-inflammatory facet of GC treatment and renders MFG-E8 a prospective target for future therapeutic interventions in SLE.

  16. IL-4, a direct target of miR-340/429, is involved in radiation-induced aggressive tumor behavior in human carcinoma cells

    PubMed Central

    Hwang, Su Jin; Han, Young-Hoon; Park, Myung-Jin; Bae, In Hwa

    2016-01-01

    Radiotherapy induces the production of cytokines, thereby increasing aggressive tumor behavior. This radiation effect results in the failure of radiotherapy and increases the mortality rate in patients. We found that interleukin-4 (IL-4) and IL-4Rα (IL-4 receptor) are highly expressed in various human cancer cells subsequent to radiation treatment. In addition, IL-4 is highly overexpressed in metastatic carcinoma tissues compared with infiltrating carcinoma tissues. High expression of IL-4 in patients with cancer is strongly correlated with poor survival. The results of this study suggest that radiation-induced IL-4 contributes to tumor progression and metastasis. Radiation-induced IL-4 was associated with tumorigenicity and metastasis. IL-4 expression was downregulated by miR-340 and miR-429, which were decreased by ionizing radiation (IR). Radiation-regulated miR-340/429-IL4 signaling increased tumorigenesis and metastasis by inducing the production of Sox2, Vimentin, VEGF, Ang2, and MMP-2/9 via activating JAK, JNK, β-catenin, and Stat6 in vitro and in vivo. Our study presents a conceptual advance in our understanding of the modification of tumor microenvironment by radiation and suggests that combining radiotherapy with genetic therapy to inhibit IL-4 may be a promising strategy for preventing post-radiation recurrence and metastasis in patients. PMID:27895317

  17. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells.

    PubMed

    Roy, Prathik; Periasamy, Arun Prakash; Lin, Chiu-Ya; Her, Guor-Mour; Chiu, Wei-Jane; Li, Chi-Lin; Shu, Chia-Lun; Huang, Chih-Ching; Liang, Chi-Te; Chang, Huan-Tsung

    2015-02-14

    Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL(-1) over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications.

  18. Skeletal muscle stem cells express anti-apoptotic ErbB receptors during activation from quiescence

    SciTech Connect

    Golding, Jon P. . E-mail: j.p.golding@open.ac.uk; Calderbank, Emma; Partridge, Terence A.; Beauchamp, Jonathan R.

    2007-01-15

    To be effective for tissue repair, satellite cells (the stem cells of adult muscle) must survive the initial activation from quiescence. Using an in vitro model of satellite cell activation, we show that erbB1, erbB2 and erbB3, members of the EGF receptor tyrosine kinase family, appear on satellite cells within 6 h of activation. We show that signalling via erbB2 provides an anti-apoptotic survival mechanism for satellite cells during the first 24 h, as they progress to a proliferative state. Inhibition of erbB2 signalling with AG825 reduced satellite cell numbers, concomitant with elevated caspase-8 activation and TUNEL labelling of apoptotic satellite cells. In serum-free conditions, satellite cell apoptosis could be largely prevented by a mixture of erbB1, erbB3 and erbB4 ligand growth factors, but not by neuregulin alone (erbB3/erbB4 ligand). Furthermore, using inhibitors specific to discrete intracellular signalling pathways, we identify MEK as a pro-apoptotic mediator, and the erbB-regulated factor STAT3 as an anti-apoptotic mediator during satellite cell activation. These results implicate erbB2 signalling in the preservation of a full compliment of satellite cells as they activate in the context of a damaged muscle.

  19. Carbon black and titanium dioxide nanoparticles elicit distinct apoptotic pathways in bronchial epithelial cells

    PubMed Central

    2010-01-01

    Background Increasing environmental and occupational exposures to nanoparticles (NPs) warrant deeper insight into the toxicological mechanisms induced by these materials. The present study was designed to characterize the cell death induced by carbon black (CB) and titanium dioxide (TiO2) NPs in bronchial epithelial cells (16HBE14o- cell line and primary cells) and to investigate the implicated molecular pathways. Results Detailed time course studies revealed that both CB (13 nm) and TiO2(15 nm) NP exposed cells exhibit typical morphological (decreased cell size, membrane blebbing, peripheral chromatin condensation, apoptotic body formation) and biochemical (caspase activation and DNA fragmentation) features of apoptotic cell death. A decrease in mitochondrial membrane potential, activation of Bax and release of cytochrome c from mitochondria were only observed in case of CB NPs whereas lipid peroxidation, lysosomal membrane destabilization and cathepsin B release were observed during the apoptotic process induced by TiO2 NPs. Furthermore, ROS production was observed after exposure to CB and TiO2 but hydrogen peroxide (H2O2) production was only involved in apoptosis induction by CB NPs. Conclusions Both CB and TiO2 NPs induce apoptotic cell death in bronchial epithelial cells. CB NPs induce apoptosis by a ROS dependent mitochondrial pathway whereas TiO2 NPs induce cell death through lysosomal membrane destabilization and lipid peroxidation. Although the final outcome is similar (apoptosis), the molecular pathways activated by NPs differ depending upon the chemical nature of the NPs. PMID:20398356

  20. Lysosome biogenesis mediated by vps-18 affects apoptotic cell degradation in Caenorhabditis elegans.

    PubMed

    Xiao, Hui; Chen, Didi; Fang, Zhou; Xu, Jing; Sun, Xiaojuan; Song, Song; Liu, Jiajia; Yang, Chonglin

    2009-01-01

    Appropriate clearance of apoptotic cells (cell corpses) is an important step of programmed cell death. Although genetic and biochemical studies have identified several genes that regulate the engulfment of cell corpses, how these are degraded after being internalized in engulfing cell remains elusive. Here, we show that VPS-18, the Caenorhabditis elegans homologue of yeast Vps18p, is critical to cell corpse degradation. VPS-18 is expressed and functions in engulfing cells. Deletion of vps-18 leads to significant accumulation of cell corpses that are not degraded properly. Furthermore, vps-18 mutation causes strong defects in the biogenesis of endosomes and lysosomes, thus affecting endosomal/lysosomal protein degradation. Importantly, we demonstrate that phagosomes containing internalized cell corpses are unable to fuse with lysosomes in vps-18 mutants. Our findings thus provide direct evidence for the important role of endosomal/lysosomal degradation in proper clearance of apoptotic cells during programmed cell death.

  1. Pro‑apoptotic effects of pycnogenol on HT1080 human fibrosarcoma cells.

    PubMed

    Harati, Kamran; Slodnik, Pawel; Chromik, Ansgar Michael; Behr, Björn; Goertz, Ole; Hirsch, Tobias; Kapalschinski, Nicolai; Klein-Hitpass, Ludger; Kolbenschlag, Jonas; Uhl, Waldemar; Lehnhardt, Marcus; Daigeler, Adrien

    2015-04-01

    Complete surgical resection with clear margins remains the mainstay of therapy for localised fibrosarcomas. Nevertheless, metastatic fibrosarcomas still represent a therapeutic dilemma. Commonly used chemotherapeutic agents like doxorubicin have proven to be effective in <30% of all cases of disseminated fibrosarcoma. Especially elderly patients with cardiac subdisease are not suitable for systemic chemotherapy with doxorubicin. Therefore we tested the apoptotic effects of the well-tolerated pine bark extract pycnogenol and its constituents on human fibrosarcoma cells (HT1080). Ten healthy subjects (six females, four males, mean age 24.8 ± 6 years) received a single dose of 300 mg pycnogenol orally. Blood plasma samples were obtained before and 6 h after intake of pycnogenol. HT1080 cells were treated with these plasma samples. Additionally, HT1080 were incubated separately with catechin, epicatechin and taxifolin that are known as the main constituents of pycnogenol. Vital, apoptotic and necrotic cells were quantified using flow cytometric analysis. Gene expression was analyzed by RNA microarray. The results showed that single application of taxifolin, catechin and epicatechin reduced cell viability of HT1080 cells only moderately. A single dose of 300 mg pycnogenol given to 10 healthy adults produced plasma samples that led to significant apoptotic cell death ex vivo whereas pycnogenol-negative serum displayed no apoptotic activity. Microarray analysis revealed remarkable expression changes induced by pycnogenol in a variety of genes, which are involved in different apoptotic pathways of cancer cells [Janus kinase 1 (JAK1), DUSP1, RHOA, laminin γ1 (LAMC1), fibronectin 1 (FN1), catenin α1 (CTNNA1), ITGB1]. In conclusion, metabolised pycnogenol induces apoptosis in human fibrosarcoma cells. Pycnogenol exhibits its pro-apoptotic activity as a mixture and is more effective than its main constituents catechin, epicatechin and taxifolin indicating that the

  2. Nuclear Receptors and Clearance of Apoptotic Cells: Stimulating the Macrophage’s Appetite

    PubMed Central

    A-Gonzalez, Noelia; Hidalgo, Andrés

    2014-01-01

    Clearance of apoptotic cells by macrophages occurs as a coordinated process to ensure tissue homeostasis. Macrophages play a dual role in this process; first, a rapid and efficient phagocytosis of the dying cells is needed to eliminate uncleared corpses that can promote inflammation. Second, after engulfment, macrophages exhibit an anti-inflammatory phenotype, to avoid unwanted immune reactions against cell components. Several nuclear receptors, including liver X receptor and proliferator-activated receptor, have been linked to these two important features of macrophages during apoptotic cell clearance. This review outlines the emerging implications of nuclear receptors in the response of macrophages to cell clearance. These include activation of genes implicated in metabolism, to process the additional cellular content provided by the engulfed cells, as well as inflammatory genes, to maintain apoptotic cell clearance as an “immunologically silent” process. Remarkably, genes encoding receptors for the so-called “eat-me” signals are also regulated by activated nuclear receptors after phagocytosis of apoptotic cells, thus enhancing the efficiency of macrophages to clear dead cells. PMID:24860573

  3. Caspase dependent apoptotic inhibition of melanoma and lung cancer cells by tropical Rubus extracts.

    PubMed

    George, Blassan Plackal Adimuriyil; Abrahamse, Heidi; Hemmaragala, Nanjundaswamy M

    2016-05-01

    Rubus fairholmianus Gard. inhibits human melanoma (A375) and lung cancer (A549) cell growth by the caspase dependent apoptotic pathway. Herbal products have a long history of clinical use and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. The plants and plant derived products became the basis of traditional medicine system throughout the world for thousands of years. The effects of R. fairholmianus root acetone extract (RFRA) on the proliferation of A375 and A549 cells was examined in this study. RFRA led to a decrease in cell viability, proliferation and an increase in cytotoxicity in a dose dependent manner when compared with control and normal skin fibroblast cells (WS1). The morphology of treated cells supported apoptotic cell death. Annexin V/propidium iodide staining indicated that RFRA induced apoptosis in A375 and A549 cells and the percentages of early and late apoptotic populations significantly increased. Moreover, the apoptotic inducing ability of RFRA when analysing effector caspase 3/7 activity, indicated a marked increase in treated cells. In summary, we have shown the anticancer effects of RFRA in A375 and A549 cancer cells via induction of caspase dependent apoptosis in vitro. The extract is more effective against melanoma; which may suggest the usefulness of RFRA-based anticancer therapies.

  4. Divergent members of a single autoreactive B cell clone retain specificity for apoptotic blebs.

    PubMed

    Neeli, Indira; Richardson, Mekel M; Khan, Salar N; Nicolo, Danielle; Monestier, Marc; Radic, Marko Z

    2007-03-01

    Specificity for double-stranded DNA can arise due to somatic mutations within one of the branches of an autoreactive B cell clone. However, it is not known whether a different autospecificity predates anti-dsDNA and whether separate offshoots of an expanding B cell clone retain or evolve alternative specificities. We compared 3H9, an anti-dsDNA IgG, to 4H8 and 1A11, antibodies produced by hybridomas representing an alternative branch of the 3H9 B cell clone. All three IgG bound chromatin in ELISA and apoptotic cells in confocal microscopy, yet only 3H9 bound dsDNA, as measured by plasmon resonance. Moreover, we demonstrate that despite the unique specificity of 3H9 for dsDNA, all three clone members exhibited indistinguishable binding to chromatin. The binding to chromatin and apoptotic cells was unaffected by N-linked glycosylation in L chain CDR1, a modification that results from a replacement of serine 26 with asparagine in 4H8 and 1A11. These data provide the first evidence that specificity for nucleosome epitopes on apoptotic cells provides the initial positive stimulus for somatic variants that comprise a B cell clone, including those that subsequently acquire specificity for dsDNA. Conversely, selection of autoreactive B cells for binding to apoptotic cells leads to clonal expansion, antibody diversification, and the development of linked sets of anti-nuclear autoantibodies.

  5. Structure-function relationships in radiation-induced cell and tissue lesions: special references to the contributions of scanning electron microscopy and hematopoietic tissue responses

    SciTech Connect

    Seed, T.M.

    1987-03-01

    Contributions of scanning electron microscopy to the field of radiation biology are briefly reviewed and presented in terms of an overall goal to identify and characterize the structural features of radiation-induced lesions in vital cell and tissue targets. In the context of lesion production, the major radiation-elicited response sequences, the types and nature of measured end points, and governing temporal and radiobiological parameters are discussed and illustrated by using results derived from both in vitro cell systems and in vivo studies that measured tissue responses from various organ systems (respiratory, digestive, circulatory, and central nervous systems). Work in our laboratory on the nature of early and late hematopathologic tissue responses (aplastic anemia and myeloid leukemia) induced by protracted radiation exposure and the bridging effect of repair processes relative to the expression of these pathologies is highlighted.

  6. Interaction of apoptotic cells with macrophages upregulates COX-2/PGE2 and HGF expression via a positive feedback loop.

    PubMed

    Byun, Ji Yeon; Youn, Young-So; Lee, Ye-Ji; Choi, Youn-Hee; Woo, So-Yeon; Kang, Jihee Lee

    2014-01-01

    Recognition of apoptotic cells by macrophages is crucial for resolution of inflammation, immune tolerance, and tissue repair. Cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and hepatocyte growth factor (HGF) play important roles in the tissue repair process. We investigated the characteristics of macrophage COX-2 and PGE2 expression mediated by apoptotic cells and then determined how macrophages exposed to apoptotic cells in vitro and in vivo orchestrate the interaction between COX-2/PGE2 and HGF signaling pathways. Exposure of RAW 264.7 cells and primary peritoneal macrophages to apoptotic cells resulted in induction of COX-2 and PGE2. The COX-2 inhibitor NS-398 suppressed apoptotic cell-induced PGE2 production. Both NS-398 and COX-2-siRNA, as well as the PGE2 receptor EP2 antagonist, blocked HGF expression in response to apoptotic cells. In addition, the HGF receptor antagonist suppressed increases in COX-2 and PGE2 induction. The in vivo relevance of the interaction between the COX-2/PGE2 and HGF pathways through a positive feedback loop was shown in cultured alveolar macrophages following in vivo exposure of bleomycin-stimulated lungs to apoptotic cells. Our results demonstrate that upregulation of the COX-2/PGE2 and HGF in macrophages following exposure to apoptotic cells represents a mechanism for mediating the anti-inflammatory and antifibrotic consequences of apoptotic cell recognition.

  7. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-β1 secretion and the resolution of inflammation

    PubMed Central

    Huynh, Mai-Lan N.; Fadok, Valerie A.; Henson, Peter M.

    2002-01-01

    Ingestion of apoptotic cells in vitro by macrophages induces TGF-β1 secretion, resulting in an anti-inflammatory effect and suppression of proinflammatory mediators. Here, we show in vivo that direct instillation of apoptotic cells enhanced the resolution of acute inflammation. This enhancement appeared to require phosphatidylserine (PS) on the apoptotic cells and local induction of TGF-β1. Working with thioglycollate-stimulated peritonea or LPS-stimulated lungs, we examined the effect of apoptotic cell uptake on TGF-β1 induction. Viable or opsonized apoptotic human Jurkat T cells, or apoptotic PLB-985 cells, human monomyelocytes that do not express PS during apoptosis, failed to induce TGF-β1. PS liposomes, or PS directly transferred onto the PLB-985 surface membranes, restored the TGF-β1 induction. Apoptotic cell instillation into LPS-stimulated lungs reduced proinflammatory chemokine levels in the bronchoalveolar lavage fluid (BALF). Additionally, total inflammatory cell counts in the BALF were markedly reduced 1–5 days after apoptotic cell instillation, an effect that could be reversed by opsonization or coinstillation of TGF-β1 neutralizing antibody. This reduction resulted from early decrease in neutrophils and later decreases in lymphocytes and macrophages. In conclusion, apoptotic cell recognition and clearance, via exposure of PS and ligation of its receptor, induce TGF-β1 secretion, resulting in accelerated resolution of inflammation. PMID:11781349

  8. Apoptotic and autophagic cell death induced by glucolaxogenin in cervical cancer cells.

    PubMed

    Sánchez-Sánchez, L; Escobar, M L; Sandoval-Ramírez, J; López-Muñoz, H; Fernández-Herrera, M A; Hernández-Vázquez, J M V; Hilario-Martínez, C; Zenteno, E

    2015-12-01

    The antiproliferative and cytotoxic activity of glucolaxogenin and its ability to induce apoptosis and autophagy in cervical cancer cells are reported. We ascertained that glucolaxogenin exerts an inhibitory effect on the proliferation of HeLa, CaSki and ViBo cells in a dose-dependent manner. Analysis of DNA distribution in the cell-cycle phase of tumor cells treated with glucolaxogenin suggests that the anti-proliferative activity of this steroid is not always dependent on the cell cycle. Cytotoxic activity was evaluated by detection of the lactate dehydrogenase enzyme in supernatants from tumor cell cultures treated with the steroid. Glucolaxogenin exhibited null cytotoxic activity. With respect to the apoptotic activity, the generation of apoptotic bodies, the presence of active caspase-3 and annexin-V, as well as the DNA fragmentation observed in all tumor lines after treatment with glucolaxogenin suggests that this compound does indeed induce cell death by apoptosis. Also, a significantly increased presence of the LC3-II, LC3 and Lamp-1 proteins was evidenced with the ultrastructural existence of autophagic vacuoles in cells treated with this steroidal glycoside, indicating that glucolaxogenin also induces autophagic cell death. It is important to note that this compound showed no cytotoxic effect and did not affect the proliferative capacity of mononuclear cells obtained from normal human peripheral blood activated by phytohaemagglutinin. Thus, glucolaxogenin is a compound with anti-proliferative properties that induces programmed cell death in cancer cell lines, though it is selective with respect to normal lymphocytic cells. These findings indicate that this glycoside could have a selective action on tumor cells and, therefore, be worthy of consideration as a therapeutic candidate with anti-tumor potential.

  9. The role of phosphatidylserine in recognition of apoptotic cells by phagocytes.

    PubMed

    Fadok, V A; Bratton, D L; Frasch, S C; Warner, M L; Henson, P M

    1998-07-01

    Exposure of phosphatidylserine on the outer leaflet of the plasma membrane is a surface change common to many apoptotic cells. Normally restricted to the inner leaflet, phosphatidylserine appears as a result of decreased aminophospholipid translocase activity and activation of a calcium-dependent scramblase. Phosphatidylserine exposure has several potential biological consequences, one of which is recognition and removal of the apoptotic cell by phagocytes. It is still not clear which receptors mediate PS recognition on apoptotic cells; however, several interesting candidates have been proposed. These include the Class B scavenger and thrombospondin receptor CD36, an oxLDL receptor (CD68), CD14, annexins, beta2 glycoprotein I, gas-6 and a novel activity expressed on macrophages stimulated with digestible particles such as beta-glucan. Whether PS is the sole ligand recognized by phagocytes or whether it associated with other molecules to form a complex ligand remains to be determined.

  10. The role of intrinsic apoptotic signaling in hemorrhagic shock-induced microvascular endothelial cell barrier dysfunction.

    PubMed

    Sawant, Devendra A; Tharakan, Binu; Hunter, Felicia A; Childs, Ed W

    2014-11-01

    Hemorrhagic shock leads to endothelial cell barrier dysfunction resulting in microvascular hyperpermeability. Hemorrhagic shock-induced microvascular hyperpermeability is associated with worse clinical outcomes in patients with traumatic injuries. The results from our laboratory have illustrated a possible pathophysiological mechanism showing involvement of mitochondria-mediated "intrinsic" apoptotic signaling in regulating hemorrhagic shock-induced microvascular hyperpermeability. Hemorrhagic shock results in overexpression of Bcl-2 family of pro-apoptotic protein, BAK, in the microvascular endothelial cells. The increase in BAK initiates "intrinsic" apoptotic signaling cascade with the release of mitochondrial cytochrome c in the cytoplasm and activation of downstream effector caspase-3, leading to loss of endothelial cell barrier integrity. Thus, this review article offers a brief overview of important findings from our past and present research work along with new leads for future research. The summary of our research work will provide information leading to different avenues in developing novel strategies against microvascular hyperpermeability following hemorrhagic shock.

  11. Functional Consequences of Radiation-Induced Oxidative Stress in Cultured Neural Stem Cells and the Brain Exposed to Charged Particle Irradiation

    PubMed Central

    Tseng, Bertrand P.; Giedzinski, Erich; Izadi, Atefeh; Suarez, Tatiana; Lan, Mary L.; Tran, Katherine K.; Acharya, Munjal M.; Nelson, Gregory A.; Raber, Jacob; Parihar, Vipan K.

    2014-01-01

    Abstract Aims: Redox homeostasis is critical in regulating the fate and function of multipotent cells in the central nervous system (CNS). Here, we investigated whether low dose charged particle irradiation could elicit oxidative stress in neural stem and precursor cells and whether radiation-induced changes in redox metabolism would coincide with cognitive impairment. Results: Low doses (<1 Gy) of charged particles caused an acute and persistent oxidative stress. Early after (<1 week) irradiation, increased levels of reactive oxygen and nitrogen species were generally dose responsive, but were less dependent on dose weeks to months thereafter. Exposure to ion fluences resulting in less than one ion traversal per cell was sufficient to elicit radiation-induced oxidative stress. Whole body irradiation triggered a compensatory response in the rodent brain that led to a significant increase in antioxidant capacity 2 weeks following exposure, before returning to background levels at week 4. Low dose irradiation was also found to significantly impair novel object recognition in mice 2 and 12 weeks following irradiation. Innovation: Data provide evidence that acute exposure of neural stem cells and the CNS to very low doses and fluences of charged particles can elicit a persisting oxidative stress lasting weeks to months that is associated with impaired cognition. Conclusions: Exposure to low doses of charged particles causes a persistent oxidative stress and cognitive impairment over protracted times. Data suggest that astronauts subjected to space radiation may develop a heightened risk for mission critical performance decrements in space, along with a risk of developing long-term neurocognitive sequelae. Antioxid. Redox Signal. 20, 1410–1422. PMID:23802883

  12. Hsp72 mediates TAp73α anti-apoptotic effects in small cell lung carcinoma cells.

    PubMed

    Nyman, Ulrika; Muppani, Naveen Reddy; Zhivotovsky, Boris; Joseph, Bertrand

    2011-08-01

    The transcription factor p73, a member of the p53 family of proteins, is involved in the regulation of cell cycle progression and apoptosis. Due to alternative promoters and carboxy-terminal splicing, the P73 gene gives rise to a range of different isoforms. Interestingly, a particular increase in expression of the TAp73α isoform has been reported in various tumours. In addition, TAp73α has been shown to inhibit Bax activation and mitochondrial dysfunctions and thereby to confer small cell lung carcinoma (SCLC) cells resistance to drug-induced apoptosis. However, the precise mechanism by which TAp73α exerts its pro-survival effect is yet unclear. Here we report that TAp73α, but not TAp73β, regulates the expression of inducible Hsp72/HSPA1A. Hsp72 proved to be required for the survival effects of TAp73α as antisense knockdown of Hsp72 resulted in an abolishment of the anti-apoptotic effect of TAp73α in SCLC cells upon Etoposide treatment. Importantly, depletion of Hsp72 allowed activation of Bax, loss of mitochondrial membrane potential and lysosomal membrane permeabilization in SCLC cells even in the presence of TAp73α. Finally, we revealed that TAp73β counteracts the anti-apoptotic effect of TAp73α by preventing Hsp72 induction. Our results thus provide additional evidence for the potential oncogenic role of TAp73α, and extend the understanding of the mechanism for its anti-apoptotic effect.

  13. Mechanism of protection of bystander cells by exogenous carbon monoxide: impaired response to damage signal of radiation-induced bystander effect.

