Science.gov

Sample records for radiation-induced cardiac toxicity

  1. Radiation-Induced Cardiac Toxicity After Therapy for Breast Cancer: Interaction Between Treatment Era and Follow-Up Duration

    SciTech Connect

    Demirci, Senem; Nam, Jiho; Hubbs, Jessica L.; Nguyen, Thu; Marks, Lawrence B.

    2009-03-15

    Purpose: Cardiac toxicity after breast radiotherapy (RT) has been widely described in 'older' RT trials (i.e., using larger fraction sizes, wide RT fields, and orthovoltage energy). The results from more 'modern' RT trials have shown less cardiac toxicity. The comparisons between the 'older' and 'modern' trials are confounded by the longer follow-up time in the 'older' trials. We systematically assessed the effect of treatment era and follow-up duration on the reported rates of cardiac toxicity associated with RT. Methods and Materials: The published data were surveyed using PubMed to identify studies using 'breast cancer,' 'irradiation/radiotherapy,' 'cardiac/heart,' and 'toxicity/morbidity/mortality' in a keyword search. Relevant data were extracted from the identified trials. The trials were defined as 'older' (patient accrual start year before 1980) and 'modern' (patient accrual start year in or after 1980) to segregate the trials and assess the treatment era effect. A 10-year follow-up duration was used as a cutoff to segregate and analyze trials with varying lengths of follow-up. Results: We analyzed 19 published reports of patients treated between 1968 and 2002 (5 randomized controlled trials, 5 single- or multi-institutional studies, and 9 national cancer registry database reviews). In the reviewed trials, all the older trials reported excess cardiac toxicity, typically with a median of >10-15 years of follow-up. However, the vast majority of modern RT trials had shorter median follow-up durations, typically {<=}10 years and did not report an excess toxicity risk. The modern studies lacked longer follow-up. Conclusion: Additional follow-up is needed to ensure that modern methods effectively reduce cardiac toxicity. Continued diligence to minimize cardiac exposure remains prudent.

  2. TU-G-BRA-08: BEST IN PHYSICS (JOINT IMAGING-THERAPY): Hybrid PET-MRI Imaging of Acute Radiation Induced Cardiac Toxicity

    SciTech Connect

    El-Sherif, O; Xhaferllari, I; Gaede, S; Sykes, J; Butler, J; Wisenberg, G; Prato, F

    2015-06-15

    Purpose: To identify the presence of low-dose radiation induced cardiac toxicity in a canine model using hybrid positron emission tomography (PET) and magnetic resonance imaging (MRI). Methods: Research ethics board approval was obtained for a longitudinal imaging study of 5 canines after cardiac irradiation. Animals were imaged at baseline, 1 week post cardiac irradiation, and 1 month post cardiac irradiation using a hybrid PET- MRI system (Biograph mMR, Siemens Healthcare). The imaging protocol was designed to assess acute changes in myocardial perfusion and inflammation. Myocardial perfusion imaging was performed using N13-ammonia tracer followed by a dynamic PET acquisition scan. A compartmental tracer kinetic model was used for absolute perfusion quantification. Myocardial inflammation imaging was performed using F18-fluorodeoxyglucose (FDG) tracer. The standard uptake value (SUV) over a region encompassing the whole heart was used to compare FDG scans. All animals received a simulation CT scan (GE Medical Systems) for radiation treatment planning. Radiation treatment plans were created using the Pinncale3 treatment planning system (Philips Radiation Oncology Systems) and designed to resemble the typical cardiac exposure during left-sided breast cancer radiotherapy. Cardiac irradiations were performed in a single fraction using a TrueBeam linear accelerator (Varian Medical Systems). Results: The delivered dose (mean ± standard deviation) to heart was 1.8±0.2 Gy. Reductions in myocardial stress perfusion relative to baseline were observed in 2 of the 5 animals 1 month post radiation. A global inflammatory response 1 month post radiation was observed in 4 of the 5 animals. The calculated SUV at 1 month post radiation was significantly higher (p=0.05) than the baseline SUV. Conclusion: Low doses of cardiac irradiation (< 2 Gy) may lead to myocardial perfusion defects and a global inflammatory response that can be detectable as early as 1 month post irradiation

  3. Faecal microbiota transplantation protects against radiation-induced toxicity.

    PubMed

    Cui, Ming; Xiao, Huiwen; Li, Yuan; Zhou, Lixin; Zhao, Shuyi; Luo, Dan; Zheng, Qisheng; Dong, Jiali; Zhao, Yu; Zhang, Xin; Zhang, Junling; Lu, Lu; Wang, Haichao; Fan, Saijun

    2017-04-01

    Severe radiation exposure may cause acute radiation syndrome, a possibly fatal condition requiring effective therapy. Gut microbiota can be manipulated to fight against many diseases. We explored whether intestinal microbe transplantation could alleviate radiation-induced toxicity. High-throughput sequencing showed that gastrointestinal bacterial community composition differed between male and female mice and was associated with susceptibility to radiation toxicity. Faecal microbiota transplantation (FMT) increased the survival rate of irradiated animals, elevated peripheral white blood cell counts and improved gastrointestinal tract function and intestinal epithelial integrity in irradiated male and female mice. FMT preserved the intestinal bacterial composition and retained mRNA and long non-coding RNA expression profiles of host small intestines in a sex-specific fashion. Despite promoting angiogenesis, sex-matched FMT did not accelerate the proliferation of cancer cells in vivo FMT might serve as a therapeutic to mitigate radiation-induced toxicity and improve the prognosis of tumour patients after radiotherapy.

  4. Atorvastatin Ameliorates Radiation-Induced Cardiac Fibrosis in Rats.

    PubMed

    Zhang, KunYi; He, XuYu; Zhou, Yingling; Gao, Lijuan; Qi, Zhengyu; Chen, Jiyan; Gao, Xiuren

    2015-12-01

    Radiation-induced heart injury is one of the major side effects of radiotherapy for thoracic malignancies. Previous studies have shown that radiotherapy induced myocardial fibrosis and intensified myocardial remodeling. In this study, we investigated whether atorvastatin could inhibit radiation-induced heart fibrosis in Sprague-Dawley rats, which were randomly divided into six groups: control; radiation only; and four treatment groups receiving atorvastatin plus radiation (E1, E2, E3 and E4). All rats, except the control group, received local heart irradiation in 7 daily fractions of 3 Gy for a total of 21 Gy. Rats in groups E1 (10 mg/kg/day) and E2 (20 mg/kg/day) received atorvastatin and radiation treatment until week 12 after exposure. Rats in groups E3 (10 mg/kg/day) and E4 (20 mg/kg/day) received atorvastatin treatment from 3 months before irradiation to week 12 after irradiation. The expressions of TGF-β1, Smad2, Smad3, fibronectin, ROCK I and p-Akt in heart tissues were evaluated using real-time PCR or Western blot analyses. Atorvastatin significantly reduced the expression of TGF-β1, Smad3/P-Smad3, ROCK I and p-Akt in rats of the E1-E4 groups and in a dose-dependent manner. Fibronectin exhibited a similar pattern of expression changes. In addition, echocardiography showed that atorvastatin treatment can inhibit the increase of left ventricular end-diastolic dimension, left ventricular end-systolic diameter and left ventricular posterior wall thickness, and prevent the decrease of ejection fraction and fraction shortening in E1-E4 groups compared with the radiation only group. This study demonstrated that radiation exposure increased the expression of fibronectin in cardiac fibroblasts and induced cardiac fibrosis through activation of the TGF-β1/Smad3, RhoA/ROCK, and PI3K/AKT signaling pathways. Statins ameliorated radiation-induced cardiac fibrosis in Sprague-Dawley rats. Our results suggest that atorvastatin is effective for the treatment of radiation-induced

  5. Pathology and biology of radiation-induced cardiac disease

    PubMed Central

    Tapio, Soile

    2016-01-01

    Heart disease is the leading global cause of death. The risk for this disease is significantly increased in populations exposed to ionizing radiation, but the mechanisms are not fully elucidated yet. This review aims to gather and discuss the latest data about pathological and biological consequences in the radiation-exposed heart in a comprehensive manner. A better understanding of the molecular and cellular mechanisms underlying radiation-induced damage in heart tissue and cardiac vasculature will provide novel targets for therapeutic interventions. These may be valuable for individuals clinically or occupationally exposed to varying doses of ionizing radiation. PMID:27422929

  6. Clinical and dosimetric factors of radiation-induced esophageal injury: Radiation-induced esophageal toxicity

    PubMed Central

    Qiao, Wen-Bo; Zhao, Yan-Hui; Zhao, Yan-Bin; Wang, Rui-Zhi

    2005-01-01

    AIM: To analyze the clinical and dosimetric predictive factors for radiation-induced esophageal injury in patients with non-small-cell lung cancer (NSCLC) during three-dimensional conformal radiotherapy (3D-CRT). METHODS: We retrospectively analyzed 208 consecutive patients (146 men and 62 women) with NSCLC treated with 3D-CRT. The median age of the patients was 64 years (range 35-87 years). The clinical and treatment parameters including gender, age, performance status, sequential chemotherapy, concurrent chemotherapy, presence of carinal or subcarinal lymph nodes, pretreatment weight loss, mean dose to the entire esophagus, maximal point dose to the esophagus, and percentage of volume of esophagus receiving >55 Gy were studied. Clinical and dosimetric factors for radiation-induced acute and late grade 3-5 esophageal injury were analyzed according to Radiation Therapy Oncology Group (RTOG) criteria. RESULTS: Twenty-five (12%) of the two hundred and eight patients developed acute or late grade 3-5 esophageal injury. Among them, nine patients had both acute and late grade 3-5 esophageal injury, two died of late esophageal perforation. Concurrent chemotherapy and maximal point dose to the esophagus ≥60 Gy were significantly associated with the risk of grade 3-5 esophageal injury. Fifty-four (26%) of the two hundred and eight patients received concurrent chemotherapy. Among them, 25 (46%) developed grade 3-5 esophageal injury (P = 0.0001<0.01). However, no grade 3-5 esophageal injury occurred in patients who received a maximal point dose to the esophagus <60 Gy (P = 0.0001<0.01). CONCLUSION: Concurrent chemotherapy and the maximal esophageal point dose ≥60 Gy are significantly associated with the risk of grade 3-5 esophageal injury in patients with NSCLC treated with 3D-CRT. PMID:15849822

  7. Sodium tanshinone IIA sulfonate attenuates radiation-induced fibrosis damage in cardiac fibroblasts.

    PubMed

    Gu, Jing; Li, Hai-Long; Wu, Hong-Yan; Gu, Mei; Li, Ying-Dong; Wang, Xiao-Gang; Ming, Hai-Xia; Dong, Xiao-Li; Liu, Kai

    2014-01-01

    The main pathological change in radiation-induced heart disease is fibrosis. Emerging evidence has indicated that sodium tanshinone IIA sulfonate (STS) was used for treating fibrosis diseases. The present study was undertaken to characterize the effect of STS on radiation-induced cardiac fibrosis (RICF) on cultured cardiac fibroblasts (CFs). CFs were irradiated with 1 or 2 Gy X-rays, and the expression of TGF-β1 and collagen I (Col-1) increased, indicating that low-dose X-rays promoted fibrosis damage effect. The fibrosis damage was accompanied by morphologic changes in the endoplasmic reticulum (ER), as well as an increase in the expression of the ER stress-related molecules, GRP78 and CHOP. Administration of STS reduced ROS production and decreased the expression of Col-1, TGF-β1, p-Smad2/3, GRP78, and CHOP in irradiated CFs, thus weakening the radiation-induced fibrosis damage and ER stress. Radiation-induced fibrosis damage was observed on a cellular level. The involvement of ER stress in radiation-induced fibrosis damage was demonstrated for the first time. STS attenuated the fibrosis damage effect in CFs and this effect may be related to its antioxidant action, and also related to its inhibition of ER stress and TGF-β1-Smad pathway. These results suggest that STS shows a good prospect in clinical prevention and treatment of RICF.

  8. Mechanisms of radiation-induced brain toxicity and implications for future clinical trials.

    PubMed

    Kim, Jae Ho; Brown, Stephen L; Jenrow, Kenneth A; Ryu, Samuel

    2008-05-01

    Radiation therapy is widely used in the treatment of primary malignant brain tumors and metastatic tumors of the brain with either curative or palliative intent. The limitation of cancer radiation therapy does not derive from the inability to ablate tumor, but rather to do so without excessively damaging the patient. Among the varieties of radiation-induced brain toxicities, it is the late delayed effects that lead to severe and irreversible neurological consequences. Following radiation exposure, late delayed effects within the CNS have been attributable to both parenchymal and vascular damage involving oligodendrocytes, neural progenitors, and endothelial cells. These reflect a dynamic process involving radiation-induced death of target cells and subsequent secondary reactive neuroinflammatory processes that are believed to lead to selective cell loss, tissue damage, and functional deficits. The progressive, late delayed damage to the brain after high-dose radiation is thought to be caused by radiation-induced long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines. Experimental studies suggest that radiation-induced brain injury can be successfully mitigated and treated with several well established drugs in wide clinical use which exert their effects by blocking pro-inflammatory cytokines and reactive oxygen species. This review highlights preclinical and early clinical data that are translatable for future clinical trials.

  9. Sodium Tanshinone IIA Sulfonate Prevents Radiation-Induced Toxicity in H9c2 Cardiomyocytes

    PubMed Central

    Zhang, Wenjing; Li, Rui; Wang, Yaya; Zhu, Mengwen; Wang, Bowen; Li, Yanling; Li, Dongyun

    2017-01-01

    The present study was designed to elucidate the key parameters associated with X-ray radiation induced oxidative stress and the effects of STS on X-ray-induced toxicity in H9c2 cardiomyocytes. Cytotoxicity of STS and radiation was assessed by MTT. Antioxidant activity was evaluated by SOD and MDA. Apoptosis was measured by the flow cytometry, Hoechst 33258, clonogenic survival assay, and western blot. It was found that the cell viability of H9c2 cells exposed to X-ray radiation was significantly decreased in a dose-dependent manner and was associated with cell cycle arrest at the G0/G1 phase as well as apoptosis. STS treatment significantly reversed the morphological changes, attenuated radiation-induced apoptosis, and improved the antioxidant activity in the H9c2 cells. STS significantly increased the Bcl-2 and Bcl-2/Bax levels and decreased the Bax and caspase-3 levels, compared with the cells treated with radiation alone. STS treatment also resulted in a significant increase in p38-MAPK activation. STS could protect the cells from X-ray-induced cell cycle arrest, oxidative stress, and apoptosis. Therefore, we suggest the STS could be useful for the treatment of radiation-induced cardiovascular injury. PMID:28386289

  10. Fatal hepatic and renal toxicity as a complication of trabectedin therapy for radiation-induced sarcoma.

    PubMed

    Pick, Amy M; Nystrom, Kelly K

    2010-12-01

    Trabectedin therapy was prescribed for a patient with radiation-induced sarcoma. Two doses of trabectedin were given before therapy was discontinued with the patient experiencing renal and liver failure. Despite discontinuing trabectedin the patient continued to experience increases in liver transaminases, bilirubin, blood urea nitrogen, and serum creatinine. Hemodialysis was initiated with no improvement. With all other causes being ruled out, trabectedin likely caused hepatic and renal failure leading to death in this patient. Recent literature suggests that patients may benefit from prophylactic dexamethasone as a means of reducing hepatic toxicity.

  11. PHD Inhibition Mitigates and Protects Against Radiation-Induced Gastrointestinal Toxicity via HIF2

    PubMed Central

    Taniguchi, Cullen M.; Miao, Yu Rebecca; Diep, Anh N.; Wu, Colleen; Rankin, Erinn B.; Atwood, Todd F.; Xing, Lei; Giaccia, Amato J.

    2014-01-01

    Radiation-induced gastrointestinal (GI) toxicity can be a major source of morbidity and mortality after radiation exposure. There is an unmet need for effective preventative or mitigative treatments against the potentially fatal diarrhea and water loss induced by radiation damage to the GI tract. We report that prolyl hydroxylase inhibition by genetic knockout or pharmacologic inhibition of all PHD isoforms by the small molecule dimethyloxyallylglycine (DMOG) increases HIF expression, improves epithelial integrity, reduces apoptosis, and increases intestinal angiogenesis, all of which are essential for radioprotection. HIF2, but not HIF1, is both necessary and sufficient to prevent radiation-induced GI toxicity and death. Increased VEGF expression contributes to the protective effects of HIF2, since inhibition of VEGF function reversed the radioprotection and radiomitigation afforded by DMOG. Additionally, mortality is reduced from abdominal or total body irradiation even when DMOG is given 24 hours after exposure. Thus, prolyl hydroxylase inhibition represents a new treatment strategy to protect against and mitigate GI toxicity from both therapeutic radiation and potentially lethal radiation exposures. PMID:24828078

  12. PHD inhibition mitigates and protects against radiation-induced gastrointestinal toxicity via HIF2.

    PubMed

    Taniguchi, Cullen M; Miao, Yu Rebecca; Diep, Anh N; Wu, Colleen; Rankin, Erinn B; Atwood, Todd F; Xing, Lei; Giaccia, Amato J

    2014-05-14

    Radiation-induced gastrointestinal (GI) toxicity can be a major source of morbidity and mortality after radiation exposure. There is an unmet need for effective preventative or mitigative treatments against the potentially fatal diarrhea and water loss induced by radiation damage to the GI tract. We report that prolyl hydroxylase inhibition by genetic knockout or pharmacologic inhibition of all PHD (prolyl hydroxylase domain) isoforms by the small-molecule dimethyloxallyl glycine (DMOG) increases hypoxia-inducible factor (HIF) expression, improves epithelial integrity, reduces apoptosis, and increases intestinal angiogenesis, all of which are essential for radioprotection. HIF2, but not HIF1, is both necessary and sufficient to prevent radiation-induced GI toxicity and death. Increased vascular endothelial growth factor (VEGF) expression contributes to the protective effects of HIF2, because inhibition of VEGF function reversed the radioprotection and radiomitigation afforded by DMOG. Additionally, mortality from abdominal or total body irradiation was reduced even when DMOG was given 24 hours after exposure. Thus, prolyl hydroxylase inhibition represents a treatment strategy to protect against and mitigate GI toxicity from both therapeutic radiation and potentially lethal radiation exposures.

  13. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  14. Radiation-Induced Lymphocyte Apoptosis to Predict Radiation Therapy Late Toxicity in Prostate Cancer Patients

    SciTech Connect

    Schnarr, Kara; Boreham, Douglas; Sathya, Jinka; Julian, Jim; Dayes, Ian S.

    2009-08-01

    Purpose: To examine a potential correlation between the in vitro apoptotic response of lymphocytes to radiation and the risk of developing late gastrointestinal (GI)/genitourinary (GU) toxicity from radiotherapy for prostate cancer. Methods and Materials: Prostate cancer patients formerly enrolled in a randomized study were tested for radiosensitivity by using a radiation-induced lymphocyte apoptosis assay. Apoptosis was measured using flow cytometry-based Annexin-FITC/7AAD and DiOC{sub 6}/7AAD assays in subpopulations of lymphocytes (total lymphocytes, CD4+, CD8+ and CD4-/CD8-) after exposure to an in vitro dose of 0, 2, 4, or 8 Gy. Results: Patients with late toxicity after radiotherapy showed lower lymphocyte apoptotic responses to 8 Gy than patients who had not developed late toxicity (p = 0.01). All patients with late toxicity had apoptosis levels that were at or below the group mean. The negative predictive value in both apoptosis assays ranged from 95% to 100%, with sensitivity values of 83% to 100%. Apoptosis at lower dose points and in lymphocyte subpopulations had a weaker correlation with the occurrence of late toxicity. Conclusions: Lymphocyte apoptosis after 8 Gy of radiation has the potential to predict which patients will be spared late toxicity after radiation therapy. Further research should be performed to identify the specific subset of lymphocytes that correlates with late toxicity, followed by a corresponding prospective study.

  15. Quantitative Ultrasonic Evaluation of Radiation-Induced Late Tissue Toxicity: Pilot Study of Breast Cancer Radiotherapy

    SciTech Connect

    Liu Tian; Zhou Jun; Yoshida, Emi J.; Woodhouse, Shermian A.; Schiff, Peter B.; Wang, Tony J.C.; Lu Zhengfeng; Pile-Spellman, Eliza; Zhang Pengpeng; Kutcher, Gerald J.

    2010-11-01

    Purpose: To investigate the use of advanced ultrasonic imaging to quantitatively evaluate normal-tissue toxicity in breast-cancer radiation treatment. Methods and Materials: Eighteen breast cancer patients who received radiation treatment were enrolled in an institutional review board-approved clinical study. Radiotherapy involved a radiation dose of 50.0 to 50.4 Gy delivered to the entire breast, followed by an electron boost of 10.0 to 16.0 Gy delivered to the tumor bed. Patients underwent scanning with ultrasound during follow-up, which ranged from 6 to 94 months (median, 22 months) postradiotherapy. Conventional ultrasound images and radio-frequency (RF) echo signals were acquired from treated and untreated breasts. Three ultrasound parameters, namely, skin thickness, Pearson coefficient, and spectral midband fit, were computed from RF signals to measure radiation-induced changes in dermis, hypodermis, and subcutaneous tissue, respectively. Ultrasound parameter values of the treated breast were compared with those of the untreated breast. Ultrasound findings were compared with clinical assessment using Radiation Therapy Oncology Group (RTOG) late-toxicity scores. Results: Significant changes were observed in ultrasonic parameter values of the treated vs. untreated breasts. Average skin thickness increased by 27.3%, from 2.05 {+-} 0.22mm to 2.61 {+-} 0.52mm; Pearson coefficient decreased by 31.7%, from 0.41 {+-} 0.07 to 0.28 {+-} 0.05; and midband fit increased by 94.6%, from -0.92 {+-} 7.35 dB to 0.87 {+-} 6.70 dB. Ultrasound evaluations were consistent with RTOG scores. Conclusions: Quantitative ultrasound provides a noninvasive, objective means of assessing radiation-induced changes to the skin and subcutaneous tissue. This imaging tool will become increasingly valuable as we continue to improve radiation therapy technique.

  16. Ability of radiation therapists to assess radiation-induced skin toxicity.

    PubMed

    Acharya, Urvi; Cox, Jennifer; Rinks, Marianne; Gaur, Pankaj; Back, Michael

    2013-06-01

    Radiation therapy has seen enhancement of the radiation therapist (RT) role, with RTs and nurses performing duties that were traditionally in the radiation oncologist's (RO) domain. This study aimed to assess whether RTs can consistently grade radiation-induced skin toxicity and their concordance with the gradings given by ROs. Digital photographs of skin reactions were taken at weeks 1, 3 and 6 of radiotherapy on nine patients with breast cancer. The randomly ordered photographs were reviewed once by eight ROs and four RO registrars and on two occasions separated by 6 weeks by 17 RTs. All graded the skin toxicities using the revised Radiation Therapy Oncology Group system. No significant difference was seen between the median scores of the RTs at the first scoring session and the RO/Registrar group. The RTs at both measurement times showed greater inter-rater reliability than the RO/Registrars (W = 0.6866, time 1 and 0.6981 time 2, vs. 0.6517), with the experienced RTs the most consistent (W = 0.7078). The RTs also showed high intra-rater reliability (rho = 0.8461, P < 0.0010). These results from RTs with no specific preparation indicate that experienced RTs could assess breast cancer skin toxicity as part of their role. © 2013 The Authors. Journal of Medical Imaging and Radiation Oncology © 2013 The Royal Australian and New Zealand College of Radiologists.

  17. The flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity.

    PubMed

    Adhikari, Manish; Arora, Rajesh

    2016-06-01

    The main focus of this study is evaluation of radioprotective efficacy of silymarin, a flavonolignan, against γ-radiation-induced damage to hematological, vital organs (liver and intestine), and immune system. Survival studies revealed that silymarin (administered orally for 3 days) provided maximum protection (67%) at 70 mg/kg body weight (b.wt.) against lethal 9 Gy γ-irradiation (dose reduction factor = 1.27). The study revealed significant (p < 0.05) changes in levels of catalase (12.57 ± 2.58 to 30.24 ± 4.89 units), glutathione peroxidase (6.23 ± 2.95 to 13.26 ± 1.36 µg of reduced glutathione consumed/min/mg protein), glutathione reductase (0.25 ± 5.6 to 11.65 ± 2.83 pM NADPH consumed/min/mg protein), and superoxide dismutase (11.74 ± 0.2 to 16.09 ± 3.47 SOD U/mg of protein) activity at 30th day. Silymarin pretreated irradiated group exhibited increased proliferation in erythrocyte count (1.76 ± 0.41 × 10(6) to 9.25 ± 0.24 × 10(6) ), hemoglobin (2.15 ± 0.48g/dL to 14.77 ± 0.25g/dL), hematocrit (4.55 ± 0.24% to 37.22 ± 0.21%), and total leucocyte count (1.4 ± 0.15 × 10(6) to 8.31 ± 0.47 × 10(6) ) as compared with radiation control group on 15th day. An increase in CD4:CD8 ratio was witnessed (0.2-1%) at 30th day time interval using flow cytometry. Silymarin also countered radiation-induced decrease (p < 0.05) in regulatory T-cells (Tregs ) (11.23% in radiation group at 7th day versus 0.1% in pretreated silymarin irradiated group at 15th day). The results of this study indicate that flavonolignan-silymarin protects enzymatic, hematological, and immune system against γ-radiation-induced toxicity and might prove useful in management of nuclear and radiological emergencies. © 2014 Wiley Periodicals, Inc. Environ Toxicol 31: 641-654, 2016.

  18. Prophylaxis and management of acute radiation-induced skin toxicity: a survey of practice across Europe and the USA.

    PubMed

    O'Donovan, A; Coleman, M; Harris, R; Herst, P

    2015-05-01

    Radiation-induced toxicity is a common adverse side effect of radiation therapy. Previous studies have demonstrated a lack of evidence to support common skincare advice for radiotherapy patients. The aim of the current study was to investigate the management of radiation-induced skin toxicity across Europe and the USA. Where previous surveys have focused on national practice or treatment of specific sites, the current study aimed to gain a broader representation of skincare practice. An anonymous online survey investigating various aspects of radiotherapy skincare management was distributed to departments across Europe and the USA (n = 181/737 responded i.e. 25%). The UK was excluded as a similar survey was carried out in 2011. The results highlight the lack of consistency in both the prevention and management of radiation-induced skin toxicity. Recommended products are often not based on evidence-based practice. Examples include the continued use of aqueous cream and gentian violet, as well as the recommendations on washing restrictions during treatment. To our knowledge, this is the most extensive survey to date on the current management of radiation-induced skin toxicity. This study highlights significant disparities between clinical practice and research-based evidence published in recent systematic reviews and guidelines. Ongoing large prospective randomised trials are urgently needed. © 2014 John Wiley & Sons Ltd.

  19. Protective effect of N-acetylcysteine against radiation induced DNA damage and hepatic toxicity in rats.

    PubMed

    Mansour, Heba H; Hafez, Hafez F; Fahmy, Nadia M; Hanafi, Nemat

    2008-02-01

    The present study was designed to evaluate the radioprotective effect of N- acetylcysteine (NAC) on gamma-radiation induced toxicity in hepatic tissue in rat. The cellular changes were estimated using malondialdehyde (MDA, an index of lipid peroxidation), superoxide dismutase (SOD), glutathione peroxidase (GSHPx), reduced glutathione (GSH), and total nitrate/nitrite (NO(x)) as markers of hepatic oxidative stress in rats following gamma-irradiation. The DNA damage was determined by agarose gel electrophoresis. To achieve the ultimate goal of this study, 40 adult rats were randomly divided into 4 groups of 10 animals each. Group I was injected intraperitoneally with saline solution for 7 consecutive days and served as control group. Group II was irradiated with a single dose of 6Gy gamma-radiation. Group III was daily injected with NAC (1g/kg, i.p.) for 7 consecutive days. Group IV received a daily i.p. injection of NAC (1g/kg, i.p.) for 7 consecutive days and 1h after the last dose, rats were irradiated with a single dose (6Gy) gamma-radiation. The animals were sacrificed after 24h. DNA damage was observed in tissue after total body irradiation with a single dose of 6Gy. Malondialdehyde and total nitrate/nitrite were increased significantly whereas the levels of GSH and antioxidant enzymes were significantly decreased in gamma-irradiated group. Pretreatment with NAC showed a significant decrease in the levels of MDA, NO(x) and DNA damage. The antioxidant enzymes increased significantly along with the levels of GSH. Moreover, histopathological examination of liver tissues confirmed the biochemical data. Thus, our results show that pretreatment with N-acetylcysteine offers protection against gamma-radiation induced cellular damage.

  20. A PPAR-gamma agonist protects from radiation-induced intestinal toxicity

    PubMed Central

    Sottili, Mariangela; Gerini, Chiara; Desideri, Isacco; Bastida, Cinzia; Pallotta, Stefania; Castiglione, Francesca; Bonomo, Pierluigi; Meattini, Icro; Greto, Daniela; Cappelli, Sabrina; Di Brina, Lucia; Loi, Mauro; Biti, Giampaolo; Livi, Lorenzo

    2016-01-01

    Objective Because of its anti-inflammatory, anti-fibrotic, anti-apoptotic and anti-neoplastic properties, the PPAR-γ agonist rosiglitazone is an interesting drug for investigating for use in the prevention and treatment of radiation-induced intestinal damage. We aimed to evaluate the radioprotective effect of rosiglitazone in a murine model of acute intestinal damage, assessing whether radioprotection is selective for normal tissues or also occurs in tumour cells. Methods Mice were total-body irradiated (12 Gy), with or without rosiglitazone (5 mg/kg/day). After 24 and 72 hours, mice were sacrificed and the jejunum was collected. HT-29 human colon cancer cells were irradiated with a single dose of 2 (1000 cells), 4 (1500 cells) or 6 (2000 cells) Gy, with or without adding rosiglitazone (20 µM) 1 hour before irradiation. HT-29-xenografted CD1 mice were irradiated (16 Gy) with or without rosiglitazone; tumour volumes were measured for 33 days. Results Rosiglitazone markedly reduced histological signs of altered bowel structures, that is, villi shortening, submucosal thickening, necrotic changes in crypts, oedema, apoptosis, and inflammatory infiltrate induced by irradiation. Rosiglitazone significantly decreased p-NF-kB p65 phosphorylation and TGFβ protein expression at 24 and 72 hours post-irradiation and significantly decreased gene expression of Collagen1, Mmp13, Tnfα and Bax at 24 hours and p53 at 72 hours post-irradiation. Rosiglitazone reduced HT-29 clonogenic survival, but only produced a slight reduction of xenograft tumour growth. Conclusion Rosiglitazone exerts a protective effect on normal tissues and reduces alterations in bowel structures and inflammation in a radiation-induced bowel toxicity model, without interfering with the radiation effect on HT-29 cancer cells. PPAR-γ agonists should be further investigated for their application in abdominal and pelvic irradiation. PMID:28344789

  1. Potential Biomarkers for Radiation-Induced Renal Toxicity following 177Lu-Octreotate Administration in Mice

    PubMed Central

    Schüler, Emil; Larsson, Maria; Parris, Toshima Z.; Johansson, Martin E.; Helou, Khalil; Forssell-Aronsson, Eva

    2015-01-01

    The kidneys are one of the main dose-limiting organs in peptide receptor radionuclide therapy and due to large inter-individual variations in renal toxicity, biomarkers are urgently needed in order to optimize therapy and reduce renal tissue damage. The aim of this study was to investigate the transcriptional, functional, and morphological effects on renal tissue after 177Lu-octreotate administration in normal mice, and to identify biomarkers for radiation induced renal toxicity. Methods C57BL/6N mice were i.v. injected with 0, 30, 60, 90, 120, or 150 MBq 177Lu-octreotate (0, 16, 29, 40, 48, and 54 Gy to the kidneys). At 4, 8, and 12 months after administration, radiation-induced effects were evaluated in relation to (a) global transcriptional variations in kidney tissues, (b) morphological changes in the kidneys, (c) changes in white and red blood cell count as well as blood levels of urea, and (d) changes in renal function using 99mTc-DTPA/99mTc-DMSA scintigraphy. Results In general, the highest number of differentially regulated transcripts was observed at 12 months after administration. The Cdkn1a, C3, Dbp, Lcn2, and Per2 genes displayed a distinct dose-dependent regulation, with increased expression level with increasing absorbed dose. Ifng, Tnf, and Il1B were identified as primary up-stream regulators of the recurrently regulated transcripts. Furthermore, previously proposed biomarkers for kidney injury and radiation damage were also observed. The functional investigation revealed reduced excretion of 99mTc-DTPA after 150 MBq, an increased uptake of 99mTc-DMSA at all dose levels compared with the controls, and markedly increased urea level in blood after 150 MBq at 12 months. Conclusion Distinct dose-response relationships were found for several of the regulated transcripts. The Cdkn1a, Dbp, Lcn2, and Per2 genes are proposed as biomarkers for 177Lu-octreotate exposure of kidney. Correlations to functional and morphological effects further confirm

  2. A Tocotrienol-Enriched Formulation Protects against Radiation-Induced Changes in Cardiac Mitochondria without Modifying Late Cardiac Function or Structure

    PubMed Central

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Aykin-Burns, Nukhet; Krager, Kimberly J; Sharma, Sunil K.; Moros, Eduardo G.; Melnyk, Stepan B.; Pavliv, Oleksandra; Hauer-Jensen, Martin; Boerma, Marjan

    2015-01-01

    Radiation-induced heart disease (RIHD) is a common and sometimes severe late side effect of radiation therapy for intrathoracic and chest wall tumors. We have previously shown that local heart irradiation in a rat model caused prolonged changes in mitochondrial respiration and increased susceptibility to mitochondrial permeability transition pore (mPTP) opening. Because tocotrienols are known to protect against oxidative stress-induced mitochondrial dysfunction, in this study, we examined the effects of tocotrienols on radiation-induced alterations in mitochondria, and structural and functional manifestations of RIHD. Male Sprague-Dawley rats received image-guided localized X irradiation to the heart to a total dose of 21 Gy. Twenty-four hours before irradiation, rats received a tocotrienol-enriched formulation or vehicle by oral gavage. Mitochondrial function and mitochondrial membrane parameters were studied at 2 weeks and 28 weeks after irradiation. In addition, cardiac function and histology were examined at 28 weeks. A single oral dose of the tocotrienol-enriched formulation preserved Bax/Bcl2 ratios and prevented mPTP opening and radiation-induced alterations in succinate-driven mitochondrial respiration. Nevertheless, the late effects of local heart irradiation pertaining to myocardial function and structure were not modified. Our studies suggest that a single dose of tocotrienols protects against radiation-induced mitochondrial changes, but these effects are not sufficient against long-term alterations in cardiac function or remodeling. PMID:25710576

  3. Dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells of mice

    PubMed Central

    Luo, Lan; Yan, Chen; Urata, Yoshishige; Hasan, Al Shaimaa; Goto, Shinji; Guo, Chang-Ying; Zhang, Shouhua; Li, Tao-Sheng

    2017-01-01

    We evaluated the dose-dependency and reversibility of radiation-induced injury in cardiac explant-derived cells (CDCs), a mixed cell population grown from heart tissues. Adult C57BL/6 mice were exposed to 0, 10, 50 and 250 mGy γ-rays for 7 days and atrial tissues were collected for experiments 24 hours after last exposure. The number of CDCs was significantly decreased by daily exposure to over 250 mGy. Interestingly, daily exposure to over 50 mGy significantly decreased the c-kit expression and telomerase activity, increased 53BP1 foci in the nuclei of CDCs. However, CD90 expression and growth factors production in CDCs were not significantly changed even after daily exposure to 250 mGy. We further evaluated the reversibility of radiation-induced injury in CDCs at 1 week and 3 weeks after a single exposure to 3 Gy γ-rays. The number and growth factors production of CDCs were soon recovered at 1 week. However, the increased expression of CD90 were retained at 1 week, but recovered at 3 weeks. Moreover, the decreased expression of c-kit, impaired telomerase activity, and increased 53BP1 foci were poorly recovered even at 3 weeks. These data may help us to find the most sensitive and reliable bio-parameter(s) for evaluating radiation-induced injury in CDCs. PMID:28098222

  4. Poor Baseline Pulmonary Function May Not Increase the Risk of Radiation-Induced Lung Toxicity

    SciTech Connect

    Wang, Jingbo; Cao, Jianzhong; Yuan, Shuanghu; Arenberg, Douglas; Stanton, Paul; Tatro, Daniel; Ten Haken, Randall K.; Kong, Feng-Ming

    2013-03-01

    Purpose: Poor pulmonary function (PF) is often considered a contraindication to definitive radiation therapy for lung cancer. This study investigated whether baseline PF was associated with radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) receiving conformal radiation therapy (CRT). Methods and Materials: NSCLC patients treated with CRT and tested for PF at baseline were eligible. Baseline predicted values of forced expiratory volume in 1 sec (FEV1), forced vital capacity (FVC), and diffusion capacity of lung for carbon monoxide (DLCO) were analyzed. Additional factors included age, gender, smoking status, Karnofsky performance status, coexisting chronic obstructive pulmonary disease (COPD), tumor location, histology, concurrent chemotherapy, radiation dose, and mean lung dose (MLD) were evaluated for RILT. The primary endpoint was symptomatic RILT (SRILT), including grade ≥2 radiation pneumonitis and fibrosis. Results: There was a total of 260 patients, and SRILT occurred in 58 (22.3%) of them. Mean FEV1 values for SRILT and non-SRILT patients were 71.7% and 65.9% (P=.077). Under univariate analysis, risk of SRILT increased with MLD (P=.008), the absence of COPD (P=.047), and FEV1 (P=.077). Age (65 split) and MLD were significantly associated with SRILT in multivariate analysis. The addition of FEV1 and age with the MLD-based model slightly improved the predictability of SRILT (area under curve from 0.63-0.70, P=.088). Conclusions: Poor baseline PF does not increase the risk of SRILT, and combining FEV1, age, and MLD may improve the predictive ability.

  5. [Cardiac toxicity of 5-fluorouracil].

    PubMed

    Fournier, C; Benahmed, M; Blondeau, M

    1989-02-01

    A 67 year-old patient receives 5-fluorouracil for vocal chord cancer. During the perfusion, atypical angina pain occurs, accompanied with offset of ST above the baseline in standard leads and in V4 through V6. The pain subsides spontaneously in 45 minutes. These ECG alterations are followed 48 hours later by diffuse inverted T waves with lengthened QT. Cardiac ultrasonography and isotopic angiography do not show any abnormality of the left ventricular function, but myocardial tomoscintigraphy with labelled thallium show a lower hypofixation on exertion. The cardiac toxicity of 5-fluorouracil is in frequent. It is usually believed that it involves a coronary spasm, as suggested by the ECG tracing in the reported cases. The incident, which may be painful or painless, may result in a myocardial infarction or even sudden death during the perfusion. Therefore, it is advisable to discontinue the treatment as soon as an angina-type pain occurs.

  6. Prospective evaluation of radiation-induced skin toxicity in a race/ethnically diverse breast cancer population.

    PubMed

    Wright, Jean L; Takita, Cristiane; Reis, Isildinha M; Zhao, Wei; Lee, Eunkyung; Nelson, Omar L; Hu, Jennifer J

    2016-03-01

    We evaluated predictors of radiation-induced skin toxicity in a prospective study of a tri-racial/ethnic breast cancer population. We evaluated patient demographics, tumor characteristics, and treatment variables in the first 392 patients in a prospective study assessing radiation-induced skin toxicity. Logistic regression analyses were conducted to evaluate potential predictors of skin toxicity. The study consists of 59 non-Hispanic whites (NHW; 15%), 241 Hispanic Whites (HW; 62%), 79 black or African Americans (AA; 20%), and 13 others (3%). Overall, 48% developed grade 0-1 skin toxicity, 49.8% grade 2, and 2.2% grade 3 by the National Cancer Institute's Common Toxicity Criteria for Adverse Events (CTCAE) scale. Twenty-one percent developed moist desquamation. In multivariate analysis, higher body mass index (BMI; OR = 2.09; 95%CI = 1.15, 3.82), higher disease stage (OR = 1.82; 95%CI = 1.06, 3.11), ER-positive/PR-negative status (OR = 2.74; 95%CI = 1.26, 5.98), and conventionally fractionated regimens (OR = 3.25; 95%CI = 1.76, 6.01) were significantly associated with higher skin toxicity grade after adjustment for age, race, ethnicity, ER status, and breast volume. B MI specifically predicted for moist desquamation, but not degree of erythema. In this racially and ethnically diverse cohort of breast cancer patients receiving radiation to the intact breast, risk factors including BMI, disease stage, and conventionally fractionated radiation predicted for higher skin toxicity grade, whereas age, race, ethnicity, and breast volume did not. BMI specifically predicted for moist desquamation, suggesting that preventive measures to address this particular outcome should be investigated. © 2016 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  7. The preventive effect of vitamin D3 on radiation-induced hair toxicity in a rat model.

    PubMed

    Baltalarli, Bahar; Bir, Ferda; Demirkan, Neşe; Abban, Gülçin

    2006-02-28

    Our aim is to investigate the protective effect of vitamin D3 especially from radiation-induced hair toxicity. A model of skin radiation injury was developed and a single fraction of 20 Gy Gamma irradiation was applied to the right dorsal skin of fourteen rats. All animals were randomly divided into 2 groups: Group I: irradiation alone (n = 7) and Group II: irradiation and 0.2 microg vitamin D3 given IM (n = 7). Fifty days after post-irradiation rats were sacrificed. The outcomes were evaluated on the basis of histopathological findings and immunohistochemical staining for Vitamin D receptor (VDR) in skin and hair follicles. The number of hair follicles in the radiation field for the group of animals irradiated without pretreatment was significantly lower than outside of the irradiated area (p = 0.016) as it is expected. Contrarily the number of hair follicles did not show significant difference in the pretreated group between the irradiated field and outside of the fields (p = 0,14). Skin of the vitamin D3 pretreated group demonstrated stronger immunoreactivity for VDR compared to irradiation alone group. These results indicate that administration of vitamin D3 may protect hair follicles from radiation toxicity. Further clinical trials should be conducted to prove the preventive effect of vitamin D3 as well as dosing and timing of the agent on radiation-induced alopecia.

  8. Radiation induced secretion of surfactant from cell cultures of type II pneumocytes: an in vitro model of radiation toxicity

    SciTech Connect

    Shapiro, D.L.; Finkelstein, J.N.; Rubin, P.; Penney, D.P.; Siemann, D.W.

    1984-03-01

    The pathogenesis of pneumonitis and fibrosis secondary to lung irradiation is incompletely understood. The role of the type II alveolar epithelial pneumocyte in these processes has been under investigation. The type II pneumocyte has been shown in vivo to respond to radiation induced injury with release of pulmonary surfactant. The effect of irradiation on cell cultures of type II pneumocytes was studied to determine if this could be reproduced in vitro. Type II pneumocytes were found to release surfactant material with a threshold of radiation dose between 1000 and 1500 rad. This is similar to the dosage range over which the same effect has been demonstrated in vivo. Experimental results support the concept that the release of surfactant is not due to either cell disruption or non-specific release of phospholipid from cell membranes. Irradiation appears to trigger membrane receptor mediated surfactant release. In addition, irradiation abolishes the ability of cells to subsequently respond to a physiologic agonist, suggesting radiation induced damage to the secretory mechanism. These studies establish that surfactant release in response to irradiation in vivo is a direct effect on type II pneumocytes. Cell cultures of type II pneumocytes can serve as a laboratory model of lung cell radiation toxicity.

  9. Racial Variations in Radiation-Induced Skin Toxicity Severity: Data From a Prospective Cohort Receiving Postmastectomy Radiation

    SciTech Connect

    Wright, Jean L.; Takita, Cristiane; Reis, Isildinha M.; Zhao, Wei; Lee, Eunkyung; Hu, Jennifer J.

    2014-10-01

    Purpose: Radiation-induced skin toxicity is one of the most symptomatic side effects of postmastectomy radiation therapy (PMRT). We sought to determine whether the severity of acute skin toxicity was greater in black patients in a prospective cohort receiving PMRT and to identify other predictors of more severe skin toxicity. Methods and Materials: We evaluated the first 110 patients in an ongoing prospective study assessing radiation-induced skin toxicity in patients receiving PMRT. We recorded patient demographics, body mass index (BMI), and disease and treatment characteristics. Logistic regression analyses were conducted to evaluate the effect of potential predictors on the risk of skin toxicity. Results: A total of 23.6% respondents self-identified as black, 5.5% as non-Hispanic white, 69.1% as Hispanic white, and 1.8% as other; 57% were postmenopausal, and 70.9% had BMI of >25. Median chest wall dose was 50 Gy, and mastectomy scar dose was 60 Gy. Most patients, 95.5%, were treated with a 0.5-cm bolus throughout treatment. There were no significant differences in patient characteristics in black versus non-black patients. At RT completion, moist desquamation was more common in black patients (73.1% vs 47.6%, respectively, P=.023), in postmenopausal patients (63.5% vs 40.4%, respectively, P=.016), and in those with BMI of ≥25 (60.3% vs 37.5%, respectively, P=.030). On multivariate analysis, the effects of black race (odds ratio [OR] = 7.46, P=.031), BMI ≥25 (OR = 2.95, P=.043) and postmenopausal status (OR = 8.26, P=.004) remained significant risk factors for moist desquamation. Conclusions: In this prospectively followed, racially diverse cohort of breast cancer patients receiving PMRT delivered in a uniform fashion, including the routine use of chest wall boost and bolus, black race, higher BMI, and postmenopausal status emerged as significant predictors of moist desquamation. There was a high frequency of moist desquamation, particularly in those

  10. Racial variations in radiation-induced skin toxicity severity: data from a prospective cohort receiving postmastectomy radiation.

    PubMed

    Wright, Jean L; Takita, Cristiane; Reis, Isildinha M; Zhao, Wei; Lee, Eunkyung; Hu, Jennifer J

    2014-10-01

    Radiation-induced skin toxicity is one of the most symptomatic side effects of postmastectomy radiation therapy (PMRT). We sought to determine whether the severity of acute skin toxicity was greater in black patients in a prospective cohort receiving PMRT and to identify other predictors of more severe skin toxicity. We evaluated the first 110 patients in an ongoing prospective study assessing radiation-induced skin toxicity in patients receiving PMRT. We recorded patient demographics, body mass index (BMI), and disease and treatment characteristics. Logistic regression analyses were conducted to evaluate the effect of potential predictors on the risk of skin toxicity. A total of 23.6% respondents self-identified as black, 5.5% as non-Hispanic white, 69.1% as Hispanic white, and 1.8% as other; 57% were postmenopausal, and 70.9% had BMI of >25. Median chest wall dose was 50 Gy, and mastectomy scar dose was 60 Gy. Most patients, 95.5%, were treated with a 0.5-cm bolus throughout treatment. There were no significant differences in patient characteristics in black versus non-black patients. At RT completion, moist desquamation was more common in black patients (73.1% vs 47.6%, respectively, P=.023), in postmenopausal patients (63.5% vs 40.4%, respectively, P=.016), and in those with BMI of ≥25 (60.3% vs 37.5%, respectively, P=.030). On multivariate analysis, the effects of black race (odds ratio [OR] = 7.46, P=.031), BMI ≥25 (OR = 2.95, P=.043) and postmenopausal status (OR = 8.26, P=.004) remained significant risk factors for moist desquamation. In this prospectively followed, racially diverse cohort of breast cancer patients receiving PMRT delivered in a uniform fashion, including the routine use of chest wall boost and bolus, black race, higher BMI, and postmenopausal status emerged as significant predictors of moist desquamation. There was a high frequency of moist desquamation, particularly in those patients with elevated risk. Continued study of patient

  11. The protective effect of recombinant human keratinocyte growth factor on radiation-induced pulmonary toxicity in rats

    SciTech Connect

    Chen Liguang; Brizel, David M.; Rabbani, Zahid N.; Samulski, Thaddeus V.; Farrell, Catherine L.; Larrier, Nicole; Anscher, Mitchell S.; Vujaskovic, Zeljko . E-mail: vujas@radonc.duke.edu

    2004-12-01

    Purpose: Radiation-induced lung toxicity is a significant dose-limiting side effect of radiotherapy for thoracic tumors. Recombinant human keratinocyte growth factor (rHuKGF) has been shown to be a mitogen for type II pneumocytes. The purpose of this study was to determine whether rHuKGF prevents or ameliorates the severity of late lung damage from fractionated irradiation in a rat model. Methods and materials: Female Fisher 344 rats were irradiated to the right hemithorax with a dose of 40 Gy/5 fractions/5 days. rHuKGF at dose of 5 mg/kg or 15 mg/kg was given via a single intravenous injection 10 min after the last fraction of irradiation. Animals were followed for 6 months after irradiation. Results: The breathing rate increased beginning at 6 weeks and reached a peak at 14 weeks after irradiation. The average breathing frequencies in the irradiated groups with rHuKGF (5 mg/kg and 15 mg/kg) treatment were significantly lower than that in the group receiving radiation without rHuKGF (116.5 {+-} 1.0 and 115.2 {+-} 0.8 vs 123.5 {+-} 1.2 breaths/min, p < 0.01). The severity of lung fibrosis and the level of immunoreactivity of integrin {alpha}v{beta}6, TGF{beta}1, type II TGF{beta} receptor, Smad3, and phosphorylated Smad2/3 were significantly decreased only in the group receiving irradiation plus high-dose rHuKGF treatment compared with irradiation plus vehicle group, suggesting a dose response for the effect of rHuKGF. Conclusions: This study is the first to demonstrate that rHuKGF treatment immediately after irradiation protects against late radiation-induced pulmonary toxicity. These results suggest that restoration of the integrity of the pulmonary epithelium via rHuKGF stimulation may downregulate the TGF-{beta}-mediated fibrosis pathway. These data also support the use of rHuKGF in a clinical trial designed to prevent radiation-induced lung injury.

  12. Consolidating Risk Estimates for Radiation-Induced Complications in Individual Patient: Late Rectal Toxicity

    SciTech Connect

    Prior, Phillip; Devisetty, Kiran; Tarima, Sergey S.; Lawton, Colleen A.F.; Semenenko, Vladimir A.

    2012-05-01

    Purpose: To test the feasibility of a new approach to synthesize published normal tissue complication data using late rectal toxicity in prostate cancer as an example. Methods and Materials: A data survey was performed to identify the published reports on the dose-response relationships for late rectal toxicity. The risk estimates for Grade 1 or greater, Grade 2 or greater, and Grade 3 or greater toxicity were obtained for a test cohort of patients treated at our institution. The influence of the potential factors that might have affected the reported toxicity levels was investigated. The studies that did not conform to the general data trends were excluded, and single, combined risk estimates were derived for each patient and toxicity level. Results: A total of 21 studies of nonoverlapping patient populations were identified. Three studies provided dose-response models for more than one level of toxicity. Of these 21 studies, 6, 14, and 5 were used to derive the initial risk estimates for Grade 1, 2, and 3 or greater toxicity, respectively. A comparison of risk estimates between the studies reporting rectal bleeding and rectal toxicity (bleeding plus other symptoms) or between studies with follow-up <36 months and {>=}36 months did not reveal significant differences (p {>=} .29 for all comparisons). After excluding three reports that did not conform to the general data trends, the combined risk estimates were derived from 5 reports (647 patients), 11 reports (3,369 patients), and 5 reports (1,330 patients) for Grade 1, 2, and 3 or greater toxicity, respectively. Conclusions: The proposed approach is feasible and allows for more systematic use of published dose-response data to estimate the complication risks for the individual patient.

  13. Diffuse Optical Spectroscopy for the Quantitative Assessment of Acute Ionizing Radiation Induced Skin Toxicity Using a Mouse Model

    PubMed Central

    Chin, Lee; Korpela, Elina; Kim, Anthony; Yohan, Darren; Niu, Carolyn; Wilson, Brian C.; Liu, Stanley K.

    2016-01-01

    Acute skin toxicities from ionizing radiation (IR) are a common side effect from therapeutic courses of external beam radiation therapy (RT) and negatively impact patient quality of life and long term survival. Advances in the understanding of the biological pathways associated with normal tissue toxicities have allowed for the development of interventional drugs, however, current response studies are limited by a lack of quantitative metrics for assessing the severity of skin reactions. Here we present a diffuse optical spectroscopic (DOS) approach that provides quantitative optical biomarkers of skin response to radiation. We describe the instrumentation design of the DOS system as well as the inversion algorithm for extracting the optical parameters. Finally, to demonstrate clinical utility, we present representative data from a pre-clinical mouse model of radiation induced erythema and compare the results with a commonly employed visual scoring. The described DOS method offers an objective, high through-put evaluation of skin toxicity via functional response that is translatable to the clinical setting. PMID:27284926

  14. Non-dosimetric risk factors for radiation-induced lung toxicity

    PubMed Central

    Kong, Feng-Ming (Spring); Wang, Shulian

    2015-01-01

    The decision to administer a radical course of radiotherapy is largely influenced by the dose-volume metrics of the treatment plan, but what are the patient related and other factors that may independently increase the risk of radiation lung toxicity? Poor pulmonary function has been regarded as a risk factor and relative contraindication for patients having radical radiotherapy, but recent evidence suggests that patients with poor spirometry may tolerate conventional or high dose radiotherapy as well as, if not better than, patients with normal function. However, caution may need to be exercised in patients with underlying interstitial pulmonary fibrosis. Further there is emerging evidence of molecular markers of increased risk of toxicity. This review will discuss patient related and risk factors other than dosimetry for radiation lung toxicity. PMID:25771414

  15. ROC curves and evaluation of radiation-induced pulmonary toxicity in breast cancer

    SciTech Connect

    Lind, Pehr A. . E-mail: Pehr.Lind@Karolinska.se; Wennberg, Berit M.Sc.; Gagliardi, Giovanna; Rosfors, Stefan; Blom-Goldman, Ulla; Lidestahl, Anders; Svane, Gunilla

    2006-03-01

    Purpose: To study clinical, radiologic, and physiologic pulmonary toxicity in 128 women after adjuvant radiotherapy (RT) for breast cancer in relation to dosimetric factors. Methods and Material: The patients underwent pulmonary function testing before and 5 months post-RT. Similarly, computer tomography of the chest was repeated 4 months post-RT and changes were scored with a semiquantitative system. Clinical symptoms were registered and scored according to Common Toxicity Criteria. All patients underwent three-dimensional dose planning, and the ipsilateral lung volume receiving {>=}13 Gy (V13), V20, and V30 were calculated. Multiple logistic or regression analyses were used for multivariate modeling. The relation between the dosimetric factors and side effects was also analyzed with receiver operating characteristic (ROC) curves. Results: V20 was, according to multivariate modeling, the most important variable for the occurrence of the three studied side effects (p < 0.01). Age was also related to symptomatic and radiologic pneumonitis. Reduced pre-RT functional level was more common in patients developing symptomatic toxicity. The ROC areas for symptomatic pneumonitis in relation to V13, V20, and V30 were 0.69, 0.69, and 0.67, and for radiologic pneumonitis 0.85, 0.85, and 0.81. Conclusions: Our results support the use of three-dimensional planning aimed at minimizing the percent of incidentally irradiated lung volume to reduce pulmonary toxicity. Age was also correlated with post-RT side effects. According to ROC analysis, V20 could well predict the risk for radiologic pneumonitis for the studied semiquantitative model.

  16. Relationship Between Radiation-Induced Apoptosis of T Lymphocytes and Chronic Toxicity in Patients With Prostate Cancer Treated by Radiation Therapy: A Prospective Study

    SciTech Connect

    Foro, Palmira; Algara, Manuel; Lozano, Joan; Rodriguez, Nuria; Sanz, Xavier; Torres, Erica; Carles, Joan; Reig, Anna; Membrive, Ismael; Quera, Jaume; Fernandez-Velilla, Enric; Pera, Oscar; Lacruz, Marti; Bellosillo, Beatriz

    2014-04-01

    Purpose: To assess the correlation of radiation-induced apoptosis in vitro of CD4 and CD8 T lymphocytes with late toxicity of prostate cancer patients treated with radiation therapy. Methods and Materials: 214 patients were prospectively included in the study. Peripheral blood was drawn from patients before treatment and irradiated with 8 Gy. The percentage of CD4+ and CD8+ T lymphocytes that underwent radiation-induced apoptosis was assessed by flow cytometry. Toxicity and mortality were correlated in 198 cases with pretreatment apoptosis and clinical and biological variables by use of a Cox proportional hazards model. Results: The mean percentage of CD4+ and CD8+ T lymphocyte radiation-induced apoptosis was 28.58% (±14.23) and 50.76% (±18.9), respectively. Genitourinary (GU) toxicity was experienced by 39.9% of patients, while gastrointestinal (GI) toxicity was experienced by 19.7%. The probability of development of GU toxicity was nearly doubled (hazard ratio [HR] 1.99, P=.014) in those patients in whom the percentage of in vitro radiation-induced apoptosis of CD4+ T-lymphocytes was ≤28.58%. It was also almost double in patients who received doses ≥50 Gy in 65% of the bladder volume (V65 ≥50) (HR 1.92, P=.048). No correlation was found between GI toxicity and any of the variables studied. The probability of death during follow-up, after adjustment for different variables, was 2.7 times higher in patients with a percentage of CD8+ T lymphocyte apoptosis ≤50.76% (P=.022). Conclusions: In conclusion, our study shows, in the largest prospective cohort of prostate cancer patients undergoing radiation therapy, that in vitro radiation-induced apoptosis of CD4+ T lymphocytes assessed before radiation therapy was associated with the probability of developing chronic GU toxicity. In addition, the radiation dose received in the urinary bladder (V65 ≥50) affected the occurrence of GU toxicity. Finally, we also demonstrate that radiation-induced apoptosis of

  17. Relationship between radiation-induced apoptosis of T lymphocytes and chronic toxicity in patients with prostate cancer treated by radiation therapy: a prospective study.

    PubMed

    Foro, Palmira; Algara, Manuel; Lozano, Joan; Rodriguez, Nuria; Sanz, Xavier; Torres, Erica; Carles, Joan; Reig, Anna; Membrive, Ismael; Quera, Jaume; Fernandez-Velilla, Enric; Pera, Oscar; Lacruz, Marti; Bellosillo, Beatriz

    2014-04-01

    To assess the correlation of radiation-induced apoptosis in vitro of CD4 and CD8 T lymphocytes with late toxicity of prostate cancer patients treated with radiation therapy. 214 patients were prospectively included in the study. Peripheral blood was drawn from patients before treatment and irradiated with 8 Gy. The percentage of CD4+ and CD8+ T lymphocytes that underwent radiation-induced apoptosis was assessed by flow cytometry. Toxicity and mortality were correlated in 198 cases with pretreatment apoptosis and clinical and biological variables by use of a Cox proportional hazards model. The mean percentage of CD4+ and CD8+ T lymphocyte radiation-induced apoptosis was 28.58% (±14.23) and 50.76% (±18.9), respectively. Genitourinary (GU) toxicity was experienced by 39.9% of patients, while gastrointestinal (GI) toxicity was experienced by 19.7%. The probability of development of GU toxicity was nearly doubled (hazard ratio [HR] 1.99, P=.014) in those patients in whom the percentage of in vitro radiation-induced apoptosis of CD4+ T-lymphocytes was ≤28.58%. It was also almost double in patients who received doses ≥50 Gy in 65% of the bladder volume (V65 ≥50) (HR 1.92, P=.048). No correlation was found between GI toxicity and any of the variables studied. The probability of death during follow-up, after adjustment for different variables, was 2.7 times higher in patients with a percentage of CD8+ T lymphocyte apoptosis ≤50.76% (P=.022). In conclusion, our study shows, in the largest prospective cohort of prostate cancer patients undergoing radiation therapy, that in vitro radiation-induced apoptosis of CD4+ T lymphocytes assessed before radiation therapy was associated with the probability of developing chronic GU toxicity. In addition, the radiation dose received in the urinary bladder (V65 ≥50) affected the occurrence of GU toxicity. Finally, we also demonstrate that radiation-induced apoptosis of CD8+ T lymphocytes was associated with overall survival

  18. Modulation of radiation-induced organs toxicity by cremophor-el in experimental animals.

    PubMed

    Ramadan, L A; Shouman, S A; Sayed-Ahmed, M M; El-Habit, O H

    2001-02-01

    Pharmacological and cytogenetic evaluations of the protective effects of polyethoxylated castor oil cremophor-EL (cremophor) against hepato, renal and bone marrow toxicity induced by gamma irradiation in normal rats were carried out. A single dose of irradiation (6 Gy) caused hepatic and renal damage manifested biochemically as an elevation in levels of serum alanine and aspartate aminotransferase as well as an increase in blood urea. Cremophor administration at a dose level of 50 microl kg-1 intravenously 1 day before exposure to irradiation (6 Gy) protected the liver and kidney as indicated by the recovery of levels of hepatic aminotransferase, urea and lipid profiles to normal values. Gamma irradiation of male rats caused a decrease in reduced glutathione and an increase in the oxidized form in rat-liver homogenate. A highly significant increase in the incidence of micronucleated normochromatic erythrocytes and micronucleated polychromatic erythrocytes was observed after irradiation exposure. The induced genotoxicity in the bone marrow cells was corrected by pretreatment with cremophor. The findings of this study suggest that cremophor pretreatment can potentially be used clinically to prevent irradiation-induced hepato, renal and bone marrow toxicity without interference with its cytotoxic activity.

  19. Toxic leukoencephalopathies, including drug, medication, environmental, and radiation-induced encephalopathic syndromes.

    PubMed

    Rimkus, Carolina de Medeiros; Andrade, Celi Santos; Leite, Claudia da Costa; McKinney, Alexander M; Lucato, Leandro Tavares

    2014-04-01

    Toxic leukoencephalopathies can be secondary to the exposure to a wide variety of exogenous agents, including cranial irradiation, chemotherapy, antiepileptic agents, drugs of abuse, and environmental toxins. There is no typical clinical picture, and patients can present with a wide array of signs and symptoms. Involvement of white matter is a key finding in this scenario, although in some circumstances other high metabolic areas of the central nervous system can also be affected. Magnetic resonance (MR) imaging usually discloses bilateral and symmetric white matter areas of hyperintense signal on T2-weighted and fluid-attenuated inversion recovery images, and signs of restricted diffusion are associated in the acute stage. In most cases, the changes are reversible, especially with prompt recognition of the disease and discontinuation of the noxious agent. Either the MR or clinical features may be similar to several nontoxic entities, such as demyelinating diseases, leukodystrophies, hepatic encephalopathy, vascular disease, hypoxic-ischemic states, and others. A high index of suspicion should be maintained whenever a patient presents recent onset of neurologic deficit, searching the risk of exposure to a neurotoxic agent. Getting to know the most frequent MR appearances and mechanisms of action of causative agents may help to make an early diagnosis and begin therapy, improving outcome. In this review, some of the most important causes of leukoencephalopathies are presented; as well as other 2 related conditions: strokelike migraine attacks after radiation therapy syndrome and reversible splenial lesions. © 2013 Published by Elsevier Inc.

  20. Hyperbaric oxygen therapy for late radiation-induced tissue toxicity: prospectively patient-reported outcome measures in breast cancer patients.

    PubMed

    Teguh, David N; Bol Raap, René; Struikmans, Henk; Verhoef, Cees; Koppert, Linetta B; Koole, Arne; Huang, Yadi; van Hulst, Rob A

    2016-09-29

    This study examines patient reported outcome measures of women undergoing hyperbaric oxygen treatment (HBOT) after breast-conserving therapy. Included were 57 women treated with HBOT for late radiation-induced tissue toxicity (LRITT) referred in the period January 2014-December 2015. HBOT consisted of (on average) 47 sessions. In total, 80 min of 100 % O2 was administered under increased pressure of 2.4 ATA. Quality of life was assessed before and after treatment using the European Organization for Research and Treatment of Cancer (EORTC) QLQ-BR23, and a NRS pain score. Fifty-seven women were available for evaluation before and after treatment. Before HBOT, patients had severe complaints of pain in the arm/shoulder (46 %), swollen arm/hand (14 %), difficulty to raise arm or move it sideways (45 %), pain in the area of the affected breast (67 %), swollen area of the affected breast (45 %), oversensitivity of the affected breast (54 %), and skin problems on/in the area of the affected breast (32 %); post HBOT, severe complaints were still experienced in 17, 7, 22, 15, 13, 15, and 11 % of the women, respectively. Differences were all significant. The NRS pain score improved at least 1 point (range 0-10) in 81 % of the patients (p < 0.05). In these breast cancer patients treated with HBOT for LRITT, the patient-reported outcomes were positive and improvements were observed. HBOT was a well-tolerated treatment for LRITT and its side-effects were both minimal and reversible.

  1. Radiation-induced Vulvar Angiokeratoma Along with Other Late Radiation Toxicities after Carcinoma Cervix: A Rare Case Report

    PubMed Central

    Bhandari, Virendra; Naik, Ayush; Gupta, K L; Kausar, Mehlam

    2016-01-01

    Angiokeratoma including vulvar angiokeratoma is a very rare complication of radiation. Exact incidence is still unknown, we report a case that developed radiation-induced angiokeratoma of skin in the vulvar region along with other late radiation sequelae in the form of bone fracture, new bone formation, bone marrow widening, muscle hypertrophy, and subcutaneous fibrosis, 18 years after radiotherapy to the pelvic region for the treatment of carcinoma cervix. All these late radiation sequel are rare to be seen in a single patient, and none of the case reports could be found in the world literature. PMID:27057045

  2. A dose-dependent perturbation in cardiac energy metabolism is linked to radiation-induced ischemic heart disease in Mayak nuclear workers.

    PubMed

    Azimzadeh, Omid; Azizova, Tamara; Merl-Pham, Juliane; Subramanian, Vikram; Bakshi, Mayur V; Moseeva, Maria; Zubkova, Olga; Hauck, Stefanie M; Anastasov, Nataša; Atkinson, Michael J; Tapio, Soile

    2017-02-07

    Epidemiological studies show a significant increase in ischemic heart disease (IHD) incidence associated with total external gamma-ray dose among Mayak plutonium enrichment plant workers. Our previous studies using mouse models suggest that persistent alteration of heart metabolism due to the inhibition of peroxisome proliferator-activated receptor (PPAR) alpha accompanies cardiac damage after high doses of ionising radiation. The aim of the present study was to elucidate the mechanism of radiation-induced IHD in humans. The cardiac proteome response to irradiation was analysed in Mayak workers who were exposed only to external doses of gamma rays. All participants were diagnosed during their lifetime with IHD that also was the cause of death. Label-free quantitative proteomics analysis was performed on tissue samples from the cardiac left ventricles of individuals stratified into four radiation dose groups (0 Gy, < 100 mGy, 100-500 mGy, and > 500 mGy). The groups could be separated using principal component analysis based on all proteomics features. Proteome profiling showed a dose-dependent increase in the number of downregulated mitochondrial and structural proteins. Both proteomics and immunoblotting showed decreased expression of several oxidative stress responsive proteins in the irradiated hearts. The phosphorylation of transcription factor PPAR alpha was increased in a dose-dependent manner, which is indicative of a reduction in transcriptional activity with increased radiation dose. These data suggest that chronic external radiation enhances the risk for IHD by inhibiting PPAR alpha and altering the expression of mitochondrial, structural, and antioxidant components of the heart.

  3. Semiquinone derivative isolated from Bacillus sp. INM-1 protects cellular antioxidant enzymes from γ-radiation-induced renal toxicity.

    PubMed

    Mishra, S; Reddy, D S K; Jamwal, V S; Bansal, D D; Patel, D D; Malhotra, P; Gupta, A K; Singh, P K; Jawed, S; Kumar, Raj

    2013-07-01

    This study was focused to evaluate protection of indigenous antioxidant system of mice against gamma radiation-induced oxidative stress using a semiquinone (SQGD)-rich fraction isolated from Bacillus sp. INM-1. Male C57bl/6 mice were administered SQGD (50 mg/kgb.w.i.p.) 2 h before irradiation (10 Gy) and modulation in antioxidant enzymes activities was estimated at different time intervals and compared with irradiated mice which were not pretreated by SQGD. Compared to untreated controls, SQGD pretreatment significantly (p < 0.05) accelerates superoxide dismutase, catalase, GSH, and glutathione-S-transferase activities. Similarly, significant (p < 0.05) increase in the expression of superoxide dismutase, catalase, GSH, and glutathione-S-transferase was observed in irradiated mice pretreated by SQGD, compared to only irradiated groups. Total antioxidant status equivalent to trolox was estimated in renal tissue of the mice after SQGD administration. Significant ABTS(+) radical formation was observed in H2O2-treated kidney homogenate, due to oxidative stress in the tissue. However, significant decrease in the levels of ABTS(+) radical was observed in kidney homogenate of the mice pretreated with SQGD. Therefore, it can be concluded that SQGD neutralizes oxidative stress by induction of antioxidant enzymes activities and thus improved total antioxidant status in cellular system and hence contributes to radioprotection.

  4. Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy

    PubMed Central

    Yohan, Darren; Kim, Anthony; Korpela, Elina; Liu, Stanley; Niu, Carolyn; Wilson, Brian C; Chin, Lee CL

    2014-01-01

    Monitoring the onset of erythema following external beam radiation therapy has the potential to offer a means of managing skin toxicities via biological targeted agents – prior to full progression. However, current skin toxicity scoring systems are subjective and provide at best a qualitative evaluation. Here, we investigate the potential of diffuse optical spectroscopy (DOS) to provide quantitative metrics for scoring skin toxicity. A DOS fiberoptic reflectance probe was used to collect white light spectra at two probing depths using two short fixed source-collector pairs with optical probing depths sensitive to the skin surface. The acquired spectra were fit to a diffusion theory model of light transport in tissue to extract optical biomarkers (hemoglobin concentration, oxygen saturation, scattering power and slope) from superficial skin layers of nude mice, which were subjected to erythema inducing doses of ionizing radiation. A statistically significant increase in oxygenated hemoglobin (p < 0.0016) was found in the skin post-irradiation – confirming previous reports. More interesting, we observed for the first time that the spectral scattering parameters, A (p = 0.026) and k (p = 0.011), were an indicator of erythema at day 6 and could potentially serve as an early detection optical biomarker of skin toxicity. Our data suggests that reflectance DOS may be employed to provide quantitative assessment of skin toxicities following curative doses of external beam radiation. PMID:24876997

  5. Quantitative monitoring of radiation induced skin toxicities in nude mice using optical biomarkers measured from diffuse optical reflectance spectroscopy.

