Science.gov

Sample records for radiation-induced oxidative damage

  1. Role of Oxidative Damage in Radiation-Induced Bone Loss

    NASA Technical Reports Server (NTRS)

    Schreurs, Ann-Sofie; Alwood, Joshua S.; Limoli, Charles L.; Globus, Ruth K.

    2014-01-01

    used an array of countermeasures (Antioxidant diets and injections) to prevent the radiation-induced bone loss, although these did not prevent bone loss, analysis is ongoing to determine if these countermeasure protected radiation-induced damage to other tissues.

  2. Modification of radiation-induced oxidative damage in liposomal and microsomal membrane by eugenol

    NASA Astrophysics Data System (ADS)

    Pandey, B. N.; Lathika, K. M.; Mishra, K. P.

    2006-03-01

    Radiation-induced membrane oxidative damage, and their modification by eugenol, a natural antioxidant, was investigated in liposomes and microsomes. Liposomes prepared with DPH showed decrease in fluorescence after γ-irradiation, which was prevented significantly by eugenol and correlated with magnitude of oxidation of phospholipids. Presence of eugenol resulted in substantial inhibition in MDA formation in irradiated liposomes/microsomes, which was less effective when added after irradiation. Similarly, the increase in phospholipase C activity observed after irradiation in microsomes was inhibited in samples pre-treated with eugenol. Results suggest association of radio- oxidative membrane damage with alterations in signaling molecules, and eugenol significantly prevented these membrane damaging events.

  3. Involvement of inducible nitric oxide synthase in radiation-induced vascular endothelial damage.

    PubMed

    Hong, Chang-Won; Kim, Young-Mee; Pyo, Hongryull; Lee, Joon-Ho; Kim, Suwan; Lee, Sunyoung; Noh, Jae Myoung

    2013-11-01

    The use of radiation therapy has been linked to an increased risk of cardiovascular disease. To understand the mechanisms underlying radiation-induced vascular dysfunction, we employed two models. First, we examined the effect of X-ray irradiation on vasodilation in rabbit carotid arteries. Carotid arterial rings were irradiated with 8 or 16 Gy using in vivo and ex vivo methods. We measured the effect of acetylcholine-induced relaxation after phenylephrine-induced contraction on the rings. In irradiated carotid arteries, vasodilation was significantly attenuated by both irradiation methods. The relaxation response was completely blocked by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a potent inhibitor of soluble guanylate cyclase. Residual relaxation persisted after treatment with L-N(ω)-nitroarginine (L-NA), a non-specific inhibitor of nitric oxide synthase (NOS), but disappeared following the addition of aminoguanidine (AG), a selective inhibitor of inducible NOS (iNOS). The relaxation response was also affected by tetraethylammonium, an inhibitor of endothelium-derived hyperpolarizing factor activity. In the second model, we investigated the biochemical events of nitrosative stress in human umbilical-vein endothelial cells (HUVECs). We measured iNOS and nitrotyrosine expression in HUVECs exposed to a dose of 4 Gy. The expression of iNOS and nitrotyrosine was greater in irradiated HUVECs than in untreated controls. Pretreatment with AG, L-N(6)-(1-iminoethyl) lysine hydrochloride (a selective inhibitor of iNOS), and L-NA attenuated nitrosative stress. While a selective target of radiation-induced vascular endothelial damage was not definitely determined, these results suggest that NO generated from iNOS could contribute to vasorelaxation. These studies highlight a potential role of iNOS inhibitors in ameliorating radiation-induced vascular endothelial damage. PMID:23704776

  4. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor.

    PubMed

    Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie

    2007-05-01

    Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with gamma-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH* radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH. radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689

  5. Radiation-induced oxidative damage to the DNA-binding domain of the lactose repressor

    PubMed Central

    Gillard, Nathalie; Goffinont, Stephane; Buré, Corinne; Davidkova, Marie; Maurizot, Jean-Claude; Cadene, Martine; Spotheim-Maurizot, Melanie

    2007-01-01

    Understanding the cellular effects of radiation-induced oxidation requires the unravelling of key molecular events, particularly damage to proteins with important cellular functions. The Escherichia coli lactose operon is a classical model of gene regulation systems. Its functional mechanism involves the specific binding of a protein, the repressor, to a specific DNA sequence, the operator. We have shown previously that upon irradiation with γ-rays in solution, the repressor loses its ability to bind the operator. Water radiolysis generates hydroxyl radicals (OH· radicals) which attack the protein. Damage of the repressor DNA-binding domain, called the headpiece, is most likely to be responsible of this loss of function. Using CD, fluorescence spectroscopy and a combination of proteolytic cleavage with MS, we have examined the state of the irradiated headpiece. CD measurements revealed a dose-dependent conformational change involving metastable intermediate states. Fluorescence measurements showed a gradual degradation of tyrosine residues. MS was used to count the number of oxidations in different regions of the headpiece and to narrow down the parts of the sequence bearing oxidized residues. By calculating the relative probabilities of reaction of each amino acid with OH· radicals, we can predict the most probable oxidation targets. By comparing the experimental results with the predictions we conclude that Tyr7, Tyr12, Tyr17, Met42 and Tyr47 are the most likely hotspots of oxidation. The loss of repressor function is thus correlated with chemical modifications and conformational changes of the headpiece. PMID:17263689

  6. Fucodiphlorethol G Purified from Ecklonia cava Suppresses Ultraviolet B Radiation-Induced Oxidative Stress and Cellular Damage

    PubMed Central

    Kim, Ki Cheon; Piao, Mei Jing; Zheng, Jian; Yao, Cheng Wen; Cha, Ji Won; Kumara, Madduma Hewage Susara Ruwan; Han, Xia; Kang, Hee Kyoung; Lee, Nam Ho; Hyun, Jin Won

    2014-01-01

    Fucodiphlorethol G (6’-[2,4-dihydroxy-6-(2,4,6-trihydroxyphenoxy)phenoxy]biphenyl-2,2’,4,4’,6-pentol) is a compound purified from Ecklonia cava, a brown alga that is widely distributed offshore of Jeju Island. This study investigated the protective effects of fucodiphlorethol G against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) irradiation. Fucodiphlorethol G attenuated the generation of 2, 2-diphenyl-1-picrylhydrazyl radicals and intracellular reactive oxygen species in response to UVB irradiation. Fucodiphlorethol G suppressed the inhibition of human keratinocyte growth by UVB irradiation. Additionally, the wavelength of light absorbed by fucodiphlorethol G was close to the UVB spectrum. Fucodiphlorethol G reduced UVB radiation-induced 8-isoprostane generation and DNA fragmentation in human keratinocytes. Moreover, fucodiphlorethol G reduced UVB radiation-induced loss of mitochondrial membrane potential, generation of apoptotic cells, and active caspase-9 expression. Taken together, fucodiphlorethol G protected human keratinocytes against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging reactive oxygen species. PMID:25143808

  7. Fucodiphlorethol G Purified from Ecklonia cava Suppresses Ultraviolet B Radiation-Induced Oxidative Stress and Cellular Damage.

    PubMed

    Kim, Ki Cheon; Piao, Mei Jing; Zheng, Jian; Yao, Cheng Wen; Cha, Ji Won; Kumara, Madduma Hewage Susara Ruwan; Han, Xia; Kang, Hee Kyoung; Lee, Nam Ho; Hyun, Jin Won

    2014-07-01

    Fucodiphlorethol G (6'-[2,4-dihydroxy-6-(2,4,6-trihydroxyphenoxy)phenoxy]biphenyl-2,2',4,4',6-pentol) is a compound purified from Ecklonia cava, a brown alga that is widely distributed offshore of Jeju Island. This study investigated the protective effects of fucodiphlorethol G against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) irradiation. Fucodiphlorethol G attenuated the generation of 2, 2-diphenyl-1-picrylhydrazyl radicals and intracellular reactive oxygen species in response to UVB irradiation. Fucodiphlorethol G suppressed the inhibition of human keratinocyte growth by UVB irradiation. Additionally, the wavelength of light absorbed by fucodiphlorethol G was close to the UVB spectrum. Fucodiphlorethol G reduced UVB radiation-induced 8-isoprostane generation and DNA fragmentation in human keratinocytes. Moreover, fucodiphlorethol G reduced UVB radiation-induced loss of mitochondrial membrane potential, generation of apoptotic cells, and active caspase-9 expression. Taken together, fucodiphlorethol G protected human keratinocytes against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging reactive oxygen species. PMID:25143808

  8. DNA damage in cells exhibiting radiation-induced genomic instability

    DOE PAGESBeta

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesismore » that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.« less

  9. DNA damage in cells exhibiting radiation-induced genomic instability

    SciTech Connect

    Keszenman, Deborah J.; Kolodiuk, Lucia; Baulch, Janet E.

    2015-02-22

    Cells exhibiting radiation induced genomic instability exhibit varied spectra of genetic and chromosomal aberrations. Even so, oxidative stress remains a common theme in the initiation and/or perpetuation of this phenomenon. Isolated oxidatively modified bases, abasic sites, DNA single strand breaks and clustered DNA damage are induced in normal mammalian cultured cells and tissues due to endogenous reactive oxygen species generated during normal cellular metabolism in an aerobic environment. While sparse DNA damage may be easily repaired, clustered DNA damage may lead to persistent cytotoxic or mutagenic events that can lead to genomic instability. In this study, we tested the hypothesis that DNA damage signatures characterised by altered levels of endogenous, potentially mutagenic, types of DNA damage and chromosomal breakage are related to radiation-induced genomic instability and persistent oxidative stress phenotypes observed in the chromosomally unstable progeny of irradiated cells. The measurement of oxypurine, oxypyrimidine and abasic site endogenous DNA damage showed differences in non-double-strand breaks (DSB) clusters among the three of the four unstable clones evaluated as compared to genomically stable clones and the parental cell line. These three unstable clones also had increased levels of DSB clusters. The results of this study demonstrate that each unstable cell line has a unique spectrum of persistent damage and lead us to speculate that alterations in DNA damage signaling and repair may be related to the perpetuation of genomic instability.

  10. Differential protection by nitroxides and hydroxylamines to radiation-induced and metal ion-catalyzed oxidative damage.

    PubMed

    Xavier, Sandhya; Yamada, Ken-ichi; Samuni, Ayelet M; Samuni, Amram; DeGraff, William; Krishna, Murali C; Mitchell, James B

    2002-11-14

    Modulation of radiation- and metal ion-catalyzed oxidative-induced damage using plasmid DNA, genomic DNA, and cell survival, by three nitroxides and their corresponding hydroxylamines, were examined. The antioxidant property of each compound was independently determined by reacting supercoiled DNA with copper II/1,10-phenanthroline complex fueled by the products of hypoxanthine/xanthine oxidase (HX/XO) and noting the protective effect as assessed by agarose gel electrophoresis. The nitroxides and their corresponding hydroxylamines protected approximately to the same degree (33-47% relaxed form) when compared to 76.7% relaxed form in the absence of protectors. Likewise, protection by both the nitroxide and corresponding hydroxylamine were observed for Chinese hamster V79 cells exposed to hydrogen peroxide. In contrast, when plasmid DNA damage was induced by ionizing radiation (100 Gy), only nitroxides (10 mM) provide protection (32.4-38.5% relaxed form) when compared to radiation alone or in the presence of hydroxylamines (10 mM) (79.8% relaxed form). Nitroxide protection was concentration dependent. Radiation cell survival studies and DNA double-strand break (DBS) assessment (pulse field electrophoresis) showed that only the nitroxide protected or prevented damage, respectively. Collectively, the results show that nitroxides and hydroxylamines protect equally against the damage mediated by oxidants generated by the metal ion-catalyzed Haber-Weiss reaction, but only nitroxides protect against radiation damage, suggesting that nitroxides may more readily react with intermediate radical species produced by radiation than hydroxylamines. PMID:12399020

  11. Simulated Microgravity and Low-Dose/Low-Dose-Rate Radiation Induces Oxidative Damage in the Mouse Brain.

    PubMed

    Mao, Xiao Wen; Nishiyama, Nina C; Pecaut, Michael J; Campbell-Beachler, Mary; Gifford, Peter; Haynes, Kristine E; Becronis, Caroline; Gridley, Daila S

    2016-06-01

    Microgravity and radiation are stressors unique to the spaceflight environment that can have an impact on the central nervous system (CNS). These stressors could potentially lead to significant health risks to astronauts, both acutely during the course of a mission or chronically, leading to long-term, post-mission decrements in quality of life. The CNS is sensitive to oxidative injury due to high concentrations of oxidizable, unsaturated lipids and low levels of antioxidant defenses. The purpose of this study was to evaluate oxidative damage in the brain cortex and hippocampus in a ground-based model for spaceflight, which includes prolonged unloading and low-dose radiation. Whole-body low-dose/low-dose-rate (LDR) gamma radiation using (57)Co plates (0.04 Gy at 0.01 cGy/h) was delivered to 6 months old, mature, female C57BL/6 mice (n = 4-6/group) to simulate the radiation component. Anti-orthostatic tail suspension was used to model the unloading, fluid shift and physiological stress aspects of the microgravity component. Mice were hindlimb suspended and/or irradiated for 21 days. Brains were isolated 7 days or 9 months after irradiation and hindlimb unloading (HLU) for characterization of oxidative stress markers and microvessel changes. The level of 4-hydroxynonenal (4-HNE) protein, an oxidative specific marker for lipid peroxidation, was significantly elevated in the cortex and hippocampus after LDR + HLU compared to controls (P < 0.05). The combination group also had the highest level of nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2) expression compared to controls (P < 0.05). There was a significant decrease in superoxide dismutase (SOD) expression in the animals that received HLU only or combined LDR + HLU compared to control (P < 0.05). In addition, 9 months after LDR and HLU exposure, microvessel densities were the lowest in the combination group, compared to age-matched controls in the cortex (P < 0.05). Our data provide the first evidence

  12. Inhibition of Radiation-Induced Oxidative Damage in the Lung Tissue: May Acetylsalicylic Acid Have a Positive Role?

    PubMed

    Demirel, Can; Kilciksiz, Sevil Cagiran; Gurgul, Serkan; Erdal, Nurten; Yigit, Seyran; Tamer, Lulufer; Ayaz, Lokman

    2016-02-01

    The lung is relatively sensitive to irradiation. It is shown that acetylsalicylic acid (ASA) might reduce oxidative injury and that it has a place in protection from cancer. The aim of this study is to evaluate the potential radioprotective effects of ASA. Whole-body irradiation (6 Gy, single dose) was applied to the rats. Glutathione (GSH), malondialdehyde (MDA), myeloperoxidase (MPO), and nitric oxide (NO) levels in the lung tissue were measured. Control (C), Radiation (R), Radiation + ASA (R + ASA; received irradiation and 25 mg/kg of ASA intraperitoneally (i.p.)), and Radiation + Amifostine (R + WR-2721; received irradiation and 200 mg/kg of WR-2721 i.p.) groups were used. The MPO levels decreased statistically significantly in the group administered ASA. Histopathologically, a radioprotective effect of ASA was more evident in the R + ASA group. ASA is an agent which has not been used as a radioprotector in the clinic yet, and it is worth supporting with more advanced studies. PMID:26276129

  13. Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging

    PubMed Central

    Panich, Uraiwan; Sittithumcharee, Gunya; Rathviboon, Natwarath

    2016-01-01

    Skin is the largest human organ. Skin continually reconstructs itself to ensure its viability, integrity, and ability to provide protection for the body. Some areas of skin are continuously exposed to a variety of environmental stressors that can inflict direct and indirect damage to skin cell DNA. Skin homeostasis is maintained by mesenchymal stem cells in inner layer dermis and epidermal stem cells (ESCs) in the outer layer epidermis. Reduction of skin stem cell number and function has been linked to impaired skin homeostasis (e.g., skin premature aging and skin cancers). Skin stem cells, with self-renewal capability and multipotency, are frequently affected by environment. Ultraviolet radiation (UVR), a major cause of stem cell DNA damage, can contribute to depletion of stem cells (ESCs and mesenchymal stem cells) and damage of stem cell niche, eventually leading to photoinduced skin aging. In this review, we discuss the role of UV-induced DNA damage and oxidative stress in the skin stem cell aging in order to gain insights into the pathogenesis and develop a way to reduce photoaging of skin cells. PMID:27148370

  14. Radiation-induced charge trapping in bipolar base oxides

    SciTech Connect

    Fleetwood, D.M.; Riewe, L.C.; Witczak, Schrimpf, R.D.

    1996-03-01

    Capacitance-voltage and thermally stimulated current methods are used to investigate radiation induced charge trapping in bipolar base oxides. Results are compared with models of oxide and interface trap charge buildup at low electric fields.