    PubMed

    Han, W; Yu, K N; Wu, L J; Wu, Y C; Wang, H Z

    2011-05-10

    A protective effect of exogenous carbon monoxide (CO), generated by CO releasing molecule ticarbonyldichlororuthenium (II) dimer (CORM-2), on the bystander cells from the toxicity of radiation-induced bystander effect (RIBE) was revealed in our previous study. In the present work, a possible mechanism of this CO effect was investigated. The results from medium transfer experiments showed that α-particle irradiated Chinese hamster ovary (CHO) cells would release nitric oxide (NO), which was detected with specific NO fluorescence probe, to induce p53 binding protein 1 (BP1) formation in the cell population receiving the medium, and the release peak was found to be at 1h post irradiation. Treating the irradiated or bystander cells separately with CO (CORM-2) demonstrated that CO was effective in the bystander cells but not the irradiated cells. Measurements of NO production and release with a specific NO fluorescence probe also showed that CO treatment did not affect the production and release of NO by irradiated cells. Protection of CO on cells to peroxynitrite, an oxidizing free radical from NO, suggested that CO might protect bystander cells via impaired response of bystander cells to NO, a RIBE signal in our research system.

  14. Modeling cell response to low doses of photon irradiation: Part 2--application to radiation-induced chromosomal aberrations in human carcinoma cells.

    PubMed

    Cunha, Micaela; Testa, Etienne; Komova, Olga V; Nasonova, Elena A; Mel'nikova, Larisa A; Shmakova, Nina L; Beuve, Michaël

    2016-03-01

    The biological phenomena observed at low doses of ionizing radiation (adaptive response, bystander effects, genomic instability, etc.) are still not well understood. While at high irradiation doses, cellular death may be directly linked to DNA damage, at low doses, other cellular structures may be involved in what are known as non-(DNA)-targeted effects. Mitochondria, in particular, may play a crucial role through their participation in a signaling network involving oxygen/nitrogen radical species. According to the size of the implicated organelles, the fluctuations in the energy deposited into these target structures may impact considerably the response of cells to low doses of ionizing irradiation. Based on a recent simulation of these fluctuations, a theoretical framework was established to have further insight into cell responses to low doses of photon irradiation, namely the triggering of radioresistance mechanisms by energy deposition into specific targets. Three versions of a model are considered depending on the target size and on the number of targets that need to be activated by energy deposition to trigger radioresistance mechanisms. These model versions are applied to the fraction of radiation-induced chromosomal aberrations measured at low doses in human carcinoma cells (CAL51). For this cell line, it was found in the present study that the mechanisms of radioresistance could not be triggered by the activation of a single small target (nanometric size, 100 nm), but could instead be triggered by the activation of a large target (micrometric, 10 μm) or by the activation of a great number of small targets. The mitochondria network, viewed either as a large target or as a set of small units, might be concerned by these low-dose effects.

  15. Genetic deletion of TNFα inhibits ultraviolet radiation-induced development of cutaneous squamous cell carcinomas in PKCε transgenic mice via inhibition of cell survival signals.

    PubMed

    Singh, Ashok; Singh, Anupama; Bauer, Samuel J; Wheeler, Deric L; Havighurst, Thomas C; Kim, KyungMann; Verma, Ajit K

    2016-01-01

    Protein kinase C epsilon (PKCε), a Ca(2+)-independent phospholipid-dependent serine/threonine kinase, is among the six PKC isoforms (α, δ, ε, η, μ, ζ) expressed in both mouse and human skin. Epidermal PKCε level dictates the susceptibility of PKCε transgenic (TG) mice to the development of cutaneous squamous cell carcinomas (SCC) elicited either by repeated exposure to ultraviolet radiation (UVR) or by using the DMBA initiation-TPA (12-O-tetradecanoylphorbol-13-acetate) tumor promotion protocol (Wheeler,D.L. et al. (2004) Protein kinase C epsilon is an endogenous photosensitizer that enhances ultraviolet radiation-induced cutaneous damage and development of squamous cell carcinomas. Cancer Res., 64, 7756-7765). Histologically, SCC in TG mice, like human SCC, is poorly differentiated and metastatic. Our earlier studies to elucidate mechanisms of PKCε-mediated development of SCC, using either DMBA-TPA or UVR, indicated elevated release of cytokine TNFα. To determine whether TNFα is essential for the development of SCC in TG mice, we generated PKCε transgenic mice/TNFα-knockout (TG/TNFαKO) by crossbreeding TNFαKO with TG mice. We now present that deletion of TNFα in TG mice inhibited the development of SCC either by repeated UVR exposures or by the DMBA-TPA protocol. TG mice deficient in TNFα elicited both increase in SCC latency and decrease in SCC incidence. Inhibition of UVR-induced SCC development in TG/TNFαKO was accompanied by inhibition of (i) the expression levels of TNFα receptors TNFRI and TNFRII and cell proliferation marker ornithine decarboxylase and metastatic markers MMP7 and MMP9, (ii) the activation of transcription factors Stat3 and NF-kB and (iii) proliferation of hair follicle stem cells and epidermal hyperplasia. The results presented here provide the first genetic evidence that TNFα is linked to PKCε-mediated sensitivity to DMBA-TPA or UVR-induced development of cutaneous SCC.

  16. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Lahorte, Philippe; Mondelaers, Wim

    This chapter represents the second part of a review in which the production and application of radiation-induced radicals in biological matter are discussed. In part one the general aspects of the four stages (physical, physicochemical, chemical and biological) of interaction of radiation with matter in general and biological matter in particular, were discussed. Here an overview is presented of modem technologies and theoretical methods available for studying these radiation effects. The relevance is highlighted of electron paramagnetic resonance spectroscopy and quantum chemical calculations with respect to obtaining structural information on bioradicals, and a survey is given of the research studies in this field. We also discuss some basic aspects of modem accelerator technologies which can be used for creating radicals and we conclude with an overview of applications of radiation processing in biology and related fields such as biomedical and environmental engineering, food technology, medicine and pharmacy.

  17. Radiation Induced Oral Mucositis

    PubMed Central

    PS, Satheesh Kumar; Balan, Anita; Sankar, Arun; Bose, Tinky

    2009-01-01

    Patients receiving radiotherapy or chemotherapy will receive some degree of oral mucositis The incidence of oral mucositis was especially high in patients: (i) With primary tumors in the oral cavity, oropharynx, or nasopharynx; (ii) who also received concomitant chemotherapy; (iii) who received a total dose over 5,000 cGy; and (iv) who were treated with altered fractionation radiation schedules. Radiation-induced oral mucositis affects the quality of life of the patients and the family concerned. The present day management of oral mucositis is mostly palliative and or supportive care. The newer guidelines are suggesting Palifermin, which is the first active mucositis drug as well as Amifostine, for radiation protection and cryotherapy. The current management should focus more on palliative measures, such as pain management, nutritional support, and maintenance, of good oral hygiene PMID:20668585

  18. Differential apoptotic response in HPV-infected cancer cells of the uterine cervix after doxorubicin treatment.

    PubMed

    Suh, Dong Soo; Kim, Seung Chul; An, Won Geun; Lee, Chang Hun; Choi, Kyung Un; Song, Jin Mi; Jung, Jin Seup; Lee, Kyu Sup; Yoon, Man Soo

    2010-03-01

    This study aimed to evaluate differential apoptotic response in uterine cervical cancer cells with and without HPV infection after chemotherapy. CaSki (HPV 16-positive) and C33A (mutant p53 and HPV-negative) cells were used. Cell viability was assessed by trypan blue cell exclusion test. Apoptosis was evaluated by DNA fragmentation analysis and flow cytometric analysis. Differential apoptotic responses were evaluated using Western blot analysis after chemotherapy. Decreased cell viability and apoptosis were displayed in CaSki and C33A cells after chemotherapy using doxorubicin (DOX). Regarding apoptosis-related molecules, the appearance of cleaved PARP expression was more prominent in CaSki cells. p53 and p21 expression in CaSki cells were increased. On the other hand, JNK expression was different in C33A cells (increased) and CaSki cells (decreased). CaSki cells and C33A cells showed differential apoptotic responses after chemotherapy using DOX. CaSki cells seem to be related with p53/p21 expression, but C33A cells seem to be related with PARP-JNK expression, which is involved in the mitochondrial pathway.

  19. Cell wall dynamics modulate acetic acid-induced apoptotic cell death of Saccharomyces cerevisiae

    PubMed Central

    Rego, António; Duarte, Ana M.; Azevedo, Flávio; Sousa, Maria J.; Côrte-Real, Manuela; Chaves, Susana R.

    2014-01-01

    Acetic acid triggers apoptotic cell death in Saccharomyces cerevisiae, similar to mammalian apoptosis. To uncover novel regulators of this process, we analyzed whether impairing MAPK signaling affected acetic acid-induced apoptosis and found the mating-pheromone response and, especially, the cell wall integrity pathways were the major mediators, especially the latter, which we characterized further. Screening downstream effectors of this pathway, namely targets of the transcription factor Rlm1p, highlighted decreased cell wall remodeling as particularly important for acetic acid resistance. Modulation of cell surface dynamics therefore emerges as a powerful strategy to increase acetic acid resistance, with potential application in industrial fermentations using yeast, and in biomedicine to exploit the higher sensitivity of colorectal carcinoma cells to apoptosis induced by acetate produced by intestinal propionibacteria. PMID:28357256

  20. Purified Essential Oil from Ocimum sanctum Linn. Triggers the Apoptotic Mechanism in Human Breast Cancer Cells

    PubMed Central

    Manaharan, Thamilvaani; Thirugnanasampandan, Ramaraj; Jayakumar, Rajarajeswaran; Kanthimathi, M. S.; Ramya, Gunasekar; Ramnath, Madhusudhanan Gogul

    2016-01-01

    Background: Essential oil of Ocimum sanctum Linn. exhibited various pharmacological activities including antifungal and antimicrobial activities. In this study, we analyzed the anticancer and apoptosis mechanisms of Ocimum sanctum essential oil (OSEO). Objective: To trigger the apoptosis mechanism in human breast cancer cells using OSEO. Materials and Methods: OSEO was extracted using hydrodistillation of the leaves. Cell proliferation was determined using different concentrations of OSEO. Apoptosis studies were carried out in human breast cancer cells using propidium iodide (PI) and Hoechst staining. Results: We found that OSEO inhibited proliferation (IC50 = 170 μg/ml) of Michigan cancer foundation-7 (MCF-7) cells in a dose-dependent manner. The OSEO also induced apoptosis as evidenced by the increasing number of PI-stained apoptotic nucleic of MCF-7 cells. Flow cytometry analysis revealed that treatment with OSEO (50–500 μg/ml) increased the apoptotic cells population (16–84%) dose dependently compared to the control. OSEO has the ability to up-regulate the apoptotic genes p53 and Bid and as well as elevates the ratio of Bax/Bcl-2. Conclusion: Our findings indicate that OSEO has the ability as proapoptotic inducer and it could be developed as an anticancer agent. SUMMARY OSEO inhibited proliferation of MCF-7 cells with an IC50 of 170 μg/mLOSEO at 500 μg/mL increased the population of apoptotic cells by 84%OSEO up-regulated the expression of apoptotic genes and as well increased the Bax/Bcl2 ratio. Abbreviations used: BAX: BAX BCL2-associated X protein; BCL2: B-cell CLL/lymphoma 2; BID: BH3 Interacting domain death agonist; OSEO: Ocimum sanctum essential oil; DMSO: Dimethyl sulfoxide; DMEM: Dulbecco's modified Eagle medium; MCF-7: Michigan cancer foundation-7; RT-PCR: Real Time Polymerase Chain Reaction. PMID:27563220

  1. Rapid reuptake of granzyme B leads to emperitosis: an apoptotic cell-in-cell death of immune killer cells inside tumor cells.

    PubMed

    Wang, S; He, M-f; Chen, Y-h; Wang, M-y; Yu, X-M; Bai, J; Zhu, H-y; Wang, Y-y; Zhao, H; Mei, Q; Nie, J; Ma, J; Wang, J-f; Wen, Q; Ma, L; Wang, Y; Wang, X-n

    2013-10-10

    A cell-in-cell process refers to the invasion of one living cell into another homotypic or heterotypic cell. Different from non-apoptotic death processes of internalized cells termed entosis or cannibalism, we previously reported an apoptotic cell-in-cell death occurring during heterotypic cell-in-cell formation. In this study, we further demonstrated that the apoptotic cell-in-cell death occurred only in internalized immune killer cells expressing granzyme B (GzmB). Vacuole wrapping around the internalized cells inside the target cells was the common hallmark during the early stage of all cell-in-cell processes, which resulted in the accumulation of reactive oxygen species and subsequent mitochondrial injury of encapsulated killer or non-cytotoxic immune cells. However, internalized killer cells mediated rapid bubbling of the vacuoles with the subsequent degranulation of GzmB inside the vacuole of the target cells and underwent the reuptake of GzmB by killer cells themselves. The confinement of GzmB inside the vacuole surpassed the lysosome-mediated cell death occurring in heterotypic or homotypic entosis processes, resulting in a GzmB-triggered caspase-dependent apoptotic cell-in-cell death of internalized killer cells. On the contrary, internalized killer cells from GzmB-deficient mice underwent a typical non-apoptotic entotic cell-in-cell death similar to that of non-cytotoxic immune cells or tumor cells. Our results thus demonstrated the critical involvement of immune cells with cytotoxic property in apoptotic cell-in-cell death, which we termed as emperitosis taken from emperipolesis and apoptosis. Whereas entosis or cannibalism may serve as a feed-on mechanism to exacerbate and nourish tumor cells, emperitosis of immune killer cells inside tumor cells may serve as an in-cell danger sensation model to prevent the killing of target cells from inside, implying a unique mechanism for tumor cells to escape from immune surveillance.

  2. The apoptotic effect of apigenin on human gastric carcinoma cells through mitochondrial signal pathway.

    PubMed

    Chen, Jiayu; Chen, Jiaqi; Li, Zhaoyun; Liu, Chibo; Yin, Lihui

    2014-08-01

    This study aims to explore the apoptotic function of apigenin on the gastric cancer cells and the related mechanism. The gastric cancer cell lines HGC-27 and SGC-7901, and normal gastric epithelial cell line GES1 were treated with different concentrations of apigenin. Cell proliferation was tested. Morphological changes of the apoptotic cells were observed after Hoechst33342 staining. The apoptosis rate of the gastric cancer cells were measured with flow cytometry. Changes of the cell cycle were explored. The mitochondrial membrane potential changes were analyzed after JC-1 staining. Bcl-2 family proteins and caspases-3 expression with apigenin treatment was analyzed by real-time PCR. Cell proliferation of HGC-27 and SGC-7901 was inhibited by apigenin, and the inhibition was dose-time-dependent. Gastric carcinoma cells treated by apigenin had no obvious cell cycle arrest, but were observed with the higher apoptosis rate and the typical apoptotic morphological changes of the cell nucleus. JC-1 staining showed that apigenin could reduce mitochondrial membrane potential of gastric carcinoma cells. Real-time PCR results showed that apigenin significantly increased caspase-3 and Bax expression level, and down-regulated Bcl-2 expression in a dose-dependent manner in gastric carcinoma cells. However, the GES1 was almost not affected by apigenin treatment. Apigenin can inhibit cell lines HGC-27 and SGC-7901 proliferation in a time and dose-dependent manner, reduce anti-apoptotic protein Bcl-2 levels, enhance apoptosis-promoting protein Bax level, result in mitochondrial membrane potential decreasing and caspase-3 enzyme activating, then lead to cell apoptosis.

  3. Monitoring the clearance of apoptotic and necrotic cells in the nematode Caenorhabditis elegans.

    PubMed

    Li, Zao; Lu, Nan; He, Xiangwei; Zhou, Zheng

    2013-01-01

    The nematode Caenorhabditis elegans is an excellent model organism for studying the mechanisms -controlling cell death, including apoptosis, a cell suicide event, and necrosis, pathological cell deaths caused by environmental insults or genetic alterations. C. elegans has also been established as a model for understanding how dying cells are cleared from animal bodies. In particular, the transparent nature of worm bodies and eggshells make C. elegans particularly amenable for live-cell microscopy. Here we describe methods for identifying apoptotic and necrotic cells in living C. elegans embryos, larvae, and adults and for monitoring their clearance during development. We further discuss specific methods to distinguish engulfed from unengulfed apoptotic cells, and methods to monitor cellular and molecular events occurring during phagosome maturation. These methods are based on Differential Interference Contrast (DIC) microscopy or fluorescence microscopy using GFP-based reporters.

  4. Improvement of DC vaccine with ALA-PDT induced immunogenic apoptotic cells for skin squamous cell carcinoma.

    PubMed

    Ji, Jie; Fan, Zhixia; Zhou, Feifan; Wang, Xiaojie; Shi, Lei; Zhang, Haiyan; Wang, Peiru; Yang, Degang; Zhang, Linglin; Chen, Wei R; Wang, Xiuli

    2015-07-10

    Dendritic cell (DC) based vaccines have emerged as a promising immunotherapy for cancers. However, most DC vaccines so far have achieved only limited success in cancer treatment. Photodynamic therapy (PDT), an established cancer treatment strategy, can cause immunogenic apoptosis to induce an effective antitumor immune response. In this study, we developed a DC-based cancer vaccine using immunogenic apoptotic tumor cells induced by 5-aminolevulinic acid (ALA) mediated PDT. The maturation of DCs induced by PDT-treated apoptotic cells was evaluated using electron microscopy, FACS, and ELISA. The anti-tumor immunity of ALA-PDT-DC vaccine was tested with a mouse model. We observed the maturations of DCs potentiated by ALA-PDT treated tumor cells, including morphology maturation (enlargement of dendrites and increase of lysosomes), phenotypic maturation (upregulation of surface expression of MHC-II, DC80, and CD86), and functional maturation (enhanced capability to secrete IFN-γ and IL-12, and to induce T cell proliferation). Most interestingly, PDT-induced apoptotic tumor cells are more capable of potentiating maturation of DCs than PDT-treated or freeze/thaw treated necrotic tumor cells. ALA-PDT-DC vaccine mediated by apoptotic cells provided protection against tumors in mice, far stronger than that of DC vaccine obtained from freeze/thaw treated tumor cells. Our results indicate that immunogenic apoptotic tumor cells can be more effective in enhancing a DC-based cancer vaccine, which could improve the clinical application of PDT-DC vaccines.

  5. Effects of cellular non-protein sulfhydryl depletion in radiation induced oncogenic transformation and genotoxicity in mouse C/sub 3/H 10T1/2 cells

    SciTech Connect

    Hei, T.K.; Geard, C.R.; Hall, E.J.

    1984-08-01

    A study was made of the effects of cellular non-protein sulfhydryl (NPSH) depletion on cytotoxicity, cell cycle kinetics, oncogenic transformation and sister chromatid exchange (SCE) in C/sub 3/H 10T1/2 cells. Using DL-Buthionine S-R-Sulfoximine (BSO) to deplete thiols, it was found spectrophotometrically that less than 5% of control NPSH level remained in the cells after 24-hour treatment under aerated conditions. Such NPSH depleted cells, when subject to a 3 Gy ..gamma..-ray treatment, were found to have no radiosensitizing response either in terms of cell survival or oncogenic transformation. In addition, decreased levels of NPSH had no effect on spontaneous or radiation-induced SCE nor were cell cycle kinetics additionally altered. Therefore, the inability of NPSH depletion to alter ..gamma..-ray induced cellular transformation was unrelated to any possible effect of BSO on the cell cycle. These results suggest that such depletion may result in little or no additional oncogenic or genotoxic effects on aerated normal tissues.

  6. Bacillus thuringiensis parasporal proteins induce cell-cycle arrest and caspase-dependant apoptotic cell death in leukemic cells.

    PubMed

    Chan, Kok-Keong; Wong, Rebecca Shin-Yee; Mohamed, Shar Mariam; Ibrahim, Tengku Azmi Tengku; Abdullah, Maha; Nadarajah, Vishna Devi

    2012-01-01

    Bacillus thuringiensis (Bt) parasporal proteins with selective anticancer activity have recently garnered interest. This study determines the efficacy and mode of cell death of Bt 18 parasporal proteins against 3 leukemic cell lines (CEM-SS, CCRF-SB and CCRF-HSB-2).Cell-based biochemical analysis aimed to determine cell viability and the percentage of apoptotic cell death in treated cell lines; ultrastructural analysis to study apoptotic changes and Western blot to identify the parasporal proteins' binding site were performed. Bt 18 parasporal proteins moderately decreased viability of leukemic cells but not that of normal human T lymphocytes. Further purification of the proteins showed changes in inhibition selectivity. Phosphatidylserine externalization, active caspase-3, cell cycle, and ultrastructural analysis confirmed apoptotic activity and S-phase cell-cycle arrest. Western blot analysis demonstrated glyceraldehyde 3-phosphate dehydrogenase as a binding protein. We suggest that Bt 18 parasporal proteins inhibit leukemic cell viability by cell-cycle arrest and apoptosis and that glyceraldehyde 3-phosphate dehydrogenase binding initiates apoptosis.

  7. Toward the early evaluation of therapeutic effects: an electrochemical platform for ultrasensitive detection of apoptotic cells.

    PubMed

    Zhang, Jing-Jing; Zheng, Ting-Ting; Cheng, Fang-Fang; Zhang, Jian-Rong; Zhu, Jun-Jie

    2011-10-15

    The ability for early evaluation of therapeutic effects is a significant challenge in leukemia research. To address this challenge, we developed a novel electrochemical platform for ultrasensitive and selective detection of apoptotic cells in response to therapy. In order to construct the platform, a novel three-dimensional (3-D) architecture was initially fabricated after combining nitrogen-doped carbon nanotubes and gold nanoparticles via a layer-by-layer method. The formed architecture provided an effective matrix for annexin V with high stability and bioactivity to enhance sensitivity. On the basis of the specific recognition between annexin V and phosphatidylserine on the apoptotic cell membrane, the annexin V/3-D architecture interface showed a predominant capability for apoptotic cell capture. Moreover, a lectin-based nanoprobe was designed by noncovalent assembly of concanavalin A on CdTe quantum dots (QDs)-labeled silica nanospheres with poly(allylamine hydrochloride) as a linker. This nanoprobe incorporated both the specific carbohydrate recognition and the multilabeled QDs-based signal amplification. By coupling with the QDs-based nanoprobe and electrochemical stripping analysis, the proposed sandwich-type cytosensor showed an excellent analytical performance for the ultrasensitive detection of apoptotic cells (as low as 48 cells), revealing great potential toward the early evaluation of therapeutic effects.

  8. IgH-2 cells: a reptilian model for apoptotic studies.

    PubMed

    Sorensen, Erika B; Mesner, Peter W

    2005-01-01

    Regulation of proper cell number in tissues depends upon a balance between cell proliferation and cell death. The process of apoptosis has thus far been studied in a variety of multicellular organisms from humans to higher plants. In order to broaden our perspective and identify another metazoan system with which to deepen our understanding of the function and evolution of the apoptotic machinery, we have characterized cell death in a reptilian cell line. We show that the death of IgH-2 Iguana (Iguana iguana) heart cells [Clark, H.F., Cohen, M.M., Karzon, D.T., 1970. Characterization of reptilian cell lines established at incubation temperatures of 23 to 36 degrees. Proc. Soc. Exp. Biol. Med. 133, 1039-1047.] is, in response to DNA damaging agents, accompanied by classic morphological changes of apoptosis including detachment from the substrate, cell shrinkage, nuclear pyknosis and externalization of the plasma membrane phospholipid phosphatidylserine. Our biochemical studies show that the death of IgH-2 cells is accompanied by internucleosomal DNA fragmentation and activation of caspases. Our studies with the pan-caspase inhibitor zVAD.fmk implicate caspases in the apoptotic process we observe. This work represents the first detailed molecular and biochemical analysis of apoptosis in cells of an organism of class Reptilia and establishes IgH-2 cells as a suitable model system with which to investigate the phenomenon of caspase dependent apoptosis and the apoptotic machinery in a reptilian model.

  9. Cytoplasmic myosin exposed apoptotic cells appear with caspase-3 activation and enhance CLL cell viability

    PubMed Central

    Cui, Xiaoxuan; Zhang, Lu; Magli, Amanda R.; Catera, Rosa; Yan, Xiao-Jie; Griffin, Daniel O.; Rothstein, Thomas L.; Barrientos, Jacqueline; Kolitz, Jonathan E.; Allen, Steven L.; Rai, Kanti R.; Chiorazzi, Nicholas; Chu, Charles C.

    2015-01-01

    The degree of chronic lymphocytic leukemia (CLL) B-cell antigen receptor (BCR) binding to myosin exposed apoptotic cells (MEACs) correlates with worse patient outcomes, suggesting a link to disease activity. Therefore, we studied MEAC formation and the effects of MEAC binding on CLL cells. In cell line studies, both intrinsic (spontaneous or camptothecin-induced) and extrinsic (FasL- or anti-Fas-induced) apoptosis created a high percent of MEACs over time in a process associated with caspase-3 activation, leading to cytoplasmic myosin cleavage and trafficking to cell membranes. The involvement of common apoptosis pathways suggests that most cells can produce MEACs and indeed CLL cells themselves form MEACs. Consistent with the idea that MEAC formation may be a signal to remove dying cells, we found that natural IgM antibodies bind to MEACs. Functionally, co-culture of MEACs with CLL cells, regardless of immunoglobulin heavy chain variable region gene mutation status, improved leukemic cell viability. Based on inhibitor studies, this improved viability involved BCR signaling molecules. These results support the hypothesis that stimulation of CLL cells with antigen, such as those on MEACs, promotes CLL cell viability, which in turn could lead to progression to worse disease. PMID:26220042

  10. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53

    PubMed Central

    Yoon, Kyoung Wan; Byun, Sanguine; Kwon, Eunjeong; Hwang, So-Young; Chu, Kiki; Hiraki, Masatsugu; Jo, Seung-Hee; Weins, Astrid; Hakroush, Samy; Cebulla, Angelika; Sykes, David B.; Greka, Anna; Mundel, Peter; Fisher, David E.; Mandinova, Anna; Lee, Sam W.