    PubMed

    Yohan, Darren; Kim, Anthony; Korpela, Elina; Liu, Stanley; Niu, Carolyn; Wilson, Brian C; Chin, Lee Cl

    2014-05-01

    Monitoring the onset of erythema following external beam radiation therapy has the potential to offer a means of managing skin toxicities via biological targeted agents - prior to full progression. However, current skin toxicity scoring systems are subjective and provide at best a qualitative evaluation. Here, we investigate the potential of diffuse optical spectroscopy (DOS) to provide quantitative metrics for scoring skin toxicity. A DOS fiberoptic reflectance probe was used to collect white light spectra at two probing depths using two short fixed source-collector pairs with optical probing depths sensitive to the skin surface. The acquired spectra were fit to a diffusion theory model of light transport in tissue to extract optical biomarkers (hemoglobin concentration, oxygen saturation, scattering power and slope) from superficial skin layers of nude mice, which were subjected to erythema inducing doses of ionizing radiation. A statistically significant increase in oxygenated hemoglobin (p < 0.0016) was found in the skin post-irradiation - confirming previous reports. More interesting, we observed for the first time that the spectral scattering parameters, A (p = 0.026) and k (p = 0.011), were an indicator of erythema at day 6 and could potentially serve as an early detection optical biomarker of skin toxicity. Our data suggests that reflectance DOS may be employed to provide quantitative assessment of skin toxicities following curative doses of external beam radiation.

  6. Combining Physical and Biologic Parameters to Predict Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer Treated With Definitive Radiation Therapy

    SciTech Connect

    Stenmark, Matthew H.; Cai Xuwei; Shedden, Kerby; Hayman, James A.; Yuan Shuanghu; Ritter, Timothy; Ten Haken, Randall K.; Lawrence, Theodore S.; Kong Fengming

    2012-10-01

    Purpose: To investigate the plasma dynamics of 5 proinflammatory/fibrogenic cytokines, including interleukin-1beta (IL-1{beta}), IL-6, IL-8, tumor necrosis factor alpha (TNF-{alpha}), and transforming growth factor beta1 (TGF-{beta}1) to ascertain their value in predicting radiation-induced lung toxicity (RILT), both individually and in combination with physical dosimetric parameters. Methods and Materials: Treatments of patients receiving definitive conventionally fractionated radiation therapy (RT) on clinical trial for inoperable stages I-III lung cancer were prospectively evaluated. Circulating cytokine levels were measured prior to and at weeks 2 and 4 during RT. The primary endpoint was symptomatic RILT, defined as grade 2 and higher radiation pneumonitis or symptomatic pulmonary fibrosis. Minimum follow-up was 18 months. Results: Of 58 eligible patients, 10 (17.2%) patients developed RILT. Lower pretreatment IL-8 levels were significantly correlated with development of RILT, while radiation-induced elevations of TGF-ss1 were weakly correlated with RILT. Significant correlations were not found for any of the remaining 3 cytokines or for any clinical or dosimetric parameters. Using receiver operator characteristic curves for predictive risk assessment modeling, we found both individual cytokines and dosimetric parameters were poor independent predictors of RILT. However, combining IL-8, TGF-ss1, and mean lung dose into a single model yielded an improved predictive ability (P<.001) compared to either variable alone. Conclusions: Combining inflammatory cytokines with physical dosimetric factors may provide a more accurate model for RILT prediction. Future study with a larger number of cases and events is needed to validate such findings.

  7. Semiquinone fraction isolated from Bacillus sp. INM-1 protects hepatic tissues against γ-radiation induced toxicity.

    PubMed

    Mishra, Saurabh; Bansal, Deen Dayal; Malhotra, Poonam; K Reddy, D Sudheer; Jamwal, Vishawdeep S; Patel, Dev Dutt; Gupta, Ashutosh Kumar; Singh, Praveen Kumar; Javed, Saleem; Kumar, Raj

    2014-12-01

    Present study was focused on evaluation of a semiquinone glucoside derivative (SQGD) isolated from radioresistant bacterium Bacillus sp. INM-1 for its ability against γ radiation induced oxidative stress in irradiated mice. Animals were divided into four group, i.e., (i) untreated control mice; (ii) SQGD treated (50 mg/kg b. wt. i.p.) mice; (iii) irradiated (10 Gy) mice; and (iv) irradiated mice which were pre-treated (-2 h) with SQGD (50 mg/kg b. wt. i.p.). Following treatment, liver homogenates of the treated mice were subjected to endogenous antioxidant enzymes estimation. Result indicated that SQGD pre-treatment, significantly (P < 0.05) induced superoxide dismutase (SOD) (19.84 ± 2.18% at 72 h), catalase (CAT) (26.47 ± 3.11% at 12 h), glutathione (33.81 ± 1.99% at 24 h), and glutathione-S-transferase (24.40 ± 2.65% at 6 h) activities in the liver of mice as compared with untreated control. Significant (P < 0.05) induction in SOD (50.04 ± 5.59% at 12 h), CAT (62.22 ± 7.50 at 72 h), glutathione (42.92 ± 2.28% at 24 h), and glutathione-S-transferase (46.65 ± 3.25 at 12 h) was observed in irradiated mice which were pre-treated with SQGD compared with only irradiated mice. Further, significant induction in ABTS(+) radicals (directly proportional to decrease mM Trolox equivalent) was observed in liver homogenate of H2 O2 treated mice which were found to be significantly inhibited in H2 O2 treated mice pre-treated with SQGD. Thus, it can be concluded that SQGD treatment neutralizes oxidative stress caused by irradiation not only by enhancing endogenous antioxidant enzymes but also by improving total antioxidant status of cellular system and thus cumulative effect of the phenomenon may contributes to radioprotection.

  8. Simple Factors Associated with Radiation-Induced Lung Toxicity after Stereotactic Body Radiation Therapy of the Thorax: A Pooled Analysis of 88 Studies

    PubMed Central

    Zhao, Jing; Yorke, Ellen D.; Li, Ling; Kavanagh, Brian D.; Li, X. Allen; Das, Shiva; Miften, Moyed; Rimner, Andreas; Campbell, Jeffrey; Xue, Jinyu; Jackson, Andrew; Grimm, Jimm; Milano, Michael T.; Kong, Feng-Ming (Spring)

    2017-01-01

    Purpose To study the risk factors for radiation-induced lung toxicity (RILT) after stereotactic body radiotherapy (SBRT) of the thorax. Methods Published studies on lung toxicity in patients with early stage non-small cell lung cancer (NSCLC) or metastatic lung tumors treated with SBRT were pooled and analyzed. The primary endpoint was RILT including pneumonitis and fibrosis. Data of RILT and risk factors were extracted from each study, and rates of grade 2-5 (G2+) and grade 3-5 (G3+) RILT were computed. Patient, tumor and dosimetric factors were analyzed for their correlation with RILT. Results Eighty-eight studies (7752 patients), that reported RILT incidence, were eligible. The pooled rates of G2+ and G3+ RILT from all 88 studies were 9.1% (95% CI: 7.15-11.4) and 1.8% (95% CI: 1.3-2.5), respectively. The median of median tumor sizes was 2.3 (range 1.4-4.1) cm. Among the factors analyzed, older patient age (P= 0.044) and larger tumor size (the greatest diameter) were significantly correlated with higher rates of G2+ (P= 0.049) and G3+ RILT (P= 0.001). Patients with stage IA vs. stage IB NSCLC had significantly lower risks of G2+ RILT (8.3% vs 17.1%, OR= 0.43, 95% CI: 0.29-0.64, P<0.0001). Among studies that provided detailed dosimetric data, the pooled analysis demonstrated a significantly higher mean lung dose (MLD) (P= 0.027) and V20 (P= 0.019) in patients with G2+ RILT comparing to that of grade 0-1 RILT. Conclusions The overall rate of RILT is relatively low after thoracic SBRT. Older age and larger tumor size are significant adverse risk factors for RILT. Lung dosimetry, specifically lung V20 and MLD also significantly affect RILT risk. Summary Risk factors for radiation-induced lung toxicity (RILT) after stereotactic body radiotherapy (SBRT) were analyzed from 88 published studies (7752 patients). The overall rate of RILT is relatively low after thoracic SBRT. Adverse risk factors for RILT after SBRT include older age, larger tumor size and greater lung

  9. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines

    SciTech Connect

    Okunieff, Paul . E-mail: paul_okunieff@urmc.rochester.edu; Xu Jianhua; Hu Dongping; Liu Weimin; Zhang Lurong; Morrow, Gary; Pentland, Alice; Ryan, Julie L.; Ding, Ivan M.D.

    2006-07-01

    Purpose: To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-{alpha}, and lymphotoxin-{beta}) or fibrogenic cytokines (transforming growth factor [TGF]-{beta}) during the same acute and chronic phases. Methods and Materials: Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to the hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Results: Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-{alpha}, and lymphotoxin-{beta}) and the fibrogenic cytokine, TGF-{beta}, in cutaneous tissues at 21 days postradiation. Conclusion: Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy.

  10. Curcumin protects against radiation-induced acute and chronic cutaneous toxicity in mice and decreases mRNA expression of inflammatory and fibrogenic cytokines.

    PubMed

    Okunieff, Paul; Xu, Jianhua; Hu, Dongping; Liu, Weimin; Zhang, Lurong; Morrow, Gary; Pentland, Alice; Ryan, Julie L; Ding, Ivan

    2006-07-01

    To determine whether curcumin ameliorates acute and chronic radiation skin toxicity and to examine the expression of inflammatory cytokines (interleukin [IL]-1, IL-6, IL-18, IL-1Ra, tumor necrosis factor [TNF]-alpha, and lymphotoxin-beta) or fibrogenic cytokines (transforming growth factor [TGF]-beta) during the same acute and chronic phases. Curcumin was given intragastrically or intraperitoneally to C3H/HeN mice either: 5 days before radiation; 5 days after radiation; or both 5 days before and 5 days after radiation. The cutaneous damage was assessed at 15-21 days (acute) and 90 days (chronic) after a single 50 Gy radiation dose was given to the hind leg. Skin and muscle tissues were collected for measurement of cytokine mRNA. Curcumin, administered before or after radiation, markedly reduced acute and chronic skin toxicity in mice (p < 0.05). Additionally, curcumin significantly decreased mRNA expression of early responding cytokines (IL-1 IL-6, IL-18, TNF-alpha, and lymphotoxin-beta) and the fibrogenic cytokine, TGF-beta, in cutaneous tissues at 21 days postradiation. Curcumin has a protective effect on radiation-induced cutaneous damage in mice, which is characterized by a downregulation of both inflammatory and fibrogenic cytokines in irradiated skin and muscle, particularly in the early phase after radiation. These results may provide the molecular basis for the application of curcumin in clinical radiation therapy.

  11. Polysaccharide protein complex isolated from mushroom Phellinus rimosus (berk.) Pilat alleviates γ radiation-induced toxicity in mice.

    PubMed

    Joseph, Jini; Smina, Thozhuthum Parambil Pathmanabhan; Janardhanan, Kainoor Krishnankutty

    2011-06-01

    Ionizing radiations generate reactive oxygen species in irradiated tissue that induces several pathophysiological changes in the body. Radiotherapy induced toxicity is a major dose-limiting factor in anticancer treatments. Radioprotective agents are of significant importance in medical, industrial, environmental, military, and space applications. Radioprotective effect of polysaccharide protein complex (PPC-Pr) isolated from mushroom, Phellinus rimosus, was evaluated in Swiss albino mice. PPC-Pr (5 and 10 mg/kg bwt, i.p.) significantly increased leukocyte count, bone marrow cellularity, glutathione content, and activities of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase in blood as well as intestinal mucosa when compared with the irradiated control group. Histopathological observation of intestinal jejunal mucosa revealed the tissue protective effects of PPC-Pr. Further radioprotective activity of PPC-Pr was in a dose-dependent manner. The findings suggest potential radioprotective efficacy of PPC-Pr.

  12. Evaluation of UV radiation-induced toxicity and biophysical changes in various skin cells with photo-shielding molecules.

    PubMed

    Bennet, Devasier; Kim, Sanghyo

    2015-09-21

    Ultraviolet radiation (UVR) triggers many complex events in different types of skin cells, including benign, malignant and normal cells. Chromophores present in these cells play a crucial role in various cellular processes. Unprecedented methods are required for the real-time monitoring of changes in an in vitro model exposed to intermittent mild and intense UVR to determine the mechanisms underlying cell degeneration and the effects of unexpected toxic, agonist and antagonist agents. This study reports the analytical application of a whole cell-based sensor platform for examining the biophysical effects of UVR. We used human keratinocyte, melanocyte and fibroblast cell lines to determine the normal, pathological and protective roles of UVR. In addition, we examined the real-time morphological, biophysical and biomechanical changes associated with cell degeneration induced by UVR at 254 and 365 nm. Information on UVR-induced changes in the cytoskeleton ultrastructure, cellular integrity, cell spreading area, actin microfilament distribution inflammation, microtubule damage, membrane damage, rupture and death was characterized by examining the loss or increase in biophysical and biomechanical properties of these cells. All cells exposed to UVR at 254 and 365 nm showed a significant increase in surface roughness and stiffness in a time-dependent manner. UVR-induced toxicity in differently pigmented skin cells was compared with that in cells pretreated with melanin, keratin and basic fibroblast growth factor to analyze the shielding efficiency of these agents. Melanin exerted a significant shielding effect compared to the other two agents. The biophysical and biomechanical information obtained in this study could advance our understanding of the UVR-induced degeneration process, and help in developing new interventions strategies.

  13. Randomized controlled trial of dietary fiber for the prevention of radiation-induced gastrointestinal toxicity during pelvic radiotherapy.

    PubMed

    Wedlake, Linda; Shaw, Clare; McNair, Helen; Lalji, Amyn; Mohammed, Kabir; Klopper, Tanya; Allan, Lindsey; Tait, Diana; Hawkins, Maria; Somaiah, Navita; Lalondrelle, Susan; Taylor, Alexandra; VanAs, Nicholas; Stewart, Alexandra; Essapen, Sharadah; Gage, Heather; Whelan, Kevin; Andreyev, H Jervoise N

    2017-09-01

    Background: Therapeutic radiotherapy is an important treatment of pelvic cancers. Historically, low-fiber diets have been recommended despite a lack of evidence and potentially beneficial mechanisms of fiber.Objective: This randomized controlled trial compared low-, habitual-, and high-fiber diets for the prevention of gastrointestinal toxicity in patients undergoing pelvic radiotherapy.Design: Patients were randomly assigned to low-fiber [≤10 g nonstarch polysaccharide (NSP)/d], habitual-fiber (control), or high-fiber (≥18 g NSP/d) diets and received individualized counseling at the start of radiotherapy to achieve these targets. The primary endpoint was the difference between groups in the change in the Inflammatory Bowel Disease Questionnaire-Bowel Subset (IBDQ-B) score between the starting and nadir (worst) score during treatment. Other measures included macronutrient intake, stool diaries, and fecal short-chain fatty acid concentrations.Results: Patients were randomly assigned to low-fiber (n = 55), habitual-fiber (n = 55), or high-fiber (n = 56) dietary advice. Fiber intakes were significantly different between groups (P < 0.001). The difference between groups in the change in IBDQ-B scores between the start and nadir was not significant (P = 0.093). However, the change in score between the start and end of radiotherapy was smaller in the high-fiber group (mean ± SD: -3.7 ± 12.8) than in the habitual-fiber group (-10.8 ± 13.5; P = 0.011). At 1-y postradiotherapy (n = 126) the difference in IBDQ-B scores between the high-fiber (+0.1 ± 14.5) and the habitual-fiber (-8.4 ± 13.3) groups was significant (P = 0.004). No significant differences were observed in stool frequency or form or in short-chain fatty acid concentrations. Significant reductions in energy, protein, and fat intake occurred in the low- and habitual-fiber groups only.Conclusions: Dietary advice to follow a high-fiber diet during pelvic radiotherapy resulted in reduced gastrointestinal

  14. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  15. Cardiac Arrest after Local Anaesthetic Toxicity in a Paediatric Patient

    PubMed Central

    Figueroa, Diego Grimaldi; Simas, Ana Amélia Souza

    2016-01-01

    We report a case of a paediatric patient undergoing urological procedure in which a possible inadvertent intravascular or intraosseous injection of bupivacaine with adrenaline in usual doses caused subsequent cardiac arrest, completely reversed after administration of 20% intravenous lipid emulsion. Early diagnosis of local anaesthetics toxicity and adequate cardiovascular resuscitation manoeuvres contribute to the favourable outcome. PMID:27872765

  16. To Find a Better Dosimetric Parameter in the Predicting of Radiation-Induced Lung Toxicity Individually: Ventilation, Perfusion or CT based

    PubMed Central

    Xiao, Lin-Lin; Yang, Guoren; Chen, Jinhu; Wang, Xiaohui; Wu, Qingwei; Huo, Zongwei; Yu, Qingxi; Yu, Jinming; Yuan, Shuanghu

    2017-01-01

    This study aimed to find a better dosimetric parameter in predicting of radiation-induced lung toxicity (RILT) in patients with non-small cell lung cancer (NSCLC) individually: ventilation(V), perfusion (Q) or computerized tomography (CT) based. V/Q single-photon emission computerized tomography (SPECT) was performed within 1 week prior to radiotherapy (RT). All V/Q imaging data was integrated into RT planning system, generating functional parameters based on V/Q SPECT. Fifty-seven NSCLC patients were enrolled in this prospective study. Fifteen (26.3%) patients underwent grade ≥2 RILT, the remaining forty-two (73.7%) patients didn’t. Q-MLD, Q-V20, V-MLD, V-V20 of functional parameters correlated more significantly with the occurrence of RILT compared to V20, MLD of anatomical parameters (r = 0.630; r = 0.644; r = 0.617; r = 0.651 vs. r = 0.424; r = 0.520 p < 0.05, respectively). In patients with chronic obstructive pulmonary diseases (COPD), V functional parameters reflected significant advantage in predicting RILT; while in patients without COPD, Q functional parameters reflected significant advantage. Analogous results were existed in fractimal analysis of global pulmonary function test (PFT). In patients with central-type NSCLC, V parameters were better than Q parameters; while in patients with peripheral-type NSCLC, the results were inverse. Therefore, this study demonstrated that choosing a suitable dosimetric parameter individually can help us predict RILT accurately. PMID:28294159

  17. Dose-volumetric parameters predicting radiation-induced hepatic toxicity in unresectable hepatocellular carcinoma patients treated with three-dimensional conformal radiotherapy

    SciTech Connect

    Kim, Tae Hyun; Kim, Dae Yong . E-mail: radiopia@ncc.re.kr; Park, Joong-Won; Kim, Seong Hoon; Choi, Joon-Il; Kim, Hyun Beom; Lee, Woo Jin; Park, Sang Jae; Hong, Eun Kyung; Kim, Chang-Min

    2007-01-01

    Purpose: To identify the dose-volumetric parameters associated with the risk of radiation-induced hepatic toxicity (RIHT) in hepatocellular carcinoma patients treated with three-dimensional conformal radiotherapy. Methods and Materials: A total of 105 hepatocellular carcinoma patients underwent three-dimensional conformal radiotherapy (total dose range, 44-58.5 Gy; median, 54). RIHT was scored within 4 months of completing three-dimensional conformal radiotherapy. The dose-volume parameters analyzed were the gross tumor volume; normal liver volume; total liver volume; radiation dose; mean dose to the normal liver; percentage of the normal liver volume receiving {>=}20, {>=}25, {>=}30, {>=}35, and {>=}40 Gy; percentage of the total liver volume receiving {>=}20, {>=}25, {>=}30, {>=}35, and {>=}40 Gy; and the normal tissue complication probability. Results: Of the 105 patients, Grade 1 RIHT was observed in 21 (20.0%), Grade 2 in 7 (6.7%), Grade 3 in 5 (4.8%), and Grade 4 in 1 (1.0%) patient. No fatal Grade 5 RIHT developed. On multivariate analysis for predicting Grade 2 or worse RIHT, the total liver volume receiving {>=}30 Gy was the only significant parameter (p < 0.001). Grade 2 or worse RIHT was observed in only 2 (2.4%) of 85 patients with a total liver volume receiving 30 Gy of {<=}60% and in 11 (55.0%) of 20 patients with >60% (p < 0.001). Conclusion: The total liver volume receiving {>=}30 Gy appears to be a useful dose-volumetric parameter for predicting the risk of RIHT. This volume should be limited to {<=}60% whenever possible to minimize the risk of Grade 2 or worse RIHT.

  18. Reducing the probability of radiation-induced hepatic toxicity by changing the treatment modality from helical tomotherapy to fixed-beam intensity-modulated radiotherapy

    PubMed Central

    Song, Jin Ho; Son, Seok Hyun; Kay, Chul Seung; Jang, Hong Seok

    2015-01-01

    Purpose To estimate and compare the risk of radiation-induced hepatic toxicity (RIHT) in helical tomotherapy and fixed-beam intensity-modulated radiotherapy (IMRT) for the treatment of hepatocellular carcinoma (HCC). Materials and Methods Twenty patients with unresectable HCC treated with tomotherapy were selected. We performed tomotherapy re-planning to reduce the non-target normal liver volume receiving a dose of more than 15 Gy (NTNL-V15Gy), and we created a fixed-beam IMRT plan (FB-P). We compared the dosimetric results as well as the estimated probability of RIHT among the tomotherapy initial plan (T-IP), the tomotherapy re-plan (T-RP), and the FB-P. Results Comparing the T-RP and FB-P, the homogeneity index was 0.11 better with the T-RP. However, the mean NTNL-V15Gy was 6.3% lower with the FB-P. These differences result in a decline in the probability of RIHT from 0.216 in the T-RP to 0.115 in the FB-P. In patients whose NTNL-V15Gy was higher than 43.2% with the T-RP, the probability of RIHT markedly reduced from 0.533 to 0.274. Conclusions By changing the treatment modality from tomotherapy to fixed-beam IMRT, we could reduce the liver dose and the probability of RIHT without scarifying the target coverage, especially in patients whose liver dose is high. PMID:26376679

  19. Toxicity of ad lib. overfeeding: effects on cardiac tissue.

    PubMed

    Faine, L A; Diniz, Y S; Almeida, J A; Novelli, E L B; Ribas, B O

    2002-05-01

    The aim of the present study was to determine the effects of ad lib. overfeeding and of dietary restriction (DR) on oxidative stress in cardiac tissue. Lipoperoxide concentrations were decreased and antioxidant enzymes were increased in moderate-DR-fed rats. Severe-DR induced increased lipoperoxide concentrations. Overfeeding increased lipoperoxide levels in cardiac tissue. Total superoxide dismutase (SOD) and Cu-Zn superoxide dismutase (Cu-Zn SOD) activities were decreased in cardiac tissue at 35 days of overfeeding. As no changes in glutathione peroxidase (GSH-Px) were observed in overfed rats, while SOD and Cu-Zn SOD activities were decreased in these animals, it is assumed that superoxide anion is an important intermediate in the toxicity of ad lib. overfeeding. Overfeeding induced alterations in markers of oxidative stress in cardiac tissue.

  20. A question about the potential cardiac toxicity of escitalopram.

    PubMed

    Howland, Robert H

    2012-04-01

    Previous reviews have focused on the potential cardiac toxicity of the racemic drug citalopram (Celexa(®)). Evaluating the safety of escitalopram (Lexapro(®)) is an important issue to consider, since it is the S-enantiomer of citalopram. Escitalopram has a small effect on the QTc interval. A prolonged QTc was seen in 2% to 14% of escitalopram overdose cases, without serious cardiac sequelae. The QTc prolongation effect of citalopram in beagle dogs has been attributed to the minor metabolite racemic didemethylcitalopram (DDCT). Whether the escitalopram minor metabolite S-DDCT has this effect is not known. Concentrations of S-DDCT are lower than DDCT, but for a broad range of doses of escitalopram and citalopram, the S-DDCT and DDCT concentrations are well below the QTc prolonging concentrations reported in dogs. There is no strong evidence from human and animal studies that the cardiac safety of escitalopram is significantly superior to that of citalopram.

  1. Evaluation of Cardiac Toxicity Biomarkers in Rats from Different Laboratories.

    PubMed

    Kim, Kyuri; Chini, Naseem; Fairchild, David G; Engle, Steven K; Reagan, William J; Summers, Sandra D; Mirsalis, Jon C

    2016-12-01

    There is a great need for improved diagnostic and prognostic accuracy of potential cardiac toxicity in drug development. This study reports the evaluation of several commercially available biomarker kits by 3 institutions (SRI, Eli Lilly, and Pfizer) for the discrimination between myocardial degeneration/necrosis and cardiac hypertrophy as well as the assessment of the interlaboratory and interplatform variation in results. Serum concentrations of natriuretic peptides (N-terminal pro-atrial natriuretic peptide [NT-proANP] and N-terminal pro-brain natriuretic peptide [NT-proBNP]), cardiac and skeletal troponins (cTnI, cTnT, and sTnI), myosin light chain 3 (Myl3), and fatty acid binding protein 3 (FABP3) were assessed in rats treated with minoxidil (MNX) and isoproterenol (ISO). MNX caused increased heart-to-body weight ratios and prominent elevations in NT-proANP and NT-proBNP concentrations detected at 24-hr postdose without elevation in troponins, Myl3, or FABP3 and with no abnormal histopathological findings. ISO caused ventricular leukocyte infiltration, myocyte fibrosis, and necrosis with increased concentrations of the natriuretic peptides, cardiac troponins, and Myl3. These results reinforce the advantages of a multimarker strategy in elucidating the underlying cause of cardiac insult and detecting myocardial tissue damage at 24-hr posttreatment. The interlaboratory and interplatform comparison analyses also showed that the data obtained from different laboratories and platforms are highly correlated and reproducible, making these biomarkers widely applicable in preclinical studies.

  2. Radiation-induced gliomas

    PubMed Central

    Prasad, Gautam; Haas-Kogan, Daphne A.

    2013-01-01

    Radiation-induced gliomas represent a relatively rare but well-characterized entity in the neuro-oncologic literature. Extensive retrospective cohort data in pediatric populations after therapeutic intracranial radiation show a clearly increased risk in glioma incidence that is both patient age- and radiation dose/volume-dependent. Data in adults are more limited but show heightened risk in certain groups exposed to radiation. In both populations, there is no evidence linking increased risk associated with routine exposure to diagnostic radiation. At the molecular level, recent studies have found distinct genetic differences between radiation-induced gliomas and their spontaneously-occurring counterparts. Clinically, there is understandable reluctance on the part of clinicians to re-treat patients due to concern for cumulative neurotoxicity. However, available data suggest that aggressive intervention can lead to improved outcomes in patients with radiation-induced gliomas. PMID:19831840

  3. Radiation-induced pneumothorax

    SciTech Connect

    Epstein, D.M.; Littman, P.; Gefter, W.B.; Miller, W.T.; Raney, R.B. Jr.

    1983-01-01

    Pneumothorax is an uncommon complication of radiation therapy to the chest. The proposed pathogenesis is radiation-induced fibrosis promoting subpleural bleb formation that ruptures resulting in pneumothorax. We report on two young patients with primary sarcomas without pulmonary metastases who developed spontaneous pneumothorax after irradiation. Neither patient had antecedent radiographic evidence of pulmonary fibrosis.

  4. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Mondelaers, Win; Lahorte, Philippe

    This chapter is part one of a review in which the production and application of radiation-induced bioradicals is discussed. Bioradicals play a pivotal role in the complex chain of processes starting with the absorption of radiation in biological materials and ending with the radiation-induced biological after-effects. The general aspects of the four consecutive stages (physical, physicochemical, chemical and biological) are discussed from an interdisciplinary point of view. The close relationship between radiation dose and track structure, induced DNA damage and cell survival or killing is treated in detail. The repair mechanisms that cells employ, to insure DNA stability following irradiation, are described. Because of their great biomedical importance tumour suppressor genes involved in radiation-induced DNA repair and in checkpoint activation will be treated briefly, together with the molecular genetics of radiosensitivity. Part two of this review will deal with modern theoretical methods and experimental instrumentation for quantitative studies in this research field. Also an extensive overview of the applications of radiation-induced bioradicals will be given. A comprehensive list of references allows further exploration of this research field, characterised in the last decade by a substantial advance, both in fundamental knowledge and in range of applications.

  5. Radiation-induced heart disease in lung cancer radiotherapy

    PubMed Central

    Ming, Xin; Feng, Yuanming; Yang, Chengwen; Wang, Wei; Wang, Ping; Deng, Jun

    2016-01-01

    Abstract Background: Radiation-induced heart disease (RIHD), which affects the patients’ prognosis with both acute and late side effects, has been published extensively in the radiotherapy of breast cancer, lymphoma and other benign diseases. Studies on RIHD in lung cancer radiotherapy, however, are less extensive and clear even though the patients with lung cancer are delivered with higher doses to the heart during radiation treatment. Methods: In this article, after extensive literature search and analysis, we reviewed the current evidence on RIHD in lung cancer patients after their radiation treatments and investigated the potential risk factors for RIHD as compared to other types of cancers. Result: Cardiac toxicity has been found highly relevant in lung cancer radiotherapy. So far, the crude incidence of cardiac complications in the lung cancer patients after radiotherapy has been up to 33%. Conclusion: The dose to the heart, the lobar location of tumor, the treatment modality, the history of heart and pulmonary disease and smoking were considered as potential risk factors for RIHD in lung cancer radiotherapy. As treatment techniques improve over the time with better prognosis for lung cancer survivors, an improved prediction model can be established to further reduce the cardiac toxicity in lung cancer radiotherapy. PMID:27741117

  6. Antagonistic effects of tetrodotoxin on aconitine-induced cardiac toxicity.

    PubMed

    Ono, Takiyoshi; Hayashida, Makiko; Tezuka, Akito; Hayakawa, Hideyuki; Ohno, Youkichi

    2013-01-01

    Aconitine, well-known for its high cardiotoxicity, causes severe arrhythmias, such as ventricular tachycardia and ventricular fibrillation, by opening membrane sodium channels. Tetrodotoxin, a membrane sodium-channel blocker, is thought to antagonize aconitine activity. Tetrodotoxin is a potent blocker of the skeletal muscle sodium-channel isoform Na(v)1.4 (IC50 10 nM), but micromolar concentrations of tetrodotoxin are required to inhibit the primary cardiac isoform Na(v)1.5. This suggests that substantial concentrations of tetrodotoxin are required to alleviate the cardiac toxicity caused by aconitine. To elucidate the interaction between aconitine and tetrodotoxin in the cardiovascular and respiratory systems, mixtures of aconitine and tetrodotoxin were simultaneously administered to mice, and the effects on electrocardiograms, breathing rates, and arterial oxygen saturation were examined. Compared with mice treated with aconitine alone, some mice treated with aconitine-tetrodotoxin mixtures showed lower mortality rates and delayed appearance of arrhythmia. The decreased breathing rates and arterial oxygen saturation observed in mice receiving aconitine alone were alleviated in mice that survived after receiving the aconitine-tetrodotoxin mixture; this result suggests that tetrodotoxin is antagonistic to aconitine. When the tetrodotoxin dose is greater than the dose that can block tetrodotoxin-sensitive sodium channels, which are excessively activated by aconitine, tetrodotoxin toxicity becomes prominent, and the mortality rate increases because of the respiratory effects of tetrodotoxin. In terms of cardiotoxicity, mice receiving the aconitine-tetrodotoxin mixture showed minor and shorter periods of change on electrocardiography. This finding can be explained by the recent discovery of tetrodotoxin-sensitive sodium-channel cardiac isoforms (Na(v)1.1, 1.2, 1.3, 1.4 and 1.6).

  7. Radiation-induced heart disease in rats

    SciTech Connect

    Lauk, S.; Kiszel, Z.; Buschmann, J.; Trott, K.R.

    1985-04-01

    After local irradiation of the rat heart with X ray doses of over 10 Gy (single dose), animals developed symptoms of radiation-induced heart disease, which at higher doses would lead to fatal cardiac failure. The LD 50 at 1 year was between 15 Gy and 20 Gy. The pericardium and epicardium responded to irradiation with exudative pericarditis after 4 months. Focal myocardial damage was secondary to progressive capillary damage.

  8. Radiation-Induced Oral Mucositis

    PubMed Central

    Maria, Osama Muhammad; Eliopoulos, Nicoletta; Muanza, Thierry

    2017-01-01

    Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment. PMID:28589080

  9. Radiation-Induced Oral Mucositis.

    PubMed

    Maria, Osama Muhammad; Eliopoulos, Nicoletta; Muanza, Thierry

    2017-01-01

    Radiation-induced oral mucositis (RIOM) is a major dose-limiting toxicity in head and neck cancer patients. It is a normal tissue injury caused by radiation/radiotherapy (RT), which has marked adverse effects on patient quality of life and cancer therapy continuity. It is a challenge for radiation oncologists since it leads to cancer therapy interruption, poor local tumor control, and changes in dose fractionation. RIOM occurs in 100% of altered fractionation radiotherapy head and neck cancer patients. In the United Sates, its economic cost was estimated to reach 17,000.00 USD per patient with head and neck cancers. This review will discuss RIOM definition, epidemiology, impact and side effects, pathogenesis, scoring scales, diagnosis, differential diagnosis, prevention, and treatment.

  10. Elevation of Plasma TGF-{beta}1 During Radiation Therapy Predicts Radiation-Induced Lung Toxicity in Patients With Non-Small-Cell Lung Cancer: A Combined Analysis From Beijing and Michigan

    SciTech Connect

    Zhao Lujun; Wang Luhua Ji Wei; Wang Xiaozhen; Zhu Xiangzhi; Hayman, James A.; Kalemkerian, Gregory P.; Yang Weizhi; Brenner, Dean; Lawrence, Theodore S.; Kong, F.-M.

    2009-08-01

    Purpose: To test whether radiation-induced elevations of transforming growth factor-{beta}1 (TGF-{beta}1) during radiation therapy (RT) correlate with radiation-induced lung toxicity (RILT) in patients with non-small-cell lung cancer (NSCLC) and to evaluate the ability of mean lung dose (MLD) to improve the predictive power. Methods and Materials: Eligible patients included those with Stage I-III NSCLC treated with RT with or without chemotherapy. Platelet-poor plasma was obtained pre-RT and at 4-5 weeks (40-50 Gy) during RT. TGF-{beta}1 was measured using an enzyme-linked immunosorbent assay. The primary endpoint was {>=} Grade 2 RILT. Mann-Whitney U test, logistic regression, and chi-square were used for statistical analysis. Results: A total of 165 patients were enrolled in this study. The median radiation dose was 60 Gy, and the median MLD was 15.3 Gy. Twenty-nine patients (17.6%) experienced RILT. The incidence of RILT was 46.2% in patients with a TGF-{beta}1 ratio > 1 vs. 7.9% in patients with a TGF-{beta}1 ratio {<=} 1 (p < 0.001), and it was 42.9% if MLD > 20 Gy vs. 17.4% if MLD {<=} 20 Gy (p = 0.024). The incidence was 4.3% in patients with a TGF-{beta}1 ratio {<=} 1 and MLD {<=} 20 Gy, 47.4% in those with a TGF-{beta}1 ratio >1 or MLD > 20 Gy, and 66.7% in those with a TGF-{beta}1 ratio >1 and MLD > 20 Gy (p < 0.001). Conclusions: Radiation-induced elevation of plasma TGF-{beta}1 level during RT is predictive of RILT. The combination of TGF- {beta}1 and MLD may help stratify the patients for their risk of RILT.

  11. WE-EF-210-06: Ultrasound 2D Strain Measurement of Radiation-Induced Toxicity: Phantom and Ex Vivo Experiments

    SciTech Connect

    Liu, T; Torres, M; Rossi, P; Jani, A; Curran, W; Yang, X

    2015-06-15

    Purpose: Radiation-induced fibrosis is a common long-term complication affecting many patients following cancer radiotherapy. Standard clinical assessment of subcutaneous fibrosis is subjective and often limited to visual inspection and palpation. Ultrasound strain imaging describes the compressibility (elasticity) of biological tissues. This study’s purpose is to develop a quantitative ultrasound strain imaging that can consistently and accurately characterize radiation-induce fibrosis. Methods: In this study, we propose a 2D strain imaging method based on deformable image registration. A combined affine and B-spline transformation model is used to calculate the displacement of tissue between pre-stress and post-stress B-mode image sequences. The 2D displacement is estimated through a hybrid image similarity measure metric, which is a combination of the normalized mutual information (NMI) and normalized sum-of-squared-differences (NSSD). And 2D strain is obtained from the gradient of the local displacement. We conducted phantom experiments under various compressions and compared the performance of our proposed method with the standard cross-correlation (CC)- based method using the signal-to-noise (SNR) and contrast-to-noise (CNS) ratios. In addition, we conducted ex-vivo beef muscle experiment to further validate the proposed method. Results: For phantom study, the SNR and CNS values of the proposed method were significantly higher than those calculated from the CC-based method under different strains. The SNR and CNR increased by a factor of 1.9 and 2.7 comparing to the CC-based method. For the ex-vivo experiment, the CC-based method failed to work due to large deformation (6.7%), while our proposed method could accurately detect the stiffness change. Conclusion: We have developed a 2D strain imaging technique based on the deformable image registration, validated its accuracy and feasibility with phantom and ex-vivo data. This 2D ultrasound strain imaging

  12. Supplementation of bone marrow aspirate-derived platelet-rich plasma for treating radiation-induced ulcer after cardiac fluoroscopic procedures: A preliminary report

    PubMed Central

    Nishimoto, Soh; Fukuda, Kenji; Kawai, Kenichiro; Fujiwara, Toshihiro; Tsumano, Tomoko; Fujita, Kazutoshi; Kakibuchi, Masao

    2012-01-01

    Background: The frequency of encountering radiodermatitis caused by X-ray fluoroscopic procedures for ischaemic heart disease is increasing. In severe cases, devastating ulcers with pain, for which conservative therapy is ineffective, emerge. Radiation-induced ulcers are notorious for being difficult to treat. Simple skin grafting often fails because of the poor state of the wound bed. A vascularized flap is a very good option. However, the non-adherence of the well-vascularized flap with the irradiated wound bed is frequently experienced. Aim: To ameliorate the irradiated wound bed, bone marrow-derived platelet-rich plasma (bm-PRP) was delivered during the surgery. Materials and Methods: Four patients with severe cutaneous radiation injury accompanied by unbearable pain after multiple fluoroscopic procedures for ischaemic heart disease were treated. Wide excision of the lesion and coverage with a skin flap supplemented with bm-PRP injection was performed. Results: All patients obtained wound closure and were relieved from pain. No complication concerning the bone marrow aspiration and delivery of bm-PRP was observed. Conclusions: Supplementation of bm-PRP can be an option without major complications, time, and cost to improve the surgical outcome for irradiated wounds. PMID:22754164

  13. Toxic effects of polychlorinated biphenyls on cardiac development in zebrafish.

    PubMed

    Li, Mengmeng; Wang, Xuejie; Zhu, Jingai; Zhu, Shasha; Hu, Xiaoshan; Zhu, Chun; Guo, Xirong; Yu, Zhangbin; Han, Shuping

    2014-12-01

    Polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants that may pose significant health-risks to various organisms including humans. Although the mixed PCB Aroclor 1254 is widespread in the environment, its potential toxic effect on heart development and the mechanism underlying its developmental toxicity have not been previously studied. Here, we used the zebrafish as a toxicogenomic model to examine the effects of Aroclor 1254 on heart development. We found that PCB exposure during zebrafish development induced heart abnormalities including pericardial edema and cardiac looping defects. Further malformations of the zebrafish embryo were observed and death of the larvae occurred in a time- and dose-dependent manner. Our mechanistic studies revealed that abnormalities in the arylhydrocarbon receptor, Wnt and retinoic acid signaling pathways may underlie the effects of PCBs on zebrafish heart development. Interestingly, co-administration of Aroclor 1254 and diethylaminobenzaldehyde, an inhibitor of retinaldehyde dehydrogenase, partially rescued the toxic effects of PCBs on zebrafish heart development. In conclusion, PCBs can induce developmental defects in the zebrafish heart, which may be mediated by abnormal RA signaling.

  14. Pathogenesis and Prevention of Radiation-induced Myocardial Fibrosis

    PubMed

    Liu, Li Kun; Ouyang, Weiwei; Zhao, Xing; Su, Sheng Fa; Yang, Yan; Ding, Wen Jin; Luo, Da Xian; He, Zhi Xu; Lu, Bing

    2017-03-01

    Radiation therapy is one of the most important methods for the treatment of malignant tumors. However, in radiotherapy for thoracic tumors such as breast cancer, lung cancer, esophageal cancer, and mediastinal lymphoma, the heart, located in the mediastinum, is inevitably affected by the irradiation, leading to pericardial disease, myocardial fibrosis, coronary artery disease, valvular lesions, and cardiac conduction system injury, which are considered radiation-induced heart diseases. Delayed cardiac injury especially myocardial fibrosis is more prominent, and its incidence is as high as 20–80%. Myocardial fibrosis is the final stage of radiation-induced heart diseases, and it increases the stiffness of the myocardium and decreases myocardial systolic and diastolic function, resulting in myocardial electrical physiological disorder, arrhythmia, incomplete heart function, or even sudden death. This article reviews the pathogenesis and prevention of radiation-induced myocardial fibrosis for providing references for the prevention and treatment of radiation-induced myocardial fibrosis. Creative Commons Attribution License

  15. Histopathological and scintigraphic comparisons of the protective effects of L-carnitine and amifostine against radiation-induced late renal toxicity in rats.

    PubMed

    Caloglu, Murat; Yurut-Caloglu, Vuslat; Durmus-Altun, Gulay; Oz-Puyan, Fulya; Ustun, Funda; Cosar-Alas, Rusen; Saynak, Mert; Parlar, Sule; Turan, Fatma N; Uzal, Cem

    2009-05-01

    1. The aim of the present study was to compare the protective effects of L-carnitine and amifostine against radiation-induced late nephrotoxicity using technetium-99m diethylenetriaminepentaacetic acid scintigraphy and histopathological examination. 2. Seventy-one Albino rats were randomly divided into six groups as follows: (i) AMI + RAD (n = 15), 200 mg/kg, i.p., amifostine 30 min prior to irradiation (a single dose of 9 Gy); (ii) LC + RAD (n = 15), 300 mg/kg, i.p., L-carnitine 30 min prior to irradiation; (iii) LC (n = 10), 300 mg/kg, i.p., L-carnitine 30 min prior to sham irradiation; (iv) AMI (n = 10), 200 mg/kg, i.p., amifostine 30 min prior to sham irradiation; RAD (n = 11), 1 mL/kg, i.p., normal saline 30 min prior to irradiation; and (vi) control (n = 10), 1 mL/kg, i.p., normal saline 30 min prior to sham irradiation. Scintigraphy was performed before treatment and again 6 months after treatment. Kidneys were examined by light microscopy and a histopathological scoring system was used to assess the degree of renal damage. 3. The main histopathological findings were proximal tubular damage and interstitial fibrosis. Glomerular injury was similar in all groups. Tubular degeneration and atrophy were less common in the AMI + RAD group than in the RAD group (P = 0.011 and P = 0.015, respectively), as well as in the LC + RAD group compared with the RAD group (P = 0.028 and P = 0.036, respectively). Interstitial fibrosis in the AMI + RAD and LC + RAD groups was significantly less than that in the RAD group (P = 0.015 and P = 0.015, respectively). The highest total renal injury score (9) was seen in the RAD group. On scintigraphy, there were significant differences in post-treatment time to peak count (T(max)) and time from peak count to half count (T((1/2))) values (P = 0.01 and 0.02, respectively) between groups in the right kidney. In the control and RAD groups, the T((1/2)) of the right kidney was 8 +/- 2 and 21 +/- 2 min, respectively. The T(max) values for

  16. Mitochondrial toxicity of cardiac drugs and its relevance to mitochondrial disorders.

    PubMed

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2015-01-01

    One target of toxicity caused by cardiac drugs is the mitochondrion. This review focuses on the mitochondrion-toxic effects of cardiac drugs and the extent to which mitochondrion-mediated side effects influence the treatment of cardiac disease in mitochondrial disorders (MIDs). Areas discussed in this review include the pathogenesis of mitochondrion toxicity and the mechanisms by which cardiac drugs exhibit their mitochondrion-toxic effect. Whenever available, the mitochondrion-toxic effect of cardiac drugs in patients with a MID is highlighted. Most of the drugs used in cardiology are somewhat mitochondrion-toxic. The degree of toxicity, however, is variable and dependent on the type of drug, tissue, organ, subject, cell system investigated, the co-medication, and the conditions under which the investigations have been carried out. Abnormalities induced by mitochondrion-toxic cardiac drugs include impairment of respiratory chain functions resulting in reduced ATP production, increased production of reactive oxygen species with increased oxidation of proteins or lipids, reduction of the mitochondrial membrane potential and apoptosis. Several other mitochondrial functions may be additionally impaired by culprit compounds. Cardiac drugs that should be applied with particular caution in patients with MIDs include amiodarone, phenytoin, lidocaine, quinidine, isoproterenol, clopidogrel, acetyl-salicylic acid and molsidomine.

  17. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Lahorte, Philippe; Mondelaers, Wim

    This chapter represents the second part of a review in which the production and application of radiation-induced radicals in biological matter are discussed. In part one the general aspects of the four stages (physical, physicochemical, chemical and biological) of interaction of radiation with matter in general and biological matter in particular, were discussed. Here an overview is presented of modem technologies and theoretical methods available for studying these radiation effects. The relevance is highlighted of electron paramagnetic resonance spectroscopy and quantum chemical calculations with respect to obtaining structural information on bioradicals, and a survey is given of the research studies in this field. We also discuss some basic aspects of modem accelerator technologies which can be used for creating radicals and we conclude with an overview of applications of radiation processing in biology and related fields such as biomedical and environmental engineering, food technology, medicine and pharmacy.

  18. Radiation Induced Oral Mucositis

    PubMed Central

    PS, Satheesh Kumar; Balan, Anita; Sankar, Arun; Bose, Tinky

    2009-01-01

    Patients receiving radiotherapy or chemotherapy will receive some degree of oral mucositis The incidence of oral mucositis was especially high in patients: (i) With primary tumors in the oral cavity, oropharynx, or nasopharynx; (ii) who also received concomitant chemotherapy; (iii) who received a total dose over 5,000 cGy; and (iv) who were treated with altered fractionation radiation schedules. Radiation-induced oral mucositis affects the quality of life of the patients and the family concerned. The present day management of oral mucositis is mostly palliative and or supportive care. The newer guidelines are suggesting Palifermin, which is the first active mucositis drug as well as Amifostine, for radiation protection and cryotherapy. The current management should focus more on palliative measures, such as pain management, nutritional support, and maintenance, of good oral hygiene PMID:20668585

  19. Radiation Therapy, Cardiac Risk Factors, and Cardiac Toxicity in Early-Stage Breast Cancer Patients

    SciTech Connect

    Doyle, John J.; Wang Jian; McBride, Russell; Neugut, Alfred I.; Grann, Victor R. ||; Jacobson, Judith S. |; Grann, Alison; Hershman, Dawn ||. E-mail: dlh23@columbia.edu

    2007-05-01

    Purpose: The benefits of adjuvant radiation therapy (RT) for breast cancer may be counterbalanced by the risk of cardiac toxicity. We studied the cardiac effects of RT and the impact of pre-existing cardiac risk factors (CRFs) in a population-based sample of older patients with breast cancer. Methods and Materials: In the Surveillance, Epidemiology and End-Results (SEER)-Medicare database of women {>=}65 years diagnosed with Stages I to III breast cancer from January 1, 1992 to December 31, 2000, we used multivariable logistic regression to model the associations of demographic and clinical variables with postmastectomy and postlumpectomy RT. Using Cox proportional hazards regression, we then modeled the association between treatment and myocardial infarction (MI) and ischemia in the 10 or more years after diagnosis, taking the predictors of treatment into account. Results: Among 48,353 women with breast cancer; 19,897 (42%) were treated with lumpectomy and 26,534 (55%) with mastectomy; the remainder had unknown surgery type (3%). Receipt of RT was associated with later year of diagnosis, younger age, fewer comorbidities, nonrural residence, and chemotherapy. Postlumpectomy RT was also associated with white ethnicity and no prior history of heart disease (HD). The RT did not increase the risk of MI. Presence of MI was associated with age, African American ethnicity, advanced stage, nonrural residence, more than one comorbid condition, a hormone receptor-negative tumor, CRFs and HD. Among patients who received RT, tumor laterality was not associated with MI outcome. The effect of RT on the heart was not influenced by HD or CRFs. Conclusion: It appears unlikely that RT would increase the risk of MI in elderly women with breast cancer, regardless of type of surgery, tumor laterality, or history of CRFs or HD, for at least 10 years.

  20. Radiation-induced esophagitis in lung cancer

    PubMed Central

    Baker, Sarah; Fairchild, Alysa

    2016-01-01

    Radiation-induced esophagitis is the most common local acute toxicity of radiotherapy (RT) delivered for the curative or palliative intent treatment of lung cancer. Although concurrent chemotherapy and higher RT dose are associated with increased esophagitis risk, advancements in RT techniques as well as adherence to esophageal dosimetric constraints may reduce the incidence and severity. Mild acute esophagitis symptoms are generally self-limited, and supportive management options include analgesics, acid suppression, diet modification, treatment for candidiasis, and maintenance of adequate nutrition. Esophageal stricture is the most common late sequela from esophageal irradiation and can be addressed with endoscopic dilatation. Approaches to prevent or mitigate these toxicities are also discussed. PMID:28210168

  1. Ultrasound GLCM texture analysis of radiation-induced parotid-gland injury in head-and-neck cancer radiotherapy: An in vivo study of late toxicity

    PubMed Central

    Yang, Xiaofeng; Tridandapani, Srini; Beitler, Jonathan J.; Yu, David S.; Yoshida, Emi J.; Curran, Walter J.; Liu, Tian

    2012-01-01

    sonographic features were computed from the contoured region-of-interest. Results: The authors observed significant differences (p < 0.05) in all sonographic features between the normal and postradiotherapy parotid glands. The sonographic findings were consistent with the clinical observations of the ultrasound images: normal parotid glands exhibited homogeneous texture, while the postradiotherapy parotid glands exhibited heterogeneous echotexture (e.g., hyperechoic lines and spots), which likely represents fibrosis. Conclusions: The authors have demonstrated the feasibility of ultrasonic texture evaluation of parotid glands; and the sonographic features may serve as imaging signatures to assess radiation-induced parotid injury. PMID:22957638

  2. Elevated ARG1 expression in primary monocytes-derived macrophages as a predictor of radiation-induced acute skin toxicities in early breast cancer patients

    PubMed Central

    Jung, Karen; Sabri, Siham; Hanson, John; Xu, Yaoxian; Wang, Ying Wayne; Lai, Raymond; Abdulkarim, Bassam S

    2015-01-01

    Radiation therapy (RT) the front-line treatment after surgery for early breast cancer patients is associated with acute skin toxicities in at least 40% of treated patients. Monocyte-derived macrophages are polarized into functionally distinct (M1 or M2) activated phenotypes at injury sites by specific systemic cytokines known to play a key role in the transition between damage and repair in irradiated tissues. The role of M1 and M2 macrophages in RT-induced acute skin toxicities remains to be defined. We investigated the potential value of M1 and M2 macrophages as predictive factors of RT-induced skin toxicities in early breast cancer patients treated with adjuvant RT after lumpectomy. Blood samples collected from patients enrolled in a prospective clinical study (n = 49) were analyzed at baseline and after the first delivered 2Gy RT dose. We designed an ex vivo culture system to differentiate patient blood monocytes into macrophages and treated them with M1 or M2-inducing cytokines before quantitative analysis of their “M1/M2” activation markers, iNOS, Arg1, and TGFß1. Statistical analysis was performed to correlate experimental data to clinical assessment of acute skin toxicity using Common Toxicity Criteria (CTC) grade for objective evaluation of skin reactions. Increased ARG1 mRNA significantly correlated with higher grades of erythema, moist desquamation, and CTC grade. Multivariate analysis revealed that increased ARG1 expression in macrophages after a single RT dose was an independent prognostic factor of erythema (p = 0 .032), moist desquamation (p = 0 .027), and CTC grade (p = 0 .056). Interestingly, multivariate analysis of ARG1 mRNA expression in macrophages stimulated with IL-4 also revealed independent prognostic value for predicting acute RT-induced toxicity factors, erythema (p = 0 .069), moist desquamation (p = 0 .037), and CTC grade (p = 0 .046). To conclude, our findings underline for the first time the biological significance of increased

  3. Elevated ARG1 expression in primary monocytes-derived macrophages as a predictor of radiation-induced acute skin toxicities in early breast cancer patients.

    PubMed

    Jung, Karen; Sabri, Siham; Hanson, John; Xu, Yaoxian; Wang, Ying Wayne; Lai, Raymond; Abdulkarim, Bassam S

    2015-01-01

    Radiation therapy (RT) the front-line treatment after surgery for early breast cancer patients is associated with acute skin toxicities in at least 40% of treated patients. Monocyte-derived macrophages are polarized into functionally distinct (M1 or M2) activated phenotypes at injury sites by specific systemic cytokines known to play a key role in the transition between damage and repair in irradiated tissues. The role of M1 and M2 macrophages in RT-induced acute skin toxicities remains to be defined. We investigated the potential value of M1 and M2 macrophages as predictive factors of RT-induced skin toxicities in early breast cancer patients treated with adjuvant RT after lumpectomy. Blood samples collected from patients enrolled in a prospective clinical study (n = 49) were analyzed at baseline and after the first delivered 2Gy RT dose. We designed an ex vivo culture system to differentiate patient blood monocytes into macrophages and treated them with M1 or M2-inducing cytokines before quantitative analysis of their "M1/M2" activation markers, iNOS, Arg1, and TGFß1. Statistical analysis was performed to correlate experimental data to clinical assessment of acute skin toxicity using Common Toxicity Criteria (CTC) grade for objective evaluation of skin reactions. Increased ARG1 mRNA significantly correlated with higher grades of erythema, moist desquamation, and CTC grade. Multivariate analysis revealed that increased ARG1 expression in macrophages after a single RT dose was an independent prognostic factor of erythema (p = 0 .032), moist desquamation (p = 0 .027), and CTC grade (p = 0 .056). Interestingly, multivariate analysis of ARG1 mRNA expression in macrophages stimulated with IL-4 also revealed independent prognostic value for predicting acute RT-induced toxicity factors, erythema (p = 0 .069), moist desquamation (p = 0 .037), and CTC grade (p = 0 .046). To conclude, our findings underline for the first time the biological significance of increased ARG1 m

  4. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  5. Quercetin inhibits radiation-induced skin fibrosis.

    PubMed

    Horton, Jason A; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-08-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-β (TGF-β). Western blotting of proteins involved in fibroblast contractility and TGF-β signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-β in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-β, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis.

  6. Quercetin Inhibits Radiation-Induced Skin Fibrosis

    PubMed Central

    Horton, Jason A.; Li, Fei; Chung, Eun Joo; Hudak, Kathryn; White, Ayla; Krausz, Kristopher; Gonzalez, Frank; Citrin, Deborah

    2013-01-01

    Radiation induced fibrosis of the skin is a late toxicity that may result in loss of function due to reduced range of motion and pain. The current study sought to determine if oral delivery of quercetin mitigates radiation-induced cutaneous injury. Female C3H/HeN mice were fed control chow or quercetin-formulated chow (1% by weight). The right hind leg was exposed to 35 Gy of X rays and the mice were followed serially to assess acute toxicity and hind leg extension. Tissue samples were collected for assessment of soluble collagen and tissue cytokines. Human and murine fibroblasts were subjected to clonogenic assays to determine the effects of quercetin on radiation response. Contractility of fibroblasts was assessed with a collagen contraction assay in the presence or absence of quercetin and transforming growth factor-β (TGF-β). Western blotting of proteins involved in fibroblast contractility and TGF-β signaling were performed. Quercetin treatment significantly reduced hind limb contracture, collagen accumulation and expression of TGF-β in irradiated skin. Quercetin had no effect on the radioresponse of fibroblasts or murine tumors, but was capable of reducing the contractility of fibroblasts in response to TGF-β, an effect that correlated with partial stabilization of phosphorylated cofilin. Quercetin is capable of mitigating radiation induced skin fibrosis and should be further explored as a therapy for radiation fibrosis. PMID:23819596

  7. A Preliminary Study on Racial Differences in HMOX1, NFE2L2 and TGFβ1 Gene Polymorphisms and Radiation Induced Late Normal Tissue Toxicity

    PubMed Central

    Alam, Asim; Mukhopadhyay, Nitai D.; Ning, Yi; Reshko, Leonid B.; Cardnell, Robert J.G.; Alam, Omair; Rabender, Christopher S.; Yakovlev, Vasily A.; Walker, Linda; Anscher, Mitchell S.; Mikkelsen, Ross B.

    2015-01-01

    Purpose This study tests whether racial differences in genetic polymorphisms of four genes involved in wound repair and response to radiation can be used to predict the occurrence of normal tissue late effects of radiotherapy and indicate potential therapeutic targets. Methods and Materials This prospective study examines genetic polymorphisms that modulate the expression of four genes involved in inflammation and fibrosis and response to radiation (HMOX1, NFE2L2, NOS3 and TGFβ1). DNA from blood samples of 179 patients (~80% breast and head and neck) collected at the time of diagnosis by their radiation oncologist as exhibiting late normal tissue toxicity was used for the analysis. Patient demographics were: 56% Caucasian, 43% African-American, 1% other. Allelic frequencies of the different polymorphisms of the participants were compared to those of the general American population stratified by race. Twenty-six additional patients treated with radiation, but without toxicity at 3 months or later post-therapy, were also analyzed. Results Increased frequency of a long GT repeat in the HMOX1 promoter was associated with late effects in both African-American and Caucasian populations. The single nucleotide polymorphisms (SNP) rs1800469 in the TGFβ1 promoter and the rs6721961 SNP in the NFE2L2 promoter were also found to significantly associate with late effects in African-Americans but not Caucasians. A combined analysis of these polymorphisms revealed that >90% of African-American patients with late effects had at least one and 58% two or more of these minor alleles. No statistical significance was found relating the studied NOS3 polymorphisms and normal tissue toxicity. Conclusions These results support a strong association between wound repair and late toxicities of radiation. The presence of these genetic risk factors can vary significantly among different ethnic groups, as demonstrated for some of the SNPs. Future studies should account for the possibility of

  8. A Preliminary Study on Racial Differences in HMOX1, NFE2L2, and TGFβ1 Gene Polymorphisms and Radiation-Induced Late Normal Tissue Toxicity

    SciTech Connect

    Alam, Asim; Mukhopadhyay, Nitai D.; Ning, Yi; Reshko, Leonid B.; Cardnell, Robert J.G.; Alam, Omair; Rabender, Christopher S.; Yakovlev, Vasily A.; Walker, Linda; Anscher, Mitchell S.; Mikkelsen, Ross B.

    2015-10-01

    Purpose: This study tested whether racial differences in genetic polymorphisms of 4 genes involved in wound repair and response to radiation can be used to predict the occurrence of normal tissue late effects of radiation therapy and indicate potential therapeutic targets. Methods and Materials: This prospective study examined genetic polymorphisms that modulate the expression of 4 genes involved in inflammation and fibrosis and response to radiation (HMOX1, NFE2L2, NOS3, and TGFβ1). DNA from blood samples of 179 patients (∼80% breast and head and neck) collected at the time of diagnosis by their radiation oncologist as exhibiting late normal tissue toxicity was used for the analysis. Patient demographics were as follows: 56% white, 43% African American, 1% other. Allelic frequencies of the different polymorphisms of the participants were compared with those of the general American population stratified by race. Twenty-six additional patients treated with radiation, but without toxicity at 3 months or later after therapy, were also analyzed. Results: Increased frequency of a long GT repeat in the HMOX1 promoter was associated with late effects in both African American and white populations. The single nucleotide polymorphisms (SNP) rs1800469 in the TGFβ1 promoter and the rs6721961 SNP in the NFE2L2 promoter were also found to significantly associate with late effects in African Americans but not whites. A combined analysis of these polymorphisms revealed that >90% of African American patients with late effects had at least 1 of these minor alleles, and 58% had 2 or more. No statistical significance was found relating the studied NOS3 polymorphisms and normal tissue toxicity. Conclusions: These results support a strong association between wound repair and late toxicities of radiation. The presence of these genetic risk factors can vary significantly among different ethnic groups, as demonstrated for some of the SNPs. Future studies should account for the

  9. Epac contributes to cardiac hypertrophy and amyloidosis induced by radiotherapy but not fibrosis.

    PubMed

    Monceau, Virginie; Llach, Anna; Azria, David; Bridier, André; Petit, Benoît; Mazevet, Marianne; Strup-Perrot, Carine; To, Thi-Hong-Van; Calmels, Lucie; Germaini, Marie-Michèle; Gourgou, Sophie; Fenoglietto, Pascal; Bourgier, Céline; Gomez, Ana-Maria; Escoubet, Brigitte; Dörr, Wolfgang; Haagen, Julia; Deutsch, Eric; Morel, Eric; Vozenin, Marie Catherine

    2014-04-01

    Cardiac toxicity is a side-effect of anti-cancer treatment including radiotherapy and this translational study was initiated to characterize radiation-induced cardiac side effects in a population of breast cancer patients and in experimental models in order to identify novel therapeutic target. The size of the heart was evaluated in CO-HO-RT patients by measuring the Cardiac-Contact-Distance before and after radiotherapy (48months of follow-up). In parallel, fibrogenic signals were studied in a severe case of human radiation-induced pericarditis. Lastly, radiation-induced cardiac damage was studied in mice and in rat neonatal cardiac cardiomyocytes. In patients, time dependent enhancement of the CCD was measured suggesting occurrence of cardiac hypertrophy. In the case of human radiation-induced pericarditis, we measured the activation of fibrogenic (CTGF, RhoA) and remodeling (MMP2) signals. In irradiated mice, we documented decreased contractile function, enlargement of the ventricular cavity and long-term modification of the time constant of decay of Ca(2+) transients. Both hypertrophy and amyloid deposition were correlated with the induction of Epac-1; whereas radiation-induced fibrosis correlated with Rho/CTGF activation. Transactivation studies support Epac contribution in hypertrophy stimulation and showed that radiotherapy and Epac displayed specific and synergistic signals. Epac-1 has been identified as a novel regulator of radiation-induced hypertrophy and amyloidosis but not fibrosis in the heart. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. ABSENCE OF CARDIAC TOXICITY OF ZIDOVUDINE IN INFANTS

    PubMed Central

    Lipshultz, Steven E.; Easley, Kirk A.; Orav, E. John; Kaplan, Samuel; Starc, Thomas J.; Bricker, J. Timothy; Lai, Wyman W.; Moodie, Douglas S.; Sopko, George; McIntosh, Kenneth; Colan, Steven D.

    2014-01-01

    Background Some evidence suggests that perinatal exposure to zidovudine may cause cardiac abnormalities in infants. We prospectively studied left ventricular structure and function in infants born to mothers infected with the human immunodeficiency virus (HIV) in order to determine whether there was evidence of zidovudine cardiac toxicity after perinatal exposure. Methods We followed a group of infants born to HIV-infected women from birth to five years of age with echocardiographic studies every four to six months. Serial echocardiograms were obtained for 382 infants without HIV infection (36 with zidovudine exposure) and 58 HIV-infected infants (12 with zidovudine exposure). Repeated-measures analysis was used to examine four measures of left ventricular structure and function during the first 14 months of life in relation to zidovudine exposure. Results Zidovudine exposure was not associated with significant abnormalities in mean left ventricular fractional shortening, end-diastolic dimension, contractility, or mass in either non–HIV-infected or HIV-infected infants. Among infants without HIV infection, the mean fractional shortening at 10 to 14 months was 38.1 percent for those never exposed to zidovudine and 39.0 percent for those exposed to zidovudine (mean difference, −0.9 percentage point; 95 percent confidence interval, −3.1 to 1.3 percentage points; P=0.43). Among HIV-infected infants, the mean fractional shortening at 10 to 14 months was similar in those never exposed to zidovudine (35.4 percent) and those exposed to the drug (35.3 percent) (mean difference, 0.1 percentage point; 95 percent confidence interval, −3.7 to 3.9 percentage points; P=0.95). Zidovudine exposure was not significantly related to depressed fractional shortening (shortening of 25 percent or less) during the first 14 months of life. No child over the age of 10 months had depressed fractional shortening. Conclusions Zidovudine was not associated with acute or chronic

  11. Chronic cardiac toxicity after inhalation of 1,1,1-trichloroethane.

    PubMed Central

    McLeod, A A; Marjot, R; Monaghan, M J; Hugh-Jones, P; Jackson, G

    1987-01-01

    Two patients showed evidence of chronic cardiac toxicity after repeated exposure to 1,1,1-trichloroethane. In both cases there was circumstantial evidence of a deterioration after routine anaesthetic use of the related compound halothane. An adolescent boy who sniffed trichloroethane presented with multiple ventricular arrhythmias during tonsillectomy. Follow up showed mild chronic left ventricular impairment. A 54 year old man had repeated industrial exposure to trichloroethane and deteriorated from mild stable cardiac failure to end stage cardiac failure after halothane anaesthesia for herniorrhaphy. Chronic cardiac toxicity is a previously unreported feature of this type of solvent exposure. Related compounds such as halothane may have a toxic interaction after exposure to trichloroethane. Images FIG. 1 FIG. 2 PMID:3105712

  12. SU-E-T-625: Potential for Reduced Radiation Induced Toxicity for the Treatment of Inoperable Non-Small-Cell Lung Cancer Using RapidArc Planning

    SciTech Connect

    Pokhrel, D; Sood, S; Badkul, R; Jiang, H; Saleh, H; Wang, F

    2015-06-15

    Purpose: To investigate the feasibility of using RapidArc (RA) treatment planning to reduce irradiation volume of normal lung and other organs at risk (OARs) in the treatment of inoperable non-small-cell lung cancer (NSCLC) patients. Methods: A retrospective treatment planning and delivery study was performed to compare target coverage and the volumes of the normal lung, spinal cord, heart and esophagus on 4D-CT scan above their dose tolerances delivered by RA vs. IMRT for ten inoperable NSCLC patients (Stage I-IIIB). RA plans consisted of either one-full or two-partial co-planar arcs used to treat 95% of the planning target volume (PTV) with 6MV beam to a prescription of 66Gy in 33 fractions. IMRT plans were generated using 5–7 co-planar fields with 6MV beam. PTV coverage, dose-volume histograms, homogeneity/conformity indices (CI), total number of monitor units(MUs), beam-on time and delivery accuracy were compared between the two treatment plans. Results: Similar target coverage was obtained between the two techniques. RA (CI=1.02) provided more conformal plans without loss of homogeneity compared to IMRT plans (CI=1.12). Compared to IMRT, RA achieved a significant median dose reduction in V10 (3%), V20 (8%), and mean lung dose (3%) on average, respectively. On average, V5 was comparable between the two treatment plans. RA reduced mean esophagus (6%), mean heart (18%), and maximum spinal cord dose (7%), on average, respectively. Total number of MUs and beam-on time were each reduced almost by a factor of 2 when compared to IMRT-patient comfort, reduced intra-fraction-motion and leakage dose. The average IMRT and RA QA pass rate was about 98% for both types of plans for 3%/3mm criterion. Conclusion: Compared to IMRT plans, RA provided not only comparable target coverage, but also improved conformity, treatment time, and significant reduction in irradiation of OARs. This may potentially allow for target dose escalation without increase in normal tissue toxicity.

  13. Photochemical Reaction Altered Cardiac Toxicity of Diesel Exhaust Inhalation

    EPA Science Inventory

    Rationale: Epidemiological studies have indicated an association between urban air pollution exposure and cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of inhaled diesel exhaust and compared with photochemically altered d...

  14. Photochemical Reaction Altered Cardiac Toxicity of Diesel Exhaust Inhalation

    EPA Science Inventory

    Rationale: Epidemiological studies have indicated an association between urban air pollution exposure and cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of inhaled diesel exhaust and compared with photochemically altered d...

  15. The enhancement of cardiac toxicity by concomitant administration of Berberine and macrolides.

    PubMed

    Zhi, Duo; Feng, Pan-Feng; Sun, Jia-Liang; Guo, Fengfeng; Zhang, Rui; Zhao, Xin; Li, Bao-Xin

    2015-08-30

    As is well-known, hERG plays an essential role in phase III repolarization of cardiac action potentials. Blocking of hERG channels can lead to LQTS. Inhibition of the metabolism of CYPs activities may elevate plasma levels, to further increase accumulation of drug on cardiac. The elevated serum levels may however elicit unexpected toxicities. Therefore, the inhibition tests of hERG and CYP are central to the preclinical studies because they may lead to severe cardiac toxicity. Berberine is widely used as an antibacterial agent and often combined with macrolides to treat gastropathy. Our objective was to assess cardiac toxicity during the combined use of Berberine with macrolides. (1) Azithromycin reduced hERG currents by accelerated channel inactivation. (2) The combination of Berberine with Azithromycin reduced hERG currents, producing an inhibitive effect stronger than use of a single drug alone, due to the high binding affinity for the onset of inactivation. (3) When cells were perfused concomitantly with Berberine and Clarithromycin, they showed a stronger inhibitive effect on hERG currents by decreasing the time constant for the onset of inactivation. (4) The combined administration of Berberine with Clarithromycin had a powerful inhibitive effect on CYP3A activities than use of a single drug alone. Collectively, these results demonstrated that concomitant use of Berberine with macrolides may require close monitoring because of potential drug toxicities, especially cardiac toxicity.

  16. The heart as a target for xenobiotic toxicity: the cardiac susceptibility to oxidative stress.

    PubMed

    Costa, Vera Marisa; Carvalho, Félix; Duarte, José Alberto; Bastos, Maria de Lourdes; Remião, Fernando

    2013-09-16

    The heart is a target organ for oxidative stress-related injuries. Because of its very high energetic metabolic demand, the heart has the highest rate of production of reactive oxygen species, namely, hydrogen peroxide (H2O2), per gram of tissue. Additionally, the heart has lower levels of antioxidants and total activity of antioxidant enzymes when compared to other organs. Furthermore, drugs that have relevant antioxidant activity and that are used in the treatment of oxidative stress related cardiac diseases demonstrate better clinical cardiac outcomes than other drugs with similar receptor affinity but with no antioxidant activity. Several xenobiotics particularly target the heart and promote toxicity. Anticancer drugs, like anthracyclines, cyclophosphamide, mitoxantrone, and more recently tyrosine kinase targeting drugs, are well-known cardiac toxicants whose therapeutic application has been associated to a high prevalence of heart failure. High levels of catecholamines or drugs of abuse, namely, amphetamines, cocaine, and even the consumption of alcohol for long periods of time, are linked to cardiovascular abnormalities. Oxidative stress may be one common link for the cardiac toxicity elicited by these compounds. We aim to revise the mechanisms involved in cardiac lesions caused by the above-mentioned substances specially focusing in oxidative stress related pathways. Oxidative stress biomarkers can be useful in the early recognition of cardiotoxicity in patients treated with these drugs and aid to minimize the setting of cardiac irreversible events.