  15. Torin2 Suppresses Ionizing Radiation-Induced DNA Damage Repair.

    PubMed

    Udayakumar, Durga; Pandita, Raj K; Horikoshi, Nobuo; Liu, Yan; Liu, Qingsong; Wong, Kwok-Kin; Hunt, Clayton R; Gray, Nathanael S; Minna, John D; Pandita, Tej K; Westover, Kenneth D

    2016-05-01

    Several classes of inhibitors of the mammalian target of rapamycin (mTOR) have been developed based on its central role in sensing growth factor and nutrient levels to regulate cellular metabolism. However, its ATP-binding site closely resembles other phosphatidylinositol 3-kinase-related kinase (PIKK) family members, resulting in reactivity with these targets that may also be therapeutically useful. The ATP-competitive mTOR inhibitor, Torin2, shows biochemical activity against the DNA repair-associated proteins ATM, ATR and DNA-PK, which raises the possibility that Torin2 and related compounds might radiosensitize cancerous tumors. In this study Torin2 was also found to enhance ionizing radiation-induced cell killing in conditions where ATM was dispensable, confirming the requirement for multiple PIKK targets. Moreover, Torin2 did not influence the initial appearance of γ-H2AX foci after irradiation but significantly delayed the disappearance of radiation-induced γ-H2AX foci, indicating a DNA repair defect. Torin2 increased the number of radiation-induced S-phase specific chromosome aberrations and reduced the frequency of radiation-induced CtIP and Rad51 foci formation, suggesting that Torin2 works by blocking homologous recombination (HR)-mediated DNA repair resulting in an S-phase specific DNA repair defect. Accordingly, Torin2 reduced HR-mediated repair of I-Sce1-induced DNA damage and contributed to replication fork stalling. We conclude that radiosensitization of tumor cells by Torin2 is associated with disrupting ATR- and ATM-dependent DNA damage responses. Our findings support the concept of developing combination cancer therapies that incorporate ionizing radiation therapy and Torin2 or compounds with similar properties. PMID:27135971

  16. Rosmarinic Acid Attenuates Cell Damage against UVB Radiation-Induced Oxidative Stress via Enhancing Antioxidant Effects in Human HaCaT Cells

    PubMed Central

    Fernando, Pattage Madushan Dilhara Jayatissa; Piao, Mei Jing; Kang, Kyoung Ah; Ryu, Yea Seong; Hewage, Susara Ruwan Kumara Madduma; Chae, Sung Wook; Hyun, Jin Won

    2016-01-01

    This study was designed to investigate the cytoprotective effect of rosmarinic acid (RA) on ultraviolet B (UVB)-induced oxidative stress in HaCaT keratinocytes. RA exerted a significant cytoprotective effect by scavenging intracellular ROS induced by UVB. RA also attenuated UVB-induced oxidative macromolecular damage, including protein carbonyl content, DNA strand breaks, and the level of 8-isoprostane. Furthermore, RA increased the expression and activity of superoxide dismutase, catalase, heme oxygenase-1, and their transcription factor Nrf2, which are decreased by UVB radiation. Collectively, these data indicate that RA can provide substantial cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and has potential to be developed as a medical agent for ROS-induced skin diseases. PMID:26759705

  17. Radiation-induced lung damage: dose-time-fractionation considerations.

    PubMed

    Van Dyk, J; Mah, K; Keane, T J

    1989-01-01

    The comparison of different dose-time-fractionation schedules requires the use of an isoeffect formula. In recent years, the NSD isoeffect formula has been heavily criticized. In this report, we consider an isoeffect formula which is specifically developed for radiation-induced lung damage. The formula is based on the linear-quadratic model and includes a factor for overall treatment time. The proposed procedures allow for the simultaneous derivation of an alpha/beta ratio and a gamma/beta time factor. From animal data in the literature, the derived alpha/beta and gamma/beta ratios for acute lung damage are 5.0 +/- 1.0 Gy and 2.7 +/- 1.4 Gy2/day respectively, while for late damage the suggested values are 2.0 Gy and 0.0 Gy2/day. Data from two clinical studies, one prospective and the other retrospective, were also analysed and corresponding alpha/beta and gamma/beta ratios were determined. For the prospective clinical study, with a limited range of doses per fraction, the resultant alpha/beta and gamma/beta ratios were 0.9 +/- 2.6 Gy and 2.6 +/- 2.5 Gy2/day. The combination of the retrospective and prospective data yielded alpha/beta and gamma/beta ratios of 3.3 +/- 1.5 Gy and 2.4 +/- 1.5 Gy2/day, respectively. One potential advantage of this isoeffect formalism is that it might possibly be applied to both acute and late lung damage. The results of this formulation for acute lung damage indicate that time-dependent effects such as slow repair or proliferation might be more important in determining isoeffect doses than previously predicted by the estimated single dose (ED) formula. Although we present this as an alternative approach, we would caution against its clinical use until its applicability has been confirmed by additional clinical data. PMID:2928557

  18. Radiation induced chemical activity at iron and copper oxide surfaces

    NASA Astrophysics Data System (ADS)

    Reiff, Sarah C.

    The radiolysis of three iron oxides, two copper oxides, and aluminum oxide with varying amounts of water were performed using gamma-rays and 5 MeV 4He ions. The adsorbed water on the surfaces was characterized using temperature programmed desorption and diffuse reflectance infrared spectroscopy, which indicated that all of the oxides had chemisorbed water on the surface. Physisorbed water was observed on the Fe2O 3 and Al2O3 surfaces as well. Molecular hydrogen was produced from adsorbed water only on Fe2O3 and Al 2O3, while the other compounds did not show any hydrogen production due to the low amounts of water on the surfaces. Slurries of varying amounts of water were also examined for hydrogen production, and they showed yields that were greater than the yield for bulk water. However, the yields of hydrogen from the copper compounds were much lower than those of the iron suggesting that the copper oxides are relatively inert to radiation induced damage to nearby water. X-ray diffraction measurements did not show any indication of changes to the bulk crystal structure due to radiolysis for any of the oxides. The surfaces of the oxides were analyzed using Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). For the iron samples, FeO and Fe3O4, Raman spectroscopy revealed areas of Fe2O3 had formed following irradiation with He ions. XPS indicated the formation of a new oxygen species on the iron oxide surfaces. Raman spectroscopy of the copper oxides did not reveal any changes in the surface composition, however, XPS measurements showed a decrease in the amount of OH groups on the surface of Cu2O, while for the CuO samples the amount of OH groups were found to increase following radiolysis. Pristine Al2O3 showed the presence of a surface oxyhydroxide layer which was observed to decrease following radiolysis, consistent with the formation of molecular hydrogen.

  19. Study of the effect of dose-rate on radiation-induced damage to human erythrocytes

    NASA Astrophysics Data System (ADS)

    Krokosz, Anita; Koziczak, Renata; Gonciarz, Marta; Szweda-Lewandowska, Zofia

    2006-01-01

    Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%) were irradiated with γ-rays at three dose-rates of 66.7, 36.7, 25 Gy min -1 in order to investigate the influence of the dose-rate on radiation-induced membrane damage, hemoglobin oxidation and loss of reduced glutathione. The obtained results showed that such processes as erythrocyte hemolysis, lipid and protein destruction depend on the radiation dose-rate. The parameter values describing these processes showed an inverse dose-rate effect.

  20. Molecular responses of radiation-induced liver damage in rats

    PubMed Central

    CHENG, WEI; XIAO, LEI; AINIWAER, AIMUDULA; WANG, YUNLIAN; WU, GE; MAO, RUI; YANG, YING; BAO, YONGXING

    2015-01-01

    The aim of the present study was to investigate the molecular responses involved in radiation-induced liver damage (RILD). Sprague-Dawley rats (6-weeks-old) were irradiated once at a dose of 20 Gy to the right upper quadrant of the abdomen. The rats were then sacrificed 3 days and 1, 2, 4, 8 and 12 weeks after irradiation and rats, which were not exposed to irradiation were used as controls. Weight measurements and blood was obtained from the rats and liver tissues were collected for histological and apoptotic analysis. Immunohistochemistry, reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot analysis were performed to measure the expression levels of mRNAs and proteins, respectively. The serum levels of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase were increased significantly in the RILD rats. Histological investigation revealed the proliferation of collagen and the formation of fibrotic tissue 12 weeks after irradiation. Apoptotic cells were observed predominantly 2 and 4 weeks after irradiation. The immunohistochemistry, RT-qPCR and western blot analysis all revealed the same pattern of changes in the expression levels of the molecules assessed. The expression levels of transforming growth factor-β1 (TGF-β1), nuclear factor (NF)-κB65, mothers against decapentaplegic homolog 3 (Smad3) and Smad7 and connective tissue growth factor were increased during the recovery period following irradiation up to 12 weeks. The expression levels of tumor necrosis factor-α, Smad7 and Smad4 were only increased during the early phase (first 4 weeks) of recovery following irradiation. In the RILD rat model, the molecular responses indicated that the TGF-β1/Smads and NF-κB65 signaling pathways are involved in the mechanism of RILD recovery. PMID:25483171

  1. Opportunities for nutritional amelioration of radiation-induced cellular damage.

    PubMed

    Turner, Nancy D; Braby, Leslie A; Ford, John; Lupton, Joanne R

    2002-10-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations. PMID:12361786

  2. Opportunities for nutritional amelioration of radiation-induced cellular damage

    NASA Technical Reports Server (NTRS)

    Turner, Nancy D.; Braby, Leslie A.; Ford, John; Lupton, Joanne R.

    2002-01-01

    The closed environment and limited evasive capabilities inherent in space flight cause astronauts to be exposed to many potential harmful agents (chemical contaminants in the environment and cosmic radiation exposure). Current power systems used to achieve space flight are prohibitively expensive for supporting the weight requirements to fully shield astronauts from cosmic radiation. Therefore, radiation poses a major, currently unresolvable risk for astronauts, especially for long-duration space flights. The major detrimental radiation effects that are of primary concern for long-duration space flights are damage to the lens of the eye, damage to the immune system, damage to the central nervous system, and cancer. In addition to the direct damage to biological molecules in cells, radiation exposure induces oxidative damage. Many natural antioxidants, whether consumed before or after radiation exposure, are able to confer some level of radioprotection. In addition to achieving beneficial effects from long-known antioxidants such as vitamins E and C and folic acid, some protection is conferred by several recently discovered antioxidant molecules, such as flavonoids, epigallocatechin, and other polyphenols. Somewhat counterintuitive is the protection provided by diets containing elevated levels of omega-3 polyunsaturated fatty acids, considering they are thought to be prone to peroxidation. Even with the information we have at our disposal, it will be difficult to predict the types of dietary modifications that can best reduce the risk of radiation exposure to astronauts, those living on Earth, or those enduring diagnostic or therapeutic radiation exposure. Much more work must be done in humans, whether on Earth or, preferably, in space, before we are able to make concrete recommendations.

  3. Radiation-Induced Liver Damage: Correlation of Histopathology with Hepatobiliary Magnetic Resonance Imaging, a Feasibility Study

    SciTech Connect

    Seidensticker, Max; Burak, Miroslaw; Kalinski, Thomas; Garlipp, Benjamin; Koelble, Konrad; Wust, Peter; Antweiler, Kai; Seidensticker, Ricarda; Mohnike, Konrad; Pech, Maciej; Ricke, Jens

    2015-02-15

    PurposeRadiotherapy of liver malignancies shows promising results (radioembolization, stereotactic irradiation, interstitial brachytherapy). Regardless of the route of application, a certain amount of nontumorous liver parenchyma will be collaterally damaged by radiation. The functional reserve may be significantly reduced with an impact on further treatment planning. Monitoring of radiation-induced liver damage by imaging is neither established nor validated. We performed an analysis to correlate the histopathological presence of radiation-induced liver damage with functional magnetic resonance imaging (MRI) utilizing hepatobiliary contrast media (Gd-BOPTA).MethodsPatients undergoing local high-dose-rate brachytherapy for whom a follow-up hepatobiliary MRI within 120 days after radiotherapy as well as an evaluable liver biopsy from radiation-exposed liver tissue within 7 days before MRI were retrospectively identified. Planning computed tomography (CT)/dosimetry was merged to the CT-documentation of the liver biopsy and to the MRI. Presence/absence of radiation-induced liver damage (histopathology) and Gd-BOPTA uptake (MRI) as well as the dose applied during brachytherapy at the site of tissue sampling was determined.ResultsFourteen biopsies from eight patients were evaluated. In all cases with histopathological evidence of radiation-induced liver damage (n = 11), no uptake of Gd-BOPTA was seen. In the remaining three, cases no radiation-induced liver damage but Gd-BOPTA uptake was seen. Presence of radiation-induced liver damage and absence of Gd-BOPTA uptake was correlated with a former high-dose exposition.ConclusionsAbsence of hepatobiliary MRI contrast media uptake in radiation-exposed liver parenchyma may indicate radiation-induced liver damage. Confirmatory studies are warranted.

  4. Effect of radiation-induced damage on deuterium retention in tungsten, tungsten coatings and Eurofer

    NASA Astrophysics Data System (ADS)

    Ogorodnikova, O. V.; Sugiyama, K.

    2013-11-01

    An influence of radiation-induced damage on hydrogen isotope retention and transport in a bulk tungsten (W), dense nano-structured W coatings and Eurofer was investigated under well-defined laboratory conditions. Radiation-induced defects in W materials and Eurofer were created by irradiation with 20 MeV W ions. Following the damage production, samples were exposed to low-energy deuterium plasma. The deuterium (D) retention in each sample was subsequently measured by nuclear reaction analysis (NRA) for the depth profiling up to 6 μm. It was shown that the D retention at radiation-induced damage is almost equivalent for different W grades after irradiation at high enough fluence. The kinetic of D migration and trapping in damaged area as well as recovery of radiation-induced damage were investigated by loading at different temperatures. It was shown that deuterium retention in tungsten in fusion environment will be dominated by radiation-induced effect in a wide range of investigated temperatures, namely, from room temperature to 1100 K. Whereas displacement damage produced in Eurofer has less pronounced effect on the deuterium accumulation.

  5. Contribution of endogenous and exogenous damage to the total radiation-induced damage in the bacterial spore

    SciTech Connect

    Jacobs, G.P.; Samuni, A.; Czapski, G.

    1980-01-01

    Radical scavengers such as polyethylene glycol 4000 and bovine albumin have been used to define the contribution of exogenous and endogenous damage to the total radiation-induced damage in aqueous buffered suspensions of Bacillus pumilus spores. The results indicate that this damage in the bacterial spore is predominantly endogenous.

  6. Oxidative lipidomics of γ-radiation-induced lung injury: mass spectrometric characterization of cardiolipin and phosphatidylserine peroxidation.

    PubMed

    Tyurina, Yulia Y; Tyurin, Vladimir A; Kapralova, Valentyna I; Wasserloos, Karla; Mosher, Mackenzie; Epperly, Michael W; Greenberger, Joel S; Pitt, Bruce R; Kagan, Valerian E

    2011-05-01

    Oxidative damage plays a significant role in the pathogenesis of γ-radiation-induced lung injury. Endothelium is a preferred target for early radiation-induced damage and apoptosis. Given the newly discovered role of oxidized phospholipids in apoptotic signaling, we performed oxidative lipidomics analysis of phospholipids in irradiated mouse lungs and cultured mouse lung endothelial cells. C57BL/6NHsd female mice were subjected to total-body irradiation (10 Gy, 15 Gy) and euthanized 24 h thereafter. Mouse lung endothelial cells were analyzed 48 h after γ irradiation (15 Gy). We found that radiation-induced apoptosis in vivo and in vitro was accompanied by non-random oxidation of phospholipids. Cardiolipin and phosphatidylserine were the major oxidized phospholipids, while more abundant phospholipids (phosphatidylcholine, phosphatidylethanolamine) remained non-oxidized. Electrospray ionization mass spectrometry analysis revealed the formation of cardiolipin and phosphatidylserine oxygenated molecular species in the irradiated lung and cells. Analysis of fatty acids after hydrolysis of cardiolipin and phosphatidylserine by phospholipase A(2) revealed the presence of mono-hydroperoxy and/or mono-hydroxy/mono-epoxy, mono-hydroperoxy/mono-oxo molecular species of linoleic acid. We speculate that cyt c-driven oxidations of cardiolipin and phosphatidylserine associated with the execution of apoptosis in pulmonary endothelial cells are important contributors to endothelium dysfunction in γ-radiation-induced lung injury. PMID:21338246

  7. Oxidative Lipidomics of γ-Radiation-Induced Lung Injury: Mass Spectrometric Characterization of Cardiolipin and Phosphatidylserine Peroxidation

    PubMed Central

    Tyurina, Yulia Y.; Tyurin, Vladimir A.; Kapralova, Valentyna I.; Wasserloos, Karla; Mosher, Mackenzie; Epperly, Michael W.; Greenberger, Joel S.; Pitt, Bruce R.; Kagan, Valerian E.