    2016-01-01

    The inefficient clearance of dying cells can lead to abnormal immune responses, such as unresolved inflammation and autoimmune conditions. We show that tumor suppressor p53 controls signaling-mediated phagocytosis of apoptotic cells through its target, Death Domain1α (DD1α), which suggests that p53 promotes both the proapoptotic pathway and postapoptotic events. DD1α appears to function as an engulfment ligand or receptor that engages in homophilic intermolecular interaction at intercellular junctions of apoptotic cells and macrophages, unlike other typical scavenger receptors that recognize phosphatidylserine on the surface of dead cells. DD1α-deficient mice showed in vivo defects in clearing dying cells, which led to multiple organ damage indicative of immune dysfunction. p53-induced expression of DD1α thus prevents persistence of cell corpses and ensures efficient generation of precise immune responses. PMID:26228159

  11. Using Small Molecules to Dissect Non-apoptotic Programmed Cell Death: Necroptosis, Ferroptosis, and Pyroptosis.

    PubMed

    Dong, Ting; Liao, Daohong; Liu, Xiaohui; Lei, Xiaoguang

    2015-12-01

    Genetically programmed cell death is a universal and fundamental cellular process in multicellular organisms. Apoptosis and necroptosis, two common forms of programmed cell death, play vital roles in maintenance of homeostasis in metazoans. Dysfunction of the regulatory machinery of these processes can lead to carcinogenesis or autoimmune diseases. Inappropriate death of essential cells can lead to organ dysfunction or even death; ischemia-reperfusion injury and neurodegenerative disorders are examples of this. Recently, novel forms of non-apoptotic programmed cell death have been identified. Although these forms of cell death play significant roles in both physiological and pathological conditions, the detailed molecular mechanisms underlying them are still poorly understood. Here, we discuss progress in using small molecules to dissect three forms of non-apoptotic programmed cell death: necroptosis, ferroptosis, and pyroptosis.

  12. Bystander autophagy mediated by radiation-induced exosomal miR-7-5p in non-targeted human bronchial epithelial cells

    PubMed Central

    Song, Man; Wang, Yu; Shang, Zeng-Fu; Liu, Xiao-Dan; Xie, Da-Fei; Wang, Qi; Guan, Hua; Zhou, Ping-Kun

    2016-01-01

    Radiation-induced bystander effect (RIBE) describes a set of biological effects in non-targeted cells that receive bystander signals from the irradiated cells. RIBE brings potential hazards to adjacent normal tissues in radiotherapy, and imparts a higher risk than previously thought. Excessive release of some substances from irradiated cells into extracellular microenvironment has a deleterious effect. For example, cytokines and reactive oxygen species have been confirmed to be involved in RIBE process via extracellular medium or gap junctions. However, RIBE-mediating signals and intercellular communication pathways are incompletely characterized. Here, we first identified a set of differentially expressed miRNAs in the exosomes collected from 2 Gy irradiated human bronchial epithelial BEP2D cells, from which miR-7-5p was found to induce autophagy in recipient cells. This exosome-mediated autophagy was significantly attenuated by miR-7-5p inhibitor. Moreover, our data demonstrated that autophagy induced by exosomal miR-7-5p was associated with EGFR/Akt/mTOR signaling pathway. Together, our results support the involvement of secretive exosomes in propagation of RIBE signals to bystander cells. The exosomes-containing miR-7-5p is a crucial mediator of bystander autophagy. PMID:27417393

  13. Pro-apoptotic cell death genes, hid and reaper, from the tephritid pest species, Anastrepha suspensa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pro-apoptotic proteins from the reaper, hid, grim (RHG) family are primary regulators of programmed cell death in Drosophila due to their antagonistic effect on inhibitor of apoptosis (IAP) proteins, thereby releasing IAP inhibition of caspases that effect apoptosis. Using a degenerate PCR approach ...

  14. Ex vivo miRNome analysis in Ptch1+/− cerebellum granule cells reveals a subset of miRNAs involved in radiation-induced medulloblastoma

    PubMed Central

    Leonardi, Simona; Giardullo, Paola; Stefano, Ilaria De; Pasquali, Emanuela; Ottolenghi, Andrea; Atkinson, Michael J.; Saran, Anna; Mancuso, Mariateresa

    2016-01-01

    It has historically been accepted that incorrectly repaired DNA double strand breaks (DSBs) are the principal lesions of importance regarding mutagenesis, and long-term biological effects associated with ionizing radiation. However, radiation may also cause dysregulation of epigenetic processes that can lead to altered gene function and malignant transformation, and epigenetic alterations are important causes of miRNAs dysregulation in cancer. Patched1 heterozygous (Ptch1+/−) mice, characterized by aberrant activation of the Sonic hedgehog (Shh) signaling pathway, are a well-known murine model of spontaneous and radiation-induced medulloblastoma (MB), a common pediatric brain tumor originating from neural granule cell progenitors (GCPs). The high sensitivity of neonatal Ptch1+/− mice to radiogenic MB is dependent on deregulation of the Ptch1 gene function. Ptch1 activates a growth and differentiation programme that is a strong candidate for regulation through the non-coding genome. Therefore we carried out miRNA next generation sequencing in ex vivo irradiated and control GCPs, isolated and purified from cerebella of neonatal WT and Ptch1+/− mice. We identified a subset of miRNAs, namely let-7 family and miR-17∼92 cluster members, whose expression is altered in GCPs by radiation alone, or by synergistic interaction of radiation with Shh-deregulation. The same miRNAs were further validated in spontaneous and radiation-induced MBs from Ptch1+/− mice, confirming persistent deregulation of these miRNAs in the pathogenesis of MB. Our results support the hypothesis that miRNAs dysregulation is associated with radiosensitivity of GCPs and their neoplastic transformation in vivo. PMID:27626168

  15. Artocarpus communis Induces Autophagic Instead of Apoptotic Cell Death in Human Hepatocellular Carcinoma Cells.

    PubMed

    Tzeng, Cheng-Wei; Tzeng, Wen-Sheng; Lin, Liang-Tzung; Lee, Chiang-Wen; Yen, Ming-Hong; Yen, Feng-Lin; Lin, Chun-Ching

    2015-01-01

    For centuries, natural plant extracts have played an important role in traditional medicine for curing and preventing diseases. Studies have revealed that Artocarpus communis possess various bioactivities, such as anti-inflammation, anti-oxidant, and anticancer activities. A. communis offers economic value as a source of edible fruit, yields timber, and is widely used in folk medicines. However, little is known about its molecular mechanisms of anticancer activity. Here, we demonstrate the antiproliferative activity of A. communis methanol extract (AM) and its dichloromethane fraction (AD) in two human hepatocellular carcinoma (HCC) cell lines, HepG2 and PLC/PRF/5. Colony assay showed the long-term inhibitory effect of both extracts on cell growth. DNA laddering and immunoblotting analyses revealed that both extracts did not induce apoptosis in the hepatoma cell lines. AM and AD-treated cells demonstrated different cell cycle distribution compared to UV-treated cells, which presented apoptotic cell death with high sub-G1 ratio. Instead, acridine orange staining revealed that AM and AD triggered autophagosome accumulation. Immunoblotting showed a significant expression of autophagy-related proteins, which indicated the autophagic cell death (ACD) of hepatoma cell lines. This study therefore demonstrates that A. communis AM and its dichloromethane fraction can induce ACD in HCC cells and elucidates the potential of A. communis extracts for development as anti tumor therapeutic agents that utilize autophagy as mechanism in mediating cancer cell death.

  16. Mitigation of radiation-induced hematopoietic injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice

    PubMed Central

    Venkateswaran, Kavya; Shrivastava, Anju; Agrawala, Paban K.; Prasad, Ashok; Kalra, Namita; Pandey, Parvat R.; Manda, Kailash; Raj, Hanumantharao G.; Parmar, Virinder S.; Dwarakanath, Bilikere S.

    2016-01-01

    Protection of the hematopoietic system from radiation damage, and/or mitigation of hematopoietic injury are the two major strategies for developing medical countermeasure agents (MCM) to combat radiation-induced lethality. In the present study, we investigated the potential of 7, 8-diacetoxy-4-methylthiocoumarin (DAMTC) to ameliorate radiation-induced hematopoietic damage and the associated mortality following total body irradiation (TBI) in C57BL/6 mice. Administration of DAMTC 24 hours post TBI alleviated TBI-induced myelo-suppression and pancytopenia, by augmenting lymphocytes and WBCs in the peripheral blood of mice, while bone marrow (BM) cellularity was restored through enhanced proliferation of the stem cells. It stimulated multi-lineage expansion and differentiation of myeloid progenitors in the BM and induced proliferation of splenic progenitors thereby, facilitating hematopoietic re-population. DAMTC reduced the radiation-induced apoptotic and mitotic death in the hematopoietic compartment. Recruitment of pro-inflammatory M1 macrophages in spleen contributed to the immune-protection linked to the mitigation of hematopoietic injury. Recovery of the hematopoietic compartment correlated well with mitigation of mortality at a lethal dose of 9 Gy, leading to 80% animal survival. Present study establishes the potential of DAMTC to mitigate radiation-induced injury to the hematopoietic system by stimulating the re-population of stem cells from multiple lineages. PMID:27849061

  17. Mitigation of radiation-induced hematopoietic injury by the polyphenolic acetate 7, 8-diacetoxy-4-methylthiocoumarin in mice.

    PubMed

    Venkateswaran, Kavya; Shrivastava, Anju; Agrawala, Paban K; Prasad, Ashok; Kalra, Namita; Pandey, Parvat R; Manda, Kailash; Raj, Hanumantharao G; Parmar, Virinder S; Dwarakanath, Bilikere S

    2016-11-16

    Protection of the hematopoietic system from radiation damage, and/or mitigation of hematopoietic injury are the two major strategies for developing medical countermeasure agents (MCM) to combat radiation-induced lethality. In the present study, we investigated the potential of 7, 8-diacetoxy-4-methylthiocoumarin (DAMTC) to ameliorate radiation-induced hematopoietic damage and the associated mortality following total body irradiation (TBI) in C57BL/6 mice. Administration of DAMTC 24 hours post TBI alleviated TBI-induced myelo-suppression and pancytopenia, by augmenting lymphocytes and WBCs in the peripheral blood of mice, while bone marrow (BM) cellularity was restored through enhanced proliferation of the stem cells. It stimulated multi-lineage expansion and differentiation of myeloid progenitors in the BM and induced proliferation of splenic progenitors thereby, facilitating hematopoietic re-population. DAMTC reduced the radiation-induced apoptotic and mitotic death in the hematopoietic compartment. Recruitment of pro-inflammatory M1 macrophages in spleen contributed to the immune-protection linked to the mitigation of hematopoietic injury. Recovery of the hematopoietic compartment correlated well with mitigation of mortality at a lethal dose of 9 Gy, leading to 80% animal survival. Present study establishes the potential of DAMTC to mitigate radiation-induced injury to the hematopoietic system by stimulating the re-population of stem cells from multiple lineages.

  18. Regulation of cell death receptor S-nitrosylation and apoptotic signaling by Sorafenib in hepatoblastoma cells☆

    PubMed Central

    Rodríguez-Hernández, A.; Navarro-Villarán, E.; González, R.; Pereira, S.; Soriano-De Castro, L.B.; Sarrias-Giménez, A.; Barrera-Pulido, L.; Álamo-Martínez, J.M.; Serrablo-Requejo, A.; Blanco-Fernández, G.; Nogales-Muñoz, A.; Gila-Bohórquez, A.; Pacheco, D.; Torres-Nieto, M.A.; Serrano-Díaz-Canedo, J.; Suárez-Artacho, G.; Bernal-Bellido, C.; Marín-Gómez, L.M.; Barcena, J.A.; Gómez-Bravo, M.A.; Padilla, C.A.; Padillo, F.J.; Muntané, J.

    2015-01-01

    Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10 nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10 µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells. PMID:26233703

  19. Non-apoptotic toxicity of Pseudomonas aeruginosa toward murine cells.

    PubMed

    Roy, Sanhita; Bonfield, Tracey; Tartakoff, Alan M

    2013-01-01

    Although P. aeruginosa is especially dangerous in cystic fibrosis (CF), there is no consensus as to how it kills representative cell types that are of key importance in the lung. This study concerns the acute toxicity of the sequenced strain, PAO1, toward a murine macrophage cell line (RAW 264.7). Toxicity requires brief contact with the target cell, but is then delayed for more than 12 h. None of the classical toxic effectors of this organism is required and cell death occurs without phagocytosis or acute perturbation of the actin cytoskeleton. Apoptosis is not required for toxicity toward either RAW 264.7 cells or for alveolar macrophages. Transcriptional profiling shows that encounter between PAO1 and RAW 264.7 cells elicits an early inflammatory response, followed by growth arrest. As an independent strategy to understand the mechanism of toxicity, we selected variant RAW 264.7 cells that resist PAO1. Upon exposure to P. aeruginosa, they are hyper-responsive with regard to classical inflammatory cytokine production and show transient downregulation of transcripts that are required for cell growth. They do not show obvious morphologic changes. Although they do not increase interferon transcripts, when exposed to PAO1 they dramatically upregulate a subset of the responses that are characteristic of exposure to g-interferon, including several guanylate-binding proteins. The present observations provide a novel foundation for learning how to equip cells with resistance to a complex challenge.

  20. Biphasic Effects of Nitric Oxide Radicals on Radiation-Induced Lethality and Chromosome Aberrations in Human Lung Cancer Cells Carrying Different p53 Gene Status

    SciTech Connect

    Su Xiaoming; Takahashi, Akihisa; Guo Guozhen; Mori, Eiichiro; Okamoto, Noritomo; Ohnishi, Ken; Iwasaki, Toshiyasu; Ohnishi, Takeo

    2010-06-01

    Purpose: The aim of this study was to clarify the effects of nitric oxide (NO) on radiation-induced cell killing and chromosome aberrations in two human lung cancer cell lines with a different p53 gene status. Methods and Materials: We used wild-type (wt) p53 and mutated (m) p53 cell lines that were derived from the human lung cancer H1299 cell line, which is p53 null. The wtp53 and mp53 cell lines were generated by transfection of the appropriate p53 constructs into the parental cells. Cells were pretreated with different concentrations of isosorbide dinitrate (ISDN) (an NO donor) and/or 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) (an NO scavenger) and then exposed to X-rays. Cell survival, apoptosis, and chromosome aberrations were scored by use of a colony-forming assay, Hoechst 33342 staining assay and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP [deoxyuridine triphosphate] nick end labeling) assay, and chromosomal banding techniques, respectively. Results: In wtp53 cells the induction of radioresistance and the inhibition of apoptosis and chromosome aberrations were observed in the presence of ISDN at low 2- to 10-{mu}mol/L concentrations before X-irradiation. The addition of c-PTIO and ISDN into the culture medium 6 h before irradiation almost completely suppressed these effects. However, at high concentrations of ISDN (100-500 {mu}mol/L), clear evidence of radiosensitization, enhancement of apoptosis, and chromosome aberrations was detected. However, these phenomena were not observed in mp53 cells at either concentration range with ISDN. Conclusions: These results indicate that low and high concentrations of NO radicals can choreograph inverse radiosensitivity, apoptosis, and chromosome aberrations in human lung cancer cells and that NO radicals can affect the fate of wtp53 cells.

  1. Tritrichomonas foetus Induces Apoptotic Cell Death in Bovine Vaginal Epithelial Cells

    PubMed Central

    Singh, B. N.; Lucas, J. J.; Hayes, G. R.; Kumar, Ish; Beach, D. H.; Frajblat, Marcel; Gilbert, R. O.; Sommer, U.; Costello, C. E.

    2004-01-01

    Tritrichomonas foetus is a serious veterinary pathogen, causing bovine trichomoniasis, a sexually transmitted disease leading to infertility and abortion. T. foetus infects the mucosal surfaces of the reproductive tract. Infection with T. foetus leads to apoptotic cell death of bovine vaginal epithelial cells (BVECs) in culture. An affinity-purified cysteine protease (CP) fraction yielding on sodium dodecyl sulfate-polyacrylamide gel electrophoresis a single band with an apparent molecular mass of 30 kDa (CP30) also induces BVEC apoptosis. Treatment of CP30 with the protease inhibitors TLCK (Nα-p-tosyl-l-lysine chloromethyl ketone) and E-64 [l-trans-epoxysuccinyl-leucylamide-(4-guanido)-butane] greatly reduces induction of BVEC apoptosis. Matrix-assisted laser desorption ionization-time-of-flight MALDI-TOF mass spectrometry analysis of CP30 reveals a single peak with a molecular mass of 23.7 kDa. Mass spectral peptide sequence analysis of proteolytically digested CP30 reveals homologies to a previously reported cDNA clone, CP8 (D. J. Mallinson, J. Livingstone, K. M. Appleton, S. J. Lees, G. H. Coombs, and M. J. North, Microbiology 141:3077-3085, 1995). Induction of apoptosis is highly species specific, since the related human parasite Trichomonas vaginalis and associated purified CPs did not induce BVEC death. Fluorescence microscopy along with the Cell Death Detection ELISAPLUS assay and flow cytometry analyses were used to detect apoptotic nuclear condensation, DNA fragmentation, and changes in plasma membrane asymmetry in host cells undergoing apoptosis in response to T. foetus infection or incubation with CP30. Additionally, the activation of caspase-3 and inhibition of cell death by caspase inhibitors indicates that caspases are involved in BVEC apoptosis. These results imply that apoptosis is involved in the pathogenesis of T. foetus infection in vivo, which may have important implications for therapeutic interference with host cell death that could alter

  2. Detecting apoptotic cells and monitoring their clearance in the nematode Caenorhabditis elegans.

    PubMed

    Lu, Nan; Yu, Xiaomeng; He, Xiangwei; Zhou, Zheng

    2009-01-01

    Apoptosis is a genetically controlled process of cell suicide that plays an important role in animal development and in maintaining homeostasis. The nematode Caenorhabditis elegans has proven to be an excellent model organism for studying the mechanisms controlling apoptosis and the subsequent clearance of apoptotic cells, aided with cell-biological and genetic tools. In particular, the transparent nature of worm bodies and eggshells makes C. elegans particularly amiable for live cell microscopy. Here we describe a few methods for identifying apoptotic cells in living C. elegans embryos and adults and for monitoring their clearance during embryonic development. These methods are based on Differential Interference Contrast microscopy and on fluorescence microscopy using GFP-based reporters.

  3. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells

    NASA Astrophysics Data System (ADS)

    Roy, Prathik; Periasamy, Arun Prakash; Lin, Chiu-Ya; Her, Guor-Mour; Chiu, Wei-Jane; Li, Chi-Lin; Shu, Chia-Lun; Huang, Chih-Ching; Liang, Chi-Te; Chang, Huan-Tsung

    2015-01-01

    Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL-1 over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications.Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with

  4. Cell Cycle Regulation and Apoptotic Responses of the Embryonic Chick Retina by Ionizing Radiation

    PubMed Central

    Layer, Paul G.; Frohns, Florian

    2016-01-01

    Ionizing radiation (IR) exerts deleterious effects on the developing brain, since proliferative neuronal progenitor cells are highly sensitive to IR-induced DNA damage. Assuming a radiation response that is comparable to mammals, the chick embryo would represent a lower vertebrate model system that allows analysis of the mechanisms underlying this sensitivity, thereby contributing to the reduction, refinement and replacement of animal experiments. Thus, this study aimed to elucidate the radiation response of the embryonic chick retina in three selected embryonic stages. Our studies reveal a lack in the radiation-induced activation of a G1/S checkpoint, but rapid abrogation of G2/M progression after IR in retinal progenitors throughout development. Unlike cell cycle control, radiation-induced apoptosis (RIA) showed strong variations between its extent, dose dependency and temporal occurrence. Whereas the general sensitivity towards RIA declined with ongoing differentiation, its dose dependency constantly increased with age. For all embryonic stages RIA occurred during comparable periods after irradiation, but in older animals its maximum shifted towards earlier post-irradiation time points. In summary, our results are in good agreement with data from the developing rodent retina, strengthening the suitability of the chick embryo for the analysis of the radiation response in the developing central nervous system. PMID:27163610

  5. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance.

    PubMed

    McCaslin, Charles A; Petrusca, Daniela N; Poirier, Christophe; Serban, Karina A; Anderson, Gregory G; Petrache, Irina

    2015-01-01

    Pseudomonas aeruginosa infection is a hallmark of lung disease in cystic fibrosis. Acute infection with P. aeruginosa profoundly inhibits alveolar macrophage clearance of apoptotic cells (efferocytosis) via direct effect of virulence factors. During chronic infection, P. aeruginosa evades host defense by decreased virulence, which includes the production or, in the case of mucoidy, overproduction of alginate. The impact of alginate on innate immunity, in particular on macrophage clearance of apoptotic cells is not known. We hypothesized that P. aeruginosa strains that exhibit reduced virulence impair macrophage clearance of apoptotic cells and we investigated if the polysaccharide alginate produced by mucoid P. aeruginosa is sufficient to inhibit alveolar macrophage efferocytosis. Rat alveolar or human peripheral blood monocyte (THP-1)-derived macrophage cell lines were exposed in vitro to exogenous alginate or to wild type or alginate-overproducing mucoid P. aeruginosa prior to challenge with apoptotic human Jurkat T-lymphocytes. The importance of LPS contamination and that of structural integrity of alginate polymers was tested using alginate of different purities and alginate lyase, respectively. Alginate inhibited alveolar macrophage efferocytosis in a dose- and time-dependent manner. This effect was augmented but not exclusively attributed to lipopolysaccharide (LPS) present in alginates. Alginate-producing P. aeruginosa inhibited macrophage efferocytosis by more than 50%. A mannuronic-specific alginate lyase did not restore efferocytosis inhibited by exogenous guluronic-rich marine alginate, but had a marked beneficial effect on efferocytosis of alveolar macrophages exposed to mucoid P. aeruginosa. Despite decreased virulence, mucoid P. aeruginosa may contribute to chronic airway inflammation through significant inhibition of alveolar clearance of apoptotic cells and debris. The mechanism by which mucoid bacteria inhibit efferocytosis may involve alginate

  6. Contribution of apoptotic cell death to renal injury.

    PubMed

    Ortiz, A; Lorz, C; Justo, P; Catalán, M P; Egido, J

    2001-01-01

    Cell number abnormalities are frequent in renal diseases, and range from the hypercellularity of postinfectious glomerulonephritis to the cell depletion of chronic renal atrophy. Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in the kidney. The role of apoptosis ranges from induction to repair and progression of renal injury. Death ligands and receptors, such as TNF and FasL, proapoptotic and antiapoptotic Bcl-2 family members and caspases have all been shown to participate in apoptosis regulation in the course of renal injury. These proteins represent potential therapeutic targets, which should be further explored.

  7. p53 Dependent Apoptotic Cell Death Induces Embryonic Malformation in Carassius auratus under Chronic Hypoxia

    PubMed Central

    Dasgupta, Subrata; Sawant, Bhawesh T.; Chadha, Narinder K.; Pal, Asim K.

    2014-01-01

    Hypoxia is a global phenomenon affecting recruitment as well as the embryonic development of aquatic fauna. The present study depicts hypoxia induced disruption of the intrinsic pathway of programmed cell death (PCD), leading to embryonic malformation in the goldfish, Carrasius auratus. Constant hypoxia induced the early expression of pro-apoptotic/tumor suppressor p53 and concomitant expression of the cell death molecule, caspase-3, leading to high level of DNA damage and cell death in hypoxic embryos, as compared to normoxic ones. As a result, the former showed delayed 4 and 64 celled stages and a delay in appearance of epiboly stage. Expression of p53 efficiently switched off expression of the anti-apoptotic Bcl-2 during the initial 12 hours post fertilization (hpf) and caused embryonic cell death. However, after 12 hours, simultaneous downregulation of p53 and Caspase-3 and exponential increase of Bcl-2, caused uncontrolled cell proliferation and prevented essential programmed cell death (PCD), ultimately resulting in significant (p<0.05) embryonic malformation up to 144 hpf. Evidences suggest that uncontrolled cell proliferation after 12 hpf may have been due to downregulation of p53 abundance, which in turn has an influence on upregulation of anti-apoptotic Bcl-2. Therefore, we have been able to show for the first time and propose that hypoxia induced downregulation of p53 beyond 12 hpf, disrupts PCD and leads to failure in normal differentiation, causing malformation in gold fish embryos. PMID:25068954

  8. Apoptotic effect of sodium acetate on a human gastric adenocarcinoma epithelial cell line.

    PubMed

    Xia, Y; Zhang, X L; Jin, F; Wang, Q X; Xiao, R; Hao, Z H; Gui, Q D; Sun, J

    2016-10-05

    The objective of this study was to investigate the effect of sodium acetate on the viability of the human gastric adenocarcinoma (AGS) epithelial cell line. AGS cells were exposed to a range of concentrations of sodium acetate for different periods of time, and the sodium acetate-induced cytotoxic effects, including cell viability, DNA fragmentation, apoptotic gene expression, and caspase activity, were assessed. The changes in these phenotypes were quantified by performing a lactate dehydrogenase cell viability assay, annexin V staining, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and several caspase activity assays. In vitro studies demonstrated that the cytotoxicity of sodium acetate on the AGS cell line were dose- and time-dependent manners. No differences were found between the negative control and sodium acetate-treated cells stained with annexin V and subjected to the TUNEL assay. However, caspase-3 activity was increased in AGS cells exposed to sodium acetate. Overall, it was concluded that sodium acetate exerted an apoptotic effect in AGS cells via a caspase-dependent apoptotic pathway.