  17. Cardiac Toxicity after Radiotherapy for Breast Cancer: Myths and Facts.

    PubMed

    Nitsche, Mirko; Pahl, René; Huber, Karen; Eilf, Kirsten; Dunst, Juergen

    2015-04-01

    Radiotherapy is an important component in the multidisciplinary treatment of breast cancer. In recent years, the cardiac risks of radiation have been discussed several times. This problem has long been known and resolved from the radiotherapeutic point of view. The current data is briefly described here.

  18. Transesophageal Echocardiography and Radiation-induced Damages

    PubMed Central

    Cottini, Marzia; Polizzi, Vincenzo; Pino, Paolo Giuseppe; Buffa, Vitaliano; Musumeci, Francesco

    2016-01-01

    The long-term sequelae of mantle therapy include, especially lung and cardiac disease but also involve the vessels and the organs in the neck and thorax (such as thyroid, aorta, and esophagus). We presented the case of 66-year-old female admitted for congestive heart failure in radiation-induced heart disease. The patient had undergone to massive radiotherapy 42 years ago for Hodgkin's disease (type 1A). Transesophageal echocardiography was performed unsuccessfully with difficulty because of the rigidity and impedance of esophageal walls. Our case is an extraordinary report of radiotherapy's latency effect as a result of dramatic changes in the structure of mediastinum, in particular in the esophagus, causing unavailability of a transesophageal echocardiogram. PMID:27867461

  19. Severe Pneumococcal Pneumonia Causes Acute Cardiac Toxicity and Subsequent Cardiac Remodeling.

    PubMed

    Reyes, Luis F; Restrepo, Marcos I; Hinojosa, Cecilia A; Soni, Nilam J; Anzueto, Antonio; Babu, Bettina L; Gonzalez-Juarbe, Norberto; Rodriguez, Alejandro H; Jimenez, Alejandro; Chalmers, James D; Aliberti, Stefano; Sibila, Oriol; Winter, Vicki T; Coalson, Jacqueline J; Giavedoni, Luis D; Dela Cruz, Charles S; Waterer, Grant W; Witzenrath, Martin; Suttorp, Norbert; Dube, Peter H; Orihuela, Carlos J

    2017-09-01

    Up to one-third of patients hospitalized with pneumococcal pneumonia experience major adverse cardiac events (MACE) during or after pneumonia. In mice, Streptococcus pneumoniae can invade the myocardium, induce cardiomyocyte death, and disrupt cardiac function following bacteremia, but it is unknown whether the same occurs in humans with severe pneumonia. We sought to determine whether S. pneumoniae can (1) translocate the heart, (2) induce cardiomyocyte death, (3) cause MACE, and (4) induce cardiac scar formation after antibiotic treatment during severe pneumonia using a nonhuman primate (NHP) model. We examined cardiac tissue from six adult NHPs with severe pneumococcal pneumonia and three uninfected control animals. Three animals were rescued with antibiotics (convalescent animals). Electrocardiographic, echocardiographic, and serum biomarkers of cardiac damage were measured (troponin T, N-terminal pro-brain natriuretic peptide, and heart-type fatty acid binding protein). Histological examination included hematoxylin and eosin staining, immunofluorescence, immunohistochemistry, picrosirius red staining, and transmission electron microscopy. Immunoblots were used to assess the underlying mechanisms. Nonspecific ischemic alterations were detected by electrocardiography and echocardiography. Serum levels of troponin T and heart-type fatty acid binding protein were increased (P < 0.05) after pneumococcal infection in both acutely ill and convalescent NHPs. S. pneumoniae was detected in the myocardium of all NHPs with acute severe pneumonia. Necroptosis and apoptosis were detected in the myocardium of both acutely ill and convalescent NHPs. Evidence of cardiac scar formation was observed only in convalescent animals by transmission electron microscopy and picrosirius red staining. S. pneumoniae invades the myocardium and induces cardiac injury with necroptosis and apoptosis, followed by cardiac scarring after antibiotic therapy, in an NHP model of severe

  20. Cardiac toxicity of trastuzumab in elderly patients with breast cancer

    PubMed Central

    Denegri, Andrea; Moccetti, Tiziano; Moccetti, Marco; Spallarossa, Paolo; Brunelli, Claudio; Ameri, Pietro

    2016-01-01

    Breast cancer (BC) is diagnosed in ≥ 65 year old women in about half of cases. Experts currently recommend that systemic therapy is offered to elderly patients with BC, if, based on their overall conditions and life expectancy, it can be reasonably anticipated that the benefits will outweigh the risks of treatment. Like for young subjects, the monoclonal antibody against human epidermal growth factor receptor-2 (HER-2), trastuzumab, represents a valid therapeutic option when BC over-expresses this receptor. Unfortunately, administration of trastuzumab is associated with the occurrence of left ventricular dysfunction and chronic heart failure (CHF), possibly because of interference with the homeostatic functions of HER-2 in the heart. Registry-based, retrospective analyses have reported an incidence of CHF around 25% in elderly women receiving trastuzumab compared with 10%–15% in those not given any therapy for BC, and the risk of CHF has been estimated to be two-fold higher in > 60–65 year old trastuzumab users vs. non-users. Extremely advanced age and preexisting cardiac disease have been shown to predispose to trastuzumab cardiotoxicity. Therefore, selection of older patients for treatment with trastuzumab should be primarily based on their general status and the presence of comorbidities; previous chemotherapy, especially with anthracyclines, should be also taken into account. Once therapy has started, efforts should be made to ensure regular cardiac surveillance. The role of selected biomarkers, such as cardiac troponin, or new imaging techniques (three-dimension, tissue Doppler echocardiography, magnetic resonance imaging) is promising, but must be further investigated especially in the elderly. Moreover, additional studies are needed in order to better understand the mechanisms by which trastuzumab affects the old heart. PMID:27403145

  1. [{sup 18}F]fluorodeoxyglucose Uptake Patterns in Lung Before Radiotherapy Identify Areas More Susceptible to Radiation-Induced Lung Toxicity in Non-Small-Cell Lung Cancer Patients

    SciTech Connect

    Petit, Steven F.; Elmpt, Wouter J.C. van; Oberije, Cary J.G.; Vegt, Erik; Dingemans, Anne-Marie C.; Lambin, Philippe; Dekker, Andre L.A.J.; De Ruysscher, Dirk

    2011-11-01

    Purpose: Our hypothesis was that pretreatment inflammation in the lung makes pulmonary tissue more susceptible to radiation damage. The relationship between pretreatment [{sup 18}F]fluorodeoxyglucose ([{sup 18}F]FDG) uptake in the lungs (as a surrogate for inflammation) and the delivered radiation dose and radiation-induced lung toxicity (RILT) was investigated. Methods and Materials: We retrospectively studied a prospectively obtained cohort of 101 non-small-cell lung cancer patients treated with (chemo)radiation therapy (RT). [{sup 18}F]FDG-positron emission tomography-computed tomography (PET-CT) scans used for treatment planning were studied. Different parameters were used to describe [{sup 18}F]FDG uptake patterns in the lungs, excluding clinical target volumes, and the interaction with radiation dose. An increase in the dyspnea grade of 1 (Common Terminology Criteria for Adverse Events version 3.0) or more points compared to the pre-RT score was used as an endpoint for analysis of RILT. The effect of [{sup 18}F]FDG and CT-based variables, dose, and other patient or treatment characteristics that effected RILT was studied using logistic regression. Results: Increased lung density and pretreatment [{sup 18}F]FDG uptake were related to RILT after RT with univariable logistic regression. The 95th percentile of the [{sup 18}F]FDG uptake in the lungs remained significant in multivariable logistic regression (p = 0.016; odds ratio [OR] = 4.3), together with age (p = 0.029; OR = 1.06), and a pre-RT dyspnea score of {>=}1 (p = 0.005; OR = 0.20). Significant interaction effects were demonstrated among the 80th, 90th, and 95th percentiles and the relative lung volume receiving more than 2 and 5 Gy. Conclusions: The risk of RILT increased with the 95th percentile of the [{sup 18}F]FDG uptake in the lungs, excluding clinical tumor volume (OR = 4.3). The effect became more pronounced as the fraction of the 5%, 10%, and 20% highest standardized uptake value voxels that

  2. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  3. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  4. Comparative cardiac toxicity of anthracyclines in vitro and in vivo in the mouse.

    PubMed

    Toldo, Stefano; Goehe, Rachel W; Lotrionte, Marzia; Mezzaroma, Eleonora; Sumner, Evan T; Biondi-Zoccai, Giuseppe G L; Seropian, Ignacio M; Van Tassell, Benjamin W; Loperfido, Francesco; Palazzoni, Giovanni; Voelkel, Norbert F; Abbate, Antonio; Gewirtz, David A

    2013-01-01

    The antineoplastic efficacy of anthracyclines is limited by their cardiac toxicity. In this study, we evaluated the toxicity of doxorubicin, non-pegylated liposomal-delivered doxorubicin, and epirubicin in HL-1 adult cardiomyocytes in culture as well as in the mouse in vivo. The cardiomyocytes were incubated with the three anthracyclines (1 µM) to assess reactive oxygen generation, DNA damage and apoptotic cell death. CF-1 mice (10/group) received doxorubicin, epirubicin or non-pegylated liposomal-doxorubicin (10 mg/kg) and cardiac function was monitored by Doppler echocardiography to measure left ventricular ejection fraction (LVEF), heart rate (HR) and cardiac output (CO) both prior to and 10 days after drug treatment. In HL-1 cells, non-pegylated liposomal-doxorubicin generated significantly less reactive oxygen species (ROS), as well as less DNA damage and apoptosis activation when compared with doxorubicin and epirubicin. Cultured breast tumor cells showed similar sensitivity to the three anthracyclines. In the healthy mouse, non-pegylated liposomal doxorubicin showed a minimal and non-significant decrease in LVEF with no change in HR or CO, compared to doxorubicin and epirubicin. This study provides evidence for reduced cardiac toxicity of non-pegylated-liposomal doxorubicin characterized by attenuation of ROS generation, DNA damage and apoptosis in comparison to epirubicin and doxorubicin.

  5. Environmental enrichment and abstinence attenuate ketamine-induced cardiac and renal toxicity

    PubMed Central

    Li, Xingxing; Li, Shuangyan; Zheng, Wenhui; Pan, Jian; Huang, Kunyu; Chen, Rong; Pan, Tonghe; Liao, Guorong; Chen, Zhongming; Zhou, Dongsheng; Shen, Wenwen; Zhou, Wenhua; Liu, Yu

    2015-01-01

    The current study was designed to investigate the effect of abstinence in combination with environmental enrichment (EE) on cardiac and renal toxicity induced by 2 weeks of ketamine self-administration (SA) in rodents. In Experiment 1, one group of rats underwent ketamine SA for 14 days. In Experiment 2, the animals completed 2 weeks of ketamine SA followed by 2 and 4 weeks of abstinence. In Experiment 3, animals underwent 14 days of ketamine SA and 4 weeks of abstinence in which isolated environment (IE) and EE was introduced. The corresponding control groups were included for each experiment. Two weeks of ketamine SA caused significant increases in organ weight, Apoptosis Stimulating Fragment/Kidney Injury Molecule-1, and apoptotic level of heart and kidney. The extended length of withdrawal from ketamine SA partially reduced toxicity on the heart and kidney. Finally, introduction of EE during the period of abstinence greatly promoted the effect of abstinence on ketamine-induced cardiac and renal toxicity. The interactive effect of EE and abstinence was promising to promote the recovery of cardiac and renal toxicity of ketamine. PMID:26112338

  6. Mechanistic investigation of imatinib-induced cardiac toxicity and the involvement of c-Abl kinase.

    PubMed

    Hu, Wenyue; Lu, Shuyan; McAlpine, Indrawan; Jamieson, Joseph D; Lee, Dong U; Marroquin, Lisa D; Heyen, Jonathan R; Jessen, Bart A

    2012-09-01

    The Bcr-abl tyrosine kinase inhibitor imatinib mesylate is the frontline therapy for chronic myeloid leukemia. Imatinib has been reported to cause congestive heart failure and left ventricular contractile dysfunction in patients and cardiomyopathy in rodents, findings proposed to be associated with its pharmacological activity. To investigate the specific role of Abelson oncogene 1 (c-Abl) in imatinib-induced cardiac toxicity, we performed targeted gene inhibition of c-Abl by RNA interference in neonatal cardiomyocytes (NCMs). Suppression of c-Abl did not lead to cytotoxicity or induction of endoplasmic reticulum (ER) stress. To further dis associate c-Abl from imatinib-induced cardiac toxicity, we designed imatinib structural analogs that do not have appreciable c-Abl inhibition in NCMs. The c-Abl inactive analogs induced cytotoxicity and ER stress, at similar or greater potencies and magnitudes as imatinib. Furthermore, combining c-Abl gene silencing with imatinib and analogs treatment did not significantly shift the cytotoxicity dose response curves. Imatinib and analogs were shown to accumulate in lysosomes, likely due to their physicochemical properties, and disrupt autophagy. The toxicity induced by imatinib and analogs can be rescued by bafilomycin A pretreatment, demonstrating the involvement of lysosomal accumulation in cardiac toxicity. The results from our studies strongly suggest that imatinib induces cardiomyocyte dysfunction through disruption of autophagy and induction of ER stress, independent of c-Abl inhibition.

  7. Cardiac Toxicity in Selective Serotonin Reuptake Inhibitor Users.

    PubMed

    Lusetti, Monia; Licata, Manuela; Silingardi, Enrico; Reggiani Bonetti, Luca; Palmiere, Cristian

    2015-12-01

    Several classes of recreational and prescription drugs have been associated with an increased risk of cardiovascular disease and the occurrence of arrhythmias, which may be involved in sudden deaths in chronic users even at therapeutic doses. The study presented herein focuses on pathological changes involving the heart, which may be caused by selective serotonin reuptake inhibitor use and their possible role in the occurrence of sudden cardiac death. A total of 40 cases were included in the study and were divided evenly into 2 groups: 20 cases of patients treated with selective serotonin reuptake inhibitors and 20 cases of sudden deaths involving patients void of any drug treatment. The first group included 16 patients treated with citalopram and 4 with sertraline. Autopsies, histology, biochemistry, and toxicology were performed in all cases. Pathological changes in selective serotonin reuptake inhibitor users consisted of various degrees of interstitial and perivascular fibrosis as well as a small degree of perineural fibrosis within the myocardium of the left ventricle. Within the limits of the small number of investigated cases, the results of this study seem to confirm former observations on this topic, suggesting that selective serotonin reuptake inhibitors may play a potential, causative role in the pathogenesis of sudden deaths in chronic users even at therapeutic concentrations.

  8. Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy.

    PubMed

    Zhang, Rui; Howell, Rebecca M; Homann, Kenneth; Giebeler, Annelise; Taddei, Phillip J; Mahajan, Anita; Newhauser, Wayne D

    2013-07-23

    Hodgkin disease (HD) and medulloblastoma (MB) are common malignancies found in children and young adults, and radiotherapy is part of the standard treatment. It was reported that these patients who received radiation therapy have an increased risk of cardiovascular late effects. We compared the predicted risk of developing radiogenic cardiac toxicity after photon versus proton radiotherapies for a pediatric patient with HD and a pediatric patient with MB. In the treatment plans, each patient's heart was contoured in fine detail, including substructures of the pericardium and myocardium. Risk calculations took into account both therapeutic and stray radiation doses. We calculated the relative risk (RR) of cardiac toxicity using a linear risk model and the normal tissue complication probability (NTCP) values using relative seriality and Lyman models. Uncertainty analyses were also performed. The RR values of cardiac toxicity for the HD patient were 7.27 (proton) and 8.37 (photon), respectively; the RR values for the MB patient were 1.28 (proton) and 8.39 (photon), respectively. The predicted NTCP values for the HD patient were 2.17% (proton) and 2.67% (photon) for the myocardium, and were 2.11% (proton) and 1.92% (photon) for the whole heart. The predicted ratios of NTCP values (proton/photon) for the MB patient were much less than unity. Uncertainty analyses revealed that the predicted ratio of risk between proton and photon therapies was sensitive to uncertainties in the NTCP model parameters and the mean radiation weighting factor for neutrons, but was not sensitive to heart structure contours. The qualitative findings of the study were not sensitive to uncertainties in these factors. We conclude that proton and photon radiotherapies confer similar predicted risks of cardiac toxicity for the HD patient in this study, and that proton therapy reduced the predicted risk for the MB patient in this study.

  9. Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy

    PubMed Central

    2013-01-01

    Background Hodgkin disease (HD) and medulloblastoma (MB) are common malignancies found in children and young adults, and radiotherapy is part of the standard treatment. It was reported that these patients who received radiation therapy have an increased risk of cardiovascular late effects. We compared the predicted risk of developing radiogenic cardiac toxicity after photon versus proton radiotherapies for a pediatric patient with HD and a pediatric patient with MB. Methods In the treatment plans, each patient’s heart was contoured in fine detail, including substructures of the pericardium and myocardium. Risk calculations took into account both therapeutic and stray radiation doses. We calculated the relative risk (RR) of cardiac toxicity using a linear risk model and the normal tissue complication probability (NTCP) values using relative seriality and Lyman models. Uncertainty analyses were also performed. Results The RR values of cardiac toxicity for the HD patient were 7.27 (proton) and 8.37 (photon), respectively; the RR values for the MB patient were 1.28 (proton) and 8.39 (photon), respectively. The predicted NTCP values for the HD patient were 2.17% (proton) and 2.67% (photon) for the myocardium, and were 2.11% (proton) and 1.92% (photon) for the whole heart. The predicted ratios of NTCP values (proton/photon) for the MB patient were much less than unity. Uncertainty analyses revealed that the predicted ratio of risk between proton and photon therapies was sensitive to uncertainties in the NTCP model parameters and the mean radiation weighting factor for neutrons, but was not sensitive to heart structure contours. The qualitative findings of the study were not sensitive to uncertainties in these factors. Conclusions We conclude that proton and photon radiotherapies confer similar predicted risks of cardiac toxicity for the HD patient in this study, and that proton therapy reduced the predicted risk for the MB patient in this study. PMID:23880421

  10. Speckle-Tracking Echocardiography to Detect Cardiac Toxicity in Children Who Received Anthracyclines During Pregnancy.

    PubMed

    Avilès, Agustin; Nambo, Marìa-Jesus; Huerta-Guzmàn, Judith; Neri, Natividad; Cleto, Sergio

    2016-01-01

    Cardiac toxicities remain a possible risk to fetuses that received anthracyclines during pregnancy. The introduction of new echocardiographic techniques will improve the detection of early cardiac damage. Thus, we began a observational study using speckle-tracking echocardiography (STE) in children who had received anthracyclines during pregnancy, including the first trimester. From 2009 to 2013, we performed STE on patients > 5 years old, whose mothers had received anthracyclines during pregnancy. Siblings or cousins of equivalent age and gender were used as the control group. A total of 90 children fulfilled the entry criteria. Our results with STE were normal in all echocardiography parameters and did not show any differences when compared with the findings from the control group. We consider that the use of anthracyclines during pregnancy does not produce cardiac damage in newborns and can be safely administered, because no cardiac toxicity was evident in these children and it is of benefit to the mother. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The effect of tianeptine in the prevention of radiation-induced neurocognitive impairment.

    PubMed

    Akyurek, Serap; Senturk, Vesile; Oncu, Bedriye; Ozyigit, Gokhan; Yilmaz, Sercan; Gokce, Saban Cakir

    2008-12-01

    Radiation-induced neurocognitive impairment is an undesirable radiation-induced toxicity and a common health problem in patients with primary or metastatic brain tumor. It greatly impairs quality of life for long-term brain tumor survivors. Hippocampus is the most important brain structure for neurocognitive functions. It has been shown that radiation affects the hippocampal neurogenesis due to either induce the apoptosis or reduce the precursor cell proliferation in the hippocampus. Radiation-induced microglial inflammatory response is also negative regulator of neurogenesis. Tianeptine is a clinically effective antidepressant that induces neurogenesis. It has also been shown that tianeptine is able to reduce apoptosis and cytoprotective against the effects of proinflammatory cytokines in the hippocampus. Given the putative role of impaired hippocampal neurogenesis in radiation-induced neurocognitive impairment we think that tianeptine can be effective for preventing radiation-induced neurocognitive impairment by increasing hippocampal neurogenesis.

  12. Management of cardiac toxicity in patients receiving vascular endothelial growth factor signaling pathway inhibitors.

    PubMed

    Steingart, Richard M; Bakris, George L; Chen, Helen X; Chen, Ming-Hui; Force, Thomas; Ivy, S Percy; Leier, Carl V; Liu, Glenn; Lenihan, Daniel; Lindenfeld, JoAnn; Maitland, Michael L; Remick, Scot C; Tang, W H Wilson

    2012-02-01

    Interfering with angiogenesis is an effective, widely used approach to cancer therapy, but antiangiogenic therapies have been associated with important systemic cardiovascular toxicities such as hypertension, left ventricular dysfunction, heart failure, and myocardial ischemia and infarction. As the use of vascular endothelial growth factor signaling pathway (VSP) inhibitors broadens to include older patients and those with existing cardiovascular disease, the adverse effects are likely to be more frequent, and cardiologists will increasingly be enlisted to help oncologists manage patients who develop adverse cardiovascular effects. The Cardiovascular Toxicities Panel of the National Cancer Institute reviewed the published literature and abstracts from major meetings, shared experience gained during clinical development of VSP inhibitors, and contributed extensive clinical experience in evaluating and treating patients with cancer with cardiovascular disease. This report was edited and approved by the National Cancer Institute Investigational Drug Steering Committee. It presents the panel's expert opinion on the current clinical use and future investigation for safer, more expansive use of these drugs. The panel recommends that physicians (1) conduct and document a formal risk assessment for existing cardiovascular disease and potential cardiovascular complications before VSP inhibitor treatment recognizing that preexisting hypertension and cardiovascular disease are common in patients with cancer, (2) actively monitor for blood pressure elevations and cardiac toxicity with more frequent assessments during the first treatment cycle, and (3) aggressively manage blood pressure elevations and early symptoms and signs of cardiac toxicity to prevent clinically limiting complications of VSP inhibitor therapy. Copyright © 2012 Mosby, Inc. All rights reserved.

  13. AHR2-Mediated Transcriptomic Responses Underlying the Synergistic Cardiac Developmental Toxicity of PAHs

    PubMed Central

    Jayasundara, Nishad; Van Tiem Garner, Lindsey; Meyer, Joel N.; Erwin, Kyle N.; Di Giulio, Richard T.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) induce developmental defects including cardiac deformities in fish. The aryl hydrocarbon receptor (AHR) mediates the toxicity of some PAHs. Exposure to a simple PAH mixture during embryo development consisting of an AHR agonist (benzo(a)pyrene-BaP) with fluoranthene (FL), an inhibitor of cytochrome p450 1(CYP1)—a gene induced by AHR activation—results in cardiac deformities. Exposure to BaP or FL alone at similar concentrations alters heart rates, but does not induce morphological deformities. Furthermore, AHR2 knockdown prevents the toxicity of BaP + FL mixture. Here, we used a zebrafish microarray analysis to identify heart-specific transcriptomic changes during early development that might underlie cardiotoxicity of BaP + FL. We used AHR2 morphant embryos to determine the role of this receptor in mediating toxicity. Control and knockdown embryos at 36 h post-fertilization were exposed to DMSO, 100 μg/l BaP, 500 μg/l FL, or 100 μg/l BaP + 500 μg/l FL, and heart tissues for RNA were extracted at 2, 6, 12, and 18 h-post-exposure (hpe), prior to the appearance of cardiac deformities. Data show AHR2-dependent BaP + FL effects on expression of genes involved in protein biosynthesis and neuronal development in addition to signaling molecules and their associated molecular pathways. Ca2+-cycling and muscle contraction genes were the most significantly differentially expressed category of transcripts when comparing BaP + FL-treated AHR2 morphant and control embryos. These differences were most prominent at 2 and 6 hpe. Therefore, we postulate that BaP + FL may affect cellular Ca2+ levels and subsequently cardiac muscle function, potentially underlying BaP + FL cardiotoxicity. PMID:25412620

  14. Transient Complete Heart Block Secondary to Bed Bug Insecticide: A Case of Pyrethroid Cardiac Toxicity.

    PubMed

    Singh, Hemindermeet; Luni, Faraz Khan; Marwaha, Bharat; Ali, Syed Sohail; Alo, Mohammed

    2016-01-01

    Pyrethroids are the major components of various commercially used insect repellants. These are less toxic to humans due to their slow absorption and rapid metabolism. However, cases of suicidal and accidental poisoning with household insecticides are not uncommon. We report a case of a 59-year-old female who presented with syncope after an accidental exposure to bed bug repellant spray at home. She was found to be in complete heart block and was treated conservatively. There was complete resolution of symptoms and atrioventricular conduction abnormality on day 2 of hospitalization. She was discharged in a stable condition with an uneventful follow-up course. Cardiac involvement in pyrethroid toxicity is rare. We describe various clinical manifestations and the pathophysiology of toxicity caused by pyrethroid-containing insecticides.

  15. Radiation-induced bladder carcinoma

    SciTech Connect

    Uyama, T.; Nakamura, S.; Moriwaki, S.

    1981-01-01

    Two cases are presented of radiation-induced bladder carcinoma which followed prior irradiation for cervical carcinoma of the uterus. One was a sixty-eight-year-old woman with bladder carcinoma fourteen years after irradiation (total dose of 4,500 rad) for cervical carcinoma of the uterus. The other was a sixty-four-year-old woman with bladder carcinoma twenty-five years after irradiation with 150-K volt apparatus for cervical carcinoma of the uterus. From the late radiation change of the skin, it was estimated that the total dose of prior radiation might be 4,000 rad or more. Both had high-grade, high-stage transitional cell bladder carcinoma, and the former was with marked mucus-forming adenomatous metaplasia.

  16. Late onset radiation-induced constrictive pericarditis and cardiomyopathy after radiotherapy

    PubMed Central

    Zhuang, Xiao-feng; Yang, Yan-min; Sun, Xiao-lu; Liao, Zhong-kai; Huang, Jie

    2017-01-01

    Abstract Introduction: Radiation-induced heart disease (RIHD) is a serious side effect of cancer treatment, including coronary artery disease, valvular cardiac dysfunction, cardiomyopathy, aortopathy, and chronic constrictive pericarditis. Herein, this case we present was diagnosed as radiation-induced constrictive pericarditis and cardiomyopathy by means of cardiac magnetic resonance (CMR) and transthoracic echocardiogram, finally confirmed by pathology after performing heart transplant operation. Conclusions: This case supports a notion that RIHD often causes multiple heart impairment and CMR is helpful to diagnose cardiomyopathy after radiation. PMID:28151876

  17. Dose and volume impact on radiation-induced xerostomia.

    PubMed

    Marmiroli, Luca; Salvi, Giovanna; Caiazza, Adolfo; Di Rienzo, Luigi; Massaccesi, Mariangela; Murino, Paola; Macchia, Gabriella

    2005-01-01

    Radiation-induced xerostomia consists in the chronic dryness of the mouth caused by parotid gland irradiation. Parotid glands produce approximately 60% of saliva while the rest is secreted by submandibular and accessory salivary glands. Methods of measuring the salivary output are essentially represented by 99mTc-pertechnate scintigraphy or simpler albeit less accurate methods in stimulated or unstimulated saliva. There are subjective and objective criteria of classification and grading of the secretion of saliva. Radiation-induced xerostomia, namely the residual salivary gland function is evidently associated with the mean dose absorbed. The salivary output tends to decrease after the end of radiotherapy. The partial dose-volume is substantially correlated with the mean dose to the whole gland. As for ipsilateral irradiation for head and neck cancer, conformal RT or IMRT allow to spare the contralateral parotid gland without increasing the risk of contralateral nodal recurrences. The monitoring system of late toxicity used by the authors is presented.

  18. Lipid emulsion pretreatment has different effects on mepivacaine and bupivacaine cardiac toxicity in an isolated rat heart model.

    PubMed

    Aumeier, C; Kasdorf, B; Gruber, M; Busse, H; Wiese, C H; Zink, W; Graf, B M; Zausig, Y A

    2014-04-01

    The use of lipid emulsions to reduce cardiac toxicity of local anaesthetics (LAs) has shown success in experimental studies and some clinical cases, and thus has been implemented in clinical practice. However, lipid treatment is usually given after the occurrence of neurological or cardiovascular symptoms of systemic intoxication. The aim of this study was to determine if pretreatment with lipid emulsion reduces cardiac toxicity produced by bupivacaine or mepivacaine. Isolated rat hearts were perfused with or without lipid emulsion (0.25 ml kg(-1) min(-1)) before administration of equipotent doses of bupivacaine (250 µM) or mepivacaine (1000 µM). Haemodynamic parameters and times from start of perfusion LA to a 1 min period of asystole and recovery were determined. Pretreatment with lipid emulsion extended the time until occurrence of asystole and decreased times to recovery in bupivacaine-induced cardiac toxicity but not in mepivacaine-induced cardiac toxicity compared with control. Lipid pretreatment impaired rate-pressure product recovery in mepivacaine-intoxicated hearts. This study confirms that pretreatment with a lipid emulsion reduces cardiac toxicity of LAs. The efficacy of pretreatment with lipid emulsion was LA-dependent, so pharmacokinetic properties, such as lipophilicity, might influence the effects of lipid emulsion pretreatment.

  19. Developmental toxicity and cardiac effects of butyl benzyl phthalate in zebrafish embryos.

    PubMed

    Sun, Guijin; Liu, Kechun

    2017-09-22

    Phthalic acid esters (PAEs), commonly called phthalates, have become ubiquitous environment pollutants. Studies have focused on reproductive toxicity, neurotoxicity, teratogenicity, tumourigenesis, and mutagenesis of phthalates. However, relatively little is known about the phthalates effects on the heart. Butyl benzyl phthalate (BBP), a member of PAEs, is classified by the US Environmental Protection Agency as a priority environmental pollutant. We studied the developmental toxicity of BBP, especially its effects on the heart development, in zebrafish (Danio rerio) embryos. Embryos at 4hr post-fertilization (hpf) were exposed to 0, 0.1, 0.6 and 1.2mg/L BBP until 72hpf. BBP caused abnormalities in embryo morphology, including yolk-sac edema, spinal curvature, tail deformity, uninflated swim bladder and cardiac defects. Exposure to 0.6mg/L BBP significantly increased the malformation rate, caused growth inhibition, increased the cardiac malformation rate as well as the distance between the sinus venosus (SV) and bulbus arteriosus (BA), and reduced the heart rate of embryos. Exposure to 1.2mg/L BBP significantly affected all endpoints, except survival rate at 24hpf. To preliminarily elucidate the potential mechanism of heart developmental toxicity caused by BBP, we examined the expression of two genes related to heart development, Nkx2.5 and T-box transcription factor 5, by real-time quantitative PCR. The expression of the two genes was dose-dependently downregulated with BBP. BBP could induce developmental toxicity, with adverse effects on the heart development in zebrafish embryos, and alter the expression of genes related to heart development. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [New tyrosine kinase and EGFR inhibitors in cancer therapy. Cardiac and skin toxicity as relevant side effects. Part A: heart].

    PubMed

    Rottlaender, D; Reda, S; Motloch, L J; Hoppe, U C

    2011-10-01

    Cardiotoxicity is a serious side effect of targeted molecular therapies in cancer treatment. Monoclonal antibodies and tyrosine kinase inhibitors are known to be potent therapies in various neoplastic diseases due to inhibition of specific signal transduction pathways. Although targeted therapies are considered to be less toxic and better tolerated than common chemotherapies certain cardiac side effects have been observed. Cardiac toxicity may range from asymptomatic reduction of left ventricular function to life-threatening events like heart failure and acute coronary syndrome. Further side effects are arterial hypertension, thrombosis and arrhythmias. Cardiovascular side effects are common for anti-HER2 therapy in combination with anthracyclines and for inhibitors of angiogenesis. In these patients careful cardiac monitoring is warranted. Because of missing randomized long-term follow-ups, information about cardiac side effects is limited in newly developed targeted molecular therapies. In case of cardiac side effects or preexisting cardiac disease before therapy initiation, assessments by a cardiologist throughout the course of treatment are important. For patients with severe cardiac side effects, discontinuation of treatment is warranted; in case of asymptomatic cardiac side effects symptom-specific therapy should be performed.

  1. A new CT-based method to quantify radiation-induced lung damage in patients.

    PubMed

    Ghobadi, Ghazaleh; Wiegman, Erwin M; Langendijk, Johannes A; Widder, Joachim; Coppes, Robert P; van Luijk, Peter

    2015-10-01

    A new method to assess radiation-induced lung toxicity (RILT) using CT-scans was developed. It is more sensitive in detecting damage and corresponds better to physician-rated radiation pneumonitis than routinely-used methods. Use of this method may improve lung toxicity assessment and thereby facilitate development of more accurate predictive models for RILT.

  2. Treatment of Radiation-Induced Urethral Strictures.

    PubMed

    Hofer, Matthias D; Liu, Joceline S; Morey, Allen F

    2017-02-01

    Radiation therapy may result in urethral strictures from vascular damage. Most radiation-induced urethral strictures occur in the bulbomembranous junction, and urinary incontinence may result as a consequence of treatment. Radiation therapy may compromise reconstruction due to poor tissue healing and radionecrosis. Excision and primary anastomosis is the preferred urethroplasty technique for radiation-induced urethral stricture. Principles of posterior urethroplasty for trauma may be applied to the treatment of radiation-induced urethral strictures. Chronic management with suprapubic tube is an option based on patient comorbidities and preference.

  3. Radiation-induced moyamoya syndrome

    SciTech Connect

    Desai, Snehal S.; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2006-07-15

    Purpose: The moyamoya syndrome is an uncommon late complication after radiotherapy (RT). Methods and Materials: A PubMed search of English-language articles, with radiation, radiotherapy, and moyamoya syndrome used as search key words, yielded 33 articles from 1967 to 2002. Results: The series included 54 patients with a median age at initial RT of 3.8 years (range, 0.4 to 47). Age at RT was less than 5 years in 56.3%, 5 to 10 years in 22.9%, 11 to 20 years in 8.3%, 21 to 30 years in 6.3%, 31 to 40 years in 2.1%, and 41 to 50 years in 4.2%. Fourteen of 54 patients (25.9%) were diagnosed with neurofibromatosis type 1 (NF-1). The most common tumor treated with RT was low-grade glioma in 37 tumors (68.5%) of which 29 were optic-pathway glioma. The average RT dose was 46.5 Gy (range, 22-120 Gy). For NF-1-positive patients, the average RT dose was 46.5 Gy, and for NF-1-negative patients, it was 58.1 Gy. The median latent period for development of moyamoya syndrome was 40 months after RT (range, 4-240). Radiation-induced moyamoya syndrome occurred in 27.7% of patients by 2 years, 53.2% of patients by 4 years, 74.5% of patients by 6 years, and 95.7% of patients by 12 years after RT. Conclusions: Patients who received RT to the parasellar region at a young age (<5 years) are the most susceptible to moyamoya syndrome. The incidence for moyamoya syndrome continues to increase with time, with half of cases occurring within 4 years of RT and 95% of cases occurring within 12 years. Patients with NF-1 have a lower radiation-dose threshold for development of moyamoya syndrome.

  4. Selective cytoprotective effect of histamine on doxorubicin-induced hepatic and cardiac toxicity in animal models

    PubMed Central

    Lamas, DJMartinel; Nicoud, MB; Sterle, HA; Carabajal, E; Tesan, F; Perazzo, JC; Cremaschi, GA; Rivera, ES; Medina, VA

    2015-01-01

    The aim of the present work was to evaluate the potential protective effect of histamine on Doxorubicin (Dox)-induced hepatic and cardiac toxicity in different rodent species and in a triple-negative breast tumor-bearing mice model. Male Sprague Dawley rats and Balb/c mice were divided into four groups: control (received saline), histamine (5 mg/kg for rats and 1 mg/kg for mice, daily subcutaneous injection starting 24 h before treatment with Dox), Dox (2 mg/kg, intraperitoneally injected three times a week for 2 weeks) and Dox+histamine (received both treatments). Tissue toxicity was evaluated by histopathological studies and oxidative stress and biochemical parameters. The combined effect of histamine and Dox was also investigated in vitro and in vivo in human MDA-MB-231 triple-negative breast cancer model. Heart and liver of Dox-treated animals displayed severe histological damage, loss of tissue weight, increased TBARS levels and DNA damage along with an augment in serum creatine kinase-myocardial band. Pretreatment with histamine prevented Dox-induced tissue events producing a significant preservation of the integrity of both rat and mouse myocardium and liver, through the reduction of Dox-induced oxidative stress and apoptosis. Histamine treatment preserved anti-tumor activity of Dox, exhibiting differential cytotoxicity and increasing the Dox-induced inhibition of breast tumor growth. Findings provide preclinical evidence indicating that histamine could be a promising candidate as a selective cytoprotective agent for the treatment of Dox-induced cardiac and hepatic toxicity, and encourage the translation to clinical practice. PMID:27551485

  5. Radiation-induced accelerated coronary arteriosclerosis

    SciTech Connect

    Mittal, B.; Deutsch, M.; Thompson, M.; Dameshek, H.L.

    1986-07-01

    There is a paucity of information on radiation-induced coronary heart disease. A young patient with myocardial infarction following mediastinal irradiation is described. The role of radiotherapy and chemotherapy on the subsequent development of coronary heart disease is discussed.

  6. Radiation-induced sarcoma of the thyroid

    SciTech Connect

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.; Templeton, A.C. )

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  7. Overview on cardiac, pulmonary and cutaneous toxicity in patients treated with adjuvant radiotherapy for breast cancer.

    PubMed

    Meattini, Icro; Guenzi, Marina; Fozza, Alessandra; Vidali, Cristiana; Rovea, Paolo; Meacci, Fiammetta; Livi, Lorenzo

    2017-01-01

    Conservative management of breast cancer represents the standard treatment for early disease. Breast conserving surgery associated with radiotherapy for stage I-II has been proven to be as equally effective as mastectomy in term of local control, distant disease, and overall survival. The growing minimal invasive surgical approach on the axillary region, and the new breast reconstructive techniques, will probably lead to a significant decrease of the rate of side-effects related to mastectomy. Therefore, the adverse events caused by adjuvant radiation still remain a challenge. Cutaneous, pulmonary and cardiac toxicity represent the main toxicities of adjuvant radiotherapy for breast cancer. Safety profile of radiation is strongly dependent on the multidisciplinary management of the single case (systemic treatment, endocrine therapy, surgery), individual characteristics (i.e., co-morbidities, age, habits), and radiation-related aspects. Radiation techniques development, and facilities implementation concerning organs-at-risk sparing systems (i.e., image-guided radiotherapy, tracking systems, respiratory gating), represent brand new tools for the clinical oncologist, that would certainly minimize toxicity profile in the next future. However, data reported from published literature will greatly help physicians, to give to the patients appropriate counseling regarding the efficacy and potential adverse events of treatments, thus optimizing the informed decision-making process.

  8. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  9. Modulation of Radiation-Induced Apoptosis by Thiolamines

    NASA Technical Reports Server (NTRS)

    Warters, R. L.; Roberts, J. C.; Wilmore, B. H.; Kelley, L. L.

    1997-01-01

    Exposure to the thiolamine radioprotector N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) induced apoptosis in the mouse TB8-3 hybridoma after 60-minute (LD(sub50) = 4.5mM) or during a 20-hour (LD(sub50) = 0.15 mM) exposure. In contrast, a 20-hour exposure to 17 mM L-cysteine or 10 mM cysteamine was required to induce 50 percent apoptosis within 20 hours. Apoptosis was not induced by either a 60-minute or 20-hour exposure to 10 mM of the thiazolidime prodrugs ribose-cysteine (RibCys) or ribose-cysteamine (RibCyst). Thiolamine-induced apoptosis appeared to be a p53-independent process since it was induced by WR-1065 exposure in human HL60 cells. Exposure to WR-1065 (4mM for 15 minutes) or cysteine (10mM for 60 minutes) before and during irradiation protected cells against the induction of both DNA double-strand breaks and apoptosis, while exposure to RibCys (10 mM for 3 hours) did not. Treatment with either WR-1065, cysteine, RibCys or RibCyst for 60 minutes beginning 60 minutes after irradiation did not affect the level of radiation-induced apoptosis. In contrast, treatment with either cysteine, cysteamine or RibCys for 20 hours beginning 60 minutes after irradiation enhanced radiation-induced apoptosis. Similar experiments could not be conducted with WR-1065 because of its extreme toxicity. Our results indicate that thiolamine enhancement of radiation-induced apoptosis is not involved in their previously reported capacity to reduce radiation-induced mutations.

  10. Cardiac and CNS toxicity of levobupivacaine: strengths of evidence for advantage over bupivacaine.

    PubMed

    Gristwood, Robert W

    2002-01-01

    Bupivacaine is currently the most widely used long-acting local anaesthetic. Its uses include surgery and obstetrics; however, it has been associated with potentially fatal cardiotoxicity, particularly when given intravascularly by accident. Levobupivacaine, a single enantiomer of bupivacaine, has recently been introduced as a new long-acting local anaesthetic with a potentially reduced toxicity compared with bupivacaine. Numerous preclinical and clinical studies have compared levobupivacaine with bupivacaine and in most but not all studies there is evidence that levobupivacaine is less toxic. Advantages for levobupivacaine are seen on cardiac sodium and potassium channels, on isolated animal hearts and in whole animals, anaesthetised or awake. In particular the intravascular dose of levobupivacaine required to cause lethality in animals is consistently higher compared with bupivacaine. In awake sheep, for example, almost 78% more levobupivacaine was required to cause death. In contrast, in anaesthetised dogs no differences were seen in the incidence of spontaneous or electrical stimulation- induced ventricular tachycardia and fibrillations among animals exposed to levobupivacaine or bupivacaine. The reversibility of levobupivacaine-induced cardiotoxicity has also been assessed. Some data point to an advantage of levobupivacaine over bupivacaine but this potential advantage was not confirmed in a recent study in anaesthetised dogs. Three clinical studies have been conducted using surrogate markers of both cardiac and CNS toxicity. In these studies levobupivacaine or bupivacaine were given by intravascular injection to healthy volunteers. Levobupivacaine was found to cause smaller changes in indices of cardiac contractility and the QTc interval of the electrocardiogram and also to have less depressant effect on the electroencephalogram. Assuming that levobupivacaine has the same local anaesthetic potency as bupivacaine, then, all things being equal, it is difficult

  11. Monte Carlo method for predicting of cardiac toxicity: hERG blocker compounds.

    PubMed

    Gobbi, Marco; Beeg, Marten; Toropova, Mariya A; Toropov, Andrey A; Salmona, Mario

    2016-05-27

    The estimation of the cardiotoxicity of compounds is an important task for the drug discovery as well as for the risk assessment in ecological aspect. The experimental estimation of the above endpoint is complex and expensive. Hence, the theoretical computational methods are very attractive alternative of the direct experiment. A model for cardiac toxicity of 400 hERG blocker compounds (pIC50) is built up using the Monte Carlo method. Three different splits into the visible training set (in fact, the training set plus the calibration set) and invisible validation sets examined. The predictive potential is very good for all examined splits. The statistical characteristics for the external validation set are (i) the coefficient of determination r(2)=(0.90-0.93); and (ii) root-mean squared error s=(0.30-0.40). Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. PAI-1-Dependent Endothelial Cell Death Determines Severity of Radiation-Induced Intestinal Injury

    PubMed Central

    Abderrahmani, Rym; François, Agnes; Buard, Valerie; Tarlet, Georges; Blirando, Karl; Hneino, Mohammad; Vaurijoux, Aurelie; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2012-01-01

    Normal tissue toxicity still remains a dose-limiting factor in clinical radiation therapy. Recently, plasminogen activator inhibitor type 1 (SERPINE1/PAI-1) was reported as an essential mediator of late radiation-induced intestinal injury. However, it is not clear whether PAI-1 plays a role in acute radiation-induced intestinal damage and we hypothesized that PAI-1 may play a role in the endothelium radiosensitivity. In vivo, in a model of radiation enteropathy in PAI-1 −/− mice, apoptosis of radiosensitive compartments, epithelial and microvascular endothelium was quantified. In vitro, the role of PAI-1 in the radiation-induced endothelial cells (ECs) death was investigated. The level of apoptotic ECs is lower in PAI-1 −/− compared with Wt mice after irradiation. This is associated with a conserved microvascular density and consequently with a better mucosal integrity in PAI-1 −/− mice. In vitro, irradiation rapidly stimulates PAI-1 expression in ECs and radiation sensitivity is increased in ECs that stably overexpress PAI-1, whereas PAI-1 knockdown increases EC survival after irradiation. Moreover, ECs prepared from PAI-1 −/− mice are more resistant to radiation-induced cell death than Wt ECs and this is associated with activation of the Akt pathway. This study demonstrates that PAI-1 plays a key role in radiation-induced EC death in the intestine and suggests that this contributes strongly to the progression of radiation-induced intestinal injury. PMID:22563394

  13. Radiation-induced vaginal stenosis: current perspectives

    PubMed Central

    Morris, Lucinda; Do, Viet; Chard, Jennifer; Brand, Alison H

    2017-01-01

    Treatment of gynecological cancer commonly involves pelvic radiation therapy (RT) and/or brachytherapy. A commonly observed side effect of such treatment is radiation-induced vaginal stenosis (VS). This review analyzed the incidence, pathogenesis, clinical manifestation(s) and assessment and grading of radiation-induced VS. In addition, risk factors, prevention and treatment options and follow-up schedules are also discussed. The limited available literature on many of these aspects suggests that additional studies are required to more precisely determine the best management strategy of this prevalent group after RT. PMID:28496367

  14. Radiation-induced amorphization of intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Lam, N. Q.; Sabochick, M. J.; Okamoto, P. R.

    1994-06-01

    In the present paper, important results of our recent computer simulation of radiation-induced amorphization in the ordered compounds CuTi and Cu4Ti3 are summarized. The energetic, structural, thermodynamic and mechanical responses of these intermetallics during chemical disordering, point-defect production and heating were simulated, using molecular dynamics and embedded-atom potentials. From the atomistic details obtained, the critical role of radiation-induced structural disorder in driving the crystalline-to-amorphous phase transformation is discussed.

  15. Amelioration of Doxorubicin-Induced Cardiac and Renal Toxicity by Oxycarotenoid Lutein and Its Mechanism of Action.

    PubMed

    Sindhu, Edakkadath Raghavan; Nithya, Thattaruparambil Raveendran; Binitha, Ponnamparambil Purushothaman; Kuttan, Ramadasan

    2016-01-01

    We set out to determine the effect of oxycarotenoid lutein on reducing cardiac and renal toxicity induced by doxorubicin (DXR). We started with oral administration in rats of lutein for 15 d before administering DXR (30 mg/kg body weight, intraperitoneally, in a single dose). Animals in all groups were sacrificed 24 h after DXR administration. Serum markers of cardiac injury lactate dehydrogenase, creatine phosphokinase, serum glutamate oxaloacetate transaminase, and serum glutamate pyruvate transaminase increased drastically after DXR but decreased after lutein treatment (p < 0.001). Elevated serum urea and creatinine in DXR-treated rats were reduced by lutein treatment (p < 0.001). Lutein increased superoxide dismutase, catalase, glutathione peroxidase, and glutathione levels in cardiac and renal tissues of DXR-treated rats. Pretreatment of lutein reduced DXR-induced rise of oxidative stress markers including lipid peroxidation, tissue hydroperoxides, and conjugated dienes in cardiac and renal tissue. These findings were supported by electrocardiogram measurements and histopathological analyses. Results confirmed the protection of lutein against cardiac and renal toxicity induced by DXR in rats.

  16. Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury

    PubMed Central

    Cotrim, Ana P.; Hyodo, Fuminori; Baum, Bruce J.; Krishna, Murali C.; Mitchell, James B.

    2010-01-01

    Radiation is used in the treatment of a broad range of malignancies. Exposure of normal tissue to radiation may result in both acute and chronic toxicities that can result in an inability to deliver the intended therapy, a range of symptoms, and a decrease in quality of life. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. Herein, we review agents in clinical use or in development as radioprotectors and mitigators of radiation-induced normal tissue injury. Few agents are approved for clinical use, but many new compounds show promising results in preclinical testing. PMID:20413641

  17. Radiation-induced lung injury

    SciTech Connect

    Rosiello, R.A.; Merrill, W.W. )

    1990-03-01

    The use of radiation therapy is limited by the occurrence of the potentially fatal clinical syndromes of radiation pneumonitis and fibrosis. Radiation pneumonitis usually becomes clinically apparent from 2 to 6 months after completion of radiation therapy. It is characterized by fever, cough, dyspnea, and alveolar infiltrates on chest roentgenogram and may be difficult to differentiate from infection or recurrent malignancy. The pathogenesis is uncertain, but appears to involve both direct lung tissue toxicity and an inflammatory response. The syndrome may resolve spontaneously or may progress to respiratory failure. Corticosteroids may be effective therapy if started early in the course of the disease. The time course for the development of radiation fibrosis is later than that for radiation pneumonitis. It is usually present by 1 year following irradiation, but may not become clinically apparent until 2 years after radiation therapy. It is characterized by the insidious onset of dyspnea on exertion. It most often is mild, but can progress to chronic respiratory failure. There is no known successful treatment for this condition. 51 references.

  18. Survival Fraction at 2 Gy and γH2AX Expression Kinetics in Peripheral Blood Lymphocytes From Cancer Patients: Relationship With Acute Radiation-Induced Toxicities

    SciTech Connect

    Pouliliou, Stamatia E.; Dimitriou, Thespis; Giatromanolaki, Alexandra; Papazoglou, Dimitrios; Pappa, Aglaia; Pistevou, Kyriaki

    2015-07-01

    Purpose: Predictive assays for acute radiation toxicities would be clinically relevant in radiation oncology. We prospectively examined the predictive role of the survival fraction at 2 Gy (SF2) and of γH2AX (double-strand break [DSB] DNA marker) expression kinetics in peripheral blood mononuclear cells (PBMCs) from cancer patients before radiation therapy. Methods and Materials: SF2 was measured with Trypan Blue assay in the PBMCs from 89 cancer patients undergoing radiation therapy at 4 hours (SF2{sub [4h]}) and 24 hours (SF2{sub [24h]}) after ex vivo irradiation. Using Western blot analysis and band densitometry, we further assessed the expression of γH2AX in PBMC DNA at 0 hours, 30 minutes, and 4 hours (33 patients) and 0 hour, 4 hours, and 24 hours (56 patients), following ex vivo irradiation with 2 Gy. Appropriate ratios were used to characterize each patient, and these were retrospectively correlated with early radiation therapy toxicity grade. Results: The SF2{sub (4h)} was inversely correlated with the toxicity grade (P=.006). The γH2AX-ratio{sub (30min)} (band density of irradiated/non-irradiated cells at 30 minutes) revealed, similarly, a significant inverse association (P=.0001). The DSB DNA repair rate from 30 minutes to 4 hours, calculated as the relative RγH2AX-ratio (γH2AX-ratio{sub (4h)}/γH2AX-ratio{sub (30min)}) showed a significant direct association with high toxicity grade (P=.01). Conclusions: Our results suggest that SF2 is a significant radiation sensitivity index for patients undergoing radiation therapy. γH2AX Western blot densitometry analysis provided 2 important markers of normal tissue radiation sensitivity. Low γH2AX expression at 30 minutes was linked with high toxicity grade, suggesting that poor γH2AX repair activity within a time frame of 30 minutes after irradiation predicts for poor radiation tolerance. On the other hand, rapid γH2AX content restoration at 4 hours after irradiation, compatible with

  19. Prevention and management of radiation-induced dermatitis, mucositis, and xerostomia.

    PubMed

    Radvansky, Lauren J; Pace, Makala B; Siddiqui, Asif

    2013-06-15

    Current strategies for preventing and managing radiation-induced dermatitis, mucositis, and xerostomia are reviewed, with an emphasis on pharmacologic interventions. Nearly two thirds of all patients with cancer receive radiation therapy during the course of treatment, frequently resulting in acute skin and mucosal toxicities. The severity of radiotherapy-associated toxicities varies according to multiple treatment- and patient-related factors (e.g., total radiation dose and dose fractionation schedule, volume of organ or tissue irradiated, use of concurrent versus sequential chemotherapy, comorbid conditions, functional performance status). Three major radiation toxicities encountered in clinical practice are (1) radiation dermatitis, typically managed with a variety of topical agents such as water-based moisturizing creams or lotions, topical steroids, antiinflammatory emulsions, and wound dressings, (2) radiation-induced oral mucositis, which can be managed through proper basic oral care practices, appropriate pain management, and the use of medicated mouthwashes and oral rinses and gels, and (3) radiation-induced xerostomia, which can be alleviated with saliva substitutes, moistening agents, and sialagogues. Pharmacists involved in the care of patients receiving radiotherapy can play an important role in optimizing symptom control, educating patients on self-care strategies, and adverse effect monitoring and reporting. Radiation-induced dermatitis, mucositis, and xerostomia can cause significant morbidity and diminished quality of life. Pharmacologic interventions for the prevention and treatment of these toxicities include topical agents for dermatitis; oral products, analgesics, and palifermin for mucositis; and amifostine, saliva substitutes, and pilocarpine for xerostomia.

  20. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function

    PubMed Central

    Sarmah, Swapnalee; Marrs, James A.

    2016-01-01

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed. PMID:27999267

  1. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function.

    PubMed

    Sarmah, Swapnalee; Marrs, James A

    2016-12-16

    Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed.

  2. Factors that modify radiation-induced carcinogenesis.

    PubMed

    Kennedy, Ann R

    2009-11-01

    It is known that numerous factors can influence radiation carcinogenesis in animals; these factors include the specific characteristics of the radiation (radiation type and dose, dose-rate, dose-fractionation, dose distribution, etc.) as well as many other contributing elements that are not specific to the radiation exposure, such as animal genetic characteristics and age, the environment of the animal, dietary factors and whether specific modifying agents for radiation carcinogenesis have been utilized in the studies. This overview focuses on the modifying factors for radiation carcinogenesis, in both in vivo and in vitro systems, and includes a discussion of agents that enhance (e.g., promoting agents) or suppress (e.g., cancer preventive agents) radiation-induced carcinogenesis. The agents that enhance or suppress radiation carcinogenesis in experimental model systems have been shown to lead to effects equally as large as other known modifying factors for radiation-induced carcinogenesis (e.g., dose-rate, dose-fractionation, linear energy transfer). It is known that dietary factors play an important role in determining the yields of radiation-induced cancers in animal model systems, and it is likely that they also influence radiation-induced cancer risks in human populations.

  3. Molecular pathways: radiation-induced cognitive impairment.

    PubMed

    Greene-Schloesser, Dana; Moore, Elizabeth; Robbins, Mike E

    2013-05-01

    Each year, approximately 200,000 patients in the United States will receive partial- or whole-brain irradiation for the treatment of primary or metastatic brain cancer. Early and delayed radiation effects are transient and reversible with modern therapeutic standards; yet, late radiation effects (≥6 months postirradiation) remain a significant risk, resulting in progressive cognitive impairment. These risks include functional deficits in memory, attention, and executive function that severely affect the patient's quality of life. The mechanisms underlying radiation-induced cognitive impairment remain ill defined. Classically, radiation-induced alterations in vascular and neuroinflammatory glial cell clonogenic populations were hypothesized to be responsible for radiation-induced brain injury. Recently, preclinical studies have focused on the hippocampus, one of two sites of adult neurogenesis within the brain, which plays an important role in learning and memory. Radiation ablates hippocampal neurogenesis, alters neuronal function, and induces neuroinflammation. Neuronal stem cells implanted into the hippocampus prevent the decrease in neurogenesis and improve cognition after irradiation. Clinically prescribed drugs, including PPARα and PPARγ agonists, as well as RAS blockers, prevent radiation-induced neuroinflammation and cognitive impairment independent of improved neurogenesis. Translating these exciting findings to the clinic offers the promise of improving the quality of life of brain tumor patients who receive radiotherapy. ©2013 AACR.

  4. Potential targets for intervention in radiation-induced heart disease.

    PubMed

    Boerma, M; Hauer-Jensen, M

    2010-11-01

    Radiotherapy of thoracic and chest wall tumors, if all or part of the heart was included in the radiation field, can lead to radiation-induced heart disease (RIHD), a late and potentially severe side effect. RIHD presents clinically several years after irradiation and manifestations include accelerated atherosclerosis, pericardial and myocardial fibrosis, conduction abnormalities, and injury to cardiac valves. The pathogenesis of RIHD is largely unknown, and a treatment is not available. Hence, ongoing pre-clinical studies aim to elucidate molecular and cellular mechanisms of RIHD. Here, an overview of recent pre-clinical studies is given, and based on the results of these studies, potential targets for intervention in RIHD are discussed.

  5. Inhibition of radiation-induced skin fibrosis with imatinib.

    PubMed

    Horton, Jason A; Chung, Eun Joo; Hudak, Kathryn E; Sowers, Anastasia; Thetford, Angela; White, Ayla O; Mitchell, James B; Citrin, Deborah E

    2013-03-01

    Dermal fibrosis is a disabling late toxicity of radiotherapy. Several lines of evidence suggest that overactive signaling via the Platelet-derived growth factor receptor-beta (PDGFR-β) and V-abl Abelson murine leukemia viral oncogene homolog 1 (cAbl) may be etiologic factors in the development of radiation-induced fibrosis. We tested the hypothesis that imatinib, a clinically available inhibitor of PDGFR-β, Mast/stem cell growth factor receptor (c-kit) and cAbl, would reduce the severity of dermal fibrosis in a murine model. The right hind legs of female C3H/HeN mice were exposed to 35 Gy of X-rays. Cohorts of mice were maintained on chow formulated with imatinib 0.5 mg/g or control chow for the duration of the experiment. Bilateral hind limb extension was measured serially to assess fibrotic contracture. Immunohistochemistry and biochemical assays were used to evaluate the levels of collagen and cytokines implicated in radiation-induced fibrosis. Imatinib treatment significantly reduced hind limb contracture and dermal thickness after irradiation. Immunohistochemical studies demonstrated a substantial reduction in PDGFR-β phosphorylation. We also observed reduced Transforming Growth factor-β (TGF-β) and collagen expression in irradiated skin of imatinib-treated mice, suggesting that imatinib may suppress the fibrotic process by interrupting cross-talk between these pathways. Taken together, these results support that imatinib may be a useful agent in the prevention and treatment of radiation-induced dermal fibrosis.

  6. Toxicity and cardiac effects of carbaryl in early developing zebrafish (Danio rerio) embryos

    SciTech Connect

    Lin, C.C.; Hui, Michelle N.Y.; Cheng, S.H. E-mail: bhcheng@cityu.edu.hk

    2007-07-15

    Carbaryl, an acetylcholinesterase inhibitor, is known to be moderately toxic to adult zebrafish and has been reported to cause heart malformations and irregular heartbeat in medaka. We performed experiments to study the toxicity of carbaryl, specifically its effects on the heart, in early developing zebrafish embryos. LC50 and EC50 values for carbaryl at 28 h post-fertilization were 44.66 {mu}g/ml and 7.52 {mu}g/ml, respectively, and 10 {mu}g/ml carbaryl was used in subsequent experiments. After confirming acetylcholinesterase inhibition by carbaryl using an enzymatic method, we observed red blood cell accumulation, delayed hatching and pericardial edema, but not heart malformation as described in some previous reports. Our chronic exposure data also demonstrated carbaryl-induced bradycardia, which is a common effect of acetylcholinesterase inhibitors due to the accumulation of acetylcholine, in embryos from 1 day post-fertilization (dpf) to 5 dpf. The distance between the sinus venosus, the point where blood enters the atrium, and the bulbus arteriosus, the point where blood leaves the ventricle, indicated normal looping of the heart tube. Immunostaining of myosin heavy chains with the ventricle-specific antibody MF20 and the atrium-specific antibody S46 showed normal development of heart chambers. At the same time, acute exposure resulted in carbaryl-induced bradycardia. Heart rate dropped significantly after a 10-min exposure to 100 {mu}g/ml carbaryl but recovered when carbaryl was removed. The novel observation of carbaryl-induced bradycardia in 1- and 2-dpf embryos suggested that carbaryl affected cardiac function possibly through an alternative mechanism other than acetylcholinesterase inhibition such as inhibition of calcium ion channels, since acetylcholine receptors in zebrafish are not functional until 3 dpf. However, the exact nature of this mechanism is currently unknown, and thus further studies are required.

  7. [Quantification of radiation-induced genetic risk].

    PubMed

    Ehling, U H

    1987-05-01

    Associated with technical advances of our civilization is a radiation- and chemically-induced increase in the germ cell mutation rate in man. This would result in an increase in the frequency of genetic diseases and would be detrimental to future generations. It is the duty of our generation to keep this risk as low as possible. The estimation of the radiation-induced genetic risk of human populations is based on the extrapolation of results from animal experiments. Radiation-induced mutations are stochastic events. The probability of the event depends on the dose; the degree of the damage does not. The different methods to estimate the radiation-induced genetic risk will be discussed. The accuracy of the predicted results will be evaluated by a comparison with the observed incidence of dominant mutations in offspring born to radiation exposed survivors of the Hiroshima and Nagasaki atomic bombings. These methods will be used to predict the genetic damage from the fallout of the reactor accident at Chernobyl. For the exposure dose we used the upper limits of the mean effective life time equivalent dose from the fallout values in the Munich region. According to the direct method for the risk estimation we will expect for each 100 to 500 spontaneous dominant mutations one radiation-induced mutation in the first generation. With the indirect method we estimate a ratio of 100 dominant spontaneous mutations to one radiation-induced dominant mutation. The possibilities and the limitations of the different methods to estimate the genetic risk will be discussed. The discrepancy between the high safety standards for radiation protection and the low level of knowledge for the toxicological evaluation of chemical mutagens will be emphasized.

  8. Mesenchymal Stem Cell Therapy Protects Lungs from Radiation-Induced Endothelial Cell Loss by Restoring Superoxide Dismutase 1 Expression.

    PubMed

    Klein, Diana; Steens, Jennifer; Wiesemann, Alina; Schulz, Florian; Kaschani, Farnusch; Röck, Katharina; Yamaguchi, Masahiro; Wirsdörfer, Florian; Kaiser, Markus; Fischer, Jens W; Stuschke, Martin; Jendrossek, Verena

    2017-04-10

    Radiation-induced normal tissue toxicity is closely linked to endothelial cell (EC) damage and dysfunction (acute effects). However, the underlying mechanisms of radiation-induced adverse late effects with respect to the vascular compartment remain elusive, and no causative radioprotective treatment is available to date. The importance of injury to EC for radiation-induced late toxicity in lungs after whole thorax irradiation (WTI) was investigated using a mouse model of radiation-induced pneumopathy. We show that WTI induces EC loss as long-term complication, which is accompanied by the development of fibrosis. Adoptive transfer of mesenchymal stem cells (MSCs) either derived from bone marrow or aorta (vascular wall-resident MSCs) in the early phase after irradiation limited the radiation-induced EC loss and fibrosis progression. Furthermore, MSC-derived culture supernatants rescued the radiation-induced reduction in viability and long-term survival of cultured lung EC. We further identified the antioxidant enzyme superoxide dismutase 1 (SOD1) as a MSC-secreted factor. Importantly, MSC treatment restored the radiation-induced reduction of SOD1 levels after WTI. A similar protective effect was achieved by using the SOD-mimetic EUK134, suggesting that MSC-derived SOD1 is involved in the protective action of MSC, presumably through paracrine signaling. In this study, we explored the therapeutic potential of MSC therapy to prevent radiation-induced EC loss (late effect) and identified the protective mechanisms of MSC action. Adoptive transfer of MSCs early after irradiation counteracts radiation-induced vascular damage and EC loss as late adverse effects. The high activity of vascular wall-derived MSCs for radioprotection may be due to their tissue-specific action. Antioxid. Redox Signal. 26, 563-582.

  9. Mesenchymal Stem Cell Therapy Protects Lungs from Radiation-Induced Endothelial Cell Loss by Restoring Superoxide Dismutase 1 Expression

    PubMed Central

    Steens, Jennifer; Wiesemann, Alina; Schulz, Florian; Kaschani, Farnusch; Röck, Katharina; Yamaguchi, Masahiro; Wirsdörfer, Florian; Kaiser, Markus; Fischer, Jens W.; Stuschke, Martin; Jendrossek, Verena

    2017-01-01

    Abstract Aims: Radiation-induced normal tissue toxicity is closely linked to endothelial cell (EC) damage and dysfunction (acute effects). However, the underlying mechanisms of radiation-induced adverse late effects with respect to the vascular compartment remain elusive, and no causative radioprotective treatment is available to date. Results: The importance of injury to EC for radiation-induced late toxicity in lungs after whole thorax irradiation (WTI) was investigated using a mouse model of radiation-induced pneumopathy. We show that WTI induces EC loss as long-term complication, which is accompanied by the development of fibrosis. Adoptive transfer of mesenchymal stem cells (MSCs) either derived from bone marrow or aorta (vascular wall-resident MSCs) in the early phase after irradiation limited the radiation-induced EC loss and fibrosis progression. Furthermore, MSC-derived culture supernatants rescued the radiation-induced reduction in viability and long-term survival of cultured lung EC. We further identified the antioxidant enzyme superoxide dismutase 1 (SOD1) as a MSC-secreted factor. Importantly, MSC treatment restored the radiation-induced reduction of SOD1 levels after WTI. A similar protective effect was achieved by using the SOD-mimetic EUK134, suggesting that MSC-derived SOD1 is involved in the protective action of MSC, presumably through paracrine signaling. Innovation: In this study, we explored the therapeutic potential of MSC therapy to prevent radiation-induced EC loss (late effect) and identified the protective mechanisms of MSC action. Conclusions: Adoptive transfer of MSCs early after irradiation counteracts radiation-induced vascular damage and EC loss as late adverse effects. The high activity of vascular wall-derived MSCs for radioprotection may be due to their tissue-specific action. Antioxid. Redox Signal. 26, 563–582. PMID:27572073

  10. 3D ultrasound Nakagami imaging for radiation-induced vaginal fibrosis

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter; Shelton, Joseph; Bruner, Debrorah; Tridandapani, Srini; Liu, Tian

    2014-03-01

    Radiation-induced vaginal fibrosis is a debilitating side-effect affecting up to 80% of women receiving radiotherapy for their gynecological (GYN) malignancies. Despite the significant incidence and severity, little research has been conducted to identify the pathophysiologic changes of vaginal toxicity. In a previous study, we have demonstrated that ultrasound Nakagami shape and PDF parameters can be used to quantify radiation-induced vaginal toxicity. These Nakagami parameters are derived from the statistics of ultrasound backscattered signals to capture the physical properties (e.g., arrangement and distribution) of the biological tissues. In this paper, we propose to expand this Nakagami imaging concept from 2D to 3D to fully characterize radiation-induced changes to the vaginal wall within the radiation treatment field. A pilot study with 5 post-radiotherapy GYN patients was conducted using a clinical ultrasound scanner (6 MHz) with a mechanical stepper. A serial of 2D ultrasound images, with radio-frequency (RF) signals, were acquired at 1 mm step size. The 2D Nakagami shape and PDF parameters were calculated from the RF signal envelope with a sliding window, and then 3D Nakagami parameter images were generated from the parallel 2D images. This imaging method may be useful as we try to monitor radiation-induced vaginal injury, and address vaginal toxicities and sexual dysfunction in women after radiotherapy for GYN malignancies.

  11. Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib

    PubMed Central

    Cortes, Jorge E.; Khoury, H. Jean; Kantarjian, Hagop; Brümmendorf, Tim H.; Mauro, Michael J.; Matczak, Ewa; Pavlov, Dmitri; Aguiar, Jean M.; Fly, Kolette D.; Dimitrov, Svetoslav; Leip, Eric; Shapiro, Mark; Lipton, Jeff H.; Durand, Jean-Bernard; Gambacorti-Passerini, Carlo

    2017-01-01

    Vascular and cardiac safety during tyrosine kinase inhibitor (TKI) therapy is an emerging issue. We evaluated vascular/cardiac toxicities associated with long-term bosutinib treatment for Philadelphia chromosome-positive (Ph+) leukemia based on treatment-emergent adverse events (TEAEs) and changes in QTc intervals and ejection fraction in two studies: a phase 1/2 study of second-/third-/fourth-line bosutinib for Ph+ leukemia resistant/intolerant to prior TKIs (N = 570) and a phase 3 study of first-line bosutinib (n = 248) versus imatinib (n = 251) in chronic phase chronic myeloid leukemia. Follow-up time was ≥48 months (both studies). Incidences of vascular/cardiac TEAEs in bosutinib-treated patients were 7%/10% overall with similar incidences observed with first-line bosutinib (5%/8%) and imatinib (4%/6%). Few patients had grade ≥3 vascular/cardiac events (4%/4%) and no individual TEAE occurred in >2% of bosutinib patients. Exposure-adjusted vascular/cardiac TEAE rates (patients with events/patient-year) were low for second-line or later bosutinib (0.037/0.050) and not significantly different between first-line bosutinib (0.015/0.024) and imatinib (0.011/0.017; P ≥ 0.267). Vascular/cardiac events were managed mainly with concomitant medications (39%/44%), bosutinib treatment interruptions (18%/21%), or dose reductions (4%/8%); discontinuations due to these events were rare (0.7%/1.0%). Based on logistic regression modelling, performance status >0 and history of vascular or cardiac disorders were prognostic of vascular/cardiac events in relapsed/refractory patients; hyperlipidemia/hypercholesterolemia and older age were prognostic of cardiac events. In newly diagnosed patients, older age was prognostic of vascular/cardiac events; history of diabetes was prognostic of vascular events. Incidences of vascular and cardiac events were low with bosutinib in the first-line and relapsed/refractory settings following long-term treatment in patients with Ph+ leukemia

  12. Long-term evaluation of cardiac and vascular toxicity in patients with Philadelphia chromosome-positive leukemias treated with bosutinib.