    2011-01-01

    Oxidative damage plays a significant role in the pathogenesis of γ-radiation-induced lung injury. Endothelium is a preferred target for early radiation-induced damage and apoptosis. Given the newly discovered role of oxidized phospholipids in apoptotic signaling, we performed oxidative lipidomics analysis of phospholipids in irradiated mouse lungs and cultured mouse lung endothelial cells. C57BL/6NHsd female mice were subjected to total-body irradiation (10 Gy, 15 Gy) and euthanized 24 h thereafter. Mouse lung endothelial cells were analyzed 48 h after γ irradiation (15 Gy). We found that radiation-induced apoptosis in vivo and in vitro was accompanied by non-random oxidation of phospholipids. Cardiolipin and phosphatidylserine were the major oxidized phospholipids, while more abundant phospholipids (phosphatidylcholine, phosphatidylethanolamine) remained non-oxidized. Electrospray ionization mass spectrometry analysis revealed the formation of cardiolipin and phosphatidylserine oxygenated molecular species in the irradiated lung and cells. Analysis of fatty acids after hydrolysis of cardiolipin and phosphatidylserine by phospholipase A2 revealed the presence of mono-hydroperoxy and/or mono-hydroxy/mono-epoxy, mono-hydroperoxy/mono-oxo molecular species of linoleic acid. We speculate that cyt c-driven oxidations of cardiolipin and phosphatidylserine associated with the execution of apoptosis in pulmonary endothelial cells are important contributors to endothelium dysfunction in γ-radiation-induced lung injury. PMID:21338246

  8. Amelioration of radiation-induced liver damage in partially hepatectomized rats by hepatocyte transplantation.

    PubMed

    Guha, C; Sharma, A; Gupta, S; Alfieri, A; Gorla, G R; Gagandeep, S; Sokhi, R; Roy-Chowdhury, N; Tanaka, K E; Vikram, B; Roy-Chowdhury, J

    1999-12-01

    Hepatic tumors often recur in the liver after surgical resection. Postoperative radiotherapy (RT) could improve survival, but curative RT may induce delayed life-threatening radiation-induced liver damage. Because RT inhibits liver regeneration, we hypothesized that unirradiated, transplanted hepatocytes would proliferate preferentially in a partially resected and irradiated liver, providing metabolic support. We subjected F344 rats to hepatic RT and partial hepatectomy with/without a single intrasplenic, syngeneic hepatocyte transplantation. Hepatocyte transplantation ameliorated radiation-induced liver damage and improved survival of rats receiving RT after partial hepatectomy. We further demonstrated that transplanted hepatocytes extensively repopulate and function in a heavily irradiated rat liver. PMID:10606225

  9. Exposure to Heavy Ion Radiation Induces Persistent Oxidative Stress in Mouse Intestine

    PubMed Central

    Datta, Kamal; Suman, Shubhankar; Kallakury, Bhaskar V. S.; Fornace, Albert J.

    2012-01-01

    Ionizing radiation-induced oxidative stress is attributed to generation of reactive oxygen species (ROS) due to radiolysis of water molecules and is short lived. Persistent oxidative stress has also been observed after radiation exposure and is implicated in the late effects of radiation. The goal of this study was to determine if long-term oxidative stress in freshly isolated mouse intestinal epithelial cells (IEC) is dependent on radiation quality at a dose relevant to fractionated radiotherapy. Mice (C57BL/6J; 6 to 8 weeks; female) were irradiated with 2 Gy of γ-rays, a low-linear energy transfer (LET) radiation, and intestinal tissues and IEC were collected 1 year after radiation exposure. Intracellular ROS, mitochondrial function, and antioxidant activity in IEC were studied by flow cytometry and biochemical assays. Oxidative DNA damage, cell death, and mitogenic activity in IEC were assessed by immunohistochemistry. Effects of γ radiation were compared to 56Fe radiation (iso-toxic dose: 1.6 Gy; energy: 1000 MeV/nucleon; LET: 148 keV/µm), we used as representative of high-LET radiation, since it's one of the important sources of high Z and high energy (HZE) radiation in cosmic rays. Radiation quality affected the level of persistent oxidative stress with higher elevation of intracellular ROS and mitochondrial superoxide in high-LET 56Fe radiation compared to unirradiated controls and γ radiation. NADPH oxidase activity, mitochondrial membrane damage, and loss of mitochondrial membrane potential were greater in 56Fe-irradiated mice. Compared to γ radiation oxidative DNA damage was higher, cell death ratio was unchanged, and mitotic activity was increased after 56Fe radiation. Taken together our results indicate that long-term functional dysregulation of mitochondria and increased NADPH oxidase activity are major contributing factors towards heavy ion radiation-induced persistent oxidative stress in IEC with potential for neoplastic transformation. PMID

  10. Feasibility of OCT to detect radiation-induced esophageal damage in small animal models (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jelvehgaran, Pouya; Alderliesten, Tanja; Salguero, Javier; Borst, Gerben; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; de Bruin, Daniel M.; van Herk, Marcel B.

    2016-03-01

    Lung cancer survival is poor and radiotherapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to reduced food intake or even fistula formation. Only few direct techniques exist to measure radiation-induced esophageal damage, for which knowledge is needed to improve the balance between risk of tumor recurrence and complications. Optical coherence tomography (OCT) is a minimally-invasive imaging technique that obtains cross-sectional, high-resolution (1-10µm) images and is capable of scanning the esophageal wall up to 2-3mm depth. In this study we investigated the feasibility of OCT to detect esophageal radiation damage in mice. In total 30 mice were included in 4 study groups (1 main and 3 control groups). Mice underwent cone-beam CT imaging for initial setup assessment and dose planning followed by single-fraction dose delivery of 4, 10, 16, and 20Gy on 5mm spots, spaced 10mm apart. Mice were repeatedly imaged using OCT: pre-irradiation and up to 3 months post-irradiation. The control groups received either OCT only, irradiation only, or were sham-operated. We used histopathology as gold standard for radiation-induced damage diagnosis. The study showed edema in both the main and OCT-only groups. Furthermore, radiation-induced damage was primarily found in the highest dose region (distal esophagus). Based on the histopathology reports we were able to identify the radiation-induced damage in the OCT images as a change in tissue scattering related to the type of induced damage. This finding indicates the feasibility and thereby the potentially promising role of OCT in radiation-induced esophageal damage assessment.

  11. Radiation-induced DNA damage and chromatin structure

    NASA Technical Reports Server (NTRS)

    Rydberg, B.; Chatterjee, A. (Principal Investigator)

    2001-01-01

    DNA lesions induced by ionizing radiation in cells are clustered and not randomly distributed. For low linear energy transfer (LET) radiation this clustering occurs mainly on the small scales of DNA molecules and nucleosomes. For example, experimental evidence suggests that both strands of DNA on the nucleosomal surface can be damaged in single events and that this damage occurs with a 10-bp modulation because of protection by histones. For high LET radiation, clustering also occurs on a larger scale and depends on chromatin organization. A particularly significant clustering occurs when an ionizing particle traverses the 30 nm chromatin fiber with generation of heavily damaged DNA regions with an average size of about 2 kbp. On an even larger scale, high LET radiation can produce several DNA double-strand breaks in closer proximity than expected from randomness. It is suggested that this increases the probability of misrejoining of DNA ends and generation of lethal chromosome aberrations.

  12. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENNTIAL FLUORESENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposures...

  13. DETECTION OF LOW DOSE RADIATION INDUCED DNA DAMAGE USING TEMPERATURE DIFFERENTIAL FLUORESCENCE ASSAY

    EPA Science Inventory

    A rapid and sensitive fluorescence assay for radiation-induced DNA damage is reported. Changes in temperature-induced strand separation in both calf thymus DNA and plasmid DNA (puc 19 plasmid from Escherichia coli) were measured after exposure to low doses of radiation. Exposur...

  14. A stochastic model of radiation-induced bone marrow damage

    SciTech Connect

    Cotlet, G.; Blue, T.E.

    2000-03-01

    A stochastic model, based on consensus principles from radiation biology, is used to estimate bone-marrow stem cell pool survival (CFU-S and stroma cells) after irradiation. The dose response model consists of three coupled first order linear differential equations which quantitatively describe time dependent cellular damage, repair, and killing of red bone marrow cells. This system of differential equations is solved analytically through the use of a matrix approach for continuous and fractionated irradiations. The analytic solutions are confirmed through the dynamical solution of the model equations using SIMULINK. Rate coefficients describing the cellular processes of radiation damage and repair, extrapolated to humans from animal data sets and adjusted for neutron-gamma mixed fields, are employed in a SIMULINK analysis of criticality accidents. The results show that, for the time structures which may occur in criticality accidents, cell survival is established mainly by the average dose and dose rate.

  15. Aminoguanidine Alleviates Radiation-Induced Small-Bowel Damage Through Its Antioxidant Effect

    SciTech Connect

    Huang, E.-Y.; Wang, F.-S.; Lin, I-H.; Yang, Kuender D.

    2009-05-01

    Purpose: To evaluate the effect and its mechanism of aminoguanidine (AG) on small-bowel protection after whole-abdominal irradiation (WAI) in rats. Methods and Materials: Male Sprague-Dawley rats (300-400 g) subjected to 12 Gy WAI were used for the study. Aminoguanidine at a dose of 50-800 mg/kg was administered by the gavage route 2 h before WAI. Mucosal damage of small bowel was evaluated by the grade of diarrhea and crypt survival; oxidative stress was determined by the level of 8-hydroxy 2'-deoxyguanosine (8-OHdG) with immunohistochemistry (IHC). Nitrosative stress was evaluated by the expression of inducible nitric oxide synthase (iNOS) and 3-nitrotyrosine (3-NT) with IHC, and systemic and portal vein NOx (nitrite + nitrate) levels were measured and compared with and without AG treatment after WAI. Results: Aminoguanidine showed a dose-dependent effect against WAI-induced diarrhea. Aminoguanidine at a dose of 400 mg/kg had the best protective effect, from 92% to 17% (p = 0.002). Aminoguanidine increased crypt survival from 23% to 46% (p = 0.003). It also significantly attenuated 8-OHdG expression but not 3-NT and iNOS expression at both 4 and 8 h after 12-Gy WAI. Aminoguanidine did not alter the portal vein NOx levels 4 and 8 h after 12-Gy WAI. Conclusion: Aminoguanidine has a radioprotective effect against radiation-induced small-bowel damage due to its antioxidant effect but not inhibition of nitric oxide production. Dietary AG may have a potentially protective effect on the small intestine of patients subjected to pelvic and abdominal radiotherapies.

  16. Radiation-induced renal damage: the effects of hyperfractionation. [Mice

    SciTech Connect

    Stewart, F.A.; Soranson, J.A.; Alpen, E.L.; Williams, M.V.; Denekamp, J.

    1984-05-01

    The response of mouse kidneys to multifraction irradiation was assessed using three nondestructive functional end points. A series of schedules was investigated giving 1, 2, 4, 8, 16, 32, or 64 equal X-ray doses, using doses per fraction in the range of 0.9 to 16 Gy. The overall treatment time was kept constant at 3 weeks. Kidney function was assessed from 19 to 48 weeks after irradiation by measuring changes in isotope clearance, urine output, and hematocrit. All three assays yielded steep dose-effect curves from which the repair capacity of kidney could be estimated by comparing the isoeffective doses in different schedules. There was a marked influence of fractionation, with increasing dose being required to achieve the same level of damage for increasing fraction number, even between 32 and 64 fractions. The data are well fitted by a linear quadratic dose-response equation, and analysis of the data would suggest that hyperfractionation, using extremely small X-ray doses per fraction, would spare kidneys relative to tumors and acutely responding tissues.

  17. Spontaneous perseverative turning in rats with radiation-induced hippocampal damage

    SciTech Connect

    Mickley, G.A.; Ferguson, J.L.; Nemeth, T.J.; Mulvihill, M.A.; Alderks, C.E. )

    1989-08-01

    This study found a new behavioral correlate of lesions specific to the dentate granule cell layer of the hippocampus: spontaneous perseverative turning. Irradiation of a portion of the neonatal rat cerebral hemispheres produced hypoplasia of the granule cell layer of the hippocampal dentate gyrus while sparing the rest of the brain. Radiation-induced damage to the hippocampal formation caused rats placed in bowls to spontaneously turn in long, slow bouts without reversals. Irradiated subjects also exhibited other behaviors characteristic of hippocampal damage (e.g., perseveration in spontaneous exploration of the arms of a T-maze, retarded acquisition of a passive avoidance task, and increased horizontal locomotion). These data extend previously reported behavioral correlates of fascia dentata lesions and suggest the usefulness of a bout analysis of spontaneous bowl turning as a measure of nondiscrete-trial spontaneous alternation and a sensitive additional indicator of radiation-induced hippocampal damage.

  18. The Effect of a Grape Seed Extract on Radiation-Induced DNA Damage in Human Lymphocytes

    NASA Astrophysics Data System (ADS)

    Dicu, Tiberius; Postescu, Ion D.; Foriş, Vasile; Brie, Ioana; Fischer-Fodor, Eva; Cernea, Valentin; Moldovan, Mircea; Cosma, Constantin

    2009-05-01

    Plant-derived antioxidants due to their phenolic compounds content are reported as potential candidates for reducing the levels of oxidative stress in living organisms. Grape seed extracts are very potent antioxidants and exhibit numerous interesting pharmacologic activities. Hydroethanolic (50/50, v/v) standardized extract was obtained from red grape seed (Vitis vinifera, variety Burgund Mare—BM). The total polyphenols content was evaluated by Folin-Ciocalteu procedure and expressed as μEq Gallic Acid/ml. The aim of this study was to evaluate the potential antioxidant effects of different concentrations of BM extract against 60Co γ-rays induced DNA damage in human lymphocytes. Samples of human lymphocytes were incubated with BM extract (12.5, 25.0 and 37.5 μEq GA/ml, respectively) administered at 30 minutes before in vitro irradiation with γ-rays (2 Gy). The DNA damage and repair in lymphocytes were evaluated using alkaline comet assay. Using the lesion score, the radiation-induced DNA damage was found to be significantly different (p<0.05) from control, both in the absence and presence of BM extract (except the lymphocytes treated with 37.5 μEq GA/ml BM extract). DNA repair analyzed by incubating the irradiated cells at 37° C and 5% CO2 atmosphere for 2 h, indicated a significant difference (p<0.05) in the lymphocytes group treated with 25.0 μEq GA/ml BM extract, immediately and two hours after irradiation. These results suggest radioprotective effects after treatment with BM extract in human lymphocytes.

  19. How Magnetotactic Bacteria Respond to Radiation Induced Stress and Damage: Comparative Genomics Evidences for Evolutionary Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Pan, Y.

    2015-12-01

    Solar radiation and galactic cosmic radiation is believed to be major restriction factors influencing survival and evolution of life. On planet earth, geomagnetic field along with atmosphere protect living beings from the harmful radiation. During a geomagnetic reversal or excursion, however, the efflux of charged particles on earth surface would increase as the shielding effect of magnetic field decrease. The stratospheric ozone can also be partially stripped away by solar wind when the strength of the field is weak, leading to an increasing ultraviolet radiation penetration to the earth surface. However, studies on the mechanism of radiation induced stress and damage are focused only on bacteria that have no response to magnetic field. This study was motivated by the need to fill the gap upon knowledge of that on magnetic field sensitive microorganism. Magnetotactic bacteria (MTB) are a group of microbes that are able to synthesis intracellular nano-sized magnetic particles (named magnetosomes). These chain-arranged magnetosomes help MTB sense and swim along the magnetic field to find their optimal living environment efficiently. In this paper, in silico prediction of stress and damage repair genes in response to different radiation were carried out on the complete genome of four nonmagnetotactic and four magnetotactic spirilla. In silico analyses of the genomes of magnetic field sensitive and non-sensitive spirilla revealed: 1) all strains contain genes for regulate responses superoxide and peroxide stress, DNA pyrimidine dimer and string breaks; 2) non-magnetotactic spirilla have more genes dealing with oxidative stress, while magnetotactic spirilla may benefit from magnetotaxis by swimming into oxic-anoxic zone away from oxidative stress and direct radiation damage; yet, the lipid hydroperoxide peroxidase gene in MTB may be responsible for possible ROS generated by the membrane enveloped magnetite magnetosome; 3) magnetotactic spirilla possess SOS rec

  20. Oxidative stress and gamma radiation-induced cancellous bone loss with musculoskeletal disuse

    PubMed Central

    Kondo, Hisataka; Yumoto, Kenji; Alwood, Joshua S.; Mojarrab, Rose; Wang, Angela; Almeida, Eduardo A. C.; Searby, Nancy D.; Limoli, Charles L.