  9. Apoptotic and proinflammatory effect of combustion-generated organic nanoparticles in endothelial cells.

    PubMed

    Pedata, Paola; Bergamasco, Nadia; D'Anna, Andrea; Minutolo, Patrizia; Servillo, Luigi; Sannolo, Nicola; Balestrieri, Maria Luisa

    2013-06-07

    Air pollution exposure in industrialized cities is associated with an increased risk of morbidity and mortality attributed to cardiovascular diseases. Combustion exhausts emitted from motor vehicles and industries represent a major source of nanoparticles in the atmosphere. Flame-generated organic carbon nanoparticles (OC NPs) provide interesting model nanoparticles that simulate fresh combustion emissions near roadways or combustion sources. These model nanoparticles can be produced by controlling flame operating conditions and used to test possible toxicological mechanisms responsible for the observed health effects. OC NPs were used to investigate their possible effect on endothelial cells (EC) growth and production of proinflammatory lipid mediators. Results indicated a dose and time-dependent reduction in cell viability following incubation of EC with OC NPs for 24 and 48h. Fluorescence-activated cell sorting revealed that EC treated with OC NPs showed a cell proliferation index significantly lower than that of control cells and an increased apoptotic cell death. The annexin assay confirmed the increased apoptotic cell death. Moreover, OC NPs also induced a time-dependent increase of proinflammatory lysophospholipid production. These results, establishing that OC NPs induce EC proinflammatory lysophosholipid production and apoptotic cell death, provide the first evidence of the detrimental effect of OC NPs on EC.

  10. Both the anti- and pro-apoptotic functions of villin regulate cell turnover and intestinal homeostasis

    PubMed Central

    Wang, Yaohong; George, Sudeep P.; Roy, Swati; Pham, Eric; Esmaeilniakooshkghazi, Amin; Khurana, Seema

    2016-01-01

    In the small intestine, epithelial cells are derived from stem cells in the crypts, migrate up the villus as they differentiate and are ultimately shed from the villus tips. This process of proliferation and shedding is tightly regulated to maintain the intestinal architecture and tissue homeostasis. Apoptosis regulates both the number of stem cells in the crypts as well as the sloughing of cells from the villus tips. Previously, we have shown that villin, an epithelial cell-specific actin-binding protein functions as an anti-apoptotic protein in the gastrointestinal epithelium. The expression of villin is highest in the apoptosis-resistant villus cells and lowest in the apoptosis-sensitive crypts. In this study we report that villin is cleaved in the intestinal mucosa to generate a pro-apoptotic fragment that is spatially restricted to the villus tips. This cleaved villin fragment severs actin in an unregulated fashion to initiate the extrusion and subsequent apoptosis of effete cells from the villus tips. Using villin knockout mice, we validate the physiological role of villin in apoptosis and cell extrusion from the gastrointestinal epithelium. Our study also highlights the potential role of villin’s pro-apoptotic function in the pathogenesis of inflammatory bowel disease, ischemia-reperfusion injury, enteroinvasive bacterial and parasitic infections. PMID:27765954

  11. Troglitazone Enhances the Apoptotic Response of DLD-1 Colon Cancer Cells to Photodynamic Therapy

    PubMed Central

    Park, Hyunju; Ko, Si-Hwan; Lee, Jae Myun; Park, Jeon Han

    2016-01-01

    Purpose The aim of this study was to investigate whether the peroxisomal proliferator-activated receptor gamma (PPARγ) ligand troglitazone in combination with photodynamic therapy (PDT) enhances the apoptotic response of DLD-1 colon cancer cells. Materials and Methods The effects of troglitazone, PDT, and troglitazone in combination with PDT on cell viability and apoptosis were assessed in DLD-1 cells. Cell viability and proliferation were evaluated using the tetrazolium-based MTT assay, and apoptosis was evaluated via cell staining with propidium iodide (PI) and annexin V-FITC. The levels of pro-caspase-3 were measured via Western blot analyses. Results Treatment of troglitazone and PDT induced the growth retardation and cell death of DLD-1 cells in a dose-dependent manner, respectively. The combination treatment significantly suppressed cell growth and increased the apoptotic response of DLD-1 and resulted in apoptosis rather than necrosis, as shown by PI/annexin V staining and degradation of procaspase-3. Conclusion Conclusion: These results document the anti-proliferative and apoptotic activities of PDT in combination with the PPARγ ligand troglitazone and provide a strong rationale for testing the therapeutic potential of combination treatment in colon cancer. PMID:27593880

  12. Apoptotic Effects of Chrysin in Human Cancer Cell Lines

    PubMed Central

    Khoo, Boon Yin; Chua, Siang Ling; Balaram, Prabha

    2010-01-01

    Chrysin is a natural flavonoid currently under investigation due to its important biological anti-cancer properties. In most of the cancer cells tested, chrysin has shown to inhibit proliferation and induce apoptosis, and is more potent than other tested flavonoids in leukemia cells, where chrysin is likely to act via activation of caspases and inactivation of Akt signaling in the cells. Moreover, structure-activity relationships have revealed that the chemical structure of chrysin meets the key structural requirements of flavonoids for potent cytotoxicity in leukemia cells. It is possible that combination therapy or modified chrysin could be more potent than single-agent use or administration of unmodified chrysin. This study may help to develop ways of improving the effectiveness of chrysin in the treatment of leukemia and other human cancers in vitro. PMID:20559509

  13. Detection of Apoptotic Versus Autophagic Cell Death by Flow Cytometry.

    PubMed

    Sica, Valentina; Maiuri, M Chiara; Kroemer, Guido; Galluzzi, Lorenzo

    2016-01-01

    Different modes of regulated cell death (RCD) can be initiated by distinct molecular machineries and their morphological manifestations can be difficult to discriminate. Moreover, cells responding to stress often activate an adaptive response centered around autophagy, and whether such a response is cytoprotective or cytotoxic cannot be predicted based on morphological parameters only. Molecular definitions are therefore important to understand various RCD subroutines from a mechanistic perspective. In vitro, various forms of RCD including apoptosis and autophagic cell death can be easily discriminated from each other with assays that involve chemical or pharmacological interventions targeting key components of either pathway. Here, we detail a straightforward method to discriminate apoptosis from autophagic cell death by flow cytometry, based on the broad-spectrum caspase inhibitor Z-VAD-fmk and the genetic inhibition of ATG5.

  14. Selenium supplementation modulates apoptotic processes in thyroid follicular cells.

    PubMed

    Nettore, Immacolata C; De Nisco, Emma; Desiderio, Silvio; Passaro, Carmela; Maione, Luigi; Negri, Mariarosaria; Albano, Luigi; Pivonello, Rosario; Pivonello, Claudia; Portella, Giuseppe; Ungaro, Paola; Colao, Annamaria; Macchia, Paolo E

    2017-03-02

    Selenium (Se) is an essential micronutrient modulating several physiopathological processes in the human body. The aim of the study is to characterize the molecular effects determined by Se-supplementation in thyroid follicular cells, using as model the well-differentiated rat thyroid follicular cell line FRTL5. Experiments have been performed to evaluate the effects of Se on cell growth, mortality and proliferation and on modulation of pro- and antiapoptotic pathways. The results indicate that Se-supplementation improves FRTL5 growth rate. Furthermore, Se reduces the proportion of cell death and modulates both proapoptotic (p53 and Bim) and antiapoptotic (NF-kB and Bcl2) mRNA levels. In addition, incubation with high doses of Na-Se might prevent the ER-stress apoptosis induced by tunicamycin, as assessed by membrane integrity maintenance, reduction in caspase 3/7 activities, and reduction in Casp-3 and PARP cleavage. Taken together, these results provide molecular evidences indicating the role of Se supplementation on cell death and apoptosis modulation in thyroid follicular cells. These observations may be useful to understand the effects of this micronutrient on the physiopathology of the thyroid gland. © 2017 The Authors BioFactors published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 2017.

  15. The modulating effect of royal jelly consumption against radiation-induced apoptosis in human peripheral blood leukocytes.

    PubMed

    Rafat, Navid; Monfared, Ali Shabestani; Shahidi, Maryam; Pourfallah, Tayyeb Allahverdi

    2016-01-01

    The present work was designed to assess the radioprotective effect of royal jelly (RJ) against radiation-induced apoptosis in human peripheral blood leukocytes. In this study, peripheral blood samples were obtained on days 0, 4, 7, and 14 of the study from six healthy male volunteers taking a 1000 mg RJ capsule orally per day for 14 consecutive days. On each sampling day, all collected whole blood samples were divided into control and irradiated groups which were then exposed to the selected dose of 4 Gy X-ray. Percentage of apoptotic cells (Ap %) was evaluated for all samples immediately after irradiation (Ap0) and also after a 24 h postirradiation incubation at 37°C in 5% CO2 (Ap24) by the use of neutral comet assay. Concerning Ap0, collected data demonstrated that the percentage of apoptotic cells in both control and irradiated groups did not significantly change during the study period. However, with respect to Ap24, the percentage of apoptotic cells in irradiated groups gradually reduced during the experiment, according to which a significant decrease was found after 14 days RJ consumption (P = 0.002). In conclusion, the present study revealed the protective role of 14 days RJ consumption against radiation-induced apoptosis in human peripheral blood leukocytes.

  16. Caffeic Acid Phenethyl Ester Increases Radiosensitivity of Estrogen Receptor-Positive and -Negative Breast Cancer Cells by Prolonging Radiation-Induced DNA Damage

    PubMed Central

    Khoram, Nastaran Masoudi; Bigdeli, Bahareh; Nikoofar, Alireza

    2016-01-01

    Purpose Breast cancer is an important cause of death among women. The development of radioresistance in breast cancer leads to recurrence after radiotherapy. Caffeic acid phenethyl ester (CAPE), a polyphenolic compound of honeybee propolis, is known to have anticancer properties. In this study, we examined whether CAPE enhanced the radiation sensitivity of MDA-MB-231 (estrogen receptor-negative) and T47D (estrogen receptor-positive) cell lines. Methods The cytotoxic effect of CAPE on MDA-MB-231 and T47D breast cancer cells was evaluated by performing an 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. To assess clonogenic ability, MDA-MB-231 and T47D cells were treated with CAPE (1 µM) for 72 hours before irradiation, and then, a colony assay was performed. A comet assay was used to determine the number of DNA strand breaks at four different times. Results CAPE decreased the viability of both cell lines in a dose- and time-dependent manner. In the clonogenic assay, pretreatment of cells with CAPE before irradiation significantly reduced the surviving fraction of MDA-MB-231 cells at doses of 6 and 8 Gy. A reduction in the surviving fraction of T47D cells was observed relative to MDA-MB-231 at lower doses of radiation. Additionally, CAPE maintained radiation-induced DNA damage in T47D cells for a longer period than in MDA-MB-231 cells. Conclusion Our results indicate that CAPE impairs DNA damage repair immediately after irradiation. The induction of radiosensitivity by CAPE in radioresistant breast cancer cells may be caused by prolonged DNA damage. PMID:27066092

  17. USP9X inhibition promotes radiation-induced apoptosis in non-small cell lung cancer cells expressing mid-to-high MCL1

    PubMed Central

    Kushwaha, Deepa; O’Leary, Colin; Cron, Kyle R; Deraska, Peter; Zhu, Kaya; D’Andrea, Alan D; Kozono, David

    2015-01-01

    Background and Purpose: Radiotherapy (RT) is vital for the treatment of locally advanced non-small cell lung cancer (NSCLC), yet its delivery is limited by tolerances of adjacent organs. We sought therefore to identify and characterize gene targets whose inhibition may improve RT. Materials and Methods: Whole genome pooled shRNA cytotoxicity screens were performed in A549 and NCI-H460 using a retroviral library of 74,705 sequences. Cells were propagated with or without daily radiation Monday–Friday. Radiosensitization by top differential dropout hits was assessed by clonogenic assays. Apoptosis was assessed using a caspase 3/7 cell-based activity assay and by annexin V-FITC and PI staining. MCL1 expression was assessed by qPCR and Western blotting. Results: USP9X, a deubiquitinase, was a top hit among druggable gene products. WP1130, a small molecule USP9X inhibitor, showed synergistic cytotoxicity with IR. MCL1, an anti-apoptotic protein deubiquitinated by USP9X, decreased with USP9X inhibition and IR. This was accompanied by increases in caspase 3/7 activity and apoptosis. In a panel of NSCLC lines, MCL1 and USP9X protein and gene expression levels were highly correlated. Lines showing high levels of MCL1 expression were the most sensitive to USP9X inhibition. Conclusions: These data support the use of MCL1 expression as a predictive biomarker for USP9X inhibitors in NSCLC therapy. PMID:25692226

  18. The effect of age at exposure on the inactivating mechanisms and relative contributions of key tumor suppressor genes in radiation-induced mouse T-cell lymphomas.

    PubMed

    Sunaoshi, Masaaki; Amasaki, Yoshiko; Hirano-Sakairi, Shinobu; Blyth, Benjamin J; Morioka, Takamitsu; Kaminishi, Mutsumi; Shang, Yi; Nishimura, Mayumi; Shimada, Yoshiya; Tachibana, Akira; Kakinuma, Shizuko

    2015-09-01

    Children are considered more sensitive to radiation-induced cancer than adults, yet any differences in genomic alterations associated with age-at-exposure and their underlying mechanisms remain unclear. We assessed genome-wide DNA copy number and mutation of key tumor suppressor genes in T-cell lymphomas arising after weekly irradiation of female B6C3F1 mice with 1.2Gy X-rays for 4 consecutive weeks starting during infancy (1 week old), adolescence (4 weeks old) or as young adults (8 weeks old). Although T-cell lymphoma incidence was similar, loss of heterozygosity at Cdkn2a on chromosome 4 and at Ikaros on chromosome 11 was more frequent in the two older groups, while loss at the Pten locus on chromosome 19 was more frequent in the infant-irradiated group. Cdkn2a and Ikaros mutation/loss was a common feature of the young adult-irradiation group, with Ikaros frequently (50%) incurring multiple independent hits (including deletions and mutations) or suffering a single hit predicted to result in a dominant negative protein (such as those lacking exon 4, an isoform we have designated Ik12, which lacks two DNA binding zinc-finger domains). Conversely, Pten mutations were more frequent after early irradiation (60%) than after young adult-irradiation (30%). Homozygous Pten mutations occurred without DNA copy number change after irradiation starting in infancy, suggesting duplication of the mutated allele by chromosome mis-segregation or mitotic recombination. Our findings demonstrate that while deletions on chromosomes 4 and 11 affecting Cdkn2a and Ikaros are a prominent feature of young adult irradiation-induced T-cell lymphoma, tumors arising after irradiation from infancy suffer a second hit in Pten by mis-segregation or recombination. This is the first report showing an influence of age-at-exposure on genomic alterations of tumor suppressor genes and their relative involvement in radiation-induced T-cell lymphoma. These data are important for considering the risks

  19. The potential benefits of nicaraven to protect against radiation-induced injury in hematopoietic stem/progenitor cells with relative low dose exposures

    SciTech Connect

    Ali, Haytham; Galal, Omima; Urata, Yoshishige; Goto, Shinji; Guo, Chang-Ying; Luo, Lan; Abdelrahim, Eman; Ono, Yusuke; Mostafa, Emtethal; Li, Tao-Sheng

    2014-09-26

    Highlights: • Nicaraven mitigated the radiation-induced reduction of c-kit{sup +} stem cells. • Nicaraven enhanced the function of hematopoietic stem/progenitor cells. • Complex mechanisms involved in the protection of nicaraven to radiation injury. - Abstract: Nicaraven, a hydroxyl radical-specific scavenger has been demonstrated to attenuate radiation injury in hematopoietic stem cells with 5 Gy γ-ray exposures. We explored the effect and related mechanisms of nicaraven for protecting radiation injury induced by sequential exposures to a relatively lower dose γ-ray. C57BL/6 mice were given nicaraven or placebo within 30 min before exposure to 50 mGy γ-ray daily for 30 days in sequences (cumulative dose of 1.5 Gy). Mice were victimized 24 h after the last radiation exposure, and the number, function and oxidative stress of hematopoietic stem cells were quantitatively estimated. We also compared the gene expression in these purified stem cells from mice received nicaraven and placebo treatment. Nicaraven increased the number of c-kit{sup +} stem/progenitor cells in bone marrow and peripheral blood, with a recovery rate around 60–90% of age-matched non-irradiated healthy mice. The potency of colony forming from hematopoietic stem/progenitor cells as indicator of function was completely protected with nicaraven treatment. Furthermore, nicaraven treatment changed the expression of many genes associated to DNA repair, inflammatory response, and immunomodulation in c-kit{sup +} stem/progenitor cells. Nicaraven effectively protected against damages of hematopoietic stem/progenitor cells induced by sequential exposures to a relatively low dose radiation, via complex mechanisms.

  20. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    SciTech Connect

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa; Moon, Eun-Yi; Hong, Sung Hee

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  1. Apoptotic Cell Death in Rat Lung Following Mustard Gas Inhalation.

    PubMed

    Andres, Devon Katherine; Keyser, Brian M; Melber, Ashley A; Benton, Betty Jean; Hamilton, Tracey A; Kniffin, Denise M; Martens, Magaret E; Ray, Radharaman

    2017-03-30

    To investigate apoptosis as a mechanism of sulfur mustard (SM) inhalation injury in animals, we studied different caspases (caspase-8, -9, -3 and -6) in the lungs from a ventilated rat SM aerosol inhalation model. SM activated all four caspases in cells obtained from bronchoalveolar lavage fluid (BALF) as early as 6 hr after exposure. Caspase-8, which is known to initiate the extrinsic Fas-mediated pathway of apoptosis, was increased 5-fold between 6 to 24 hr, decreasing to the unexposed-control level at 48 hr. The initiator, caspase-9, in the intrinsic mitochondrial pathway of apoptosis as well as the executioner caspases, caspase-3 and -6, all peaked (p<0.01) at 24 hr; caspase-3 and -6 remained elevated, but caspase-9 decreased to unexposed-control level at 48 hr. To study further the Fas pathway, we examined soluble as well as membrane-bound Fas ligand (sFas-L, mFas-L, respectively) and Fas receptor (Fas-R) in both BALF cells and BALF. SFas-L increased significantly at 24 hr after SM exposure in both BALF cells (p<0.01) and BALF (p<0.05). However, mFas-L increased only in BALF cells between 24 to 48 hr (p<0.1, <0.001, respectively). Fas-R increased only in BALF cells by 6 hr (p<0.01) after SM exposure. Apoptosis in SM-inhaled rat lung specimens was also confirmed by both immunohistochemical staining using cleaved caspse-3 and -9 antibodies and TUNEL staining as early as 6 hr in the proximal trachea and bronchi, but not before 48 hr in distal airways. These findings suggest pathogenic mechanisms at the cellular and molecular levels and logical therapeutic target(s) for SM inhalation injury in animals.

  2. SU-E-J-65: Evaluation of a Radiation-Induced Cell Proliferation Probability Formula Using Monte Carlo Simulation

    SciTech Connect

    Watanabe, Y; Dahlman, E

    2014-06-01

    Purpose: To evaluate the analytic formula of the cell death probability after single fraction dose. Methods: Cancer cells endlessly divide, but radiation causes the cancer cells to die. Not all cells die right away after irradiation. Instead, they continue dividing for next few cell cycles before they stop dividing and die. At the end of every cell cycle, the cell decides if it undertakes the mitotic process with a certain probability, Pdiv, which is altered by the radiation. Previously, by using a simple analytic model of radiobiology experiments, we obtained a formula of Pdeath (= 1 − Pdiv). A question is if the proposed probability can reproduce the well-known survival data of the LQ model. In this study, we evaluated the formula by doing a Monte Carlo simulation of the cell proliferation process. Starting with Ns seed cells, the cell proliferation process was simulated for N generations or until all cells die. We counted the number of living cells at the end. Assuming that the cell colony survived when more than Nc cells were still alive, the surviving fraction S was estimated. We compared the S vs. dose, or S-D curve, with the LQ model. Results: The results indicated that our formula does not reproduce the experimentally observed S-D curve without selecting appropriate α and α/β. With parameter optimization, there was a fair agreement between the MC result and the LQ curve of dose lower than 20Gy. However, the survival fraction of MC decreased much faster in comparison to the LQ data for doses higher than 20 Gy. Conclusion: This study showed that the previously derived probability of cell death per cell cycle is not sufficiently accurate to replicate common radiobiological experiments. The formula must be modified by considering its cell cycle dependence and some other unknown effects.

  3. Study of radiation induced deep-level defects and annealing effects in the proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1981-01-01

    The radiation induced deep-level defects and the recombination parameters in the proton irradiated AlGaAs-GaAs p-n junction solar cells were investigated over a wide range of proton energies (from 50 KeV to 10 MeV) and proton fluences (from 10 to the 10th to 10 to the 13th P/sq cm), using DLTS, I-V, C-V, and SEM-EMIC measurement techniques. The measurements were used to determine the defect and recombination parameters such as defect density and energy level, carrier lifetimes, and the hole diffusion lengths in the GaAs LPE layers. Results show that a good correlation was obtained between the measured defect parameters and the dark recombination current as well as the performance parameters of the solar cells. The most damages to the cell were produced by the 200 KeV protons. In addition, the effects of low temperatures (200 to 400 C) thermal annealing on the deep-level defects and the dark current of the 200 KeV proton irradiated samples were examined.

  4. Hesperidin ameliorates UV radiation-induced skin damage by abrogation of oxidative stress and inflammatory in HaCaT cells.

    PubMed

    Li, Min; Lin, Xiang-Fei; Lu, Jie; Zhou, Bing-Rong; Luo, Dan

    2016-12-01

    Ultraviolet A (UVA) radiation contributes to skin photoaging. Hesperidin which is a flavanone glycoside found in citrus fruit peels, have been intensively studied for their UVA-protective activity, but its effects and mechanisms on UVA irradiation-induced inflammation and oxidative stress have never been described. Thus, the purpose of this study was to evaluate the effects of hesperidin in skin oxidative stress and inflammation induced by UVA irradiation. In this study, we firstly examined whether hesperidin may exert direct protective effects on the UVA-induced in human keratinocytes (HaCaT) cell injury in vitro. Cell viability was determined by MTT assay. The levels of superoxide dismutase (SOD), malondialdehyde (MDA) and total antioxidative capacity (T-AOC) were measured by using a commercially available kits. Quantitative reverse transcriptase PCR (qRT-PCR) and ELISA were used to determine messenger RNA (mRNA) and protein levels of the tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6. UVA significantly decreased the cell viability (P<0.05). In our study, hesperidin (220μg/ml) significantly reduced UVA-induced oxidative stress and inflammatory response. In conclusion, hesperidin treatment effectively protected HaCaT keratinocytes from these UVA radiation-induced skin injuries, suggesting that the underlying mechanism involves the anti-oxidative and anti-inflammatory capacities, it is possible to be used as a sunscreen agent.