    PubMed

    Cortes, Jorge E; Jean Khoury, H; Kantarjian, Hagop; Brümmendorf, Tim H; Mauro, Michael J; Matczak, Ewa; Pavlov, Dmitri; Aguiar, Jean M; Fly, Kolette D; Dimitrov, Svetoslav; Leip, Eric; Shapiro, Mark; Lipton, Jeff H; Durand, Jean-Bernard; Gambacorti-Passerini, Carlo

    2016-06-01

    Vascular and cardiac safety during tyrosine kinase inhibitor (TKI) therapy is an emerging issue. We evaluated vascular/cardiac toxicities associated with long-term bosutinib treatment for Philadelphia chromosome-positive (Ph+) leukemia based on treatment-emergent adverse events (TEAEs) and changes in QTc intervals and ejection fraction in two studies: a phase 1/2 study of second-/third-/fourth-line bosutinib for Ph+ leukemia resistant/intolerant to prior TKIs (N = 570) and a phase 3 study of first-line bosutinib (n = 248) versus imatinib (n = 251) in chronic phase chronic myeloid leukemia. Follow-up time was ≥48 months (both studies). Incidences of vascular/cardiac TEAEs in bosutinib-treated patients were 7%/10% overall with similar incidences observed with first-line bosutinib (5%/8%) and imatinib (4%/6%). Few patients had grade ≥3 vascular/cardiac events (4%/4%) and no individual TEAE occurred in >2% of bosutinib patients. Exposure-adjusted vascular/cardiac TEAE rates (patients with events/patient-year) were low for second-line or later bosutinib (0.037/0.050) and not significantly different between first-line bosutinib (0.015/0.024) and imatinib (0.011/0.017; P ≥ 0.267). Vascular/cardiac events were managed mainly with concomitant medications (39%/44%), bosutinib treatment interruptions (18%/21%), or dose reductions (4%/8%); discontinuations due to these events were rare (0.7%/1.0%). Based on logistic regression modelling, performance status >0 and history of vascular or cardiac disorders were prognostic of vascular/cardiac events in relapsed/refractory patients; hyperlipidemia/hypercholesterolemia and older age were prognostic of cardiac events. In newly diagnosed patients, older age was prognostic of vascular/cardiac events; history of diabetes was prognostic of vascular events. Incidences of vascular and cardiac events were low with bosutinib in the first-line and relapsed/refractory settings following long-term treatment in patients

  13. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  14. Effects of CTGF Blockade on Attenuation and Reversal of Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Bickelhaupt, Sebastian; Erbel, Christian; Timke, Carmen; Wirkner, Ute; Dadrich, Monika; Flechsig, Paul; Tietz, Alexandra; Pföhler, Johanna; Gross, Wolfgang; Peschke, Peter; Hoeltgen, Line; Katus, Hugo A; Gröne, Hermann-Josef; Nicolay, Nils H; Saffrich, Rainer; Debus, Jürgen; Sternlicht, Mark D; Seeley, Todd W; Lipson, Kenneth E; Huber, Peter E

    2017-08-01

    Radiotherapy is a mainstay for the treatment of lung cancer that can induce pneumonitis or pulmonary fibrosis. The matricellular protein connective tissue growth factor (CTGF) is a central mediator of tissue remodeling. A radiation-induced mouse model of pulmonary fibrosis was used to determine if transient administration of a human antibody to CTGF (FG-3019) started at different times before or after 20 Gy thoracic irradiation reduced acute and chronic radiation toxicity. Mice (25 mice/group; 10 mice/group in a confirmation study) were examined by computed tomography, histology, gene expression changes, and for survival. In vitro experiments were performed to directly study the interaction of CTGF blockade and radiation. All statistical tests were two-sided. Administration of FG-3019 prevented (∼50%-80%) or reversed (∼50%) lung remodeling, improved lung function, improved mouse health, and rescued mice from lethal irradiation ( P < .01). Importantly, when antibody treatment was initiated at 16 weeks after thoracic irradiation, FG-3019 reversed established lung remodeling and restored lung function. CTGF blockade abrogated M2 polarized macrophage influx, normalized radiation-induced gene expression changes, and reduced myofibroblast abundance and Osteopontin expression. These results indicate that blocking CTGF attenuates radiation-induced pulmonary remodeling and can reverse the process after initiation. CTGF has a central role in radiation-induced fibrogenesis, and FG-3019 may benefit patients with radiation-induced pulmonary fibrosis or patients with other forms or origin of chronic fibrotic diseases.

  15. Radiation-induced meningiomas in pediatric patients

    SciTech Connect

    Moss, S.D.; Rockswold, G.L.; Chou, S.N.; Yock, D.; Berger, M.S.

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  16. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  17. Radiation-induced meningiomas in pediatric patients.

    PubMed

    Moss, S D; Rockswold, G L; Chou, S N; Yock, D; Berger, M S

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  18. Study of chemical and radiation induced carcinogenesis

    SciTech Connect

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  19. Radiation induced fracture of the scapula

    SciTech Connect

    Riggs, J.H. III; Schultz, G.D.; Hanes, S.A. )

    1990-10-01

    A case of radiation induced osteonecrosis resulting in a fracture of the scapula in a 76-yr-old female patient with a history of breast carcinoma is presented. Diagnostic imaging, laboratory recommendations and clinical findings are discussed along with an algorithm for the safe management of patients with a history of cancer and musculoskeletal complaints. This case demonstrates the necessity of a thorough investigation of musculoskeletal complaints in patients with previous bone-seeking carcinomas.

  20. Imaging radiation-induced normal tissue injury.

    PubMed

    Robbins, Mike E; Brunso-Bechtold, Judy K; Peiffer, Ann M; Tsien, Christina I; Bailey, Janet E; Marks, Lawrence B

    2012-04-01

    Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research. In the last two decades, preclinical studies have clearly established that late radiation injury can be prevented/ameliorated by pharmacological therapies aimed at modulating the cascade of events leading to the clinical expression of radiation-induced late effects. These insights have been accompanied by significant technological advances in imaging that are moving radiation oncology and normal tissue radiobiology from disciplines driven by anatomy and macrostructure to ones in which important quantitative functional, microstructural, and metabolic data can be noninvasively and serially determined. In the current article, we review use of positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance (MR) imaging and MR spectroscopy to generate pathophysiological and functional data in the central nervous system, lung, and heart that offer the promise of, (1) identifying individuals who are at risk of developing radiation-induced late effects, and (2) monitoring the efficacy of interventions to prevent/ameliorate them.

  1. Geranylgeranylacetone blocks doxorubicin-induced cardiac toxicity and reduces cancer cell growth and invasion through RHO pathway inhibition.

    PubMed

    Sysa-Shah, Polina; Xu, Yi; Guo, Xin; Pin, Scott; Bedja, Djahida; Bartock, Rachel; Tsao, Allison; Hsieh, Angela; Wolin, Michael S; Moens, An; Raman, Venu; Orita, Hajime; Gabrielson, Kathleen L

    2014-07-01

    Doxorubicin is a widely used chemotherapy for solid tumors and hematologic malignancies, but its use is limited due to cardiotoxicity. Geranylgeranylacetone (GGA), an antiulcer agent used in Japan for 30 years, has no significant adverse effects, and unexpectedly reduces ovarian cancer progression in mice. Because GGA reduces oxidative stress in brain and heart, we hypothesized that GGA would prevent oxidative stress of doxorubicin cardiac toxicity and improve doxorubicin's chemotherapeutic effects. Nude mice implanted with MDA-MB-231 breast cancer cells were studied after chronic treatment with doxorubicin, doxorubicin/GGA, GGA, or saline. Transthoracic echocardiography was used to monitor systolic heart function and xenografts evaluated. Mice were euthanized and cardiac tissue evaluated for reactive oxygen species generation, TUNEL assay, and RHO/ROCK pathway analysis. Tumor metastases were evaluated in lung sections. In vitro studies using Boyden chambers were performed to evaluate GGA effects on RHO pathway activator lysophosphatidic acid (LPA)-induced motility and invasion. We found that GGA reduced doxorubicin cardiac toxicity, preserved cardiac function, prevented TUNEL-positive cardiac cell death, and reduced doxorubicin-induced oxidant production in a nitric oxide synthase-dependent and independent manner. GGA also reduced heart doxorubicin-induced ROCK1 cleavage. Remarkably, in xenograft-implanted mice, combined GGA/doxorubicin treatment decreased tumor growth more effectively than doxorubicin treatment alone. As evidence of antitumor effect, GGA inhibited LPA-induced motility and invasion by MDA-MB-231 cells. These anti-invasive effects of GGA were suppressed by geranylgeraniol suggesting GGA inhibits RHO pathway through blocking geranylation. Thus, GGA protects the heart from doxorubicin chemotherapy-induced injury and improves anticancer efficacy of doxorubicin in breast cancer. ©2014 American Association for Cancer Research.

  2. Selenoprotein P Inhibits Radiation-Induced Late Reactive Oxygen Species Accumulation and Normal Cell Injury

    SciTech Connect

    Eckers, Jaimee C.; Kalen, Amanda L.; Xiao, Wusheng; Sarsour, Ehab H.; Goswami, Prabhat C.

    2013-11-01

    Purpose: Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Methods and Materials: Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Results: Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). Conclusion: SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury.

  3. Selenoprotein P inhibits radiation-induced late reactive oxygen species accumulation and normal cell injury.

    PubMed

    Eckers, Jaimee C; Kalen, Amanda L; Xiao, Wusheng; Sarsour, Ehab H; Goswami, Prabhat C

    2013-11-01

    Radiation is a common mode of cancer therapy whose outcome is often limited because of normal tissue toxicity. We have shown previously that the accumulation of radiation-induced late reactive oxygen species (ROS) precedes cell death, suggesting that metabolic oxidative stress could regulate cellular radiation response. The purpose of this study was to investigate whether selenoprotein P (SEPP1), a major supplier of selenium to tissues and an antioxidant, regulates late ROS accumulation and toxicity in irradiated normal human fibroblasts (NHFs). Flow cytometry analysis of cell viability, cell cycle phase distribution, and dihydroethidium oxidation, along with clonogenic assays, were used to measure oxidative stress and toxicity. Human antioxidant mechanisms array and quantitative real-time polymerase chain reaction assays were used to measure gene expression during late ROS accumulation in irradiated NHFs. Sodium selenite addition and SEPP1 overexpression were used to determine the causality of SEPP1 regulating late ROS accumulation and toxicity in irradiated NHFs. Irradiated NHFs showed late ROS accumulation (4.5-fold increase from control; P<.05) that occurs after activation of the cell cycle checkpoint pathways and precedes cell death. The mRNA levels of CuZn- and Mn-superoxide dismutase, catalase, peroxiredoxin 3, and thioredoxin reductase 1 increased approximately 2- to 3-fold, whereas mRNA levels of cold shock domain containing E1 and SEPP1 increased more than 6-fold (P<.05). The addition of sodium selenite before the radiation treatment suppressed toxicity (45%; P<.05). SEPP1 overexpression suppressed radiation-induced late ROS accumulation (35%; P<.05) and protected NHFs from radiation-induced toxicity (58%; P<.05). SEPP1 mitigates radiation-induced late ROS accumulation and normal cell injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Roles of Sensory Nerves in the Regulation of Radiation-Induced Structural and Functional Changes in the Heart

    SciTech Connect

    Sridharan, Vijayalakshmi; Tripathi, Preeti; Sharma, Sunil; Moros, Eduardo G.; Zheng, Junying; Hauer-Jensen, Martin; Boerma, Marjan

    2014-01-01

    Purpose: Radiation-induced heart disease (RIHD) is a chronic severe side effect of radiation therapy of intrathoracic and chest wall tumors. The heart contains a dense network of sensory neurons that not only are involved in monitoring of cardiac events such as ischemia and reperfusion but also play a role in cardiac tissue homeostasis, preconditioning, and repair. The purpose of this study was to examine the role of sensory nerves in RIHD. Methods and Materials: Male Sprague-Dawley rats were administered capsaicin to permanently ablate sensory nerves, 2 weeks before local image-guided heart x-ray irradiation with a single dose of 21 Gy. During the 6 months of follow-up, heart function was assessed with high-resolution echocardiography. At 6 months after irradiation, cardiac structural and molecular changes were examined with histology, immunohistochemistry, and Western blot analysis. Results: Capsaicin pretreatment blunted the effects of radiation on myocardial fibrosis and mast cell infiltration and activity. By contrast, capsaicin pretreatment caused a small but significant reduction in cardiac output 6 months after irradiation. Capsaicin did not alter the effects of radiation on cardiac macrophage number or indicators of autophagy and apoptosis. Conclusions: These results suggest that sensory nerves, although they play a predominantly protective role in radiation-induced cardiac function changes, may eventually enhance radiation-induced myocardial fibrosis and mast cell activity.

  5. Cardiac toxicity by sublethal 2,3,7,8-tetrachlorodibenzo-p-dioxin correlates with its anti-proliferation effect on cardiomyocytes in zebrafish embryos.

    PubMed

    Chen, Jing

    2015-02-01

    The cardiac toxicity of zebrafish embryos in response to the lethal dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been well characterized. Dioxin contamination levels in nature are usually lower, however, and sublethal TCDD toxicity is less investigated. The present study found that the nonlethal doses of TCDD for 72-h-postfertilization (hpf) zebrafish embryos were 25 pg/mL and lower. For the present study, sublethal TCDD concentrations of 10 pg/mL and 25 pg/mL were selected, and their toxicity was then characterized. The results showed that embryos still exhibited acute and subchronic cardiac toxicity at these 2 dosages. The stroke volume and cardiac output of these embryos significantly declined early until 8 d postexposure. Embryos' heart size became smaller, and the hearts contained fewer cardiomyocytes per heart, with decreased cardiomyocyte proliferation. Apoptosis was not detected either in the TCDD-treated or the control hearts. Real-time polymerase chain reaction (PCR) revealed that the transcription of a battery of cell-cycle-related genes was suppressed within the sublethal TCDD-treated heart. In contrast, embryonic jaw development seemed not to be affected. The present study suggests that dioxin contamination, even at lower levels, might lead to cardiac toxicity in fish embryos. Such cardiac toxicity presents as disrupted normal heart function, originating from the anti-proliferative effect of sublethal TCDD on cardiomyocytes. © 2014 SETAC.

  6. Evaluation of the cardiac toxicity of N-methyl-glucamine antimoniate in dogs with naturally occurring leishmaniasis.

    PubMed

    Luciani, Alessia; Sconza, Sarah; Civitella, Carla; Guglielmini, Carlo

    2013-04-01

    The aim of this study was to evaluate the cardiotoxic effects of pentavalent antimonial compounds in dogs with leishmaniasis. Twenty-eight dogs with clinical disease due to natural infection with Leishmania infantum were treated with 75 mg/kg meglumine antimoniate SC every 12h for 60 days. Serum cardiac troponin I (cTnI) concentrations were determined and routine and 24h ambulatory electrocardiographic monitoring was performed before the onset (T0) and at the end of treatment (T60). No abnormalities were found in routine and 24h electrocardiographic tracings before and after treatment. No statistical difference was found between serum cTnI concentrations or corrected QT intervals at T0 and T60. There was no evidence of laboratory or electrocardiographic features of cardiac toxicity in dogs with leishmaniasis treated with a therapeutic dose of meglumine antimoniate for 60 days. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Radiation-induced injury of the esophagus

    SciTech Connect

    Lepke, R.A.; Libshitz, H.I.

    1983-08-01

    Forty patients with functional or morphologic esophageal abnormalities following radiotherapy were identified. Abnormalities included abnormal motility with and without mucosal edema, stricture, ulceration and pseudodiverticulum, and fistula. Abnormal motility occurred 4 to 12 weeks following radiotherapy alone and as early as 1 week after therapy when concomitant chemotherapy had been given. Strictures developed 4 to 8 months following completion of radiotherapy. Ulceration, pseudodiverticulum, and fistula formation did not develop in a uniform time frame. Radiation-induced esophageal injury is more frequent when radiotherapy and chemotherapy are combined than it is with radiotherapy alone.

  8. Radiation induced detwinning in nanotwinned Cu

    SciTech Connect

    Chen, Youxing; Wang, Haiyan; Kirk, Mark A.; Li, Meimei; Wang, Jian; Zhang, Xinghang

    2016-11-15

    Superior radiation tolerance has been experimentally examined in nanotwinned metals. The stability of nanotwinned structure under radiation is the key factor for advancing the application of nanotwinned metals for nuclear reactors. We thus performed in situ radiation tests for nanotwinned Cu with various twin thicknesses inside a transmission electron microscope. We found that there is a critical twin thickness (10 nm), below which, radiation induced detwinning is primarily accomplished through migration of incoherent twin boundaries. Lastly, detwinning is faster for thinner twins in this range, while thicker twins are more stable.

  9. A report on radiation-induced gliomas

    SciTech Connect

    Salvati, M.; Artico, M.; Caruso, R.; Rocchi, G.; Orlando, E.R.; Nucci, F. )

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  10. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity

    PubMed Central

    Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D.; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y.; Haouzi, Philippe

    2016-01-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca2+ channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg−1·min−1), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca2+]i) transient amplitudes, and L-type Ca2+ currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca2+]i) transient, and ICa. The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca2+ channels. PMID:26962024

  11. Methylene blue counteracts H2S toxicity-induced cardiac depression by restoring L-type Ca channel activity.

    PubMed

    Judenherc-Haouzi, Annick; Zhang, Xue-Qian; Sonobe, Takashi; Song, Jianliang; Rannals, Matthew D; Wang, JuFang; Tubbs, Nicole; Cheung, Joseph Y; Haouzi, Philippe

    2016-06-01

    We have previously reported that methylene blue (MB) can counteract hydrogen sulfide (H2S) intoxication-induced circulatory failure. Because of the multifarious effects of high concentrations of H2S on cardiac function, as well as the numerous properties of MB, the nature of this interaction, if any, remains uncertain. The aim of this study was to clarify 1) the effects of MB on H2S-induced cardiac toxicity and 2) whether L-type Ca(2+) channels, one of the targets of H2S, could transduce some of the counteracting effects of MB. In sedated rats, H2S infused at a rate that would be lethal within 5 min (24 μM·kg(-1)·min(-1)), produced a rapid fall in left ventricle ejection fraction, determined by echocardiography, leading to a pulseless electrical activity. Blood concentrations of gaseous H2S reached 7.09 ± 3.53 μM when cardiac contractility started to decrease. Two to three injections of MB (4 mg/kg) transiently restored cardiac contractility, blood pressure, and V̇o2, allowing the animals to stay alive until the end of H2S infusion. MB also delayed PEA by several minutes following H2S-induced coma and shock in unsedated rats. Applying a solution containing lethal levels of H2S (100 μM) on isolated mouse cardiomyocytes significantly reduced cell contractility, intracellular calcium concentration ([Ca(2+)]i) transient amplitudes, and L-type Ca(2+) currents (ICa) within 3 min of exposure. MB (20 mg/l) restored the cardiomyocyte function, ([Ca(2+)]i) transient, and ICa The present results offer a new approach for counteracting H2S toxicity and potentially other conditions associated with acute inhibition of L-type Ca(2+) channels. Copyright © 2016 the American Physiological Society.

  12. Epigenetics in radiation-induced fibrosis.

    PubMed

    Weigel, C; Schmezer, P; Plass, C; Popanda, O

    2015-04-23

    Radiotherapy is a major cancer treatment option but dose-limiting side effects such as late-onset fibrosis in the irradiated tissue severely impair quality of life in cancer survivors. Efforts to explain radiation-induced fibrosis, for example, by genetic variation remained largely inconclusive. Recently published molecular analyses on radiation response and fibrogenesis showed a prominent role of epigenetic gene regulation. This review summarizes the current knowledge on epigenetic modifications in fibrotic disease and radiation response, and it points out the important role for epigenetic mechanisms such as DNA methylation, microRNAs and histone modifications in the development of this disease. The synopsis illustrates the complexity of radiation-induced fibrosis and reveals the need for investigations to further unravel its molecular mechanisms. Importantly, epigenetic changes are long-term determinants of gene expression and can therefore support those mechanisms that induce and perpetuate fibrogenesis even in the absence of the initial damaging stimulus. Future work must comprise the interconnection of acute radiation response and long-lasting epigenetic effects in order to assess their role in late-onset radiation fibrosis. An improved understanding of the underlying biology is fundamental to better comprehend the origin of this disease and to improve both preventive and therapeutic strategies.

  13. Radiation induced conductivity in space dielectric materials

    SciTech Connect

    Hanna, R.; Paulmier, T. Belhaj, M.; Dirassen, B.; Molinie, P.; Payan, D.; Balcon, N.

    2014-01-21

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon{sup ®} FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon{sup ®} FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  14. Radiation induced conductivity in space dielectric materials

    NASA Astrophysics Data System (ADS)

    Hanna, R.; Paulmier, T.; Molinie, P.; Belhaj, M.; Dirassen, B.; Payan, D.; Balcon, N.

    2014-01-01

    The radiation-induced conductivity of some polymers was described mainly in literature by a competition between ionization, trapping/detrapping, and recombination processes or by radiation assisted ageing mechanisms. Our aim is to revise the effect of the aforementioned mechanisms on the complex evolution of Teflon® FEP under space representative ionizing radiation. Through the definition of a new experimental protocol, revealing the effect of radiation dose and relaxation time, we have been able to demonstrate that the trapping/recombination model devised in this study agrees correctly with the observed experimental phenomenology at qualitative level and allows describing very well the evolution of radiation induced conductivity with irradiation time (or received radiation dose). According to this model, the complex behavior observed on Teflon® FEP may be basically ascribed to the competition between electron/hole pairs generation and recombination: electrons are deeply trapped and act as recombination centers for free holes. Relaxation effects have been characterized through successive irradiations steps and have been again well described with the defined model at qualitative level: recombination centers created by the irradiation induce long term alteration on the electric properties, especially the effective bulk conductivity. One-month relaxation does not allow a complete recovery of the material initial charging behavior.

  15. Mouse models for radiation-induced cancers.

    PubMed

    Rivina, Leena; Davoren, Michael J; Schiestl, Robert H

    2016-09-01

    Potential ionising radiation exposure scenarios are varied, but all bring risks beyond the simple issues of short-term survival. Whether accidentally exposed to a single, whole-body dose in an act of terrorism or purposefully exposed to fractionated doses as part of a therapeutic regimen, radiation exposure carries the consequence of elevated cancer risk. The long-term impact of both intentional and unintentional exposure could potentially be mitigated by treatments specifically developed to limit the mutations and precancerous replication that ensue in the wake of irradiation The development of such agents would undoubtedly require a substantial degree of in vitro testing, but in order to accurately recapitulate the complex process of radiation-induced carcinogenesis, well-understood animal models are necessary. Inbred strains of the laboratory mouse, Mus musculus, present the most logical choice due to the high number of molecular and physiological similarities they share with humans. Their small size, high rate of breeding and fully sequenced genome further increase its value for use in cancer research. This chapter will review relevant m. musculus inbred and F1 hybrid animals of radiation-induced myeloid leukemia, thymic lymphoma, breast and lung cancers. Method of cancer induction and associated molecular pathologies will also be described for each model. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Screening, verification, and analysis of biomarkers for drug-induced cardiac toxicity in vitro based on RTCA coupled with PCR Array technology.

    PubMed

    Zhang, Lu; Xu, Meng-Xi; Yin, Qing-Sheng; Zhu, Cai-Ying; Cheng, Xue-Lian; Ren, Yi-Ran; Zhuang, Peng-Wei; Zhang, Yan-Jun

    2017-02-15

    Cardiotoxicity is one of the most serious side effects of new drugs. Early detection of the drug induced cardiotoxicity based on the biomarkers provides an important preventative strategy for detecting potential cardiotoxicity of candidate drugs. In this study, we aim to identify the predictive genomics biomarkers for drug-induced cardiac toxicity based on the RTCA coupled with PCR Array technology in primary cells. Three prototypical cardiotoxic compounds (doxorubicin, isoproterenol, ouabain) with different mechanisms were firstly real-time monitored to diagnose the cytotoxicity by using the RTCA, while the functional alterations of cardiomyocytes were also monitored by analyzing the beating frequency of cardiomyocytes. Then cardiac specific toxicity gene expression changes were studied by using the technology of PCR Array, which can detect the changes of 84 cardiac functions related genes. Rps6kb1 was identified to be the common cardiac biomarkers by using multivariate statistical and integration analyses. The biomarker was further verified by selecting other drugs with or without cardiotoxicity, and the results showed that the gene exhibited specific changes in cardiac toxicity. Moreover, IPA was applied to combine relevant pathways of Rps6kb1, and identify the main types of cardiac toxicity. These results would further enrich the evaluating strategy of drug-induced cardiotoxicity in vitro, and Rps6kb1 could be used as the specific biomarker of cardiotoxcity during safety assessment of the novel drug candidates.

  17. Effects of subdiaphragmatic vagotomy on the acquisition of a radiation-induced conditioned taste aversion

    SciTech Connect

    Hunt, W.A.; Rabin, B.M.; Lee, J.

    1987-01-01

    The effect of subdiaphragmatic vagotomy on the acquisition of a radiation-induced taste aversion was examined to assess the importance of the vagus nerve in transmitting information on the peripheral toxicity of radiation to the brain. Vagotomy had no effect on taste aversion learning, consistent with reports using other toxins. The data support the involvement of a blood-borne factor in the acquisition of taste aversion induced by ionizing radiation.

  18. Role of neurotensin in radiation-induced hypothermia in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A.; Harris, A.H. )

    1991-05-01

    The role of neurotensin in radiation-induced hypothermia was examined. Intracerebroventricular (ICV) administration of neurotensin produced dose-dependent hypothermia. Histamine appears to mediate neurotensin-induced hypothermia because the mast cell stabilizer disodium cromoglycate and antihistamines blocked the hypothermic effects of neurotensin. An ICV pretreatment with neurotensin antibody attenuated neurotensin-induced hypothermia, but did not attenuate radiation-induced hypothermia, suggesting that radiation-induced hypothermia was not mediated by neurotensin.

  19. Extracellular Adenosine Production by ecto-5'-Nucleotidase (CD73) Enhances Radiation-Induced Lung Fibrosis.

    PubMed

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V; Gau, Eva; Thompson, Linda F; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W; Blackburn, Michael R; Westendorf, Astrid M; Stuschke, Martin; Jendrossek, Verena

    2016-05-15

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks postirradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately 3-fold. Histologic evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P < 0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacologic strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. Cancer Res; 76(10); 3045-56. ©2016 AACR. ©2016 American Association for Cancer Research.

  20. Inactivation of Kupffer Cells by Gadolinium Chloride Protects Murine Liver From Radiation-Induced Apoptosis

    SciTech Connect

    Du Shisuo; Qiang Min; Zeng Zhaochong; Ke Aiwu; Ji Yuan; Zhang Zhengyu; Zeng Haiying; Liu Zhongshan

    2010-03-15

    Purpose: To determine whether the inhibition of Kupffer cells before radiotherapy (RT) would protect hepatocytes from radiation-induced apoptosis. Materials and Methods: A single 30-Gy fraction was administered to the upper abdomen of Sprague-Dawley rats. The Kupffer cell inhibitor gadolinium chloride (GdCl3; 10 mg/kg body weight) was intravenously injected 24 h before RT. The rats were divided into four groups: group 1, sham RT plus saline (control group); group 2, sham RT plus GdCl3; group 3, RT plus saline; and group 4, RT plus GdCl3. Liver tissue was collected for measurement of apoptotic cytokine expression and evaluation of radiation-induced liver toxicity by analysis of liver enzyme activities, hepatocyte micronucleus formation, apoptosis, and histologic staining. Results: The expression of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha was significantly attenuated in group 4 compared with group 3 at 2, 6, 24, and 48 h after injection (p <0.05). At early points after RT, the rats in group 4 exhibited significantly lower levels of liver enzyme activity, apoptotic response, and hepatocyte micronucleus formation compared with those in group 3. Conclusion: Selective inactivation of Kupffer cells with GdCl3 reduced radiation-induced cytokine production and protected the liver against acute radiation-induced damage.

  1. Triptolide Mitigates Radiation-Induced Pulmonary Fibrosis.

    PubMed

    Yang, Shanmin; Zhang, Mei; Chen, Chun; Cao, Yongbin; Tian, Yeping; Guo, Yangsong; Zhang, Bingrong; Wang, Xiaohui; Yin, Liangjie; Zhang, Zhenhuan; O'Dell, Walter; Okunieff, Paul; Zhang, Lurong

    2015-11-01

    Triptolide (TPL) may mitigate radiation-induced late pulmonary side effects through its inhibition of global pro-inflammatory cytokines. In this study, we evaluated the effect of TPL in C57BL/6 mice, the animals were exposed to radiation with vehicle (15 Gy), radiation with TPL (0.25 mg/kg i.v., twice weekly for 1, 2 and 3 months), radiation and celecoxib (CLX) (30 mg/kg) and sham irradiation. Cultured supernatant of irradiated RAW 264.7 and MLE-15 cells and lung lysate in different groups were enzyme-linked immunosorbent assays at 33 h. Respiratory rate, pulmonary compliance and pulmonary density were measured at 5 months in all groups. The groups exposed to radiation with vehicle and radiation with TPL exhibited significant differences in respiratory rate and pulmonary compliance (480 ± 75/min vs. 378 ± 76/min; 0.6 ± 0.1 ml/cm H2O/p kg vs. 0.9 ± 0.2 ml/cm H2O/p kg). Seventeen cytokines were significantly reduced in the lung lysate of the radiation exposure with TPL group at 5 months compared to that of the radiation with vehicle group, including profibrotic cytokines implicated in pulmonary fibrosis, such as IL-1β, TGF- β1 and IL-13. The radiation exposure with TPL mice exhibited a 41% reduction of pulmonary density and a 25% reduction of hydroxyproline in the lung, compared to that of radiation with vehicle mice. The trichrome-stained area of fibrotic foci and pathological scaling in sections of the mice treated with radiation and TPL mice were significantly less than those of the radiation with vehicle-treated group. In addition, the radiation with TPL-treated mice exhibited a trend of improved survival rate compared to that of the radiation with vehicle-treated mice at 5 months (83% vs. 53%). Three radiation-induced profibrotic cytokines in the radiation with vehicle-treated group were significantly reduced by TPL treatment, and this partly contributed to the trend of improved survival rate and pulmonary density and function and the decreased severity of

  2. Protective effect of Sheng-Mai Yin, a traditional Chinese preparation, against doxorubicin-induced cardiac toxicity in rats.

    PubMed

    Ma, Shaojun; Li, Xiaojiang; Dong, Liang; Zhu, Jinli; Zhang, He; Jia, Yingjie

    2016-02-11

    Sheng-Mai Yin (SMY), a modern Chinese formula based on Traditional Chinese Medicine theory, has been used to treat cardiovascular diseases in Eastern Asia. Our study focuses on the cardioprotection of SMY against doxorubicin (DOX)-induced cardiac toxicity in vivo. Rats were injected with DOX (2.5 mg/kg) in six injections over a 2-week period. SMY was administrated intragastrically at the dose of 8.35, 16.7 and 33.4 g/kg, or 16.7 g/kg only twice a day concurrently with DOX for the 2-weeks. A series of assays were performed to detect the effects of SMY on: (i) heart weight index (HWI) and left ventricular mass index (LVMI); (ii) cardiac function; (iii) heart tissue morphology; (iv) the contents of carboxy terminal propeptide of procollagen typeI (PICP), amino terminal propeptide of procollagen type III (PШNP), transforming growth factor-β1 (TGF-β1), B-type natriuretic peptide (BNP), monocyte chemoattractant protein-1 (MCP-1), interferon gamma (INF-γ) and interleukin 6 (IL-6) by ELISA; (v) the mRNA levels of TGF-β1 and toll-like receptor-2 (TLR2); and (vi) protein level of TGF-β1. Rats treated with SMY displayed the reductions of BNP and CK-MB increased by DOX in a dose-dependent manner. Moderate dose of SMY exhibited the correction for the increased HWI, LVMI, and the injured cardiac function, as well as the collagen accumulation. In addition, cardioprotection of SMY against DOX-induced cardiac toxicity was demonstrated by the reduction of myocardial fibrosis, characterized by the suppression of PICP, PШNP and TGF-β1, as well as the anti-inflammation and the regulation for cardiac immune microenvironment, characterized by the inhibition of TLR2, MCP-1, INF-γ and IL-6. SMY may protect heart function through the restriction of myocardial fibrosis induced by DOX, which suggests the potentially therapeutic effect of SMY on DOX-induced cardiomyopathy.

  3. Aldehyde dehydrogenase 2 ameliorates acute cardiac toxicity of ethanol: role of protein phosphatase and forkhead transcription factor.

    PubMed

    Ma, Heng; Li, Ji; Gao, Feng; Ren, Jun

    2009-12-01

    This study was designed to evaluate the role of facilitated detoxification of acetaldehyde, the main metabolic product of ethanol, through systemic overexpression of mitochondrial aldehyde dehydrogenase-2 (ALDH2) on acute ethanol exposure-induced myocardial damage. Binge drinking may exert cardiac toxicity and interfere with heart function, manifested as impaired ventricular contractility, although the underlying mechanism remains poorly defined. ALDH2 transgenic mice were produced using the chicken beta-actin promoter. Wild-type FVB (friend virus B) and ALDH2 mice were challenged with ethanol (3 g/kg, intraperitoneally), and cardiac function was assessed 24 h later using the Langendroff and cardiomyocyte edge-detection systems. Western blot analysis was used to evaluate protein phosphatase 2A and 2C (PP2A and PP2C), phosphorylation of Akt, AMP-activated protein kinase (AMPK), and the transcription factors Foxo3 (Thr32 and Ser413). ALDH2 reduced ethanol-induced elevation in cardiac acetaldehyde levels. Acute ethanol challenge deteriorated myocardial and cardiomyocyte contractile function evidenced by reduction in maximal velocity of pressure development and decline (+/-dP/dt), left ventricular developed pressure, cell shortening, and prolonged relengthening duration, the effects of which were alleviated by ALDH2. Ethanol treatment dampened phosphorylation of Akt and AMPK associated with up-regulated PP2A and PP2C, which was abrogated by ALDH2. ALDH2 significantly attenuated ethanol-induced decrease in Akt- and AMPK-stimulated phosphorylation of Foxo3 at Thr32 and Ser413, respectively. Consistently, ALDH2 rescued ethanol-induced myocardial apoptosis, protein damage, and mitochondrial membrane potential depolarization. Our results suggest that ALDH2 is cardioprotective against acute ethanol toxicity, possibly through inhibition of protein phosphatases, leading to enhanced Akt and AMPK activation, and subsequently, inhibition of Foxo3, apoptosis, and mitochondrial

  4. Radiation-induced mutation at minisatellite loci

    SciTech Connect

    Dubrova, Y.E. |; Nesterov, V.N.; Krouchinsky, N.G.

    1997-10-01

    We are studying the radiation-induced increase of mutation rate in minisatellite loci in mice and humans. Minisatellite mutations were scored by multilocus DNA fingerprint analysis in the progeny of {gamma}-irradiated and non-irradiated mice. The frequency of mutation in offspring of irradiated males was 1.7 higher that in the control group. Germline mutation at human minisatellite loci was studied among children born in heavily polluted areas of the Mogilev district of Belarus after the Chernobyl accident and in a control population. The frequency of mutation assayed both by DNA fingerprinting and by eight single locus probes was found to be two times higher in the exposed families than in the control group. Furthermore, mutation rate was correlated with the parental radiation dose for chronic exposure {sup 137}Cs, consistent with radiation-induction of germline mutation. The potential use of minisatellites in monitoring germline mutation in humans will be discussed.

  5. Radiation-induced mutations and plant breeding

    SciTech Connect

    Naqvi, S.H.M.

    1985-01-01

    Ionizing radiation could cause genetic changes in an organism and could modify gene linkages. The induction of mutation through radiation is random and the probability of getting the desired genetic change is low but can be increased by manipulating different parameters such as dose rate, physical conditions under which the material has been irradiated, etc. Induced mutations have been used as a supplement to conventional plant breeding, particularly for creating genetic variability for specific characters such as improved plant structure, pest and disease resistance, and desired changes in maturity period; more than 200 varieties of crop plants have been developed by this technique. The Pakistan Atomic Energy Commission has used this technique fruitfully to evolve better germplasm in cotton, rice, chickpea, wheat and mungbean; some of the mutants have become popular commercial varieties. This paper describes some uses of radiation induced mutations and the results achieved in Pakistan so far.

  6. Radiation induced carcinoma of the larynx

    SciTech Connect

    Amendola, B.E.; Amendola, M.A.; McClatchey, K.D.

    1985-07-01

    A squamous cell carcinoma presented in a 20 year old female nonsmoker three years after receiving a high dosage of radiation therapy to the base of the skull, face and entire neuroaxis and intense combination chemotherapy for a parameningeal rhabdomyosarcoma of the paranasal sinuses is reported. The larynx received a dose of about 3,500 rads over an eight week period. This dosage in conjunction with the associated intense chemotherapy regimen given to the patient may explain the appearance of a radiation induced tumor in an unusually short latent period. This certainly represents a risk in young patients in whom an aggressive combined approach is taken and the physician should be aware of.

  7. Management of radiation-induced rectal bleeding.

    PubMed

    Laterza, Liboria; Cecinato, Paolo; Guido, Alessandra; Mussetto, Alessandro; Fuccio, Lorenzo

    2013-11-01

    Pelvic radiation disease is one of the major complication after radiotherapy for pelvic cancers. The most commonly reported symptom is rectal bleeding which affects patients' quality of life. Therapeutic strategies for rectal bleeding are generally ignored and include medical, endoscopic, and hyperbaric oxygen treatments. Most cases of radiation-induced bleeding are mild and self-limiting, and treatment is normally not indicated. In cases of clinically significant bleeding (i.e. anaemia), medical therapies, including stool softeners, sucralfate enemas, and metronidazole, should be considered as first-line treatment options. In cases of failure, endoscopic therapy, mainly represented by argon plasma coagulation and hyperbaric oxygen treatments, are valid and complementary second-line treatment strategies. Although current treatment options are not always supported by high-quality studies, patients should be reassured that treatment options exist and success is achieved in most cases if the patient is referred to a dedicated centre.

  8. The importance of clinical grading of heart failure and other cardiac toxicities during chemotherapy: updating the common terminology criteria for clinical trial reporting.

    PubMed

    Hossain, Akm; Chen, Alice; Ivy, Percy; Lenihan, Daniel J; Kaltman, Jonathan; Taddei-Peters, Wendy; Remick, Scot C

    2011-07-01

    Although the use of chemotherapy and targeted therapy has improved the clinical benefit, progression-free survival, and overall survival of various cancers in recent years, old and new toxicities have limited their use. To balance the risk with the benefit of treatment, Common Toxicity Criteria and now Common Terminology Criteria for Adverse Events (CTCAE) have been used by the oncology community for more than 20 years to assess toxicity from cancer treatment. This article details the description and grading of cardiac toxicities reported in association with cancer treatment and the use of CTCAE to assess them.

  9. Epigallocatechin-3-gallate ameliorates radiation-induced acute skin damage in breast cancer patients undergoing adjuvant radiotherapy

    PubMed Central

    Zhu, Wanqi; Jia, Li; Chen, Guanxuan; Zhao, Hanxi; Sun, Xiaorong; Meng, Xiangjiao; Zhao, Xianguang; Xing, Ligang; Yu, Jinming; Zheng, Meizhu

    2016-01-01

    There are few effective treatment options for radiation-induced dermatitis in breast cancer patients. We conducted a single-arm trial to tested the hypothesis that topical epigallocatechin-3-gallate (EGCG) is effective against radiation-induced dermatitis in breast cancer patients undergoing radiotherapy. Forty-nine patients participated in this study. The patients underwent mastectomy followed by adjuvant radiotherapy. Topical EGCG was applied daily, starting when grade I dermatitis appeared and ending two weeks after radiotherapy. The maximum dermatitis observed during the EGCG treatment was as follows: Grade 1 toxicity, 71.4% (35 patients); grade 2 toxicity, 28.6% (14 patients); there were no patients with grade 3 or 4 toxicity. The majority of the radiation-induced dermatitis was observed 1 week after the end of radiotherapy. EGCG reduced the pain in 85.7% of patients, burning-feeling in 89.8%, itching in 87.8%, pulling in 71.4%, and tenderness in 79.6%. These findings suggest topical EGCG may be an effective treatment for radiation-induced dermatitis and has acceptable toxicity. PMID:27224910

  10. [Medical prevention and treatment of radiation-induced pulmonary complications].

    PubMed

    Vallard, A; Rancoule, C; Le Floch, H; Guy, J-B; Espenel, S; Le Péchoux, C; Deutsch, É; Magné, N; Chargari, C

    2017-08-01

    Radiation-induced lung injuries mainly include the (acute or sub-acute) radiation pneumonitis, the lung fibrosis and the bronchiolitis obliterans organizing pneumonia (BOOP). The present review aims at describing the diagnostic process, the current physiopathological knowledge, and the available (non dosimetric) preventive and curative treatments. Radiation-induced lung injury is a diagnosis of exclusion, since clinical, radiological, or biological pathognomonic evidences do not exist. Investigations should necessarily include a thoracic high resolution CT-scan and lung function tests with a diffusing capacity of the lung for carbon monoxide. No treatment ever really showed efficacy to prevent acute radiation-induced lung injury, or to treat radiation-induced lung fibrosis. The most promising drugs in order to prevent radiation-induced lung injury are amifostine, angiotensin-converting-enzyme inhibitors and pentoxifylline. Inhibitors of collagen synthesis are currently tested at a pre-clinical stage to limit the radiation-induced lung fibrosis. Regarding available treatments of radiation-induced pneumonitis, corticoids can be considered the cornerstone. However, no standardized program or guidelines concerning the initial dose and the gradual tapering have been scientifically established. Alternative treatments can be prescribed, based on clinical cases reporting on the efficacy of immunosuppressive drugs. Such data highlight the major role of the lung dosimetric protection in order to efficiently prevent radiation-induced lung injury. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  11. Radiation-induced osteosarcoma of the sphenoid bone

    SciTech Connect

    Tanaka, S.; Nishio, S.; Morioka, T.; Fukui, M.; Kitamura, K.; Hikita, K. )

    1989-10-01

    The case of a patient who developed osteosarcoma in the sphenoid bone 15 years after radiation therapy for a craniopharyngioma is reported. Radiation-induced osteosarcoma of the sphenoid bone has not been reported previously. Reported cases of radiation-induced osteosarcomas are reviewed.

  12. Preliminary results of a phase I/II study of sodium pentosanpolysulfate in the treatment of chronic radiation-induced proctitis

    SciTech Connect

    Grigsby, P.W.; Pilepich, M.V.; Parsons, C.L. )

    1990-02-01

    This is a report of a phase I/II study of 13 patients treated with sodium pentosanpolysulfate (PPS) for chronic radiation-induced proctitis. A complete response was obtained in 82%, a partial response occurred in 9%, and 9% failed to respond to therapy. No significant toxicity was observed. It is concluded that PPS is an effective treatment for chronic radiation-induced proctitis and a phase III randomized, double-blind study of PPS versus placebo is planned.

  13. Prophylaxis and management of acute radiation-induced skin reactions: a systematic review of the literature

    PubMed Central

    Salvo, N.; Barnes, E.; van Draanen, J.; Stacey, E.; Mitera, G.; Breen, D.; Giotis, A.; Czarnota, G.; Pang, J.; De Angelis, C.

    2010-01-01

    Radiation therapy is a common treatment for cancer patients. One of the most common side effects of radiation is acute skin reaction (radiation dermatitis) that ranges from a mild rash to severe ulceration. Approximately 85% of patients treated with radiation therapy will experience a moderate-to-severe skin reaction. Acute radiation-induced skin reactions often lead to itching and pain, delays in treatment, and diminished aesthetic appearance—and subsequently to a decrease in quality of life. Surveys have demonstrated that a wide variety of topical, oral, and intravenous agents are used to prevent or to treat radiation-induced skin reactions. We conducted a literature review to identify trials that investigated products for the prophylaxis and management of acute radiation dermatitis. Thirty-nine studies met the pre-defined criteria, with thirty-three being categorized as prophylactic trials and six as management trials. For objective evaluation of skin reactions, the Radiation Therapy Oncology Group criteria and the U.S. National Cancer Institute Common Toxicity Criteria were the most commonly used tools (65% of the studies). Topical corticosteroid agents were found to significantly reduce the severity of skin reactions; however, the trials of corticosteroids evaluated various agents, and no clear indication about a preferred corticosteroid has emerged. Amifostine and oral enzymes were somewhat effective in preventing radiation-induced skin reactions in phase ii and phase iii trials respectively; further large randomized controlled trials should be undertaken to better investigate those products. Biafine cream (Ortho–McNeil Pharmaceuticals, Titusville, NJ, U.S.A.) was found not to be superior to standard regimes in the prevention of radiation-induced skin reactions (n = 6). In conclusion, the evidence is insufficient to support the use of a particular agent for the prevention and management of acute radiation-induced skin reactions. Future trials should focus

  14. Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity

    PubMed Central

    Huelsenbeck, J; Henninger, C; Schad, A; Lackner, K J; Kaina, B; Fritz, G

    2011-01-01

    Normal tissue damage limits the efficacy of anticancer therapy. For anthracyclines, the clinically most relevant adverse effect is cardiotoxicity. The mechanisms involved are poorly understood and putative cardioprotectants are controversially discussed. Here, we show that the lipid-lowering drug lovastatin protects rat H9c2 cardiomyoblasts from doxorubicin in vitro. Protection by lovastatin is related to inhibition of the Ras-homologous GTPase Rac1. It rests on a reduced formation of DNA double-strand breaks, resulting from the inhibition of topoisomerase II by doxorubicin. Doxorubicin transport and reactive oxygen species are not involved. Protection by lovastatin was confirmed in vivo. In mice, lovastatin mitigated acute doxorubicin-induced heart and liver damage as indicated by reduced mRNA levels of the pro-fibrotic cytokine connective tissue growth factor (CTGF) and pro-inflammatory cytokines, respectively. Lovastatin also protected from doxorubicin-provoked subacute cardiac damage as shown by lowered mRNA levels of CTGF and atrial natriuretic peptide. Increase in the serum concentration of troponin I and cardiac fibrosis following doxorubicin treatment were also reduced by lovastatin. Whereas protecting the heart from harmful doxorubicin effects, lovastatin augmented its anticancer efficacy in a mouse xenograft model with human sarcoma cells. These data show that statins lower the incidence of cardiac tissue injury after anthracycline treatment in a Rac1-dependent manner, without impairing the therapeutic efficacy. PMID:21833028

  15. Nocifensive Behaviors in Mice with Radiation-Induced Oral Mucositis.

    PubMed

    Nolan, Michael W; Long, C Tyler; Marcus, Karen L; Sarmadi, Shayan; Roback, Donald M; Fukuyama, Tomoki; Baeumer, Wolfgang; Lascelles, B Duncan X

    2017-02-10

    Oral mucositis can result in significant dysphagia, and is the most common dose-limiting acute toxicity in head and neck cancer patients receiving chemoradiotherapy. There is a critical need to determine the cellular and molecular mechanisms that underlie radiotherapy-associated discomfort in patients with mucositis. The objective was to induce oral mucositis in mice, using a clinical linear accelerator, and to quantify resultant discomfort, and characterize peripheral sensitization. A clinical linear accelerator was used to deliver ionizing radiation to the oral cavity of mice. Mucositis severity scoring, and various behavioral assays were performed to quantify bouts of orofacial wiping and scratching, bite force, gnawing behavior and burrowing activity. Calcium imaging was performed on neurons of the trigeminal ganglia. Glossitis was induced with a single fraction of at least 27 Gy. Body weight decreased and subsequently returned to baseline, in concert with development and resolution of mucositis, which was worst at day 10 and 11 postirradiation, however was resolved within another 10 days. Neither bite force, nor gnawing behavior were measurably affected. However, burrowing activity was decreased, and both facial wiping and scratching were increased while mice had visible mucositis lesions. Sensory nerves of irradiated mice were more responsive to histamine, tumor necrosis factor alpha and capsaicin. Radiation-induced glossitis is associated with hyper-reactivity of sensory neurons in the trigeminal ganglia of mice, and is accompanied by several behaviors indicative of both itch and pain. These data validate an appropriate model for cancer treatment related discomfort in humans.

  16. Limiting the risk of cardiac toxicity with esophageal-sparing intensity modulated radiotherapy for locally advanced lung cancers

    PubMed Central

    Panettieri, Vanessa; Ruben, Jeremy D.; Senthi, Sashendra

    2016-01-01

    Background Intensity modulated radiotherapy (IMRT) is routinely utilized in the treatment of locally advanced non-small cell lung cancer (NSCLC). RTOG 0617 found that overall survival was impacted by increased low (5 Gy) and intermediate (30 Gy) cardiac doses. We evaluated the impact of esophageal-sparing IMRT on cardiac doses with and without the heart considered in the planning process and predicted toxicity compared to 3D-conventional radiotherapy (3DCRT). Methods Ten consecutive patients with N2 Stage III NSCLC treated to 60 Gy in 30 fractions, between February 2012 and September 2014, were evaluated. For each patient, 3DCRT and esophageal-sparing IMRT plans were generated. IMRT plans were then created with and without the heart considered in the optimization process. To compare plans, the dose delivered to 95% and 99% of the target (D95% and D99%), and doses to the esophagus, lung and heart were compared by determining the volume receiving X dose (VXGy) and the normal tissue complication probability (NTCP) calculated. Results IMRT reduced maximum esophagus dose to below 60 Gy in all patients and produced significant reductions to V50Gy, V40Gy and esophageal NTCP. The cost of this reduction was a non-statistically, non-clinically significant increase in low dose (5 Gy) lung exposure that did not worsen lung NTCP. IMRT plans produced significant cardiac sparing, with the amount of improvement correlating to the amount of heart overlapping with the target. When included in plan optimization, for selected patients further sparing of the heart and improvement in heart NTCP was possible. Conclusions Esophageal-sparing IMRT can significantly spare the heart even if it is not considered in the optimization process. Further sparing can be achieved if plan optimization constrains low and intermediate heart doses, without compromising lung doses. PMID:27162670

  17. Molecular and biochemical evidences on the protective effects of triiodothyronine against phosphine-induced cardiac and mitochondrial toxicity.

    PubMed

    Abdolghaffari, Amir Hossein; Baghaei, Amir; Solgi, Reza; Gooshe, Maziar; Baeeri, Maryam; Navaei-Nigjeh, Mona; Hassani, Shokoufeh; Jafari, Abbas; Rezayat, Seyed Mehdi; Dehpour, Ahmad Reza; Mehr, Shahram Ejtemaei; Abdollahi, Mohammad

    2015-10-15

    Aluminum phosphide (AlP) is a widely used fumigant and rodenticide. While AlP ingestion leads to high mortality, its exact mechanism of action is unclear. There are ample evidences suggesting cardioprotective effects of triiodothyronine (T3). In this study, we aimed to examine the potential of T3 in the protection of a rat model of AlP induced cardiotoxicity. In order to induce AlP intoxication animals were intoxicated with AlP (12 mg/kg; LD50) by gavage. In treatment groups, T3 (1, 2 and 3 μg/kg) was administered intra-peritoneally 30 min after AlP administration. Animals were connected to the electronic cardiovascular monitoring device simultaneously after T3 administration. Then, electrocardiogram (ECG), blood pressure (BP), and heart rate (HR) were monitored for 180 min. Additionally, 24h after AlP intoxication, rats were deceased and the hearts were dissected out for evaluation of oxidative stress, cardiac mitochondrial function (complexes I, II and IV), ATP/ADP ratio, caspases 3 & 9, and apoptosis by flow cytometry. The results demonstrated that AlP intoxication causes cardiac toxicity presenting with changes in ECG patterns such as decrement of HR, BP and abnormal QRS complexes, QTc and ST height. T3 at a dose of 3 μg/kg significantly improved ECG and also oxidative stress parameters. Furthermore, T3 administration could increase mitochondrial function and ATP levels within the cardiac cells. In addition, administration of T3 showed a reduction in apoptosis through diminishing the caspase activities and improving cell viability. Overall, the present data demonstrate the beneficial effects of T3 in cardiotoxicity of AlP. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Radiation-induced degradation of aqueous fluoranthene

    NASA Astrophysics Data System (ADS)

    Popov, Petar; Getoff, Nikola

    2005-01-01

    The radiation-induced degradation of fluoranthene (FA) in slightly alkaline aqueous solution was investigated in the presence of air as well as of N 2O. Depending on the starting FA-concentration the determined Gi(-FA) was 0.34 for 1×10 -5 mol/l FA upto 0.67 for 4.6×10 -5 mol/l FA. As major radiolytic products found by HPLC-analysis were: 9-fluorene carboxylic acid ( Gi =0.006), 9-fluorenone ( Gi=0.004) and fluorene ( Gi=0.002) in addition to a mixture of carboxylic acids and aldehydes. In the presence of N 2O (90% OH, 10% H) practically the same products were observed, however in this case the yield of the carboxylic acids was about 2-times higher than in solutions saturated with air, but 4-times less aldehydes, resp. For illustration of the rather complicated degradation process a probable reaction mechanism is presented.

  19. Radiation-induced segregation, hardening, and IASCC

    SciTech Connect

    Eason, E.D.; Nelson, E.E.

    1995-12-31

    Intergranular cracking has been discovered after extended radiation exposure in several boiling water reactor (BWR) internal components made of austenitic stainless steel and nickel-based alloys. There are fewer field observations of intergranular cracking in pressurized water reactors (PWR), but failures have occurred in bolts, springs, and fuel cladding. There is concern for other PWR components, some of which will receive greater radiation doses than BWR components during the plant lifetime. This paper presents the results of an investigation on the connection between radiation induced segregation, hardening and irradiation-assisted stress corrosion cracking (IASCC). A data base was developed containing the available data on austenitic stainless steel where the grain boundary composition was measured by Field Emission Gun-Scanning Transmission Election Microscopy (FEG-STEM), the stress corrosion susceptibility was measured by constant extension rate tests (CERT) in light water reactor environments, some estimate of irradiated strength was available and the irradiation was conducted in a power reactor. The data base was analyzed using advanced data analysis techniques, including tree-structured pattern recognition and transformation analysis codes. The most sensitive variables and optimal modeling forms were identified using these techniques, then preliminary models were calibrated using nonlinear least squares. The results suggest that more than one mechanism causes IASCC.

  20. Radiation-induced valvular heart disease.

    PubMed

    Gujral, Dorothy M; Lloyd, Guy; Bhattacharyya, Sanjeev

    2016-02-15

    Radiation to the mediastinum is a key component of treatment with curative intent for a range of cancers including Hodgkin's lymphoma and breast cancer. Exposure to radiation is associated with a risk of radiation-induced heart valve damage characterised by valve fibrosis and calcification. There is a latent interval of 10-20 years between radiation exposure and development of clinically significant heart valve disease. Risk is related to radiation dose received, interval from exposure and use of concomitant chemotherapy. Long-term outlook and the risk of valve surgery are related to the effects of radiation on mediastinal structures including pulmonary fibrosis and pericardial constriction. Dose prediction models to predict the risk of heart valve disease in the future and newer radiation techniques to reduce the radiation dose to the heart are being developed. Surveillance strategies for this cohort of cancer survivors at risk of developing significant heart valve complications are required. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  1. Direct cardiac toxicity of the tentacle-only extract from the jellyfish Cyanea capillata demonstrated in isolated rat heart.

    PubMed

    Beilei, Wang; Lin, Zhang; Qian, He; Qianqian, Wang; Tao, Wang; Jia, Lu; Xiaojuan, Wen; Xuting, Ye; Liang, Xiao; Liming, Zhang

    2012-04-01

    Previous studies in our laboratory have shown that the cardiotoxicity is the main reason for rat death caused by tentacle-only extract from jellyfish Cyanea capillata. However, the direct cardiotoxicity in vitro and its mechanisms of toxic action remain unclear. The current studies were performed by using the Langendorff-perfused isolated heart model, which showed a dose-dependent hemodynamic and electrocardiogram changes. Heart injury-related enzymes increased. Histopathological analysis showed early ischemic damage in the myocardium. The Ca channel blockers nifedipine and verapamil led to a marked improvement in recovery of cardiac function, including heart rate, left ventricular developed pressure, positive and negative first derivatives of intraventricular pressure, coronary flow, left ventricular end-diastolic pressure, and electrocardiogram changes. Tentacle-only extract-induced cardiac dysfunction could be partly improved by the pretreatments of both propranolol and phentolamine, but not by either atropine or neostigmine at all. In conclusion, we have verified the direct cardiotoxicity of tentacle-only extract from jellyfish C. capillata by the Langendorff isolated heart model, which consisted of 3 separate parts: sinoatrial node malfunction, cardiomyocyte injury, and coronary spasm. The potential mechanism might be attributed to the overactivation of L-type Ca channel, β- and α-adrenergic receptors, but not cholinergic receptors.

  2. Secondhand smoke exposure toxicity accelerates age-related cardiac disease in old hamsters.

    PubMed

    Wu, Jia-Ping; Hsieh, Cheng-Hong; Ho, Tsung-Jung; Kuo, Wei-Wen; Yeh, Yu-Lan; Lin, Chien-Chung; Kuo, Chia-Hua; Huang, Chih-Yang

    2014-12-19

    Aging is associated with physiological or pathological left ventricular hypertrophy (LVH) cardiac changes. Secondhand smoke (SHS) exposure is associated with pathological LVH. The action mechanism in cardiac concentric hypertrophy from SHS exposure is understood, but the transition contributed from SHS exposure is not. To determine whether exposure to SHS has an impact on age-induced LVH we examined young and old hamsters that underwent SHS exposure in a chamber for 30 mins. Morphological and histological studies were then conducted using hematoxylin and eosin (H&E) and Masson's trichrome staining. Echocardiographic analysis was used to determine left ventricular wall thickness and function. LVH related protein expression levels were detected by western blot analysis. The results showed that both young and aged hamsters exposed to SHS exhibited increased heart weights and left ventricular weights, left ventricular posterior wall thickness and intraventricular septum systolic and diastolic pressure also increased. However, left ventricular function systolic and diastolic pressure deteriorated. H&E and Masson's trichrome staining results showed LV papillary muscles were ruptured, resulting in lower cardiac function at the myocardial level. LV muscle fiber arrangement was disordered and collagen accumulation occurred. Concentric LVH related protein molecular markers increased only in young hamsters exposed to SHS. However, this declined with hamster age. By contrast, eccentric LVH related proteins increased in aging hamsters exposed the SHS. Pro-inflammatory proteins, IL-6, TNF-α, JAK1, STAT3, and SIRTI expression increased in aging hamsters exposed to SHS. We suggest that SHS exposure induces a pro-inflammatory response that results in concentric transition to aging eccentric LVH.

  3. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  4. Asymptomatic Cardiac Toxicity in Long-Term Cancer Survivors: Defining the Population and Recommendations for Surveillance

    PubMed Central

    Carver, Joseph R.; Szalda, Dava; Ky, Bonnie

    2013-01-01

    Advances in the treatment of pediatric and adult cancer have reduced the mortality rates from these disorders and have led to an ever-increasing population of long-term survivors. Chemotherapy and radiotherapy may cause premature cardiac disease that may be asymptomatic or symptomatic. All patients exposed to chemotherapy with cardiotoxic potential or chest radiotherapy have stage A heart failure and the goal of surveillance and treatment is to prevent progression to stages B-D. Screening strategies, including the use of biomarkers, echocardiography, and expert opinion surveillance and treatment recommendations, are presented. PMID:23540748

  5. Repeated Autologous Bone Marrow-Derived Mesenchymal Stem Cell Injections Improve Radiation-Induced Proctitis in Pigs

    PubMed Central

    Busson, Elodie; Holler, Valerie; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Lhomme, Bruno; Prat, Marie; Devauchelle, Patrick; Sabourin, Jean-Christophe; Simon, Jean-Marc; Bonneau, Michel; Lataillade, Jean-Jacques; Benderitter, Marc

    2013-01-01

    The management of proctitis in patients who have undergone very-high-dose conformal radiotherapy is extremely challenging. The fibrosis-necrosis, fistulae, and hemorrhage induced by pelvic overirradiation have an impact on morbidity. Augmenting tissue repair by the use of mesenchymal stem cells (MSCs) may be an important advance in treating radiation-induced toxicity. Using a preclinical pig model, we investigated the effect of autologous bone marrow-derived MSCs on high-dose radiation-induced proctitis. Irradiated pigs received repeated intravenous administrations of autologous bone marrow-derived MSCs. Immunostaining and real-time polymerase chain reaction analysis were used to assess the MSCs' effect on inflammation, extracellular matrix remodeling, and angiogenesis, in radiation-induced anorectal and colon damages. In humans, as in pigs, rectal overexposure induces mucosal damage (crypt depletion, macrophage infiltration, and fibrosis). In a pig model, repeated administrations of MSCs controlled systemic inflammation, reduced in situ both expression of inflammatory cytokines and macrophage recruitment, and augmented interleukin-10 expression in rectal mucosa. MSC injections limited radiation-induced fibrosis by reducing collagen deposition and expression of col1a2/col3a1 and transforming growth factor-β/connective tissue growth factor, and by modifying the matrix metalloproteinase/TIMP balance. In a pig model of proctitis, repeated injections of MSCs effectively reduced inflammation and fibrosis. This treatment represents a promising therapy for radiation-induced severe rectal damage. PMID:24068742

  6. Repeated autologous bone marrow-derived mesenchymal stem cell injections improve radiation-induced proctitis in pigs.

    PubMed

    Linard, Christine; Busson, Elodie; Holler, Valerie; Strup-Perrot, Carine; Lacave-Lapalun, Jean-Victor; Lhomme, Bruno; Prat, Marie; Devauchelle, Patrick; Sabourin, Jean-Christophe; Simon, Jean-Marc; Bonneau, Michel; Lataillade, Jean-Jacques; Benderitter, Marc

    2013-11-01

    The management of proctitis in patients who have undergone very-high-dose conformal radiotherapy is extremely challenging. The fibrosis-necrosis, fistulae, and hemorrhage induced by pelvic overirradiation have an impact on morbidity. Augmenting tissue repair by the use of mesenchymal stem cells (MSCs) may be an important advance in treating radiation-induced toxicity. Using a preclinical pig model, we investigated the effect of autologous bone marrow-derived MSCs on high-dose radiation-induced proctitis. Irradiated pigs received repeated intravenous administrations of autologous bone marrow-derived MSCs. Immunostaining and real-time polymerase chain reaction analysis were used to assess the MSCs' effect on inflammation, extracellular matrix remodeling, and angiogenesis, in radiation-induced anorectal and colon damages. In humans, as in pigs, rectal overexposure induces mucosal damage (crypt depletion, macrophage infiltration, and fibrosis). In a pig model, repeated administrations of MSCs controlled systemic inflammation, reduced in situ both expression of inflammatory cytokines and macrophage recruitment, and augmented interleukin-10 expression in rectal mucosa. MSC injections limited radiation-induced fibrosis by reducing collagen deposition and expression of col1a2/col3a1 and transforming growth factor-β/connective tissue growth factor, and by modifying the matrix metalloproteinase/TIMP balance. In a pig model of proctitis, repeated injections of MSCs effectively reduced inflammation and fibrosis. This treatment represents a promising therapy for radiation-induced severe rectal damage.

  7. Efficacy of hyperbaric oxygen therapy in patients with radiation-induced rectal ulcers: A report of five cases.

    PubMed

    Yoshimizu, Shoichi; Chino, Akiko; Miyamoto, Yuji; Tagao, Fuyuki; Iwasaki, Susumu; Ide, Daisuke; Tamegai, Yoshiro; Igarashi, Masahiro; Saito, Shoichi; Fujisaki, Junko

    2017-03-28

    For decades, hyperbaric oxygen therapy has been considered a treatment option in patients with chronic radiation-induced proctitis after pelvic radiation therapy. Refractory cases of chronic radiation-induced proctitis include ulceration, stenosis, and intestinal fistulas with perforation. Appropriate treatment needs to be administered. In this study, we assessed the efficacy of hyperbaric oxygen therapy in five patients with radiation-induced rectal ulcers. Significant improvement and complete ulcer resolution was observed in all treated patients; no side effects were reported. Hyperbaric oxygen therapy has a low toxicity profile and appears to be highly effective in patients with radiation-induced rectal ulcers. However, hyperbaric oxygen therapy alone failed to improve telangiectasia and easy bleeding in four of five patients; these patients were further treated with argon plasma coagulation. Although hyperbaric oxygen therapy may be effective in healing patients with ulcers, it seems inadequate in cases that easy bleeding. Altogether, these data suggest that combination therapy with hyperbaric oxygen therapy and argon plasma coagulation may be an effective and safe treatment strategy in patients with radiation-induced rectal ulcers. This article is protected by copyright. All rights reserved.

  8. Terbufos-sulfone exacerbates cardiac lesions in diabetic rats: a sub-acute toxicity study.

    PubMed

    Nurulain, Syed M; Shafiullah, Mohamed; Yasin, Javed; Adem, Abdu; Kaabi, Juma Al; Tariq, Saeed; Adeghate, Ernest; Ojha, Shreesh

    2016-06-01

    Organophosphorus compounds (OPCs) have a wide range of applications, from agriculture to warfare. Exposure to these brings forward a varied kind of health issues globally. Terbufos is one of the leading OPCs used worldwide. The present study investigates the cardiac effect of no observable dose of a metabolite of terbufos, terbufos-sulfone (TS), under non-diabetic and streptozotocin-induced diabetic condition. One hundred nanomoles per rat (1/20 of LD50) was administered intraperitoneally to adult male Wister rats daily for fifteen days. The left ventricle was collected for ultrastructural changes by transmission electron microscopy. The blood samples were collected for biochemical tests including RBC acetylcholinesterase, creatinine kinase (CK), lactate dehydrogenase (LDH), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), triglycerides, ALT, AST, and GGT. The study revealed about 10 % inhibition of RBC-AChE in two weeks of TS treatment in non-diabetic rats whereas RBC-AChE activity was significantly decreased in diabetic TS treated rats. CK, LDH, and triglycerides were significantly higher in diabetic TS treated rats. Electron microscopy of the heart showed derangement and lesions of the mitochondria of cardiomyocytes in the TS treated groups. The present study concludes that a non-lethal dose of TS causes cardiac lesions which exacerbate under diabetic condition. Biochemical tests confirmed the ultrastructural changes. It is concluded that a non-lethal dose of TS may be a risk factor for a cardiovascular disease, which may be fatal under diabetic condition.

  9. Usefulness of intravenous lipid emulsion for cardiac toxicity from cocaine overdose.

    PubMed

    Arora, Natasha Purai; Berk, William Allen; Aaron, Cynthia Kurke; Williams, Kim Allan

    2013-02-01

    The investigators describe the clinical course of a 26-year-old-man who was brought to the emergency department in a comatose state with status epilepticus after smoking a large amount of crack cocaine. In the emergency department, he was intubated because of depressed mental status and respiratory acidosis. His troponin I remained negative, and electrocardiography showed wide-complex tachycardia with a prolonged corrected QT interval. Because of the corrected QT interval prolongation and wide-complex tachycardia, the patient was started on intravenous magnesium sulfate and sodium bicarbonate. Despite these interventions, no improvement in cardiac rhythm was observed, and electrocardiography continued to show wide-complex tachycardia. The patient became more unstable from a cardiovascular standpoint, with a decrease in blood pressure to 85/60 mm Hg. He was then given 100 ml of 20% lipid emulsion (Intralipid). Within 10 minutes of starting the infusion of 20% lipid emulsion, wide-complex tachycardia disappeared, with an improvement in systemic blood pressure to 120/70 mm Hg. Repeat electrocardiography after the infusion of intravenous lipid emulsion showed regular sinus rhythm with normal QRS and corrected QT intervals. The patient was successfully extubated on day 8 of hospitalization and discharged home on day 10. His cardiac rhythm and blood pressure remained stable throughout his further stay in the hospital. Copyright © 2013. Published by Elsevier Inc.

  10. Radiation-Induced Alopecia after Endovascular Embolization under Fluoroscopy

    PubMed Central

    Ounsakul, Vipawee; Iamsumang, Wimolsiri

    2016-01-01

    Radiation-induced alopecia after fluoroscopically guided procedures is becoming more common due to an increasing use of endovascular procedures. It is characterized by geometric shapes of nonscarring alopecia related to the area of radiation. We report a case of a 46-year-old man presenting with asymptomatic, sharply demarcated rectangular, nonscarring alopecic patch on the occipital scalp following cerebral angiography with fistula embolization under fluoroscopy. His presentations were compatible with radiation-induced alopecia. Herein, we also report a novel scalp dermoscopic finding of blue-grey dots in a target pattern around yellow dots and follicles, which we detected in the lesion of radiation-induced alopecia. PMID:28074164

  11. Lipotransfer for radiation-induced skin fibrosis.

    PubMed

    Kumar, R; Griffin, M; Adigbli, G; Kalavrezos, N; Butler, P E M

    2016-07-01

    Radiation-induced fibrosis (RIF) is a late complication of radiotherapy that results in progressive functional and cosmetic impairment. Autologous fat has emerged as an option for soft tissue reconstruction. There are also sporadic reports suggesting regression of fibrosis following regional lipotransfer. This systematic review aimed to identify cellular mechanisms driving RIF, and the potential role of lipotransfer in attenuating these processes. PubMed, OVID and Google Scholar databases were searched to identify all original articles regarding lipotransfer for RIF. All articles describing irradiated fibroblast or myofibroblast behaviour were included. Data elucidating the mechanisms of RIF, role of lipotransfer in RIF and methods to quantify fibrosis were extracted. Ninety-eight studies met the inclusion criteria. A single, definitive model of RIF is yet to be established, but four cellular mechanisms were identified through in vitro studies. Twenty-one studies identified connective tissue growth factor and transforming growth factor β1 cytokines as drivers of fibrotic cascades. Hypoxia was demonstrated to propagate fibrogenesis in three studies. Oxidative stress from the release of reactive oxygen species and free radicals was also linked to RIF in 11 studies. Purified autologous fat grafts contain cellular and non-cellular properties that potentially interact with these processes. Six methods for quantifying fibrotic changes were evaluated including durometry, ultrasound shear wave elastography, thermography, dark field imaging, and laser Doppler and laser speckle flowmetry. Understanding how lipotransfer causes regression of RIF remains unclear; there are a number of new hypotheses for future research. © 2016 BJS Society Ltd Published by John Wiley & Sons Ltd.

  12. Delayed Radiation-Induced Vasculitic Leukoencephalopathy

    SciTech Connect

    Rauch, Philipp J.; Park, Henry S.; Knisely, Jonathan P.S.; Chiang, Veronica L.; Vortmeyer, Alexander O.

    2012-05-01

    Purpose: Recently, single-fraction, high-dosed focused radiation therapy such as that administered by Gamma Knife radiosurgery has been used increasingly for the treatment of metastatic brain cancer. Radiation therapy to the brain can cause delayed leukoencephalopathy, which carries its own significant morbidity and mortality. While radiosurgery-induced leukoencephalopathy is known to be clinically different from that following fractionated radiation, pathological differences are not well characterized. In this study, we aimed to integrate novel radiographic and histopathologic observations to gain a conceptual understanding of radiosurgery-induced leukoencephalopathy. Methods and Materials: We examined resected tissues of 10 patients treated at Yale New Haven Hospital between January 1, 2009, and June 30, 2010, for brain metastases that had been previously treated with Gamma Knife radiosurgery, who subsequently required surgical management of a symptomatic regrowing lesion. None of the patients showed pathological evidence of tumor recurrence. Clinical and magnetic resonance imaging data for each of the 10 patients were then studied retrospectively. Results: We provide evidence to show that radiosurgery-induced leukoencephalopathy may present as an advancing process that extends beyond the original high-dose radiation field. Neuropathologic examination of the resected tissue revealed traditionally known leukoencephalopathic changes including demyelination, coagulation necrosis, and vascular sclerosis. Unexpectedly, small and medium-sized vessels revealed transmural T-cell infiltration indicative of active vasculitis. Conclusions: We propose that the presence of a vasculitic component in association with radiation-induced leukoencephalopathy may facilitate the progressive nature of the condition. It may also explain the resemblance of delayed leukoencephalopathy with recurring tumor on virtually all imaging modalities used for posttreatment follow-up.