    2010-01-01

    Exposure of astronauts in space to radiation during weightlessness may contribute to subsequent bone loss. Gamma irradiation of postpubertal mice rapidly increases the number of bone-resorbing osteoclasts and causes bone loss in cancellous tissue; similar changes occur in skeletal diseases associated with oxidative stress. Therefore, we hypothesized that increased oxidative stress mediates radiation-induced bone loss and that musculoskeletal disuse changes the sensitivity of cancellous tissue to radiation exposure. Musculoskeletal disuse by hindlimb unloading (1 or 2 wk) or total body gamma irradiation (1 or 2 Gy of 137Cs) of 4-mo-old, male C57BL/6 mice each decreased cancellous bone volume fraction in the proximal tibiae and lumbar vertebrae. The extent of radiation-induced acute cancellous bone loss in tibiae and lumbar vertebrae was similar in normally loaded and hindlimb-unloaded mice. Similarly, osteoclast surface in the tibiae increased 46% as a result of irradiation, 47% as a result of hindlimb unloading, and 64% as a result of irradiation + hindlimb unloading compared with normally loaded mice. Irradiation, but not hindlimb unloading, reduced viability and increased apoptosis of marrow cells and caused oxidative damage to lipids within mineralized tissue. Irradiation also stimulated generation of reactive oxygen species in marrow cells. Furthermore, injection of α-lipoic acid, an antioxidant, mitigated the acute bone loss caused by irradiation. Together, these results showed that disuse and gamma irradiation, alone or in combination, caused a similar degree of acute cancellous bone loss and shared a common cellular mechanism of increased bone resorption. Furthermore, irradiation, but not disuse, may increase the number of osteoclasts and the extent of acute bone loss via increased reactive oxygen species production and ensuing oxidative damage, implying different molecular mechanisms. The finding that α-lipoic acid protected cancellous tissue from the

  1. Radiation induced oxidative stress: I. Studies in Ehrlich solid tumor in mice.

    PubMed

    Agrawal, A; Choudhary, D; Upreti, M; Rath, P C; Kale, R K

    2001-07-01

    Understanding the response of tumors to ionizing radiation might potentially lead to improvement in tumor control and patient morbidity. Since the antioxidant status is likely to be linked to radioresponse, its modulation needs to be examined. Therefore, Swiss albino male mice (7-8 weeks old) with Ehrlich solid tumors were irradiated with different doses of gamma rays (0-9 Gy) at a dose rate of 0.0153 Gy/s; and enzymes involved in antioxidant functions were determined in the tumors. Radiation effects in terms of oxidative damage, LDH, nitric oxide and DNA fragmentation were also examined. In tumors, the specific activity of SOD was increased with dose but declined 6 Gy onwards. GST, DTD and GSH showed an almost progressive increase. These enhanced activities might have resulted from the increased protein expression. This possibility was supported by the Western Blot analysis for GST protein. These changes might be closely linked to the radiation-induced oxidative stress as reflected by the enhanced levels of peroxidative damage, DNA fragmentation, LDH activity and nitric oxide levels. These findings may have relevance to radiation therapy of cancer as the elevated antioxidant status of irradiated tumors is likely to limit the effectiveness of radiation dose and adversely affect the therapeutic gain. PMID:11681724

  2. Base excision repair of ionizing radiation-induced DNA damage in G1 and G2 cell cycle phases

    PubMed Central

    Chaudhry, M Ahmad

    2007-01-01

    Background Major genomic surveillance mechanisms regulated in response to DNA damage exist at the G1/S and G2/M checkpoints. It is presumed that these delays provide time for the repair of damaged DNA. Cells have developed multiple DNA repair pathways to protect themselves from different types of DNA damage. Oxidative DNA damage is processed by the base excision repair (BER) pathway. Little is known about the BER of ionizing radiation-induced DNA damage and putative heterogeneity of BER in the cell cycle context. We measured the activities of three BER enzymes throughout the cell cycle to investigate the cell cycle-specific repair of ionizing radiation-induced DNA damage. We further examined BER activities in G2 arrested human cells after exposure to ionizing radiation. Results Using an in vitro incision assay involving radiolabeled oligonucleotides with specific DNA lesions, we examined the activities of several BER enzymes in the whole cell extracts prepared from synchronized human HeLa cells irradiated in G1 and G2 phase of the cell cycle. The activities of human endonuclease III (hNTH1), a glycosylase/lyase that removes several damaged bases from DNA including dihydrouracil (DHU), 8-oxoguanine-DNA glycosylase (hOGG1) that recognizes 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) lesion and apurinic/apyrimidinic endonuclease (hAPE1) that acts on abasic sites including synthetic analog furan were examined. Conclusion Overall the repair activities of hNTH1 and hAPE1 were higher in the G1 compared to G2 phase of the cell cycle. The percent cleavages of oligonucleotide substrate with furan were greater than substrate with DHU in both G1 and G2 phases. The irradiation of cells enhanced the cleavage of substrates with furan and DHU only in G1 phase. The activity of hOGG1 was much lower and did not vary within the cell cycle. These results demonstrate the cell cycle phase dependence on the BER of ionizing radiation-induced DNA damage. Interestingly no evidence of

  3. Amelioration of radiation-induced hematopoietic and gastrointestinal damage by Ex-RAD® in mice

    PubMed Central

    Ghosh, Sanchita P.; Kulkarni, Shilpa; Perkins, Michael W.; Hieber, Kevin; Pessu, Roli L.; Gambles, Kristen; Maniar, Manoj; Kao, Tzu-Cheg; Seed, Thomas M.; Kumar, K. Sree

    2012-01-01

    The aim of the present study was to assess recovery from hematopoietic and gastrointestinal damage by Ex-RAD®, also known as ON01210.Na (4-carboxystyryl-4-chlorobenzylsulfone, sodium salt), after total body radiation. In our previous study, we reported that Ex-RAD, a small-molecule radioprotectant, enhances survival of mice exposed to gamma radiation, and prevents radiation-induced apoptosis as measured by the inhibition of radiation-induced protein 53 (p53) expression in cultured cells. We have expanded this study to determine best effective dose, dose-reduction factor (DRF), hematological and gastrointestinal protection, and in vivo inhibition of p53 signaling. A total of 500 mg/kg of Ex-RAD administered at 24 h and 15 min before radiation resulted in a DRF of 1.16. Ex-RAD ameliorated radiation-induced hematopoietic damage as monitored by the accelerated recovery of peripheral blood cells, and protection of granulocyte macrophage colony-forming units (GM-CFU) in bone marrow. Western blot analysis on spleen indicated that Ex-RAD treatment inhibited p53 phosphorylation. Ex-RAD treatment reduces terminal deoxynucleotidyl transferase mediated dUTP nick end labeling assay (TUNEL)-positive cells in jejunum compared with vehicle-treated mice after radiation injury. Finally, Ex-RAD preserved intestinal crypt cells compared with the vehicle control at 13 and 14 Gy. The results demonstrated that Ex-RAD ameliorates radiation-induced peripheral blood cell depletion, promotes bone marrow recovery, reduces p53 signaling in spleen and protects intestine from radiation injury. PMID:22843617

  4. Role of nitric oxide in the radiation-induced bystander effect.

    PubMed

    Yakovlev, Vasily A

    2015-12-01

    Cells that are not irradiated but are affected by "stress signal factors" released from irradiated cells are called bystander cells. These cells, as well as directly irradiated ones, express DNA damage-related proteins and display excess DNA damage, chromosome aberrations, mutations, and malignant transformation. This phenomenon has been studied widely in the past 20 years, since its first description by Nagasawa and Little in 1992, and is known as the radiation-induced bystander effect (RIBE). Several factors have been identified as playing a role in the bystander response. This review will focus on one of them, nitric oxide (NO), and its role in the stimulation and propagation of RIBE. The hydrophobic properties of NO, which permit its diffusion through the cytoplasm and plasma membranes, allow this signaling molecule to easily spread from irradiated cells to bystander cells without the involvement of gap junction intercellular communication. NO produced in irradiated tissues mediates cellular regulation through posttranslational modification of a number of regulatory proteins. The best studied of these modifications are S-nitrosylation (reversible oxidation of cysteine) and tyrosine nitration. These modifications can up- or down-regulate the functions of many proteins modulating different NO-dependent effects. These NO-dependent effects include the stimulation of genomic instability (GI) and the accumulation of DNA errors in bystander cells without direct DNA damage. PMID:26355395

  5. Grapevine fruit extract protects against radiation-induced oxidative stress and apoptosis in human lymphocyte.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2015-11-01

    Ionizing radiation (IR) causes oxidative stress through overwhelming generation of reactive oxygen species (ROS) in the living cells leading the oxidative damage further to biomolecules. Grapevine (Vitis vinifera L.) posses several bioactive phytochemicals and is the richest source of antioxidants. In this study, we investigated V. vinifera for its phytochemical content, enzymes profile and, ROS- and oxidant-scavenging activities. We have also studied the fruit extract of four different grapevine viz., Thompson seedless, Flame seedless, Kishmish chorni and Red globe for their radioprotective actions in human lymphocytes. The activities of ascorbic acid oxidase and catalase significantly (P < 0.01) differed among extracts within the same cultivar, while that of peroxidase and polyphenol oxidase did not differ significantly. The superoxide radical-scavenging activity was higher in the seed as compared to the skin or pulp of the same cultivar. Pretreatment with grape extracts attenuated the oxidative stress induced by 4 Gy γ-radiation in human lymphocytes in vitro. Further, γ-radiation-induced increase in caspase 3/7 activity was significantly attenuated by grape extracts. These results suggest that grape extract serve as a potential source of natural antioxidants against the IR-induced oxidative stress and also inhibit apoptosis. Furthermore, the protective action of grape depends on the source of extract (seed, skin or pulp) and type of the cultivars. PMID:26669019

  6. Geraniin down regulates gamma radiation-induced apoptosis by suppressing DNA damage.

    PubMed

    Bing, So Jin; Ha, Danbee; Kim, Min Ju; Park, Eunjin; Ahn, Ginnae; Kim, Dae Seung; Ko, Ryeo Kyeong; Park, Jae Woo; Lee, Nam Ho; Jee, Youngheun

    2013-07-01

    Gamma ray irradiation triggers DNA damage and apoptosis of proliferating stem cells and peripheral immune cells, resulting in the destruction of intestinal crypts and lymphoid system. Geraniin is a natural compound extracts from an aquatic plant Nymphaea tetragona and possesses good antioxidant property. In this study, we demonstrate that geraniin rescues radiosensitive splenocytes and jejunal crypt cells from radiation-induced DNA damage and apoptosis. Isolated splenocytes from C57BL/6 mice treated with geraniin were protected against radiation injury of 2 Gy irradiation through the enhancement of the proliferation and attenuation of DNA damage. Also, geraniin inhibited apoptosis in radiosensitive splenocytes by reducing the expression level and immunoreactivity of proapoptotic p53 and Bax and increasing those of anti-apoptotic Bcl-2. In mice exposed to radiation, geraniin treatment protected splenocytes and intestinal crypt cells from radiation-induced cell death. Our results suggest that geraniin presents radioprotective effects by regulating DNA damage on splenocytes, exerting immunostimulatory capacities and inhibiting apoptosis of radiosensitive immune cells and jejunal crypt cells. Therefore, geraniin can be a radioprotective agent against γ-irradiation exposure. PMID:23541438

  7. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1984-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weight. A cationic mechanism is evidenced by the strongly retarding effect of tri-n-propylamine on the polymerization rate. At 25/sup 0/C, limonene oxide gives the highest polymerization rates, an average conversion of 36% per Mrad being obtained in comparison with values of 5.7 and 7.3% per Mrad for the ..cap alpha..-pinene and ..beta..-pinene oxides, respectively. Similarly, the average anti DP/sub n/ decreases from 11.8 for the limonene oxide polymer to 5.6 and 4.0 for the ..cap alpha..-pinene oxide and ..beta..-pinene oxide polymers, respectively. A high frequency of chain transfer to monomer is indicated in each case by the fact that the kinetic chain lengths are estimated to be on the order of a hundred times larger than the anti DP/sub n/ values. Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that in the polymerization of these monomers, the opening of the epoxide ring is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-dimethyl group in the main chain. The detection of isopropenyl end groups in the pinene oxide polymers is also consistent with this mode of propagation being followed by chain (proton) transfer to monomer.

  8. Trans-Differentiation of Neural Stem Cells: A Therapeutic Mechanism Against the Radiation Induced Brain Damage

    PubMed Central

    Kang, Bong Gu; Lee, Se Jeong; Kim, Kang Ho; Yang, Heekyoung; Lee, Young-Ae; Cho, Yu Jin; Im, Yong-Seok; Lee, Dong-Sup; Lim, Do-Hoon; Kim, Dong Hyun; Um, Hong-Duck; Lee, Sang-Hun; Lee, Jung-II; Nam, Do-Hyun

    2012-01-01

    Radiation therapy is an indispensable therapeutic modality for various brain diseases. Though endogenous neural stem cells (NSCs) would provide regenerative potential, many patients nevertheless suffer from radiation-induced brain damage. Accordingly, we tested beneficial effects of exogenous NSC supplementation using in vivo mouse models that received whole brain irradiation. Systemic supplementation of primarily cultured mouse fetal NSCs inhibited radiation-induced brain atrophy and thereby preserved brain functions such as short-term memory. Transplanted NSCs migrated to the irradiated brain and differentiated into neurons, astrocytes, or oligodendrocytes. In addition, neurotrophic factors such as NGF were significantly increased in the brain by NSCs, indicating that both paracrine and replacement effects could be the therapeutic mechanisms of NSCs. Interestingly, NSCs also differentiated into brain endothelial cells, which was accompanied by the restoration the cerebral blood flow that was reduced from the irradiation. Inhibition of the VEGF signaling reduced the migration and trans-differentiation of NSCs. Therefore, trans-differentiation of NSCs into brain endothelial cells by the VEGF signaling and the consequential restoration of the cerebral blood flow would also be one of the therapeutic mechanisms of NSCs. In summary, our data demonstrate that exogenous NSC supplementation could prevent radiation-induced functional loss of the brain. Therefore, successful combination of brain radiation therapy and NSC supplementation would provide a highly promising therapeutic option for patients with various brain diseases. PMID:22347993

  9. Radiation induced apoptosis and initial DNA damage are inversely related in locally advanced breast cancer patients

    PubMed Central

    2010-01-01

    Background DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity. PMID:20868468

  10. Radioprotective effect of geraniin via the inhibition of apoptosis triggered by γ-radiation-induced oxidative stress.

    PubMed

    Kang, Kyoung Ah; Lee, In Kyung; Zhang, Rui; Piao, Mei Jing; Kim, Ki Cheon; Kim, Sang Young; Shin, Taekyun; Kim, Bum Joon; Lee, Nam Ho; Hyun, Jin Won

    2011-04-01

    The radioprotective effect of geraniin, a tannin compound isolated from Nymphaea tetragona Georgi var. (Nymphaeaceae), against γ-radiation-induced damage was investigated in Chinese hamster lung fibroblast (V79-4) cells. Geraniin recovered cell viability detected by MTT test and colony formation assay, which was compromised by γ-radiation, and reduced the γ-radiation-induced apoptosis by the inhibition of loss of the mitochondrial membrane potential. Geraniin protected cellular components (lipid membrane, cellular protein, and DNA) damaged by γ-radiation, which was detected by lipid peroxidation, protein carbonyl formation, and comet assay. Geraniin significantly reduced the level of intracellular reactive oxygen species generated by γ-radiation, which was detected using spectrofluorometer, flow cytometer, and confocal microscope after 2',7'-dichlorodihydrofluorescein diacetate staining. Geraniin normalized the superoxide dismutase and catalase activities, which were decreased by γ-radiation. These results suggest that geraniin protects cells against radiation-induced oxidative stress via enhancing of antioxidant enzyme activities and attenuating of cellular damage. PMID:20680428

  11. Dragon's blood and its extracts attenuate radiation-induced oxidative stress in mice.

    PubMed

    Ran, Yuanyuan; Wang, Ran; Gao, Qian; Jia, Qiutian; Hasan, Murtaza; Awan, Muhammad Umer Farooq; Tang, Bo; Zhou, Rui; Dong, Yiming; Wang, Xiao; Li, Qiang; Ma, Hong; Deng, Yulin; Qing, Hong

    2014-07-01

    Dragon's blood (DB) possesses great medicinal values due to the presence of several phenolic compounds. This study was designed to investigate the effects of DB and its extracts (DBEs) on oxidative stress in mice exposed to whole body (60)Co-γ irradiation (4 Gy). DB and DBEs were intragastrically administered to mice for 5 d prior to radiation. The antioxidant activities, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) levels in liver and spleen were measured using kits. Furthermore, DB and DBE effects were determined by organ indices and histology of liver and spleen. Our results indicated that the DB and DBE-treated groups showed a significant decrease (P < 0.05) in levels of MDA in liver and spleen compared with the irradiation-only group. Moreover, the activity of SOD, CAT and the level of GSH in liver and spleen tissue were enhanced significantly (P < 0.05) in the DB and DBE groups. DB and DBE also had a significant effect on the recovery of thymus indices. The histological observations of groups having treatment with DB and DBE indicated significant reduction in the radiation-induced damage to the liver and spleen, together with improvement in the morphology of the liver and spleen. These results suggest that DB and DBE treatment prevents radiation-induced oxidative stress injury and restores antioxidant status and histopathological changes in the liver and spleen, but there is need for further study to explore the precise molecular mechanism and strategy for optimal practical application of DB and DBE. PMID:24634306

  12. Radiation-induced cationic polymerization of limonene oxide,. cap alpha. -pinene oxide, and. beta. -pinene oxide

    SciTech Connect

    Aikins, J.A.; Williams, F.