  5. Icaritin induces apoptotic and autophagic cell death in human glioblastoma cells

    PubMed Central

    Li, Zhaopei; Meng, Xiangwen; Jin, Lin

    2016-01-01

    Background: GBM represents the most aggressive type of glioma which is featured by extremely aggressive invasion and destructive malignancy with a high proliferation rate. The aim of this study was to investigate the in vitro anti-tumor effect of icaritin in human GBM cell line U87. Methods: The effect of icaritin on In vitro cell viability was determined by MTT assay and colony formation assay. The inducing effect of icaritin on cell cycle arrest, mitochondrial membrane potential loss, apoptosis, autophagy and intracellular ROS generation was assessed by flow cytometry. The apoptotic cell death was also confirmed by TUNEL assay. The expression levels of target or marker molecules were examined by western blot. The activity of caspase-3, -8 and -9 was detected with ELISA kit. Results: Our results showed that icaritin significantly induced both caspase-dependent apoptosis and autophagy in human GBM cell line U87. Additionally, our findings revealed that icaritin exerted anti-tumor effect by modulating Stat3 through generating ROS and subsequent activation of AMPK and inhibition of mTOR. Further investigation also showed that icaritin-induced autophagy served as a pro-death function and possibly contributed to icaritin-induced apoptosis. Conclusion: Icaritin potently inhibit the cell growth of human GBM cell line U87 through inducing both caspase-dependent apoptosis and autophagy. Base on our findings, icaritin can be considered as a promising candidate therapeutic agent for treatment of GBM, though further studies are needed. PMID:27904667

  6. Tie-mediated signal from apoptotic cells protects stem cells in Drosophila melanogaster

    PubMed Central

    Xing, Yalan; Su, Tin Tin; Ruohola-Baker, Hannele

    2015-01-01

    Many types of normal and cancer stem cells are resistant to killing by genotoxins, but the mechanism for this resistance is poorly understood. Here we show that adult stem cells in Drosophila melanogaster germline and midgut are resistant to ionizing radiation (IR) or chemically induced apoptosis and dissect the mechanism for this protection. We find that upon IR the receptor tyrosine kinase Tie/Tie-2 is activated, leading to the upregulation of microRNA bantam that represses FOXO-mediated transcription of pro-apoptotic Smac/DIA-BLO orthologue, Hid in germline stem cells. Knockdown of the IR-induced putative Tie ligand, Pvf1, a functional homologue of human Angiopoietin, in differentiating daughter cells renders germline stem cells sensitive to IR, suggesting that the dying daughters send a survival signal to protect their stem cells for future repopulation of the tissue. If conserved in cancer stem cells, this mechanism may provide therapeutic options for the eradication of cancer. PMID:25959206

  7. Induction of apoptotic cell death by betulin in multidrug-resistant human renal carcinoma cells.

    PubMed

    Yim, Nam-Hui; Jung, Young Pil; Kim, Aeyung; Kim, Taesoo; Ma, Jin Yeul

    2015-08-01

    Betulin, a triterpene from the bark of various species of birch tree, has various biological effects, including antiviral, antifungal and anticancer activities. The aim of the present study was to elucidate the mechanisms underlying the apoptotic effect of betulin in RCC4 multidrug-resistant human renal carcinoma cells. To evaluate anticancer activity, we performed cell viability and caspase activity assays, a proteome profiler array and western blot analysis in RCC4 cells. Betulin significantly decreased RCC4 cell viability in a time- and concentration-dependent manner. Betulin activated caspase family proteins, including caspase-3, -7, -8 and -9, and increased the expression of apoptosis-related proteins, including PARP and Bcl-2 family members. In an apoptosis array, betulin activated the tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors TRAIL R1/DR4 and R2/DR5, and tumour necrosis factor receptor 1 (TNFR1), suggesting that betulin treatment leads to induction of apoptosis through both intrinsic and extrinsic apoptosis pathways in RCC4 cells. Notably, betulin significantly enhanced cytotoxicity and PARP cleavage in etoposide-treated RCC4 cells, and downregulated the expression of multidrug resistance protein 1 (MDR1). Taken together, our findings suggest that the anticancer effects of betulin involve induction of apoptosis and sensitisation of RCC4 cells, providing potentially useful information applicable to the use of betulin in renal cancer treatment.

  8. Apoptotic cell death following traumatic injury to the central nervous system.

    PubMed

    Springer, Joe E

    2002-01-31

    Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to actively participate in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents that target this cell death process. This review will focus on molecular cell death pathways that are responsible for generating the apoptotic phenotype. It will also summarize what is currently known about the apoptotic signals that are activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.

  9. Comparison of Radiation-Induced Bystander Effect in QU-DB Cells after Acute and Fractionated Irradiation: An In Vitro Study

    PubMed Central

    Soleymanifard, Shokouhozaman; Bahreyni Toossi, Mohammad Taghi; Kamran Samani, Roghayeh; Mohebbi, Shokoufeh

    2016-01-01

    Objective Radiation effects induced in non-irradiated cells are termed radiation-induced bystander effects (RIBE). The present study intends to examine the RIBE response of QU-DB bystander cells to first, second and third radiation fractions and compare their cumulative outcome with an equal, single acute dose. Materials and Methods This experimental study irradiated three groups of target cells for one, two and three times with60Co gamma rays. One hour after irradiation, we transferred their culture media to non-irradiated (bystander) cells. We used the cytokinesis block micronucleus assay to evaluate RIBE response in the bystander cells. The numbers of micronuclei generated in bystander cells were determined. Results RIBE response to single acute doses increased up to 4 Gy, then decreased, and finally at the 8 Gy dose disappeared. The second and third fractions induced RIBE in bystander cells, except when RIBE reached to the maximum level at the first fraction. We split the 4 Gy acute dose into two fractions, which decreased the RIBE response. However, fractionation of 6 Gy (into two fractions of 3 Gy or three fractions of 2 Gy) had no effect on RIBE response. When we split the 8 Gy acute dose into two fractions we observed RIBE, which had disappeared following the single 8 Gy dose. Conclusion The impact of dose fractionation on RIBE induced in QU-DB cells de- pended on the RIBE dose-response relationship. Where RIBE increased proportion- ally with the dose, fractionation reduced the RIBE response. In contrast, at high dos- es where RIBE decreased proportionally with the dose, fractionation either did not change RIBE (at 6 Gy) or increased it (at 8 Gy). PMID:27602316

  10. A novel method to determine the engulfment of apoptotic cells by macrophages using pHrodo succinimidyl ester.

    PubMed

    Miksa, Michael; Komura, Hidefumi; Wu, Rongqian; Shah, Kavin G; Wang, Ping

    2009-03-15

    Apoptotic cell phagocytosis has recently raised considerable interest, particularly due to its intricate molecular mechanisms and negative immunologic impact of incompetent clearance of apoptotic cells. There is a need for simple and reliable methods to clearly determine the internalization of apoptotic cells. Labeling with pHrodo succinimidyl ester (SE), a pH-sensitive fluorescent dye, makes engulfed apoptotic cells detectable due to the increased post-phagocytic light emission. This is a valuable tool for phagocytosis studies via FACS. We designed an ex vivo assay, using apoptotic pHrodo-labeled lymphocytes as prey and anti-CD11b-labeled tissue macrophages. To demonstrate its validity of detecting internalized apoptotic lymphocytes, we used MFGE8(-/-) macrophages, known to have impaired phagocytic ability. Uptake of apoptotic lymphocytes was accelerated and enhanced in splenic macrophages after stimulation with recombinant MFGE8, while peritoneal macrophages were able to compensate for the delayed uptake. This novel assay is a quick and reliable method to evaluate the internalization of apoptotic cells.

  11. Punicalagin induces apoptotic and autophagic cell death in human U87MG glioma cells

    PubMed Central

    Wang, Shyang-guang; Huang, Ming-hung; Li, Jui-hsiang; Lai, Fu-i; Lee, Horng-mo; Hsu, Yuan-nian

    2013-01-01

    Aim: To investigate the effects of punicalagin, a polyphenol isolated from Punica granatum, on human U87MG glioma cells in vitro. Methods: The viability of human U87MG glioma cells was evaluated using MTT assay. Cell cycle was detected with flow cytometry analysis. The levels of Bcl-2, cleaved caspase-9, cleaved poly(ADP-ribose) polymerase (PARP), phosphor-AMPK and phosphor-p27 at Thr198 were measured using immunoblot analyses. Caspase-3 activity was determined with spectrophotometer. To determine autophagy, LC3 cleavage and punctate patterns were examined. Results: Punicalagin (1-30 μg/mL) dose-dependently inhibited the cell viability in association with increased cyclin E level and decreased cyclin B and cyclin A levels. The treatment also induced apoptosis as shown by the cleavage of PARP, activation of caspase-9, and increase of caspase-3 activity in the cells. However, pretreatment of the cells with the pan-caspase inhibitor z-DEVD-fmk (50 μmol/L) did not completely prevent the cell death. On the other hand, punicalagin treatment increased LC3-II cleavage and caused GFP-LC3-II-stained punctate pattern in the cells. Suppressing autophagy of cells with chloroquine (1-10 μmol/L) dose-dependently alleviated the cell death caused by punicalagin. Punicalagin (1-30 μg/mL) also increased the levels phosphor-AMPK and phosphor-p27 at Thr198 in the cells, which were correlated with the induction of autophagic cell death. Conclusion: Punicalagin induces human U87MG glioma cell death through both apoptotic and autophagic pathways. PMID:24077634

  12. Exosomes are released by bystander cells exposed to radiation-induced biophoton signals: Reconciling the mechanisms mediating the bystander effect

    PubMed Central

    Fernandez-Palomo, Cristian; McNeill, Fiona E.; Seymour, Colin B.; Rainbow, Andrew J.; Mothersill, Carmel E.

    2017-01-01

    Objective The objective of our study was to explore a possible molecular mechanism by which ultraviolet (UV) biophotons could elicit bystander responses in reporter cells and resolve the problem of seemingly mutually exclusive mechanisms of a physical UV signal & a soluble factor-mediated bystander signal. Methods The human colon carcinoma cell line, HCT116 p53 +/+, was directly irradiated with 0.5 Gy tritium beta particles to induce ultraviolet biophoton emission. Bystander cells were not directly irradiated but were exposed to the emitted UV biophotons. Medium was subsequently harvested from UV-exposed bystander cells. The exosomes extracted from this medium were incubated with reporter cell populations. These reporter cells were then assayed for clonogenic survival and mitochondrial membrane potential with and without prior treatment of the exosomes with RNase. Results Clonogenic cell survival was significantly reduced in reporter cells incubated with exosomes extracted from cells exposed to secondarily-emitted UV. These exosomes also induced significant mitochondrial membrane depolarization in receiving reporter cells. Conversely, exosomes extracted from non-UV-exposed cells did not produce bystander effects in reporter cells. The treatment of exosomes with RNase prior to their incubation with reporter cells effectively abolished bystander effects in reporter cells and this suggests a role for RNA in mediating the bystander response elicited by UV biophotons and their produced exosomes. Conclusion This study supports a role for exosomes released from UV biophoton-exposed bystander cells in eliciting bystander responses and also indicates a reconciliation between the UV-mediated bystander effect and the bystander effect which has been suggested in the literature to be mediated by soluble factors. PMID:28278290

  13. TU-CD-303-04: Radiation-Induced Long Distance Tumor Cell Migration Into and Out of the Radiation Field and Its Clinical Implication

    SciTech Connect

    Graves, E.

    2015-06-15

    Recent advances in cancer research have shed new light on the complex processes of how therapeutic radiation initiates changes at cellular, tissue, and system levels that may lead to clinical effects. These new advances may transform the way we use radiation to combat certain types of cancers. For the past two decades many technological advancements in radiation therapy have been largely based on the hypothesis that direct radiation-induced DNA double strand breaks cause cell death and thus tumor control and normal tissue damage. However, new insights have elucidated that in addition to causing cellular DNA damage, localized therapeutic radiation also initiates cascades of complex downstream biological responses in tissue that extend far beyond where therapeutic radiation dose is directly deposited. For instance, studies show that irradiated dying tumor cells release tumor antigens that can lead the immune system to a systemic anti-cancer attack throughout the body of cancer patient; targeted irradiation to solid tumor also increases the migration of tumor cells already in bloodstream, the seeds of potential metastasis. Some of the new insights may explain the long ago discovered but still unexplained non-localized radiation effects (bystander effect and abscopal effect) and the efficacy of spatially fractionated radiation therapy (microbeam radiation therapy and GRID therapy) where many “hot” and “cold” spots are intentionally created throughout the treatment volume. Better understanding of the mechanisms behind the non-localized radiation effects creates tremendous opportunities to develop new and integrated cancer treatment strategies that are based on radiotherapy, immunology, and chemotherapy. However, in the multidisciplinary effort to advance new radiobiology, there are also tremendous challenges including a lack of multidisciplinary researchers and imaging technologies for the microscopic radiation-induced responses. A better grasp of the essence of

  14. [Quantification of radiation-induced genetic risk].

    PubMed

    Ehling, U H

    1987-05-01

    Associated with technical advances of our civilization is a radiation- and chemically-induced increase in the germ cell mutation rate in man. This would result in an increase in the frequency of genetic diseases and would be detrimental to future generations. It is the duty of our generation to keep this risk as low as possible. The estimation of the radiation-induced genetic risk of human populations is based on the extrapolation of results from animal experiments. Radiation-induced mutations are stochastic events. The probability of the event depends on the dose; the degree of the damage does not. The different methods to estimate the radiation-induced genetic risk will be discussed. The accuracy of the predicted results will be evaluated by a comparison with the observed incidence of dominant mutations in offspring born to radiation exposed survivors of the Hiroshima and Nagasaki atomic bombings. These methods will be used to predict the genetic damage from the fallout of the reactor accident at Chernobyl. For the exposure dose we used the upper limits of the mean effective life time equivalent dose from the fallout values in the Munich region. According to the direct method for the risk estimation we will expect for each 100 to 500 spontaneous dominant mutations one radiation-induced mutation in the first generation. With the indirect method we estimate a ratio of 100 dominant spontaneous mutations to one radiation-induced dominant mutation. The possibilities and the limitations of the different methods to estimate the genetic risk will be discussed. The discrepancy between the high safety standards for radiation protection and the low level of knowledge for the toxicological evaluation of chemical mutagens will be emphasized.

  15. DNA methylation governs the dynamic regulation of inflammation by apoptotic cells during efferocytosis

    PubMed Central

    Notley, Clare A.; Jordan, Christine K.; McGovern, Jenny L.; Brown, Mark A.; Ehrenstein, Michael R.

    2017-01-01

    Efficient clearance of apoptotic cells (AC) is pivotal in preventing autoimmunity and is a potent immunosuppressive stimulus. However, activation of cells prior to apoptosis abolishes their immunoregulatory properties. Here we show using the antigen-induced model of arthritis that the degree of DNA methylation within AC confers their immunomodulatory plasticity. DNA isolated from resting and activated AC mimicked their respective immune effects. Demethylation of DNA abrogated the protective effect of AC whereas remethylation of AC DNA reversed the effects of activation and restored the ability to inhibit inflammation. Disease suppression or lack thereof was associated with TGFβ and IL-6 production respectively. Apoptotic CD4+ T cells from patients with rheumatoid arthritis and systemic lupus erythematosus were demethylated compared to healthy controls and favoured production of IL-6 when cultured with healthy macrophages, in contrast to the TGFβ produced in response to healthy AC. Our data implicate AC DNA methylation as the molecular switch that imprints their regulatory properties. PMID:28169339

  16. Pro-apoptotic NOXA is implicated in atmospheric-pressure plasma-induced melanoma cell death

    NASA Astrophysics Data System (ADS)

    Ishaq, M.; Bazaka, K.; Ostrikov, K.

    2015-11-01

    Atmospheric-pressure plasma (APP) has been successfully used to treat several types of cancers in vivo and in vitro, with the effect being primarily attributed to the generation of reactive oxygen species (ROS). However, the mechanisms by which APP induces apoptosis in cancer cells require further elucidation. In this study, the effects of APP on the expression of 500 genes in melanoma Mel007 cancer cells were examined. Pro-apoptotic phorbol-12-myristate-13-acetate-induced protein (PMAIP1), also known as NOXA, was highly expressed as a result of APP treatment in a dose-dependent manner. Blocking of ROS using scavenger NAC or silencing of NOXA gene by RNA interference inhibited the APP-induced NOXA genes upregulation and impaired caspases 3/7 mediated apoptosis, confirming the important role plasma-generated ROS species and pro-apoptotic NOXA play in APP-induced cancer cell death.

  17. Modulation of DNA methylation levels sensitizes doxorubicin-resistant breast adenocarcinoma cells to radiation-induced apoptosis

    SciTech Connect

    Luzhna, Lidia; Kovalchuk, Olga

    2010-02-05

    Chemoresistant tumors often fail to respond to other cytotoxic treatments such as radiation therapy. The mechanisms of chemo- and radiotherapy cross resistance are not fully understood and are believed to be epigenetic in nature. We hypothesize that MCF-7 cells and their doxorubicin-resistant variant MCF-7/DOX cells may exhibit different responses to ionizing radiation due to their dissimilar epigenetic status. Similar to previous studies, we found that MCF-7/DOX cells harbor much lower levels of global DNA methylation than MCF-7 cells. Furthermore, we found that MCF-7/DOX cells had lower background apoptosis levels and were less responsive to radiation than MCF-7 cells. Decreased radiation responsiveness correlated to significant global DNA hypomethylation in MCF-7/DOX cells. Here, for the first time, we show that the radiation resistance of MCF-7/DOX cells can be reversed by an epigenetic treatment - the application of methyl-donor SAM. SAM-mediated reversal of DNA methylation led to elevated radiation sensitivity in MCF-7/DOX cells. Contrarily, application of SAM on the radiation sensitive and higher methylated MCF-7 cells resulted in a decrease in their radiation responsiveness. This data suggests that a fine balance of DNA methylation is needed to insure proper radiation and drug responsiveness.

  18. Ionizing Radiation Induces Macrophage Foam Cell Formation and Aggregation Through JNK-Dependent Activation of CD36 Scavenger Receptors

    SciTech Connect

    Katayama, Ikuo; Hotokezaka, Yuka; Matsuyama, Toshifumi; Sumi, Tadateru; Nakamura, Takashi

    2008-03-01

    Purpose: Irradiated arteries of cancer patients can be associated with atherosclerosis-like lesions containing cholesterol-laden macrophages (foam cells). Endothelial cell damage by irradiation does not completely explain the foam cell formation. We investigated the possible underlying mechanisms for ionizing radiation (IR)-induced foam cell formation. Methods and Materials: Human peripheral blood monocytes were activated by macrophage colony-stimulating factor and then treated with varying doses of IR in vitro in the absence of endothelial cells. Scavenger receptor expression and foam cell formation of IR-treated macrophages were investigated in the presence or absence of oxidized low-density lipoprotein. We also assessed the importance of mitogen-activated protein kinase activity in the macrophage colony-stimulating factor-activated human monocytes (macrophages) for the foam cell formation. Results: We found that IR treatment of macrophage colony-stimulating factor-activated human peripheral blood monocytes resulted in the enhanced expression of CD36 scavenger receptors and that cholesterol accumulated in the irradiated macrophages with resultant foam cell formation in the presence of oxidized low-density lipoprotein. Furthermore, when cultured on collagen gels, human macrophages formed large foam cell aggregates in response to IR. Antibodies against CD36 inhibited the IR-induced foam cell formation and aggregation, indicating that the IR-induced foam cell formation and the subsequent aggregation are dependent on functional CD36. In addition, we found that IR of human macrophages resulted in c-Jun N-terminal kinase activation and that c-Jun N-terminal kinase inhibition suppressed IR-induced CD36 expression and the subsequent foam cell formation and aggregation. Conclusion: Taken together, these results suggest that IR-induced foam cell formation is mediated by c-Jun N-terminal kinase-dependent CD36 activation.

  19. Radiation-induced changes in nucleoid halo diameteres of aerobic and hypoxic SF-126 human brain tumor cells

    SciTech Connect

    Wang, J.; Basu, H.S.; Hu, L.; Feuerstein, B.G.; Deen, D.F.

    1995-02-01

    Nucleoid halo diameters were measured to assay changes in DNA supercoiling in human brain tumor cell line SF-126 after irradiation under aerobic or hypoxic conditions. In unirradiated aerobic cells, a typical propidium iodide titration curve showed that with increasing concentrations of propodium iodide, the halo diameter increased and then decreased with the unwinding and subsequent rewinding of DNA supercoils. In irradiated cells, the rewinding of DNA supercoils was inhibited, resulting in an increased halo diameter, in a radiation dose-dependent manner. To produce equal increases in halo diameter required about a threefold higher radiation dose in hypoxic cells than in aerobic cells. Quantitatively similiar differences in the radiation sensitivities of hypoxic and aerobic cells were demonstrated by a colony-forming efficiency assay. These findings suggest that the nucleoid halo assay may be used as a rapid measure of the inherent radiation sensitivity of human tumors. 22 refs., 5 figs.

  20. Multicolor imaging of hydrogen peroxide level in living and apoptotic cells by a single fluorescent probe.

    PubMed

    Wen, Ying; Xue, Fengfeng; Lan, Haichuang; Li, Zhenhua; Xiao, Shuzhang; Yi, Tao

    2017-05-15

    To understand the entangled relationship between reactive oxygen species (ROS) and apoptosis, there is urgent need for simultaneous dynamic monitoring of these two important biological events. In this study, we have developed a fluorescent probe, pep4-NP1, which can simultaneously detect H2O2 and caspase 3, the respective markers of ROS and apoptosis. The probe contains a H2O2 fluorescence reporter (NP1) and Cy5 fluorescent chromophore connected by a caspase 3 specific recognition peptide. The detecting strategy was realized through a controllable fluorescence resonance energy transfer (FRET) process between NP1 and Cy5 of pep4-NP1, after reaction with H2O2, which was verified by molecular calculation and in vitro spectral studies. In the absent of caspase 3, the accumulation of H2O2 induces red fluorescence of pep4-NP1 centered at 663nm in living cells due to the existence of FRET. In contrast, FRET is inhibited in apoptotic cells due to cleavage of the peptide spacer of pep4-NP1 by over-expressed caspase 3. Consequently, green fluorescence (555nm) predominated when labelling production of H2O2 in apoptotic cells. Moreover, Pep4-NP1 shows excellent selectivity towards H2O2 and caspase 3 on their respective reaction sites. Therefore, pep4-NP1 can distinguish endogenously generated H2O2 between living cells and apoptotic cells with different fluorescence wavelengths, providing additional information on the ROS production pathways.

  1. TNF induced cleavage of HSP90 by cathepsin D potentiates apoptotic cell death

    PubMed Central

    Fritsch, Jürgen; Fickers, Ricarda; Klawitter, Jan; Särchen, Vinzenz; Zingler, Philipp; Adam, Dieter; Janssen, Ottmar; Krause, Eberhard; Schütze, Stefan

    2016-01-01

    During apoptosis induction by TNF, the extrinsic and intrinsic apoptosis pathways converge at the lysosomal-mitochondrial interface. Earlier studies showed that the lysosomal aspartic protease Cathepsin D (CtsD) cleaves Bid to tBid, resulting in the amplification of the initial apoptotic cascade via mitochondrial outer membrane permeabilization (MOMP). The goal of this study was to identify further targets for CtsD that might be involved in activation upon death receptor ligation. Using a proteomics screen, we identified the heat shock protein 90 (HSP90) to be cleaved by CtsD after stimulation of U937 or other cell lines with TNF, FasL and TRAIL. HSP90 cleavage corresponded to apoptosis sensitivity of the cell lines to the different stimuli. After mutation of the cleavage site, HSP90 partially prevented apoptosis induction in U937 and Jurkat cells. Overexpression of the cleavage fragments in U937 and Jurkat cells showed no effect on apoptosis, excluding a direct pro-apoptotic function of these fragments. Pharmacological inhibition of HSP90 with 17AAG boosted ligand mediated apoptosis by enhancing Bid cleavage and caspase-9 activation. Together, we demonstrated that HSP90 plays an anti-apoptotic role in death receptor signalling and that CtsD-mediated cleavage of HSP90 sensitizes cells for apoptosis. These findings identify HSP90 as a potential target for cancer therapy in combination with death ligands (e.g. TNF or TRAIL). PMID:27716614

  2. CD300b regulates the phagocytosis of apoptotic cells via phosphatidylserine recognition

    PubMed Central

    Murakami, Y; Tian, L; Voss, O H; Margulies, D H; Krzewski, K; Coligan, J E

    2014-01-01

    The CD300 receptor family members are a group of molecules that modulate a variety of immune cell processes. We show that mouse CD300b (CLM7/LMIR5), expressed on myeloid cells, recognizes outer membrane-exposed phosphatidylserine (PS) and does not, as previously reported, directly recognize TIM1 or TIM4. CD300b accumulates in phagocytic cups along with F-actin at apoptotic cell contacts, thereby facilitating their engulfment. The CD300b-mediated activation signal is conveyed through CD300b association with the adaptor molecule DAP12, and requires a functional DAP12 ITAM motif. Binding of apoptotic cells promotes the activation of the PI3K-Akt kinase pathway in macrophages, while silencing of CD300b expression diminishes PI3K-Akt kinase activation and impairs efferocytosis. Collectively, our data show that CD300b recognizes PS as a ligand, and regulates the phagocytosis of apoptotic cells via the DAP12 signaling pathway. PMID:25034781

  3. Apoptotic effects of bovine apo-lactoferrin on HeLa tumor cells.

    PubMed

    Luzi, Carla; Brisdelli, Fabrizia; Iorio, Roberto; Bozzi, Argante; Carnicelli, Veronica; Di Giulio, Antonio; Lizzi, Anna Rita

    2017-01-01

    Lactoferrin (Lf), a cationic iron-binding glycoprotein of 80 kDa present in body secretions, is known as a compound with marked antimicrobial activity. In the present study, the apoptotic effect of iron-free bovine lactoferrin (apo-bLf) on human epithelial cancer (HeLa) cells was examined in association with reactive oxygen species and glutathione (GSH) levels. Apoptotic effect of iron-free bovine lactoferrin inhibited the growth of HeLa cells after 48 hours of treatment while the diferric-bLf was ineffective in the concentration range tested (from 1 to 12.5 μM). Western blot analysis showed that key apoptotic regulators including Bax, Bcl-2, Sirt1, Mcl-1, and PARP-1 were modulated by 1.25 μM of apo-bLf. In the same cell line, apo-bLf induced apoptosis together with poly (ADP-ribose) polymerase cleavage, caspase activation, and a significant drop of NAD(+) . In addition, apo-bLf-treated HeLa cells showed a marked increase of reactive oxygen species level and a significant GSH depletion. On the whole, apo-bLf triggered apoptosis of HeLa cells upon oxygen radicals burst and GSH decrease.