  13. Mouse models of radiation-induced cancers.

    PubMed

    Rivina, Leena; Schiestl, Robert

    2013-01-01

    Radiation-induced (RI) secondary cancers were not a major clinical concern even as little as 15 years ago. However, advances in cancer diagnostics, therapy, and supportive care have saved numerous lives and many former cancer patients are now living for 5, 10, 20, and more years beyond their initial diagnosis. The majority of these patients have received radiotherapy as a part of their treatment regimen and are now beginning to develop secondary cancers arising from normal tissue exposure to damaging effects of ionizing radiation. Because historically patients rarely survived past the extended latency periods inherent to these RI cancers, very little effort was channeled towards the research leading to the development of therapeutic agents intended to prevent or ameliorate oncogenic effects of normal tissue exposure to radiation. The number of RI cancers is expected to increase very rapidly in the near future, but the field of cancer biology might not be prepared to address important issues related to this phenomena. One such issue is the ability to accurately differentiate between primary tumors and de novo arising secondary tumors in the same patient. Another issue is the lack of therapeutic agents intended to reduce such cancers in the future. To address these issues, large-scale epidemiological studies must be supplemented with appropriate animal modeling studies. This work reviews relevant mouse (Mus musculus) models of inbred and F1 animals and methodologies of induction of most relevant radiation-associated cancers: leukemia, lymphoma, and lung and breast cancers. Where available, underlying molecular pathologies are included. © 2013 Elsevier Inc. All rights reserved.

  14. Protective effect of esculentoside A on radiation-induced dermatitis and fibrosis

    SciTech Connect

    Xiao Zhenyu; Su Ying; Yang Shanmin; Yin Liangjie; Wang Wei; Yi Yanghua; Fenton, Bruce M.; Zhang Lurong; Okunieff, Paul . E-mail: paul_okunieff@urmc.rochester.edu

    2006-07-01

    Purpose: To investigate the effect of esculentoside A (EsA) on radiation-induced cutaneous and fibrovascular toxicity and its possible molecular mechanisms, both in vivo and in vitro. Methods and Materials: Mice received drug intervention 18 hours before 30 Gy to the right hind leg. Alterations in several cytokines expressed in skin tissue 2 days after irradiation were determined by ELISA. Early skin toxicity was evaluated 3 to 4 weeks after irradiation by skin scoring, and both tissue contraction and expression of TGF-{beta}1 were determined for soft-tissue fibrosis 3 months after irradiation. In vitro, the effect of EsA on radiation-induced nitric oxide (NO) and cytokine production in different cell types was measured by application of 2, 4, and 8 Gy. Results: In vivo, EsA reduced levels of IL-1{alpha}, MCP-1, VEGF, and TGF-{beta}1 in cutaneous tissue and reduced soft-tissue toxicity. In vitro, EsA inhibited the IL-1{alpha} ordinarily produced after 4 Gy in A431 cells. In Raw264.7 cells, EsA reduced levels of IL-1{alpha}, IL-1{beta}, and NO production costimulated by radiation and lipopolysaccharide (LPS). In L-929 cells, EsA inhibited VEGF, TNF, and MCP-1 production at 2, 4, and 8 Gy. Conclusions: Esculentoside A protects soft tissues against radiation toxicity through inhibiting the production of several proinflammatory cytokines and inflammatory mediators in epithelial cells, macrophages, fibroblasts, and skin tissue.

  15. Insulin Protects Cardiac Myocytes from Doxorubicin Toxicity by Sp1-Mediated Transactivation of Survivin

    PubMed Central

    Lee, Beom Seob; Oh, Jaewon; Kang, Sung Ku; Park, Sungha; Lee, Sang-Hak; Choi, Donghoon; Chung, Ji Hyung; Chung, Youn Wook; Kang, Seok-Min

    2015-01-01

    Insulin inhibits ischemia/reperfusion-induced myocardial apoptosis through the PI3K/Akt/mTOR pathway. Survivin is a key regulator of anti-apoptosis against doxorubicin-induced cardiotoxicity. Insulin increases survivin expression in cardiac myocytes to mediate cytoprotection. However, the mechanism by which survivin mediates the protective effect of insulin against doxorubicin-associated injury remains to be determined. In this study, we demonstrated that pretreatment of H9c2 cardiac myocytes with insulin resulted in a significant decrease in doxorubicin-induced apoptotic cell death by reducing cytochrome c release and caspase-3 activation. Doxorubicin-induced reduction of survivin mRNA and protein levels was also significantly perturbed by insulin pretreatment. Reducing survivin expression with survivin siRNA abrogated insulin-mediated inhibition of caspase-3 activation, suggesting that insulin signals to survivin inhibited caspase-3 activation. Interestingly, pretreatment of H9c2 cells with insulin or MG132, a proteasome inhibitor, inhibited doxorubicin-induced degradation of the transcription factor Sp1. ChIP assay showed that pretreatment with insulin inhibited doxorubicin-stimulated Sp1 dissociation from the survivin promoter. Finally using pharmacological inhibitors of the PI3K pathway, we showed that insulin-mediated activation of the PI3K/Akt/mTORC1 pathway prevented doxorubicin-induced proteasome-mediated degradation of Sp1. Taken together, insulin pretreatment confers a protective effect against doxorubicin-induced cardiotoxicity by promoting Sp1-mediated transactivation of survivin to inhibit apoptosis. Our study is the first to define a role for survivin in cellular protection by insulin against doxorubicin-associated injury and show that Sp1 is a critical factor in the transcriptional regulation of survivin. PMID:26271039

  16. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress.

    PubMed

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.

  17. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress

    PubMed Central

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone. PMID:26509576

  18. Radiation-induced charge trapping in bipolar base oxides

    SciTech Connect

    Fleetwood, D.M.; Riewe, L.C.; Witczak, Schrimpf, R.D.

    1996-03-01

    Capacitance-voltage and thermally stimulated current methods are used to investigate radiation induced charge trapping in bipolar base oxides. Results are compared with models of oxide and interface trap charge buildup at low electric fields.

  19. Mitigation of whole-body gamma radiation-induced damages by Clerodendron infortunatum in mammalian organisms.

    PubMed

    Chacko, Tiju; Menon, Aditya; Majeed, Teeju; Nair, Sivaprabha V; John, Nithu Sara; Nair, Cherupally Krishnan Krishnan

    2016-11-17

    Several phytoceuticals and extracts of medicinal plants are reported to mitigate deleterious effects of ionizing radiation. The potential of hydro-alcoholic extract of Clerodendron infortunatum (CIE) for providing protection to mice exposed to gamma radiation was investigated. Oral administration of CIE bestowed a survival advantage to mice exposed to lethal doses of gamma radiation. Radiation-induced depletion of the total blood count and bone marrow cellularity were prevented by treatment with CIE. Damage to the cellular DNA (as was evident from the comet assay and the micronucleus index) was also found to be decreased upon CIE administration. Radiation-induced damages to intestinal crypt cells was also reduced by CIE. Studies on gene expression in intestinal cells revealed that there was a marked increase in the Bax/Bcl-2 ratio in mice exposed to whole-body 4 Gy gamma radiation, and that administration of CIE resulted in significant lowering of this ratio, suggestive of reduction of radiation-induced apoptosis. Also, in the intestinal tissue of irradiated animals, following CIE treatment, levels of expression of the DNA repair gene Atm were found to be elevated, and there was reduction in the expression of the inflammatory Cox-2 gene. Thus, our results suggest a beneficial use of Clerodendron infortunatum for mitigating radiation toxicity.

  20. Inhibition of CDK4/6 protects against radiation-induced intestinal injury in mice

    PubMed Central

    Wei, Liang; Leibowitz, Brian J.; Wang, Xinwei; Epperly, Michael; Greenberger, Joel; Zhang, Lin

    2016-01-01

    Radiotherapy causes dose-limiting toxicity and long-term complications in rapidly renewing tissues, including the gastrointestinal tract. Currently, there is no FDA-approved agent for the prevention or treatment of radiation-induced intestinal injury. In this study, we have shown that PD 0332991 (PD), an FDA-approved selective inhibitor of cyclin-dependent kinase 4/6 (CDK4/6), prevents radiation-induced lethal intestinal injury in mice. Treating mice with PD or a structurally distinct CDK4/6 inhibitor prior to radiation blocked proliferation and crypt apoptosis and improved crypt regeneration. PD treatment also enhanced LGR5+ stem cell survival and regeneration after radiation. PD was an on-target inhibitor of RB phosphorylation and blocked G1/S transition in the intestinal crypts. PD treatment strongly but reversibly inhibited radiation-induced p53 activation, which blocked p53-upregulated modulator of apoptosis–dependent (PUMA-dependent) apoptosis without affecting p21-dependent suppression of DNA damage accumulation, with a repair bias toward nonhomologous end joining. Further, deletion of PUMA synergized with PD treatment for even greater intestinal radioprotection. Our results demonstrate that the cell cycle critically regulates the DNA damage response and survival of intestinal stem cells and support the concept that pharmacological quiescence is a potentially highly effective and selective strategy for intestinal radioprotection. PMID:27701148

  1. Mint oil (Mentha spicata Linn.) offers behavioral radioprotection: a radiation-induced conditioned taste aversion study.

    PubMed

    Haksar, A; Sharma, A; Chawla, R; Kumar, Raj; Lahiri, S S; Islam, F; Arora, M P; Sharma, R K; Tripathi, R P; Arora, Rajesh

    2009-02-01

    Mentha spicata Linn. (mint), a herb well known for its gastroprotective properties in the traditional system of medicine has been shown to protect against radiation-induced lethality, and recently its constituents have been found to possess calcium channel antagonizing properties. The present study examined the behavioral radioprotective efficacy of mint oil (obtained from Mentha spicata), particularly in mitigating radiation-induced conditioned taste aversion (CTA), which has been proposed as a behavioral endpoint that is mediated by the toxic effects of gamma radiation on peripheral systems, primarily the gastrointestinal system in the Sprague-Dawley rat model. Intraperitoneal administration of Mentha spicata oil 10% (v/v), 1 h before 2 Gy gamma radiation, was found to render significant radioprotection against CTA (p < 0.05), by blocking the saccharin avoidance response within 5 post-treatment observational days, with the highest saccharin intake being observed on day 5. This finding clearly demonstrates that gastroprotective and calcium channel antagonizing properties of Mentha spicata can be effectively utilized in preventing radiation-induced behavioral changes. Copyright (c) 2008 John Wiley & Sons, Ltd.

  2. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  3. JS-K, a GST-activated nitric oxide donor prodrug, enhances chemo-sensitivity in renal carcinoma cells and prevents cardiac myocytes toxicity induced by Doxorubicin.

    PubMed

    Qiu, Mingning; Ke, Longzhi; Zhang, Sai; Zeng, Xin; Fang, Zesong; Liu, Jianjun

    2017-08-01

    Doxorubicin, a highly effective and widely used anthracycline antibiotic in multiple chemotherapy regimens, has been limited by its cardiotoxicity. The aim of this study is to investigate the effect of nitric oxide donor prodrug JS-K on proliferation and apoptosis in renal carcinoma cells and cardiac myocytes toxicity induced by Doxorubicin and to explore possible p53-related mechanism in renal carcinoma cells. The effect of JS-K on anti-cancer activity of Doxorubicin was investigated in renal carcinoma cells via detecting cell proliferation, cytotoxicity, cell death and apoptosis and expressions of apoptotic-related proteins. Effect of p53 on the combination of JS-K and Doxorubicin was determined using p53 inhibitor Pifithrin-α and p53 activator III. Furthermore, the effect of JS-K on cardiac myocytes toxicity of Doxorubicin was investigated in H9c2 (2-1) cardiac myocytes via measuring cell growth, cell death and apoptosis, expressions of proteins involved in apoptosis and intracellular reactive oxygen species. We demonstrated that JS-K could increase Doxorubicin-induced renal carcinoma cell growth suppression and apoptosis and could increase expressions of proteins that are involved in apoptosis. Additionally, Pifithrin-α reversed the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis; conversely, the p53 activator III exacerbated the promoting effect of JS-K on Doxorubicin-induced renal carcinoma cell apoptosis. Furthermore, JS-K protected H9c2 (2-1) cardiac myocytes against Doxorubicin-induced toxicity and decreased Doxorubicin-induced reactive oxygen species production. JS-K enhances the anti-cancer activity of Doxorubicin in renal carcinoma cells by upregulating p53 expression and prevents cardiac myocytes toxicity of Doxorubicin by decreasing oxidative stress.

  4. Radiation-Induced Second Cancer Risk Estimates From Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Bednarz, Bryan; Besemer, Abigail

    2017-09-01

    The use of radionuclide therapy in the clinical setting is expected to increase significantly over the next decade. There is an important need to understand the radiation-induced second cancer risk associated with these procedures. In this study the radiation-induced cancer risk in five radionuclide therapy patients was investigated. These patients underwent serial SPECT imaging scans following injection as part of a clinical trial testing the efficacy of a 131Iodine-labeled radiopharmaceutical. Using these datasets the committed absorbed doses to multiple sensitive structures were calculated using RAPID, which is a novel Monte Carlo-based 3D dosimetry platform developed for personalized dosimetry. The excess relative risk (ERR) for radiation-induced cancer in these structures was then derived from these dose estimates following the recommendations set forth in the BEIR VII report. The radiation-induced leukemia ERR was highest among all sites considered reaching a maximum value of approximately 4.5. The radiation-induced cancer risk in the kidneys, liver and spleen ranged between 0.3 and 1.3. The lifetime attributable risks (LARs) were also calculated, which ranged from 30 to 1700 cancers per 100,000 persons and were highest for leukemia and the liver for both males and females followed by radiation-induced spleen and kidney cancer. The risks associated with radionuclide therapy are similar to the risk associated with external beam radiation therapy.

  5. [Update in radiation-induced neoplasms: genetic studies].

    PubMed

    Chauveinc, Laurent; Lefevre, Sandrine; Malfoy, Bernard; Dutrillaux, Bernard

    2002-02-01

    Radiation induced tumors are a possible (very) late complications of radiotherapy. The evaluation of the risks of radiation-induced tumors has been presented in different epidemiological studies, with the evaluation of the relative risk for different tissues. But, the genetic studies are rare, and no global theory exists. Two cytogenetic profiles are described, one with translocations and one with genetic material losses, evoking two different genetic evolutions. Two questions are stated. What are the radiation-induced genetic mechanisms? Is it possible to differentiate the radiation-induced and spontaneous tumors with genetic approaches? With 37 cytogenetic cases, 12 analyzed in our laboratory, the radiation-induced tumors were characterized by genetic material losses. An anti-oncogenic evolution is probable. A new molecularly study confirm these results. Only thyroid tumors do not have this evolution. For tumors with simple karyotype, like meningioma, radiation-induced tumors seem to be more complex than spontaneous tumors. But for the others, the differentiation is impossible to be done with cytogenetic. The mechanism of the chromosomic material losses in unknown, but some hypothesis are discussed.

  6. Protective effect of oleanolic acid on oxidative injury and cellular abnormalities in doxorubicin induced cardiac toxicity in rats

    PubMed Central

    Goyal, Sameer N; Mahajan, Umesh B; Chandrayan, Govind; Kumawat, Vivek S; Kamble, Sarika; Patil, Pradip; Agrawal, Yogeeta O; Patil, Chandragouda R; Ojha, Shreesh

    2016-01-01

    The prevention of doxorubicin (Dox) induced cardiotoxicity may be co-operative to recover future Dox treatment. The aim of this study was to explore the cardioprotective effects of oleanolic acid (OA), an antioxidant agent, on Dox induced cardiotoxicity. OA is a triterpenoid compound, which exist widely in plant kingdom in free acid form or as a glycosidic triterpenoids saponins. Cardiotoxicity was induced in Wistar rats with single intravenous injection of doxorubicin at dose of 67.75 mg/kg i.v for 48 hrs. At 12 hrs of interval following Dox administration the cardioprotective effect of OA (1.5 mg/kg, i.v.) and Amifostine (AMF) (90 mg/kg i.v., single dose prior 30 min) were evaluated. Induction of cardiotoxicity was confirmed by increase in systolic, diastolic, mean arterial pressures, maximal positive rate of developed left ventricular pressure (+LVdP/dtmax, an indicator of myocardial contraction), maximal negative rate of developed left ventricular pressure (-LVdP/dtmax, a meter of myocardial relaxation) and an increase in left ventricular end-diastolic pressure (LVEDP, a marker of pre-load). Cardiac markers in such as CK-MB, LDH and alterations in ECG. Dox administration showed alteration in Biochemical parameters and endogenous antioxidants. Administration of OA Showed maximal protection against Dox induced cardiac toxicity as observed by reduction in blood pressure, prevention of left ventricular function and attenuation of biochemical and antioxidant parameters. Based on the findings, its concluded that OA can be used as an adjuvant with Dox therapy in treating cancers. PMID:27069540

  7. Cardioprotective Effect of Grape Seed Extract on Chronic Doxorubicin-Induced Cardiac Toxicity in Wistar Rats.

    PubMed

    Razmaraii, Nasser; Babaei, Hossein; Mohajjel Nayebi, Alireza; Assadnassab, Gholamreza; Ashrafi Helan, Javad; Azarmi, Yadollah

    2016-09-01

    Purpose: The aim of the present study was to determine the ability of grape seed extract (GSE) as a powerful antioxidant in preventing adverse effect of doxorubicin (DOX) on heart function. Methods: Male rats were divided into three groups: control, DOX (2 mg/kg/48h, for 12 days) and GSE (100 mg/kg/24h, for 16 days) plus DOX. Left ventricular (LV) function and hemodynamic parameters were assessed using echocardiography, electrocardiography and a Millar pressure catheter. Histopathological analysis and in vitro antitumor activity were also evaluated. Results: DOX induced heart damage in rats through decreasing the left ventricular systolic and diastolic pressures, rate of rise/decrease of LV pressure, ejection fraction, fractional shortening and contractility index as demonstrated by echocardiography, electrocardiography and hemodynamic parameters relative to control group. Our data demonstrated that GSE treatment markedly attenuated DOX-induced toxicity, structural changes in myocardium and improved ventricular function. Additionally, GSE did not intervene with the antitumor effect of DOX. Conclusion: Collectively, the results suggest that GSE is potentially protective against DOX-induced toxicity in rat heart and maybe increase therapeutic index of DOX in human cancer treatment.

  8. Cardioprotective Effect of Grape Seed Extract on Chronic Doxorubicin-Induced Cardiac Toxicity in Wistar Rats

    PubMed Central

    Razmaraii, Nasser; Babaei, Hossein; Mohajjel Nayebi, Alireza; Assadnassab, Gholamreza; Ashrafi Helan, Javad; Azarmi, Yadollah

    2016-01-01

    Purpose: The aim of the present study was to determine the ability of grape seed extract (GSE) as a powerful antioxidant in preventing adverse effect of doxorubicin (DOX) on heart function. Methods: Male rats were divided into three groups: control, DOX (2 mg/kg/48h, for 12 days) and GSE (100 mg/kg/24h, for 16 days) plus DOX. Left ventricular (LV) function and hemodynamic parameters were assessed using echocardiography, electrocardiography and a Millar pressure catheter. Histopathological analysis and in vitro antitumor activity were also evaluated. Results: DOX induced heart damage in rats through decreasing the left ventricular systolic and diastolic pressures, rate of rise/decrease of LV pressure, ejection fraction, fractional shortening and contractility index as demonstrated by echocardiography, electrocardiography and hemodynamic parameters relative to control group. Our data demonstrated that GSE treatment markedly attenuated DOX-induced toxicity, structural changes in myocardium and improved ventricular function. Additionally, GSE did not intervene with the antitumor effect of DOX. Conclusion: Collectively, the results suggest that GSE is potentially protective against DOX-induced toxicity in rat heart and maybe increase therapeutic index of DOX in human cancer treatment. PMID:27766227

  9. Tristetraprolin mediates radiation-induced TNF-α production in lung macrophages.

    PubMed

    Ray, Dipankar; Shukla, Shirish; Allam, Uday Sankar; Helman, Abigail; Ramanand, Susmita Gurjar; Tran, Linda; Bassetti, Michael; Krishnamurthy, Pranathi Meda; Rumschlag, Matthew; Paulsen, Michelle; Sun, Lei; Shanley, Thomas P; Ljungman, Mats; Nyati, Mukesh K; Zhang, Ming; Lawrence, Theodore S

    2013-01-01

    The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (-/-) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTP(Ser178) phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.

  10. Radiation-induced bowel injury: the impact of radiotherapy on survivorship after treatment for gynaecological cancers

    PubMed Central

    Kuku, S; Fragkos, C; McCormack, M; Forbes, A

    2013-01-01

    Background: The number of women surviving cancer who live with symptoms of bowel toxicity affecting their quality of life continues to rise. In this retrospective study, we sought to describe and analyse the presenting clinical features in our cohort, and evaluate possible predictors of severity and chronicity in women with radiation-induced bowel injury after treatment for cervical and endometrial cancers. Methods: Review of records of 541 women treated within the North London Gynaecological Cancer Network between 2003 and 2010 with radiotherapy with or without chemotherapy for cervical and endometrial cancer identified 152 women who reported significant new bowel symptoms after pelvic radiation. Results: Factor analysis showed that the 14 most common and important presenting symptoms could be ‘clustered' into 3 groups with predictive significance for chronicity and severity of disease. Median follow-up for all patients was 60 months. Univariate analysis showed increasing age, smoking, extended field radiation, cervical cancer treatment and the need for surgical intervention to be significant predictors for severity of ongoing disease at last follow-up. On multivariate analysis, only age, cancer type (cervix) and symptom combinations/‘cluster' of (bloating, flatulence, urgency, rectal bleeding and per-rectal mucus) were found to be significant predictors of disease severity. Fifteen (19%) women in the cervical cancer group had radiation-induced bowel injury requiring surgical intervention compared with five (6.7%) in the endometrial cancer group. Conclusion: Women with cervical cancer are younger and appear to suffer more severe symptoms of late bowel toxicity, whereas women treated for endometrial cancer suffer milder more chronic disease. The impact of radiation-induced bowel injury and the effect on cancer survivorship warrants further research into investigation of predictors of severe late toxicity. There is a need for prospective trials to aid early

  11. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis.

    PubMed

    Dadrich, Monika; Nicolay, Nils H; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E

    2016-05-01

    Background : Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods : C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results : Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion : Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement : RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined inhibition of

  12. Combined inhibition of TGFβ and PDGF signaling attenuates radiation-induced pulmonary fibrosis

    PubMed Central

    Dadrich, Monika; Nicolay, Nils H.; Flechsig, Paul; Bickelhaupt, Sebastian; Hoeltgen, Line; Roeder, Falk; Hauser, Kai; Tietz, Alexandra; Jenne, Jürgen; Lopez, Ramon; Roehrich, Manuel; Wirkner, Ute; Lahn, Michael; Huber, Peter E.

    2016-01-01

    ABSTRACT Background: Radiotherapy (RT) is a mainstay for the treatment of lung cancer, but the effective dose is often limited by the development of radiation-induced pneumonitis and pulmonary fibrosis. Transforming growth factor β (TGFβ) and platelet-derived growth factor (PDGF) play crucial roles in the development of these diseases, but the effects of dual growth factor inhibition on pulmonary fibrosis development remain unclear. Methods: C57BL/6 mice were treated with 20 Gy to the thorax to induce pulmonary fibrosis. PDGF receptor inhibitors SU9518 and SU14816 (imatinib) and TGFβ receptor inhibitor galunisertib were applied individually or in combinations after RT. Lung density and septal fibrosis were measured by high-resolution CT and MRI. Lung histology and gene expression analyses were performed and Osteopontin levels were studied. Results: Treatment with SU9518, SU14816 or galunisertib individually attenuated radiation-induced pulmonary inflammation and fibrosis and decreased radiological and histological signs of lung damage. Combining PDGF and TGFβ inhibitors showed to be feasible and safe in a mouse model, and dual inhibition significantly attenuated radiation-induced lung damage and extended mouse survival compared to blockage of either pathway alone. Gene expression analysis of irradiated lung tissue showed upregulation of PDGF and TGFβ-dependent signaling components by thoracic irradiation, and upregulation patterns show crosstalk between downstream mediators of the PDGF and TGFβ pathways. Conclusion: Combined small-molecule inhibition of PDGF and TGFβ signaling is a safe and effective treatment for radiation-induced pulmonary inflammation and fibrosis in mice and may offer a novel approach for treatment of fibrotic lung diseases in humans. Translational statement: RT is an effective treatment modality for cancer with limitations due to acute and chronic toxicities, where TGFβ and PDGF play a key role. Here, we show that a combined

  13. Pred-hERG: A Novel web-Accessible Computational Tool for Predicting Cardiac Toxicity.

    PubMed

    Braga, Rodolpho C; Alves, Vinicius M; Silva, Meryck F B; Muratov, Eugene; Fourches, Denis; Lião, Luciano M; Tropsha, Alexander; Andrade, Carolina H

    2015-10-01

    The blockage of the hERG K(+) channels is closely associated with lethal cardiac arrhythmia. The notorious ligand promiscuity of this channel earmarked hERG as one of the most important antitargets to be considered in early stages of drug development process. Herein we report on the development of an innovative and freely accessible web server for early identification of putative hERG blockers and non-blockers in chemical libraries. We have collected the largest publicly available curated hERG dataset of 5,984 compounds. We succeed in developing robust and externally predictive binary (CCR≈0.8) and multiclass models (accuracy≈0.7). These models are available as a web-service freely available for public at http://labmol.farmacia.ufg.br/predherg/. Three following outcomes are available for the users: prediction by binary model, prediction by multi-class model, and the probability maps of atomic contribution. The Pred-hERG will be continuously updated and upgraded as new information became available. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chronic radiation-induced dermatitis: challenges and solutions

    PubMed Central

    Spałek, Mateusz

    2016-01-01

    Chronic radiation dermatitis is a late side effect of skin irradiation, which may deteriorate patients’ quality of life. There is a lack of precise data about its incidence; however, several risk factors may predispose to the development of this condition. It includes radiotherapy dose, fractionation, technique, concurrent systemic therapy, comorbidities, and personal and genetic factors. Chronic radiation dermatitis is mostly caused by the imbalance of proinflammatory and profibrotic cytokines. Clinical manifestation includes changes in skin appearance, wounds, ulcerations, necrosis, fibrosis, and secondary cancers. The most severe complication of irradiation is extensive radiation-induced fibrosis (RIF). RIF can manifest in many ways, such as skin induration and retraction, lymphedema or restriction of joint motion. Diagnosis of chronic radiation dermatitis is usually made by clinical examination. In case of unclear clinical manifestation, a biopsy and histopathological examination are recommended to exclude secondary malignancy. The most effective prophylaxis of chronic radiation dermatitis is the use of proper radiation therapy techniques to avoid unnecessary irradiation of healthy skin. Treatment of chronic radiation dermatitis is demanding. The majority of the interventions are based only on clinical practice. Telangiectasia may be treated with pulse dye laser therapy. Chronic postirradiation wounds need special dressings. In case of necrosis or severe ulceration, surgical intervention may be considered. Management of RIF should be complex. Available methods are rehabilitative care, pharmacotherapy, hyperbaric oxygen therapy, and laser therapy. Future challenges include the assessment of late skin toxicity in modern irradiation techniques. Special attention should be paid on genomics and radiomics that allow scientists and clinicians to select patients who are at risk of the development of chronic radiation dermatitis. Novel treatment methods and clinical

  15. [Radiation induced lung injuries secondary to radiotherapy for breast cancer].

    PubMed

    Toma, Claudia Lucia; Ciprut, Tudor; Bugarin, Svetlana; Roşca, Dorina; Bogdan, Miron Alexandru

    2011-01-01

    Modern radiotherapy decreased the number and severity of the effects of irradiation on the lung. Yet, the increased cancer incidence makes the related radiation injuries to remain actual, radiotherapy being frequently used in cancer treatment. Aim of the study consists in analysis of the radiological pattern of radiation induced lung disease due to radiotherapy for breast cancer. Sixty-eight female patients were evaluated for clinical and radiological suspicion of radiation pneumonitis after radiotherapy for breast cancer between 2001 and 2009 in "Marius Nasta" Institute of Pneumophtiziology, Bucharest. The following procedures were performed: medical history, physical examination, chest radiography and CT-scan (in a subgroup of 27 patients). Radiotherapy toxicity was evaluated based on the RTOG/EORTC (Radiation Therapy Oncology Group/European Organization for the Research and Treatment of Cancer) classification and radiological lesions based on Arriagada classification. Fifty patients (73.5%) were symptomatic (fever, dry cough, dyspnea, chest pain, fatigability), the other 18 were asymptomatic. Symptoms were mild to moderate corresponding to grade 1 (27 patients, 39.7%) or grade 2 (23 patients, 33.8%) according to RTOG/EORTC scale. All patients had radiological lesions: 25 patients (36.7%) had grade 2 lesions (linear opacities), 25 patients (36.7%) had grade 3 lesions (patchy opacities) and 18 patients (26.5%) had grade 4 lesions (dense opacities), according to Arriagada classification. Symptoms were more frequent in patients with extensive lesions on chest radiography. CT-scan, performed in 27 patients, showed more accurate images. Chest radiography remains the simplest method in screening for radiation pneumonitis and monitoring its outcome. Adverse effects secondary to radiotherapy are usually mild and self-limited, and the most difficult task remains the differential diagnosis with infections and cancer relapse.

  16. Chronic radiation-induced dermatitis: challenges and solutions.

    PubMed

    Spałek, Mateusz

    2016-01-01

    Chronic radiation dermatitis is a late side effect of skin irradiation, which may deteriorate patients' quality of life. There is a lack of precise data about its incidence; however, several risk factors may predispose to the development of this condition. It includes radiotherapy dose, fractionation, technique, concurrent systemic therapy, comorbidities, and personal and genetic factors. Chronic radiation dermatitis is mostly caused by the imbalance of proinflammatory and profibrotic cytokines. Clinical manifestation includes changes in skin appearance, wounds, ulcerations, necrosis, fibrosis, and secondary cancers. The most severe complication of irradiation is extensive radiation-induced fibrosis (RIF). RIF can manifest in many ways, such as skin induration and retraction, lymphedema or restriction of joint motion. Diagnosis of chronic radiation dermatitis is usually made by clinical examination. In case of unclear clinical manifestation, a biopsy and histopathological examination are recommended to exclude secondary malignancy. The most effective prophylaxis of chronic radiation dermatitis is the use of proper radiation therapy techniques to avoid unnecessary irradiation of healthy skin. Treatment of chronic radiation dermatitis is demanding. The majority of the interventions are based only on clinical practice. Telangiectasia may be treated with pulse dye laser therapy. Chronic postirradiation wounds need special dressings. In case of necrosis or severe ulceration, surgical intervention may be considered. Management of RIF should be complex. Available methods are rehabilitative care, pharmacotherapy, hyperbaric oxygen therapy, and laser therapy. Future challenges include the assessment of late skin toxicity in modern irradiation techniques. Special attention should be paid on genomics and radiomics that allow scientists and clinicians to select patients who are at risk of the development of chronic radiation dermatitis. Novel treatment methods and clinical

  17. Prevention of Gamma Radiation-Induced Mortality in Mice by the Isoflavone Genistein

    DTIC Science & Technology

    2005-01-01

    toxicity assessment of chronic dietary exposure to soy isoflavones in male rats , Reprod Toxicol 18: 605-611. [Grace 2002] M.B. Grace, C.B. McLeland...Prevention of Gamma Radiation-Induced Mortality in Mice by the Isoflavone Genistein M.R. Landauer, V. Srinivasan, M.B. Grace, C.M. Chang, V...of some types of cancer. The most plentiful isoflavone from soybeans is genistein (4’, 5, 7- trihydroxy-flavone). In the present study, the

  18. Insulin Signaling in Bupivacaine-induced Cardiac Toxicity: Sensitization during Recovery and Potentiation by Lipid Emulsion.

    PubMed

    Fettiplace, Michael R; Kowal, Katarzyna; Ripper, Richard; Young, Alexandria; Lis, Kinga; Rubinstein, Israel; Bonini, Marcelo; Minshall, Richard; Weinberg, Guy

    2016-02-01

    The impact of local anesthetics on the regulation of glucose homeostasis by protein kinase B (Akt) and 5'-adenosine monophosphate-activated protein kinase (AMPK) is unclear but important because of the implications for both local anesthetic toxicity and its reversal by IV lipid emulsion (ILE). Sprague-Dawley rats received 10 mg/kg bupivacaine over 20 s followed by nothing or 10 ml/kg ILE (or ILE without bupivacaine). At key time points, heart and kidney were excised. Glycogen content and phosphorylation levels of Akt, p70 s6 kinase, s6, insulin receptor substrate-1, glycogen synthase kinase-3β, AMPK, acetyl-CoA carboxylase, and tuberous sclerosis 2 were quantified. Three animals received Wortmannin to irreversibly inhibit phosphoinositide-3-kinase (Pi3k) signaling. Isolated heart studies were conducted with bupivacaine and LY294002-a reversible Pi3K inhibitor. Bupivacaine cardiotoxicity rapidly dephosphorylated Akt at S473 to 63 ± 5% of baseline and phosphorylated AMPK to 151 ± 19%. AMPK activation inhibited targets downstream of mammalian target of rapamycin complex 1 via tuberous sclerosis 2. Feedback dephosphorylation of IRS1 to 31 ± 8% of baseline sensitized Akt signaling in hearts resulting in hyperphosphorylation of Akt at T308 and glycogen synthase kinase-3β to 390 ± 64% and 293 ± 50% of baseline, respectively. Glycogen accumulated to 142 ± 7% of baseline. Irreversible inhibition of Pi3k upstream of Akt exacerbated bupivacaine cardiotoxicity, whereas pretreating with a reversible inhibitor delayed the onset of toxicity. ILE rapidly phosphorylated Akt at S473 and T308 to 150 ± 23% and 167 ± 10% of baseline, respectively, but did not interfere with AMPK or targets of mammalian target of rapamycin complex 1. Glucose handling by Akt and AMPK is integral to recovery from bupivacaine cardiotoxicity and modulation of these pathways by ILE contributes to lipid resuscitation.

  19. Insulin Signaling in Bupivacaine-induced Cardiac Toxicity: Sensitization during Recovery and Potentiation by Lipid Emulsion

    PubMed Central

    Fettiplace, Michael R.; Kowal, Katarzyna; Ripper, Richard; Young, Alexandria; Lis, Kinga; Rubinstein, Israel; Bonini, Marcelo; Minshall, Richard; Weinberg, Guy

    2015-01-01

    Background The impact of local anesthetics on regulation of glucose homeostasis by protein kinase B (Akt) and 5’-Adenosine monophosphate activated protein kinase (AMPK) is unclear but important because of the implications for both local anesthetic toxicity and its reversal by intravenous lipid emulsion (ILE). Methods Sprague-Dawley rats received 10mg/kg bupivacaine over 20 seconds followed by nothing or 10mL/kg ILE (or ILE without bupivacaine). At key time points, heart and kidney were excised. Glycogen content and phosphorylation levels of Akt, p70s6k, s6, IRS1, GSK-3β, AMPK, ACC, TSC2 were quantified. Three animals received Wortmannin to irreversibily inhibit phosphoinositide-3-kinase (Pi3k) signaling. Isolated heart studies were conducted with bupivacaine and LY294002—a reversible Pi3K inhibitor. Results Bupivacaine cardiotoxicity rapidly de-phosphorylated Akt at S473 to 63 ± 5% of baseline and phosphorylated AMPK to 151 ± 19%. AMPK activation inhibited targets downstream of mTORC1 via TSC2. Feedback dephosphorylation of IRS1 to 31 ± 8% of baseline sensitized Akt signaling in hearts resulting in hyper-phosphorylation of Akt at T308 and GSK-3β to 390 ± 64% and 293 ± 50% of baseline respectively. Glycogen accumulated to 142 ± 7% of baseline. Irreversible inhibition of Pi3k upstream of Akt exacerbated bupivacaine cardiotoxicity, while pretreating with a reversible inhibitor delayed onset of toxicity. ILE rapidly phosphorylated Akt at S473 and T308 to 150 ± 23% and 167 ± 10% of baseline, respectively but did not interfere with AMPK or targets of mTORC1. Conclusion Glucose handling by Akt and AMPK is integral to recovery from bupivacaine cardiotoxicity and modulation of these pathways by ILE contributes to lipid resuscitation. PMID:26646023

  20. Radiation-induced myeloid leukemia in murine models

    PubMed Central

    2014-01-01

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included. PMID:25062865

  1. Radiation-induced myeloid leukemia in murine models.

    PubMed

    Rivina, Leena; Davoren, Michael; Schiestl, Robert H

    2014-07-25

    The use of radiation therapy is a cornerstone of modern cancer treatment. The number of patients that undergo radiation as a part of their therapy regimen is only increasing every year, but this does not come without cost. As this number increases, so too does the incidence of secondary, radiation-induced neoplasias, creating a need for therapeutic agents targeted specifically towards incidence reduction and treatment of these cancers. Development and efficacy testing of these agents requires not only extensive in vitro testing but also a set of reliable animal models to accurately recreate the complex situations of radiation-induced carcinogenesis. As radiation-induced leukemic progression often involves genomic changes such as rearrangements, deletions, and changes in methylation, the laboratory mouse Mus musculus, with its fully sequenced genome, is a powerful tool in cancer research. This fact, combined with the molecular and physiological similarities it shares with man and its small size and high rate of breeding in captivity, makes it the most relevant model to use in radiation-induced leukemia research. In this work, we review relevant M. musculus inbred and F1 hybrid animal models, as well as methods of induction of radiation-induced myeloid leukemia. Associated molecular pathologies are also included.

  2. GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome.

    PubMed

    Li, Peng; Wuthrick, Evan; Rappaport, Jeff A; Kraft, Crystal; Lin, Jieru E; Marszalowicz, Glen; Snook, Adam E; Zhan, Tingting; Hyslop, Terry M; Waldman, Scott A

    2017-09-15

    High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Cancer Res; 77(18); 5095-106. ©2017 AACR. ©2017 American Association for Cancer Research.

  3. Protocol update and preliminary results of EACVI/HFA Cardiac Oncology Toxicity (COT) Registry of the European Society of Cardiology.

    PubMed

    Lancellotti, Patrizio; Galderisi, Maurizio; Donal, Erwan; Edvardsen, Thor; Popescu, Bogdan A; Farmakis, Dimitrios; Filippatos, Gerasimos; Habib, Gilbert; Lestuzzi, Chiara; Santoro, Ciro; Moonen, Marie; Jerusalem, Guy; Andarala, Maryna; Anker, Stefan D

    2017-08-01

    European Association of Cardiovascular Imaging/Heart Failure Association Cardiac Oncology Toxicity Registry was launched in October 2014 as a European Society of Cardiology multicentre registry of breast cancer patients referred to imaging laboratories for routine surveillance, suspected, or confirmed anticancer drug-related cardiotoxicity (ADRC). After a pilot phase (1 year recruitment and 1 year follow-up), some changes have been made to the protocol (version 1.0) and electronic case report form. Main changes of the version 2.0 concerned exclusion criteria, registry duration, and clarification of the population characteristics. Breast cancer radiotherapy has been removed as an exclusion criterion, which involves now only history of a pre-chemotherapy left ventricular dysfunction. The period for long-term registry recruitment has been reduced (December 2017), but the target study population was extended to 3000 patients. The characteristics of the population are now better defined: patients seen in an imaging lab, which will include patients undergoing chemotherapy with associated targeted therapy or no targeted therapy, at increased risk of ADRC. In total, 1294 breast cancer patients have been enrolled, and 783 case report forms locked from October 2014 to November 2016. Of these, 481 (61.4%) were seen at first evaluation and 302 (38.6%) while on oncologic treatment with anticancer drugs. Fifty-two patients (17.2%) were not in targeted therapies, 191 (63.3%) were ongoing targeted therapy, and 59 (19.5%) had completed it. Twenty-three (2.9%) patients had a suspected diagnosis and 35 (4.5%) a confirmed diagnosis of ADRC. Arterial hypertension was the most prevalent cardiovascular risk factor (29.2%) followed by diabetes (6.1%). Previous history of heart failure accounted for 0.5%, whereas previous cardiac disease was identified in 6.3% of population. The changes of the original protocol of the COT Registry and first update allow a first glance to the panorama of

  4. Protocol update and preliminary results of EACVI/HFA Cardiac Oncology Toxicity (COT) Registry of the European Society of Cardiology

    PubMed Central

    Galderisi, Maurizio; Donal, Erwan; Edvardsen, Thor; Popescu, Bogdan A.; Farmakis, Dimitrios; Filippatos, Gerasimos; Habib, Gilbert; Lestuzzi, Chiara; Santoro, Ciro; Moonen, Marie; Jerusalem, Guy; Andarala, Maryna; Anker, Stefan D.

    2017-01-01

    Abstract Aims European Association of Cardiovascular Imaging/Heart Failure Association Cardiac Oncology Toxicity Registry was launched in October 2014 as a European Society of Cardiology multicentre registry of breast cancer patients referred to imaging laboratories for routine surveillance, suspected, or confirmed anticancer drug‐related cardiotoxicity (ADRC). After a pilot phase (1 year recruitment and 1 year follow‐up), some changes have been made to the protocol (version 1.0) and electronic case report form. Methods and results Main changes of the version 2.0 concerned exclusion criteria, registry duration, and clarification of the population characteristics. Breast cancer radiotherapy has been removed as an exclusion criterion, which involves now only history of a pre‐chemotherapy left ventricular dysfunction. The period for long‐term registry recruitment has been reduced (December 2017), but the target study population was extended to 3000 patients. The characteristics of the population are now better defined: patients seen in an imaging lab, which will include patients undergoing chemotherapy with associated targeted therapy or no targeted therapy, at increased risk of ADRC. In total, 1294 breast cancer patients have been enrolled, and 783 case report forms locked from October 2014 to November 2016. Of these, 481 (61.4%) were seen at first evaluation and 302 (38.6%) while on oncologic treatment with anticancer drugs. Fifty‐two patients (17.2%) were not in targeted therapies, 191 (63.3%) were ongoing targeted therapy, and 59 (19.5%) had completed it. Twenty‐three (2.9%) patients had a suspected diagnosis and 35 (4.5%) a confirmed diagnosis of ADRC. Arterial hypertension was the most prevalent cardiovascular risk factor (29.2%) followed by diabetes (6.1%). Previous history of heart failure accounted for 0.5%, whereas previous cardiac disease was identified in 6.3% of population. Conclusion The changes of the original protocol of the COT Registry

  5. Potential prevention: Aloe vera mouthwash may reduce radiation-induced oral mucositis in head and neck cancer patients.

    PubMed

    Ahmadi, Amirhossein

    2012-08-01

    In recent years, more head and neck cancer patients have been treated with radiotherapy. Radiation-induced mucositis is a common and dose limiting toxicity of radiotherapy among patients with head and neck cancers. Patients undergoing radiation therapy for head and neck cancer are also at increased risk of developing oral candidiasis. A number of new agents applied locally or systemically to prevent or treat radiation-induced mucositis have been investigated, but there is no widely accepted prophylactic or effective treatment for mucositis. Topical Aloe vera is widely used for mild sunburn, frostbites, and scalding burns. Studies have reported the beneficial effects of Aloe gel for wound healing, mucous membrane protection, and treatment of oral ulcers, in addition to antiinflammatory, immunomudulation, antifungal, scavenging free radicals, increasing collagen formation and inhibiting collagenase. Herein the author postulates that oral Aloe vera mouthwash may not only prevent radiation-induced mucositis by its wound healing and antiinflammatory mechanism, but also may reduce oral candidiasis of patients undergoing head and neck radiotherapy due to its antifungal and immunomodulatory properties. Hence, Aloe vera mouthwash may provide an alternative agent for treating radiation-induced oral mucositis and candidiasis in patients with head and neck cancers.

  6. Extracellular adenosine production by ecto-5′-nucleotidase (CD73) enhances radiation-induced lung fibrosis

    PubMed Central

    Wirsdörfer, Florian; de Leve, Simone; Cappuccini, Federica; Eldh, Therese; Meyer, Alina V.; Gau, Eva; Thompson, Linda F.; Chen, Ning-Yuan; Karmouty-Quintana, Harry; Fischer, Ute; Kasper, Michael; Klein, Diana; Ritchey, Jerry W.; Blackburn, Michael R.; Westendorf, Astrid M.; Stuschke, Martin; Jendrossek, Verena

    2016-01-01

    Radiation-induced pulmonary fibrosis is a severe side effect of thoracic irradiation, but its pathogenesis remains poorly understood and no effective treatment is available. In this study, we investigated the role of the extracellular adenosine as generated by the ecto-5'-nucleotidase CD73 in fibrosis development after thoracic irradiation. Exposure of wild-type C57BL/6 mice to a single dose (15 Gray) of whole thorax irradiation triggered a progressive increase in CD73 activity in the lung between 3 and 30 weeks post-irradiation. In parallel, adenosine levels in bronchoalveolar lavage fluid (BALF) were increased by approximately three-fold. Histological evidence of lung fibrosis was observed by 25 weeks after irradiation. Conversely, CD73-deficient mice failed to accumulate adenosine in BALF and exhibited significantly less radiation-induced lung fibrosis (P<0.010). Furthermore, treatment of wild-type mice with pegylated adenosine deaminase (PEG-ADA) or CD73 antibodies also significantly reduced radiation-induced lung fibrosis. Taken together, our findings demonstrate that CD73 potentiates radiation-induced lung fibrosis, suggesting that existing pharmacological strategies for modulating adenosine may be effective in limiting lung toxicities associated with the treatment of thoracic malignancies. PMID:26921334

  7. Hypopharyngeal carcinoma after radiation for tuberculosis: radiation-induced carcinoma.

    PubMed

    van der Putten, Lisa; de Bree, Remco; Kuik, Dirk J; Rietveld, Derek H F; Langendijk, Johannes A; Leemans, C René

    2010-09-01

    Radiation may cause radiation-induced cancers after a long latency period. In a group of 111 patients surgically treated for hypopharyngeal carcinoma, patients previously treated with radiotherapy for tuberculosis in the neck were compared to patients without previous radiotherapy. Seven patients (7.4%) underwent radiotherapy (median age 15 years) and developed a hypopharyngeal carcinoma (median age 70 years, median latency period 54.4 year). Considering this long latency period and the localisation in the previous radiation field these tumours can be classified as potentially radiation-induced carcinomas. Patients with potentially radiation-induced carcinomas were significantly older when the hypopharyngeal carcinoma was diagnosed (p=0.048), were more frequently females (p=0.05) and had a worse 5-year regional control rate (p=0.048). When radiotherapy is considered in young patients the risk of induction of tumours has to be kept in mind. Copyright 2010 Elsevier Ltd. All rights reserved.

  8. Ozone Therapy in the Management of Persistent Radiation-Induced Rectal Bleeding in Prostate Cancer Patients.

    PubMed

    Clavo, Bernardino; Santana-Rodriguez, Norberto; Llontop, Pedro; Gutierrez, Dominga; Ceballos, Daniel; Méndez, Charlin; Rovira, Gloria; Suarez, Gerardo; Rey-Baltar, Dolores; Garcia-Cabrera, Laura; Martínez-Sánchez, Gregorio; Fiuza, Dolores

    2015-01-01

    Introduction. Persistent radiation-induced proctitis and rectal bleeding are debilitating complications with limited therapeutic options. We present our experience with ozone therapy in the management of such refractory rectal bleeding. Methods. Patients (n = 12) previously irradiated for prostate cancer with persistent or severe rectal bleeding without response to conventional treatment were enrolled to receive ozone therapy via rectal insufflations and/or topical application of ozonized-oil. Ten (83%) patients had Grade 3 or Grade 4 toxicity. Median follow-up after ozone therapy was 104 months (range: 52-119). Results. Following ozone therapy, the median grade of toxicity improved from 3 to 1 (p < 0.001) and the number of endoscopy treatments from 37 to 4 (p = 0.032). Hemoglobin levels changed from 11.1 (7-14) g/dL to 13 (10-15) g/dL, before and after ozone therapy, respectively (p = 0.008). Ozone therapy was well tolerated and no adverse effects were noted, except soft and temporary flatulence for some hours after each session. Conclusions. Ozone therapy was effective in radiation-induced rectal bleeding in prostate cancer patients without serious adverse events. It proved useful in the management of rectal bleeding and merits further evaluation.

  9. Ozone Therapy in the Management of Persistent Radiation-Induced Rectal Bleeding in Prostate Cancer Patients

    PubMed Central

    Clavo, Bernardino; Santana-Rodriguez, Norberto; Llontop, Pedro; Gutierrez, Dominga; Ceballos, Daniel; Méndez, Charlin; Rovira, Gloria; Suarez, Gerardo; Rey-Baltar, Dolores; Garcia-Cabrera, Laura; Martínez-Sánchez, Gregorio; Fiuza, Dolores

    2015-01-01

    Introduction. Persistent radiation-induced proctitis and rectal bleeding are debilitating complications with limited therapeutic options. We present our experience with ozone therapy in the management of such refractory rectal bleeding. Methods. Patients (n = 12) previously irradiated for prostate cancer with persistent or severe rectal bleeding without response to conventional treatment were enrolled to receive ozone therapy via rectal insufflations and/or topical application of ozonized-oil. Ten (83%) patients had Grade 3 or Grade 4 toxicity. Median follow-up after ozone therapy was 104 months (range: 52–119). Results. Following ozone therapy, the median grade of toxicity improved from 3 to 1 (p < 0.001) and the number of endoscopy treatments from 37 to 4 (p = 0.032). Hemoglobin levels changed from 11.1 (7–14) g/dL to 13 (10–15) g/dL, before and after ozone therapy, respectively (p = 0.008). Ozone therapy was well tolerated and no adverse effects were noted, except soft and temporary flatulence for some hours after each session. Conclusions. Ozone therapy was effective in radiation-induced rectal bleeding in prostate cancer patients without serious adverse events. It proved useful in the management of rectal bleeding and merits further evaluation. PMID:26357522

  10. Panretinal photocoagulation for radiation-induced ocular ischemia

    SciTech Connect

    Augsburger, J.J.; Roth, S.E.; Magargal, L.E.; Shields, J.A.

    1987-08-01

    We present preliminary findings on the effectiveness of panretinal photocoagulation in preventing neovascular glaucoma in eyes with radiation-induced ocular ischemia. Our study group consisted of 20 patients who developed radiation-induced ocular ischemia following cobalt-60 plaque radiotherapy for a choroidal or ciliary body melanoma. Eleven of the 20 patients were treated by panretinal photocoagulation shortly after the diagnosis of ocular ischemia, but nine patients were left untreated. In this non-randomized study, the rate of development of neovascular glaucoma was significantly lower (p = 0.024) for the 11 photocoagulated patients than for the nine who were left untreated.

  11. The Mechanisms of Radiation-Induced Bystander Effect

    PubMed Central

    Najafi, M; Fardid, R; Hadadi, Gh; Fardid, M

    2014-01-01

    The radiation-induced bystander effect is the phenomenon which non-irradiated cells exhibit effects along with their different levels as a result of signals received from nearby irradiated cells. Responses of non-irradiated cells may include changes in process of translation, gene expression, cell proliferation, apoptosis and cells death. These changes are confirmed by results of some In-Vivo studies. Most well-known important factors affecting radiation-induced bystander effect include free radicals, immune system factors, expression changes of some genes involved in inflammation pathway and epigenetic factors. PMID:25599062

  12. [Symptoms, diagnosis and treatment of radiation-induced enteritis].

    PubMed

    Sinkó, Dániel; Baranyai, Zsolt; Nemeskéri, Csaba; Teknos, Dániel; Jósa, Valéria; Hegedus, László; Mayer, Arpád

    2010-09-05

    The number of radiotherapy in the treatment of malignant diseases is increasing worldwide. During the radiotherapy of tumors in the minor pelvis and abdomen intestinal inflammation of different degree may occur even if special attention is paid. Irradiation to the minor pelvis causes in half of the cases radiation induced acute enteritis, whereas in 25% chronic enteritis and colitis will develop. Chronic enteritis following radiotherapy raises a number of diagnostic and therapeutic problems that can be solved only with cooperation of different specialties. Authors present a short review regarding therapeutical options of radiation induced enteritis.

  13. Trade-offs Between Efficacy and Cardiac Toxicity of Adjuvant Chemotherapy in Early-Stage Breast Cancer Patients: Do Competing Risks Matter?

    PubMed

    Alarid-Escudero, Fernando; Blaes, Anne H; Kuntz, Karen M

    2017-07-01

    Evidence about treatment efficacy and long-term toxicities for adjuvant chemotherapy in patients with early-stage breast cancer is often presented in different formats and studies. This leads to challenges for patients and their physicians to adequately weigh the trade-offs between effectiveness and long-term cardiac toxicity when making decisions about adjuvant chemotherapy. We used a decision-analytic framework to quantify these trade-offs by combining the available evidence into a single, comparable metric. We developed a Markov model to simulate a hypothetical cohort of newly diagnosed breast cancer patients under three scenarios: no treatment, anthracycline (AC)-based adjuvant chemotherapy (more effective but also more cardiotoxic), and non-AC-based adjuvant chemotherapy. We derived the model parameters from medical literature (e.g., clinical trials). Our primary outcome is 10-year mortality, and other metrics such as cause of death; life years (LYs) and quality-adjusted LYs over 10 years were evaluated in sensitivity analysis. For 55-year-old women with a 10-year risk of metastatic recurrence <12.5% no chemotherapy resulted in the preferred strategy. In general, non-AC-based adjuvant chemotherapy resulted in lower 10-year mortality than AC-based chemotherapy. Patients with low risk of metastatic recurrence are better off without adjuvant chemotherapy regardless of the outcome considered (i.e., the risks of cardiac toxicity from chemotherapy outweighed the benefits). Trade-offs between effectiveness and induced cardiac toxicity impact health outcomes. The choice of adjuvant treatment must consider the patient's risk of distant recurrence and the quality of life associated with different health outcomes. © 2017 Wiley Periodicals, Inc.

  14. Poor outcome in radiation-induced constrictive pericarditis

    SciTech Connect

    Karram, T.; Rinkevitch, D.; Markiewicz, W. )

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  15. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  16. Radiation-induced instability and its relation to radiation carcinogenesis

    NASA Technical Reports Server (NTRS)

    Ullrich, R. L.; Ponnaiya, B.

    1998-01-01

    PURPOSE: A model that identifies radiation-induced genetic instability as the earliest cellular event in the multi-step sequence leading to radiation-induced cancer was previously proposed. In this paper ongoing experiments are discussed which are designed to test this model and its predictions in mouse mammary epithelial cells. RESULTS: Several lines of evidence are presented that appear to support this model: first, the development of delayed mutations in p53 following irradiation in altered growth variants; secondly, the high frequencies for the induction of both instability and transformation following irradiation in mammary epithelial cells; and finally, the demonstration that susceptibility to the induction of cytogenetic instability is a heritable trait that correlates with susceptibility to transformation and radiation-induced mammary cancer. Mice resistant to transformation and mammary cancer development are also resistant to the development of instability after irradiation. In contrast, mice sensitive to transformation and cancer are also sensitive to the development of cytogenetic instability. CONCLUSIONS: Data from this laboratory and from the studies cited above suggest a specific, and perhaps unique, role for radiation-induced instability as a critical early event associated with initiation of the carcinogenic process.

  17. Radiation-induced augmentation of the immune response

    SciTech Connect

    Anderson, R.E.; Lefkovits, I.; Troup, G.M.

    1980-01-01

    Radiation-induced augmentation of the immune response has been shown to occur both in vivo and in vitro. Evidence is presented to implicate injury to an extremely radiosensitive T cell in the expression of this phenomenon. Experiments are outlined which could be employed to support or reflect this hypothesis.

  18. Use of probiotics for prevention of radiation-induced diarrhea

    PubMed Central

    Delia, P; Sansotta, G; Donato, V; Frosina, P; Messina, G; De Renzis, C; Famularo, G

    2007-01-01

    AIM: To investigate the efficacy of a high-potency probiotic preparation on prevention of radiation-induced diarrhea in cancer patients. METHODS: This was a double-blind, placebo-controlled trial. Four hundred and ninety patients who underwent adjuvant postoperative radiation therapy after surgery for sigmoid, rectal, or cervical cancer were assigned to either the high-potency probiotic preparation VSL#3 (one sachet t.i.d.,) or placebo starting from the first day of radiation therapy. Efficacy endpoints were incidence and severity of radiation-induced diarrhea, daily number of bowel movements, and the time from the start of the study to the use of loperamide as rescue medication. RESULTS: More placebo patients had radiation-induced diarrhea than VSL#3 patients (124 of 239 patients, 51.8%, and 77 of 243 patients, 31.6%; P < 0.001) and more patients given placebo suffered grade 3 or 4 diarrhea compared with VSL#3 recipients (55.4% and 1.4%, P < 0.001). Daily bowel movements were 14.7 ± 6 and 5.1 ± 3 among placebo and VSL#3 recipients (P < 0.05), and the mean time to the use of loperamide was 86 ± 6 h for placebo patients and 122 ± 8 h for VSL#3 patients (P < 0.001). CONCLUSION: Probiotic lactic acid-producing bacteria are an easy, safe, and feasible approach to protect cancer patients against the risk of radiation-induced diarrhea. PMID:17352022

  19. Radiation-induced cognitive impairment-from bench to bedside

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.

    2012-01-01

    Approximately 100 000 patients per year in the United States with primary and metastatic brain tumor survive long enough (>6 months) to develop radiation-induced brain injury. Before 1970, the human brain was thought to be radioresistant; the acute central nervous system (CNS) syndrome occurs after single doses of ≥30 Gy, and white matter necrosis can occur at fractionated doses of ≥60 Gy. Although white matter necrosis is uncommon with modern radiation therapy techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become increasingly important, having profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenic mechanisms involved in radiation-induced cognitive impairment. Although reductions in hippocampal neurogenesis and hippocampal-dependent cognitive function have been observed in rodent models, it is important to recognize that other brain regions are affected; non–hippocampal-dependent reductions in cognitive function occur. Neuroinflammation is viewed as playing a major role in radiation-induced cognitive impairment. During the past 5 years, several preclinical studies have demonstrated that interventional therapies aimed at modulating neuroinflammation can prevent/ameliorate radiation-induced cognitive impairment independent of changes in neurogenesis. Translating these exciting preclinical findings to the clinic offers the promise of improving the quality of life in patients with brain tumors who receive radiation therapy. PMID:23095829

  20. Radiation-induced xerostomia: pathophysiology, clinical course and supportive treatment.

    PubMed

    Guchelaar, H J; Vermes, A; Meerwaldt, J H

    1997-07-01

    Xerostomia, or oral dryness, is one of the most common complaints experienced by patients who have had radiotherapy of the oral cavity and neck region. The hallmarks of radiation-induced damage are acinar atrophy and chronic inflammation of the salivary glands. The early response, resulting in atrophy of the secretory cells without inflammation might be due to radiation-induced apoptosis. In contrast, the late response with inflammation could be a result of radiation-induced necrosis. The subjective complaint of a dry mouth appears to be poorly correlated with objective findings of salivary gland dysfunction. Xerostomia, with secondary symptoms of increased dental caries, difficulty in chewing, swallowing and speaking, and an increased incidence of oral candidiasis, can have a significant effect on the quality of life. At present there is no causal treatment for radiation-induced xerostomia. Temporary symptomatic relief can be offered by moistening agents and saliva substitutes, and is the only option for patients without residual salivary function. In patients with residual salivary function, oral administration of pilocarpine 5-10 mg three times a day is effective in increasing salivary flow and improving the symptoms of xerostomia, and this therapy should be considered as the treatment of choice. Effectiveness of sialogogue treatment requires residual salivary function, which emphasizes the potential benefit from sparing normal tissue during irradiation. The hypothesis concerning the existence of early apoptotic and late necrotic effects of irradiation on the salivary glands theoretically offers a way of achieving this goal.

  1. SPHINX Measurements of Radiation Induced Conductivity of Foam

    SciTech Connect

    Ballard, W.P.; Beutler, D.E.; Burt, M.; Dudley, K.J.; Stringer, T.A.

    1998-12-14

    Experiments on the SPHINX accelerator studying radiation-induced conductivity (RIC) in foam indicate that a field-exclusion boundary layer model better describes foam than a Maxwell-Garnett model that treats the conducting gas bubbles in the foam as modifying the dielectric constant. In both cases, wall attachment effects could be important but were neglected.

  2. Obstructive jaundice due to radiation-induced hepatic duct stricture

    SciTech Connect

    Chandrasekhara, K.L.; Iyer, S.K.

    1984-10-01

    A case of obstructive jaundice due to radiation-induced hepatic duct stricture is reported. The patient received postoperative radiation for left adrenal carcinoma, seven years prior to this admission. The sequelae of hepatobiliary radiation and their management are discussed briefly.

  3. Radiation-Induced Immune Modulation in Prostate Cancer

    DTIC Science & Technology

    2007-01-01

    postulate that radiation-induced TNFR I probably acts as a “ brake ” on immunity. Because of the high risk of the proposed experiment and high...the rest of body shielded. Tumor diameters were measured in three mutually orthogonal dimensions at 2–3 day intervals with a vernier caliper and the

  4. Radiation-induced nonlinear optical response of quartz fibers

    NASA Astrophysics Data System (ADS)

    Plaksin, O. A.

    2006-10-01

    The intensity of radiation-induced luminescence and transient optical losses in KU-1 (Russia) and K-3 (Japan) quartz glass optical tibers irradiated in a fast pulsed fission reactor (a pulse duration of 80 μs and a neutron flux up to 7 × 1016 cm 2 s 2) has been measured in the visible range. The intensity of the fast luminescence component nonlinearly depends on the neutron flux. The luminescence intensity and the transient optical losses depend on the probe light intensity. Suppression of radiation-induced luminescence is observed at wavelengths that are longer or shorter than the probe light wavelength. Light probing leads to an increase in transient optical losses and a more rapid recovery of transparency. A model of two photon fluxes is proposed to analyze the relationship of the effects of suppression of radiation-induced luminescence and the increase in optical losses upon light probing. The effect of suppression of radiation-induced luminescence can be used to control the optical properties of fibers in radiation fields.

  5. Data acquisition system used in radiation induced electrical degradation experiments

    SciTech Connect

    White, D.P.

    1995-04-01

    Radiation induced electrical degradation (RIED) of ceramic materials has recently been reported and is the topic of much research at the present time. The object of this report is to describe the data acquisition system for an experiment designed to study RIED at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory.

  6. Prevention of Radiation-Induced Breast Cancer by Amifostine

    DTIC Science & Technology

    2006-06-01

    acetylcysteine and captopril . 4 Task 2. To determine if post-irradiation amifostine treatment can reduce the frequency of radiation-induced ductal...similar to amifostine but more suited to oral administration such as WR- 3689, WR151327, N-acetylcysteine and captopril . The first task is to

  7. Prevention of Radiation-Induced Breast Cancer by Amifostine

    DTIC Science & Technology

    2009-01-01

    acetylcysteine and captopril . 4 Task 2. To determine if post-irradiation amifostine treatment can reduce the frequency of radiation-induced ductal...similar to amifostine but more suited to oral administration such as WR- 3689, WR151327, N-acetylcysteine and captopril . The first task is to

  8. Prevention of Radiation-Induced Breast Cancer by Amifostine

    DTIC Science & Technology

    2007-12-01

    and captopril . 4 Task 2. To determine if post-irradiation amifostine treatment can reduce the frequency of radiation-induced ductal dysplasia...amifostine but more suited to oral administration such as WR- 3689, WR151327, N-acetylcysteine and captopril . The first task is to determine if

  9. Radiation induces senescence and a bystander effect through metabolic alterations.

    PubMed

    Liao, E-C; Hsu, Y-T; Chuah, Q-Y; Lee, Y-J; Hu, J-Y; Huang, T-C; Yang, P-M; Chiu, S-J

    2014-05-22

    Cellular senescence is a state of irreversible growth arrest; however, the metabolic processes of senescent cells remain active. Our previous studies have shown that radiation induces senescence of human breast cancer cells that display low expression of securin, a protein involved in control of the metaphase-anaphase transition and anaphase onset. In this study, the protein expression profile of senescent cells was resolved by two-dimensional gel electrophoresis to investigate associated metabolic alterations. We found that radiation induced the expression and activation of glyceraldehyde-3-phosphate dehydrogenase that has an important role in glycolysis. The activity of lactate dehydrogenase A, which is involved in the conversion of pyruvate to lactate, the release of lactate and the acidification of the extracellular environment, was also induced. Inhibition of glycolysis by dichloroacetate attenuated radiation-induced senescence. In addition, radiation also induced activation of the 5'-adenosine monophosphate-activated protein kinase (AMPK) and nuclear factor kappa B (NF-κB) pathways to promote senescence. We also found that radiation increased the expression of monocarboxylate transporter 1 (MCT1) that facilitates the export of lactate into the extracellular environment. Inhibition of glycolysis or the AMPK/NF-κB signalling pathways reduced MCT1 expression and rescued the acidification of the extracellular environment. Interestingly, these metabolic-altering signalling pathways were also involved in radiation-induced invasion of the surrounding, non-irradiated breast cancer and normal endothelial cells. Taken together, radiation can induce the senescence of human breast cancer cells through metabolic alterations.

  10. Subcutaneous administration of bovine superoxide dismutase protects lungs from radiation-induced lung injury.

    PubMed

    Antonic, Vlado; Rabbani, Zahid N; Jackson, Isabel L; Vujaskovic, Zeljko

    2015-10-01

    The objective of the present study was to determine whether single administration of the antioxidant enzyme bovine superoxide dismutase (bSOD) after radiation therapy (RT) mitigates development of pulmonary toxicity in rats. Female F344 rats (n = 60) were divided among six experimental groups: (1) RT, single dose of 21 Gy to the right hemithorax; (2) RT + 5 mg/kg bSOD; (3) RT + 15 mg/kg bSOD; (4) No RT; (5) sham RT + 5 mg/kg bSOD; and (6) sham RT + 15 mg/kg bSOD. A single subcutaneous injection of bSOD (5 or 15 mg/kg) was administered 24 h post-radiation. The effects of bSOD on radiation-induced lung injury were assessed by measurement of body weight, breathing frequency, and histopathological changes. Immunohistochemistry was used to evaluate oxidative stress (8-OHdG(+), NOX4(+), nitrotyrosine(+), and 4HNE(+) cells), macrophage activation (ED1(+)), and expression of profibrotic transforming growth factor-β or TGF-β in irradiated tissue. Radiation led to an increase in all the evaluated parameters. Treatment with 15 mg/kg bSOD significantly decreased levels of all the evaluated parameters including tissue damage and breathing frequency starting 6 weeks post-radiation. Animals treated with 5 mg/kg bSOD trended toward a suppression of radiation-induced lung damage but did not reach statistical significance. The single application of bSOD (15 mg/kg) ameliorates radiation-induced lung injury through suppression of reactive oxygen species/reactive nitrogen species or ROS/RNS-dependent tissue damage.

  11. Risk and survival outcomes of radiation-induced CNS tumors.

    PubMed

    Lee, Jessica W; Wernicke, A Gabriella

    2016-08-01

    Patients treated with cranial radiation are at risk of developing secondary CNS tumors. Understanding the incidence, treatment, and long-term outcomes of radiation-induced CNS tumors plays a role in clinical decision-making and patient education. Additionally, as meningiomas and pituitary tumors have been detected at increasing rates across all ages and may potentially be treated with radiation, it is important to know and communicate the risk of secondary tumors in children and adults. After conducting an extensive literature search, we identified publications that report incidence and long-term outcomes of radiation-induced CNS tumors. We reviewed 14 studies in children, which reported that radiation confers a 7- to 10-fold increase in subsequent CNS tumors, with a 20-year cumulative incidence ranging from 1.03 to 28.9 %. The latency period for secondary tumors ranged from 5.5 to 30 years, with gliomas developing in 5-10 years and meningiomas developing around 15 years after radiation. We also reviewed seven studies in adults, where the two strongest studies showed no increased risk while the remaining studies found a higher risk compared to the general population. The latency period for secondary CNS tumors in adults ranged from 5 to 34 years. Treatment and long-term outcomes of radiation-induced CNS tumors have been documented in four case series, which did not conclusively demonstrate that secondary CNS tumors fared worse than primary CNS tumors. Radiation-induced CNS tumors remain a rare occurrence that should not by itself impede radiation treatment. Additional investigation is needed on the risk of radiation-induced tumors in adults and the long-term outcomes of these tumors.

  12. The cardiac dose-sparing benefits of deep inspiration breath-hold in left breast irradiation: a systematic review

    SciTech Connect

    Smyth, Lloyd M; Knight, Kellie A; Aarons, Yolanda K; Wasiak, Jason

    2015-03-15

    Despite technical advancements in breast radiation therapy, cardiac structures are still subject to significant levels of irradiation. As the use of adjuvant radiation therapy after breast-conserving surgery continues to improve survival for early breast cancer patients, the associated radiation-induced cardiac toxicities become increasingly relevant. Our primary aim was to evaluate the cardiac-sparing benefits of the deep inspiration breath-hold (DIBH) technique. An electronic literature search of the PubMed database from 1966 to July 2014 was used to identify articles published in English relating to the dosimetric benefits of DIBH. Studies comparing the mean heart dose of DIBH and free breathing treatment plans for left breast cancer patients were eligible to be included in the review. Studies evaluating the reproducibility and stability of the DIBH technique were also reviewed. Ten studies provided data on the benefits of DIBH during left breast irradiation. From these studies, DIBH reduced the mean heart dose by up to 3.4 Gy when compared to a free breathing approach. Four studies reported that the DIBH technique was stable and reproducible on a daily basis. According to current estimates of the excess cardiac toxicity associated with radiation therapy, a 3.4 Gy reduction in mean heart dose is equivalent to a 13.6% reduction in the projected increase in risk of heart disease. DIBH is a reproducible and stable technique for left breast irradiation showing significant promise in reducing the late cardiac toxicities associated with radiation therapy.