    1985-01-01

    After suitable drying, the subject monomers in the form of neat liquids undergo radiation-induced polymerization with no apparent side reactions and high conversions to precipitatable polymers of low molecular weights. A high frequency of chain (proton) transfer to monomer is indicated by the fact that the kinetic chain lengths are estimated to be several hundred times larger than the range of DP/sub n/ values (12-4). Structural characterization of the limonene oxide polymer by /sup 1/H and /sup 13/C NMR spectroscopy provides conclusive evidence that the polymerization proceeds by the opening of the epoxide ring to yield a 1,2-trans polyether. Similar NMR studies on the polymers formed from the ..cap alpha..-pinene and ..beta..-pinene oxides show that the opening of the epoxide ring for these monomers is generally accompanied by the concomitant ring opening of the cyclobutane ring structure to yield a gem-di-methyl group in the main chain.

  13. Acute radiation-induced pulmonary damage: a clinical study on the response to fractionated radiation therapy.

    PubMed

    Mah, K; Van Dyk, J; Keane, T; Poon, P Y

    1987-02-01

    Acute radiation-induced pulmonary damage can be a significant cause of morbidity in radiation therapy of the thorax. A prospective, clinical study was conducted to obtain dose-response data on acute pulmonary damage caused by fractionated radiation therapy. The endpoint was a visible increase in lung density within the irradiated volume on a computed tomographic (CT) examination as observed independently by three diagnostic radiologists. Fifty-four patients with various malignancies of the thorax completed the study. CT chest scans were taken before and at preselected times following radiotherapy. To represent different fractionation schedules of equivalent biological effect, the estimated single dose (ED) model, ED = D X N-0.377 X T-0.058 was used in which D was the average lung dose within the high dose region in cGy, N was the number of fractions, and T was the overall treatment time in days. Patients were grouped according to ED and the percent incidence of pulmonary damage for each group was determined. Total average lung doses ranged from 29.8 Gy to 53.6 Gy given in 10 to 30 fractions over a range of 12 to 60 days. Five patient groups with incidence ranging from 30% (ED of 930) to 90% (ED of 1150) were obtained. The resulting dose-response curve predicted a 50% incidence level at an ED value (ED50) of 1000 +/- 40 ED units. This value represents fractionation schedules equivalent to a total average lung dose of 32.9 Gy given in 15 fractions over 19 days. Over the linear portion of the dose-response curve, a 5% increase in ED (or total dose if N and T remain constant), predicts a 12% increase in the incidence of acute radiation-induced pulmonary damage. PMID:3818385

  14. Targeting the Renin–Angiotensin System Combined With an Antioxidant Is Highly Effective in Mitigating Radiation-Induced Lung Damage

    SciTech Connect

    Mahmood, Javed; Jelveh, Salomeh; Zaidi, Asif; Doctrow, Susan R.; Medhora, Meetha; Hill, Richard P.

    2014-07-15

    Purpose: To investigate the outcome of suppression of the renin angiotensin system using captopril combined with an antioxidant (Eukarion [EUK]-207) for mitigation of radiation-induced lung damage in rats. Methods and Materials: The thoracic cavity of female Sprague-Dawley rats was irradiated with a single dose of 11 Gy. Treatment with captopril at a dose of 40 mg/kg/d in drinking water and EUK-207 given by subcutaneous injection (8 mg/kg daily) was started 1 week after irradiation (PI) and continuing until 14 weeks PI. Breathing rate was monitored until the rats were killed at 32 weeks PI, when lung fibrosis was assessed by lung hydroxyproline content. Lung levels of the cytokine transforming growth factor-β1 and macrophage activation were analyzed by immunohistochemistry. Oxidative DNA damage was assessed by 8-hydroxy-2-deoxyguanosine levels, and lipid peroxidation was measured by a T-BARS assay. Results: The increase in breathing rate in the irradiated rats was significantly reduced by the drug treatments. The drug treatment also significantly decreased the hydroxyproline content, 8-hydroxy-2-deoxyguanosine and malondialdehyde levels, and levels of activated macrophages and the cytokine transforming growth factor-β1 at 32 weeks. Almost complete mitigation of these radiation effects was observed by combining captopril and EUK-207. Conclusion: Captopril and EUK-207 can provide mitigation of radiation-induced lung damage out to at least 32 weeks PI after treatment given 1-14 weeks PI. Overall the combination of captopril and EUK-207 was more effective than the individual drugs used alone.

  15. Inactivation of NADPH Oxidases NOX4 and NOX5 Protects Human Primary Fibroblasts from Ionizing Radiation-Induced DNA Damage

    PubMed Central

    Weyemi, Urbain; Redon, Christophe E.; Aziz, Towqir; Choudhuri, Rohini; Maeda, Daisuke; Parekh, Palak R.; Bonner, Michael Y.; Arbiser, Jack L.; Bonner, William M.

    2015-01-01

    Human exposure to ionizing radiation from medical procedures has increased sharply in the last three decades. Recent epidemiological studies suggest a direct relationship between exposure to ionizing radiation and health problems, including cancer incidence. Therefore, minimizing the impact of radiation exposure in patients has become a priority in the development of future clinical practices. Crucial players in radiation-induced DNA damage include reactive oxygen species (ROS), but the sources of these have remained elusive. To the best of our knowledge, we show here for the first time that two members of the ROS-generating NADPH oxidase family (NOXs), NOX4 and NOX5, are involved in radiation-induced DNA damage. Depleting these two NOXs in human primary fibroblasts resulted in reduced levels of DNA damage as measured by levels of radiation-induced foci, a marker of DNA double-strand breaks (DSBs) and the comet assay coupled with increased cell survival. NOX involvement was substantiated with fulvene-5, a NOXs-specific inhibitor. Moreover, fulvene-5 mitigated radiation-induced DNA damage in human peripheral blood mononuclear cells ex vivo. Our results provide evidence that the inactivation of NOXs protects cells from radiation-induced DNA damage and cell death. These findings suggest that NOXs inhibition may be considered as a future pharmacological target to help minimize the negative effects of radiation exposure for millions of patients each year. PMID:25706776

  16. HSPB1 polymorphisms might be associated with radiation-induced damage risk in lung cancer patients treated with radiotherapy.

    PubMed

    Li, Xiaofeng; Xu, Sheng; Cheng, Yu; Shu, Jun

    2016-05-01

    Several studies investigating the association between heat shock protein beta-1 (HSPB1) polymorphisms and radiation-induced damage in lung cancer patients administrated with radiotherapy have derived conflicting results. This meta-analysis aimed to assess the association between the HSPB1 genes' (rs2868370 and rs2868371) polymorphisms and the risk of radiation-induced damage in lung cancer patients. After an electronic literature search, four articles including six studies were found to be eligible for this meta-analysis. No association was observed between rs2868370 genotypes and radiation-induced damage risk. However, rs2868371 showed a statistically increased risk of radiation-induced damage under CC vs. CG/GG model (OR = 1.59, 95 % CI = 1.10-2.29). Subgroup analysis by ethnicity showed that the genotypes of rs2868371 were also associated with a significantly increased risk of radiation-induced damage in CC vs. CG/GG model (OR = 1.86, 95 % CI = 1.21-2.83) among mixed ethnicities which are mainly comprised of white people. When the data was stratified by organ-damaged, a significant association was only observed in the esophagus group (OR = 2.94, 95 % CI = 1.35-6.37, for CC vs. CG/GG model). In conclusion, the present study demonstrated that the rs2868371 genotypes of HSPB1 might be associated with radiation-induced esophagus damage risk, especially in Caucasians but not in the Asian population. PMID:26874728

  17. Radiation-induced deposition of transparent conductive tin oxide coatings

    NASA Astrophysics Data System (ADS)

    Umnov, S.; Asainov, O.; Temenkov, V.

    2016-04-01

    The study of tin oxide films is stimulated by the search for an alternative replacement of indium-tin oxide (ITO) films used as transparent conductors, oxidation catalysts, material gas sensors, etc. This work was aimed at studying the influence of argon ions irradiation on optical and electrical characteristics of tin oxide films. Thin films of tin oxide (without dopants) were deposited on glass substrates at room temperature using reactive magnetron sputtering. After deposition, the films were irradiated with an argon ion beam. The current density of the beam was (were) 2.5 mA/cm2, and the particles energy was 300-400 eV. The change of the optical and electrical properties of the films depending on the irradiation time was studied. Films optical properties were investigated by photometry in the range of 300-1100 nm. Films structural properties were studied using X-ray diffraction. The diffractometric research showed that the films, deposited on a substrate, had a crystal structure, and after argon ions irradiation they became quasi-crystalline (amorphous). It has been found that the transmission increases proportionally with the irradiation time, however the sheet resistance increases disproportionally. Tin oxide films (thickness ~30 nm) with ~100% transmittance and sheet resistance of ~100 kOhm/sq. were obtained. The study has proved to be prospective in the use of ion beams to improve the properties of transparent conducting oxides.

  18. Modification of high LET radiation-induced damage and its repair in yeast by hypoxia.

    PubMed

    Subrahmanyam, P; Rao, B S; Reddy, N M; Murthy, M S; Madhvanath, U

    1979-11-01

    The lethal response of a diploid yeast strain BZ34 to densely ionizing radiations from the reaction 10B(n, alpha)7 Li was studied. The values for relative biological effectiveness (r.b.e.) and oxygen enhancement ratio (o.e.r.) for this radiation compare favourably with the data obtained with charged particles on the same strain of yeast. Recovery from potentially lethal damage was also studied by post-irradiation holding under non-nutrient conditions. In order to understand the role of oxygen in the recovery process, the investigation covered the following treatment regimens: (a) aerobic irradiation and aerobic holding (A-A), (b) aerobic irradiation and hypoxic holding (A-H), (c) hypoxic irradiation and hypoxic holding (H-H) and (d) hypoxic irradiation and aerobic holding (H-A). It has been found that the presence of oxygen is essential for recovery from the damage induced by both gamma rays and high linear energy transfer (LET) radiations. The extent of recovery was larger for gamma-induced damage than for damage induced by high LET radiation (alpha + 7Li) for the A-A condition. In the H-H condition, while only a slight recovery was seen for gamma-induced damage, it was totally absent for high LET damage. For the modality A-H, it was found that there is not recovery from the sparsely ionising gamma radiation-induced damage. The implications of these results for the treatment of malignant tumours by radiotherapy are briefly discussed. PMID:397200

  19. Spatiotemporal characterization of ionizing radiation induced DNA damage foci and their relation to chromatin organization

    SciTech Connect

    Costes, Sylvain V; Chiolo, Irene; Pluth, Janice M.; Barcellos-Hoff, Mary Helen; Jakob, Burkhard

    2009-09-15

    DNA damage sensing proteins have been shown to localize to the sites of DSB within seconds to minutes following ionizing radiation (IR) exposure, resulting in the formation of microscopically visible nuclear domains referred to as radiation-induced foci (RIF). This review characterizes the spatio-temporal properties of RIF at physiological doses, minutes to hours following exposure to ionizing radiation, and it proposes a model describing RIF formation and resolution as a function of radiation quality and nuclear densities. Discussion is limited to RIF formed by three interrelated proteins ATM (Ataxia telangiectasia mutated), 53BP1 (p53 binding protein 1) and ?H2AX (phosphorylated variant histone H2AX). Early post-IR, we propose that RIF mark chromatin reorganization, leading to a local nuclear scaffold rigid enough to keep broken DNA from diffusing away, but open enough to allow the repair machinery. We review data indicating clear kinetic and physical differences between RIF emerging from dense and uncondensed regions of the nucleus. At later time post-IR, we propose that persistent RIF observed days following exposure to ionizing radiation are nuclear ?scars? marking permanent disruption of the chromatin architecture. When DNA damage is resolved, such chromatin modifications should not necessarily lead to growth arrest and it has been shown that persistent RIF can replicate during mitosis. Thus, heritable persistent RIF spanning over tens of Mbp may affect the transcriptome of a large progeny of cells. This opens the door for a non DNA mutation-based mechanism of radiation-induced phenotypes.

  20. Persistence of Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    NASA Technical Reports Server (NTRS)

    George, Kerry; Cucinotta, Francis A.

    2008-01-01

    Cytogenetic damage in astronaut's peripheral blood lymphocytes is a useful in vivo marker of space radiation induced damage. Moreover, if radiation induced chromosome translocations persist in peripheral blood lymphocytes for many years, as has been assumed, they could potentially be used to measure retrospective doses or prolonged low dose rate exposures. However, as more data becomes available, evidence suggests that the yield of translocations may decline with time after exposure, at least in the case of space radiation exposures. We present our latest follow-up measurements of chromosome aberrations in astronauts blood lymphocytes assessed by FISH painting and collected a various times beginning directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Since the level of stable aberrations depends on the interplay between natural loss of circulating T-lymphocytes and replenishment from the stem or progenitor cells, the differences in the rates of decay could be explained by inter-individual variation in lymphocyte turn over. Biodosimetry estimates derived from cytogenetic analysis of samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember who has participated in two separate long-duration space missions and has been followed up for over 10 years provides limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  1. Protection of radiation induced DNA and membrane damages by total triterpenes isolated from Ganoderma lucidum (Fr.) P. Karst.

    PubMed

    Smina, T P; Maurya, D K; Devasagayam, T P A; Janardhanan, K K

    2015-05-25

    The total triterpenes isolated from the fruiting bodies of Ganoderma lucidum was examined for its potential to prevent γ-radiation induced membrane damage in rat liver mitochondria and microsomes. The effects of total triterpenes on γ-radiation-induced DNA strand breaks in pBR 322 plasmid DNA in vitro and human peripheral blood lymphocytes ex vivo were evaluated. The protective effect of total triterpenes against γ-radiation-induced micronuclei formations in mice bone marrow cells in vivo were also evaluated. The results indicated the significant effectiveness of Ganoderma triterpenes in protecting the DNA and membrane damages consequent to the hazardous effects of radiation. The findings suggest the potential use of Ganoderma triterpenes in radio therapy. PMID:25824410

  2. Countermeasures against space radiation induced oxidative stress in mice.

    PubMed

    Kennedy, A R; Guan, J; Ware, J H

    2007-06-01

    Of particular concern for the health of astronauts during space travel is radiation from protons and high atomic number (Z), high energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by proton and HZE particle radiation in the plasma of CBA mice and the protective effect of dietary supplement agents. The results indicate that exposure to proton and HZE particle radiation significantly decreased the plasma level of total antioxidants in the irradiated CBA mice. Dietary supplementation with L: -selenomethionine (SeM) or a combination of selected antioxidant agents (which included SeM) could partially or completely prevent the decrease in the total antioxidant status in the plasma of animals exposed to proton or HZE particle radiation. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense system; this adverse biological effect can be prevented at least partially by dietary supplementation with agents expected to have effects on antioxidant activities. PMID:17387501

  3. Protective effect of an antithyroid compound against γ-radiation-induced damage in human colon cancer cells.

    PubMed

    Perona, Marina; Dagrosa, Maria A; Pagotto, Romina; Casal, Mariana; Pignataro, Omar; Pisarev, Mario A; Juvenal, Guillermo J

    2014-08-01

    We have previously reported the radioprotective effect of propylthiouracil (PTU) on thyroid cells. The aim of the present study was to analyze whether tumor cells and normal cells demonstrate the same response to PTU. Human colon carcinoma cells were irradiated with γ-irradiation with or without PTU. We evaluated the clonogenic survival, intracellular reactive oxygen species levels, catalase, superoxide dismutase and glutathione peroxidase activities, and apoptosis by nuclear cell morphology and caspase-3 activity assays. Cyclic AMP (cAMP) levels were measured by radioimmunoassay. PTU treatment increased surviving cell fraction at 2 Gy (SF2) from 56.9 ± 3.6 in controls to 75.0 ± 3.5 (p < 0.05) and diminished radiation-induced apoptosis. In addition, we observed that the level of antioxidant enzymes' activity was increased in cells treated with PTU. Moreover, pretreatment with PTU increased intracellular levels of cAMP. Forskolin (p < 0.01) and dibutyryl cAMP (p < 0.05) mimicked the effect of PTU on SF2. Co-treatment with H89, an inhibitor of protein kinase A, abolished the radioprotective effect of PTU. PTU reduces the toxicity of ionizing radiation by increasing cAMP levels and also possibly through a reduction in apoptosis levels and in radiation-induced oxidative stress damage. We therefore conclude that PTU protects both normal and cancer cells during exposure to radiation in conditions mimicking the radiotherapy. PMID:24811726