  4. Radiation-induced effects on murine kidney tumor cells: role in the interaction of local irradiation and immunotherapy.

    PubMed

    Younes, E; Haas, G P; Dezso, B; Ali, E; Maughan, R L; Montecillo, E; Pontes, J E; Hillman, G G

    1995-06-01

    Local tumor irradiation enhances the effect of interleukin-2 (IL-2) therapy in the Renca murine renal adenocarcinoma model. To investigate the mechanism(s) of this interaction, we studied the in vitro and in vivo effects of irradiation on the tumor cells. Tumor cells from in situ irradiated renal tumors had diminished proliferation in vitro. A similar growth inhibition was noted following injection of irradiated Renca cells into naive mice, but this effect could be overcome by injecting more cells. Histologic evaluation of tumors derived from irradiated cells revealed a decrease in mitosis and an increase in multinucleated giant cells, apoptosis and micronecrosis. The presence of irradiated tumor reduced the growth of nonirradiated tumor cells when both were injected into separate flanks of the same animal, suggesting that irradiated tumor cells may trigger a systemic antitumor response. Interleukin-2 therapy given after injection of irradiated tumor cells caused a significant increase in leukocytic infiltrates and micronecrosis. Our findings indicate that radiation directly affects tumor growth and induces a systemic mechanism which could be enhanced by IL-2.

  5. Interplay of CREB and ATF2 in Ionizing Radiation-Induced Neuroendocrine Differentiation of Prostate Cancer Cells

    DTIC Science & Technology

    2011-06-01

    and NSE expression was barely detectable by immunoblotting even for wild-type LNCaP cells. Cell viability and growth inhibition assay. Wild-type or...by IR treatment (Fig. 2C). Interestingly, pCREB was also detected in the cytoplasm in proliferating LNCaP cells, and IR treatment did not seem to...cell lysates were prepared 3 d after the induction, and Flag-nATF2 and HA-CREB-S133A were detected with anti-ATF2 and anti-HA antibodies, respectively

  6. The Role of Nucleotides and Purinergic Signaling in Apoptotic Cell Clearance – Implications for Chronic Inflammatory Diseases

    PubMed Central

    Chen, Jin; Zhao, Yi; Liu, Yi

    2014-01-01

    Billions of cells undergo apoptosis every day in healthy individuals. A prompt removal of dying cells prevents the release of pro-inflammatory intracellular content and progress to secondary necrosis. Thus, inappropriate clearance of apoptotic cells provokes autoimmunity and has been associated with many chronic inflammatory diseases. Recent studies have suggested that extracellular adenosine 5′-triphosphate and related nucleotides play an important role in the apoptotic clearance process. Here, we review the current understanding of nucleotides and purinergic receptors in apoptotic cell clearance and the potential therapeutic targets of purinergic receptor subtypes in inflammatory conditions. PMID:25566266

  7. Exposure to low-dose (56)Fe-ion radiation induces long-term epigenetic alterations in mouse bone marrow hematopoietic progenitor and stem cells.

    PubMed

    Miousse, Isabelle R; Shao, Lijian; Chang, Jianhui; Feng, Wei; Wang, Yingying; Allen, Antiño R; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Zhou, Daohong; Koturbash, Igor

    2014-07-01

    There is an increasing need to better understand the long-term health effects of high-linear energy transfer (LET) radiation due to exposure during space missions, as well as its increasing use in clinical treatments. Previous studies have indicated that exposure to (56)Fe heavy ions increases the incidence of acute myeloid leukemia (AML) in mice but the underlying molecular mechanisms remain elusive. Epigenetic alterations play a role in radiation-induced genomic instability and the initiation and progression of AML. In this study, we assessed the effects of low-dose (56)Fe-ion irradiation on epigenetic alterations in bone marrow mononuclear cells (BM-MNCs) and hematopoietic progenitor and stem cells (HPSCs). Exposure to (56)Fe ions (600 MeV, 0.1, 0.2 and 0.4 Gy) resulted in significant epigenetic alterations involving methylation of DNA, the DNA methylation machinery and expression of repetitive elements. Four weeks after irradiation, these changes were primarily confined to HPSCs and were exhibited as dose-dependent hypermethylation of LINE1 and SINE B1 repetitive elements [4.2-fold increase in LINE1 (P < 0.001) and 7.6-fold increase in SINE B1 (P < 0.01) after exposure to 0.4 Gy; n = 5]. Epigenetic alterations were persistent and detectable for at least 22 weeks after exposure, when significant loss of global DNA hypomethylation (1.9-fold, P < 0.05), decreased expression of Dnmt1 (1.9-fold, P < 0.01), and increased expression of LINE1 and SINE B1 repetitive elements (2.8-fold, P < 0.001 for LINE1 and 1.9-fold, P < 0.05 for SINE B1; n = 5) were observed after exposure to 0.4 Gy. In contrast, exposure to (56)Fe ions did not result in accumulation of increased production of reactive oxygen species (ROS) and DNA damage, exhibited as DNA strand breaks. Furthermore, no significant alterations in cellular senescence and apoptosis were detected in HPSCs after exposure to (56)Fe-ion radiation. These findings suggest that epigenetic reprogramming is possibly involved in

  8. Radiation-induced increase in expression of the alpha IIb beta 3 integrin in melanoma cells: effects on metastatic potential.

    PubMed

    Onoda, J M; Piechocki, M P; Honn, K V

    1992-06-01

    We investigated the effects of nonlethal gamma radiation on the metastatic potential of the murine tumor cell line, B16 melanoma. The ability of B16 cells to adhere to fibronectin, which is in part mediated by the alpha IIb beta 3 integrin receptor, is predictive of metastatic potential. We determined that exposure to 0.25-2.5 Gy gamma radiation significantly enhanced B16 cell adhesion to fibronectin. The radiation-enhanced adhesion was dependent on enhanced expression of the alpha IIb beta 3 integrin. We observed that 15 min after 0.5 Gy radiation, 99% of irradiated B16 tumor cells were positively labeled with monoclonal antibodies directed against alpha IIb beta 3 compared to 22% of sham-irradiated cells. Radiation-enhanced expression of the alpha IIb beta 3 receptor is reversible and down-regulation begins within 2-4 h postirradiation. Finally, we found that irradiation significantly enhanced the ability of B16 cells to form metastases in a lung colony assay. It is concluded that a relationship exists between radiation effects on the B16 tumor cells, alpha IIb beta 3 receptor expression, adhesion in vitro, and metastasis in vivo. We suggest that low-dose radiation, at levels comparable to those used in fractionated or hyperfractionated radiotherapy, may alter the metastatic phenotype and potential of surviving tumor cells via a rapid alteration in their surface expression of alpha IIb beta 3 integrin receptors.

  9. Nuclear transfer with apoptotic bovine fibroblasts: can programmed cell death be reprogrammed?

    PubMed

    Miranda, Moyses dos Santos; Bressan, Fabiana Fernandes; De Bem, Tiago Henrique Camara; Merighe, Giovana Krempel Fonseca; Ohashi, Otávio Mitio; King, William Alan; Meirelles, Flavio Viera

    2012-06-01

    Cell death by apoptosis is considered to be irreversible. However, reports have indicated that its reversibility is possible if the cells have not yet reached the "point of no return." In order to add new information about this topic, we used cells at different moments of apoptotic process as nuclear donors in somatic cell nuclear transfer (SCNT) in order to test if programmed cell death can be reversed. Adult bovine fibroblasts were treated with 10 μM of staurosporine (STP) for 3 h and analyzed for phosphatidylserine externalization (Annexin assay) and presence of active caspase-9. Annexin-positive (Anx+) and Caspase-9-positive (Casp-9+) cells were isolated by FACS and immediately transferred into enucleated in vitro matured bovine oocytes. After STP treatment, 89.9% of cells were Anx+ (4.6% in control cells; p<0.01) and 24.9% were Casp-9+ (2.4% in control cells; p<0.01). Fusion and cleavage were not affected by the use apoptotic cells (p>0.05). Also, the use of Anx+ cells did not affect blastocyst production compared to control (26.4% vs. 22.9%, respectively; p>0.05). However, blastocyst formation was affected by the use of Casp-9+ cells (12.3%; p<0.05). These findings contribute to the idea of that apoptosis is reversible only at early stages. Additionally, we hypothesize that the "point of no return" for apoptosis may be located around activation of Caspase-9.

  10. Basic fibroblast growth factor suppresses radiation-induced apoptosis and TP53 pathway in rat small intestine.

    PubMed

    Matsuu-Matsuyama, Mutsumi; Nakashima, Masahiro; Shichijo, Kazuko; Okaichi, Kumio; Nakayama, Toshiyuki; Sekine, Ichiro

    2010-07-01

    The effect of basic fibroblast growth factor (bFGF) was studied in radiation-induced apoptosis in rat jejunal crypt cells. Six-week-old male Wistar rats were administered 4 mg/kg bFGF intraperitoneally 25 h before receiving 8 Gy whole-body X rays. The jejunum was removed for analysis from time 0 to 120 h after irradiation. Villus length in control rats declined steadily until 72 h, while in bFGF-treated rats the villi were longer than in the controls until 48 h. Crypt lengths were similar to villi. bFGF treatment increased Ki-67-positive cells in the jejunal crypt at 0, 24 and 48 h. The treatment with bFGF reduced the number of apoptotic cells per jejunal crypt to 23% and 10% of the control values at 3 and 6 h, respectively, and increased numbers of mitotic cells significantly at 48 and 72 h. bFGF decreased the levels of TP53, CDKN1A, Puma and Cleaved caspase 3 at 3 h as detected by Western blot analyses. Our results suggest that bFGF protected against acute radiation-induced injury by suppressing the crypt apoptotic cells including the stem cells and promoted crypt cell proliferation. The inhibition of apoptosis thus might be related to suppression of the TP53 pathway.

  11. Engulfment and clearance of apoptotic cells based on a GlcNAc-binding lectin-like property of surface vimentin.

    PubMed

    Ise, Hirohiko; Goto, Mitsuaki; Komura, Kenta; Akaike, Toshihiro

    2012-06-01

    The clearance of apoptotic cells is important to maintain tissue homeostasis. The engulfment of apoptotic cells is performed by professional phagocytes, such as macrophages, and also by non-professional phagocytes, such as mesenchymal cells. Here, we show that vimentin, a cytoskeletal protein, functions as an engulfment receptor on neighboring phagocytes, which recognize O-linked β-N-acetylglucosamine (O-GlcNAc)-modified proteins from apoptotic cells as "eat me" ligands. Previously, we reported that vimentin possesses a GlcNAc-binding lectin-like property on cell surface. However, the physiological relevance of the surface localization and GlcNAc-binding property of vimentin remained unclear. In the present study, we observed that O-GlcNAc proteins from apoptotic cells interacted with the surface vimentin of neighboring phagocytes and that this interaction induced serine 71-phosphorylation and recruitment of vimentin to the cell surface of the neighboring phagocytes. Moreover, tetrameric vimentin that was disassembled by serine 71-phosphorylation possessed a GlcNAc-binding activity and was localized to the cell surface. We demonstrated our findings in vimentin-expressing common cell lines such as HeLa cells. Furthermore, during normal developmental processes, the phagocytic engulfment and clearance of apoptotic footplate cells in mouse embryos was mediated by the interaction of surface vimentin with O-GlcNAc proteins. Our results suggest a common mechanism for the clearance of apoptotic cells, through the interaction of surface vimentin with O-GlcNAc-modified proteins.

  12. Role of oxygen-derived free radicals in radiation-induced damage and death of nondividing eucaryotic cells

    SciTech Connect

    McLennan, G.; Oberley, L.W.; Autor, A.P.

    1980-10-01

    Isolated alveolar macrophages were exposed in vitro to varying doses of x-radiation. Using dye exclusion as a test for viability, this cell was found to be quite radioresistant relative to other eucaryotic cells. A dose of 11,500 rad was required to kill 50% of the cells when viability was assessed 24 hr after irradiation. Superoxide dismutase, catalase, and diethylenetriaminepentaacetic acid (DETAPAC) gave significant protection, whereas ethylenediaminetetraacetic acid and mannitol provided little or no protection. Analysis by scanning electron microscopy confirmed these results. In addition to the assessment of macrophage viability, a characteristic function of these cells was measured following exposure to radiation in the absence and presence of the putative protective agents. Phagocytic function as assessed by the rate of ingestion of killed yeast particles was measured before and after exposure of a population of pulmonary macrophages to 2850 rad. This dose of radiation caused a 75% loss of phagocytic function in the irradiated cells. DETAPAC when present during irradiation of the pulmonary macrophages provided nearly complete protection against loss of function. Pulmonary macrophages incubated under specific conditions with superoxide dismutase and catalase retained 50% of the activity of nonirradiated cells. These results are consistent with the hypothesis that hydroxyl radicals generated from superoxide anions, hydrogen peroxide, and iron are the agents of oxygen-induced cell damage caused by ionizing radiation.

  13. Dealcoholated red wine induces autophagic and apoptotic cell death in an osteosarcoma cell line.

    PubMed

    Tedesco, I; Russo, M; Bilotto, S; Spagnuolo, C; Scognamiglio, A; Palumbo, R; Nappo, A; Iacomino, G; Moio, L; Russo, G L

    2013-10-01

    Until recently, the supposed preventive effects of red wine against cardiovascular diseases, the so-called "French Paradox", has been associated to its antioxidant properties. The interest in the anticancer capacity of polyphenols present in red wine strongly increased consequently to the enormous number of studies on resveratrol. In this study, using lyophilized red wine, we present evidence that its anticancer effect in a cellular model is mediated by apoptotic and autophagic cell death. Using a human osteosarcoma cell line, U2Os, we found that the lyophilized red wine was cytotoxic in a dose-dependent manner with a maximum effect in the range of 100-200 μg/ml equivalents of gallic acid. A mixed phenotype of types I/II cell death was evidenced by means of specific assays following treatment of U2Os with lyophilized red wine, e.g., autophagy and apoptosis. We found that cell death induced by lyophilized red wine proceeded through a mechanism independent from its anti-oxidant activity and involving the inhibition of PI3K/Akt kinase signaling. Considering the relative low concentration of each single bioactive compound in lyophilized red wine, our study suggests the activation of synergistic mechanism able to inhibit growth in malignant cells.

  14. The fungicide Mancozeb induces metacaspase-dependent apoptotic cell death in Saccharomyces cerevisiae BY4741.

    PubMed

    Scariot, F J; Jahn, L M; Maianti, J P; Delamare, A P L; Echeverrigaray, S

    2016-07-01

    Mancozeb (MZ), a mixture of ethylene-bis-dithiocarbamate manganese and zinc salts, is one of the most widely used fungicides in agriculture. Toxicologic studies in mammals and mammalian cells indicate that this fungicide can cause neurological and cytological disorders, putatively associated with pro-oxidant and apoptotic effects. Yeast adaptation to sub-inhibitory concentrations of MZ has been correlated with oxidative response, proteins degradation, and energy metabolism, and its main effect on yeast has been attributed to its high reactivity with thiol groups in proteins. Herein, we show that acute MZ treatments on aerobic exponentially growing yeast of wild type (BY4741) and deletion mutant strains, coupled with multiplex flow cytometry analysis, conclusively demonstrated that MZ displays the typical features of pro-oxidant activity on Saccharomyces, elevating mitochondrial ROS, and causing hyper-polarization of mitochondrial membranes leading to apoptosis. A drastic reduction of cellular viability associated with the maintenance of cell membrane integrity, as well as phosphatidyl serine externalization on yeast cells exposed to MZ, also supports an apoptotic mode of action. Moreover, abrogation of the apoptotic response in yca1 deficient mutants indicates that metacaspase-1 is involved in the programmed cell death mechanism induced by MZ in yeast.

  15. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals.

    PubMed

    Hwang, In-sok; Lee, Juneyoung; Hwang, Ji Hong; Kim, Keuk-Jun; Lee, Dong Gun

    2012-04-01

    Silver nanoparticles have been shown to be detrimental to fungal cells although the mechanism(s) of action have not been clearly established. In this study, we used Candida albicans cells to show that silver nanoparticles exert their antifungal effect through apoptosis. Many studies have shown that the accumulation of reactive oxygen species induces and regulates the induction of apoptosis. Furthermore, hydroxyl radicals are considered an important component of cell death. Therefore, we assumed that hydroxyl radicals were related to apoptosis and the effect of thiourea as a hydroxyl radical scavenger was investigated. We measured the production of reactive oxygen species and investigated whether silver nanoparticles induced the accumulation of hydroxyl radicals. A reduction in the mitochondrial membrane potential shown by flow cytometry analysis and the release of cytochrome c from mitochondria were also verified. In addition, the apoptotic effects of silver nanoparticles were detected by fluorescence microscopy using other confirmed diagnostic markers of yeast apoptosis including phosphatidylserine externalization, DNA and nuclear fragmentation, and the activation of metacaspases. Cells exposed to silver nanoparticles showed increased reactive oxygen species and hydroxyl radical production. All other phenomena of mitochondrial dysfunction and apoptotic features also appeared. The results indicate that silver nanoparticles possess antifungal effects with apoptotic features and we suggest that the hydroxyl radicals generated by silver nanoparticles have a significant role in mitochondrial dysfunctional apoptosis.

  16. Apoptotic and genomic effects of corilagin on SKOV3 ovarian cancer cell line

    PubMed Central

    Attar, Rukset; Cincin, Zeynep Birsu; Bireller, Elif Sinem; Cakmakoglu, Bedia

    2017-01-01

    Corilagin is a member of the tannin family and has been isolated from traditional Chinese medicinal plants, such as Phyllanthus spp. Corilagin has anti-inflammatory, antioxidative, antiatherogenic, and antihypertensive effects in various experimental models. In this research, we aimed to investigate for the first time whether corilagin had apoptotic and genomic effects in ovarian cancer treatment in the same study. The potential apoptotic of corilagin was investigated using a WST1 cell proliferation test, caspase 3, and mitochondrial membrane potential JC1 assays in a time- and dose-dependent manner. Genomic changes in expression levels against corilagin treatment were measured using an Illumina human HT-12V4 BeadChip microarray. Bioinformatic data analyses were performed using GenomeStudio and Ingenuity Pathway Analysis software. The data of our study demonstrated that there were statistically significant time- and dose-dependent increases in caspase 3 enzymatic activity and loss of mitochondrial membrane potential in line with decreases in cancer cell proliferation. According to gene-ontology analysis, we found that adherens junctions, antigen processing and presentation, and the phosphatidylinositol signaling system were the most statistically significant networks in response to corilagin treatment on SKOV3 cells, in a time- and dose-dependent manner. The apoptotic and genome-wide effects of corilagin on ovarian cancer cells were examined in detail for the first time in the literature. The results of our study suggest that corilagin might have the potential to be used as a new treatment option for epithelial ovarian cancer.

  17. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice

    PubMed Central

    Kim, Ok-Hee; Kim, Hyojung; Kang, Jinku; Yang, Dongki; Kang, Yu-Hoi; Lee, Dae Ho; Cheon, Gi Jeong; Park, Sang Chul; Oh, Byung-Chul

    2017-01-01

    Accumulation of tissue macrophages is a significant characteristic of disease-associated chronic inflammation, and facilitates the progression of disease pathology. However, the functional roles of these bone marrow-derived macrophages (BMDMs) in aging are unclear. Here, we identified age-dependent macrophage accumulation in the bone marrow, showing that aging significantly increases the number of M1 macrophages and impairs polarization of BMDMs. We found that age-related dysregulation of BMDMs is associated with abnormal overexpression of the anti-inflammatory interleukin-10. BMDM dysregulation in aging impairs the expression levels of pro-inflammatory cytokines and genes involved in B-cell maturation and activation. Phagocytosis of apoptotic Jurkat cells by BMDMs was reduced because of low expression of phagocytic receptor CD14, indicating that increased apoptotic cells may result from defective phagocytosis of apoptotic cells in the BM of aged mice. Therefore, CD14 may represent a promising target for preventing BMDM dysregulation, and macrophage accumulation may provide diagnostic and therapeutic clues. PMID:27866511

  18. Nitric oxide and calcium ions in apoptotic esophageal carcinoma cells induced by arsenite

    PubMed Central

    Shen, Zhong-Ying; Shen, Wen-Ying; Chen, Ming-Hua; Shen, Jian; Cai, Wei-Jie; Yi, Zeng

    2002-01-01

    AIM: To Quantitatively analyze the nitri oxide (NO) and Ca2+ in apoptosis of esophageal carcinoma cells induced by arsenic trioxide (As2O3). METHODS: The cell line SHEEC1, a malignant esophageal epithelial cell induced by HPV in synergy with TPA in our laboratory, was cultured in a serum-free medium and treated with As2O3. Before and after administration of As2O3, NO production in cultured medium was detected quantitatively using the Griess Colorimetric method. Intracellular Ca2+ was labeled by using the fluorescent dye Fluo3-AM and detected under confocal laser scanning microscope (CLSM), which was able to acquire data in real-time enabling Ca2+ dynamics of individual cells in vitro. The apoptotic cells were examined under electron microscopy. RESULTS: Intracellular concentration of Ca2+ increased from 1.00 units to 1.09-1.38 units of fluorescent intensity at As2O3 treatment and NO products subsequently released from As2O3-treated cells increased from 0.98-1.00 × 10-2 μmol·L-1 up to 1.48-1.52 × 10-2 μmol·L-1 and maintained in a high level continuously. Finally apoptosis of cells occurred, chromatin being agglutinated, cells shrunk, nuclei became round and mitochondria swelled. CONCLUSION: Ca2+ and NO increased with cell damage and apoptosis in cells treated by As2O3. The Ca2+ is an initial messenger to the apoptotic pathway. To investigate Ca2+ and NO will be a new direction for studying the apoptotic signaling messenger of the esophageal carcinoma cells induced by As2O3. PMID:11833068

  19. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  20. p53 contributes to T cell homeostasis through the induction of pro-apoptotic SAP.

    PubMed

    Madapura, Harsha S; Salamon, Daniel; Wiman, Klas G; Lain, Sonia; Klein, George; Klein, Eva; Nagy, Noémi

    2012-12-15

    Lack of functional SAP protein, due to gene deletion or mutation, is the cause of X-linked lymphoproliferative disease (XLP), characterized by functionally impaired T and NK cells and a high risk of lymphoma development. We have demonstrated earlier that SAP has a pro-apoptotic function in T and B cells. Deficiency of this function might contribute to the pathogenesis of XLP. We have also shown that SAP is a target of p53 in B cell lines. In the present study, we show that activated primary T cells express p53, which induces SAP expression. p53 is functional as a transcription factor in activated T cells and induces the expression of p21, PUMA and MDM2. PARP cleavage in the late phase of activation indicates that T cells expressing high levels of SAP undergo apoptosis. Modifying p53 levels using Nutlin-3, which specifically dissociates the MDM2-p53 interaction, was sufficient to upregulate SAP expression, indicating that SAP is a target of p53 in T cells. We also demonstrated p53's role as a transcription factor for SAP in activated T cells by ChIP assays. Our result suggests that p53 contributes to T cell homeostasis through the induction of the pro-apoptotic SAP. A high level of SAP is necessary for the activation-induced cell death that is pivotal in termination of the T cell response.

  1. Mitigated NSAID-induced apoptotic and autophagic cell death with Smad7 overexpression

    PubMed Central

    Lee, Ho-Jae; Park, Jong Min; Hahm, Ki Baik

    2017-01-01

    Non-steroidal anti-inflammatory drugs damaged gastrointestinal mucosa in cyclooxygenase-dependent and -independent pathway, among which apopototic or autophagic cell death in gastrointestinal cells might be one of key cytotoxic mechanisms responsible for NSAID-induced damages. Therefore, alleviating this cell death after NSAIDs can be a rescuing strategy. In this study, we explored the role of Smad7 on NSAID-induced cytotoxicity in gastric epithelial cells. Using RGM1 cells, we have compared biological changes between mock-transfected and Smad7-overexpressed cells. As results, significantly decreased cytotoxicity accompanied with decreased levels of cleaved caspase-3 and poly (ADP-ribose) polymerase, Bax, and autophagic vesicles concurrent with decreased expressions of autophagy protein 5 and microtubule-associated protein light chain 3B-II were noted in Smad7-overexpressed cells with indomethacin administration compared to mock-transfected cells. Contrast to mitigated apoptotic execution, anti-apoptotic Bcl-2 and Beclin-1 were significantly increased in Smad7-overexpressed cells compared to mock-transfected cells. Smad7 siRNA significantly reversed these protective actions of Smad7 against indomethacin, in which p38 mitogen-activated protein kinase was significantly intervened. Furthermore, indomethacin-induced Smad7 degradation through ubiquitin-proteasome pathway was relevant to increased cytotoxicity, while chloroquine as autophagy inhibitor significantly attenuated indomethacin-induced cytotoxicity through Smad7 preservation via repressed ubiquitination. Conclusively, either genetic overexpression or pharmacological induction of Smad7 significantly attenuated indomethacin-induced gastric cell damages. PMID:28163383

  2. DLTS analysis of radiation-induced defects in one-MeV electron irradiated germanium and Alsub0.17Gasub0.83As solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. B.; Choi, C. G.; Loo, R. Y.