  13. Radiation induced cutaneous ulcer on the back in a patient with congenital anomaly of the upper cava system.

    PubMed

    Jeskowiak, Antonia; Hubmer, Martin; Prenner, Guenther; Maechler, Heinrich

    2011-02-01

    Recent years have seen the introduction of a number of additive diagnostic and therapeutic procedures in invasive cardiology. Cardiac catheterization procedures using fluoroscopy reduce patient morbidity and mortality compared to conventional surgical interventions. The associated radiation exposure for the patient is, however, often underestimated, while implantation of cardiac resynchronization therapy (CRT) and/or implantable cardioverter defibrillator (ICD) pacemaker systems sometimes entails even higher radiation exposures due to prolonged fluoroscopic studies. Radiation induced skin injuries including ulceration are mainly dose dependent effects of ionizing radiation and can be acute, subacute or chronic. The time between radiation exposure and manifestation of skin injuries varies greatly, from a few days up to months or even years. We report a 54-year-old male patient who presented to the Department of Dermatology in the year 2006, with erythema in the interscapular area associated with occasional pruritus. His medical report included several diagnostic cardiac catheterization procedures. Several attempts to implant CRT and ICD had failed owing to an undetected congenital anomaly of the upper vena cava system; these attempts had entailed prolonged fluoroscopy. The patient's history, clinical presentation and histopathological findings finally led to the diagnosis of radiation induced cutaneous ulcer.

  14. Bone marrow mesenchymal stem cell transplantation improves radiation-induced heart injury through DNA damage repair in rat model.

    PubMed

    Gao, Song; Zhao, Zhiying; Wu, Rong; Zeng, Yuecan; Zhang, Zhenyong; Miao, Jianing; Yuan, Zhengwei

    2017-03-01

    Radiotherapy is an effective form of therapy for most thoracic malignant tumors. However, myocardial injury resulting from the high doses of radiation is a severe complication. Here we aimed to study the possibility of reducing radiation-induced myocardial injury with mesenchymal stem cell (MSC) transplantation. We used MSCs extracted from bone marrow (BMSCs) to transplant via the tail vein into a radiation-induced heart injury (RIHI) rat model. The rats were divided into six groups: a Sham group, an IRR (irradiation) group, and four IRR + BMSCs transplantation groups obtained at different time points. After irradiation, BMSC transplantation significantly enhanced the cardiac function in rats. By analyzing the expression of PPAR-α, PPAR-γ, TGF-β, IL-6, and IL-8, we found that BMSC transplantation alleviated radiation-induced myocardial fibrosis and decreased the inflammatory reaction. Furthermore, we found that expression of γ-H2AX, XRCC4, DNA ligase4, and TP53BP1, which are associated with DNA repair, was up-regulated, along with increased secretion of growth factors SDF-1, CXCR4, VEGF, and IGF in rat myocardium in the IRR + BMSCs transplantation groups compared with the IRR group. Thus, BMSC transplantation has the potential to improve RIHI via DNA repair and be a new therapeutic approach for patients with myocardial injury.

  15. Endoglin haploinsufficiency reduces radiation-induced fibrosis and telangiectasia formation in mouse kidneys.

    PubMed

    Scharpfenecker, Marion; Floot, Ben; Russell, Nicola S; Ten Dijke, Peter; Stewart, Fiona A

    2009-09-01

    Endoglin is a transforming growth factor beta (TGF-beta) co-receptor mainly expressed in dividing endothelial cells. It regulates cell proliferation and survival and is upregulated at sites of vessel repair. Mutations in endoglin have been linked to the vascular disease hereditary hemorrhagic telangiectasia (HHT). HHT patients display dilated capillaries (telangiectasia) that are prone to rupture. Cancer patients receiving radiotherapy develop similar vascular damage in normal tissues lying in the irradiation field. If located in the mucosa, irradiation-induced telangiectasia can lead to severe bleeding. Therefore, this study was aimed at investigating the role of endoglin in radiation-induced telangiectasia formation. Kidneys of endoglin heterozygous (Eng(+/-)) or wild type mice were irradiated with 16 Gy. Mice were sacrificed after 20 weeks and changes in gene expression and protein levels were analysed. Expression of TGF-beta target genes involved in radiation-induced fibrosis and fibrosis development in the kidney decreased in Eng(+/-) compared to wild type mice. Unexpectedly, Eng(+/-) mice also displayed reduced telangiectasia formation in the irradiated kidney. Endoglin plays an important role in the development of irradiation-induced normal tissue damage. Future studies will show whether interfering with endoglin functions protects tissues from late radiation toxicity.

  16. Ionizing radiation induces senescence and differentiation of human dental pulp stem cells.

    PubMed

    Havelek, R; Soukup, T; Ćmielová, J; Seifrtová, M; Suchánek, J; Vávrová, J; Mokrý, J; Muthná, D; Řezáčová, M

    2013-01-01

    Head and neck cancer is one of the most common cancers in Europe. Many current anti-cancer treatments, including ionizing radiation, induce apoptosis via DNA damage. Unfortunately, such treatments are non-selective to cancer cells and produce similar toxicity in normal cells, including adult stem cells. One of the fundamental properties of an adult stem cell is that it does not have any tissue-specific structures that allow it to perform specialized functions. However, under certain stimuli, unspecialized adult stem cells can give rise to specialized cells to generate replacements for cells that are lost during one's life or due to injury or disease. Nevertheless, specialization of stem cells must be controlled by specific milieu and also initiated at the proper time, making the entire process beneficial for tissue recovery and maintaining it for a long time. In this paper we assess whether irradiated dental pulp stem cells have maintained open their options to mature into specialized cells, or whether they have lost their unspecialized (immature) state following irradiation. Our findings showed radiation-induced premature differentiation of dental pulp stem cells towards odonto-/osteoblast lineages in vitro. Matrix calcification was visualized from Day 6 or Day 9 following irradiation of cells expressing low or high levels of CD146, respectively.

  17. Molluscicidal activity of cardiac glycosides from Nerium indicum against Pomacea canaliculata and its implications for the mechanisms of toxicity.

    PubMed

    Dai, Lingpeng; Wang, Wanxian; Dong, Xinjiao; Hu, Renyong; Nan, Xuyang

    2011-09-01

    Cardiac glycosides from fresh leaves of Nerium indicum were evaluated for its molluscicidal activity against Pomacea canaliculata (golden apple snail: GAS) under laboratory conditions. The results showed that LC(50) value of cardiac glycosides against GAS was time dependent and the LC(50) value at 96 h was as low as 3.71 mg/L, which was comparable with that of metaldehyde at 72 h (3.88 mg/L). These results indicate that cardiac glycosides could be an effective molluscicide against GAS. The toxicological mechanism of cardiac glucosides on GAS was also evaluated through changes of selected biochemical parameters, including cholinesterase (ChE) and esterase (EST) activities, glycogen and protein contents in hepatopancreas tissues of GAS. Exposure to sublethal concentrations of cardiac glycosides, GAS showed lower activities of EST isozyme in the later stages of the exposure period as well as drastically decreased glycogen content, although total protein content was not affected at the end of 24 and 48 h followed by a significant depletion at the end of 72 and 96 h. The initial increase followed by a decline of ChE activity was also observed during the experiment. These results suggest that cardiac glycosides seriously impair normal physiological metabolism, resulting in fatal alterations in major biochemical constituents of hepatopancreas tissues of P. canaliculata.

  18. Oligomer formation in the radiation-induced polymerization of styrene

    NASA Astrophysics Data System (ADS)

    Harayma, Hiroshi; Al-Sheikhly, Mohamad; Silverman, Joseph

    2003-12-01

    Analyses of the oligomers formed in radiation-induced polymerization of purified styrene were performed. The principal dimeric products were cis- and trans-diphenyl-cyclobutane with a relatively small amount of 1-phenyltetralin; the trimeric products were the optical isomers of 1-phenyl-4-[1'-phenylethyl-(1')]-tetralin in gamma-ray and 60 MeV proton irradiation. Oligomer formation increased with increasing dose, but more gradually than the linear formation of high polymer with dose. The yield was 0.25-3.1 μmol/J at low doses and decreased to an asymptotic value of 0.15 at higher doses. It appears that oligomers act as chain transfer agents during the polymerization reaction which would account for the observed decrease in molecular weight of the high polymer with increase in dose. Although the thermal and radiation-induced polymerization of styrene have different initiation steps, the oligomers produced by both reactions are similar in composition.

  19. Radiation-induced decomposition of explosives under extreme conditions

    SciTech Connect

    Giefers, Hubertus; Pravica, Michael; Yang, Wenge; Liermann, Peter

    2008-11-03

    We present high-pressure and high temperature studies of the synchrotron radiation-induced decomposition of powder secondary high explosives pentaerythritol tetranitrate (PETN) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) using white beam synchrotron radiation at the 16 BM-B and 16 BM-D sectors of the HP-CAT beamline at the Advanced Photon Source. The radiation-induced decomposition rate TATB showed dramatic slowing with pressure up to 26.6 GPa (the highest pressure studied), implying a positive activation volume of the activated complex. The decomposition rate of PETN varied little with pressure up to 15.7 GPa (the highest pressure studied). Diffraction line intensities were measured as a function of time using energy-dispersive methods. By measuring the decomposition rate as a function of pressure and temperature, kinetic and other constants associated with the decomposition reactions were extracted.

  20. Caffeine Markedly Enhanced Radiation-Induced Bystander Effects

    NASA Astrophysics Data System (ADS)

    Jiang, Erkang; Wu, Lijun

    2009-04-01

    In this paper it is shown that incubation with 2 mM caffeine enhanced significantly the MN (micronucleus) formation in both the 1 cGy α-particle irradiated and non-irradiated bystander regions. Moreover, caffeine treatment made the non-irradiated bystander cells more sensitive to damage signals. Treated by c-PTIO(2-(4-carboxy-phenyl)-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide), a nitric oxide (NO) scavenger, the MN frequencies were effectively inhibited, showing that nitric oxide might be very important in mediating the enhanced damage. These results indicated that caffeine enhanced the low dose α-particle radiation-induced damage in irradiated and non-irradiated bystander regions, and therefore it is important to investigate the relationship between the radiosensitizer and radiation-induced bystander effects (RIBE).

  1. Radioadaptive response for protection against radiation-induced teratogenesis.

    PubMed

    Okazaki, Ryuji; Ootsuyama, Akira; Norimura, Toshiyuki

    2005-03-01

    To clarify the characteristics of the radioadaptive response in mice, we compared the incidence of radiation-induced malformations in ICR mice. Pregnant ICR mice were exposed to a priming dose of 2 cGy (667 muGy/min) on day 9.5 of gestation and to a challenging dose of 2 Gy (1.04 Gy/min) 4 h later and were killed on day 18.5 of gestation. The incidence of malformations and prenatal death and fetal body weights were studied. The incidence of external malformations was significantly lower (by approximately 10%) in the primed (2 cGy + 2 Gy) mice compared to the unprimed (2 Gy alone) mice. However, there were no differences in the incidence of prenatal death or the skeletal malformations or the body weights between primed and unprimed mice. These results suggest that primary conditioning with low doses of radiation suppresses radiation-induced teratogenesis.

  2. Radiation induced viscous flow in amorphous thin films

    NASA Astrophysics Data System (ADS)

    Mayr, S. G.; Ashkenazy, Y.; Averback, R. S.

    2003-03-01

    We investigate surface roughness and stress relaxation in amorphous thin films during ion beam irradiation by a combination of experiments and molecular dynamics simulations. These experiments show, that smoothing occurs by a viscous mechanism. With computer simulations we investigate the model system CuTi, and find that radiation induced viscous flow is independent of the recoil energy between 100 and 15keV, when compared on the basis of defect production. Additionally we can identify a threshold recoil energy for flow of approximately 10eV. We show, that point defects can mediate the flow, by injection of interstitial and vacancy-like defects, which induce the same amount of flow as recoil events. The results are compared with the thermal spike model of radiation induced viscous flow.

  3. Radiation-induced transient darkening of optically transparent polymers

    SciTech Connect

    Downey, S.W.; Builta, L.A.; Carlson, R.L.; Czuchlewski, S.J.; Moir, D.C.

    1986-11-15

    Results are presented for the radiation-induced transient darkening of thin organic polymer films normally used as Cerenkov light emissions sources. The radiation source is a 27-MeV, 10-..mu..C, 200-ns electron beam generated by the PHERMEX accelerator. The typical dose for a single pulse is 5 Mrad. At this dose, the broadband time-resolved percent transmission above 520 nm was measured for four common polymers: polyimide (Kapton-H), polyethylene terephthalate (Mylar), cellulose acetate, and high-density polyethylene. Kapton was found to darken the most and polyethylene darkened the least. The recovery time to normal transmission for Kapton was found to be greater than 10--20 ..mu..s. The radiation-induced attenuation coefficient is shown to depend on electronic band energy separation. The results show that Kapton is not the material of choice for a Cerenkov light source.

  4. Prosthodontic management of radiation induced xerostomic patient using flexible dentures

    PubMed Central

    Murthy, Varsha; V, Yuvraj; Nair, Preeti P; Thomas, Shaji

    2012-01-01

    Xerostomia causes discomfort for complete denture wearers as the tissues become dry and friable due to lack of lubricating properties of saliva. Common problems faced by such patients are glossitis, mucositis, angular chelitis, dysgeusia and difficulty in chewing and swallowing. This case report describes a new method in addressing such issues by using flexible complete denture construction in radiation induced xerostomic patient with minimal tissue damage during and after denture construction procedures. PMID:22605708

  5. Follistatin attenuates radiation-induced fibrosis in a murine model

    PubMed Central

    Forrester, Helen B.; de Kretser, David M.; Leong, Trevor; Hagekyriakou, Jim; Sprung, Carl N.

    2017-01-01

    Purpose Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis. Experimental design C57BL/6 mice were subcutaneously injected with follistatin 24 hours prior to irradiation. Mice were irradiated in a 10 x 10 mm square area of the right hind leg with 35 Gy and were given follistatin 24 hours before radiation and three times a week for six months following. Leg extension was measured, and tissue was collected for histological and molecular analysis to evaluate the progression of the radiation-induced fibrosis. Results Leg extension was improved in follistatin treated mice compared to vehicle treated mice at six months after irradiation. Also, epidermal thickness and cell nucleus area of keratinocytes were decreased by the follistatin treatment compared to the cells in irradiated skin of control mice. Finally, the gene expression of transforming growth factor β1 (Tgfb1), and smooth muscle actin (Acta2) were decreased in the irradiated skin and Acta2 and inhibin βA subunit (Inhba) were decreased in the irradiated muscle of the follistatin treated mice. Conclusions Follistatin attenuated the radiation-induced fibrotic response in irradiated mice. These studies provide the data to support further investigation of the use of follistatin to reduce radiation-induced fibrosis in patients undergoing radiotherapy for cancer. PMID:28301516

  6. Follistatin attenuates radiation-induced fibrosis in a murine model.

    PubMed

    Forrester, Helen B; de Kretser, David M; Leong, Trevor; Hagekyriakou, Jim; Sprung, Carl N

    2017-01-01

    Fibrosis can be a disabling, severe side effect of radiotherapy that can occur in patients, and for which there is currently no effective treatment. The activins, proteins which are members of the TGFβ superfamily, have a major role in stimulating the inflammatory response and subsequent fibrosis. Follistatin is an endogenous protein that binds the activins virtually irreversibly and inhibits their actions. These studies test if follistatin can attenuate the fibrotic response using a murine model of radiation-induced fibrosis. C57BL/6 mice were subcutaneously injected with follistatin 24 hours prior to irradiation. Mice were irradiated in a 10 x 10 mm square area of the right hind leg with 35 Gy and were given follistatin 24 hours before radiation and three times a week for six months following. Leg extension was measured, and tissue was collected for histological and molecular analysis to evaluate the progression of the radiation-induced fibrosis. Leg extension was improved in follistatin treated mice compared to vehicle treated mice at six months after irradiation. Also, epidermal thickness and cell nucleus area of keratinocytes were decreased by the follistatin treatment compared to the cells in irradiated skin of control mice. Finally, the gene expression of transforming growth factor β1 (Tgfb1), and smooth muscle actin (Acta2) were decreased in the irradiated skin and Acta2 and inhibin βA subunit (Inhba) were decreased in the irradiated muscle of the follistatin treated mice. Follistatin attenuated the radiation-induced fibrotic response in irradiated mice. These studies provide the data to support further investigation of the use of follistatin to reduce radiation-induced fibrosis in patients undergoing radiotherapy for cancer.

  7. Heavy-ion radiation induced bystander effect in mice

    NASA Astrophysics Data System (ADS)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  8. Torin2 Suppresses Ionizing Radiation-Induced DNA Damage Repair.

    PubMed

    Udayakumar, Durga; Pandita, Raj K; Horikoshi, Nobuo; Liu, Yan; Liu, Qingsong; Wong, Kwok-Kin; Hunt, Clayton R; Gray, Nathanael S; Minna, John D; Pandita, Tej K; Westover, Kenneth D

    2016-05-01

    Several classes of inhibitors of the mammalian target of rapamycin (mTOR) have been developed based on its central role in sensing growth factor and nutrient levels to regulate cellular metabolism. However, its ATP-binding site closely resembles other phosphatidylinositol 3-kinase-related kinase (PIKK) family members, resulting in reactivity with these targets that may also be therapeutically useful. The ATP-competitive mTOR inhibitor, Torin2, shows biochemical activity against the DNA repair-associated proteins ATM, ATR and DNA-PK, which raises the possibility that Torin2 and related compounds might radiosensitize cancerous tumors. In this study Torin2 was also found to enhance ionizing radiation-induced cell killing in conditions where ATM was dispensable, confirming the requirement for multiple PIKK targets. Moreover, Torin2 did not influence the initial appearance of γ-H2AX foci after irradiation but significantly delayed the disappearance of radiation-induced γ-H2AX foci, indicating a DNA repair defect. Torin2 increased the number of radiation-induced S-phase specific chromosome aberrations and reduced the frequency of radiation-induced CtIP and Rad51 foci formation, suggesting that Torin2 works by blocking homologous recombination (HR)-mediated DNA repair resulting in an S-phase specific DNA repair defect. Accordingly, Torin2 reduced HR-mediated repair of I-Sce1-induced DNA damage and contributed to replication fork stalling. We conclude that radiosensitization of tumor cells by Torin2 is associated with disrupting ATR- and ATM-dependent DNA damage responses. Our findings support the concept of developing combination cancer therapies that incorporate ionizing radiation therapy and Torin2 or compounds with similar properties.

  9. Thermodynamic models of radiation-induced processes in solids

    NASA Astrophysics Data System (ADS)

    Yurov, V. M.; Eremin, E. N.; Kasymov, S. S.; Laurinas, V. CH; Chernyavskii, A. V.

    2017-01-01

    A thermodynamic model is proposed to qualitatively describe the radiation-induced processes in solids: temperature dependence of the X-ray radio luminescence output, dependence of these processes on the excitation density, energy accumulating in a solid under exposure to ionizing radiation and its temperature dependence. The proposed model and the formula derived can be used to develop radiation-resistant and radiation-sensitive materials.

  10. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  11. Dynamics of radiation-induced amorphization in intermetallic compounds

    SciTech Connect

    Lam, N.Q.; Okamoto, P.R. ); Devanathan, R. Northwestern Univ., Evanston, IL . Dept. of Materials Science and Engineering); Meshii, M. . Dept. of Materials Science and Engineering)

    1992-06-01

    Recent progress in molecular-dynamics simulations of radiation-induced crystalline-to-amorphous transition in intermetallic compounds and the relationship between amorphization and melting are discussed. By focusing on the mean-square static displacement, which provides a generic measure of energy stored in the lattice in the forms of chemical and topological disorder, a unified description of solid-state amorphization as a disorder-induced, isothermal melting process can be developed within the framework of a generalized Lindemann criterion.

  12. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  13. Modeling radiation induced segregation in Iron-Chromium alloys

    SciTech Connect

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; Nastar, Maylise; Fu, Chu-Chun; Brechet, Yves

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causes an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.

  14. Modeling radiation induced segregation in Iron-Chromium alloys

    DOE PAGES

    Senninger, Oriane; Soisson, Frederic; Martinez Saez, Enrique; ...

    2015-10-16

    Radiation induced segregation in ferritic Fe-Cr alloys is studied by Atomistic Kinetic Monte Carlo simulations that include di usion of chemical species by vacancy and interstitial migration, recombination, and elimination at sinks. The parameters of the di usion model are tted to DFT calculations. Transport coe cients that control the coupling between di usion of defects and chemical species are measured in dilute and concentrated alloys. Radiation induced segregation near grain boundaries is directly simulated with this model. We nd that the di usion of vacancies toward sinks leads to a Cr depletion. Meanwhile, the di usion of self-interstitials causesmore » an enrichment of Cr in the vicinity of sinks. For concentrations lower than 15%Cr, we predict that sinks will be enriched with Cr for temperatures lower than a threshold. When the temperature is above this threshold value, the sinks will be depleted in Cr. These results are compared to previous experimental studies and models. Cases of radiation induced precipitation and radiation accelerated precipitation are considered.« less

  15. Radiation-induced cataract in astronauts and cosmonauts.

    PubMed

    Rastegar, Noushin; Eckart, Peter; Mertz, Manfred

    2002-07-01

    Opacification of the ocular lens is an important effect of exposure to ionizing radiation. Astronauts and cosmonauts are exposed to relatively high doses of all types of radiation in space, including high-energy particle radiation. A study was initiated to examine the lenses of the eyes of astronauts/cosmonauts to detect signs of radiation-induced cataracts. The aim of this study was to take a first step towards gaining improved, quantitative insight into the risk of radiation-induced cataract associated with long space missions. The lenses of 21 former astronauts and cosmonauts were examined, using an upgraded Topcon SL-45 B Scheimpflug camera system. The degrees of opacification in this group of astronauts and cosmonauts were compared with the measurements in a reference group. This reference group was established by examining a cohort of 395 persons using the same Scheimpflug system. Initial results indicated that opacity values in most of the astronauts and cosmonauts were slightly to strongly increased in regions IV (posterior cortex) and V (posterior capsule), compared with the average opacity values for the respective age-group of the reference cohort. The aim of this study - to conduct first examinations of astronauts' and cosmonauts' ocular lenses with regard to signs of radiation-induced cataract - was successfully achieved in a total of 21 astronauts and cosmonauts using a Scheimpflug camera system. It is planned to examine a larger group of astronauts and cosmonauts in the future.

  16. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice.

    PubMed

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis.

  17. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice

    PubMed Central

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis. PMID:26114656

  18. Radiation-induced grain boundary segregation in austenitic stainless steels

    SciTech Connect

    Bruemmer, S.M.; Charlot, L.A.; Vetrano, J.S.; Simonen, E.P.

    1994-11-01

    Radiation-induced segregation (RIS) to grain boundaries in Fe-Ni-Cr-Si stainless alloys has been measured as a function of irradiation temperature and dose. Heavy-ion irradiation was used to produce damage levels from 1 to 20 displacements per atom (dpa) at temperatures from 175 to 550{degrees}C. Measured Fe, Ni, and Cr segregation increased sharply with irradiation dose (from G to 5 dpa) and temperature (from 175 to about 350{degrees}C). However, grain boundary concentrations did not change significantly as dose or temperatures were further increased. Although interfacial compositions were similar, the width of radiation-induced enrichment or depletion profiles increased consistently with increasing dose or temperature. Impurity segregation (Si and P) was also measured, but only Si enrichment appeared to be radiation-induced. Grain boundary Si peaked at levels approaching 10 at% after irradiation doses to 10 dpa at an intermediate temperature of 325{degrees}C. No evidence of grain boundary silicide precipitation was detected after irradiation at any temperature. Equilibrium segregation of P was measured in the high-P alloys, but interfacial concentration did not increase with irradiation exposure. Comparisons to reported RIS in neutron-irradiated stainless steels revealed similar grain boundary compositional changes for both major alloying and impurity elements.

  19. Bioinformatics Methods for Learning Radiation-Induced Lung Inflammation from Heterogeneous Retrospective and Prospective Data

    PubMed Central

    Spencer, Sarah J.; Almiron Bonnin, Damian; Deasy, Joseph O.; Bradley, Jeffrey D.; El Naqa, Issam

    2009-01-01

    Radiotherapy outcomes are determined by complex interactions between physical and biological factors, reflecting both treatment conditions and underlying genetics. Recent advances in radiotherapy and biotechnology provide new opportunities and challenges for predicting radiation-induced toxicities, particularly radiation pneumonitis (RP), in lung cancer patients. In this work, we utilize datamining methods based on machine learning to build a predictive model of lung injury by retrospective analysis of treatment planning archives. In addition, biomarkers for this model are extracted from a prospective clinical trial that collects blood serum samples at multiple time points. We utilize a 3-way proteomics methodology to screen for differentially expressed proteins that are related to RP. Our preliminary results demonstrate that kernel methods can capture nonlinear dose-volume interactions, but fail to address missing biological factors. Our proteomics strategy yielded promising protein candidates, but their role in RP as well as their interactions with dose-volume metrics remain to be determined. PMID:19704920

  20. Bioinformatics methods for learning radiation-induced lung inflammation from heterogeneous retrospective and prospective data.

    PubMed

    Spencer, Sarah J; Bonnin, Damian Almiron; Deasy, Joseph O; Bradley, Jeffrey D; El Naqa, Issam

    2009-01-01

    Radiotherapy outcomes are determined by complex interactions between physical and biological factors, reflecting both treatment conditions and underlying genetics. Recent advances in radiotherapy and biotechnology provide new opportunities and challenges for predicting radiation-induced toxicities, particularly radiation pneumonitis (RP), in lung cancer patients. In this work, we utilize datamining methods based on machine learning to build a predictive model of lung injury by retrospective analysis of treatment planning archives. In addition, biomarkers for this model are extracted from a prospective clinical trial that collects blood serum samples at multiple time points. We utilize a 3-way proteomics methodology to screen for differentially expressed proteins that are related to RP. Our preliminary results demonstrate that kernel methods can capture nonlinear dose-volume interactions, but fail to address missing biological factors. Our proteomics strategy yielded promising protein candidates, but their role in RP as well as their interactions with dose-volume metrics remain to be determined.

  1. Mitigation and Treatment of Radiation-Induced Thoracic Injury With a Cyclooxygenase-2 Inhibitor, Celecoxib

    SciTech Connect

    Hunter, Nancy R.; Valdecanas, David; Liao Zhongxing; Milas, Luka; Thames, Howard D.; Mason, Kathy A.

    2013-02-01

    Purpose: To test whether a cyclooxygenase-2 inhibitor (celecoxib) could reduce mortality resulting from radiation-induced pneumonitis. Methods and Materials: Celecoxib was given to mice twice daily for 40 consecutive days starting on the day of local thoracic irradiation (LTI) or 40 or 80 days later. C3Hf/KamLaw mice were observed for morbidity, and time to death was determined. Results were analyzed using the Cox proportional hazards model. Results: Timing of celecoxib relative to LTI determined efficacy. A significant reduction in time to death was achieved only when celecoxib was started 80 days after LTI, corresponding to the time when pneumonitis is expressed. For these mice the reduction in mortality was quantified as a hazard ratio for mortality of treated vs untreated of 0.36 (95% confidence interval [CI] 0.24-0.53), thus significantly less than 1.0. Correspondingly, the median lethal dose for treated mice (12.9 Gy; 95% CI 12.55-13.25 Gy) was significantly (P=.026) higher than for untreated mice (12.4 Gy; 95% CI 12.2-12.65 Gy). Conclusions: Celecoxib significantly reduced lung toxicity when administered months after LTI when the deleterious effects of radiation were expressed. The schedule-dependent reduction in fatal pneumonitis suggests that celecoxib could be clinically useful by reintroduction of treatment months after completion of radiation therapy. These findings may be important for designing clinical trials using cyclooxygenase-2 inhibitors to treat radiation-induced lung toxicity as a complement to concurrent radiation therapy of lung cancers.

  2. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development

    SciTech Connect

    Incardona, John P. Linbo, Tiffany L.; Scholz, Nathaniel L.

    2011-12-15

    Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) were distinct for each. BaP exposure (40 {mu}M) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4-40 {mu}M) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40 {mu}M) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities. -- Highlights: Black-Right-Pointing-Pointer PAH compounds with 5 rings in different arrangements caused differential tissue-specific patterns of CYP1A induction in zebrafish embryos. Black

  3. Favorable Outcomes of Pediatric Patients Treated With Radiotherapy to the Central Nervous System Who Develop Radiation-Induced Meningiomas

    SciTech Connect

    Galloway, Thomas J.; Indelicato, Daniel J.; Amdur, Robert J.; Swanson, Erika L.; Morris, Christopher G.; Marcus, Robert B.

    2011-01-01

    Purpose: To report the outcome of patients treated at the University of Florida who developed meningiomas after radiation to the central nervous system (CNS) for childhood cancer. Methods and Materials: We retrospectively identified 10 patients aged {<=}19 years who received radiotherapy to sites in the craniospinal axis and subsequently developed a meningioma. We report the histology of the radiation-induced meningioma, treatment received, and ultimate outcome among this cohort of patients. Results: Meningioma was diagnosed at a median of 23.5 years after completion of the primary radiation. Fifty percent of second meningiomas were World Health Organization Grade 2 (atypical) or higher. All cases were managed with a single modality: resection alone (n = 7), fractionated radiotherapy (n = 2), and stereotactic radiosurgery (n = 1). The actuarial event-free survival and overall survival rate at 5 years after treatment for a radiation-induced meningioma was 89%. Three patients who underwent resection for retreatment experienced a Grade 3 toxicity. Conclusions: Radiation-induced meningiomas after treatment of pediatric CNS tumors are effectively managed with single-modality therapy. Such late-effect data inform the overall therapeutic ratio and support the continued role of selective irradiation in managing pediatric CNS malignancies.

  4. Beneficial effects of carnosine and carnosine plus vitamin E treatments on doxorubicin-induced oxidative stress and cardiac, hepatic, and renal toxicity in rats.

    PubMed

    Kumral, A; Giriş, M; Soluk-Tekkeşin, M; Olgaç, V; Doğru-Abbasoğlu, S; Türkoğlu, Ü; Uysal, M

    2016-06-01

    Oxidative stress plays an important role in doxorubicin (DOX)-induced toxicity. Carnosine (CAR) is a dipeptide with antioxidant properties. The aim of this study was to evaluate the decreasing or preventive effect of CAR alone or combination with vitamin E (CAR + Vit E) on DOX-induced toxicity in heart, liver, and brain of rats. Rats were treated with CAR (250 mg kg(-1) day(-1); intraperitoneally (i.p.)) or CAR + Vit E (equals 200 mg kg(-1) α-tocopherol; once every 3 days; intramuscularly) for 12 consecutive days. On the 8th day of treatment, rats were injected with a single dose of DOX (30 mg kg(-1), i.p.). Serum cardiac troponin I (cTnI), urea, and creatinine levels; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities; and oxidative stress parameters in tissues were measured. We also determined thiobarbituric acid reactive substances, diene conjugate, protein carbonyl (PC), and glutathione levels and antioxidant enzyme activities. DOX resulted in increased serum cTnI, ALT, AST, urea, and creatinine levels and increased lipid peroxide and PC levels in tissues. CAR or CAR + Vit E treatments led to decreases in serum cTnI levels and ALT and AST activities. These treatments reduced prooxidant status and ameloriated histopathologic findings in the examined tissues. Our results may indicate that CAR alone, especially in combination with Vit E, protect against DOX-induced toxicity in heart, liver, and kidney tissues of rats. This was evidenced by improved cardiac, hepatic, and renal markers and restoration of the prooxidant state and amelioration of histopathologic changes. © The Author(s) 2015.

  5. Early cardiac toxicity following adjuvant radiotherapy of left-sided breast cancer with or without concurrent trastuzumab

    PubMed Central

    Cao, Lu; Cai, Gang; Chang, Cai; Yang, Zhao-Zhi; Feng, Yan; Yu, Xiao-Li; Ma, Jin-Li; Wu, Jiong; Guo, Xiao-Mao; Chen, Jia-Yi

    2016-01-01

    Purpose To evaluate the influence of concurrent trastuzumab on the cardiotoxicity in patients receiving left-sided adjuvant radiotherapy. Materials and Methods Medical records of stage I-III left-sided breast cancer patients, including 64 receiving concurrent trastuzumab with radiotherapy and 73 receiving radiotherapy alone were retrospectively reviewed. All of the patients had normal LVEF after adjuvant chemotherapy. Information of doses volume to cardiac structures was collected. Cardiac events were assessed according to CTC 2.0. Results Median follow-up of LVEF and clinical assessment of cardiac function from the initiation of radiotherapy was 6.7 months (range 3–60.9) and 26 months (range 6.4–60.9), respectively. Grade 1 LVEF dysfunction occurred in 5 (7.8%) and 3 (4.1%) patients of the concurrent-trastuzumab and radiotherapy alone cohort, respectively. Trastuzumab was the only significant factor influencing absolute LVEF decrease in univariate analysis. In multivariate analysis of concurrent-trastuzumab cohort, IMC radiotherapy and start trastuzumab during radiotherapy were independent risk factors. For concurrent cohort, mean heart dose, as well as D10-D30, D50-D55, V5-V20 of the heart and D30-D45, D65-D75, V6-V15 of the LV were significantly higher in patients developing LVEF dysfunction. Conclusions Concurrent trastuzumab and left-sided radiotherapy is well tolerated in terms of cardiotoxicity in patients with normal baseline cardiac function after adjuvant chemotherapy. However, increases in mean dose and low–dose volume of cardiac structures are associated with a higher risk of acute LVEF dysfunction. PMID:26460956

  6. Evaluation of potent phytomedicine for treatment of psoriasis using UV radiation induced psoriasis in rats.

    PubMed

    Nagar, Hemant K; Srivastava, Amit K; Srivastava, Rajnish; Ranawat, Mahendra S

    2016-12-01

    The aim of present study was to determine the effect of newly formulated gels and suspensions of extractive Phytoconstituents of Woodfordia fructicosa flowers and Gardenia gummifera leaves by using UV Radiation induced psoriasis in rats. Both plants are traditionally claimed to be useful in treatment of number of skin diseases. However, there are no established scientific reports for their potential in psoriasis. Formulated Gels and Suspensions of ethanolic extract of both plants were tested for acute dermal and oral toxicity study respectively. The results of acute dermal toxicity at concentration 1% w/w and oral toxicity at dose 1000mg/kg showed that the gels and suspensions were safe. Psoriasis was induced in Wistar rats by espousing 10% area of total body by UV radiations. Anti-psoriatic activity was performed by applying 0.1% gel and orally at a dose 100mg/kg body weight in rats. Severity Index, histological study and biochemical estimation were analyzed. The results of our studies showed that the test formulations (Gels and Suspensions) of both plant extracts exhibited potential effect in anti-psoriatic activity.

  7. Acute DNA damage activates the tumour suppressor p53 to promote radiation-induced lymphoma

    PubMed Central

    Lee, Chang-Lung; Castle, Katherine D.; Moding, Everett J.; Blum, Jordan M.; Williams, Nerissa; Luo, Lixia; Ma, Yan; Borst, Luke B.; Kim, Yongbaek; Kirsch, David G.

    2015-01-01

    Genotoxic cancer therapies, such as chemoradiation, cause haematological toxicity primarily by activating the tumour suppressor p53. While inhibiting p53-mediated cell death during cancer therapy ameliorates haematologic toxicity, whether it also impacts carcinogenesis remains unclear. Here we utilize a mouse model of inducible p53 short hairpin RNA (shRNA) to show that temporarily blocking p53 during total-body irradiation (TBI) not only ameliorates acute toxicity, but also improves long-term survival by preventing lymphoma development. Using KrasLA1 mice, we show that TBI promotes the expansion of a rare population of thymocytes that express oncogenic KrasG12D. However, blocking p53 during TBI significantly suppresses the expansion of KrasG12D-expressing thymocytes. Mechanistically, bone marrow transplant experiments demonstrate that TBI activates p53 to decrease the ability of bone marrow cells to suppress lymphoma development through a non-cell-autonomous mechanism. Together, our results demonstrate that the p53 response to acute DNA damage promotes the development of radiation-induced lymphoma. PMID:26399548

  8. Measurements of prompt radiation induced conductivity of Kapton.

    SciTech Connect

    Preston, Eric F.; Zarick, Thomas Andrew; Sheridan, Timothy J.; Hartman, E. Frederick; Stringer, Thomas Arthur

    2010-10-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Kapton (polyimide) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil samples were irradiated with a 0.5 {mu}s pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E10 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 6E-17 and 2E-16 mhos/m per rad/s, depending on the dose rate and the pulse width.

  9. Radiation-Induced Premelting of Ice at Silica Interfaces

    SciTech Connect

    Schoeder, S.; Reichert, H.; Schroeder, H.; Mezger, M.; Okasinski, J. S.; Dosch, H.; Honkimaeki, V.; Bilgram, J.

    2009-08-28

    The existence of surface and interfacial melting of ice below 0 deg. C has been confirmed by many different experimental techniques. Here we present a high-energy x-ray reflectivity study of the interfacial melting of ice as a function of both temperature and x-ray irradiation dose. We found a clear increase of the thickness of the quasiliquid layer with the irradiation dose. By a systematic x-ray study, we have been able to unambiguously disentangle thermal and radiation-induced premelting phenomena. We also confirm the previously announced very high water density (1.25 g/cm{sup 3}) within the emerging quasiliquid layer.

  10. A model of radiatively induced quark and lepton mass model

    NASA Astrophysics Data System (ADS)

    Nomura, Takaaki

    2017-07-01

    We discuss a radiatively induced quark and lepton mass model in the rst and second generation introducing extra U(1) gauge symmetry, discrete Z 2 symmetry, vector-like fermions and exotic scalar elds. Then we analyze the allowed parameter regions which simultaneously satisfy the constraints of FCNCs for the quark sector and of LFVs including μ - e conversion, observed quark mass and mixing, and the lepton mass and mixing. In addition, the typical value for the (g - 2) μ in our model is presented. We also show extension of the model in which Majorana type neutrino masses are generated at the two loop level.

  11. Mechanisms of Radiation Induced Effects in Carbon Nanotubes

    DTIC Science & Technology

    2016-10-01

    kilogram ( C kg –1 ) rad [absorbed dose] 1 × 10 –2 joule per kilogram (J kg –1 ) [gray (Gy)] rem [equivalent and effective dose] 1 × 10–2 joule per...8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-17-5 Mechanisms of Radiation-Induced...CLASSIFICATION OF: a. REPORT b. ABSTRACT c . THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 00-10-2016 Final Oct 5, 2010 - Dec 31, 2015 Mechanisms of

  12. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  13. Measurements of prompt radiation induced conductivity in Teflon (PTFE).

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, E.

    2013-05-01

    We performed measurements of the prompt radiation induced conductivity (RIC) in thin samples of Teflon (PTFE) at the Little Mountain Medusa LINAC facility in Ogden, UT. Three mil (76.2 microns) samples were irradiated with a 0.5 %CE%BCs pulse of 20 MeV electrons, yielding dose rates of 1E9 to 1E11 rad/s. We applied variable potentials up to 2 kV across the samples and measured the prompt conduction current. Details of the experimental apparatus and analysis are reported in this report on prompt RIC in Teflon.

  14. Skeletal Scintigraphy in Radiation-Induced Fibrosis With Lymphedema.

    PubMed

    Wang, Jieqi; Iranmanesh, Arya M; Oates, M Elizabeth

    2017-03-01

    Despite increasing reliance on CT, MRI, and FDG PET/CT for oncological imaging, whole-body skeletal scintigraphy remains a frontline modality for staging and surveillance of osseous metastatic disease. We present a 54-year-old woman with metastatic breast cancer who received palliative external-beam radiation to the left ilium. Serial follow-up Tc-MDP bone scans demonstrated progressive soft-tissue uptake in her left lower extremity, extending from thigh to leg, with associated enlargement and skin thickening, consistent with lymphedema related to radiation-induced fibrosis. Correlative abdominopelvic CT scans confirmed fibrotic changes in the left thigh.

  15. Exaggerated radiation-induced fibrosis in patients with systemic sclerosis

    SciTech Connect

    Varga, J.; Haustein, U.F.; Creech, R.H.; Dwyer, J.P.; Jimenez, S.A. )

    1991-06-26

    Four patients with stable systemic sclerosis and limited skin involvement received radiation for the treatment of solid malignant neoplasms. Following localized irradiation, each patient developed an exaggerated cutaneous and internal fibrotic reaction in the irradiated areas. The surface area of fibrosis extended beyond the radiation portals employed, and the fibrotic process was poorly responsive to antifibrotic therapy. Three of the patients died of complications caused by fibrous encasement of internal organs. The extent and severity of postradiation fibrosis in these patients was distinctly unusual. These observations suggest that patients with systemic sclerosis are particularly susceptible to developing excessive radiation-induced fibrosis.

  16. Radiation-Induced Premelting of Ice at Silica Interfaces

    NASA Astrophysics Data System (ADS)

    Schöder, S.; Reichert, H.; Schröder, H.; Mezger, M.; Okasinski, J. S.; Honkimäki, V.; Bilgram, J.; Dosch, H.

    2009-08-01

    The existence of surface and interfacial melting of ice below 0°C has been confirmed by many different experimental techniques. Here we present a high-energy x-ray reflectivity study of the interfacial melting of ice as a function of both temperature and x-ray irradiation dose. We found a clear increase of the thickness of the quasiliquid layer with the irradiation dose. By a systematic x-ray study, we have been able to unambiguously disentangle thermal and radiation-induced premelting phenomena. We also confirm the previously announced very high water density (1.25g/cm3) within the emerging quasiliquid layer.

  17. Facial reconstruction for radiation-induced skin cancer

    SciTech Connect

    Panje, W.R.; Dobleman, T.J. )

    1990-04-01

    Radiation-induced skin cancers can be difficult to diagnose and treat. Typically, a patient who has received orthovoltage radiotherapy for disorders such as acne, eczema, tinea capitis, skin tuberculosis, and skin cancer can expect that aggressive skin cancers and chronic radiodermatitis may develop subsequently. Cryptic facial cancers can lead to metastases and death. Prophylactic widefield excision of previously irradiated facial skin that has been subject to multiple recurrent skin cancers is suggested as a method of deterring future cutaneous malignancy and metastases. The use of tissue expanders and full-thickness skin grafts offers an expedient and successful method of subsequent reconstruction.

  18. Challenges and Opportunities in Radiation-induced Hemorrhagic Cystitis

    PubMed Central

    Zwaans, Bernadette M.M.; Nicolai, Heinz G.; Chancellor, Michael B.; Lamb, Laura E.

    2016-01-01

    As diagnosis and treatment of cancer is improving, medical and social issues related to cancer survivorship are becoming more prevalent. Hemorrhagic cystitis (HC), a rare but serious disease that may affect patients after pelvic radiation or systemic chemotherapy, has significant unmet medical needs. Although no definitive treatment is currently available, various interventions are employed for HC. Effects of nonsurgical treatments for HC are of modest success and studies aiming to control radiation-induced bladder symptoms are lacking. In this review, we present current and advanced therapeutic strategies for HC to help cancer survivors deal with long-term urologic health issues. PMID:27601964

  19. Radiation-Induced Intraspinal Chondrosarcoma: A Case Report

    PubMed Central

    Obid, Peter; Vierbuchen, Mathias; Wolf, Eduard; Reichl, Michael; Niemeyer, Thomas; Übeyli, Hüseyin; Richter, Alexander

    2015-01-01

    Study Design Case report and review of the literature. Objective To report a unique case of an intraspinal chondrosarcoma that was diagnosed 18 years after radiotherapy for a cervical carcinoma and its remarkably unusual clinical presentation. Methods A retrospective case description of an intraspinal mass lesion that occurred 6 weeks after previous spinal surgery. Results Within ∼9 weeks, the tumor had infiltrated the peritoneal cavity and reached the lumbar subcutaneous tissue. Conclusion Radiation-induced sarcomas are rare, are highly aggressive, and may be difficult to diagnose. Furthermore, the only means of achieving long-term survival is through early and extensive surgery. PMID:26430606

  20. Radiation-induced breast angiosarcoma: a case report

    PubMed Central

    Tato-Varela, Sara; Albalat-Fernández, Rosa; Pabón-Fernández, Sara; Núñez-García, Diego; Calle-Marcos, Manolo La

    2016-01-01

    Radiation-induced breast angiosarcoma is a severe but rare late complication in the breast-preserving management of breast cancer through surgery and radiotherapy [1]. Often the initial diagnosis of this entity is complex given its relatively anodyne nature and usually being present in the form of typically multifocal reddish-purple papular skin lesions [2]. Because of the low incidence of this tumour, there is a limited number of studies regarding its optimal therapeutic management [3]. The preferred treatment is aggressive surgical removal and the prognosis is poor with an overall survival rate of 12–20% at five years [4]. PMID:28101140

  1. Cardiac catheterization

    MedlinePlus

    Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization; CAD - cardiac catheterization; Coronary artery disease - cardiac catheterization; Heart valve - cardiac catheterization; Heart failure - ...

  2. Cardiac toxicity of 5-ring polycyclic aromatic hydrocarbons is differentially dependent on the aryl hydrocarbon receptor 2 isoform during zebrafish development.

    PubMed

    Incardona, John P; Linbo, Tiffany L; Scholz, Nathaniel L

    2011-12-01

    Petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs), commonly occur as complex mixtures in the environment. Recent studies using the zebrafish experimental model have shown that PAHs are toxic to the embryonic cardiovascular system, and that the severity and nature of this developmental cardiotoxicity varies by individual PAH. In the present study we characterize the toxicity of the relatively higher molecular weight 5-ring PAHs benzo[a]pyrene (BaP), benzo[e]pyrene (BeP), and benzo[k]fluoranthene (BkF). While all three compounds target the cardiovascular system, the underlying role of the ligand-activated aryl hydrocarbon receptor (AHR2) and the tissue-specific induction of the cytochrome p450 metabolic pathway (CYP1A) were distinct for each. BaP exposure (40μM) produced AHR2-dependent bradycardia, pericardial edema, and myocardial CYP1A immunofluorescence. By contrast, BkF exposure (4-40μM) caused more severe pericardial edema, looping defects, and erythrocyte regurgitation through the atrioventricular valve that were AHR2-independent (i.e., absent myocardial or endocardial CYP1A induction). Lastly, exposure to BeP (40μM) yielded a low level of CYP1A+ signal in the vascular endothelium of the head and trunk, without evident toxic effects on cardiac function or morphogenesis. Combined with earlier work on 3- and 4-ring PAHs, our findings provide a more complete picture of how individual PAHs may drive the cardiotoxicity of mixtures in which they predominate. This will improve toxic injury assessments and risk assessments for wild fish populations that spawn in habitats altered by overlapping petroleum-related human impacts such as oil spills, urban stormwater runoff, or sediments contaminated by legacy industrial activities.

  3. Radiation-induced transmissable chromosomal instability in haemopoietic stem cells

    NASA Astrophysics Data System (ADS)

    Kadhim, M. A.; Wright, E. G.

    Heritable radiation-induced genetic alterations have long been assumed to be ``fixed'' within the first cell division. However, there is a growing body of evidence that a considerable fraction of cells surviving radiation exposure appear normal, but a variety of mutational changes arise in their progeny due to a transmissible genomic instability. In our investigations of G-banded metaphases, non-clonal cytogenetic aberrations, predominantly chromatid-type aberrations, have been observed in the clonal descendants of murine and human haemopoietic stem cells surviving low doses (~1 track per cell) of alpha-particle irradiations. The data are consistent with a transmissible genetic instability induced in a stem cell resulting in a diversity of chromosomal aberrations in its clonal progeny many cell divisions later. Recent studies have demonstrated that the instability phenotype persists in vivo and that the expression of chromosomal instability has a strong dependence on the genetic characteristics of the irradiated cell. At the time when cytogenetic aberrations are detected, an increased incidence of hprt mutations and apoptotic cells have been observed in the clonal descendants of alpha-irradiated murine haemopoietic stem cells. Thus, delayed chromosomal abnormalities, delayed cell death by apoptosis and late-arising specific gene mutations may reflect diverse consequences of radiation-induced genomic instability. The relationship, if any, between these effects is not established. Current studies suggest that expression of these delayed heritable effects is determined by the type of radiation exposure, type of cell and a variety of genetic factors.

  4. Radiation-induced dural fibrosarcoma with unusually short latent period

    SciTech Connect

    Ghatak, N.R.; Aydin, F.; Leshner, R.T. Tulane Univ., New Orleans, LA )

    1993-05-01

    Although rare, the occurrence of radiation-induced intracranial neoplasms of various types is well known. Among these tumors, fibrosarcomas, especially in the region of seila turcica, seem to be the most common type. These tumors characteristically occur after a long latent period, usually several years, following radiation therapy. The authors now report a case of apparently radiation-induced fibrosarcoma with some unusual features in a 10-year-old boy who was treated with radiation for medulloblastoma. He received a total dose of 53.2 Gy radiation delivered at 1.8 per fraction with 6 MV acceleration using the standard craniospinal technique. An MRI at 15 months after the completion of radiotherapy showed a mass over the cerebral convexity, which increased two-fold in size within a period of 4 months. A well circumscribed tumor was removed from the fronto-parietal convexity. The tumor measured 5x4.5x1.5 cm and was attached to the dura with invasion of the overlying bone. Histologically, it displayed the characteristic features of a low-grade fibrosarcoma. The patient remains free of tumor 18 months after the surgery. This case emphasizes the potential risk for the development of a second neoplasm following therapeutic radiation and also documents, to the authors' knowledge, the shortest latent period reported so far between administration of radiotherapy and development of an intracranial tumor.

  5. Novel Radiomitigator for Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, A-S; Shirazi-fard, Y.; Terada, M.; Alwood, J. S.; Steczina, S.; Medina, C.; Tahimic, C. G. T.; Globus, R. K.

    2016-01-01

    Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.

  6. Sestrin2 protects the myocardium against radiation-induced damage.

    PubMed

    Zeng, Yue-Can; Chi, Feng; Xing, Rui; Zeng, Jing; Gao, Song; Chen, Jia-Jia; Wang, Hong-Mei; Duan, Qiong-Yu; Sun, Yu-Nan; Niu, Nan; Tang, Mei-Yue; Wu, Rong

    2016-05-01

    The purpose of this study was to investigate the role of Sestrin2 in response to radiation-induced injury to the heart and on the cardiomyopathy development in the mouse. Mice with genetic deletion of the Sestrin2 (Sestrin2 knockout mice [Sestrin2 KO]) and treatment with irradiation (22 or 15 Gy) were used as independent approaches to determine the role of Sestrin2. Echocardiography (before and after isoproterenol challenge) and left ventricular (LV) catheterization were performed to evaluate changes in LV dimensions and function. Masson's trichrome was used to assess myocardial fibrosis. Immunohistochemistry and Western blot were used to detect the capillary density. After 22 or 15 Gy irradiation, the LV ejection fraction (EF) was impaired in wt mice at 1 week and 4 months after irradiation when compared with sham irradiation. Compared to wt mice, Sestrin2 KO mice had significant reduction in reduced LVEF at 1 week and 4 months after irradiation. A significant increase in LV end-diastolic pressure and myocardial fibrosis and a significant decrease in capillary density were observed in irradiation-wt mice, as well as in irradiation-Sestrin2 KO mice. Sestrin2 involved in the regulation of cardiomyopathy (such as myocardial fibrosis) after irradiation. Overexpression of Sestrin2 might be useful in limiting radiation-induced myocardial injury.

  7. Radiation-induced recurrent intestinal pseudo-obstruction

    SciTech Connect

    Conklin, J.L.; Anuras, S.

    1981-06-01

    The syndrome of intestinal pseudo-obstruction is a complex of signs and symptoms of intestinal obstruction without evidence of mechanical obstruction of the intestinal lumen. A patient with radiation-induced intestinal pseudoobstruction is described. The patient is a 74-year old woman with a history of chronic diarrhea, recurrent episodes of crampy abdominal pain, nausea and vomiting since receiving a 13,000 rad radiation dose to the pelvis in 1954. She has been hospitalized on many occasions for symptoms and signs of bowel obstruction. Upper gastrointestinal contrast roentgenograms with small bowel follow-through done during these episodes revealed multiple dilated loops of small bowel with no obstructing lesion. Barium enemas revealed no obstructing lesion. Each episode resolved with conservative therapy. Other secondary causes for intestinal pseudo-obstruction were ruled out in our patient. She gave no history of familial gastrointestinal disorders. Although postirradiation motility abnormalities have been demonstrated experimentally this is the first report of radiation induced intestinal pseudo-obstruction.

  8. Inhibition of radiation-induced polyuria by histamine receptor antagonists

    SciTech Connect

    Donlon, M.A.; Melia, J.A.; Helgeson, E.A.; Wolfe, W.W.

    1986-03-01

    In previous studies the authors have demonstrated that gamma radiation results in polyuria, which is preceded by polydypsia. This suggests that the increased thirst elicited by radiation causes increased urinary volume (UV). Histamine, which is released following radiation exposure, also elicits drinking by nonirradiated rats when administered exogenously. In this study the authors have investigated both the role of water deprivation and the effect of histamine receptor antagonists (HRA) on radiation-induced polyuria. Sprague-Dawley rats were housed individually in metabolic cages. Water was allowed ad libitum except in deprivation experiments where water was removed for 24 hr immediately following radiation. Cimetidine (CIM), an H2 HRA, and dexbromopheniramine (DXB), an H1 HRA, were administered i.p. (16 and 1 mg/kg, respectively) 30 min prior to irradiation (950 rads from a cobalt source). UV was determined at 24-hr intervals for 3 days preceding irradiation and 24 hr postirradiation. UV in DXB treated rats was significantly reduced 24 hr postirradiation (CON = 427 +/- 54%; DXB = 247 +/- 39% of preirradiated CON) compared to postirradiation control values. CIM did not affect postirradiation UV. These data suggest that radiation-induced polyuria is caused by polydypsia which is, in part, mediated by histamine induced by an H1 receptor.

  9. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  10. Genetic variation in radiation-induced cell death.

    PubMed

    Smirnov, Denis A; Brady, Lauren; Halasa, Krzysztof; Morley, Michael; Solomon, Sonia; Cheung, Vivian G

    2012-02-01

    Radiation exposure through environmental, medical, and occupational settings is increasingly common. While radiation has harmful effects, it has utility in many applications such as radiotherapy for cancer. To increase the efficacy of radiation treatment and minimize its risks, a better understanding of the individual differences in radiosensitivity and the molecular basis of radiation response is needed. Here, we integrated human genetic and functional genomic approaches to study the response of human cells to radiation. We measured radiation-induced changes in gene expression and cell death in B cells from normal individuals. We found extensive individual variation in gene expression and cellular responses. To understand the genetic basis of this variation, we mapped the DNA sequence variants that influence expression response to radiation. We also identified radiation-responsive genes that regulate cell death; silencing of these genes by small interfering RNA led to an increase in radiation-induced cell death in human B cells, colorectal and prostate cancer cells. Together these results uncovered DNA variants that contribute to radiosensitivity and identified genes that can be targeted to increase the sensitivity of tumors to radiation.

  11. Sensitivity to Radiation-Induced Cancer in Hemochromatosis

    SciTech Connect

    Bull. Richard J.; Anderson, Larry E.

    2000-06-01

    The objectives of this pilot project using HFE-knockout homozygotes and heterozygotes are to (1) determine whether the knock-out mice have greater sensitivity to radiation-induced cancer of the colon, liver and breast, (2) establish the dependence of this sensitivity on the accumulation of iron, (3) determine the extent to which cell replication and apoptosis occur in these target tissues with varying iron load, and (4) correlate the increases in sensitivity with changes in insulin-related signaling in tumors and normal tissue from each target organ. Three experimental designs will be used in the pilot project. The sequence of experiments is designed to first explore the influence of iron load on the response and demonstrate that HFE knockout mice are more sensitive than the wild type to radiation-induced cancer in one or more of three target tissues (liver, colon and breast). The dose response relationships with a broader set of radiation doses will be explored in the second experiment. The final experiment is designed to explore the extent to which heterozygotes display the increased susceptibility to cancer induction and to independently assess the importance of iron load to the initiation versus promotion of tumors.

  12. Radiation-induced genomic instability in Caenorhabditis elegans.

    PubMed

    Huumonen, Katriina; Immonen, Hanna-Kaisa; Baverstock, Keith; Hiltunen, Mikko; Korkalainen, Merja; Lahtinen, Tapani; Parviainen, Juha; Viluksela, Matti; Wong, Garry; Naarala, Jonne; Juutilainen, Jukka

    2012-10-09

    Radiation-induced genomic instability has been well documented, particularly in vitro. However, the understanding of its mechanisms and their consequences in vivo is still limited. In this study, Caenorhabditis elegans (C. elegans; strain CB665) nematodes were exposed to X-rays at doses of 0.1, 1, 3 or 10Gy. The endpoints were measured several generations after exposure and included mutations in the movement-related gene unc-58, alterations in gene expression analysed with oligoarrays containing the entire C. elegans genome, and micro-satellite mutations measured by capillary electrophoresis. The progeny of the irradiated nematodes showed an increased mutation frequency in the unc-58 gene, with a maximum response observed at 1Gy. Significant differences were also found in gene expression between the irradiated (1Gy) and non-irradiated nematode lines. Differences in gene expression did not show clear clustering into certain gene categories, suggesting that the instability might be a chaotic process rather than a result of changes in the function of few specific genes such as, e.g., those responsible for DNA repair. Increased heterogeneity in gene expression, which has previously been described in irradiated cultured human lymphocytes, was also observed in the present study in C. elegans, the coefficient of variation of gene expression being higher in the progeny of irradiated nematodes than in control nematodes. To the best of our knowledge, this is the first publication reporting radiation-induced genomic instability in C. elegans.

  13. Nature of radiation-induced defects in quartz

    SciTech Connect

    Wang, Bu; Yu, Yingtian; Bauchy, Mathieu; Pignatelli, Isabella; Sant, Gaurav

    2015-07-14

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  14. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGES

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  15. Radiation-induced skin carcinomas of the head and neck

    SciTech Connect

    Ron, E.; Modan, B.; Preston, D.; Alfandary, E.; Stovall, M.; Boice, J.D. Jr. )

    1991-03-01

    Radiation exposures to the scalp during childhood for tinea capitis were associated with a fourfold increase in skin cancer, primarily basal cell carcinomas, and a threefold increase in benign skin tumors. Malignant melanoma, however, was not significantly elevated. Overall, 80 neoplasms were identified from an extensive search of the pathology logs of all major hospitals in Israel and computer linkage with the national cancer registry. Radiation dose to the scalp was computed for over 10,000 persons irradiated for ringworm (mean 7 Gy), and incidence rates were contrasted with those observed in 16,000 matched comparison subjects. The relative risk of radiogenic skin cancer did not differ significantly between men or women or by time since exposure; however, risk was greatest following exposures in early childhood. After adjusting for sex, ethnic origin, and attained age, the estimated excess relative risk was 0.7 per Gy and the average excess risk over the current follow-up was 0.31/10(4) PY-Gy. The risk per Gy of radiation-induced skin cancer was intermediate between the high risk found among whites and no risk found among blacks in a similar study conducted in New York City. This finding suggests the role that subsequent exposure to uv radiation likely plays in the expression of a potential radiation-induced skin malignancy.

  16. The thermal stability of radiation-induced defects in illite

    NASA Astrophysics Data System (ADS)

    Riegler, T.; Allard, T.; Beaufort, D.; Cantin, J.-L.; von Bardeleben, H. J.

    2016-01-01

    High-purity illite specimens from the Mesoproterozoic unconformity-related uranium deposits of Kiggavik, Thelon basin, Nunavut (Canada), and Shea Creek (Athabasca basin, Saskatchewan, Canada) have been studied using electron paramagnetic resonance spectroscopy to determine the thermal stability of the main radiation-induced defects and question the potential of using illite as a natural dosimeter. The observed spectra are complex as they can show in the same region several contributions: (1) an unstable native defect, (2) the main stable defect named Ai by reference to a previous study (Morichon et al. in Phys Chem Minerals 35:339-346, 2008), (3) a signal at g = 2.063 assigned to a new defect, not yet fully characterized, named Ai2 center and (4) impurities such as vanadyl complex or divalent manganese. Isochronal heating shows that the new signal corresponds to a stable species. Isothermal heating experiments at 400 and 450 °C provide values of half-life extrapolated at room temperature and activation energy of 1.9-29,109 years and 1.3-1.4 eV, respectively, corresponding to the Ai center. These parameters allow the use of stable radiation-induced defects as a record of radioactivity down to the Paleoproterozoic period.

  17. Characterization of radiation-induced emesis in the ferret

    SciTech Connect

    King, G.L.

    1988-01-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral cobalt 60 gamma radiation at 100 cGy min at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED 50 was calculated as 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenously or subcutaneously with 30 to 300 micrograms /kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n=4) or 401 (n=4) cGy radiation and their emetic responses were compared with NaCi-injected-irradiated controls (n=8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.

  18. Characterization of radiation-induced emesis in the ferret

    SciTech Connect

    King, G.L.

    1988-06-01

    Forty-eight ferrets (Mustela putorius furo) were individually head-shielded and radiated with bilateral /sup 60/Co gamma radiation at 100 cGy min-1 at doses ranging between 49 and 601 cGy. The emetic threshold was observed at 69 cGy, the ED50 was calculated at 77 cGy, and 100% incidence of emesis occurred at 201 cGy. With increasing doses of radiation, the latency to first emesis after radiation decreased dramatically, whereas the duration of the prodromal period increased. Two other sets of experiments suggest that dopaminergic mechanisms play a minor role in radiation-induced emesis in the ferret. Twenty-two animals were injected either intravenously or subcutaneously with 30 to 300 micrograms/kg of apomorphine. Fewer than 50% of the animals vomited to 300 micrograms/kg apomorphine; central dopaminergic receptor activation was apparent at all doses. Another eight animals received 1 mg/kg domperidone prior to either 201 (n = 4) or 401 (n = 4) cGy radiation and their emetic responses were compared with NaCl-injected-irradiated controls (n = 8). At 201 cGy, domperidone significantly reduced only the total time in emetic behavior. At 401 cGy, domperidone had no salutary effect on radiation-induced emesis. The emetic responses of the ferret to radiation and apomorphine are compared with these responses in other vomiting species.

  19. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  20. Radiation Induced DNA Double-Strand Breaks in Radiology.

    PubMed

    Kuefner, M A; Brand, M; Engert, C; Schwab, S A; Uder, M

    2015-10-01

    Shortly after the discovery of X-rays, their damaging effect on biological tissues was observed. The determination of radiation exposure in diagnostic and interventional radiology is usually based on physical measurements or mathematical algorithms with standardized dose simulations. γ-H2AX immunofluorescence microscopy is a reliable and sensitive method for the quantification of radiation induced DNA double-strand breaks (DSB) in blood lymphocytes. The detectable amount of these DNA damages correlates well with the dose received. However, the biological radiation damage depends not only on dose but also on other individual factors like radiation sensitivity and DNA repair capacity. Iodinated contrast agents can enhance the x-ray induced DNA damage level. After their induction DSB are quickly repaired. A protective effect of antioxidants has been postulated in experimental studies. This review explains the prinicple of the γ-H2AX technique and provides an overview on studies evaluating DSB in radiologic examinations. Radiologic examinations including CT and angiography induce DNA double-strand breaks. Even after mammography a slight but significant increase is detectable in peripheral blood lymphocytes. The number of radiation induced double-strand breaks correlates well with the radiation dose. Individual factors including radiation sensitivity, DNA repair capacity and the application of iodinated contrast media has an influence on the DNA damage level. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Effects of ozone oxidative preconditioning on radiation-induced organ damage in rats

    PubMed Central

    Gultekin, Fatma Ayca; Bakkal, Bekir Hakan; Guven, Berrak; Tasdoven, Ilhan; Bektas, Sibel; Can, Murat; Comert, Mustafa

    2013-01-01

    Because radiation-induced cellular damage is attributed primarily to harmful effects of free radicals, molecules with direct free radical scavenging properties are particularly promising as radioprotectors. It has been demonstrated that controlled ozone administration may promote an adaptation to oxidative stress, preventing the damage induced by reactive oxygen species. Thus, we hypothesized that ozone would ameliorate oxidative damage caused by total body irradiation (TBI) with a single dose of 6 Gy in rat liver and ileum tissues. Rats were randomly divided into groups as follows: control group; saline-treated and irradiated (IR) groups; and ozone oxidative preconditioning (OOP) and IR groups. Animals were exposed to TBI after a 5-day intraperitoneal pretreatment with either saline or ozone (1 mg/kg/day). They were decapitated at either 6 h or 72 h after TBI. Plasma, liver and ileum samples were obtained. Serum AST, ALT and TNF-α levels were elevated in the IR groups compared with the control group and were decreased after treatment with OOP. TBI resulted in a significant increase in the levels of MDA in the liver and ileal tissues and a decrease of SOD activities. The results demonstrated that the levels of MDA liver and ileal tissues in irradiated rats that were pretreated with ozone were significantly decreased, while SOD activities were significantly increased. OOP reversed all histopathological alterations induced by irradiation. In conclusion, data obtained from this study indicated that ozone could increase the endogenous antioxidant defense mechanism in rats and there by protect the animals from radiation-induced organ toxicity. PMID:22915786

  2. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.

    2012-01-01

    Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID

  3. Modulation of ionizing radiation induced oxidative imbalance by semi-fractionated extract of Piper betle

    PubMed Central

    Verma, Savita; Dutta, Ajaswrata; Sankhwar, Sanghmitra; Shukla, Sandeep Kumar

    2010-01-01

    The study was planned to evaluate modulatory effect of aqueous extract of Piper betle leaf (PBL) on ionizing radiation mediated oxidative stress leading to normal tissues damage during radiotherapy and other radiation exposures. The total polyphenols and flavonoids known as free radical scavenger (chelators) were measured in the extract. To ascertain antioxidant potential of PBL extract, we studied free radical scavenging, metal chelation, reducing power, lipid peroxidation inhibition and ferric reducing antioxidant properties (FRAP ) using in vitro assays. Mice were exposed to varied radiation doses administered with the same extract prior to irradiation to confirm its oxidative stress minimizing efficacy by evaluating ferric reducing ability of plasma, reduced glutathione, lipid peroxidation and micro-nuclei frequency. PBL extract was effective in scavenging DPPH (up to 92% at 100 µg/ml) and superoxide radicals (up to 95% at 80 µg/ml), chelated metal ions (up to 83% at 50 µg/ml) and inhibited lipid peroxidation (up to 45.65% at 500 µg/ml) in a dose dependant manner using in vitro model. Oral administration of PBL extract (225 mg/kg body weight) 1 hr before irradiation in mice significantly enhanced (p < 0.01) radiation abated antioxidant potential of plasma and GSH level in all the observed organs. The treatment with extract effectively lowered the radiation induced lipid peroxidation at 24 hrs in all the selected organs with maximum inhibition in thymus (p < 0.01). After 48 hrs, lipid peroxidation was maximally inhibited in the group treated with the extract. Frequency of radiation induced micronucleated cells declined significantly (34.78%, p < 0.01) at 24 hrs post-irradiation interval by PBL extract administration. The results suggest that PBL extract has high antioxidant potential and relatively non-toxic and thus could be assertively used to mitigate radiotherapy inflicted normal tissues damage and also injuries caused by moderate doses of radiation

  4. Acute Radiation-Induced Nocturia in Prostate Cancer Patients Is Associated With Pretreatment Symptoms, Radical Prostatectomy, and Genetic Markers in the TGF{beta}1 Gene

    SciTech Connect

    De Langhe, Sofie; De Ruyck, Kim; Ost, Piet; Fonteyne, Valerie; Werbrouck, Joke; De Meerleer, Gert; De Neve, Wilfried; Thierens, Hubert

    2013-02-01

    Purpose: After radiation therapy for prostate cancer, approximately 50% of the patients experience acute genitourinary symptoms, mostly nocturia. This may be highly bothersome with a major impact on the patient's quality of life. In the past, nocturia is seldom reported as a single, physiologically distinct endpoint, and little is known about its etiology. It is assumed that in addition to dose-volume parameters and patient- and therapy-related factors, a genetic component contributes to the development of radiation-induced damage. In this study, we investigated the association among dosimetric, clinical, and TGF{beta}1 polymorphisms and the development of acute radiation-induced nocturia in prostate cancer patients. Methods and Materials: Data were available for 322 prostate cancer patients treated with primary or postoperative intensity modulated radiation therapy (IMRT). Five genetic markers in the TGF{beta}1 gene (-800 G>A, -509 C>T, codon 10 T>C, codon 25 G>C, g.10780 T>G), and a high number of clinical and dosimetric parameters were considered. Toxicity was scored using an symptom scale developed in-house. Results: Radical prostatectomy (P<.001) and the presence of pretreatment nocturia (P<.001) are significantly associated with the occurrence of radiation-induced acute toxicity. The -509 CT/TT (P=.010) and codon 10 TC/CC (P=.005) genotypes are significantly associated with an increased risk for radiation-induced acute nocturia. Conclusions: Radical prostatectomy, the presence of pretreatment nocturia symptoms, and the variant alleles of TGF{beta}1 -509 C>T and codon 10 T>C are identified as factors involved in the development of acute radiation-induced nocturia. These findings may contribute to the research on prediction of late nocturia after IMRT for prostate cancer.

  5. Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a “healthy” tobacco-free alternative

    PubMed Central

    Cobb, Caroline O.; Sahmarani, Kamar; Eissenberg, Thomas; Shihadeh, Alan

    2012-01-01

    Tobacco smoking using a waterpipe (narghile, hookah, shisha) has become a global epidemic. Unlike cigarette smoking, little is known about the health effects of waterpipe use. One acute effect of cigarette smoke inhalation is dysfunction in autonomic regulation of the cardiac cycle, as indicated by reduction in heart rate variability (HRV). Reduced HRV is implicated in adverse cardiovascular health outcomes, and is associated with inhalation exposure-induced oxidative stress. Using a 32 participant cross-over study design, we investigated toxicant exposure and effects of waterpipe smoking on heart rate variability when, under controlled conditions, participants smoked a tobacco-based and a tobacco-free waterpipe product promoted as an alternative for “health-conscious” users. Outcome measures included HRV, exhaled breath carbon monoxide (CO), plasma nicotine, and puff topography, which were measured at times prior to, during, and after smoking. We found that waterpipe use acutely decreased HRV (p<0.01 for all measures), independent of product smoked. Plasma nicotine, blood pressure, and heart rate increased only with the tobacco-based product (p<0.01), while CO increased with both products (p<0.01). More smoke was inhaled during tobacco-free product use, potentially reflecting attempted regulation of nicotine intake. The data thus indicate that waterpipe smoking acutely compromises cardiac autonomic function, and does so through exposure to smoke constituents other than nicotine. PMID:23059956

  6. Acute toxicant exposure and cardiac autonomic dysfunction from smoking a single narghile waterpipe with tobacco and with a "healthy" tobacco-free alternative.