  4. Scavenging and antioxidant properties of different grape cultivars against ionizing radiation-induced liver damage ex vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2016-04-01

    Ionizing radiation (IR) has become an integral part of the modern medicine--both for diagnosis as well as therapy. However, normal tissues or even distant cells also suffer IR-induced free radical insult. It may be more damaging in longer term than direct radiation exposure. Antioxidants provide protection against IR-induced damage. Grapes are the richest source of antioxidants. Here, we assessed the scavenging properties of four grape (Vitis vinifera) cultivars, namely Flame seedless (Black), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Green), and also evaluated their protective action against γ-radiation-induced oxidative stress in liver tissue ex vivo. The scavenging abilities of grape seeds [2,2-diphenyl-1-picrylhydrazyl (DPPH) (IC₅₀ = 0.008 ± 0.001 mg/mL), hydrogen peroxide (IC₅₀ = 0.49 to 0.8 mg/mL), hydroxyl radicals (IC₅₀ = 0.08 ± 0.008 mg/mL), and nitric oxide (IC₅₀ = 0.8 ± 0.08 mg/mL)] were higher than that of skin or pulp. Gamma (γ) radiation exposure to sliced liver tissues ex vivo from goat, @ 6 Gy significantly (P < 0.001) decreased reduced glutathione (GSH) content by 21.2% and also activities of catalase, glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione s-transferase (GST) by 49.5, 66.0, 70.3, 73.6%, respectively. However, it increased thiobarbituric acid reactive substances (TBARS) by 2.04-fold and nitric oxide level by 48.6% compared to untreated group. Further increase in doses (10 or 16 Gy) of γ-radiation correspondingly decreased GSH content and enzyme activities, and increased TBARS and nitric oxide levels. Grape extract treatment prior to ionizing radiation exposure ameliorated theses effects at varying extent. The seed extracts exhibited strong antioxidant potential compared to skin or pulp extracts of different grape cultivars against oxidative damage by ionizing radiation (6 Gy, 10 Gy and 16 Gy) in sliced liver tissues ex vivo. Grape extracts at

  5. Protection against radiation-induced DNA damage by amino acids: a DFT study.

    PubMed

    Jena, N R; Mishra, P C; Suhai, S

    2009-04-23

    Direct and indirect radiation-induced DNA damage is associated with the formation of radical cations (G(+)) and radical anions (G(-)) of guanine, respectively. Deprotonation of G(+) and dehydrogenation of G(-) generate guanine neutral radical [G(-H)] and guanine anion [G(-H)(-)], respectively. These products are of worrisome concern, as they are involved in reactions that are related to certain lethal diseases. It has been observed that guanyl radicals can be repaired by amino acids having strong reducing properties that are believed to be the residues of DNA-bound proteins such as histones. As a result, repair of G(-H) and G(-H)(-) by the amino acids cysteine and tyrosine has been studied here in detail by density functional theory in both the gas phase and aqueous medium using the polarized continuum and Onsager solvation models of self-consistent reaction field theory. Solvation in aqueous medium using three explicit water molecules was also studied. Four equivalent tautomers of each the above radical and anion that will be formed through proton and hydrogen loss from all of the nitrogen centers of guanine radical cation and guanine radical anion, respectively, were considered in the present study. It was found that in both the gas phase and aqueous medium, normal guanine can be retrieved from its radical-damaged form by a hydrogen-atom-transfer (HT) mechanism. Normal guanine can also be retrieved from its anionic damaged form in both the gas phase and aqueous medium through a two-electron-coupled proton-transfer (TECPT) mechanism or a one-step hydrogen-atom- and electron-transfer (OSHET) mechanism. The present results are discussed in light of the experimental findings. PMID:19334703

  6. Protective Effects of Polysaccharides from Soybean Meal Against X-ray Radiation Induced Damage in Mouse Spleen Lymphocytes

    PubMed Central

    Yao, Lei; Wang, Zhenyu; Zhao, Haitian; Cheng, Cuilin; Fu, Xiaoyi; Liu, Jiaren; Yang, Xin

    2011-01-01

    The aim of this study was to investigate radioprotective effect of the polysaccharides from soybean meal (SMP) against X-ray radiation-induced damage in mouse spleen lymphocytes. MTT and comet assay were performed to evaluate SMP’s ability to prevent cell death and DNA damage induced by radiation. The results show that, X-ray radiation (30 KV, 10 mA, 8 min (4 Gy)) can significantly increase cell death and DNA fragmentation of mouse spleen lymphocytes. Pretreatment with SMP for 2 h before radiation could increase cell viability, moreover, the SMP can reduce X-ray radiation-induced DNA damage. The percentage of tail DNA and the tail moment of the SMP groups were significantly lower than those of the radiation alone group (p < 0.05). These results suggest SMP may be a good candidate as a radioprotective agent. PMID:22174652

  7. Pudendal Nerve and Internal Pudendal Artery Damage May Contribute to Radiation-Induced Erectile Dysfunction

    SciTech Connect

    Nolan, Michael W.; Marolf, Angela J.; Ehrhart, E.J.; Rao, Sangeeta; Kraft, Susan L.; Engel, Stephanie; Yoshikawa, Hiroto; Golden, Anne E.; Wasserman, Todd H.; LaRue, Susan M.

    2015-03-15

    Purpose/Objectives: Erectile dysfunction is common after radiation therapy for prostate cancer; yet, the etiopathology of radiation-induced erectile dysfunction (RI-ED) remains poorly understood. A novel animal model was developed to study RI-ED, wherein stereotactic body radiation therapy (SBRT) was used to irradiate the prostate, neurovascular bundles (NVB), and penile bulb (PB) of dogs. The purpose was to describe vascular and neurogenic injuries after the irradiation of only the NVB or the PB, and after irradiation of all 3 sites (prostate, NVB, and PB) with varying doses of radiation. Methods and Materials: Dogs were treated with 50, 40, or 30 Gy to the prostate, NVB, and PB, or 50 Gy to either the NVB or the PB, by 5-fraction SBRT. Electrophysiologic studies of the pudendal nerve and bulbospongiosus muscles and ultrasound studies of pelvic perfusion were performed before and after SBRT. The results of these bioassays were correlated with histopathologic changes. Results: SBRT caused slowing of the systolic rise time, which corresponded to decreased arterial patency. Alterations in the response of the internal pudendal artery to vasoactive drugs were observed, wherein SBRT caused a paradoxical response to papaverine, slowing the systolic rise time after 40 and 50 Gy; these changes appeared to have some dose dependency. The neurofilament content of penile nerves was also decreased at high doses and was more profound when the PB was irradiated than when the NVB was irradiated. These findings are coincident with slowing of motor nerve conduction velocities in the pudendal nerve after SBRT. Conclusions: This is the first report in which prostatic irradiation was shown to cause morphologic arterial damage that was coincident with altered internal pudendal arterial tone, and in which decreased motor function in the pudendal nerve was attributed to axonal degeneration and loss. Further investigation of the role played by damage to these structures in RI-ED is

  8. Radiation-Induced Cytogenetic Damage as a Predictor of Cancer Risk for Protons and Fe Ions

    NASA Technical Reports Server (NTRS)

    Williams, Jerry R.

    1999-01-01

    We have successfully completed the series of experiments planned for year 1 and the first part of year 2 measuring the induction of chromosome aberrations induced in multiple cell types by three model space radiations: Fe-ions, protons and photons. Most of these data have now been compiled and a significant part subjected to detailed data analyses, although continuing data analysis is an important part of our current and future efforts. These analyses are directed toward defining the patterns of chromosomal damage induction by the three radiations and the extent to which such patterns are dependent on the type of cell irradiated. Our studies show significant differences, both quantitatively and qualitatively, between response of different cell types to these radiations however there is an overall pattern that characterizes each type of radiation in most cell lines. Thus our data identifies general dose-response patterns for each radiation for induction of multiple types of chromosomal aberrations but also identifies significant differences in response between some cell types. Specifically, we observe significant resistance for induction of aberrations in rat mammary epithelial cells when they are irradiated in vivo and assayed in vitro. Further, we have observed some remarkable differences in susceptibility to certain radiation-induced aberrations in cells whose genome has been modulated for two cancer- relevant genes, TP53 and CDKNIA. This data, if confirmed, may represent the first evidence of gene-specific differences in cellular metabolism of damage induced by densely-ionizing radiation that confers substantial sensitivity to protons compared to photons.

  9. Melatonin as a possible antidote to UV radiation induced cutaneous damages and immune-suppression: An overview.

    PubMed

    Goswami, Soumik; Haldar, Chandana

    2015-12-01

    The sun rays brings along the ultraviolet radiations (UVRs) which prove deleterious for living organisms. The UVR is a known mutagen and is the prime cause of skin carcinomas. UVR causes acute oxidative stress and this in turn deteriorates other physiological functions. Inflammatory conditions and elevation of pro-inflammatory molecules are also associated with UVR mediated cellular damages. The inflammatory conditions can secondarily trigger the generation of free radicals and this act cumulatively in further deterioration of tissue homeostasis. Photoimmunologists have also related UVR to the suppression of not only cutaneous but also systemic immunity by different mechanisms. Some researchers have proposed the use of various plant products as antioxidants against UVR induced oxidative imbalances but Melatonin is gaining rapid interest as a product that can be utilized to delineate the pathological effects of UVR since it is an established antioxidant. Besides the antioxidative nature, the capacity of melatonin to attenuate apoptosis and more importantly the efficacy of its metabolites to further aid in the detoxification of free radicals have made it a key player to be utilized against UVR mediated aggravated conditions. However, there is need for further extensive investigation to speculate melatonin as an antidote to UVR. Although too early to prescribe melatonin as a clinical remedy, the hormone can be integrated into dermal formulations or oral supplements to prevent the ever increasing incidences of skin cancers due to the prevalence of the UVR on the surface of the earth. The present review focuses and substantiates the work by different photo-biologists demonstrating the protective effects of melatonin and its metabolites against solar UVR - Melatonin as a possible antidote to UV radiation induced cutaneous damages and immune-suppression: an overview. J Photochem Photobiol B. PMID:26496791

  10. Silymarin Protects Epidermal Keratinocytes from Ultraviolet Radiation-Induced Apoptosis and DNA Damage by Nucleotide Excision Repair Mechanism

    PubMed Central

    Katiyar, Santosh K.; Mantena, Sudheer K.; Meeran, Syed M.

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  11. Silymarin protects epidermal keratinocytes from ultraviolet radiation-induced apoptosis and DNA damage by nucleotide excision repair mechanism.

    PubMed

    Katiyar, Santosh K; Mantena, Sudheer K; Meeran, Syed M

    2011-01-01

    Solar ultraviolet (UV) radiation is a well recognized epidemiologic risk factor for melanoma and non-melanoma skin cancers. This observation has been linked to the accumulation of UVB radiation-induced DNA lesions in cells, and that finally lead to the development of skin cancers. Earlier, we have shown that topical treatment of skin with silymarin, a plant flavanoid from milk thistle (Silybum marianum), inhibits photocarcinogenesis in mice; however it is less understood whether chemopreventive effect of silymarin is mediated through the repair of DNA lesions in skin cells and that protect the cells from apoptosis. Here, we show that treatment of normal human epidermal keratinocytes (NHEK) with silymarin blocks UVB-induced apoptosis of NHEK in vitro. Silymarin reduces the amount of UVB radiation-induced DNA damage as demonstrated by reduced amounts of cyclobutane pyrimidine dimers (CPDs) and as measured by comet assay, and that ultimately may lead to reduced apoptosis of NHEK. The reduction of UV radiation-induced DNA damage by silymarin appears to be related with induction of nucleotide excision repair (NER) genes, because UV radiation-induced apoptosis was not blocked by silymarin in NER-deficient human fibroblasts. Cytostaining and dot-blot analysis revealed that silymarin repaired UV-induced CPDs in NER-proficient fibroblasts from a healthy individual but did not repair UV-induced CPD-positive cells in NER-deficient fibroblasts from patients suffering from xeroderma pigmentosum complementation-A disease. Similarly, immunohistochemical analysis revealed that silymarin did not reduce the number of UVB-induced sunburn/apoptotic cells in the skin of NER-deficient mice, but reduced the number of sunburn cells in their wild-type counterparts. Together, these results suggest that silymarin exert the capacity to reduce UV radiation-induced DNA damage and, thus, prevent the harmful effects of UV radiation on the genomic stability of epidermal cells. PMID:21731736

  12. NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells.

    PubMed

    Collins-Underwood, J Racquel; Zhao, Weiling; Sharpe, Jessica G; Robbins, Mike E

    2008-09-15

    The need to both understand and minimize the side effects of brain irradiation is heightened by the ever-increasing number of patients with brain metastases that require treatment with whole brain irradiation (WBI); some 200,000 cancer patients/year receive partial or WBI. At the present time, there are no successful treatments for radiation-induced brain injury, nor are there any known effective preventive strategies. Data support a role for chronic oxidative stress in radiation-induced late effects. However, the pathogenic mechanism(s) involved remains unknown. One candidate source of reactive oxygen species (ROS) is nicotinamide adenosine dinucleotide phosphate (NADPH) oxidase, which converts molecular oxygen (O(2)) to the superoxide anion (O(2)(-)) on activation. We hypothesize that brain irradiation leads to activation of NADPH oxidase. We report that irradiating rat brain microvascular endothelial cells in vitro leads to increased (i) intracellular ROS generation, (ii) activation of the transcription factor NFkappaB, (iii) expression of ICAM-1 and PAI-1, and (iv) expression of Nox4, p22(phox), and p47(phox). Pharmacologic and genetic inhibition of NADPH oxidase blocked the radiation-mediated upregulation of intracellular ROS, activation of NFkappaB, and upregulation of ICAM-1 and PAI-1. These results suggest that activation of NADPH oxidase may play a role in radiation-induced oxidative stress. PMID:18640264

  13. RXRα ablation in epidermal keratinocytes enhances UV radiation induced DNA damage, apoptosis, and proliferation of keratinocytes and melanocytes

    PubMed Central

    Wang, Zhixing; Coleman, Daniel J.; Bajaj, Gaurav; Liang, Xiaobo; Ganguli-Indra, Gitali; Indra, Arup Kumar

    2011-01-01

    We show here that keratinocytic nuclear receptor Retinoid X Receptor α (RXRα) regulates mouse keratinocyte and melanocyte homeostasis following acute ultraviolet radiation (UVR). Keratinocytic RXRα has a protective role on UVR-induced keratinocyte and melanocyte proliferation/differentiation, oxidative stress mediated DNA damage and cellular apoptosis. We discovered that keratinocytic RXRα in a cell autonomous manner regulate mitogenic growth responses in skin epidermis via secretion of hbEGF, GMCSF, IL1-α and COX2, and activation of MAPK pathways. We identified altered expression of several keratinocyte-derived mitogenic paracrine growth factors such as ET-1, HGF, α–MSH, SCF and FGF2 in skin of mice lacking RXRα in epidermal keratinocytes (RXRαep−/− mice), which in a non-cell autonomous manner modulated melanocyte proliferation and activation after UVR. RXRαep−/− mouse represents a unique animal model where UVR induces melanocyte proliferation/activation in both epidermis and dermis. Considered together, our results suggest that RXR antagonists, together with inhibitors of cell proliferation can be effective to prevent solar UV radiation induced photo-carcinogenesis. PMID:20944655

  14. Debris and radiation-induced damage effects on EUV nanolithography source collector mirror optics performance.

    SciTech Connect

    Allain, J. P.; Nieto, M.; Hendricks, M.; Harilal, S. S.; Hassanein, A.; Mathematics and Computer Science

    2007-01-01

    Exposure of collector mirrors facing the hot, dense pinch plasma in plasma-based EUV light sources to debris (fast ions, neutrals, off-band radiation, droplets) remains one of the highest critical issues of source component lifetime and commercial feasibility of nanolithography at 13.5-nm. Typical radiators used at 13.5-nm include Xe and Sn. Fast particles emerging from the pinch region of the lamp are known to induce serious damage to nearby collector mirrors. Candidate collector configurations include either multi-layer mirrors (MLM) or single-layer mirrors (SLM) used at grazing incidence. Studies at Argonne have focused on understanding the underlying mechanisms that hinder collector mirror performance at 13.5-nm under fast Sn or Xe exposure. This is possible by a new state-of-the-art in-situ EUV reflectometry system that measures real time relative EUV reflectivity (15-degree incidence and 13.5-nm) variation during fast particle exposure. Intense EUV light and off-band radiation is also known to contribute to mirror damage. For example offband radiation can couple to the mirror and induce heating affecting the mirror's surface properties. In addition, intense EUV light can partially photo-ionize background gas (e.g., Ar or He) used for mitigation in the source device. This can lead to local weakly ionized plasma creating a sheath and accelerating charged gas particles to the mirror surface and inducing sputtering. In this paper we study several aspects of debris and radiation-induced damage to candidate EUVL source collector optics materials. The first study concerns the use of IMD simulations to study the effect of surface roughness on EUV reflectivity. The second studies the effect of fast particles on MLM reflectivity at 13.5-nm. And lastly the third studies the effect of multiple energetic sources with thermal Sn on 13.5-nm reflectivity. These studies focus on conditions that simulate the EUVL source environment in a controlled way.