    1985-01-01

    The radiation-induced deep-level defects in one-MeV electron-irradiated germanium and AlxGal-xAs solar cell materials using the deep-level transient spectroscopy (DLTS) and C-V techniques were investigated. Defect and recombination parameters such as defect density and energy levels, capture cross sections and lifetimes for both electron and hole traps were determined. The germanium and AlGaAs p/n junction cells were irradiated by one-MeV electrons. The DLTS, I-V, and C-V measurements were performed on these cells. The results are summarized as follows: (1) for the irradiated germanium samples, the dominant electron trap was due to the E sub - 0.24 eV level with density around 4x10 to the 14th power 1/cu cm, independent of electron fluence, its origin is attributed to the vacancy-donor complex defect formed during the electron irradiation; (2) in the one-MeV electron irradiated Al0.17Ga0.83 as sample, two dominant electron traps with energies of Ec-0.19 and -0.29 eV were observed, the density for both electron traps remained nearly constant, independent of electron fluence. It is shown that one-MeV electron irradiation creates very few or no new deep-level traps in both the germanium and AlxGa1-xAs cells, and are suitable for fabricating the radiation-hard high efficiency multijunction solar cells for space applications.

  3. Proposed Pharmacological Countermeasures Against Apoptotic Cell Death in Experimental Models Mimicking Space Environment Damage

    NASA Astrophysics Data System (ADS)

    Lulli, Matteo; Papucci, Laura; Witort, Ewa; Donnini, Martino; Lapucci, Andrea; Lazzarano, Stefano; Mazzoni, Tiziano; Simoncini, Madine; Falciani, Piergiuseppe; Capaccioli, Sergio

    2008-06-01

    Several damaging agents have been suggested to affect human vision during long term space travels. Recently, apoptosis induced by DNA-damaging agents has emerged as frequent pathogenetic mechanism of ophthalmologic pathologies. Here, we propose two countermeasures: coenzyme Q10 and bcl-2 downregulation preventing antisense oligoribonucleotides (ORNs), aimed to inhibit cellular apoptotic death. Our studies have been carried out on retina and neuronal cultured cells treated with the following apoptotic stimuli mimicking space environment: a several-day exposure to either 3H-labeled tymidine or to the genotoxic drug doxorubicin, UV irradiation, hypoxia and glucose/growth factor starvation (Locke medium). The preliminary results clearly indicate that CoQ10, as well as bcl-2 down-regulation preventing ORNs, significantly counteract apoptosis in response to different DNA damaging agents in cultured eye and in neuronal cells. This supports the possibility that both could be optimal countermeasures against ophthalmologic lesions during space explorations.

  4. Interaction of low molecular weight group IIA phospholipase A2 with apoptotic human T cells: role of heparan sulfate proteoglycans.

    PubMed

    Boilard, Eric; Bourgoin, Sylvain G; Bernatchez, Chantale; Poubelle, Patrice E; Surette, Marc E

    2003-06-01

    Human group IIA phospholipase A2 (hIIA PLA2) is a 14 kDa secreted enzyme associated with inflammatory diseases. A newly discovered property of hIIA PLA2 is the binding affinity for the heparan sulfate proteoglycan (HSPG) glypican-1. In this study, the binding of hIIA PLA2 to apoptotic human T cells was investigated. Little or no exogenous hIIA PLA2 bound to CD3-activated T cells but significant binding was measured on activated T cells induced to undergo apoptosis by anti-CD95. Binding to early apoptotic T cells was greater than to late apoptotic cells. The addition of heparin and the hydrolysis of HSPG by heparinase III only partially inhibited hIIA PLA2 binding to apoptotic cells, suggesting an interaction with both HSPG and other binding protein(s). Two low molecular weight HSPG were coimmunoprecipitated with hIIA PLA2 from apoptotic T cells, but not from living cells. Treatment of CD95-stimulated T cells with hIIA PLA2 resulted in the release of arachidonic acid but not oleic acid from cells and this release was blocked by heparin and heparinase III. Altogether, these results suggest a role for hIIA PLA2 in the release of arachidonic acid from apoptotic cells through interactions with HSPG and its potential implication in the progression of inflammatory diseases.

  5. Effects of dose rates on radiation-induced replenishment of intestinal stem cells determined by Lgr5 lineage tracing.

    PubMed

    Otsuka, Kensuke; Iwasaki, Toshiyasu

    2015-07-01

    An understanding of the dynamics of intestinal Lgr5(+) stem cells is important for elucidating the mechanism of colonic cancer development. We previously established a method for evaluating Lgr5(+) stem cells by tamoxifen-dependent Lgr5-lineage tracing and showed that high-dose-rate radiation stimulated replenishment of colonic stem cells. In this study, we evaluated the effects of low-dose-rate radiation on stem cell maintenance. Tamoxifen (4OHT)-injected Lgr5-EGFP-IRES-Cre(ERT2) × ROSA-LSL-LacZ mice were used, LacZ-labeled colonic crypts were enumerated, and the loss of LacZ(+) crypts under low-dose-rate radiation was estimated. After 4OHT treatment, the number of LacZ-labeled Lgr5(+) stem cells was higher in the colon of infant mice than in adult mice. The percentage of LacZ-labeled crypts in infant mice rapidly decreased after 4OHT treatment. However, the percentage of labeled crypts plateaued at ∼2% at 4 weeks post-treatment and remained unchanged for up to 7 months. Thus, it will be advantageous to evaluate the long-term effects of low-dose-rate radiation. Next, we determined the percentages of LacZ-labeled crypts irradiated with 1 Gy administered at different dose rates. As reported in our previous study, mice exposed to high-dose-rate radiation (30 Gy/h) showed a marked replenishment (P = 0.04). However, mice exposed to low-dose-rate radiation (0.003 Gy/h) did not exhibit accelerated stem-cell replenishment (P = 0.47). These findings suggest the percentage of labeled crypts can serve as a useful indicator of the effects of dose rate on the stem cell pool.

  6. Leptin suppresses non-apoptotic cell death in ischemic rat cardiomyocytes by reduction of iPLA{sub 2} activity

    SciTech Connect

    Takatani-Nakase, Tomoka Takahashi, Koichi

    2015-07-17

    Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA{sub 2}, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death. - Highlights: • Myocardial ischemia-model induces in caspase-independent, non-apoptotic cell death. • Leptin strongly inhibits ischemic-augmented non-apoptotic cell death. • Leptin reduces iPLA{sub 2} activity, leading to avoidance of non-apoptotic cell death.

  7. Melatonin and a spin-trap compound block radiofrequency electromagnetic radiation-induced DNA strand breaks in rat brain cells.

    PubMed

    Lai, H; Singh, N P

    1997-01-01

    Effects of in vivo microwave exposure on DNA strand breaks, a form of DNA damage, were investigated in rat brain cells. In previous research, we have found that acute (2 hours) exposure to pulsed (2 microseconds pulses, 500 pps) 2450-MHz radiofrequency electromagnetic radiation (RFR) (power density 2 mW/cm2, average whole body specific absorption rate 1.2 W/kg) caused an increase in DNA single- and double-strand breaks in brain cells of the rat when assayed 4 hours post exposure using a microgel electrophoresis assay. In the present study, we found that treatment of rats immediately before and after RFR exposure with either melatonin (1 mg/kg/injection, SC) or the spin-trap compound N-tert-butyl-alpha-phenylnitrone (PBN) (100 mg/kg/injection, i.p.) blocks this effects of RFR. Since both melatonin and PBN are efficient free radical scavengers it is hypothesized that free radicals are involved in RFR-induced DNA damage in the brain cells of rats. Since cumulated DNA strand breaks in brain cells can lead to neurodegenerative diseases and cancer and an excess of free radicals in cells has been suggested to be the cause of various human diseases, data from this study could have important implications for the health effects of RFR exposure.

  8. Mycobacterium tuberculosis blocks annexin-1 crosslinking and thus apoptotic envelope completion on infected cells to maintain virulence

    PubMed Central

    Gan, Huixian; Lee, Jinhee; Ren, Fucheng; Chen, Minjian; Kornfeld, Hardy; Remold, Heinz G.

    2017-01-01

    Macrophages infected with attenuated Mycobacterium tuberculosis strain H37Ra become apoptotic, limiting bacterial replication and facilitating antigen presentation. Here, we demonstrate that cells infected with H37Ra became apoptotic after formation of an apoptotic envelope on their surface was complete. This process required exposure of phosphatidylserine on the cell surface followed by deposition of the phospholipid-binding protein annexin-1 and then transglutaminase-mediated crosslinking of annexin-1 via its N-terminal domain. In macrophages infected with virulent strain H37Rv, in contrast, the N-terminal domain of annexin-1 was removed by proteolysis thus preventing completion of the apoptotic envelope, which results in macrophage death by necrosis. Host defense of virulent Mycobacterium tuberculosis thus occurs by failure to form the apoptotic envelope, which leads to macrophage necrosis and dissemination of infection in the lung. PMID:18794848

  9. Sorafenib Enhances Radiation-Induced Apoptosis in Hepatocellular Carcinoma by Inhibiting STAT3

    SciTech Connect

    Huang, Chao-Yuan; Lin, Chen-Si; Tai, Wei-Tien; Hsieh, Chi-Ying; Shiau, Chung-Wai; Cheng, Ann-Lii; Chen, Kuen-Feng

    2013-07-01

    Purpose: Hepatocellular carcinoma (HCC) is one of the most common and lethal human malignancies. Lack of efficient therapy for advanced HCC is a pressing problem worldwide. This study aimed to determine the efficacy and mechanism of combined sorafenib and radiation therapy treatment for HCC. Methods and Materials: HCC cell lines (PLC5, Huh-7, Sk-Hep1, and Hep3B) were treated with sorafenib, radiation, or both, and apoptosis and signal transduction were analyzed. Results: All 4 HCC cell lines showed resistance to radiation-induced apoptosis; however, this resistance could be reversed in the presence of sorafenib. Inhibition of phospho-STAT3 was found in cells treated with sorafenib or sorafenib plus radiation and subsequently reduced the expression levels of STAT3-related proteins, Mcl-1, cyclin D1, and survivin. Silencing STAT3 by RNA interference overcame apoptotic resistance to radiation in HCC cells, and the ectopic expression of STAT3 in HCC cells abolished the radiosensitizing effect of sorafenib. Moreover, sorafenib plus radiation significantly suppressed PLC5 xenograft tumor growth. Conclusions: These results indicate that sorafenib sensitizes resistant HCC cells to radiation-induced apoptosis via downregulating phosphorylation of STAT3 in vitro and in vivo.

  10. Suppressed expression of non-DSB repair genes inhibits gamma-radiation-induced cytogenetic repair and cell cycle arrest.

    PubMed

    Zhang, Ye; Rohde, Larry H; Emami, Kamal; Hammond, Dianne; Casey, Rachael; Mehta, Satish K; Jeevarajan, Antony S; Pierson, Duane L; Wu, Honglu

    2008-11-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in double-strand break (DSB) repair, and its impact on cytogenetic responses has not been well studied. The purpose of this study is to identify new roles of IR inducible genes in regulating DSB repair and cell cycle progression. In this study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by small interfering RNA in human fibroblast cells. Frequency of micronuclei (MN) formation and chromosome aberrations were measured to determine efficiency of cytogenetic repair, especially DSB repair. In response to IR, the formation of MN was significantly increased by suppressed expression of five genes: Ku70 (DSB repair pathway), XPA (nucleotide excision repair pathway), RPA1 (mismatch repair pathway), RAD17 and RBBP8 (cell cycle control). Knocked-down expression of four genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Moreover, decreased XPA, p21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Nine of these eleven genes, whose knock-down expression affected cytogenetic repair, were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate IR-induced biological consequences. Furthermore, eight non-DBS repair genes showed involvement in regulating DSB repair, indicating that

  11. Anti-tissue transglutaminase antibody inhibits apoptotic cell clearance by macrophages in pregnant NOD mice.

    PubMed

    Sóñora, Cecilia; Mourglia-Ettlin, Gustavo; Calo, Guillermina; Hauk, Vanesa; Ramhorst, Rosanna; Hernández, Ana; Leirós, Claudia Pérez

    2014-06-01

    Autoimmunity is a feature of celiac disease (CD) with tissue transglutaminase (tTG) as a major autoantigen. A correlation between gynecological-obstetric disorders in CD patients and the presence of circulating antibodies anti-tTG that inhibited tTG activity was reported. Serum anti-tTG antibodies were detected in a non-obese diabetic (NOD) mouse model of type I insulin-dependent diabetes mellitus and Sjögren's syndrome, two comorbid states with CD. Since pregnancy complications have been described in NOD mice, we evaluated the ability of anti-tTG antibodies to affect the functions of tTG relevant to the normal course of an early pregnancy like extracellular matrix assembling and apoptotic cell phagocytosis by macrophages. Circulating IgG antibodies against tTG were detected in NOD mice with titers that decreased at early pregnancy; interestingly, the in vitro transamidating activity of tTG was reduced by NOD serum samples. Particularly, anti-tTG antibody inhibited apoptotic cell phagocytosis by peritoneal macrophages from pregnant NOD mice that express the enzyme on surface. Evidence provided support for a role for anti-tTG antibodies through reduced transamidating activity and reduced apoptotic cell clearance by the macrophages of pregnant NOD mice.

  12. Tetrabromobisphenol-A induces apoptotic death of auditory cells and hearing loss.

    PubMed

    Park, Channy; Kim, Se-Jin; Lee, Won Kyo; Moon, Sung Kyun; Kwak, SeongAe; Choe, Seong-Kyu; Park, Raekil

    2016-09-30

    Phenolic tetrabromobisphenol-A (TBBPA) and its derivatives are commonly used flame-retardants, in spite of reported toxic effects including neurotoxicity, immunotoxicity, nephrotoxicity, and hepatotoxicity. However, the effects of TBBPA on ototoxicity have not yet been reported. In this study, we investigated the effect of TBBPA on hearing function in vivo and in vitro. Auditory Brainstem Response (ABR) threshold was markedly increased in mice after oral administration of TBBPA, indicating that TBBPA causes hearing loss. In addition, TBBPA induced the loss of both zebrafish neuromasts and hair cells in the rat cochlea in a dose-dependent manner. Mechanistically, hearing loss is largely attributed to apoptotic cell death, as TBBPA increased the expression of pro-apoptotic genes but decreased the expression of anti-apoptotic genes. We also found that TBBPA induced oxidative stress, and importantly, pretreatment with NAC, an anti-oxidant reagent, reduced TBBPA-induced reactive oxygen species (ROS) generation and partially prevented cell death. Our results show that TBBPA-mediated ROS generation induces ototoxicity and hearing loss. These findings implicate TBBPA as a potential environmental ototoxin by exerting its hazardous effects on the auditory system.

  13. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure iIduced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  14. Simulations of DSB Yields and Radiation-induced Chromosomal Aberrations in Human Cells Based on the Stochastic Track Structure Induced by HZE Particles

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Plante, Ianik; George, Kerry; Wu, Honglu

    2014-01-01

    The formation of double-strand breaks (DSBs) and chromosomal aberrations (CAs) is of great importance in radiation research and, specifically, in space applications. We are presenting a new particle track and DNA damage model, in which the particle stochastic track structure is combined with the random walk (RW) structure of chromosomes in a cell nucleus. The motivation for this effort stems from the fact that the model with the RW chromosomes, NASARTI (NASA radiation track image) previously relied on amorphous track structure, while the stochastic track structure model RITRACKS (Relativistic Ion Tracks) was focused on more microscopic targets than the entire genome. We have combined chromosomes simulated by RWs with stochastic track structure, which uses nanoscopic dose calculations performed with the Monte-Carlo simulation by RITRACKS in a voxelized space. The new simulations produce the number of DSBs as function of dose and particle fluence for high-energy particles, including iron, carbon and protons, using voxels of 20 nm dimension. The combined model also calculates yields of radiation-induced CAs and unrejoined chromosome breaks in normal and repair deficient cells. The joined computational model is calibrated using the relative frequencies and distributions of chromosomal aberrations reported in the literature. The model considers fractionated deposition of energy to approximate dose rates of the space flight environment. The joined model also predicts of the yields and sizes of translocations, dicentrics, rings, and more complex-type aberrations formed in the G0/G1 cell cycle phase during the first cell division after irradiation. We found that the main advantage of the joined model is our ability to simulate small doses: 0.05-0.5 Gy. At such low doses, the stochastic track structure proved to be indispensable, as the action of individual delta-rays becomes more important.

  15. Induction of discrete apoptotic pathways by bromo-substituted indirubin derivatives in invasive breast cancer cells

    SciTech Connect

    Nicolaou, Katerina A.; Liapis, Vasilis; Evdokiou, Andreas; Constantinou, Constantina; Magiatis, Prokopios; Skaltsounis, Alex L.; Koumas, Laura; Costeas, Paul A.; Constantinou, Andreas I.

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer The effects of 6BIO and 7BIO are evaluated against five breast cancer cell lines. Black-Right-Pointing-Pointer 6BIO induces a caspase dependent apoptotic effect via the intrinsic pathway. Black-Right-Pointing-Pointer 7BIO promotes G{sub 2}/M cells cycle arrest. Black-Right-Pointing-Pointer 7BIO triggers a caspase-8 mediated apoptotic pathway. Black-Right-Pointing-Pointer 7BIO triggers and a caspase independent pathway. -- Abstract: Indirubin derivatives gained interest in recent years for their anticancer and antimetastatic properties. The objective of the present study was to evaluate and compare the anticancer properties of the two novel bromo-substituted derivatives 6-bromoindirubin-3 Prime -oxime (6BIO) and 7-bromoindirubin-3 Prime -oxime (7BIO) in five different breast cancer cell lines. Cell viability assays identified that 6BIO and 7BIO are most effective in preventing the proliferation of the MDA-MB-231-TXSA breast cancer cell line from a total of five breast cancer cell lined examined. In addition it was found that the two compounds induce apoptosis via different mechanisms. 6BIO induces caspase-dependent programmed cell death through the intrinsic (mitochondrial) caspase-9 pathway. 7BIO up-regulates p21 and promotes G{sub 2}/M cell cycle arrest which is subsequently followed by the activation of two different apoptotic pathways: (a) a pathway that involves the upregulation of DR4/DR5 and activation of caspase-8 and (b) a caspase independent pathway. In conclusion, this study provides important insights regarding the molecular pathways leading to cell cycle arrest and apoptosis by two indirubin derivatives that can find clinical applications in targeted cancer therapeutics.

  16. Apoptotic effects on cultured cells of atmospheric-pressure plasma produced using various gases

    NASA Astrophysics Data System (ADS)

    Tominami, Kanako; Kanetaka, Hiroyasu; Kudo, Tada-aki; Sasaki, Shota; Kaneko, Toshiro

    2016-01-01

    This study investigated the effects of low-temperature atmospheric-pressure plasma on various cells such as rat fibroblastic Rat-1 cell line, rat neuroblastoma-like PC12 cell line, and rat macrophage-like NR8383 cell line. The plasma was irradiated directly to a culture medium containing plated cells for 0-20 s. The applied voltage, excitation frequency, and argon or helium gas flow were, respectively, 3-6 kV, 10 kHz, and 3 L/min. Cell viability and apoptotic activity were evaluated using annexin-V/propidium iodide staining. Results showed that the low-temperature atmospheric-pressure plasma irradiation promoted cell death in a discharge-voltage-dependent and irradiation-time-dependent manner. Furthermore, different effects are produced depending on the cell type. Moreover, entirely different mechanisms might be responsible for the induction of apoptosis in cells by helium and argon plasma.

  17. Temperature coefficients and radiation induced DLTS spectra of MOCVD grown n(+)p InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Statler, Richard L.; Summers, Geoffrey P.

    1991-01-01

    The effects of temperature and radiation on n(+)p InP solar cells and mesa diodes grown by metallorganic chemical vapor deposition (MOCVD) were studied. It was shown that MOCVD is capable of consistently producing good quality InP solar cells with Eff greater than 19 percent which display excellent radiation resistance due to minority carrier injection and thermal annealing. It was also shown that universal predictions of InP device performance based on measurements of a small group of test samples can be expected to be quite accurate, and that the degradation of an InP device due to any incident particle spectrum should be predictable from a measurement following a single low energy proton irradiation.

  18. Radiation-induced p53 protein response in the A549 cell line is culture growth-phase dependent

    SciTech Connect

    Johnson, N.F.; Gurule, D.M.; Carpenter, T.R.

    1995-12-01

    One role of the p53 tumor suppressor protein has been recently revealed. Kastan, M.B. reported that p53 protein accumulates in cells exposed to ionizing radiation. The accumulation of p53 protein is in response to DNA damage, most importantly double-strand breaks, that results from exposure to ionizing radiation. The rise in cellular p53 levels is necessary for an arrest in the G{sub 1} phase of the cell cycle to provide additional time for DNA repair. The p53 response has also been demonstrated to enhance PCNA-dependent repair. p53 is thus an important regulator of the cellular response to DNA-damaging radiation. From this data, it can be concluded that the magnitude of the p53 response is not dependent on the phase of culture growth.

  19. Normal Cellular Prion Protein Protects against Manganese-induced Oxidative Stress and Apoptotic Cell Death

    PubMed Central

    Choi, Christopher J.; Anantharam, Vellareddy; Saetveit, Nathan J.; Houk, Robert. S.; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2012-01-01

    The normal prion protein is abundantly expressed in the CNS, but its biological function remains unclear. The prion protein has octapeptide repeat regions that bind to several divalent metals, suggesting that the prion proteins may alter the toxic effect of environmental neurotoxic metals. In the present study, we systematically examined whether prion protein modifies the neurotoxicity of manganese (Mn) by comparing the effect of Mn on mouse neural cells expressing prion protein (PrPC -cells) and prion-knockout (PrPKO -cells). Exposure to Mn (10 μM-1 mM) for 24 hr produced a dose-dependent cytotoxic response in both PrPC -cells and PrPKO -cells. Interestingly, PrPC -cells (EC50 117.6μM) were more resistant to Mn-induced cytotoxicity, as compared to PrPKO -cells (EC50 59.9μM), suggesting a protective role for PrPC against Mn neurotoxicity. Analysis of intracellular Mn levels showed less Mn accumulation in PrPC -cells as compared to PrPKO -cells. Furthermore, Mn-induced mitochondrial depolarization and ROS generation were significantly attenuated in PrPC -cells as compared to PrPKO -cells. Measurement of antioxidant status revealed similar basal levels of glutathione (GSH) in PrPC -cells and PrPKO -cells; however, Mn treatment caused greater depletion of GSH in PrPKO -cells. Mn-induced mitochondrial depolarization and ROS production were followed by time- and dose-dependent activation of the apoptotic cell death cascade involving caspase-9 and -3. Notably, DNA fragmentation induced by both Mn treatment and oxidative stress-inducer hydrogen peroxide (100μM) was significantly suppressed in PrPC -cells as compared to PrPKO -cells. Together, these results demonstrate that prion protein interferes with divalent metal Mn uptake and protects against Mn-induced oxidative stress and apoptotic cell death. PMID:17483122

  20. Interplay of CREB and ATF2 in Ionizing Radiation-Induced Neuroendocrine Differentiation of Prostate Cancer Cells

    DTIC Science & Technology

    2012-06-01

    cross-talk between Hh and androgen signaling in prostate cancer. Source of Funding: NCI RO1-CA111618; DOD W81XWH-06 377 WHAT CAN THE HAIR FOLLICLES ...Award will test whether targeting PRMT5 can radiosensitize prostate cancer cells. In vitro and in vivo model systems developed 13 through current DoD...days after testosterone readministration to regressed tumors and tested gene specific mRNA expression. RESULTS: Overall AD induced expression of

  1. Lupus erythematosus cell phenomenon in pediatric bronchoalveolar lavages: possible manifestation of early radioadaptive response in radiation induced alveolitis.