    PubMed

    Cobb, Caroline O; Sahmarani, Kamar; Eissenberg, Thomas; Shihadeh, Alan

    2012-11-23

    Tobacco smoking using a waterpipe (narghile, hookah, shisha) has become a global epidemic. Unlike cigarette smoking, little is known about the health effects of waterpipe use. One acute effect of cigarette smoke inhalation is dysfunction in autonomic regulation of the cardiac cycle, as indicated by reduction in heart rate variability (HRV). Reduced HRV is implicated in adverse cardiovascular health outcomes, and is associated with inhalation exposure-induced oxidative stress. Using a 32 participant cross-over study design, we investigated toxicant exposure and effects of waterpipe smoking on heart rate variability when, under controlled conditions, participants smoked a tobacco-based and a tobacco-free waterpipe product promoted as an alternative for "health-conscious" users. Outcome measures included HRV, exhaled breath carbon monoxide (CO), plasma nicotine, and puff topography, which were measured at times prior to, during, and after smoking. We found that waterpipe use acutely decreased HRV (p<0.01 for all measures), independent of product smoked. Plasma nicotine, blood pressure, and heart rate increased only with the tobacco-based product (p<0.01), while CO increased with both products (p<0.01). More smoke was inhaled during tobacco-free product use, potentially reflecting attempted regulation of nicotine intake. The data thus indicate that waterpipe smoking acutely compromises cardiac autonomic function, and does so through exposure to smoke constituents other than nicotine. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Contribution of radiation-induced, nitric oxide-mediated bystander effect to radiation-induced adaptive response.

    NASA Astrophysics Data System (ADS)

    Matsumoto, H.; Ohnishi, T.

    There has been a recent upsurge of interest in radiation-induced adaptive response and bystander effect which are specific modes in stress response to low-dose low-dose rate radiation Recently we found that the accumulation of inducible nitric oxide NO synthase iNOS in wt p53 cells was induced by chronic irradiation with gamma rays followed by acute irradiation with X-rays but not by each one resulting in an increase in nitrite concentrations of medium It is suggested that the accumulation of iNOS may be due to the depression of acute irradiation-induced p53 functions by pre-chronic irradiation In addition we found that the radiosensitivity of wt p53 cells against acute irradiation with X-rays was reduced after chronic irradiation with gamma rays This reduction of radiosensitivity of wt p53 cells was nearly completely suppressed by the addition of NO scavenger carboxy-PTIO to the medium This reduction of radiosensitivity of wt p53 cells is just radiation-induced adaptive response suggesting that NO-mediated bystander effect may considerably contribute to adaptive response induced by radiation

  8. ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast Cancer

    DTIC Science & Technology

    2005-07-01

    repair of radiation-induced damage. Furthermore, cells possessing a mutated copy of this gene are more radiosensitive than cells from individuals with...AD Award Number: DAMD17-02-1-0503 TITLE: ATM Mutations and the Development of Severe Radiation-Induced Morbidity Following Radiotherapy for Breast...2005 Annual 1 Jul 2004 - 30 Jun 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER ATM Mutations and the Development of Severe Radiation-Induced Morbidity

  9. Hydrogen Protects Mice from Radiation Induced Thymic Lymphoma in BALB/c Mice

    PubMed Central

    Zhao, Luqian; Zhou, Chuanfeng; Zhang, Jian; Gao, Fu; Li, Bailong; Chuai, Yunhai; Liu, Cong; Cai, Jianming

    2011-01-01

    Ionizing radiation (IR) is a well-known carcinogen, however the mechanism of radiation induced thymic lymphoma is not well known. Moreover, an easy and effective method to protect mice from radiation induced thymic lymphoma is still unknown. Hydrogen, or H2, is seldom regarded as an important agent in medical usage, especially as a therapeutic gas. Here in this study, we found that H2 protects mice from radiation induced thymic lymphoma in BALB/c mice. PMID:21448340

  10. Effects of N-acetylcysteine amide (NACA), a thiol antioxidant on radiation-induced cytotoxicity in Chinese hamster ovary cells.

    PubMed

    Wu, Wei; Abraham, Linu; Ogony, Joshua; Matthews, Richard; Goldstein, Glenn; Ercal, Nuran

    2008-05-23

    Ionizing radiation is known to cause tissue damage in biological systems, mainly due to its ability to produce reactive oxygen species (ROS) in cells. Many thiol antioxidants have been used previously as radioprotectors, but their application has been limited by their toxicity. In this investigation, we have explored the possible radioprotective effects of a newly synthesized thiol antioxidant, N-acetylcysteine amide (NACA), in comparison with N-acetylcysteine (NAC), a commonly used antioxidant. Protective effects of NACA and NAC were assessed using Chinese hamster ovary (CHO) cells, irradiated with 6 gray (Gy) radiation. Oxidative stress parameters, including levels of reduced glutathione (GSH), cysteine, malondialdehyde (MDA), and activities of antioxidant enzymes like glutathione peroxidase, glutathione reductase, and catalase, were measured. Results indicate that NACA was capable of restoring GSH levels in irradiated cells in a dose dependent manner. In addition, NACA prevented radiation-induced loss in cell viability. NACA further restored levels of malondialdehyde, caspase-3 activity, and antioxidant enzyme activities to control levels. Although NAC affected cells in a similar manner to NACA, its effects were not as significant. Further, NAC was also found to be cytotoxic to cells at higher concentrations, whereas NACA was non-toxic at similar concentrations. These results suggest that NACA may be able to attenuate radiation-induced cytotoxicity, possibly by its ability to provide thiols to cells.

  11. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  12. Radiation-induced lichen sclerosus of the vulva : First report in the medical literature.

    PubMed

    Edwards, Lisa R; Privette, Emily D; Patterson, James W; Tchernev, Georgi; Chokoeva, Anastasiya Atanasova; Wollina, Uwe; Lotti, Torello; Wilson, Barbara B

    2017-03-01

    A 67-year-old woman presented with a firm plaque in the perineal region, 16 months after diagnosis of a high-grade basaloid squamous cell carcinoma of the vagina and treatment by external beam radiation therapy and vaginal cuff brachytherapy. The differential diagnosis included radiation-induced morphea, radiation dermatitis, or, possibly, radiation-induced lichen sclerosus. Biopsy findings, including special staining, confirmed the diagnosis of radiation-induced lichen sclerosus. To our knowledge, this is the first report of radiation-induced lichen sclerosus of the vulvar region.

  13. High-dose Radiation Induced Heart Damage in a Rat Model.

    PubMed

    Kiscsatári, Laura; Sárközy, Márta; Kővári, Bence; Varga, Zoltán; Gömöri, Kamilla; Morvay, Nikolett; Leprán, István; Hegyesi, Hargita; Fábián, Gabriella; Cserni, Bálint; Cserni, Gábor; Csont, Tamás; Kahán, Zsuzsanna

    Radiation-induced heart disease (RIHD) is a concern during radiotherapy. For its comprehensive study, an in vivo selective heart irradiation model was developed. Sprague-Dawley rats were irradiated with 50 Gy and functional imaging, biochemical (circulating growth differentiation factor-15 (GDF-15), transforming growth factor-beta (TGF-beta) and morphological (picrosirius red staining of the heart) objectives were tested. Signs and symptoms of RIHD occurred >12 weeks after irradiation with tachypnea, systolic and diastolic dysfunction, cardiac hypertrophy and body development retardation. Plasma GDF-15 was increased 3, 12 and 26, while plasma TGF-beta was increased 12 weeks after irradiation. At autopsy, extensive pleural fluid was found in the irradiated animals. Interstitial fibrosis could be reliably detected and quantified in irradiated hearts after a follow-up time of 19 weeks. The studied parameters could be used in future experiments for testing protective agents for prevention of radiation heart injury. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  14. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury.

    PubMed

    Slezak, Jan; Kura, Branislav; Babal, Pavel; Barancik, Miroslav; Ferko, Miroslav; Frimmel, Karel; Kalocayova, Barbora; Kukreja, Rakesh C; Lazou, Antigone; Mezesova, Lucia; Okruhlicova, Ludmila; Ravingerova, Tanya; Singal, Pawan K; Szeiffova Bacova, Barbara; Viczenczova, Csilla; Vrbjar, Norbert; Tribulova, Narcis

    2017-10-01

    Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors. Inflammation, endothelial cell dysfunction, thrombogenesis, organ dysfunction, and ultimate failing of the heart occur as a pathological entity - "radiation-induced heart disease" (RIHD) that is major source of morbidity and mortality. The purpose of this review is to bring insights into the basic mechanisms of RIHD that may lead to the identification of targets for intervention in the radiotherapy side effect. Studies of authors also provide knowledge about how to select targeted drugs or biological molecules to modify the progression of radiation damage in the heart. New prospective studies are needed to validate that assessed factors and changes are useful as early markers of cardiac damage.

  15. Calculation of radiation-induced creep and stress relaxation

    NASA Astrophysics Data System (ADS)

    Nagakawa, Johsei

    1995-08-01

    Numerical calculation based on a computer simulation of point defect kinetics under stress was performed to predict radiation-induced deformation in an Inconel X-750 bolt in a LWR core and for a 316 stainless steel blanket in experimental fusion reactors with the water-coolant scenario. Although the displacement rate is rather low, modest irradiation creep with nearly linear stress dependence was predicted below 200 MPa at 300°C in the LWR core. This low stress dependence causes significant stress relaxation, which coincides with the experimental data to 2 dpa. An almost equal amount of enhanced irradiation creep strain was predicted at 60°C in both solution annealed and cold worker 316 stainless steel in the water-cooled blanket. The stress relaxation is practically not expected without irradiation in both the cases, but the calculation predicts that it is definitely expected under irradiation.

  16. Factors that modify risks of radiation-induced cancer

    SciTech Connect

    Fabrikant, J.I.

    1988-11-01

    The collective influence of biologic and physical factors that modify risks of radiation-induced cancer introduces uncertainties sufficient to deny precision of estimates of human cancer risk that can be calculated for low-dose radiation in exposed populations. The important biologic characteristics include the tissue sites and cell types, baseline cancer incidence, minimum latent period, time-to-tumor recognition, and the influence of individual host (age and sex) and competing etiologic influences. Physical factors include radiation dose, dose rate, and radiation quality. Statistical factors include time-response projection models, risk coefficients, and dose-response relationships. Other modifying factors include other carcinogens, and other biological sources (hormonal status, immune status, hereditary factors).

  17. Measurements of prompt radiation induced conductivity of alumina and sapphire

    SciTech Connect

    Hartman, E. Frederick; Zarick, Thomas Andrew; Sheridan, Timothy J.; Preston, Eric F.

    2011-04-01

    We performed measurements of the prompt radiation induced conductivity in thin samples of Alumina and Sapphire at the Little Mountain Medusa LINAC facility in Ogden, UT. Five mil thick samples were irradiated with pulses of 20 MeV electrons, yielding dose rates of 1E7 to 1E9 rad/s. We applied variable potentials up to 1 kV across the samples and measured the prompt conduction current. Analysis rendered prompt conductivity coefficients between 1E10 and 1E9 mho/m/(rad/s), depending on the dose rate and the pulse width for Alumina and 1E7 to 6E7 mho/m/(rad/s) for Sapphire.

  18. Radiation Induced Cystitis and Proctitis - Prediction, Assessment and Management.

    PubMed

    Mallick, Supriya; Madan, Renu; Julka, Pramod K; Rath, Goura K

    2015-01-01

    Cystitis and proctitis are defined as inflammation of bladder and rectum respectively. Haemorrhagic cystitis is the most severe clinical manifestation of radiation and chemical cystitis. Radiation proctitis and cystitis are major complications following radiotherapy. Prevention of radiation-induced haemorrhagic cystitis has been investigated using various oral agents with minimal benefit. Bladder irrigation remains the most frequently adopted modality followed by intra-vesical instillation of alum or formalin. In intractable cases, surgical intervention is required in the form of diversion ureterostomy or cystectomy. Proctitis is more common in even low dose ranges but is self-limiting and improves on treatment interruption. However, treatment of radiation proctitis is broadly non-invasive or invasive. Non-invasive treatment consists of non-steroid anti-inflammatory drugs (NSAIDs), anti-oxidants, sucralfate, short chain fatty acids and hyperbaric oxygen. Invasive treatment consists of ablative procedures like formalin application, endoscopic YAG laser coagulation or argon plasma coagulation and surgery as a last resort.

  19. Radiatively induced breaking of conformal symmetry in a superpotential

    NASA Astrophysics Data System (ADS)

    Arbuzov, A. B.; Cirilo-Lombardo, D. J.

    2016-07-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  20. Dose-dependent radiation-induced hypotension in the canine

    SciTech Connect

    Cockerham, L.G.; Hampton, J.D.; Doyle, T.F.

    1986-01-01

    Radiation-induced early transient incapacitation (ETI) is often accompanied by severe systemic hypotension. However, postradiation hypotension does not occur with equal frequency in all species and is not reported with consistency in the canine. In an attempt to clarify the differences in reported canine post-radiation blood pressures, canine systemic blood pressures were determined both before and after exposure to gamma radiation of either 80 or 100 Gy. Data obtained from six sham-radiated beagles and 12 radiated beagles indicated that 100-Gy, whole-body, gamma radiation produced a decrease in systemic mean blood pressure while 80-Gy, whole-body, gamma radiation did not. Analysis of this data could be consistent with a quantal response to a gamma radiation dose between 80 Gy and 100 Gy.

  1. Radiation-induced cerebral meningioma: a recognizable entity.

    PubMed

    Rubinstein, A B; Shalit, M N; Cohen, M L; Zandbank, U; Reichenthal, E

    1984-11-01

    The authors retrospectively analyzed the clinical and histopathological findings in 201 patients with intracranial meningiomas operated on in the period 1978 to 1982. Forty-three of the patients (21.4%) had at some previous time received radiation treatment to their scalp, the majority for tinea capitis. The findings in these 43 irradiated patients were compared with those in the 158 non-irradiated patients. Several distinctive clinical and histological features were identified in the irradiated group, which suggest that radiation-induced meningiomas can be defined as a separate nosological subgroup. The use of irradiation in large numbers of children with tinea capitis in the era prior to the availability of griseofulvin may be responsible for a significantly increased incidence of intracranial meningiomas.

  2. The Dose Window for Radiation-Induced Protective Adaptive Responses

    PubMed Central

    Mitchel, Ronald E. J.

    2009-01-01

    Adaptive responses to low doses of low LET radiation occur in all organisms thus far examined, from single cell lower eukaryotes to mammals. These responses reduce the deleterious consequences of DNA damaging events, including radiation-induced or spontaneous cancer and non-cancer diseases in mice. The adaptive response in mammalian cells and mammals operates within a certain window that can be defined by upper and lower dose thresholds, typically between about 1 and 100 mGy for a single low dose rate exposure. However, these thresholds for protection are not a fixed function of total dose, but also vary with dose rate, additional radiation or non-radiation stressors, tissue type and p53 functional status. Exposures above the upper threshold are generally detrimental, while exposures below the lower threshold may or may not increase either cancer or non-cancer disease risk. PMID:20585438

  3. Study of radiation induced cancers in a breast screening programme.

    PubMed

    León, A; Verdú, G; Cuevas, M D; Salas, M D; Villaescusa, J I; Bueno, F

    2001-01-01

    It is demonstrated that screening mammography programmes reduce breast cancer mortality considerably. Nevertheless, radiology techniques have an intrinsic risk, the most important being the late somatic effect of the induction of cancer. This study was carried out in order to evaluate the risk to the population produced by the Comunidad Valenciana Breast Screening Programme. All the calculations are carried out for two risk models, UNSCEAR 94 and NRPB 93. On the one hand, screening series detriments are investigated as a function of doses delivered and other parameters related to population structure and X ray equipment. On the other hand the radiation induced cancer probability for a woman who starts at 45 years and remains in the programme until 65 years old is calculated as a function of mammography units' doses and average compression breast thickness. Finally, risk comparison between a screening programme starting at 45 years old and another one starting at 50 years old is made.

  4. [Radiation-induced and therapy-related AML/MDS].

    PubMed

    Inaba, Toshiya

    2009-10-01

    Radiation induced acute myeloid leukemia (AML) was recognized a century ago, soon after mankind found radiation. Atomic bomb survivors developed de novo AML with relatively short latency with very high frequency. By contrast, excess occurrence of myelodysplastic syndrome (MDS) as well as solid tumors was found decades late. This difference may be due to etiology that many de novo AML patients harbor chimeric leukemogenic genes caused by chromosomal translocations, while MDS patients rarely carry chimeras. In addition, epigenetic change would play important roles. Therapy related leukemia is mainly caused by topoisomerase II inhibitors that cause de novo AML with an 11q23 translocation or by alkyrating agents that induce MDS/AML with an AML1 point mutation and monosomy 7.

  5. Modification of microcrystalline cellulose by gamma radiation-induced grafting

    NASA Astrophysics Data System (ADS)

    Madrid, Jordan F.; Abad, Lucille V.

    2015-10-01

    Modified microcrystalline cellulose (MCC) was prepared through gamma radiation-induced graft polymerization of glycidyl methacrylate (GMA). Simultaneous grafting was employed wherein MCC with GMA in methanol was irradiated with gamma radiation in nitrogen atmosphere. The effects of different experimental factors such as monomer concentration, type of solvent and absorbed dose on the degree of grafting, Dg, were studied. The amount of grafted GMA, expressed as Dg, was determined gravimetrically. Information from grafted samples subjected to Fourier transformed infrared spectroscopy (FTIR) in attenuated total reflectance (ATR) mode showed peaks corresponding to GMA which indicates successful grafting. The X-ray diffraction (XRD) analysis revealed that the crystalline region of MCC was not adversely affected after grafting with GMA. The thermogravimetric analysis (TGA) data showed that the decomposition of grafted MCC occurred at higher temperature compared to the base MCC polymer.

  6. Radiation-induced polymerization for the immobilization of penicillin acylase

    SciTech Connect

    Boccu, E.; Carenza, M.; Lora, S.; Palma, G.; Veronese, F.M.

    1987-06-01

    The immobilization of Escherichia coli penicillin acylase was investigated by radiation-induced polymerization of 2-hydroxyethyl methacrylate at low temperature. A leak-proof composite that does not swell in water was obtained by adding the cross-linking agent trimethylolpropane trimethacrylate to the monomer-aqueous enzyme mixture. Penicillin acylase, which was immobilized with greater than 70% yield, possessed a higher Km value toward the substrate 6-nitro-3-phenylacetamidobenzoic acid than the free enzyme form (Km = 1.7 X 10(-5) and 1 X 10(-5) M, respectively). The structural stability of immobilized penicillin acylase, as assessed by heat, guanidinium chloride, and pH denaturation profiles, was very similar to that of the free-enzyme form, thus suggesting that penicillin acylase was entrapped in its native state into aqueous free spaces of the polymer matrix.

  7. Invertase immobilization onto radiation-induced graft copolymerized polyethylene pellets

    NASA Astrophysics Data System (ADS)

    de Queiroz, Alvaro Antonio Alencar; Vitolo, Michele; de Oliveira, Rômulo Cesar; Higa, Olga Zazuco

    1996-06-01

    The graft copolymer poly(ethylene-g-acrylic acid) (LDPE-g-AA) was prepared by radiation-induced graft copolymerization of acrylic acid onto low density polyethylene (LDPE) pellets, and characterized by infrared photoacoustic spectroscopy and scanning electron microscopy (SEM). The presence of the grafted poly(acrylic acid) (PAA) was established. Invertase was immobilized onto the graft polymer and the thermodynamic parameters of the soluble and immobilized enzyme were determined. The Michaelis constant, Km, and the maximum reaction velocity, Vmax, were determined for the free and the immobilized invertase. The Michaelis constant, Km was larger for the immobilized invertase than for the free enzyme, whereas Vmax was smaller for the immobilized invertase. The thermal stability of the immobilized invertase was higher than that of the free enzyme.

  8. Pulsed radiation-induced attenuation in certain optical fibers

    SciTech Connect

    Weiss, J.D. )

    1992-05-01

    Using the X-ray pulse from the HERMES II simulation machine at Sandia National Laboratories, the pulsed radiation-induced attenuation was measured in two optical fibers considered to be 'nonrad-hard': the 50-micron-core, graded-index fiber from Corning and the plastic (PMMA) fiber from the Mitsubishi Rayon Company. These fibers were exposed to radiation up to doses of 19.5 and 28 krad(Si), respectively. In addition, fits of their post-radiation recovery were made to the geminate recombination model, from which the recombination-rate and generation constants, characteristic of this theory, were determined. These parameters should be useful in determining the response of the fibers to radiation conditions other than those encountered here. 18 refs.

  9. Radiation-induced degradation of 4-chloroaniline in aqueous solution

    NASA Astrophysics Data System (ADS)

    Sánchez, M.; Wolfger, H.; Getoff, N.

    2002-12-01

    The radiation-induced decomposition of 4-chloroaniline (4-ClA) was studied under steady-state conditions using aqueous solutions saturated with air, pure oxygen, N 2O, argon and argon in the presence of t-Butanol. Using HPLC-method, the initial G-values of the substrate degradation as well as of a number of radiolytic products were determined. The formation of aminophenols, chlorophenols, aniline and phenol in addition to chloride, ammonia, formaldehyde and mixture of aldehydes as well as carboxylic acids was studied as a function of absorbed dose. Based on the experimental data, probable reaction mechanisms for the degradation of 4-ClA by γ-rays and the formation of the identified products are presented.

  10. Modulation of radiation-induced hemopoietic suppression by acute thrombocytopenia

    SciTech Connect

    Ebbe, S.; Phalen, E.; Threatte, G.; Londe, H.

    1985-01-01

    Modifications of radiation-induced hemopoietic suppression by acute thrombocytopenia were evaluated. Immediately before or after exposure to sublethal irradiation, mice were given a single injection of anti-mouse platelet serum (APS), normal heterologous serum, neuraminidase (N'ase), or saline, or no further treatment was provided. Hemopoiesis was evaluated by blood cell counts, hematocrits, and incorporation of (75Se)selenomethionine into platelets. APS and N'ase induced an acute thrombocytopenia from which there was partial recovery before the platelet count started to fall from the radiation. During the second post-treatment week, both thrombocytopoiesis and erythropoiesis were greater in mice that received APS or N'ase in addition to radiation than in control irradiated mice. Differences in leukopoiesis were not apparent. Therefore, both thrombocytopoiesis and erythropoiesis appeared to be responsive to a stimulus generated by acute thrombocytopenia in sublethally irradiated mice.

  11. Probabilistic methodology for estimating radiation-induced cancer risk

    SciTech Connect

    Dunning, D.E. Jr.; Leggett, R.W.; Williams, L.R.

    1981-01-01

    The RICRAC computer code was developed at Oak Ridge National Laboratory to provide a versatile and convenient methodology for radiation risk assessment. The code allows as input essentially any dose pattern commonly encountered in risk assessments for either acute or chronic exposures, and it includes consideration of the age structure of the exposed population. Results produced by the analysis include the probability of one or more radiation-induced cancer deaths in a specified population, expected numbers of deaths, and expected years of life lost as a result of premature fatalities. These calculatons include consideration of competing risks of death from all other causes. The program also generates a probability frequency distribution of the expected number of cancers in any specified cohort resulting from a given radiation dose. The methods may be applied to any specified population and dose scenario.

  12. [Nonsurgical treatment of chronic radiation-induced hemorrhagic proctitis].

    PubMed

    de Parades, Vincent; Bauer, Pierre; Marteau, Philippe; Chauveinc, Laurent; Bouillet, Thierry; Atienza, Patrick

    2008-01-01

    The incidence of radiation-induced chronic hemorrhagic proctitis is less than 10 to 20%. The onset of this proctitis is delayed relative to the radiation therapy and generally develops from 6 to 24 months later. There are numerous predisposing factors, the most important of which is the radiation therapy dose: risk increases exponentially above 40-45 Gy. Its pathophysiology involves progressive obliterating endarteritis and transmural interstitial fibrosis, which induce chronic ischemia that is irreversible and progressive during the years after radiation therapy. Its diagnosis depends most often on the combination of clinical history and typical endoscopic appearance (congestive mucosa and/or telangiectases). Topical administrative of sucralfate or corticosteroids as well as argon plasma coagulation, with formalin treatment if necessary, provides relief for most patients.

  13. Radiation-induced cationic polymerization of. beta. -pinene

    SciTech Connect

    Adur, A.M.; Williams, F.

    1981-03-01

    The radiation-induced polymerization of ..beta..-pinene carried out in bulk at ca.25/sup 0/ has been studied for different methods of monomer drying. It has been confirmed that the polymerization is sensitive to adventitious moisture and that substantial polymer yields (ca. 10% conversion per Mrad) can only be obtained under extremely dry conditions. Complete inhibition of the reaction by added tripropylamine corroborates the view that the polymerization is cationic. About half of the polymer formed is insoluble in the monomer. The number-average molecular weights for the soluble poly(..beta..-pinene) fraction have been measured by vapor pressure osmometry and are in the narrow range from 1700 to 2400 with little or no dependence on the degree of monomer conversion to polymer, at least up to 80%. The results are compared with literature reports on the polymerization of ..beta..-pinene by catalytic initiators.

  14. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  15. Intercellular Adhesion Molecule 1 Knockout Abrogates Radiation Induced Pulmonary Inflammation

    NASA Astrophysics Data System (ADS)

    Hallahan, Dennis E.; Virudachalam, Subbulakshmi

    1997-06-01

    Increased expression of intercellular adhesion molecule 1 (ICAM-1; CD54) is induced by exposure to ionizing radiation. The lung was used as a model to study the role of ICAM-1 in the pathogenesis of the radiation-induced inflammation-like response. ICAM-1 expression increased in the pulmonary microvascular endothelium and not in the endothelium of larger pulmonary vessels following treatment of mice with thoracic irradiation. To quantify radiation-induced ICAM-1 expression, we utilized fluorescence-activated cell sorting analysis of anti-ICAM-1 antibody labeling of pulmonary microvascular endothelial cells from human cadaver donors (HMVEC-L cells). Fluorochrome conjugates and UV microscopy were used to quantify the fluorescence intensity of ICAM in the irradiated lung. These studies showed a dose- and time-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium. Peak expression occurred at 24 h, while threshold dose was as low as 2 Gy. To determine whether ICAM-1 is required for inflammatory cell infiltration into the irradiated lung, the anti-ICAM-1 blocking antibody was administered by tail vein injection to mice following thoracic irradiation. Inflammatory cells were quantified by immunofluorescence for leukocyte common antigen (CD45). Mice treated with the anti-ICAM-1 blocking antibody showed attenuation of inflammatory cell infiltration into the lung in response to ionizing radiation exposure. To verify the requirement of ICAM-1 in the inflammation-like radiation response, we utilized the ICAM-1 knockout mouse. ICAM-1 was not expressed in the lungs of ICAM-1-deficient mice following treatment with thoracic irradiation. ICAM-1 knockout mice had no increase in the inflammatory cell infiltration into the lung in response to thoracic irradiation. These studies demonstrate a radiation dose-dependent increase in ICAM-1 expression in the pulmonary microvascular endothelium, and show that ICAM-1 is required for inflammatory cell infiltration

  16. Radiation-induced leukemia: Comparative studies in mouse and man

    SciTech Connect

    Haas, M.

    1991-01-01

    We now have a clear understanding of the mechanism by which radiation-induced (T-cell) leukemia occurs. In irradiated mice (radiation-induced thymic leukemia) and in man (acute lymphoblastic T-cell leukemia, T-ALL) the mechanism of leukemogenesis is surprisingly similar. Expressed in the most elementary terms, T-cell leukemia occurs when T-cell differentiation is inhibited by a mutation, and pre-T cells attempt but fail to differentiate in the thymus. Instead of leaving the thymus for the periphery as functional T-cells they continue to proliferate in the thymus. The proliferating pre- (pro-) T-cells constitute the (early) acute T-cell leukemia (A-TCL). This model for the mechanism of T-cell leukemogenesis accounts for all the properties of both murine and human A-TCL. Important support for the model has recently come from work by Ilan Kirsch and others, who have shown that mutations/deletions in the genes SCL (TAL), SIL, and LCK constitute primary events in the development of T-ALL, by inhibiting differentiation of thymic pre- (pro-) T-cells. This mechanism of T-cell leukemogenesis brings several specific questions into focus: How do early A-TCL cells progress to become potently tumorigenic and poorly treatable Is it feasible to genetically suppress early and/or progressed A-TCL cells What is the mechanism by which the differentiation-inhibited (leukemic) pre-T cells proliferate During the first grant year we have worked on aspects of all three questions.

  17. Radiation-induced fibrosis: mechanisms and implications for therapy

    PubMed Central

    Straub, Jeffrey M.; New, Jacob; Hamilton, Chase D.; Lominska, Chris; Shnayder, Yelizaveta

    2015-01-01

    Purpose Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. Methods A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other closely related terms. Results RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Conclusion Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies. PMID:25910988

  18. Bystander effects in radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Morgan, William F.; Hartmann, Andreas; Limoli, Charles L.; Nagar, Shruti; Ponnaiya, Brian

    2002-01-01

    Exposure of GM10115 hamster-human hybrid cells to X-rays can result in the induction of chromosomal instability in the progeny of surviving cells. This instability manifests as the dynamic production of novel sub-populations of cells with unique cytogenetic rearrangements involving the "marker" human chromosome. We have used the comet assay to investigate whether there was an elevated level of endogenous DNA breaks in chromosomally unstable clones that could provide a source for the chromosomal rearrangements and thus account for the persistent instability observed. Our results indicate no significant difference in comet tail measurement between non-irradiated and radiation-induced chromosomally unstable clones. Using two-color fluorescence in situ hybridization we also investigated whether recombinational events involving the interstitial telomere repeat-like sequences in GM10115 cells were involved at frequencies higher than random processes would otherwise predict. Nine of 11 clones demonstrated a significantly higher than expected involvement of these interstitial telomere repeat-like sequences at the recombination junction between the human and hamster chromosomes. Since elevated levels of endogenous breaks were not detected in unstable clones we propose that epigenetic or bystander effects (BSEs) lead to the activation of recombinational pathways that perpetuate the unstable phenotype. Specifically, we expand upon the hypothesis that radiation induces conditions and/or factors that stimulate the production of reactive oxygen species (ROS). These reactive intermediates then contribute to a chronic pro-oxidant environment that cycles over multiple generations, promoting chromosomal recombination and other phenotypes associated with genomic instability.

  19. Radiation-induced fibrosis: mechanisms and implications for therapy.

    PubMed

    Straub, Jeffrey M; New, Jacob; Hamilton, Chase D; Lominska, Chris; Shnayder, Yelizaveta; Thomas, Sufi M

    2015-11-01

    Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords "Radiation-Induced Fibrosis," "Radiotherapy Complications," "Fibrosis Therapy," and other closely related terms. RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies.

  20. Ion beam induced luminescence: Relevance to radiation induced bystander effects

    NASA Astrophysics Data System (ADS)

    Ahmad, S. B.; McNeill, F. E.; Byun, S. H.; Prestwich, W. V.; Seymour, C.; Mothersill, C. E.

    2012-10-01

    The aim of this work is quantify the light emitted as a result of charged particle interaction in materials which may be of relevance to radiation induced "bystander effects" studies. We have developed a system which employs single photon counting to measure the light emitted from samples irradiated under vacuum by a charged particle beam. The system uses a fast photomultiplier tube with a peak cathode response at 420 nm. It has been tested in a proof-of-principle experiment using polystyrene targets. Light output, as a result of irradiation, was measured. The luminescence yield appears to have a non-linear behavior with the incident ion fluence: it rises exponentially to an asymptotic value. The target was irradiated with beam energies varying from 1 to 2 MeV and showed saturation at or before an incident fluence rate of 3 × 1013 H+/cm2 s. The average saturation value for the photon output was found to be 40 × 106 cps. Some measurements were performed using filters to study the emission at specific wavelengths. In the case of filtered light measurements, the photon output was found to saturate at 28 × 103, 10 × 106, and 35 × 106 cps for wavelengths of 280 ± 5 nm, 320 ± 5 nm and 340 ± 5 nm respectively. The light output reaches a maximum value because of damage induced in the polymer. Our measurements indicate a "damage cross section" of the order of 10-14 cm2. The average radiant intensity was found to increase at wavelengths of 280 and 320 nm when the proton energy was increased. This was not found to occur at 340 nm. In conclusion, the light emission at specific wavelengths was found to depend upon the incident proton fluence and the proton energy. The wavelengths of the emitted light measured in this study have significance for the understanding of radiation induced bystander effects.

  1. Barriers to Radiation-Induced In Situ Tumor Vaccination

    PubMed Central

    Wennerberg, Erik; Lhuillier, Claire; Vanpouille-Box, Claire; Pilones, Karsten A.; García-Martínez, Elena; Rudqvist, Nils-Petter; Formenti, Silvia C.; Demaria, Sandra

    2017-01-01

    The immunostimulatory properties of radiation therapy (RT) have recently generated widespread interest due to preclinical and clinical evidence that tumor-localized RT can sometimes induce antitumor immune responses mediating regression of non-irradiated metastases (abscopal effect). The ability of RT to activate antitumor T cells explains the synergy of RT with immune checkpoint inhibitors, which has been well documented in mouse tumor models and is supported by observations of more frequent abscopal responses in patients refractory to immunotherapy who receive RT during immunotherapy. However, abscopal responses following RT remain relatively rare in the clinic, and antitumor immune responses are not effectively induced by RT against poorly immunogenic mouse tumors. This suggests that in order to improve the pro-immunogenic effects of RT, it is necessary to identify and overcome the barriers that pre-exist and/or are induced by RT in the tumor microenvironment. On the one hand, RT induces an immunogenic death of cancer cells associated with release of powerful danger signals that are essential to recruit and activate dendritic cells (DCs) and initiate antitumor immune responses. On the other hand, RT can promote the generation of immunosuppressive mediators that hinder DCs activation and impair the function of effector T cells. In this review, we discuss current evidence that several inhibitory pathways are induced and modulated in irradiated tumors. In particular, we will focus on factors that regulate and limit radiation-induced immunogenicity and emphasize current research on actionable targets that could increase the effectiveness of radiation-induced in situ tumor vaccination. PMID:28348554

  2. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  3. [Radiation-induced cancers: state of the art in 1997].

    PubMed

    Cosset, J M

    1997-01-01

    Scientists now have available a large amount of data dealing with radiation-induced neoplasms. These data went back to anecdotal observations which were made in the very first years of utilization of X-rays and radioactive elements. In fact, it is essentially the strict follow-up of the Japanese populations irradiated by the Hiroshima and Nagasaki bombing which allowed a more precise evaluation of the carcinogenicity of ionizing radiations. Further refinements came from therapeutical irradiations: it is now possible to study large cohorts of patients given well-known doses in well-defined volumes and followed for more than 20 years. Last but not least, a significant increase in the incidence and mortality of thyroid cancer has been detected in children contaminated by iodine radioisotopes after the Tchernobyl accident. Recently, some data suggested the emergence of "clusters" of leukemias close to some nuclear facilities, but this question remains highly polemical, both in France and in the UK. Other questions are still waiting for a precise answer; of course, the extrapolation of our available data to very low doses delivered at very low dose rates, but also the carcinogenic risk at high doses. For these "high" doses (about 30 to 70 Gy), a competition between mutagenesis and cell killing was expected, so that these dose levels were expected to be less carcinogenic than lower (a few sieverts) doses. Actually, recent data suggest that the carcinogenic risk goes on increasing up to relatively important doses. In addition, carcinogenic factors, such as tabacco, anticancer chemotherapy and individual susceptibility, are found more and more to be closely intricated with ionizing radiation in the genesis of a given cancer. Even if a number of questions are still pending, the already available data allow specialists, both in medicine and radioprotection, to edict strict rules which can be reasonably expected to have significantly reduced the risk of radiation-induced

  4. Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.

    PubMed

    Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V

    2016-07-01

    Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation

  5. Radiation-induced sarcomas of bone: factors that affect outcome.

    PubMed

    Kalra, S; Grimer, R J; Spooner, D; Carter, S R; Tillman, R M; Abudu, A

    2007-06-01

    We identified 42 patients who presented to our unit over a 27-year period with a secondary radiation-induced sarcoma of bone. We reviewed patient, tumour and treatment factors to identify those that affected outcome. The mean age of the patients at presentation was 45.6 years (10 to 84) and the mean latent interval between radiotherapy and diagnosis of the sarcoma was 17 years (4 to 50). The median dose of radiotherapy given was estimated at 50 Gy (mean 49; 20 to 66). There was no correlation between radiation dose and the time to development of a sarcoma. The pelvis was the most commonly affected site (14 patients (33%)). Breast cancer was the most common primary tumour (eight patients; 19%). Metastases were present at diagnosis of the sarcoma in nine patients (21.4%). Osteosarcoma was the most common diagnosis and occurred in 30 cases (71.4%). Treatment was by surgery and chemotherapy when indicated: 30 patients (71.4%) were treated with the intention to cure. The survival rate was 41% at five years for those treated with the intention to cure but in those treated palliatively the mean survival was only 8.8 months (2 to 22), and all had died by two years. The only factor found to be significant for survival was the ability to completely resect the tumour. Limb sarcomas had a better prognosis (66% survival at five years) than central ones (12% survival at five years) (p = 0.009). Radiation-induced sarcoma is a rare complication of radiotherapy. Both surgical and oncological treatment is likely to be compromised by the treatment received previously by the patient.

  6. Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart.

    PubMed

    Koturbash, Igor; Miousse, Isabelle R; Sridharan, Vijayalakshmi; Nzabarushimana, Etienne; Skinner, Charles M; Melnyk, Stepan B; Pavliv, Oleksandra; Hauer-Jensen, Martin; Nelson, Gregory A; Boerma, Marjan

    2016-05-01

    DNA methylation is a key epigenetic mechanism, needed for proper control over the expression of genetic information and silencing of repetitive elements. Exposure to ionizing radiation, aside from its strong genotoxic potential, may also affect the methylation of DNA, within the repetitive elements, in particular. In this study, we exposed C57BL/6J male mice to low absorbed mean doses of two types of space radiation-proton (0.1 Gy, 150 MeV, dose rate 0.53 ± 0.08 Gy/min), and heavy iron ions ((56)Fe) (0.5 Gy, 600 MeV/n, dose rate 0.38 ± 0.06 Gy/min). Radiation-induced changes in cardiac DNA methylation associated with repetitive elements were detected. Specifically, modest hypomethylation of retrotransposon LINE-1 was observed at day 7 after irradiation with either protons or (56)Fe. This was followed by LINE-1, and other retrotransposons, ERV2 and SINE B1, as well as major satellite DNA hypermethylation at day 90 after irradiation with (56)Fe. These changes in DNA methylation were accompanied by alterations in the expression of DNA methylation machinery and affected the one-carbon metabolism pathway. Furthermore, loss of transposable elements expression was detected in the cardiac tissue at the 90-day time-point, paralleled by substantial accumulation of mRNA transcripts, associated with major satellites. Given that the one-carbon metabolism pathway can be modulated by dietary modifications, these findings suggest a potential strategy for the mitigation and, possibly, prevention of the negative effects exerted by ionizing radiation on the cardiovascular system. Additionally, we show that the methylation status and expression of repetitive elements may serve as early biomarkers of exposure to space radiation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    PubMed Central

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-01-01

    Purpose/Objectives(s) The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events (SPEs), as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials Ferrets were exposed to 0 – 2 Gray (Gy) of whole body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results The lethal dose of radiation to 50% of the population, known as the LD50, of ferrets was established at ~ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 post-irradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early times post-irradiation when coagulopathies were present and progressively becoming more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions The data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is solely due to the cell killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation induced death at relatively low doses in large mammals. PMID:24495588

  8. Evidence for radiation-induced disseminated intravascular coagulation as a major cause of radiation-induced death in ferrets.

    PubMed

    Krigsfeld, Gabriel S; Savage, Alexandria R; Billings, Paul C; Lin, Liyong; Kennedy, Ann R

    2014-03-15

    The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. The lethal dose of radiation to 50% of the population (LD50) of the ferrets was established at ∼ 1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Data presented here provide evidence that death at the LD50 in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Evidence for Radiation-Induced Disseminated Intravascular Coagulation as a Major Cause of Radiation-Induced Death in Ferrets

    SciTech Connect

    Krigsfeld, Gabriel S.; Savage, Alexandria R.; Billings, Paul C.; Lin, Liyong; Kennedy, Ann R.

    2014-03-15

    Purpose: The studies reported here were performed as part of a program in space radiation biology in which proton radiation like that present in solar particle events, as well as conventional gamma radiation, were being evaluated in terms of the ability to affect hemostasis. Methods and Materials: Ferrets were exposed to 0 to 2 Gy of whole-body proton or gamma radiation and monitored for 30 days. Blood was analyzed for blood cell counts, platelet clumping, thromboelastometry, and fibrin clot formation. Results: The lethal dose of radiation to 50% of the population (LD{sub 50}) of the ferrets was established at ∼1.5 Gy, with 100% mortality at 2 Gy. Hypocoagulability was present as early as day 7 postirradiation, with animals unable to generate a stable clot and exhibiting signs of platelet aggregation, thrombocytopenia, and fibrin clots in blood vessels of organs. Platelet counts were at normal levels during the early time points postirradiation when coagulopathies were present and becoming progressively more severe; platelet counts were greatly reduced at the time of the white blood cell nadir of 13 days. Conclusions: Data presented here provide evidence that death at the LD{sub 50} in ferrets is most likely due to disseminated intravascular coagulation (DIC). These data question the current hypothesis that death at relatively low doses of radiation is due solely to the cell-killing effects of hematopoietic cells. The recognition that radiation-induced DIC is the most likely mechanism of death in ferrets raises the question of whether DIC is a contributing mechanism to radiation-induced death at relatively low doses in large mammals.

  10. Involvement of prostaglandins and histamine in radiation-induced temperature responses in rats

    SciTech Connect

    Kandasamy, S.B.; Hunt, W.A. )

    1990-01-01

    Exposure of rats to 1-15 Gy of gamma radiation induced hyperthermia, whereas exposure to 20-150 Gy produced hypothermia. Since radiation exposure induced the release of prostaglandins (PGs) and histamine, the role of PGs and histamine in radiation-induced temperature changes was examined. Radiation-induced hyper- and hypothermia were antagonized by pretreatment with indomethacin, a cyclooxygenase inhibitor. Intracerebroventricular administration of PGE2 and PGD2 induced hyper- and hypothermia, respectively. Administration of SC-19220, a specific PGE2 antagonist, attenuated PGE2- and radiation-induced hyperthermia, but it did not antagonize PGD2- or radiation-induced hypothermia. Consistent with an apparent role of histamine in hypothermia, administration of disodium cromoglycate (a mast cell stabilizer), mepyramine (H1-receptor antagonist), or cimetidine (H2-receptor antagonist) attenuated PGD2- and radiation-induced hypothermia. These results suggest that radiation-induced hyperthermia is mediated via PGE2 and that radiation-induced hypothermia is mediated by another PG, possibly PGD2, via histamine.

  11. The CAROLE (CArdiac Related Oncologic Late Effects) Study

    ClinicalTrials.gov

    2017-08-02

    Coronary Artery Disease; Cardiac Disease; Cardiac Toxicity; Radiation; Radiation Therapy; Atherosclerotic Heart Disease; Cardiotoxicity; Breast Cancer; Lung Cancer; Lymphoma; Cancer; Carcinoma, Intraductal, Noninfiltrating

  12. Countermeasures for Space Radiation Induced Malignancies and Acute Biological Effects

    NASA Astrophysics Data System (ADS)

    Kennedy, Ann

    The hypothesis being evaluated in this research program is that control of radiation induced oxidative stress will reduce the risk of radiation induced adverse biological effects occurring as a result of exposure to the types of radiation encountered during space travel. As part of this grant work, we have evaluated the protective effects of several antioxidants and dietary supplements and observed that a mixture of antioxidants (AOX), containing L-selenomethionine, N-acetyl cysteine (NAC), ascorbic acid, vitamin E succinate, and alpha-lipoic acid, is highly effective at reducing space radiation induced oxidative stress in both in vivo and in vitro systems, space radiation induced cytotoxicity and malignant transformation in vitro [1-7]. In studies designed to determine whether the AOX formulation could affect radiation induced mortality [8], it was observed that the AOX dietary supplement increased the 30-day survival of ICR male mice following exposure to a potentially lethal dose (8 Gy) of X-rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 hours following exposure to doses of 1 Gy and 8 Gy. Antioxidant treatment also resulted in increased bone marrow cell counts following irradiation, and prevented peripheral lymphopenia following 1 Gy irradiation. Supplementation with antioxidants in irradiated animals resulted in several gene expression changes: the antioxidant treatment was associated with increased Bcl-2, and decreased Bax, caspase-9 and TGF-β1 mRNA expression in the bone marrow following irradiation. These results suggest that modulation of apoptosis may be mechanistically involved in hematopoietic system radioprotection by antioxidants. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow following sub-lethal or potentially lethal irradiation. Taken together

  13. Common European Mitochondrial Haplogroups in the Risk for Radiation-induced Subcutaneous Fibrosis in Breast Cancer Patients.

    PubMed

    Terrazzino, S; Deantonio, L; Cargnin, S; Donis, L; Pisani, C; Masini, L; Gambaro, G; Canonico, P L; Genazzani, A A; Krengli, M

    2016-06-01

    The contribution of mitochondrial DNA (mtDNA) variations to clinical radiosensitivity is largely unknown. In the present study, we evaluated the association between mtDNA haplogroups and the risk of radiation-induced subcutaneous fibrosis after postoperative radiotherapy in breast cancer patients. Subcutaneous fibrosis was scored according to the Late Effects of Normal Tissue-Subjective Objective Management Analytical (LENT-SOMA) scale in 286 Italian breast cancer patients who received radiotherapy after breast-conserving surgery. Eight mtDNA single nucleotide polymorphisms that define the nine major haplogroups in the European population were determined by polymerase chain reaction restriction fragment length polymorphism analysis on genomic DNA extracted from peripheral blood. In a Kaplan-Meier analysis evaluated by the Log-rank test, carriers of haplogroup H were found to be at lower risk of grade ≥2 subcutaneous fibrosis (P = 0.018) compared with all other haplotypes combined. In the multivariate Cox regression analysis adjusted for clinical factors (body mass index, breast diameter, adjuvant treatment, dose per fraction, radiation type and acute skin toxicity), haplogroup H emerged as a protective factor for moderate to severe radiation-induced fibrosis at a nominal significance level (hazard ratio: 0.50, 95% confidence interval 0.27-0.92, P = 0.027), which did not survive correction for multiple testing. Our results suggest a protective effect of the mitochondrial haplogroup H in the development of radiation-induced fibrosis in breast cancer patients. However, the loss of statistical significance after correction for multiple comparisons and the lack of an independent validation cohort make our findings preliminary, requiring further confirmation in large-scale prospective studies. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  14. SU-E-T-62: Cardiac Toxicity in Dynamic Conformal Arc Therapy, Intensity-Modulated Radiation Therapy and Volumetric Modulated Arc Therapy of Lung Cancers

    SciTech Connect

    Ming, X; Zhang, Y; Feng, Y; Zhou, L; Deng, J

    2014-06-01

    Purpose: The cardiac toxicity for lung cancer patients, each treated with dynamic conformal arc therapy (DAT), intensity-modulated radiation therapy (IMRT), or volumetric modulated arc therapy (VMAT) is investigated. Methods: 120 lung patients were selected for this study: 25 treated with DAT, 50 with IMRT and 45 with VMAT. For comparison, all plans were generated in the same treatment planning system, normalized such that the 100% isodose lines encompassed 95% of planning target volume. The plan quality was evaluated in terms of homogeneity index (HI) and 95% conformity index (%95 CI) for target dose coverage and mean dose, maximum dose, V{sub 30} Gy as well as V{sub 5} Gy for cardiac toxicity analysis. Results: When all the plans were analyzed, the VMAT plans offered the best target coverage with 95% CI = 0.992 and HI = 1.23. The DAT plans provided the best heart sparing with mean heart dose = 2.3Gy and maximum dose = 11.6Gy, as compared to 5.7 Gy and 31.1 Gy by IMRT as well as 4.6 Gy and 30.9 Gy by VMAT. The mean V30Gy and V5Gy of the heart in the DAT plans were up to 11.7% lower in comparison to the IMRT and VMAT plans. When the tumor volume was considered, the VMAT plans spared up to 70.9% more doses to the heart when the equivalent diameter of the tumor was larger than 4cm. Yet the maximum dose to the heart was reduced the most in the DAT plans with up to 139.8% less than that of the other two plans. Conclusion: Overall, the VMAT plans achieved the best target coverage among the three treatment modalities, and would spare the heart the most for the larger tumors. The DAT plans appeared advantageous in delivering the least maximum dose to the heart as compared to the IMRT and VMAT plans.

  15. Radiation-induced signaling results in mitochondrial impairment in mouse heart at 4 weeks after exposure to X-rays.

    PubMed

    Barjaktarovic, Zarko; Schmaltz, Dominik; Shyla, Alena; Azimzadeh, Omid; Schulz, Sabine; Haagen, Julia; Dörr, Wolfgang; Sarioglu, Hakan; Schäfer, Alexander; Atkinson, Michael J; Zischka, Hans; Tapio, Soile

    2011-01-01

    Radiation therapy treatment of breast cancer, Hodgkin's disease or childhood cancers expose the heart to high local radiation doses, causing an increased risk of cardiovascular disease in the survivors decades after the treatment. The mechanisms that underlie the radiation damage remain poorly understood so far. Previous data show that impairment of mitochondrial oxidative metabolism is directly linked to the development of cardiovascular disease. In this study, the radiation-induced in vivo effects on cardiac mitochondrial proteome and function were investigated. C57BL/6N mice were exposed to local irradiation of the heart with doses of 0.2 Gy or 2 Gy (X-ray, 200 kV) at the age of eight weeks, the control mice were sham-irradiated. After four weeks the cardiac mitochondria were isolated and tested for proteomic and functional alterations. Two complementary proteomics approaches using both peptide and protein quantification strategies showed radiation-induced deregulation of 25 proteins in total. Three main biological categories were affected: the oxidative phophorylation, the pyruvate metabolism, and the cytoskeletal structure. The mitochondria exposed to high-dose irradiation showed functional impairment reflected as partial deactivation of Complex I (32%) and Complex III (11%), decreased succinate-driven respiratory capacity (13%), increased level of reactive oxygen species and enhanced oxidation of mitochondrial proteins. The changes in the pyruvate metabolism and structural proteins were seen with both low and high radiation doses. This is the first study showing the biological alterations in the murine heart mitochondria several weeks after the exposure to low- and high-dose of ionizing radiation. Our results show that doses, equivalent to a single dose in radiotherapy, cause long-lasting changes in mitochondrial oxidative metabolism and mitochondria-associated cytoskeleton. This prompts us to propose that these first pathological changes lead to an increased

  16. Hyperbaric Oxygen Therapy for Radiation-Induced Cystitis and Proctitis

    SciTech Connect

    Oliai, Caspian; Fisher, Brandon; Jani, Ashish; Wong, Michael; Poli, Jaganmohan; Brady, Luther W.; Komarnicky, Lydia T.

    2012-11-01

    Purpose: To provide a retrospective analysis of the efficacy of hyperbaric oxygen therapy (HBOT) for treating hemorrhagic cystitis (HC) and proctitis secondary to pelvic- and prostate-only radiotherapy. Methods and Materials: Nineteen patients were treated with HBOT for radiation-induced HC and proctitis. The median age at treatment was 66 years (range, 15-84 years). The range of external-beam radiation delivered was 50.0-75.6 Gy. Bleeding must have been refractory to other therapies. Patients received 100% oxygen at 2.0 atmospheres absolute pressure for 90-120 min per treatment in a monoplace chamber. Symptoms were retrospectively scored according to the Late Effects of Normal Tissues-Subjective, Objective, Management, Analytic (LENT-SOMA) scale to evaluate short-term efficacy. Recurrence of hematuria/hematochezia was used to assess long-term efficacy. Results: Four of the 19 patients were lost to follow-up. Fifteen patients were evaluated and received a mean of 29.8 dives: 11 developed HC and 4 proctitis. All patients experienced a reduction in their LENT-SOMA score. After completion of HBOT, the mean LENT-SOMA score was reduced from 0.78 to 0.20 in patients with HC and from 0.66 to 0.26 in patients with proctitis. Median follow-up was 39 months (range, 7-70 months). No cases of hematuria were refractory to HBOT. Complete resolution of hematuria was seen in 81% (n = 9) and partial response in 18% (n = 2). Recurrence of hematuria occurred in 36% (n = 4) after a median of 10 months. Complete resolution of hematochezia was seen in 50% (n = 2), partial response in 25% (n = 1), and refractory bleeding in 25% (n = 1). Conclusions: Hyperbaric oxygen therapy is appropriate for radiation-induced HC once less time-consuming therapies have failed to resolve the bleeding. In these conditions, HBOT is efficacious in the short and long term, with minimal side effects.

  17. Radiation-Induced Bystander Effects in Cultured Human Stem Cells

    PubMed Central

    Sokolov, Mykyta V.; Neumann, Ronald D.

    2010-01-01

    Background The radiation-induced “bystander effect” (RIBE) was shown to occur in a number of experimental systems both in vitro and in vivo as a result of exposure to ionizing radiation (IR). RIBE manifests itself by intercellular communication from irradiated cells to non-irradiated cells which may cause DNA damage and eventual death in these bystander cells. It is known that human stem cells (hSC) are ultimately involved in numerous crucial biological processes such as embryologic development; maintenance of normal homeostasis; aging; and aging-related pathologies such as cancerogenesis and other diseases. However, very little is known about radiation-induced bystander effect in hSC. To mechanistically interrogate RIBE responses and to gain novel insights into RIBE specifically in hSC compartment, both medium transfer and cell co-culture bystander protocols were employed. Methodology/Principal Findings Human bone-marrow mesenchymal stem cells (hMSC) and embryonic stem cells (hESC) were irradiated with doses 0.2 Gy, 2 Gy and 10 Gy of X-rays, allowed to recover either for 1 hr or 24 hr. Then conditioned medium was collected and transferred to non-irradiated hSC for time course studies. In addition, irradiated hMSC were labeled with a vital CMRA dye and co-cultured with non-irradiated bystander hMSC. The medium transfer data showed no evidence for RIBE either in hMSC and hESC by the criteria of induction of DNA damage and for apoptotic cell death compared to non-irradiated cells (p>0.05). A lack of robust RIBE was also demonstrated in hMSC co-cultured with irradiated cells (p>0.05). Conclusions/Significance These data indicate that hSC might not be susceptible to damaging effects of RIBE signaling compared to differentiated adult human somatic cells as shown previously. This finding could have profound implications in a field of radiation biology/oncology, in evaluating radiation risk of IR exposures, and for the safety and efficacy of hSC regenerative

  18. Protective effect of an aminothiazole compound against γ-radiation induced oxidative damage.

    PubMed

    De, Strayo; Devasagayam, Thomas P A

    2011-11-01

    Ionizing radiation causes its biological effects mainly through oxidative damage induced by reactive oxygen species. During radiotherapy of cancer, one of the undesirable side-effects is toxicity to normal cells. Compounds with antioxidant activities are being tried as 'prophylactic radioprotectants' to overcome this problem. We evaluated the protective effect of an aminothiazole compound, in the form of dendrodoine analogue (DA) originally derived from a marine tunicate, against γ-radiation-induced damage to lipid, protein, and DNA besides its cytotoxicity. Oxidative damage was examined by different biochemcial assays. Our studies reveal that DA gave significant protection, in fairly low concentrations, against damage induced by γ-radiation to rat liver mitochondria, plasmid pBR322 DNA, and mouse splenic lymphocytes in vitro. It also protected against oxidative damage in whole-body irradiated mice exposed to therapeutic dose of radiation (2 Gy) in vivo. Spleen, a major target organ for radiation damage, of the irradiated mice showed significant protection when treated with DA, as examined by histopathology. In conclusion, due to the possible protective effects against normal cells/tissues both in vitro and in vivo, DA shows potential to be a radioprotector for possible use during radiotherapy.

  19. Radiation-induced blood-brain barrier changes: pathophysiological mechanisms and clinical implications.

    PubMed

    d'Avella, D; Cicciarello, R; Angileri, F F; Lucerna, S; La Torre, D; Tomasello, F

    1998-01-01

    The pathophysiology of whole-brain radiation (WBR) toxicity remains incompletely understood. The possibility of a primary change in blood-brain barrier (BBB) associated with microvascular damage was investigated. Rats were exposed to conventional fractionation in radiation (200 +/- cGy/d, 5d/wk; total dose, 4,000 cGy). BBB changes were assessed by means of the quantitative 14C-alpha-aminoisobutyric acid (AIB) technique coupled with standard electron microscopy (EM) and morphometric techniques as well as studies of the transcapillary passage of horseradish peroxidase (HRP). At 15 days after WBR, AIB transport across BBB increased significantly in cerebral cortex. EM disclosed vesicular transport of HRP across the intact endothelium without opening of the tight junctions. Ninety days after WBR, well-defined alterations of the microvasculature were observed. The main feature of cortical microvessels was their collapsed aspect, associated with perivascular edema containing cell debris. Data suggest a possible association between damage of the microvascular/glial unit of tissue injury and development of radiation-induced brain cerebral dysfunction. We hypothesize the following sequence of pathophysiological events: WBR causes an early increase in BBB permeability, which produces perivascular edema and microvascular collapse. The interference with microcirculation affects blood flow and energy supply to the tissue, resulting in structural damage on an ischemic/dysmetabolic basis.

  20. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis.

    PubMed

    Mavragani, Ifigeneia V; Nikitaki, Zacharenia; Souli, Maria P; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy; Georgakilas, Alexandros G

    2017-07-18

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15-20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent "danger" signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair.

  1. Complex DNA Damage: A Route to Radiation-Induced Genomic Instability and Carcinogenesis

    PubMed Central

    Mavragani, Ifigeneia V.; Nikitaki, Zacharenia; Souli, Maria P.; Aziz, Asef; Nowsheen, Somaira; Aziz, Khaled; Rogakou, Emmy

    2017-01-01

    Cellular effects of ionizing radiation (IR) are of great variety and level, but they are mainly damaging since radiation can perturb all important components of the cell, from the membrane to the nucleus, due to alteration of different biological molecules ranging from lipids to proteins or DNA. Regarding DNA damage, which is the main focus of this review, as well as its repair, all current knowledge indicates that IR-induced DNA damage is always more complex than the corresponding endogenous damage resulting from endogenous oxidative stress. Specifically, it is expected that IR will create clusters of damage comprised of a diversity of DNA lesions like double strand breaks (DSBs), single strand breaks (SSBs) and base lesions within a short DNA region of up to 15–20 bp. Recent data from our groups and others support two main notions, that these damaged clusters are: (1) repair resistant, increasing genomic instability (GI) and malignant transformation and (2) can be considered as persistent “danger” signals promoting chronic inflammation and immune response, causing detrimental effects to the organism (like radiation toxicity). Last but not least, the paradigm shift for the role of radiation-induced systemic effects is also incorporated in this picture of IR-effects and consequences of complex DNA damage induction and its erroneous repair. PMID:28718816

  2. Novel Regenerative Peptide TP508 Mitigates Radiation-Induced Gastrointestinal Damage By Activating Stem Cells and Preserving Crypt Integrity

    PubMed Central

    Kantara, Carla; Moya, Stephanie M.; Houchen, Courtney W.; Umar, Shahid; Ullrich, Robert L.; Singh, Pomila; Carney, Darrell H.

    2015-01-01

    In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post-exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin®) 24h after lethal radiation exposure (9Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post-exposure prevents the disintegration of gastrointestinal crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also up-regulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24h post-exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment. PMID:26280221

  3. Novel regenerative peptide TP508 mitigates radiation-induced gastrointestinal damage by activating stem cells and preserving crypt integrity.

    PubMed

    Kantara, Carla; Moya, Stephanie M; Houchen, Courtney W; Umar, Shahid; Ullrich, Robert L; Singh, Pomila; Carney, Darrell H

    2015-11-01

    In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis, and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin) 24 h after lethal radiation exposure (9 Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post exposure prevents the disintegration of GI crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also upregulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24 h post exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment.

  4. Investigations of radiation-induced and carrier-enhanced conductivity

    NASA Astrophysics Data System (ADS)

    Meulenberg, A., Jr.; Parker, L. W.; Yadlowski, E. J.; Hazelton, R. C.

    1985-03-01

    A steady-state carrier computer code, PECK (Parker Enhanced Carrier Kinetics), that predicts the radiation-induced conductivity (RIC) produced in a dielectric by an electron beam was developed. The model, which assumes instantly-trapped holes, was then applied to experimental measurements on thin Kapton samples penetrated by an electron beam. Measurements at high bias were matched in the model by an appropriate choice for the trap-modulated electron mobility. A fractional split between front and rear currents measured at zone bias is explained on the basis of beam-scattering. The effects of carrier-enhanced conductivity (CEC) on data obtained for thick, free-surface Kapton samples is described by using an analytical model that incorporates field injection of carriers from the RIC region. The computer code, LWPCHARGE, modified for carrier transport, is also used to predict partial penetration effects associated with CEC in the unirradiated region. Experimental currents and surface voltages, when incorporated in the appropriate models, provide a value for the trap modulated mobility that is in essential agreement with the RIC results.

  5. Investigations of radiation-induced and carrier-enhanced conductivity

    NASA Technical Reports Server (NTRS)

    Meulenberg, A., Jr.; Parker, L. W.; Yadlowski, E. J.; Hazelton, R. C.

    1985-01-01

    A steady-state carrier computer code, PECK (Parker Enhanced Carrier Kinetics), that predicts the radiation-induced conductivity (RIC) produced in a dielectric by an electron beam was developed. The model, which assumes instantly-trapped holes, was then applied to experimental measurements on thin Kapton samples penetrated by an electron beam. Measurements at high bias were matched in the model by an appropriate choice for the trap-modulated electron mobility. A fractional split between front and rear currents measured at zone bias is explained on the basis of beam-scattering. The effects of carrier-enhanced conductivity (CEC) on data obtained for thick, free-surface Kapton samples is described by using an analytical model that incorporates field injection of carriers from the RIC region. The computer code, LWPCHARGE, modified for carrier transport, is also used to predict partial penetration effects associated with CEC in the unirradiated region. Experimental currents and surface voltages, when incorporated in the appropriate models, provide a value for the trap modulated mobility that is in essential agreement with the RIC results.

  6. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  7. Glycyrrhetinic acid alleviates radiation-induced lung injury in mice

    PubMed Central

    Chen, Jinmei; Zhang, Weijian; Zhang, Lurong; Zhang, Jiemin; Chen, Xiuying; Yang, Meichun; Chen, Ting; Hong, Jinsheng

    2017-01-01

    Radiation-induced lung injury (RILI) is a common complication of thoracic radiotherapy, but efficacious therapy for RILI is lacking. This study ascertained whether glycyrrhetinic acid (GA; a functional hydrolyzed product of glycyrrhizic acid, which is extracted from herb licorice) can protect against RILI and investigated its relationship to the transforming growth factor (TGF)-β1/Smads signaling pathway. C57BL/6 mice were divided into four groups: a control group, a GA group and two irradiation (IR) groups. IR groups were exposed to a single fraction of X-rays (12 Gy) to the thorax and administered normal saline (IR + NS group) or GA (IR + GA group). Two days and 17 days after irradiation, histologic analyses were performed to assess the degree of lung injury, and the expression of TGF-β1, Smad2, Smad3 and Smad7 was recorded. GA administration mitigated the histologic changes of lung injury 2 days and 17 days after irradiation. Protein and mRNA expression of TGF-β1, Smad2 and Smad3, and the mRNA level of Smad7, in lung tissue were significantly elevated after irradiation. GA decreased expression of TGF-β1, Smad2 and Smad3 in lung tissue, but did not increase Smad7 expression. GA can protect against early-stage RILI. This protective effect may be associated with inhibition of the TGF-β1/Smads signaling pathway. PMID:27672101

  8. Radiation-induced conductivity control in polyaniline blends/composites

    NASA Astrophysics Data System (ADS)

    Güven, Olgun

    2007-08-01

    Polyaniline (PANI) blends with chlorine-containing polymers and copolymers and composites with HCl-releasing compounds were prepared to investigate their radiation response in terms of induced conductivities. Blends of non-conductive PANI with poly(vinyl chloride) (PVC), poly(vinylidene chloride- co-vinyl acetate), [P(VDC- co-VAc)], poly(vinylidene chloride- co-vinyl chloride), [P(VDC- co-VC)] were prepared in the form of as-cast films. A number of blends which are different in composition were exposed to gamma radiation and accelerated electrons to various doses, and the effects of irradiation type and composition of polymers on the conductivity of films were investigated by using conductivity measurements and UV-vis and FT-IR spectroscopy. The results clearly showed that ionizing radiation is an effective tool to induce and control conductivity in the blends of PANI-base with chlorine-carrying polymers as well as its composites prepared from HCl-releasing compounds such as chloral hydrate. The main mechanism behind this radiation-induced conductivity is in situ doping of PANI-base with HCl released from partner polymers and low molecular weight compounds by the effect of radiation.

  9. Gamma radiation induced changes in nuclear waste glass containing Eu

    NASA Astrophysics Data System (ADS)

    Mohapatra, M.; Kadam, R. M.; Mishra, R. K.; Kaushik, C. P.; Tomar, B. S.; Godbole, S. V.

    2011-10-01

    Gamma radiation induced changes were investigated in sodium-barium borosilicate glasses containing Eu. The glass composition was similar to that of nuclear waste glasses used for vitrifying Trombay research reactor nuclear waste at Bhabha Atomic Research Centre, India. Photoluminescence (PL) and electron paramagnetic resonance (EPR) techniques were used to study the speciation of the rare earth (RE) ion in the matrix before and after gamma irradiation. Judd-Ofelt ( J- O) analyses of the emission spectra were done before and after irradiation. The spin counting technique was employed to quantify the number of defect centres formed in the glass at the highest gamma dose studied. PL data suggested the stabilisation of the trivalent RE ion in the borosilicate glass matrix both before and after irradiation. It was also observed that, the RE ion distributes itself in two different environments in the irradiated glass. From the EPR data it was observed that, boron oxygen hole centre based radicals are the predominant defect centres produced in the glass after irradiation along with small amount of E’ centres. From the spin counting studies the concentration of defect centres in the glass was calculated to be 350 ppm at 900 kGy. This indicated the fact that bulk of the glass remained unaffected after gamma irradiation up to 900 kGy.

  10. Space-radiation-induced Photon Luminescence of the Moon

    NASA Technical Reports Server (NTRS)

    Wilson, Thomas; Lee, Kerry

    2008-01-01

    We report on the results of a study of the photon luminescence of the Moon induced by Galactic Cosmic Rays (GCRs) and space radiation from the Sun, using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) and Solar Energetic Particles (SEPs) above 1 keV in FLUKA to determine the photon fluence albedo produced by the Moon's surface when there is no sunlight and Earthshine. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of radiogenic constituents lying in the surface and interior of the Moon. From the photon fluence we derive the spectrum which can be utilized to examine existing lunar spectral data and to design orbiting instrumentation for measuring various components of the space-radiation-induced photon luminescence present on the Moon.

  11. Gamma radiation induces hydrogen absorption by copper in water

    NASA Astrophysics Data System (ADS)

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-04-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  12. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2014-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients. PMID:23909719

  13. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  14. Radiation-Induced Notch Signaling in Breast Cancer Stem Cells

    SciTech Connect

    Lagadec, Chann; Vlashi, Erina; Alhiyari, Yazeed; Phillips, Tiffany M.; Bochkur Dratver, Milana; Pajonk, Frank

    2013-11-01

    Purpose: To explore patterns of Notch receptor and ligand expression in response to radiation that could be crucial in defining optimal dosing schemes for γ-secretase inhibitors if combined with radiation. Methods and Materials: Using MCF-7 and T47D breast cancer cell lines, we used real-time reverse transcription–polymerase chain reaction to study the Notch pathway in response to radiation. Results: We show that Notch receptor and ligand expression during the first 48 hours after irradiation followed a complex radiation dose–dependent pattern and was most pronounced in mammospheres, enriched for breast cancer stem cells. Additionally, radiation activated the Notch pathway. Treatment with a γ-secretase inhibitor prevented radiation-induced Notch family gene expression and led to a significant reduction in the size of the breast cancer stem cell pool. Conclusions: Our results indicate that, if combined with radiation, γ-secretase inhibitors may prevent up-regulation of Notch receptor and ligand family members and thus reduce the number of surviving breast cancer stem cells.

  15. Radiation-induced optic neuropathy: A magnetic resonance imaging study

    SciTech Connect

    Guy, J.; Mancuso, A.; Beck, R.; Moster, M.L.; Sedwick, L.A.; Quisling, R.G.; Rhoton, A.L. Jr.; Protzko, E.E.; Schiffman, J. )

    1991-03-01

    Optic neuropathy induced by radiation is an infrequent cause of delayed visual loss that may at times be difficult to differentiate from compression of the visual pathways by recurrent neoplasm. The authors describe six patients with this disorder who experienced loss of vision 6 to 36 months after neurological surgery and radiation therapy. Of the six patients in the series, two had a pituitary adenoma and one each had a metastatic melanoma, multiple myeloma, craniopharyngioma, and lymphoepithelioma. Visual acuity in the affected eyes ranged from 20/25 to no light perception. Magnetic resonance (MR) imaging showed sellar and parasellar recurrence of both pituitary adenomas, but the intrinsic lesions of the optic nerves and optic chiasm induced by radiation were enhanced after gadolinium-diethylenetriaminepenta-acetic acid (DTPA) administration and were clearly distinguishable from the suprasellar compression of tumor. Repeated MR imaging showed spontaneous resolution of gadolinium-DTPA enhancement of the optic nerve in a patient who was initially suspected of harboring recurrence of a metastatic malignant melanoma as the cause of visual loss. The authors found the presumptive diagnosis of radiation-induced optic neuropathy facilitated by MR imaging with gadolinium-DTPA. This neuro-imaging procedure may help avert exploratory surgery in some patients with recurrent neoplasm in whom the etiology of visual loss is uncertain.