  15. Protection against radiation-induced oxidative stress in cultured human epithelial cells by treatment with antioxidant agents

    SciTech Connect

    Wan, X. Steven; Ware, Jeffrey H.; Zhou, Zhaozong; Donahue, Jeremiah J.; Guan, Jun; Kennedy, Ann R. . E-mail: akennedy@mail.med.upenn.edu

    2006-04-01

    Purpose: To evaluate the protective effects of antioxidant agents against space radiation-induced oxidative stress in cultured human epithelial cells. Methods and Materials: The effects of selected concentrations of N-acetylcysteine, ascorbic acid, sodium ascorbate, co-enzyme Q10, {alpha}-lipoic acid, L-selenomethionine, and vitamin E succinate on radiation-induced oxidative stress were evaluated in MCF10 human breast epithelial cells exposed to radiation with X-rays, {gamma}-rays, protons, or high mass, high atomic number, and high energy particles using a dichlorofluorescein assay. Results: The results demonstrated that these antioxidants are effective in protecting against radiation-induced oxidative stress and complete or nearly complete protection was achieved by treating the cells with a combination of these agents before and during the radiation exposure. Conclusion: The combination of antioxidants evaluated in this study is likely be a promising countermeasure for protection against space radiation-induced adverse biologic effects.

  16. Recovery From Radiation-induced Bone Marrow Damage by HSP25 Through Tie2 Signaling

    SciTech Connect

    Lee, Hae-June; Kwon, Hee-Chung; Chung, Hee-Yong; Lee, Yoon-Jin; Lee, Yun-Sil

    2012-09-01

    Purpose: Whole-body radiation therapy can cause severe injury to the hematopoietic system, and therefore it is necessary to identify a novel strategy for overcoming this injury. Methods and Materials: Mice were irradiated with 4.5 Gy after heat shock protein 25 (HSP25) gene transfer using an adenoviral vector. Then, peripheral blood cell counts, histopathological analysis, and Western blotting on bone marrow (BM) cells were performed. The interaction of HSP25 with Tie2 was investigated with mouse OP9 and human BM-derived mesenchymal stem cells to determine the mechanism of HSP25 in the hematopoietic system. Results: HSP25 transfer increased BM regeneration and reduced apoptosis following whole-body exposure to ionizing radiation (IR). The decrease in Tie2 protein expression that followed irradiation of the BM was blocked by HSP25 transfer, and Tie2-positive cells were more abundant among the BM cells of HSP25-transferred mice, even after IR exposure. Following systemic RNA interference of Tie2 before IR, HSP25-mediated radioprotective effects were partially blocked in both mice and cell line systems. Stability of Tie2 was increased by HSP25, a response mediated by the interaction of HSP25 with Tie2. IR-induced tyrosine phosphorylation of Tie2 was augmented by HSP25 overexpression; downstream events in the Tie2 signaling pathway, including phosphorylation of AKT and EKR1/2, were also activated. Conclusions: HSP25 protects against radiation-induced BM damage by interacting with and stabilizing Tie2. This may be a novel strategy for HSP25-mediated radioprotection in BM.

  17. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition.

    PubMed

    Gruel, Gaëtan; Villagrasa, Carmen; Voisin, Pascale; Clairand, Isabelle; Benderitter, Marc; Bottollier-Depois, Jean-François; Barquinero, Joan Francesc

    2016-01-01

    Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF) per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This comparison allowed us to

  18. Cell to Cell Variability of Radiation-Induced Foci: Relation between Observed Damage and Energy Deposition

    PubMed Central

    Voisin, Pascale; Clairand, Isabelle; Benderitter, Marc; Bottollier-Depois, Jean-François; Barquinero, Joan Francesc

    2016-01-01

    Most studies that aim to understand the interactions between different types of photon radiation and cellular DNA assume homogeneous cell irradiation, with all cells receiving the same amount of energy. The level of DNA damage is therefore generally determined by averaging it over the entire population of exposed cells. However, evaluating the molecular consequences of a stochastic phenomenon such as energy deposition of ionizing radiation by measuring only an average effect may not be sufficient for understanding some aspects of the cellular response to this radiation. The variance among the cells associated with this average effect may also be important for the behaviour of irradiated tissue. In this study, we accurately estimated the distribution of the number of radiation-induced γH2AX foci (RIF) per cell nucleus in a large population of endothelial cells exposed to 3 macroscopic doses of gamma rays from 60Co. The number of RIF varied significantly and reproducibly from cell to cell, with its relative standard deviation ranging from 36% to 18% depending on the macroscopic dose delivered. Interestingly, this relative cell-to-cell variability increased as the dose decreased, contrary to the mean RIF count per cell. This result shows that the dose effect, in terms of the number of DNA lesions indicated by RIF is not as simple as a purely proportional relation in which relative SD is constant with dose. To analyse the origins of this observed variability, we calculated the spread of the specific energy distribution for the different target volumes and subvolumes in which RIF can be generated. Variances, standard deviations and relative standard deviations all changed similarly from dose to dose for biological and calculated microdosimetric values. This similarity is an important argument that supports the hypothesis of the conservation of the association between the number of RIF per nucleus and the specific energy per DNA molecule. This comparison allowed us to

  19. Role of cellular communication in the pathways of radiation-induced biological damage

    NASA Astrophysics Data System (ADS)

    Ballarini, Francesca; Facoetti, Angelica; Mariotti, Luca; Nano, Rosanna; Ottolenghi, Andrea

    During the last decade, a large number of experimental studies on the so-called "non-targeted effects", in particular bystander effects, outlined that cellular communication plays a signifi- cant role in the pathways leading to radiation-induced biological damage. This might imply a paradigm shift in (low-dose) radiobiology, according to which one has to consider the response of groups of cells behaving like a population rather than single cells behaving as individuals. Furthermore, bystander effects, which are observed both for lethal endpoints (e.g. clonogenic inactivation and apoptosis) and for non-lethal ones (e.g. mutations and neoplastic transformation), tend to show non-linear dose responses characterized by a sharp increase followed by a plateau. This might have significant consequences in terms of low-dose risk, which is generally calculated on the basis of the "Linear No Threshold" hypothesis. Although it is known that two types of cellular communication (i.e. via gap junctions and/or molecular messengers diffusing in the extra-cellular environment, such as cytokines) play a major role, it is of utmost importance to better understand the underlying mechanisms, and how such mechanisms can be modulated by ionizing radiation. Though the "final" goal is to elucidate the in vivo scenario, in the meanwhile also in vitro studies can provide useful insights. In the present paper we will discuss key issues on the mechanisms underlying non-targeted effects and, more generally, cell communication, with focus on candidate molecular signals. Theoretical models and simulation codes can be of help in elucidating such mechanisms. In this framework, we will present a model and Monte Carlo code, under development at the University of Pavia, simulating the release, diffusion and internalization of candidate signals (typically cytokines) travelling in the extra-cellular environment, both by unirradiated (i.e., control) cells and by irradiated cells. The focus will be on the

  20. Nicotinamide enhances repair of ultraviolet radiation-induced DNA damage in primary melanocytes.

    PubMed

    Thompson, Benjamin C; Surjana, Devita; Halliday, Gary M; Damian, Diona L

    2014-07-01

    Cutaneous melanoma is a significant cause of morbidity and mortality. Nicotinamide is a safe, widely available vitamin that reduces the immune suppressive effects of UV, enhances DNA repair in keratinocytes and has shown promise in the chemoprevention of non-melanoma skin cancer. Here, we report the effect of nicotinamide on DNA damage and repair in primary human melanocytes. Nicotinamide significantly enhanced the repair of oxidative DNA damage (8-oxo-7,8-dihydro-2'-deoxyguanosine) and cyclobutane pyrimidine dimers induced by UV exposure. It also enhanced the repair of 8-oxo-7,8-dihydro-2'-deoxyguanosine induced by the culture conditions in unirradiated melanocytes. A significant increase in the percentage of melanocytes undergoing unscheduled but not scheduled DNA synthesis was observed, confirming that nicotinamide enhances DNA repair in human melanocytes. In summary, nicotinamide, by enhancing DNA repair in melanocytes, is a potential agent for the chemoprevention of cutaneous melanoma. PMID:24798949

  1. Cerium Oxide Nanoparticles: A Potential Medical Countermeasure to Mitigate Radiation-Induced Lung Injury in CBA/J Mice.

    PubMed

    Xu, P-T; Maidment, B W; Antonic, V; Jackson, I L; Das, S; Zodda, A; Zhang, X; Seal, S; Vujaskovic, Z

    2016-05-01

    Cerium oxide nanoparticles (CNPs) have a unique surface regenerative property and can efficiently control reactive oxygen/nitrogen species. To determine whether treatment with CNPs can mitigate the delayed effects of lung injury after acute radiation exposure, CBA/J mice were exposed to 15 Gy whole-thorax radiation. The animals were either treated with nanoparticles, CNP-18 and CNP-ME, delivered by intraperitoneal injection twice weekly for 4 weeks starting 2 h postirradiation or received radiation treatment alone. At the study's end point of 160 days, 90% of the irradiated mice treated with high-dose (10 μM) CNP-18 survived, compared to 10% of mice in the radiation-alone (P < 0.0001) and 30% in the low-dose (100 nM) CNP-18. Both low- and high-dose CNP-ME-treated irradiated mice showed increased survival rates of 40% compared to 10% in the radiation-alone group. Multiple lung functional parameters recorded by flow-ventilated whole-body plethysmography demonstrated that high-dose CNP-18 treatment had a significant radioprotective effect on lethal dose radiation-induced lung injury. Lung histology revealed a significant decrease (P < 0.0001) in structural damage and collagen deposition in mice treated with high-dose CNP-18 compared to the irradiated-alone mice. In addition, significant reductions in inflammatory response (P < 0.01) and vascular damage (P < 0.01) were observed in the high-dose CNP-18-treated group compared to irradiated-alone mice. Together, the findings from this preclinical efficacy study clearly demonstrate that CNPs have both clinically and histologically significant mitigating and protective effects on lethal dose radiation-induced lung injury. PMID:27135969

  2. From radiation-induced chromosome damage to cell death: modelling basic mechanisms and applications to boron neutron capture therapy.

    PubMed

    Ballarini, F; Bortolussi, S; Clerici, A M; Ferrari, C; Protti, N; Altieri, S

    2011-02-01

    Cell death is a crucial endpoint in radiation-induced biological damage: on one side, cell death is a reference endpoint to characterise the action of radiation in biological targets; on the other side, any cancer therapy aims to kill tumour cells. Starting from Lea's target theory, many models have been proposed to interpret radiation-induced cell killing; after briefly discussing some of these models, in this paper, a mechanistic approach based on an experimentally observed link between chromosome aberrations and cell death was presented. More specifically, a model and a Monte Carlo code originally developed for chromosome aberrations were extended to simulate radiation-induced cell death applying an experimentally observed one-to-one relationship between the average number of 'lethal aberrations' (dicentrics, rings and deletions) per cell and -ln S, S being the fraction of surviving cells. Although such observation was related to X rays, in the present work, the approach was also applied to protons and alpha particles. A good agreement between simulation outcomes and literature data provided a model validation for different radiation types. The same approach was then successfully applied to simulate the survival of cells enriched with boron and irradiated with thermal neutrons at the Triga Mark II reactor in Pavia, to mimic a typical treatment for boron neutron capture therapy. PMID:21159746

  3. Genetic compensation of high dose radiation-induced damage in an anhydrobiotic insect

    NASA Astrophysics Data System (ADS)

    Gusev, Oleg; Nakahara, Yuichi; Sakashita, Tetsuya; Kikawada, Takahiro; Okuda, Takashi

    Anhydrobiotic larvae of African chironomid Polypedilum vanderplanki are known to show an extremely high tolerance against a range of stresses. The tolerance against various extreme environments exhibited by that insect might be due to being almost completely desiccated replacing water with trehalose, a state where little or no chemical reactions occur. From 2005 dried larvae of this insect are being used in a number of space experiments, both inside and outside of ISS as a model organism for estimation the limits of higher organisms' resistance to space environment stresses and long-term storage of the alive anhydrobiotic organisms during continues spaceflight. We have shown previously that both hydrated and dried larvae of Polypedilum vanderplanki have very higher tolerance against both highand low-linear energy transfer (LET), surviving after 7000Gy irradiation. It was suggested that the larvae would have effective DNA-reparation system in addition to artificial protection provided by glass-stage without water. In the present study we conducted analysis of stress-related gene expression in the larvae after 70-2000 Gy irradiations. Both DNA damage level and activity of DNA-reparation, anti-apoptotic and protein-damage related genes were analyzed. Direct visualization of DNA damage in the larvae fat body cells using Comet Assay showed that fragmented by radiation DNA is re-arranged within 76-98 hours after exposure. We found that massive overexpression of hsp and anti-oxidant genes occur in larvae entering anhydrobiosis , and provides refolding of proteins after rehydration. In the irradiated larvae overexpression of DNA-reparation enzymes anti-apoptotic genes was confirmed, suggesting that survival after high-dose irradiation is a result of combination of highly effective blocking of entering the apoptosis after severe DNA damage and DNA reparation.

  4. REC-2006-A Fractionated Extract of Podophyllum hexandrum Protects Cellular DNA from Radiation-Induced Damage by Reducing the Initial Damage and Enhancing Its Repair In Vivo.

    PubMed

    Chaudhary, Pankaj; Shukla, Sandeep Kumar; Sharma, Rakesh Kumar

    2011-01-01

    Podophyllum hexandrum, a perennial herb commonly known as the Himalayan May Apple, is well known in Indian and Chinese traditional systems of medicine. P. hexandrum has been widely used for the treatment of venereal warts, skin infections, bacterial and viral infections, and different cancers of the brain, lung and bladder. This study aimed at elucidating the effect of REC-2006, a bioactive fractionated extract from the rhizome of P. hexandrum, on the kinetics of induction and repair of radiation-induced DNA damage in murine thymocytes in vivo. We evaluated its effect on non-specific radiation-induced DNA damage by the alkaline halo assay in terms of relative nuclear spreading factor (RNSF) and gene-specific radiation-induced DNA damage via semi-quantitative polymerase chain reaction. Whole body exposure of animals with gamma rays (10 Gy) caused a significant amount of DNA damage in thymocytes (RNSF values 17.7 ± 0.47, 12.96 ± 1.64 and 3.3 ± 0.014) and a reduction in the amplification of β-globin gene to 0, 28 and 43% at 0, 15 and 60 min, respectively. Administrating REC-2006 at a radioprotective concentration (15 mg kg(-1) body weight) 1 h before irradiation resulted in time-dependent reduction of DNA damage evident as a decrease in RNSF values 6.156 ± 0.576, 1.647 ± 0.534 and 0.496 ± 0.012, and an increase in β-globin gene amplification 36, 95 and 99%, at 0, 15 and 60 min, respectively. REC-2006 scavenged radiation-induced hydroxyl radicals in a dose-dependent manner stabilized DPPH free radicals and also inhibited superoxide anions. Various polyphenols and flavonoides present in REC-2006 might contribute to scavenging of radiation-induced free radicals, thereby preventing DNA damage and stimulating its repair. PMID:20008078

  5. Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study

    SciTech Connect

    Cakmak G.; Miller L.; Zorlu, F.; Severcan, F.

    2012-03-03

    Amifostine is the only approved radioprotective agent by FDA for reducing the damaging effects of radiation on healthy tissues. In this study, the protective effect of amifostine against the damaging effects of ionizing radiation on the white matter (WM) and grey matter (GM) regions of the rat brain were investigated at molecular level. Sprague-Dawley rats, which were administered amifostine or not, were whole-body irradiated at a single dose of 800 cGy, decapitated after 24 h and the brain tissues of these rats were analyzed using Fourier transform infrared microspectroscopy (FTIRM). The results revealed that the total lipid content and CH{sub 2} groups of lipids decreased significantly and the carbonyl esters, olefinic=CH and CH{sub 3} groups of lipids increased significantly in the WM and GM after exposure to ionizing radiation, which could be interpreted as a result of lipid peroxidation. These changes were more prominent in the WM of the brain. The administration of amifostine before ionizing radiation inhibited the radiation-induced lipid peroxidation in the brain. In addition, this study indicated that FTIRM provides a novel approach for monitoring ionizing radiation induced-lipid peroxidation and obtaining different molecular ratio images can be used as biomarkers to detect lipid peroxidation in biological systems.