    PubMed

    Zunic, S

    2013-01-01

    A ten-year (December 1992 - December 2002) evaluation of 225 pediatric bronchoalveolar lavage (BAL) differential cell counts showed appearance of the cells corresponding to the cytological entity - lupus erythematosus cell (LEC) in 47 specimens of which not a single case was associated with the coexistent autoimmune disease. There was a significant increase in the percentage of LEC in BAL samples of the examinees during the first 6 months after the bombing of targets in Serbia (July-December 1999) in comparison to the period 1992 to March 24, 1999, and after the bombing of targets in Serbia (2000-2002). Maintaining the character of occurrence of LEC in BAL as nonspecific (Zunic et al. 1996), the devastating power of alpha particles (originated from uranium decay) gives an opportunity to discuss this phenomenon more comprehensibly and perceive a new vista related to the pathogenesis of LEC phenomenon in BAL. Since the period after 1991 corresponds to the time after the first Gulf War, and later the bombing of targets in Bosnia, the possibility of occurrence of LEC in BAL as a manifestation of radiation alveolitis due to contamination by air transferred depleted uranium (DU) particles could not be excluded.

  2. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line.

    PubMed

    Liu, Chuan; Duan, Weixia; Xu, Shangcheng; Chen, Chunhai; He, Mindi; Zhang, Lei; Yu, Zhengping; Zhou, Zhou

    2013-03-27

    Whether exposure to radiofrequency electromagnetic radiation (RF-EMR) emitted from mobile phones can induce DNA damage in male germ cells remains unclear. In this study, we conducted a 24h intermittent exposure (5 min on and 10 min off) of a mouse spermatocyte-derived GC-2 cell line to 1800 MHz Global System for Mobile Communication (GSM) signals in GSM-Talk mode at specific absorption rates (SAR) of 1 W/kg, 2 W/kg or 4 W/kg. Subsequently, through the use of formamidopyrimidine DNA glycosylase (FPG) in a modified comet assay, we determined that the extent of DNA migration was significantly increased at a SAR of 4 W/kg. Flow cytometry analysis demonstrated that levels of the DNA adduct 8-oxoguanine (8-oxoG) were also increased at a SAR of 4 W/kg. These increases were concomitant with similar increases in the generation of reactive oxygen species (ROS); these phenomena were mitigated by co-treatment with the antioxidant α-tocopherol. However, no detectable DNA strand breakage was observed by the alkaline comet assay. Taking together, these findings may imply the novel possibility that RF-EMR with insufficient energy for the direct induction of DNA strand breaks may produce genotoxicity through oxidative DNA base damage in male germ cells.

  3. Differential response of mouse male germ-cell stages to radiation-induced specific-locus and dominant mutations.

    PubMed Central

    Russell, W L; Bangham, J W; Russell, L B

    1998-01-01

    In an attempt to provide a systematic assessment of the frequency and nature of mutations induced in successive stages of spermato- and spermiogenesis, X-irradiated male mice were re-mated at weekly intervals, and large samples of progeny, observed from birth onward, were scored and genetically tested for recessive mutations at seven specific loci and for externally recognizable dominant mutations. Productivity findings provided a rough measure of induced dominant-lethal frequencies. A qualitative assessment of specific-locus mutations (which include deletions and other rearrangements) was made on the basis of homozygosity test results, as well as from information derived from more recent complementation studies and molecular analyses. Both recessive and dominant visibles revealed clear distinctions between spermatogonia and postspermatogonial stages. In addition, differences for both of these endpoints, as well as for presumed dominant lethals, were found among various postspermatogonial stages. It may be concluded that radiation produces its maximum rates of genetic damage in germ-cell stages ranging from midpachytene spermatocytes through early spermatids, a pattern unlike any of those that have been defined for chemicals; further, the frequency peaks for radiation are lower and broader. The difference between post-stem-cell stages overall and stem-cell spermatogonia was smaller than is generally found with chemicals, not only with respect to the frequency but also the nature of mutations. PMID:9560376

  4. Ionizing radiation-induced DNA damage and its repair in human cells. Final performance report, July 1992--June 1995

    SciTech Connect

    Dizdaroglu, M.

    1995-12-31

    The studies of DNA damage in living cells in vitro and in vivo were continued. A variety of systems including cultured mammalian cells, animals, and human tissues were used to conduct these studies. In addition, enzymatic repair of DNA base damage was studied using several DNA glycosylases. To this end, substrate specificities of these enzymes were examined in terms of a large number of base lesions in DNA. In the first phase of the studies, the author sought to introduce improvements to his methodologies for measurement of DNA damage using the technique of gas chromatography/mass spectrometry (GC/MS). In particular, the quantitative measurement of DNA base damage and DNA-protein crosslinks was improved by incorporation of isotope-dilution mass spectrometry into the methodologies. This is one of the most accurate techniques for quantification of organic compounds. Having improved the measurement technique, studies of DNA damage in living cells and DNA repair by repair enzymes were pursued. This report provides a summary of these studies with references to the original work.

  5. Differential response of mouse male germ-cell stages to radiation-induced specific-locus and dominant mutations.

    PubMed

    Russell, W L; Bangham, J W; Russell, L B

    1998-04-01

    In an attempt to provide a systematic assessment of the frequency and nature of mutations induced in successive stages of spermato- and spermiogenesis, X-irradiated male mice were re-mated at weekly intervals, and large samples of progeny, observed from birth onward, were scored and genetically tested for recessive mutations at seven specific loci and for externally recognizable dominant mutations. Productivity findings provided a rough measure of induced dominant-lethal frequencies. A qualitative assessment of specific-locus mutations (which include deletions and other rearrangements) was made on the basis of homozygosity test results, as well as from information derived from more recent complementation studies and molecular analyses. Both recessive and dominant visibles revealed clear distinctions between spermatogonia and postspermatogonial stages. In addition, differences for both of these endpoints, as well as for presumed dominant lethals, were found among various postspermatogonial stages. It may be concluded that radiation produces its maximum rates of genetic damage in germ-cell stages ranging from midpachytene spermatocytes through early spermatids, a pattern unlike any of those that have been defined for chemicals; further, the frequency peaks for radiation are lower and broader. The difference between post-stem-cell stages overall and stem-cell spermatogonia was smaller than is generally found with chemicals, not only with respect to the frequency but also the nature of mutations.

  6. Lack of evidence for low-LET radiation induced bystander response in normal human fibroblasts and colon carcinoma cells

    SciTech Connect

    Sowa, Marianne B.; Goetz, Wilfried; Baulch, Janet E.; Pyles, Dinah N.; Dziegielewski, J.; Yovino, Susannah; Snyder, Andrew R.; de Toledo, S. M.; Azzam, Edouard I.; Morgan, William F.

    2010-02-01

    The conventional paradigm in radiation biology has been that DNA is the primary target for energy deposition following exposure to ionizing radiation. However, studies focusing on the non-target effects of radiation, i.e. effects occurring in cells not directly exposed to radiation, imply that the target of exposure is larger than what has traditionally been assumed and could have significant implications for radiation health risks. We have conducted an extensive study of the low-LET bystander effect including multiple cell lines and endpoints and various radiation sources and exposure scenarios. In no instance do we see evidence of a low-LET induced bystander effect. However, direct comparison for alpha particle exposure showed a statistically significant media transfer bystander effect for high-LET but not for low-LET radiation. From our results it is evident that there are many confounding factors mitigating bystander responses as reported in the literature and for the cell lines we studied that there is a LET dependence for the observed responses. Our observations reflect the inherent variability in biological systems and the difficulties in extrapolating from in vitro models to radiation risks in humans.

  7. Radiation induces progenitor cell death, microglia activation, and blood-brain barrier damage in the juvenile rat cerebellum

    PubMed Central

    Zhou, Kai; Boström, Martina; Ek, C. Joakim; Li, Tao; Xie, Cuicui; Xu, Yiran; Sun, Yanyan; Blomgren, Klas; Zhu, Changlian

    2017-01-01

    Posterior fossa tumors are the most common childhood intracranial tumors, and radiotherapy is one of the most effective treatments. However, irradiation induces long-term adverse effects that can have significant negative impacts on the patient’s quality of life. The purpose of this study was to characterize irradiation-induced cellular and molecular changes in the cerebellum. We found that irradiation-induced cell death occurred mainly in the external germinal layer (EGL) of the juvenile rat cerebellum. The number of proliferating cells in the EGL decreased, and 82.9% of them died within 24 h after irradiation. Furthermore, irradiation induced oxidative stress, microglia accumulation, and inflammation in the cerebellum. Interestingly, blood-brain barrier damage and blood flow reduction was considerably more pronounced in the cerebellum compared to other brain regions. The cerebellar volume decreased by 39% and the migration of proliferating cells to the internal granule layer decreased by 87.5% at 16 weeks after irradiation. In the light of recent studies demonstrating that the cerebellum is important not only for motor functions, but also for cognition, and since treatment of posterior fossa tumors in children typically results in debilitating cognitive deficits, this differential susceptibility of the cerebellum to irradiation should be taken into consideration for future protective strategies. PMID:28382975

  8. HSP70 mediates survival in apoptotic cells-Boolean network prediction and experimental validation.

    PubMed

    Vasaikar, Suhas V; Ghosh, Sourish; Narain, Priyam; Basu, Anirban; Gomes, James

    2015-01-01

    Neuronal stress or injury results in the activation of proteins, which regulate the balance between survival and apoptosis. However, the complex mechanism of cell signaling involving cell death and survival, activated in response to cellular stress is not yet completely understood. To bring more clarity about these mechanisms, a Boolean network was constructed that represented the apoptotic pathway in neuronal cells. FasL and neurotrophic growth factor (NGF) were considered as inputs in the absence and presence of heat shock proteins known to shift the balance toward survival by rescuing pro-apoptotic cells. The probabilities of survival, DNA repair and apoptosis as cellular fates, in the presence of either the growth factor or FasL, revealed a survival bias encoded in the network. Boolean predictions tested by measuring the mRNA level of caspase-3, caspase-8, and BAX in neuronal Neuro2a (N2a) cell line with NGF and FasL as external input, showed positive correlation with the observed experimental results for survival and apoptotic states. It was observed that HSP70 contributed more toward rescuing cells from apoptosis in comparison to HSP27, HSP40, and HSP90. Overexpression of HSP70 in N2a transfected cells showed reversal of cellular fate from FasL-induced apoptosis to survival. Further, the pro-survival role of the proteins BCL2, IAP, cFLIP, and NFκB determined by vertex perturbation analysis was experimentally validated through protein inhibition experiments using EM20-25, Embelin and Wedelolactone, which resulted in 1.27-, 1.26-, and 1.46-fold increase in apoptosis of N2a cells. The existence of a one-to-one correspondence between cellular fates and attractor states shows that Boolean networks may be employed with confidence in qualitative analytical studies of biological networks.

  9. Hepatitis B vaccine induces apoptotic death in Hepa1-6 cells.

    PubMed

    Hamza, Heyam; Cao, Jianhua; Li, Xinyun; Li, Changchun; Zhu, Mengjin; Zhao, Shuhong

    2012-05-01

    Vaccines can have adverse side-effects, and these are predominantly associated with the inclusion of chemical additives such as aluminum hydroxide adjuvant. The objective of this study was to establish an in vitro model system amenable to mechanistic investigations of cytotoxicity induced by hepatitis B vaccine, and to investigate the mechanisms of vaccine-induced cell death. The mouse liver hepatoma cell line Hepa1-6 was treated with two doses of adjuvanted (aluminium hydroxide) hepatitis B vaccine (0.5 and 1 μg protein per ml) and cell integrity was measured after 24, 48 and 72 h. Hepatitis B vaccine exposure increased cell apoptosis as detected by flow cytometry and TUNEL assay. Vaccine exposure was accompanied by significant increases in the levels of activated caspase 3, a key effector caspase in the apoptosis cascade. Early transcriptional events were detected by qRT-PCR. We report that hepatitis B vaccine exposure resulted in significant upregulation of the key genes encoding caspase 7, caspase 9, Inhibitor caspase-activated DNase (ICAD), Rho-associated coiled-coil containing protein kinase 1 (ROCK-1), and Apoptotic protease activating factor 1 (Apaf-1). Upregulation of cleaved caspase 3,7 were detected by western blot in addition to Apaf-1 and caspase 9 expressions argues that cell death takes place via the intrinsic apoptotic pathway in which release of cytochrome c from the mitochondria triggers the assembly of a caspase activation complex. We conclude that exposure of Hepa1-6 cells to a low dose of adjuvanted hepatitis B vaccine leads to loss of mitochondrial integrity, apoptosis induction, and cell death, apoptosis effect was observed also in C2C12 mouse myoblast cell line after treated with low dose of vaccine (0.3, 0.1, 0.05 μg/ml). In addition In vivo apoptotic effect of hepatitis B vaccine was observed in mouse liver.

  10. Effect of Transplantation of Bone Marrow Derived Mesenchymal Stem Cells and Platelets Rich Plasma on Experimental Model of Radiation Induced Oral Mucosal Injury in Albino Rats

    PubMed Central

    El Kholy, Samar; El Rouby, Dalia; Rashed, Laila; Shouman, Tarek

    2017-01-01

    Normal tissue damage following radiotherapy is still a major problem in cancer treatment. Therefore, the current work aimed at exploring the possible role of systemically injected bone marrow derived mesenchymal stem cells (BM-MSCs) and/or locally injected platelet rich plasma (PRP) in ameliorating the side effects of ionizing radiation on the rat's tongue. Twelve rats served as control group (N) and 48 rats received a single radiation dose of 13 Gy to the head and neck region; then, they were equally divided into 4 experimental groups: irradiated only (C), irradiated + MSCs (S), irradiated + (PRP) (P), and combined group (PS). Animal scarification occurred in 3 and 7 days after radiation. Then, tongues were dissected and examined histologically and for expression of bcl-2 by RT-PCR. Histological examination of the treated groups (S), (P), and (PS) revealed an obvious improvement in the histological structure of the tongue, compared to group (C), in addition to upregulated expression of bcl-2, indicating decreased apoptotic activity. Conclusion. BM-MSCs and PRP have shown positive effect in minimizing the epithelial atrophy of normal oral mucosa after regional radiotherapy, which was emphasized by decreasing apoptotic activity in these tissues. Nevertheless, combined use of BM-MSCs and PRP did not reveal the assumed synergetic effect in oral tissue protection. PMID:28337218

  11. Stem cell niches and other factors that influence the sensitivity of bone marrow to radiation-induced bone cancer and leukaemia in children and adults

    PubMed Central

    Richardson, Richard B

    2011-01-01

    Purpose: This paper reviews and reassesses the internationally accepted niches or ‘targets’ in bone marrow that are sensitive to the induction of leukaemia and primary bone cancer by radiation. Conclusions: The hypoxic conditions of the 10 μm thick endosteal/osteoblastic niche where preleukemic stem cells and hematopoietic stem cells (HSC) reside provides a radioprotective microenvironment that is 2-to 3-fold less radiosensitive than vascular niches. This supports partitioning the whole marrow target between the low haematological cancer risk of irradiating HSC in the endosteum and the vascular niches within central marrow. There is a greater risk of induced bone cancer when irradiating a 50 μm thick peripheral marrow adjacent to the remodelling/reforming portion of the trabecular bone surface, rather than marrow next to the quiescent bone surface. This choice of partitioned bone cancer target is substantiated by the greater radiosensitivity of: (i) Bone with high remodelling rates, (ii) the young, (iii) individuals with hypermetabolic benign diseases of bone, and (iv) the epidemiology of alpha-emitting exposures. Evidence is given to show that the absence of excess bone-cancer in atomic-bomb survivors may be partially related to the extremely low prevalence among Japanese of Paget's disease of bone. Radiation-induced fibrosis and the wound healing response may be implicated in not only radiogenic bone cancers but also leukaemia. A novel biological mechanism for adaptive response, and possibility of dynamic targets, is advocated whereby stem cells migrate from vascular niches to stress-mitigated, hypoxic niches. PMID:21204614

  12. Identification of potential molecular markers of ionizing radiation-induced mutations at the hprt locus in CHO cells

    SciTech Connect

    Schwartz, J.L.; Sun, J.; Porter, R.C.

    1995-11-01

    Using multiplex polymerase chain reaction-based exon deletion analysis, we have analyzed mutations at the hprt locus from independent CHO cell mutants isolated from untreated, {sup 60}Co x-ray-, and {sup 212}Bi-exposed CHO-K1 cello and its radiation-sensitive derivative, xrs-5. In the 71 spontaneous CHO-K1 mutants analyzed, 78% showed no change in exon number or size, 20% showed loss of 1-8 exons (partial deletion), and 3% showed loss of all nine hprt exons (total deletion). Exposure of CHO-K1 cells to 6 Gy of {gamma} rays (10% survival) produced 45% of the 20 mutants analyzed showing partial deletion, and 30% showing total deletion. Exposure to an equitoxic dose of a radiation from {sup 212}Bi, a {sup 220}Rn daughter, resulted in a spectrum similar to the {gamma}-ray spectrum in that more than 75% of the 49 mutants analyzed were deletions. The {alpha}-radiation, however, tended to produce larger intragenic deletions that {gamma} radiation. Of the 87 spontaneous xrs-5 mutants analyzed for deletions 44% showed partial deletion, and 14% showed total deletion. Exposure to {alpha} radiation (10% survival) resulted in a deletion spectrum similar to that seen in CHO-K1 cells. Of the 49 mutants analyzed, 43% showed no change in exon number or size, 16% showed partial deletion, and 41% showed total deletion. While the defect in xrs-5 has a profound effect on spontaneous mutation spectra, it does not appear to affect {alpha}-induced mutation spectra.

  13. Antiproliferative, Cytotoxic, and Apoptotic Activity of Steroidal Oximes in Cervicouterine Cell Lines.

    PubMed

    Sánchez-Sánchez, Luis; Hernández-Linares, María Guadalupe; Escobar, María L; López-Muñoz, Hugo; Zenteno, Edgar; Fernández-Herrera, María A; Guerrero-Luna, Gabriel; Carrasco-Carballo, Alan; Sandoval-Ramírez, Jesús

    2016-11-14

    Steroidal sapogenins have shown antiproliferative effects against several tumor cell lines; and their effects on human cancer cells are currently under study. Changes in the functionality on the steroidal structure make it possible to modify the biological activity of compounds. Herein, we report the synthesis and in vitro antitumor activity of two steroidal oxime compounds on cervical cancer cells. These derivatives were synthesized from the steroidal sapogenin diosgenin in good yields. The in vitro assays show that the steroidal oximes show significant antiproliferative activity compared to the one observed for diosgenin. Cell proliferation, cell death, and the cytotoxic effects were determined in both cervical cancer cells and human lymphocytes. The cancer cells showed apoptotic morphology and an increased presence of active caspase-3, providing the notion of a death pathway in the cell. Significantly, the steroidal oximes did not exert a cytotoxic effect on lymphocytes.

  14. Susceptibility to Radiation Induced Apoptosis and Senescence in p53 Wild Type and p53 Mutant Breast Tumor Cells

    DTIC Science & Technology

    2006-07-01

    dihydroxyvitamin D3 (1,25(OH)2D3) and vitamin D3 analogs such as EB 1089 potentiate the response to ionizing radiation in breast tumor cells. The current...Appended Page Proofs ………………………………………………………… 5 Introduction 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) and vitamin D3 analogs such as EB 1089...analogs and ionizing radiation are the following: 1. The vitamin D analog, EB 1089 ( and by extension, vitamin D3 ), converts an accelerated

  15. Protective natural autoantibodies to apoptotic cells: evidence of convergent selection of recurrent innate-like clones.

    PubMed

    Silverman, Gregg J

    2015-12-01

    During murine immune development, recurrent B cell clones arise in a predictable fashion. Among these B cells, an archetypical clonotypic set that recognizes phosphorylcholine (PC) antigens and produces anti-PC IgM, first implicated for roles in microbial protection, was later found to become expanded in hyperlipidemic mice and in response to an increased in vivo burden of apoptotic cells. These IgM natural antibodies can enhance clearance of damaged cells and induce intracellular blockade of inflammatory signaling cascades. In clinical populations, raised levels of anti-PC IgM correlate with protection from atherosclerosis and may also downmodulate the severity of autoimmune disease. Human anti-PC-producing clones without hypermutation have been isolated that can similarly discriminate apoptotic from healthy cells. An independent report on unrelated adults has described anti-PC-producing B cells with IgM genes that have conserved CDR3 motifs, similar to stereotypic clonal sets of B cell chronic lymphocytic leukemia. Taken together, emerging evidence suggests that, despite the capacity to form an effectively limitless range of Ig receptors, the human immune system may often recurrently generate lymphocytes expressing structurally convergent B cell receptors with protective and homeostatic roles.

  16. Galectin-1 and Galectin-3 induce mitochondrial apoptotic pathway in Jurkat cells

    NASA Astrophysics Data System (ADS)

    Vasil'eva, O. A.; Isaeva, A. V.; Prokhorenko, T. S.; Zima, A. P.; Novitsky, V. V.

    2016-08-01

    Cellular malignant transformation is often accompanied by increased gene expression of low-molecular proteins of lectins family-galectins. But it is unknown how galectins promote tumor growth and malignization. Galectins-1 and galectin-3 are thought to be possible immunoregulators exerting their effects by regulating the balance of CD4+ lymphocytes. In addition it is known that tumor cells overexpressing galectins are capable of escaping immunological control, causing apoptosis of lymphocytes. The aim of the study is to investigate the role of galectin-1 and galectin-3 in the implementation of mitochondrial apoptotic pathway in Jurkat cells. Methods: Jurkat cells were used as a model for the study of T-lymphocytes. Jurkat cells were activated with antibodies to CD3 and CD28 and cultured with recombinant galectin-1 and -3. Apoptosis of Jurkat cells and depolarization of the mitochondrial membrane were assessed by flow cytometry. It was found that galectin-1 and galectin-3 have a dose-dependent pro-apoptotic effect on Jurkat cells in vitro and enlarge the number of cells with decreased mitochondrial membrane potential compared with intact cells.

  17. Single Low-Dose Radiation Induced Regulation of Keratinocyte Differentiation in Calcium-Induced HaCaT Cells

    PubMed Central

    Hahn, Hyung Jin; Youn, Hae Jeong; Cha, Hwa Jun; Kim, Karam; An, Sungkwan

    2016-01-01

    Background We are continually exposed to low-dose radiation (LDR) in the range 0.1 Gy from natural sources, medical devices, nuclear energy plants, and other industrial sources of ionizing radiation. There are three models for the biological mechanism of LDR: the linear no-threshold model, the hormetic model, and the threshold model. Objective We used keratinocytes as a model system to investigate the molecular genetic effects of LDR on epidermal cell differentiation. Methods To identify keratinocyte differentiation, we performed western blots using a specific antibody for involucrin, which is a precursor protein of the keratinocyte cornified envelope and a marker for keratinocyte terminal differentiation. We also performed quantitative polymerase chain reaction. We examined whether LDR induces changes in involucrin messenger RNA (mRNA) and protein levels in calcium-induced keratinocyte differentiation. Results Exposure of HaCaT cells to LDR (0.1 Gy) induced p21 expression. p21 is a key regulator that induces growth arrest and represses stemness, which accelerates keratinocyte differentiation. We correlated involucrin expression with keratinocyte differentiation, and examined the effects of LDR on involucrin levels and keratinocyte development. LDR significantly increased involucrin mRNA and protein levels during calcium-induced keratinocyte differentiation. Conclusion These studies provide new evidence for the biological role of LDR, and identify the potential to utilize LDR to regulate or induce keratinocyte differentiation. PMID:27489424

  18. Cohesin phosphorylation and mobility of SMC1 at ionizing radiation-induced DNA double-strand breaks in human cells

    SciTech Connect

    Bauerschmidt, Christina; Helleday, Thomas

    2011-02-01

    Cohesin, a hetero-tetrameric complex of SMC1, SMC3, Rad21 and Scc3, associates with chromatin after mitosis and holds sister chromatids together following DNA replication. Following DNA damage, cohesin accumulates at and promotes the repair of DNA double-strand breaks. In addition, phosphorylation of the SMC1/3 subunits contributes to DNA damage-induced cell cycle checkpoint regulation. The aim of this study was to determine the regulation and consequences of SMC1/3 phosphorylation as part of the cohesin complex. We show here that the ATM-dependent phosphorylation of SMC1 and SMC3 is mediated by H2AX, 53BP1 and MDC1. Depletion of RAD21 abolishes these phosphorylations, indicating that only the fully assembled complex is phosphorylated. Comparison of wild type SMC1 and SMC1S966A in fluorescence recovery after photo-bleaching experiments shows that phosphorylation of SMC1 is required for an increased mobility after DNA damage in G2-phase cells, suggesting that ATM-dependent phosphorylation facilitates mobilization of the cohesin complex after DNA damage.

  19. Ectromelia virus encodes an anti-apoptotic protein that regulates cell death.

    PubMed

    Mehta, Ninad; Taylor, John; Quilty, Douglas; Barry, Michele

    2015-01-15

    Apoptosis serves as a powerful defense against damaged or pathogen-infected cells. Since apoptosis is an effective defense against viral infection, many viruses including poxviruses, encode proteins to prevent or delay apoptosis. Here we show that ectromelia virus, the causative agent of mousepox encodes an anti-