  16. Perinatal radiation-induced renal damage in the beagle

    SciTech Connect

    Jaenke, R.S.; Angleton, G.M. )

    1990-04-01

    The developing perinatal kidney is particularly sensitive to radiation. The pathogenesis of the radiation-induced lesion is related to the destruction of outer cortical developing nephrons and direct radiation injury with secondary hemodynamic alterations in remnant nephrons. In this study, which is part of a life span investigation of the effects of whole-body gamma radiation during prenatal and early postnatal life, dogs were given 0, 0.16, 0.83, or 1.25 Gy irradiation at either 55 days postcoitus or 2 days postpartum and were examined morphometrically and histopathologically at 70 days of age. Although irradiated dogs showed no reduction in the total number of nephrons per kidney, there was a significant increase in the total number and relative percentage of immature, dysplastic glomeruli. In addition, deeper cortical glomeruli of irradiated kidneys exhibited mesangial sclerosis similar to that associated with progressive renal failure in our previous studies. These findings are in accord with those reported at doses of 2.24 to 3.57 Gy and demonstrate that the perinatal kidney is affected by radiation doses much lower than previously demonstrated.

  17. Effects of contrast medium on radiation-induced chromosome aberrations

    SciTech Connect

    Matsubara, S.; Suzuki, S.; Suzuki, H.; Kuwabara, Y.; Okano, T.

    1982-07-01

    The effects of contrast material (meglumine iothalamate) on radiation-induced chromosome aberrations were investigated in studies on the lymphocytes of patients who had undergone diagnostic radiography and in in vitro experiments with diagnostic x rays and /sup 60/Co gamma rays. Chromosome and chromatid aberrations were found to increase significantly with increasing concentrations of contrast material that were added at irradiation. However, the aberrations were not associated with elevation of the ratio of dicentric and ring chromosomes to the number of cells with unstable chromosome aberrations at the first mitosis. Lymphocytes irradiated in the absence of contrast material did not show an increase in chromosome-type aberrations when the agent was given in increasing concentrations during subsequent incubation, but there were greater numbers of chromatid gaps and breaks. When lymphocytes were exposed to 400 R (103.2 mC/kg) of /sup 60/Co gamma rays, the presence of contrast agent did not increase the yield of dicentric and ring chromosomes, but induced a marked delay in cell proliferation, especially in lymphocytes with more heavily damaged chromosomes. In additional examination, the contrast agent itself induced sister chromatid exchanges in lymphocytes.

  18. Radiation-induced removal of sulphadiazine antibiotics from wastewater.

    PubMed

    Liu, Yuankun; Hu, Jun; Wang, Jianlong

    2014-08-01

    The radiation-induced removal of sulphadiazine (SD) belonging to the heterocyclic sulphonamides pharmaceuticals was investigated by gamma irradiation at different conditions in laboratory scale. The influence of initial SD concentrations, pH values, 02 and N2 on SD degradation was determined. The experimental results showed that gamma-ray irradiation was efficient for removing SD from wastewater. SD could be completely removed at an absorbed dose of 10 kGy. The degradation kinetics of SD conformed to the first-order kinetic equation. When SD concentration was in the range of 10-30 mg/L, the dose constant (d) decreased with an increasing initial SD concentration. The mineralization of SD, in terms of total organic carbon removal, was not obvious at a low absorbed dose, but it increased to more than 75% at 100 kGy. The biodegradability of SD was improved after irradiation, suggesting that irradiation could be used as a pretreatment technology for treating SD-containing wastewater. The possible degradation pathway of SD was tentatively proposed based on the analysis of intermediate products during gamma irradiation.

  19. Gamma radiation induces hydrogen absorption by copper in water

    PubMed Central

    Lousada, Cláudio M.; Soroka, Inna L.; Yagodzinskyy, Yuriy; Tarakina, Nadezda V.; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A.; Jonsson, Mats

    2016-01-01

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories. PMID:27086752

  20. Early corticosteroid administration in experimental radiation-induced heart disease

    SciTech Connect

    Reeves, W.C.; Stryker, J.A.; Abt, A.A.; Chung, C.K.; Whitesell, L.; Zelis, R.

    1980-02-01

    The ability of dexamethasone (DEX) to reduce the severity of the late stage of radiation-induced heart disease (RIHD) was assessed in 25 New Zealand white rabbits. Ten rabbits served as unirradiated controls (CONT). In Group A, seven rabbits received intravenous DEX prior to irradiation and every 24 hours for three consecutive days. DEX was not administered to the eight rabbits in Group B. At 100 days postirradiation, the severity of the late state was determined by microscopic examination (MICRO) for myocardial fibrosis and determination of myocardial hydroxyproline content (MHP). Myocardial fibrosis was evident in groups A (40%) and B (80%) while none was present in CONT by MICRO. One rabbit in Group B with no fibrosis by MICRO had abnormally increased MHP. MHP was significantly increased in Groups A and B, as compared to CONT (p < 0.01). In addition to less fibrosis by MICRO, Group A demonstrated a significant reduction of MHP when compared to Group B (p < 0.05). Determination of MHP may be superior to MICRO in the detection of the late stage of RIHD. Also, early DEX administration appears to reduce myocardial collagen content (fibrosis) in this experimental model.

  1. Radiation-induced sarcomas of the chest wall

    SciTech Connect

    Souba, W.W.; McKenna, R.J. Jr.; Meis, J.; Benjamin, R.; Raymond, A.K.; Mountain, C.F.

    1986-02-01

    Sixteen patients are presented who had sarcomas of the chest wall at a site where a prior malignancy had been irradiated. The first malignancies included breast cancer (ten cases), Hodgkin's disease (four cases), and others (two cases). Radiation doses varied from 4200 to 5500 R (mean, 4900 R). The latency period ranged from 5 to 28 years (mean, 13 years). The histologic types of the radiation-induced sarcomas were as follows: malignant fibrous histiocytoma, nine cases; osteosarcoma, six cases; and malignant mesenchymoma, one case. The only long-term survivor is alive and well 12 years after resection of a clavicular chondroblastic osteosarcoma. Three cases were recently diagnosed. Despite aggressive multimodality treatment, the remaining 13 patients have all died from their sarcomas (mean survival, 13.5 months). All patients have apparently been cured of their first malignancies. Chemotherapy was ineffective. No treatment, including forequarter amputation, appeared to palliate the patients with supraclavicular soft tissue sarcomas. Major chest wall resection offered good palliation for seven of eight patients with sarcomas arising in the sternum or lateral chest wall. Close follow-up is needed to detect signs of these sarcomas in the ever-increasing number of patients receiving therapeutic irradiation.

  2. Radiation-Induced Sarcoma of the Breast: A Systematic Review

    PubMed Central

    Sheth, Grishma R.; Cranmer, Lee D.; Smith, Benjamin D.; Grasso-LeBeau, Lauren

    2012-01-01

    Introduction. Radiation-induced sarcoma (RIS) is a rare, aggressive malignancy. Breast cancer survivors treated with radiotherapy constitute a large fraction of RIS patients. To evaluate evidenced-based practices for RIS treatment, we performed a systematic review of the published English-language literature. Methods. We performed a systematic keyword search of PubMed for original research articles pertaining to RIS of the breast. We classified and evaluated the articles based on hierarchal levels of scientific evidence. Results. We identified 124 original articles available for analysis, which included 1,831 patients. No randomized controlled trials involving RIS patients were found. We present the best available evidence for the etiology, comparative biology to primary sarcoma, prognostic factors, and treatment options for RIS of the breast. Conclusion. Although the evidence to guide clinical practice is limited to single institutional cohort studies, registry studies, case–control studies, and case reports, we applied the available evidence to address clinically relevant questions related to best practice in patient management. Surgery with widely negative margins remains the primary treatment of RIS. Unfortunately, the role of adjuvant and neoadjuvant chemotherapy remains uncertain. This systematic review highlights the need for additional well-designed studies to inform the management of RIS. PMID:22334455

  3. Radiation induced destruction of thebaine, papaverine and noscapine in methanol

    NASA Astrophysics Data System (ADS)

    Kantoğlu, Ömer; Ergun, Ece

    2016-07-01

    The presence of methanol decreases the efficiency of radiation-induced decomposition of alkaloids in wastewater. Intermediate products were observed before the complete degradation of irradiated alkaloids. In order to identify the structure of the by-products and the formation pathway, thebaine, papaverine and noscapine solutions were prepared in pure methanol and irradiated using a 60Co gamma cell at absorbed doses of 0, 1, 3, 5, 7, 10, 30, 50 and 80 kGy. The dose-dependent alkaloid degradation and by-product formation were monitored by ESI mass spectrometer. Molecular structures of the by-products and reaction pathways were proposed. Oxygenated and methoxy group containing organic compounds was observed in the mass spectra of irradiated alkaloids. At initial dose values oxygenated by-products were formed due to the presence of dissolved oxygen in solutions. After the consumption of dissolved oxygen with radicals, the main mechanism was addition of solvent radicals to alkaloid structure. However, it was determined that alkaloids and by-products were completely degraded at doses higher than 50 kGy. The G-value and degradation efficiency of alkaloids were also evaluated.

  4. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  5. [Radiation-induced bronchiolitis obliterans with organizing pneumonia].

    PubMed

    Ducray, J; Vignot, S; Lacout, A; Pougnet, I; Marcy, P-Y; Chapellier, C; Foray, N; Creisson, A; Thariat, J

    2017-04-01

    Bronchiolitis obliterans with organizing pneumonia is an inflammatory reaction that can occur as a consequence of various pulmonary affections. Radiotherapy is not the sole and systematic cause of bronchiolitis obliterans with organizing pneumonia. Radiation-induced should not be confused with post-radiation, dose-dependent, inflammatory pulmonary fibrosis, which is non-immunological and located within the irradiation field. The role of immunity, local inflammation and individual radiosensitivity in bronchiolitis obliterans with organizing pneumonia is not well defined. Bronchiolitis obliterans with organizing pneumonia represents 1% of irradiated patients with breast cancer. It results in fever (flu-like symptoms), a rather dry cough and dyspnea. In the post-radiation context, bronchiolitis obliterans with organizing pneumonia may be diagnosed several months and up to a year after breast irradiation. The treatment consists of prolonged steroids or immunosuppressants, which do not prevent chronicity in 15% of patients and death in up to 5% of cases, the remaining 80% of patients healing without sequelae. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  6. Ionizing Radiation-Induced Cataract in Interventional Cardiology Staff

    PubMed Central

    Bitarafan Rajabi, Ahmad; Noohi, Feridoun; Hashemi, Hassan; Haghjoo, Majid; Miraftab, Mohammad; Yaghoobi, Nahid; Rastgou, Fereydon; Malek, Hadi; Faghihi, Hoshang; Firouzabadi, Hassan; Asgari, Soheila; Rezvan, Farhad; Khosravi, Hamidreza; Soroush, Sara; Khabazkhoob, Mehdi

    2015-01-01

    Background: The use of ionizing radiation has led to advances in medical diagnosis and treatment. Objectives: The purpose of this study was to determine the risk of radiation cataractogenesis in the interventionists and staff performing various procedures in different interventional laboratories. Patients and Methods: This cohort study included 81 interventional cardiology staff. According to the working site, they were classified into 5 groups. The control group comprised 14 professional nurses who did not work in the interventional sites. Participants were assigned for lens assessment by two independent trained ophthalmologists blinded to the study. Results: The electrophysiology laboratory staff received higher doses of ionizing radiation (17.2 ± 11.9 mSv; P < 0.001). There was a significant positive correlation between the years of working experience and effective dose in the lens (P < 0.001). In general, our findings showed that the incidence of lens opacity was 79% (95% CI, 69.9-88.1) in participants with exposure (the case group) and our findings showed that the incidence of lenses opacity was 7.1% (95% CI:2.3-22.6) with the relative risk (RR) of 11.06 (P < 0.001). Conclusions: We believe that the risk of radiation-induced cataract in cardiology interventionists and staff depends on their work site. As the radiation dose increases, the prevalence of posterior eye changes increases. PMID:25789258

  7. Radiation-induced thymine base damage in replicating chromatin

    SciTech Connect

    Warters, R.L.; Childers, T.J.

    1982-06-01

    The efficiency of radiation-induced production of 5',6'-dihydroxydihydrothymine (t/sup ..gamma../)-type damage was determined in nascent and mature chromatin DNA for the dose range of 50 to 150 krad. These large doses affected neither the total fraction of nuclear DNA in chromatin subunits nor the nucleosome subunit repeat length. The DNA in nascent chromatin, however, was found to be 3.3 times more sensitive than mature chromatin DNA to ..gamma..-ray (/sup 137/Cs)-induced t/sup ..gamma../-type damage, while thymine damage of this type was uniformly distributed in the nucleosomal DNA of mature chromatin (i.e., in the nucleosome core and spacer DNA). The half-time for the transition of nascent DNA sensitivity to mature chromatin DNA sensitivity levels was the same as the half-time at 37/sup 0/C for the maturation of nascent into mature chromatin structure. The rate at which nascent chromatin matured was unaffected by radiation doses as large as 150 krad. The most logical explanation for the greater sensitivity of nascent DNA to radiation is the decreased concentration of histone chromosomal proteins in nascent chromatin.

  8. Chromatin Structure and Radiation-Induced Intrachromosome Exchange

    NASA Technical Reports Server (NTRS)

    Mangala; Zhang, Ye; Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    2011-01-01

    We have recently investigated the location of breaks involved in intrachromosomal type exchange events, using the multicolor banding in situ hybridization (mBAND) technique for human chromosome 3. In human epithelial cells exposed to both low- and high-LET radiations in vitro, intrachromosome exchanges were found to occur preferentially between a break in the 3p21 and one in the 3q11. Exchanges were also observed between a break in 3p21 and one in 3q26, but few exchanges were observed between breaks in 3q11 and 3q26, even though the two regions were on the same arm of the chromosome. To explore the relationships between intrachromosome exchanges and chromatin structure, we used probes that hybridize the three regions of 3p21, 3q11 and 3q26, and measured the distance between two of the three regions in interphase cells. We further analyzed fragile sites on the chromosome that have been identified in various types of cancers. Our results demonstrated that the distribution of breaks involved in radiation-induced intrachromosome aberrations depends upon both the location of fragile sites and the folding of chromatins

  9. Epigenetic determinants of space radiation-induced cognitive dysfunction

    PubMed Central

    Acharya, Munjal M.; Baddour, Al Anoud D.; Kawashita, Takumi; Allen, Barrett D.; Syage, Amber R.; Nguyen, Thuan H.; Yoon, Nicole; Giedzinski, Erich; Yu, Liping; Parihar, Vipan K.; Baulch, Janet E.

    2017-01-01

    Among the dangers to astronauts engaging in deep space missions such as a Mars expedition is exposure to radiations that put them at risk for severe cognitive dysfunction. These radiation-induced cognitive impairments are accompanied by functional and structural changes including oxidative stress, neuroinflammation, and degradation of neuronal architecture. The molecular mechanisms that dictate CNS function are multifaceted and it is unclear how irradiation induces persistent alterations in the brain. Among those determinants of cognitive function are neuroepigenetic mechanisms that translate radiation responses into altered gene expression and cellular phenotype. In this study, we have demonstrated a correlation between epigenetic aberrations and adverse effects of space relevant irradiation on cognition. In cognitively impaired irradiated mice we observed increased 5-methylcytosine and 5-hydroxymethylcytosine levels in the hippocampus that coincided with increased levels of the DNA methylating enzymes DNMT3a, TET1 and TET3. By inhibiting methylation using 5-iodotubercidin, we demonstrated amelioration of the epigenetic effects of irradiation. In addition to protecting against those molecular effects of irradiation, 5-iodotubercidin restored behavioral performance to that of unirradiated animals. The findings of this study establish the possibility that neuroepigenetic mechanisms significantly contribute to the functional and structural changes that affect the irradiated brain and cognition. PMID:28220892

  10. Radiation induced degradation of dyes--an overview.

    PubMed

    Rauf, M A; Ashraf, S Salman

    2009-07-15

    Synthetic dyes are a major part of our life. Products ranging from clothes to leather accessories to furniture all depend on extensive use of organic dyes. An unfortunate side effect of extensive use of these chemicals is that huge amounts of these potentially carcinogenic compounds enter our water supplies. Various advanced oxidation processes (AOPs) including the use of high-energy radiation have been developed to degrade these compounds. In this review, dye decoloration and degradation as a result of its exposure to high energy radiation such as gamma radiation and pulsed electron beam are discussed in detail. The role of various transient species such as H, OH and e(aq)(-) are taken into account as reported by various researchers. Literature citations in this area show that e(aq)(-) is very effective in decolorization but is less active in the further degradation of the products formed. The degradation of the dyes is initiated exclusively by OH attack on electron-rich sites of the dye molecules. Additionally, various parameters that affect the efficiency of radiation induced degradation of dyes, such as effect of radiation dose, oxygen, pH, hydrogen peroxide, added ions and dye classes are also reviewed and summarized. Lastly, pilot plant application of radiation for wastewater treatment is briefly discussed.

  11. Low dose radiation-induced endothelial cell retraction.

    PubMed

    Kantak, S S; Diglio, C A; Onoda, J M

    1993-09-01

    We characterized in vitro the effects of gamma-radiation (12.5-100 cGy) on pulmonary microvascular endothelial cell (PMEC) morphology and F-actin organization. Cellular retraction was documented by phase-contrast microscopy and the organization of actin microfilaments was determined by immunofluorescence. Characterization included radiation dose effects, their temporal duration and reversibility of the effects. A dose-dependent relationship between the level of exposure (12.5-100 cGy) and the rate and extent of endothelial retraction was observed. Moreover, analysis of radiation-induced depolymerization of F-actin microfilament stress fibres correlated positively with the changes in PMEC morphology. The depolymerization of the stress fibre bundles was dependent on radiation dose and time. Cells recovered from exposure to reform contact inhibited monolayers > or = 24 h post-irradiation. Concomitantly, the depolymerized microfilaments reorganized to their preirradiated state as microfilament stress fibres arrayed parallel to the boundaries of adjacent contact-inhibited cells. The data presented here are representative of a series of studies designed to characterize low-dose radiation effects on pulmonary microvascular endothelium. Our data suggest that post-irradiation lung injuries (e.g. oedema) may be induced with only a single fraction of therapeutic radiation, and thus microscopic oedema may initiate prior to the lethal effects of radiation on the microvascular endothelium, and much earlier than would be suggested by the time course for clinically-detectable oedema.

  12. Outcome of Carotid Artery Stenting for Radiation-Induced Stenosis

    SciTech Connect

    Dorresteijn, Lucille; Vogels, Oscar; Leeuw, Frank-Erik de; Vos, Jan-Albert; Christiaans, Marleen H.; Ackerstaff, Rob; Kappelle, Arnoud C.

    2010-08-01

    Purpose: Patients who have been irradiated at the neck have an increased risk of symptomatic stenosis of the carotid artery during follow-up. Carotid angioplasty and stenting (CAS) can be a preferable alternative treatment to carotid endarterectomy, which is associated with increased operative risks in these patients. Methods and Materials: We performed a prospective cohort study of 24 previously irradiated patients who underwent CAS for symptomatic carotid stenosis. We assessed periprocedural and nonprocedural events including transient ischemic attack (TIA), nondisabling stroke, disabling stoke, and death. Patency rates were evaluated on duplex ultrasound scans. Restenosis was defined as a stenosis of >50% at the stent location. Results: Periprocedural TIA rate was 8%, and periprocedural stroke (nondisabling) occurred in 4% of patients. After a mean follow-up of 3.3 years (range, 0.3-11.0 years), only one ipsilateral incident event (TIA) had occurred (4%). In 12% of patients, a contralateral incident event was present: one TIA (4%) and two strokes (12%, two disabling strokes). Restenosis was apparent in 17%, 33%, and 42% at 3, 12, and 24 months, respectively, although none of the patients with restenosed vessels became symptomatic. The length of the irradiation to CAS interval proved the only significant risk factor for restenosis. Conclusions: The results of CAS for radiation-induced carotid stenosis are favorable in terms of recurrence of cerebrovascular events at the CAS site.

  13. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    1996-01-01

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  14. Radiation induced oxidation of liquid alkanes as a polymer model

    NASA Astrophysics Data System (ADS)

    Soebianto, Yanti S.; Katsumura, Yosuke; Ishigure, Kenkichi; Kubo, Junichi; Hamakawa, Satoshi; Kudoh, Hisaaki; Seguchi, Tadao

    1996-10-01

    Radiation induced oxidation of liquid n-hexadecane ( n-C 16H 34) and squalene (C 30H 62) as a polymer model has been investigated by the measurements of the gas evolution and O 2 uptake, and analyses of the oxidation products. Low O 2 uptake [G(-O 2 ≈ 6.0] in liquid alkanes, indicates in solid oxidation reaction does not exhibit chain kinetics, which is a big contrast to the process observed in solid, G(-O 2) ≫ 10. H 2 is the main gas product. More than 90% of the consumed O 2 are converted into the oxidation products in liquid phase, mainly carboxylic acids, which is also a big contrast to the results of the radiolysis of liquid cyclohexane in the presence of O 2 and thermal oxidation of hexadecene at elevated temperatures, where ketones and alcohols are major products at the initial stage. In the presence of aromatic additives, energy and charge transfer to the additives taking place despite the presence of O 2 reduce the H 2 evolution and the acid formation in parallel. Although hydroaromatic compounds act as an energy and charge scavenger, the are selectively oxidized through the donation of hydrogen in cyclic alkyl part attached to the phenyl ring, leading to large O 2 uptake and corresponding ketone formation. From the comparison of the G-values of the O 2 uptake, it was found that the oxidation reactions of liquid alkanes reflect well the oxidation of amorphous part in polymers.

  15. A new view of radiation-induced cancer.

    PubMed

    Shuryak, I; Sachs, R K; Brenner, D J

    2011-02-01

    Biologically motivated mathematical models are important for understanding the mechanisms of radiation-induced carcinogenesis. Existing models fall into two categories: (1) short-term formalisms, which focus on the processes taking place during and shortly after irradiation (effects of dose, radiation quality, dose rate and fractionation), and (2) long-term formalisms, which track background cancer risks throughout the entire lifetime (effects of age at exposure and time since exposure) but make relatively simplistic assumptions about radiation effects. Grafting long-term mechanisms on to short-term models is badly needed for modelling radiogenic cancer. A combined formalism was developed and applied to cancer risk data in atomic bomb survivors and radiotherapy patients and to background cancer incidence. The data for nine cancer types were described adequately with a set of biologically meaningful parameters for each cancer. These results suggest that the combined short-long-term approach is a potentially promising method for predicting radiogenic cancer risks and interpreting the underlying biological mechanisms.

  16. Interleukin-32 Positively Regulates Radiation-Induced Vascular Inflammation

    SciTech Connect

    Kobayashi, Hanako; Yazlovitskaya, Eugenia M.; Lin, P. Charles

    2009-08-01

    Purpose: To study the role of interleukin-32 (IL-32), a novel protein only detected in human tissues, in ionizing radiation (IR)-induced vascular inflammation. Methods and Materials: Irradiated (0-6 Gy) human umbilical vein endothelial cells treated with or without various agents-a cytosolic phospholipase A2 (cPLA2) inhibitor, a cyclooxygenase-2 (Cox-2) inhibitor, or lysophosphatidylcholines (LPCs)-were used to assess IL-32 expression by Northern blot analysis and quantitative reverse transcriptase-polymerase chain reaction. Expression of cell adhesion molecules and leukocyte adhesion to endothelial cells using human acute monocytic leukemia cell line (THP-1) cells was also analyzed. Results: Ionizing radiation dramatically increased IL-32 expression in vascular endothelial cells through multiple pathways. Ionizing radiation induced IL-32 expression through nuclear factor {kappa}B activation, through induction of cPLA2 and LPC, as well as induction of Cox-2 and subsequent conversion of arachidonic acid to prostacyclin. Conversely, blocking nuclear factor {kappa}B, cPLA2, and Cox-2 activity impaired IR-induced IL-32 expression. Importantly, IL-32 significantly enhanced IR-induced expression of vascular cell adhesion molecules and leukocyte adhesion on endothelial cells. Conclusion: This study identifies IL-32 as a positive regulator in IR-induced vascular inflammation, and neutralization of IL-32 may be beneficial in protecting from IR-induced inflammation.

  17. Gamma radiation induces hydrogen absorption by copper in water.

    PubMed

    Lousada, Cláudio M; Soroka, Inna L; Yagodzinskyy, Yuriy; Tarakina, Nadezda V; Todoshchenko, Olga; Hänninen, Hannu; Korzhavyi, Pavel A; Jonsson, Mats

    2016-04-18

    One of the most intricate issues of nuclear power is the long-term safety of repositories for radioactive waste. These repositories can have an impact on future generations for a period of time orders of magnitude longer than any known civilization. Several countries have considered copper as an outer corrosion barrier for canisters containing spent nuclear fuel. Among the many processes that must be considered in the safety assessments, radiation induced processes constitute a key-component. Here we show that copper metal immersed in water uptakes considerable amounts of hydrogen when exposed to γ-radiation. Additionally we show that the amount of hydrogen absorbed by copper depends on the total dose of radiation. At a dose of 69 kGy the uptake of hydrogen by metallic copper is 7 orders of magnitude higher than when the absorption is driven by H2(g) at a pressure of 1 atm in a non-irradiated dry system. Moreover, irradiation of copper in water causes corrosion of the metal and the formation of a variety of surface cavities, nanoparticle deposits, and islands of needle-shaped crystals. Hence, radiation enhanced uptake of hydrogen by spent nuclear fuel encapsulating materials should be taken into account in the safety assessments of nuclear waste repositories.

  18. Radiation-induced sarcomas of the head and neck

    PubMed Central

    Thiagarajan, Anuradha; Iyer, N Gopalakrishna

    2014-01-01

    With improved outcomes associated with radiotherapy, radiation-induced sarcomas (RIS) are increasingly seen in long-term survivors of head and neck cancers, with an estimated risk of up to 0.3%. They exhibit no subsite predilection within the head and neck and can arise in any irradiated tissue of mesenchymal origin. Common histologic subtypes of RIS parallel their de novo counterparts and include osteosarcoma, chondrosarcoma, malignant fibrous histiocytoma/sarcoma nitricoxide synthase, and fibrosarcoma. While imaging features of RIS are not pathognomonic, large size, extensive local invasion with bony destruction, marked enhancement within a prior radiotherapy field, and an appropriate latency period are suggestive of a diagnosis of RIS. RIS development may be influenced by factors such as radiation dose, age at initial exposure, exposure to chemotherapeutic agents and genetic tendency. Precise pathogenetic mechanisms of RIS are poorly understood and both directly mutagenizing effects of radiotherapy as well as changes in microenvironments are thought to play a role. Management of RIS is challenging, entailing surgery in irradiated tissue and a limited scope for further radiotherapy and chemotherapy. RIS is associated with significantly poorer outcomes than stage-matched sarcomas that arise independent of irradiation and surgical resection with clear margins seems to offer the best chance for cure. PMID:25493233

  19. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    PubMed Central

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  20. Radiation-induced chromosome damage in astronauts' lymphocytes.

    PubMed

    Testard, I; Ricoul, M; Hoffschir, F; Flury-Herard, A; Dutrillaux, B; Fedorenko, B; Gerasimenko, V; Sabatier, L

    1996-10-01

    The increased number of manned space missions has made it important to estimate the biological risks encountered by astronauts. As they are exposed to cosmic rays, especially ions with high linear energy transfer (LET), it is necessary to estimate the doses they receive. The most sensitive biological dosimetry used is based on the quantification of radiation-induced chromosome damage to human lymphocytes. After the space missions ANTARES (1992) and ALTAIR (1993), we performed cytogenetic analysis of blood samples from seven astronauts who had spent from 2 weeks to 6 months in space. After 2 or 3 weeks, the X-ray equivalent dose was found to be below the cytogenetic detection level of 20 mGy. After 6 months, the biological dose greatly varied among the astronauts, from 95 to 455 mGy equivalent dose. These doses are in the same range as those estimated by physical dosimetry (90 mGy absorbed dose and 180 mSv equivalent dose). Some blood cells exhibited the same cytogenetic pattern as the 'rogue cells' occasionally observed in controls, but with a higher frequency. We suggest that rogue cells might result from irradiation with high-LET particles of cosmic origin. However, the responsibility of such cells for the long-term effects of cosmic irradiation remains unknown and must be investigated.

  1. Mechanism of Hydrophilicity by Radiation-Induced Surface Activation

    NASA Astrophysics Data System (ADS)

    Honjo, Yoshio; Furuya, Masahiro; Takamasa, Tomoji; Okamoto, Koji

    When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation-induced surface activation (RISA) hydrophilicity. In order to investigate gamma ray-induced and photoinduced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to the irradiation time before the contact angles reached its super-hydrophilic state. The irradiation time dependency is equal to each other qualitatively. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly indicates that certain humidity is required in ambient gas to take place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O1s spectrum, which indicates the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.

  2. Radiation induced thyroid neoplasms 1920 to 1987: A vanishing problem

    SciTech Connect

    Mehta, M.P.; Goetowski, P.G.; Kinsella, T.J.

    1989-06-01

    Radiation for benign diseases has been implicated as an etiologic factor in thyroid cancer. From 1930-60, over 2 million children may have been exposed to therapeutic radiation and it is estimated that up to 7% may develop thyroid cancer after a 5-40 year latency. Thyroid stimulating hormone, secondary to radioinduced hypothyroidism, has been implicated as causative in animals. Such data has led to expensive screening programs in high risk patients. Because of a decline in irradiation for benign diseases in children over the last 2 decades, we questioned whether the incidence of radiation induced thyroid neoplasms (RITN) was also decreasing. Twenty-six of 227 patients (11%) with thyroid malignancies seen at our institution from 1974-87 had a history of previous head and neck irradiation. These included 13 papillary, 3 follicular, and 7 mixed carcinomas as well as 2 lymphomas and 1 synovial cell sarcoma. None of these 26 patients had abnormal thyroid function tests at presentation. Mean latency from irradiation to the diagnosis of thyroid cancer was 25.4 years (6-55 year range). Compared to the reported increasing incidence of RITN from 1940-70, there appears to be a significant decrease since 1970. Based on our analysis, the use of expensive screening programs in high risk populations may no longer be warranted. Additionally, the routine use of thyroid replacement in previously irradiated chemically hypothyroid patients is not recommended.30 references.

  3. Radiation-induced bystander effect: early process and rapid assessment.

    PubMed

    Wang, Hongzhi; Yu, K N; Hou, Jue; Liu, Qian; Han, Wei

    2015-01-01

    Radiation-induced bystander effect (RIBE) is a biological process that has received attention over the past two decades. RIBE refers to a plethora of biological effects in non-irradiated cells, including induction of genetic damages, gene expression, cell transformation, proliferation and cell death, which are initiated by receiving bystander signals released from irradiated cells. RIBE brings potential hazards to normal tissues in radiotherapy, and imparts a higher risk from low-dose radiation than we previously thought. Detection with proteins related to DNA damage and repair, cell cycle control, proliferation, etc. have enabled rapid assessment of RIBE in a number of research systems such as cultured cells, three-dimensional tissue models and animal models. Accumulated experimental data have suggested that RIBE may be initiated rapidly within a time frame as short as several minutes after radiation. These have led to the requirement of techniques capable of rapidly assessing RIBE itself as well as assessing the early processes involved. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Radiation-induced chromosomal instability in human mammary epithelial cells

    NASA Astrophysics Data System (ADS)

    Durante, M.; Grossi, G. F.; Yang, T. C.

    Karyotypes of human cells surviving X- and alpha-irradiation have been studied. Human mammary epithelial cells of the immortal, non-tumorigenic cell line H184B5 F5-1 M/10 were irradiated and surviving clones isolated and expanded in culture. Cytogenetic analysis was performed using dedicated software with an image analyzer. We have found that both high- and low-LET radiation induced chromosomal instability in long-term cultures, but with different characteristics. Complex chromosomal rearrangements were observed after X-rays, while chromosome loss predominated after alpha-particles. Deletions were observed in both cases. In clones derived from cells exposed to alpha-particles, some cells showed extensive chromosome breaking and double minutes. Genomic instability was correlated to delayed reproductive death and neoplastic transformation. These results indicate that chromosomal instability is a radiation-quality-dependent effect which could determine late genetic effects, and should therefore be carefully considered in the evaluation of risk for space missions.

  5. Temporal distributions of risk for radiation-induced cancers.

    PubMed

    Land, C E

    1987-01-01

    Observations of cancer risk in irradiated human populations over time after exposure suggest that there are at least two, and perhaps more, very different patterns of temporal distribution of risk for radiation-induced cancer. The first, exemplified by bone sarcoma following therapeutic injection of 224Ra and chronic granulocytic leukemia in Japanese A-bomb survivors, is an early, wave-like pulse consisting of an increase in risk followed by a gradual decline back to baseline levels. The second, exemplified by breast cancer following a brief exposure to external gamma ray or X ray, and by lung cancer and stomach cancer in A-bomb survivors, is an increase in relative risk over about 10 years to a value which appears to remain constant over time thereafter. The first pattern suggests that tumor growth kinetics may play a central role in the temporal distribution of risk following exposure, while the second seems more consistent with multi-event models for carcinogenesis, in which radiation or some other cause of early events must be followed by one or more later events whose frequencies depend mainly on attained age. There are, however, other data that appear to conform to neither of the two models just mentioned. Influences of other cancer causes, like tobacco smoking, are potentially serious confounding factors in studies of induction period.

  6. Disruption of the intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling is a crucial mechanism of arrhythmic toxicity in aconitine-induced cardiomyocytes

    SciTech Connect

    Fu Min; Wu Meng; Wang Jifeng; Qiao Yanjiang; Wang Zhao . E-mail: zwang@tsinghua.edu.cn

    2007-03-23

    Aconitine is an effective ingredient in Aconite tuber, an important traditional Chinese medicine. Aconitine is also known to be a highly toxic diterpenoid alkaloid with arrhythmogenic effects. In the present study, we have characterized the properties of arrhythmic cytotoxicity and explored the possible mechanisms of aconitine-induced cardiomyocytes. Results show that aconitine induces significant abnormity in the spontaneous beating rate, amplitude of spontaneous oscillations and the relative intracellular Ca{sup 2+} concentration. Also, mRNA transcription levels and protein expressions of SR Ca{sup 2+} release channel RyR{sub 2} and sarcolemmal NCX were elevated in aconitine-induced cardiomyocytes. However, co-treatment with ruthenium red (RR), a RyR channel inhibitor, could reverse the aconitine-induced abnormity in intracellular Ca{sup 2+} signals. These results demonstrate that disruption of intracellular Ca{sup 2+} homeostasis in the cardiac excitation-contraction coupling (EC coupling) is a crucial mechanism of arrhythmic cytotoxicity in aconitine-induced cardiomyocytes. Moreover, certain inhibitors appear to play an important role in the detoxification of aconitine-induced Ca{sup 2+}-dependent arrhythmias.

  7. Effect of curcumin analog on gamma-radiation-induced cellular changes in primary culture of isolated rat hepatocytes in vitro.

    PubMed

    Srinivasan, M; Sudheer, A Ram; Rajasekaran, K N; Menon, Venugopal P

    2008-10-22

    The present study was aimed to evaluate the radioprotective effect of curcumin analog, on gamma-radiation-induced toxicity in primary cultures of isolated rat hepatocytes. Hepatocytes were isolated from the liver of rats by collagenase perfusion. The DNA damage was analysed by single cell gel electrophoresis (comet assay). An increase in the severity of DNA damage was observed with the increase in gamma-radiation dose at 1-4 Gy in cultured rat hepatocytes. The levels of lipid peroxidative indices like thiobarbituric acid reactive substances (TBARSs) were increased significantly, whereas the levels of reduced glutathione (GSH) and antioxidant enzymes were significantly decreased in gamma-irradiated groups. The maximum damage to hepatocytes was observed at 4Gy gamma-irradiation. Pretreatment with different concentrations of curcumin analog (1.38, 6.91 and 13.82 microM) shows a significant decrease in the levels of TBARS and DNA damage. Pretreatment with curcumin analog prevents the loss of enzymic and non-enzymic antioxidants like GSH upon gamma-irradiation. The maximum protection of hepatocytes was observed at 6.91 microM of curcumin analog pretreatment. Thus, our result shows that pretreatment with curcumin analog protects the hepatocytes against gamma-radiation-induced cellular damage.

  8. Normal tissue complication probability modeling of radiation-induced sensorineural hearing loss after head-and-neck radiation therapy.

    PubMed

    Cheraghi, Susan; Nikoofar, Alireza; Bakhshandeh, Mohsen; Khoei, Samideh; Farahani, Saeid; Abdollahi, Hamid; Mahdavi, Seied Rabi

    2017-10-02

    The aim of this study was to generate the dose-response curves by six normal tissue complication probability (NTCP) models and ranking the models for prediction of radiation induced sensorineural hearing loss (SNHL) caused by head and neck radiation therapy (RT). Pure tone audiometry (PTA) was performed on 70 ears of patients for 12 months after the completion of radiation therapy. The SNHL was defined as a threshold shift ≤15 dB at 2 contiguous frequencies according to the common toxicity criteria for adverse events scoring system. The models evaluated were: Lyman and Logit; Mean Dose; Relative Seriality; Individual Critical Volume; and Population Critical Volume models. Maximum likelihood analysis was used to fit the models to experimental data. The appropriateness of the fit was determined by the 2-sample Kolmogorov-Smirnov test. Ranking of the models was made according to Akaike's information criterion. The dose of 50% complication rate (D50) was 51-60 Gy. Three of the examined models fitted well with clinical data in a 95% confidence interval. The relative seriality model was ranked as the best model of prediction for radiation induced SNHL. Cochlea shows a different behaviour against different NTCP models; it's may be due to its small size.

  9. Using dose-surface maps to predict radiation-induced rectal bleeding: a neural network approach

    NASA Astrophysics Data System (ADS)

    Buettner, Florian; Gulliford, Sarah L.; Webb, Steve; Partridge, Mike

    2009-09-01

    The incidence of late-toxicities after radiotherapy can be modelled based on the dose delivered to the organ under consideration. Most predictive models reduce the dose distribution to a set of dose-volume parameters and do not take the spatial distribution of the dose into account. The aim of this study was to develop a classifier predicting radiation-induced rectal bleeding using all available information on the dose to the rectal wall. The dose was projected on a two-dimensional dose-surface map (DSM) by virtual rectum-unfolding. These DSMs were used as inputs for a classification method based on locally connected neural networks. In contrast to fully connected conventional neural nets, locally connected nets take the topology of the input into account. In order to train the nets, data from 329 patients from the RT01 trial (ISRCTN 47772397) were split into ten roughly equal parts. By using nine of these parts as a training set and the remaining part as an independent test set, a ten-fold cross-validation was performed. Ensemble learning was used and 250 nets were built from randomly selected patients from the training set. Out of these 250 nets, an ensemble of expert nets was chosen. The performances of the full ensemble and of the expert ensemble were quantified by using receiver-operator-characteristic (ROC) curves. In order to quantify the predictive power of the shape, ensembles of fully connected conventional neural nets based on dose-surface histograms (DSHs) were generated and their performances were quantified. The expert ensembles performed better than or equally as well as the full ensembles. The area under the ROC curve for the DSM-based expert ensemble was 0.64. The area under the ROC curve for the DSH-based expert ensemble equalled 0.59. This difference in performance indicates that not only volumetric, but also morphological aspects of the dose distribution are correlated to rectal bleeding after radiotherapy. Thus, the shape of the dose

  10. Autophagy promotes radiation-induced senescence but inhibits bystander effects in human breast cancer cells.

    PubMed

    Huang, Yao-Huei; Yang, Pei-Ming; Chuah, Qiu-Yu; Lee, Yi-Jang; Hsieh, Yi-Fen; Peng, Chih-Wen; Chiu, Shu-Jun

    2014-07-01

    Ionizing radiation induces cellular senescence to suppress cancer cell proliferation. However, it also induces deleterious bystander effects in the unirradiated neighboring cells through the release of senescence-associated secretory phenotypes (SASPs) that promote tumor progression. Although autophagy has been reported to promote senescence, its role is still unclear. We previously showed that radiation induces senescence in PTTG1-depleted cancer cells. In this study, we found that autophagy was required for the radiation-induced senescence in PTTG1-depleted breast cancer cells. Inhibition of autophagy caused the cells to switch from radiation-induced senescence to apoptosis. Senescent cancer cells exerted bystander effects by promoting the invasion and migration of unirradiated cells through the release of CSF2 and the subsequently activation of the JAK2-STAT3 and AKT pathways. However, the radiation-induced bystander effects were correlated with the inhibition of endogenous autophagy in bystander cells, which also resulted from the activation of the CSF2-JAK2 pathway. The induction of autophagy by rapamycin reduced the radiation-induced bystander effects. This study reveals, for the first time, the dual role of autophagy in radiation-induced senescence and bystander effects.

  11. Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study.

    PubMed

    Miglioretti, Diana L; Lange, Jane; van den Broek, Jeroen J; Lee, Christoph I; van Ravesteyn, Nicolien T; Ritley, Dominique; Kerlikowske, Karla; Fenton, Joshua J; Melnikow, Joy; de Koning, Harry J; Hubbard, Rebecca A

    2016-02-16

    Estimates of risk for radiation-induced breast cancer from mammography screening have not considered variation in dose exposure or diagnostic work-up after abnormal screening results. To estimate distributions of radiation-induced breast cancer incidence and mortality from digital mammography screening while considering exposure from screening and diagnostic mammography and dose variation among women. 2 simulation-modeling approaches. U.S. population. Women aged 40 to 74 years. Annual or biennial digital mammography screening from age 40, 45, or 50 years until age 74 years. Lifetime breast cancer deaths averted (benefits) and radiation-induced breast cancer incidence and mortality (harms) per 100,000 women screened. Annual screening of 100,000 women aged 40 to 74 years was projected to induce 125 breast cancer cases (95% CI, 88 to 178) leading to 16 deaths (CI, 11 to 23), relative to 968 breast cancer deaths averted by early detection from screening. Women exposed at the 95th percentile were projected to develop 246 cases of radiation-induced breast cancer leading to 32 deaths per 100,000 women. Women with large breasts requiring extra views for complete examination (8% of population) were projected to have greater radiation-induced breast cancer risk (266 cancer cases and 35 deaths per 100,000 women) than other women (113 cancer cases and 15 deaths per 100,000 women). Biennial screening starting at age 50 years reduced risk for radiation-induced cancer 5-fold. Life-years lost from radiation-induced breast cancer could not be estimated. Radiation-induced breast cancer incidence and mortality from digital mammography screening are affected by dose variability from screening, resultant diagnostic work-up, initiation age, and screening frequency. Women with large breasts may have a greater risk for radiation-induced breast cancer. Agency for Healthcare Research and Quality, U.S. Preventive Services Task Force, National Cancer Institute.

  12. Immunohistochemical analysis of radiation-induced non-healing dermal wounds of the head and neck.

    PubMed

    Riedel, Frank; Philipp, Katrin; Sadick, Haneen; Goessler, Ullrich; Hörmann, Karl; Verse, Thomas

    2005-01-01

    Persistent, poorly healing wounds are a significant clinical problem in patients who have had previous irradiation. The pathology of chronic dermal ulcers is characterised by excessive proteolytic activity which degrades the extracellular matrix (required for cell migration) and growth factors and their receptors. Interestingly, the molecular basis of radiation-induced dermal wounds is poorly understood. The aim of this study was to investigate, by immunohistochemistry, the expression of the endothelial marker vWF, of angiogenic bFGF, VEGF and IL-8, of collagenases MMP-2 and MMP-9 and their inhibitors TIMP-1 and TIMP-2, in tissue samples from radiation-induced chronic dermal wounds and healthy control skin. Performing immunohistochemical detection of microvessels, an equivalent density of microvessels was observed within tissue samples from normal healthy skin and from radiation-induced non-healing cutaneous wounds. Investigation of angiogenic bFGF and VEGF demonstrated a decreased expression of both factors in the radiation-induced dermal wounds. The expression of angiogenic IL-8 was weak in both the healthy skin samples and the radiation-induced wounds. In addition, an increased expression of collagenases MMP-2 and MMP-9 protein within the radiation-induced wounds was demonstrated. While the expression of TIMP-1 showed no difference of expression between normal control skin and tissue samples from radiation-induced wounds, TIMP-2 expression was slightly increased compared to healthy controls. Our data suggest that radiation-induced dermal injuries often fail to heal because of decreased angiogenesis and persistently high concentrations of MMPs with an imbalance of their tissue inhibitors. The basic mechanisms of wound healing in radiation-induced dermal wounds at the molecular level need to be understood further for the development of innovative treatment strategies.

  13. Use of pentoxifylline and tocopherol in radiation-induced fibrosis and fibroatrophy.

    PubMed

    Patel, V; McGurk, M

    2017-04-01

    Radiation-induced fibrosis in the head and neck is a well-established pathophysiological process after radiotherapy. Recently pentoxifylline and tocopherol have been proposed as treatments to combat the late complications of radiation-induced fibrosis and a way of dealing with osteoradionecrosis. They both have a long history in the management of radiation-induced fibrosis at other anatomical sites. In this paper we review their use in sites other than the head and neck to illustrate the potential benefit that they offer to our patients. Copyright © 2016 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. Effects of helium and hydrogen on radiation-induced microstructural changes in austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeop; Kwon, Junhyun

    2015-09-01

    Microstructural changes in austenitic stainless steel by helium, hydrogen, and iron ion irradiation were investigated with transmission electron microscopy. Typical radiation-induced changes, such as the formation of Frank loops in the matrix and radiation-induced segregation (RIS) or depletion at grain boundaries, were observed after ion irradiation. The helium ion irradiation led to the formation of cavities both at grain boundaries and in the matrix, as well as the development of smaller Frank loops. The hydrogen ion irradiation generated stronger RIS behavior at the grain boundaries compared to irradiation with helium and iron ions. The effects of helium and hydrogen on radiation-induced microstructural changes were discussed.

  15. TU-EF-304-12: Proton Radiation Therapy for Left-Sided Breast Cancer: LET and RBE Considerations for Cardiac Toxicity

    SciTech Connect

    Giantsoudi, D; Jee, K; MacDonald, S; Paganetti, H; Rose, B

    2015-06-15

    Purpose: Increased risk of coronary artery disease has been documented for patients treated with radiation for left-sided breast cancer. Proton therapy (PRT) has been shown to significantly decrease cardiac irradiation, however variations in relative biological effectiveness (RBE) have been ignored so far. In this study we evaluate the impact of accounting for RBE variations on sensitive structures located within high linear energy transfer (LET) areas (distal end) of the proton treatment fields, for this treatment site. Methods: Three patients treated in our institution with PRT for left-sided breast cancer were selected. All patients underwent reconstructive surgery after mastectomy and treated to a total dose of 50.4Gy with beam(s) vertical to the chest wall. Dose and LET distributions were calculated using Monte Carlo (MC-TOPAS - TOol for PArticle Simulation). The LET-based, variable-RBE-weighted dose was compared to the analytical calculation algorithm (ACA) and MC dose distributions for a constant RBE of 1.1, based on volume histograms and mean values for the target, heart and left anterior descending coronary artery (LAD). Results: Assuming a constant RBE and compared to the ACA dose, MC predicted lower mean target and heart doses by 0.5% to 2.7% of the prescription dose. For variable RBE, plan evaluation showed increased mean target dose by up to 5%. Mean variable-RBE-weighted doses for the LAD ranged from 2.7 to 5.9Gy(RBE) among patients increased by 41%–64.2% compared to constant RBE ACA calculation (absolute dose: 1.7–3.9Gy(RBE)). Smaller increase in mean heart doses was noticed. Conclusion: ACA overestimates the target mean dose by up to 2.7%. However, disregarding variations in RBE may lead to significant underestimation of the dose to sensitive structures at the distal end of the proton treatment field and could thus impact outcome modeling for cardiac toxicities after proton therapy. These results are subject to RBE model and parameter

  16. Novel concepts in radiation-induced cardiovascular disease

    PubMed Central

    Cuomo, Jason R; Sharma, Gyanendra K; Conger, Preston D; Weintraub, Neal L

    2016-01-01

    Radiation-induced cardiovascular disease (RICVD) is the most common nonmalignant cause of morbidity and mortality among cancer survivors who have undergone mediastinal radiation therapy (RT). Cardiovascular complications include effusive or constrictive pericarditis, cardiomyopathy, valvular heart disease, and coronary/vascular disease. These are pathophysiologically distinct disease entities whose prevalence varies depending on the timing and extent of radiation exposure to the heart and great vessels. Although refinements in RT dosimetry and shielding will inevitably limit future cases of RICVD, the increasing number of long-term cancer survivors, including those treated with older higher-dose RT regimens, will ensure a steady flow of afflicted patients for the foreseeable future. Thus, there is a pressing need for enhanced understanding of the disease mechanisms, and improved detection methods and treatment strategies. Newly characterized mechanisms responsible for the establishment of chronic fibrosis, such as oxidative stress, inflammation and epigenetic modifications, are discussed and linked to potential treatments currently under study. Novel imaging modalities may serve as powerful screening tools in RICVD, and recent research and expert opinion advocating their use is introduced. Data arguing for the aggressive use of percutaneous interventions, such as transcutaneous valve replacement and drug-eluting stents, are examined and considered in the context of prior therapeutic approaches. RICVD and its treatment options are the subject of a rich and dynamic body of research, and patients who are at risk or suffering from this disease will benefit from the care of physicians with specialty expertise in the emerging field of cardio-oncology. PMID:27721934

  17. [Radiation-induced tumors of the nervous system in man].

    PubMed

    Hubert, D; Bertin, M

    1993-11-01

    The risk of developing a tumor of the nervous system in humans is analysed in several studies of populations, exposed to ionising radiation for medical reasons, or exposed to military or occupational radiation. The main data come from series of patients who underwent radiotherapy during childhood: a high incidence of tumors of the nervous system is found after irradiation of one to a few grays as treatment of a benign disease (especially tinea capitis), as well as after irradiation at higher doses of a few tens of grays for the treatment of cancer (in particular cerebral irradiation in acute lymphoblastic leukaemia). The type of radiation-induced tumors is variable, but meningioma is more frequent after low doses and glioma and sarcoma after higher doses used in the treatment of neoplastic diseases. A dose-effect relationship appeared between the risk of tumor of the nervous system and the radiation dose. The risk was higher when radiation was delivered at a younger age. Much less data are available after radiotherapy in the adulthood, but an increased risk of cerebral tumor appears in the series of ankylosing spondylitis patients. As for the exposures to radiodiagnosis exams, the main problem is the risk of cerebral tumor in children whose mother has undergone abdominal or pelvic X-rays during pregnancy. No risk of neurologic tumor was found in the A-bomb survivors irradiated at Hiroshima and Nagasaki. Occupational exposure to ionising radiation has been incriminated in the first radiologists exposed to high doses. In nuclear industry workers, the results of epidemiological studies are contradictory and at the present time it is not possible to link their radiologic exposure with a risk of tumor of the nervous system. In populations living near nuclear plants, mortality due to tumors of the nervous system was not increased.

  18. Radiation-Induced Phase Transformations in Ilmenite-Group Minerals

    SciTech Connect

    Mitchell, J. N.

    1997-12-31

    Transmission electron microscopy (TEM) is a powerful tool for characterizing and understanding radiation-induced structural changes in materials. We have irradiated single crystals of ilmenite (FeTiO{sub 3}) and geikielite (MgTiO{sub 3}) using ions and electrons to better understand the response of complex oxides to radiation. Ion irradiation experiments of bulk single crystals at 100 K show that ilmenite amorphized at doses of less than 1x10(exp15) Ar(2+)/sq cm and at a damage level in the peak damage region of 1 displacement per atom (dpa). Transmission electron microscopy and electron diffraction of a cross-sectioned portion of this crystal confirmed the formation of a 150 am thick amorphous layer. Geikielite proved to be more radiation resistant, requiring a flux of 2x10(exp 15) Xe(2+)/sq cm to induce amorphization at 100 K. This material did not amorphize at 470 K, despite a dose of 2.5 x10(exp 16) Xe(2+)/sq cm and a damage level as high as 25 dpa. Low temperature irradiations of electron- transparent crystals with 1 MeV Kr(+) also show that ilmenite amorphized after a damage level of 2.25 dpa at 175 K.Similar experiments on geikielite show that the microstructure is partially amorphous and partially crystalline after 10 dpa at 150 K. Concurrent ion and electron irradiation of both materials with 1 MeV Kr(+) and 0.9 MeV electrons produced dislocation loops in both materials, but no amorphous regions were formed. Differences in the radiation response of these isostructural oxides suggests that in systems with Mg-Fe solid solution, the Mg-rich compositions may be more resistant to structural changes.

  19. Dosimetric Analysis of Radiation-Induced Gastric Bleeding

    PubMed Central

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-01-01

    Purpose Radiation-induced gastric bleeding has been poorly understood. In this study, we describe dosimetric predictors for gastric bleeding after fractionated radiotherapy and compare several predictive models. Materials & Methods The records of 139 sequential patients treated with 3-dimensional conformal radiotherapy (3D-CRT) for intrahepatic malignancies between January 1999 and April 2002 were reviewed. Median follow-up was 7.4 months. Logistic regression and Lyman normal tissue complication probability (NTCP) models for the occurrence of ≥ grade 3 gastric bleed were fit to the data. The principle of maximum likelihood was used to estimate parameters for all models. Results Sixteen of 116 evaluable patients (14%) developed gastric bleeds, at a median time of 4.0 months (mean 6.5 months, range 2.1–28.3 months) following completion of RT. The median and mean of the maximum doses to the stomach were 61 and 63 Gy (range 46 Gy–86 Gy), respectively, after bio-correction to equivalent 2 Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis was most predictive of gastric bleed (AUROC=0.92). Best fit Lyman NTCP model parameters were n =0.10, and m =0.21, with TD50(normal) =56 Gy and TD50(cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD50 value for the cirrhosis patients points out their greater sensitivity. Conclusion This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding, and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation. PMID:22541965

  20. Radiation-induced grafting of acrylic acid onto polyethylene filaments

    NASA Astrophysics Data System (ADS)

    Kaji, K.; Okada, T.; Sakurada, I.

    Radiation-induced grafting of acrylic acid onto high density polyethylene (PE) filaments was carried out in order to raise softening temperature and impart flame retardance and hydrophilic properties. Mutual γ-irradiation method was employed for the grafting in a mixture of acrylic acid (AA), ethylene dichloride and water containing a small amount of ferrous ammonium sulfate. The rate of grafting was very low at room temperature. On the other hand, large percent grafts were obtained when the grafting was performed at an elevated temperature. Activation energy for the initial rate of grafting was found to be 17 {kcal}/{mol} between 20 and 60°C and 10 {kcal}/{mol} between 60 and 80°C. Original PE filament begins to shrink at 70°C, show maximum shrinkage of 50% at 130°C and then breaks off at 136°C. When a 34% AA graft is converted to metallic salt such as sodium and calcium, the graft filament retains its filament form even above 300°C and gives maximum shrinkage of 15%. Burning tests by a wire-netting basket method indicate that graft filaments and its metallic salts do not form melting drops upon burning and are self-extinguishing. Original PE filament shows no moisture absorption, however, that of AA-grafted PE increases with increasing graft percent. The sodium salt of 15% graft shows the same level of moisture regain as cotton. The AA-grafted PE filament and its metallic salts can be dyed with cationic dyes even at 1% graft. Tensile properties of PE filament is impaired neither by grafting nor by conversion to metallic salts.

  1. Dosimetric Analysis of Radiation-induced Gastric Bleeding

    SciTech Connect

    Feng, Mary; Normolle, Daniel; Pan, Charlie C.; Dawson, Laura A.; Amarnath, Sudha; Ensminger, William D.; Lawrence, Theodore S.; Ten Haken, Randall K.

    2012-09-01

    Purpose: Radiation-induced gastric bleeding has been poorly understood. In this study, we described dosimetric predictors for gastric bleeding after fractionated radiation therapy. Methods and Materials: The records of 139 sequential patients treated with 3-dimensional conformal radiation therapy (3D-CRT) for intrahepatic malignancies were reviewed. Median follow-up was 7.4 months. The parameters of a Lyman normal tissue complication probability (NTCP) model for the occurrence of {>=}grade 3 gastric bleed, adjusted for cirrhosis, were fitted to the data. The principle of maximum likelihood was used to estimate parameters for NTCP models. Results: Sixteen of 116 evaluable patients (14%) developed gastric bleeds at a median time of 4.0 months (mean, 6.5 months; range, 2.1-28.3 months) following completion of RT. The median and mean maximum doses to the stomach were 61 and 63 Gy (range, 46-86 Gy), respectively, after biocorrection of each part of the 3D dose distributions to equivalent 2-Gy daily fractions. The Lyman NTCP model with parameters adjusted for cirrhosis predicted gastric bleed. Best-fit Lyman NTCP model parameters were n=0.10 and m=0.21 and with TD{sub 50} (normal) = 56 Gy and TD{sub 50} (cirrhosis) = 22 Gy. The low n value is consistent with the importance of maximum dose; a lower TD{sub 50} value for the cirrhosis patients points out their greater sensitivity. Conclusions: This study demonstrates that the Lyman NTCP model has utility for predicting gastric bleeding and that the presence of cirrhosis greatly increases this risk. These findings should facilitate the design of future clinical trials involving high-dose upper abdominal radiation.

  2. Effects of Adenovirus-Mediated Delivery of the Human Hepatocyte Growth Factor Gene in Experimental Radiation-Induced Heart Disease

    SciTech Connect

    Hu Shunying; Chen Yundai; Li Libing; Chen Jinlong; Wu Bin; Zhou, Xiao; Zhi Guang; Li Qingfang; Wang Rongliang; Duan Haifeng; Guo Zikuan; Yang Yuefeng; Xiao Fengjun; Wang Hua; Wang Lisheng

    2009-12-01

    Purpose: Irradiation to the heart may lead to late cardiovascular complications. The purpose of this study was to investigate whether adenovirus-mediated delivery of the human hepatocyte growth factor gene could reduce post-irradiation damage of the rat heart and improve heart function. Methods and Materials: Twenty rats received single-dose irradiation of 20 Gy gamma ray locally to the heart and were randomized into two groups. Two weeks after irradiation, these two groups of rats received Ad-HGF or mock adenovirus vector intramyocardial injection, respectively. Another 10 rats served as sham-irradiated controls. At post-irradiation Day 120, myocardial perfusion was tested by myocardial contrast echocardiography with contrast agent injected intravenously. At post-irradiation Day 180, cardiac function was assessed using the Langendorff technique with an isolated working heart model, after which heart samples were collected for histological evaluation. Results: Myocardial blood flow was significantly improved in HGF-treated animals as measured by myocardial contrast echocardiography at post-irradiation Day 120 . At post-irradiation Day 180, cardiac function was significantly improved in the HGF group compared with mock vector group, as measured by left ventricular peak systolic pressure (58.80 +- 9.01 vs. 41.94 +- 6.65 mm Hg, p < 0.05), the maximum dP/dt (5634 +- 1303 vs. 1667 +- 304 mm Hg/s, p < 0.01), and the minimum dP/dt (3477 +- 1084 vs. 1566 +- 499 mm Hg/s, p < 0.05). Picrosirius red staining analysis also revealed a significant reduction of fibrosis in the HGF group. Conclusion: Based on the study findings, hepatocyte growth factor gene transfer can attenuate radiation-induced cardiac injury and can preserve cardiac function.

  3. Protective effect of lycopene against radiation-induced hepatic toxicity in rats.

    PubMed

    Meydan, D; Gursel, B; Bilgici, B; Can, B; Ozbek, N

    2011-01-01

    The radioprotective effect of lycopene against liver damage was investigated in 80 female Sprague Dawley rats (10 per group). Early-group rats included: controls (group 1), lycopene (group 2), radiotherapy alone (group 3), and lycopene + radiotherapy (group 4). Lycopene (5 mg/kg per day) was administered orally for 7 days; single-fraction 8 Gy abdominopelvic radiotherapy was administered on day 8. Early-group rats were sacrificed on day 10. Late-group rats (groups 5-8) underwent treatment with the same regimens but, in groups 6 and 8, lycopene was administered until all rats were sacrificed, 60 days postradiotherapy. Liver malondialdehyde levels increased significantly and glutathione (GSH) levels, GSH-peroxidase (GSH-Px) and superoxide dismutase (SOD) activity decreased significantly in radiotherapy versus control groups. In lycopene + radiotherapy groups, malondialdehyde levels decreased significantly and GSH levels, GSH-Px and SOD activity increased significantly compared with radiotherapy groups. No significant between-group histo pathological differences were observed in early groups; in late groups, histopathological changes increased significantly in the radiotherapy group versus control group. A significant decrease in histopathological changes occurred in the lycopene + radiotherapy group compared with the radiotherapy group. Lycopene supplementation significantly reduced radiotherapy-induced oxidative liver injury.

  4. AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio)

    SciTech Connect

    Van Tiem, Lindsey A.; Di Giulio, Richard T.

    2011-08-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants often present in aquatic systems as complex mixtures. Embryonic fish are sensitive to the developmental toxicity of some PAHs, but the exact mechanisms involved in this toxicity are still unknown. This study explored the role of the aryl hydrocarbon receptor (AHR) in the oxidative stress response of zebrafish to the embryotoxicity of select PAHs. Embryos were exposed to two PAHs, benzo[k]fluoranthene (BkF; a strong AHR agonist) and fluoranthene (FL; a cytochrome P4501A (CYP1A) inhibitor), alone and in combination. CYP1A, CYP1B1, CYP1C1, and redox-responsive genes glutathione s-transferase pi 2 (GSTp2), glutathione peroxidase 1 (GPx1), the glutamate-cysteine ligase catalytic subunit (GCLc), MnSOD and CuZnSOD mRNA expression was examined. CYP1 activity was measured via an in vivo ethoxyresorufin-O-deethlyase (EROD) activity assay, and the area of the pericardium was measured as an index of cardiotoxicity. BkF or FL alone caused no deformities whereas BkF + FL resulted in extreme pericardial effusion. BkF induced CYP activity above controls and co-exposure with FL inhibited this activity. BkF induced expression of all three CYPs, GSTp2, and GCLc. BkF + FL caused greater than additive induction of the three CYPs, GSTp2, GPx1, and GCLc but had no effect on MnSOD or CuZnSOD. AHR2 knockdown protected against the cardiac deformities caused by BkF + FL and significantly inhibited the induction of the CYPs, GSTp2, GPx1, and GCLc after BkF + FL compared to non-injected controls. These results further show the protective role of AHR2 knockdown against cardiotoxic PAHs and the role of AHR2 as a mediator of redox-responsive gene induction. - Research Highlights: > Co-exposure of the PAHs BkF and FL causes cardiotoxicity in zebrafish. > BkF and FL co-exposure upregulates certain XRE- and ARE-associated genes. > AHR2 knockdown prevents the deformities caused by BkF and FL co-exposure. > AHR2

  5. Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications.

    PubMed

    Zhao, Weiling; Robbins, Mike E C

    2009-01-01

    The threat of radiation-induced late normal tissue injury limits the dose of radiation that can be delivered safely to cancer patients presenting with solid tumors. Tissue dysfunction and failure, associated with atrophy, fibrosis and/or necrosis, as well as vascular injury, have been reported in late responding normal tissues, including the central nervous system, gut, kidney, liver, lung, and skin. The precise mechanisms involved in the pathogenesis of radiation-induced late normal tissue injury have not been fully elucidated. It has been proposed recently that the radiation-induced late effects are caused, in part, by chronic oxidative stress and inflammation. Increased production of reactive oxygen species, which leads to lipid peroxidation, oxidation of DNA and proteins, as well as activation of pro-inflammatory factors has been observed in vitro and in vivo. In this review, we will present direct and indirect evidence to support this hypothesis. To improve the long-term survival and quality of life for radiotherapy patients, new approaches have been examined in preclinical models for their efficacy in preventing or mitigating the radiation-induced chronic normal tissue injury. We and others have tested drugs that can either attenuate inflammation or reduce chronic oxidative stress in animal models of late radiation-induced normal tissue injury. The effectiveness of renin-angiotensin system blockers, peroxisome proliferator-activated receptor (PPAR) gamma agonists, and antioxidants/antioxidant enzymes in preventing or mitigating the severity of radiation-induced late effects indicates that radiation-induced chronic injury can be prevented and/or treated. This provides a rationale for the design and development of anti-inflammatory-based interventional approaches for the treatment of radiation-induced late normal tissue injury.

  6. Radiation-induced esophageal injury: A spectrum from esophagitis to cancer

    SciTech Connect

    Vanagunas, A.; Jacob, P.; Olinger, E. )

    1990-07-01

    Radiation esophagitis is a common but frequently unrecognized complication of therapeutic radiation to the neck, chest, or mediastinum. The spectrum of injury ranges from acute self-limited esophagitis to life-threatening esophageal perforation. Complications such as stricture or primary esophageal cancer may occur many years after irradiation, and their linkage to radiation may not be considered. Five cases of radiation-induced injury are described, and the spectrum of radiation-induced esophageal injury is reviewed.

  7. Myocardial hydroxyproline reduced by early administration of methylprednisolone or ibuprofen to rabbits with radiation-induced heart disease

    SciTech Connect

    Reeves, W.C.; Cunningham, D.; Schwiter, E.J.; Abt, A.; Skarlatos, S.; Wood, M.A.; Whitesell, L.

    1982-05-01

    The ability of methylprednisolone (MP) and ibuprofen (IB) to reduce the severity of the late state of radiation-induced heart disease was assessed in 57 New Zealand white rabbits. Before and shortly after cardiac irradiation, 15 rabbits received i.v. MP, 30 mg/kg twice daily for 3 days, and 15 others received IB, 12.5 mg/kg twice daily for 2 days. No drug administered to 14 irradiated rabbits, and neither irradiation nor drugs were administered to 13 rabbits that served as controls. All 15 rabbits treated with MP and 13 of the 15 treated with IB lived for 100 days. Only seven of the untreated, irradiated rabbits lived that long. Longevity of each treated group of rabbits was better (p < 0.01 and 0.05) than that of the untreated, irradiated rabbits. Surviving rabbits were killed 100 days after irradiation. Pericarditis (p < 0.05) and pericardial effusion (p < 0.01) were less frequent in the treated, irradiated groups than in the untreated, irradiated rabbits. At least some rabbits in each irradiated group had microscopic evidence of myocardial fibrosis. The fibrosis was quantitated by determination of myocardial hydroxyproline concentrations (MHP). MHP concentration in the untreated, irradiated rabbits was greater than in those treated with MP (p < 0.05) or IB (p < 0.01) and in the untreated, unirradiated rabbits (p < 0.01). Early administrative of MP or IB retarded the development of myocardial fibrosis, pericarditis and pericardial effusin, and improved survival in this experimental model of radiation-induced heart disease.

  8. Myocardial hydroxyproline reduced by early administration of methylprednisolone or ibuprofen to rabbits with radiation-induced heart disease

    SciTech Connect

    Reeves, W.C.; Cunningham, D.; Schwiter, E.J.; Abt, A.; Skarlatos, S.; Wood, M.A.; Whitesell, L.

    1982-05-01

    The ability of methylprednisolone (MP) and ibuprofen (IB) to reduce the severity of the late state of radiation-induced heart disease was assessed in 57 New Zealand white rabbits. Before and shortly after cardiac irradiation, 15 rabbits received i.v. MP, 30 mg/kg twice daily for 3 days, and 15 others received IB, 12.5 mg/kg twice daily for 2 days. No drug was administered to 14 irradiated rabbits, and neither irradiation nor drugs were administered to 13 rabbits that served as controls, All 15 rabbits treated with MP and 13 of the 15 treated with IB lived for 100 days. Only seven of the untreated, irradiated rabbits lived that long. Longevity of each treated group of rabbits was better (p less than 0.01 and 0.05) than that of the untreated, irradiated rabbits. Surviving rabbits were killed 100 days after irradiation. Pericarditis (p less than 0.05) and pericardial effusion (p less than 0.01) were less frequent in the treated, irradiated groups than in the untreated, irradiated rabbits. At least some rabbits in each irradiated group had microscopic evidence of myocardial fibrosis. The fibrosis was quantitated by determination of myocardial hydroxyproline concentrations (MHP). MHP concentration in the untreated, irradiated rabbits was greater than in those treated with MP (p less than 0.05) or IB (p less than 0.01) and in the untreated, unirradiated rabbits (p less than 0.01). Early administration of MP or IB retarded the development of myocardial fibrosis, pericarditis and pericardial effusion, and improved survival in this experimental model of radiation-induced heart disease.

  9. Radiation-induced osteosarcomas in the pediatric population

    SciTech Connect

    Koshy, Matthew; Paulino, Arnold C. . E-mail: apaulino@tmh.tmc.edu; Mai, Wei Y.; Teh, Bin S.

    2005-11-15

    Purpose: Radiation-induced osteosarcomas (R-OS) have historically been high-grade, locally invasive tumors with a poor prognosis. The purpose of this study was to perform a comprehensive literature review and analysis of reported cases dealing with R-OS in the pediatric population to identify the characteristics, prognostic factors, optimal treatment modalities, and overall survival of these patients. Methods and Materials: A MEDLINE/PubMed search of articles written in the English language dealing with OSs occurring after radiotherapy (RT) in the pediatric population yielded 30 studies from 1981 to 2004. Eligibility criteria included patients <21 years of age at the diagnosis of the primary cancer, cases satisfying the modified Cahan criteria, and information on treatment outcome. Factors analyzed included the type of primary cancer treated with RT, the radiation dose and beam energy, the latency period between RT and the development of R-OS, and the treatment, follow-up, and final outcome of R-OS. Results: The series included 109 patients with a median age at the diagnosis of primary cancer of 6 years (range, 0.08-21 years). The most common tumors treated with RT were Ewing's sarcoma (23.9%), rhabdomyosarcoma (17.4%), retinoblastoma (12.8%), Hodgkin's disease (9.2%), brain tumor (8.3%), and Wilms' tumor (6.4%). The median radiation dose was 47 Gy (range, 15-145 Gy). The median latency period from RT to the development of R-OS was 100 months (range, 36-636 months). The median follow-up after diagnosis of R-OS was 18 months (1-172 months). The 3- and 5-year cause-specific survival rate was 43.6% and 42.2%, respectively, and the 3- and 5-year overall survival rate was 41.7% and 40.2%, respectively. Variables, including age at RT, primary site, type of tumor treated with RT, total radiation dose, and latency period did not have a significant effect on survival. The 5-year cause-specific and overall survival rate for patients who received treatment for R-OS involving

  10. Radiation-Induced Topological Disorder in Irradiated Network Structures

    SciTech Connect

    Hobbs, Linn W.

    2002-12-21

    This report summarizes results of a research program investigating the fundamental principles underlying the phenomenon of topological disordering in a radiation environment. This phenomenon is known popularly as amorphization, but is more formally described as a process of radiation-induced structural arrangement that leads in crystals to loss of long-range translational and orientational correlations and in glasses to analogous alteration of connectivity topologies. The program focus has been on a set compound ceramic solids with directed bonding exhibiting structures that can be described as networks. Such solids include SiO2, Si3N4, SiC, which are of interest to applications in fusion energy production, nuclear waste storage, and device manufacture involving ion implantation or use in radiation fields. The principal investigative tools comprise a combination of experimental diffraction-ba