  6. Cross-generational trans fat intake exacerbates UV radiation-induced damage in rat skin.

    PubMed

    Barcelos, R C S; Vey, L T; Segat, H J; Roversi, K; Roversi, Kr; Dias, V T; Trevizol, F; Kuhn, F T; Dolci, G S; Pase, C S; Piccolo, J; Veit, J C; Emanuelli, T; Luz, S C A; Bürger, M E

    2014-07-01

    We evaluated the influence of dietary fats on ultraviolet radiation (UVR)-induced oxidative damage in skin of rats. Animals from two consecutive generations born of dams supplemented with fats during pregnancy and breastfeeding were maintained in the same supplementation: soybean-oil (SO, rich in n-6 FA, control group), fish-oil (FO, rich in n-3 FA) or hydrogenated-vegetable-fat (HVF, rich in TFA). At 90 days of age, half the animals from the 2nd generation were exposed to UVR (0.25 J/cm(2)) 3×/week for 12 weeks. The FO group presented higher incorporation of n-3 FA in dorsal skin, while the HVF group incorporated TFA. Biochemical changes per se were observed in skin of the HVF group: greater generation of reactive oxygen species (ROS), lower mitochondrial integrity and increased Na(+)K(+)-ATPase activity. UVR exposure increased skin wrinkles scores and ROS generation and decreased mitochondrial integrity and reduced-glutathione levels in the HVF group. In FO, UVR exposure was associated with smaller skin thickness and reduced levels of protein-carbonyl, together with increased catalase activity and preserved Na(+)K(+)-ATPase function. In conclusion, while FO may be protective, trans fat may be harmful to skin health by making it more vulnerable to UVR injury and thus more prone to develop photoaging and skin cancer. PMID:24694906

  7. Radiation induced damage and recovery in poly(3-hexyl thiophene) based polymer solar cells.

    PubMed

    Li, Gang; Yang, Yang; Devine, R A B; Mayberry, Clay

    2008-10-22

    Polymer solar cells have been characterized during and after x-ray irradiation. The open circuit voltage, dark current and power conversion efficiency show degradation consistent with the generation of defect states in the polymer semiconductor. The polymer solar cell device remained functional with exposure to a considerable dose (500 krad (SiO(2))) and showed clear signs of recovery upon removal of the irradiation source (degraded from 4.1% to 2.2% and recovered to 2.9%). Mobility-relaxation time variation, derived from J-V measurement, clearly demonstrates that radiation induced defect generation mechanisms in the organic semiconductor are active and need to be further studied. Optical transmission results ruled out the possibility of reduced light absorption and/or polymer crystallinity. The results suggest that organic solar cells are sufficiently radiation tolerant to be useful for space applications. PMID:21832674

  8. Excision repair of UV radiation-induced DNA damage in Caenorhabditis elegans

    SciTech Connect

    Hartman, P.S.; Hevelone, J.; Dwarakanath, V.; Mitchell, D.L. )

    1989-06-01

    Radioimmunoassays were used to monitor the removal of antibody-binding sites associated with the two major UV radiation-induced DNA photoproducts (cyclobutane dimers and (6-4) photoproducts). Unlike with cultured human cells, where (6-4) photoproducts are removed more rapidly than cyclobutane dimers, the kinetics of repair were similar for both lesions. Repair capacity in wild type diminished throughout development. The radioimmunoassays were also employed to confirm the absence of photoreactivation in C. elegans. In addition, three radiation-sensitive mutants (rad-1, rad-2, rad-7) displayed normal repair capacities. An excision defect was much more pronounced in larvae than embryos in the fourth mutant tested (rad-3). This correlates with the hypersensitivity pattern of this mutant and suggests that DNA repair may be developmentally regulated in C. elegans. The mechanism of DNA repair in C. elegans as well as the relationship between the repair of specific photoproducts and UV radiation sensitivity during development are discussed.

  9. A Human Espophageal Epithelial Cell Model for Study of Radiation Induced Cancer and DNA Damage Repair

    NASA Technical Reports Server (NTRS)

    Huff, Janice L.; Patel, Zarana S.; Hada, Megumi; Cucinotta, Francis A.

    2008-01-01

    For cancer risk assessment in astronauts and for countermeasure development, it is essential to understand the molecular mechanisms of radiation carcinogenesis and how these mechanisms are influenced by exposure to the types of radiation found in space. We are developing an in vitro model system for the study of radiation-induced initiation and progression of esophageal carcinoma, a type of cancer found to have a significant enhancement in incidence in the survivors of the atomic bomb detonations in Japan. Here we present the results of our preliminary characterization of both normal and hTERT immortalized esophageal epithelial cells grown in 2-dimensional culture. We analyzed DNA repair capacity by measuring the kinetics of formation and loss of - H2AX foci following radiation exposure. Additionally, we analyzed induction of chromosomal aberrations using 3-color fluorescence in situ hybridization (FISH). Data were generated using both low LET (gamma rays) and high LET ions (1000 MeV/nucleon iron).

  10. The effect of interferon gamma on conventional fractionated radiation-induced damage and fibrosis in the pelvic tissue of rabbits

    PubMed Central

    Yang, Yunyi; Liu, Zi; Wang, Juan; Chai, Yanlan; Su, Jin; Shi, Fan; Wang, Jiquan; Che, Shao Min

    2016-01-01

    We aim to investigate the effect of interferon gamma (IFN-γ) on conventional fractionated radiation–induced damage and fibrosis in ureter and colorectal mucosa. Fifty-two rabbits were randomly divided into three groups comprising a conventional radiation group, an IFN-γ group, and a control group. X-rays were used to irradiate the pelvic tissues of the rabbits in the IFN-γ and conventional radiation groups. Five days after radiation exposure, the rabbits in the IFN-γ group were administered 250,000 U/kg IFN-γ intramuscularly once a week for 5 weeks. The rabbits in the conventional radiation group received 5.0 mL/kg saline. The rabbits were sacrificed at 4, 8, 12, and 16 weeks postradiation, and the rectal and ureteral tissues within the radiation areas were collected. The results showed that the morphology of rectal and ureteral tissues was changed by X-ray radiation. The degree of damage at 4, 8, and 12 weeks, but not at 16 weeks, postradiation was significantly different between the IFN-γ and conventional radiation groups. The expression of transforming growth factor beta 1 mRNA in the ureter and colorectal mucosa of the IFN-γ group was significantly lower than that in the conventional radiation group at 4, 8, 12, and 16 weeks postradiation, but it was still higher than that in the control group. There were significant differences in the expression of collagen III among the three groups. IFN-γ can inhibit the radiation-induced upregulation of transforming growth factor beta 1 mRNA and collagen III protein in the ureter and colorectal mucosa and attenuate radiation-induced damage and fibrosis. PMID:27274263

  11. Radiation-Induced Upregulation of Gene Expression From Adenoviral Vectors Mediated by DNA Damage Repair and Regulation

    SciTech Connect

    Nokisalmi, Petri; Rajecki, Maria; Pesonen, Sari; Escutenaire, Sophie; Soliymani, Rabah; Tenhunen, Mikko; Ahtiainen, Laura; Hemminki, Akseli

    2012-05-01

    Purpose: In the present study, we evaluated the combination of replication-deficient adenoviruses and radiotherapy in vitro. The purpose of the present study was to analyze the mechanism of radiation-mediated upregulation of adenoviral transgene expression. Methods and Materials: Adenoviral transgene expression (luciferase or green fluorescent protein) was studied with and without radiation in three cell lines: breast cancer M4A4-LM3, prostate cancer PC-3MM2, and lung cancer LNM35/enhanced green fluorescent protein. The effect of the radiation dose, modification of the viral capsid, and five different transgene promoters were studied. The cellular responses were studied using mass spectrometry and immunofluorescence analysis. Double strand break repair was modulated by inhibitors of heat shock protein 90, topoisomerase-I, and DNA protein kinase, and transgene expression was measured. Results: We found that a wide range of radiation doses increased adenoviral transgene expression regardless of the cell line, transgene, promoter, or viral capsid modification. Treatment with adenovirus, radiation, and double strand break repair inhibitors resulted in persistence of double strand breaks and subsequent increases in adenovirus transgene expression. Conclusions: Radiation-induced enhancement of adenoviral transgene expression is linked to DNA damage recognition and repair. Radiation induces a global cellular response that results in increased production of RNA and proteins, including adenoviral transgene products. This study provides a mechanistic rationale for combining radiation with adenoviral gene delivery.

  12. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc

    SciTech Connect

    Cooper, Karen L.; King, Brenee S.; Sandoval, Monica M.; Liu, Ke Jian; Hudson, Laurie G.

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. - Highlights: • Low levels of arsenite enhance UV-induced DNA damage in human keratinocytes. • UV-initiated HPRT mutation frequency is enhanced by arsenite. • Zinc supplementation offsets DNA damage and mutation frequency enhanced by arsenite. • Zinc-dependent reduction of arsenite enhanced DNA damage is confirmed in vivo.

  13. Characterization of radiation-induced damage in high performance polymers by electron paramagnetic resonance imaging spectroscopy

    NASA Technical Reports Server (NTRS)

    Suleman, Naushadalli K.

    1992-01-01

    The potential for long-term human activity beyond the Earth's protective magnetosphere is limited in part by the lack of detailed information on the effectiveness and performance of existing structural materials to shield the crew and spacecraft from highly penetrating space radiations. The two radiations of greatest concern are high energy protons emitted during solar flares and galactic cosmic rays which are energetic ions ranging from protons to highly oxidized iron. Although the interactions of such high-energy radiations with matter are not completely understood at this time, the effects of the incident radiation are clearly expected to include the formation of paramagnetic spin centers via ionization and bond-scission reactions in the molecular matrices of structural materials. Since this type of radiation damage is readily characterized by Electron Paramagnetic Resonance (EPR) spectroscopy, the NASA Langley Research Center EPR system was repaired and brought on-line during the 1991 ASEE term. A major goal of the 1992 ASEE term was to adapt the existing core of the LaRC EPR system to meet the requirements for EPR Imaging--a powerful new technique which provides detailed information on the internal structure of materials by mapping the spatial distribution of unpaired spin density in bulk media. Major impetus for this adaptation arises from the fact that information derived from EPRI complements other methods such as scanning electron microscopy which primarily characterize surface phenomena. The modification of the EPR system has been initiated by the construction of specially designed, counterwound Helmholtz coils which will be mounted on the main EPR electromagnet. The specifications of the coils have been set to achieve a static linear magnetic field gradient of 10 gauss/mm/amp along the principal (Z) axis of the Zeeman field. Construction is also in progress of a paramagnetic standard in which the spin distribution is known in all three dimensions. This

  14. On the impact of reactive solutes on radiation induced oxidative dissolution of UO 2

    NASA Astrophysics Data System (ADS)

    Roth, Olivia; Jonsson, Mats

    2009-04-01

    The impact of 2-propanol (100 mM), NaCl (0.1 - 2 M) and Fe(II)(aq) (10 μM) on the radiation induced oxidative dissolution of UO 2 is investigated experimentally by γ-irradiating a UO 2 pellet immersed in aqueous solution containing 10 mM HCO3- together with one of the studied solutes and measure the U(VI) concentration in solution as a function of irradiation time. The solution was saturated with one of the following gases; Air, N 2O, inert gas (N 2 or Ar) in order to vary the experimental conditions and/or avoid the influence of oxygen. The results show that, in the presence of oxygen, 2 M chloride decrease the rate of UO 2 dissolution whereas the dissolution rate increases somewhat in the presence of 100 mM 2-propanol. Under oxygen-free conditions both 2 M chloride, 100 mM 2-propanol and 10 μM Fe(II)(aq) decrease the rate of UO 2 dissolution. The trends in dissolution rates were reproduced by calculations based on previously determined rate constants for UO 2 oxidation and oxidant concentrations obtained from numerical simulation of radiolysis in the corresponding homogeneous systems (taking reactions between the different solutes and the products of water radiolysis as well as changes in oxygen solubility into account). However, the results indicate that we cannot fully account for the G-values in 2 M chloride solution or all reactions involving Cl - in the aqueous phase. This calls for further studies of the chloride system.

  15. Protective effect of apigenin on radiation-induced chromosomal damage in human lymphocytes

    NASA Technical Reports Server (NTRS)

    Rithidech, Kanokporn Noy; Tungjai, Montree; Whorton, Elbert B.

    2005-01-01

    The potential use of flavonoids as a radioprotector is of increasing interest because of their high antioxidant activity and abundance in the diet. The aim of this study is to examine genotoxic and radioprotective effects of one of the most common flavonoids, apigenin, on radiation-induced chromosome aberrations in human lymphocytes. The cytokinesis-block micronucleus (CBMN) assay was used to evaluate such effects of apigenin. Blood samples were collected from two non-smoking healthy male volunteers who had no history of previous exposure to other clastogenic agents. Isolated lymphocytes were cultured. There were two tubes per concentration for all treatments. To evaluate the genotoxicity of apigenin, cells were first treated with different concentrations of apigenin (0, 2.5, 5, 10 and 25 microg/mL) at 24 h after culture initiation, followed by cytochalasin-B (Cyt-B) treatment (3 microg/mL) and cell harvest at 44 and 72 h, respectively. Secondly, to investigate the radioprotective effect, cell cultures were exposed to different concentrations of apigenin as described above for 30 min before being irradiated to 2 Gy of 137Cs gamma rays (at a dose rate of 0.75 Gy/min). In all instances, the frequency of MN was scored in binucleated (BN) cells. The nuclear proliferation index also was calculated. We did not detect an increase in the frequency of MN in non-irradiated human lymphocyte cultures treated with 2.5, 5.0 or 10 microg/mL apigenin; although, we did observe an increase in cultures treated with 25 microg/mL apigenin (the highest concentration of apigenin used in our study). We also observed a significant increase in the frequency of MN in irradiated cells overall; however, the frequency was decreased as the concentration of apigenin increased, suggesting a radioprotective effect. These findings provide a basis for additional studies to help clarify the potential use and benefit of apigenin as a radioprotector.

  16. Pharmacological Activation of the EDA/EDAR Signaling Pathway Restores Salivary Gland Function following Radiation-Induced Damage

    PubMed Central

    Hill, Grace; Headon, Denis; Harris, Zoey I.; Huttner, Kenneth; Limesand, Kirsten H.

    2014-01-01

    Radiotherapy of head and neck cancers often results in collateral damage to adjacent salivary glands associated with clinically significant hyposalivation and xerostomia. Due to the reduced capacity of salivary glands to regenerate, hyposalivation is treated by substitution with artificial saliva, rather than through functional restoration of the glands. During embryogenesis, the ectodysplasin/ectodysplasin receptor (EDA/EDAR) signaling pathway is a critical element in the development and growth of salivary glands. We have assessed the effects of pharmacological activation of this pathway in a mouse model of radiation-induced salivary gland dysfunction. We report that post-irradiation administration of an EDAR-agonist monoclonal antibody (mAbEDAR1) normalizes function of radiation damaged adult salivary glands as determined by stimulated salivary flow rates. In addition, salivary gland structure and homeostasis is restored to pre-irradiation levels. These results suggest that transient activation of pathways involved in salivary gland development could facilitate regeneration and restoration of function following damage. PMID:25409170

  17. Pharmacological activation of the EDA/EDAR signaling pathway restores salivary gland function following radiation-induced damage.

    PubMed

    Hill, Grace; Headon, Denis; Harris, Zoey I; Huttner, Kenneth; Limesand, Kirsten H

    2014-01-01

    Radiotherapy of head and neck cancers often results in collateral damage to adjacent salivary glands associated with clinically significant hyposalivation and xerostomia. Due to the reduced capacity of salivary glands to regenerate, hyposalivation is treated by substitution with artificial saliva, rather than through functional restoration of the glands. During embryogenesis, the ectodysplasin/ectodysplasin receptor (EDA/EDAR) signaling pathway is a critical element in the development and growth of salivary glands. We have assessed the effects of pharmacological activation of this pathway in a mouse model of radiation-induced salivary gland dysfunction. We report that post-irradiation administration of an EDAR-agonist monoclonal antibody (mAbEDAR1) normalizes function of radiation damaged adult salivary glands as determined by stimulated salivary flow rates. In addition, salivary gland structure and homeostasis is restored to pre-irradiation levels. These results suggest that transient activation of pathways involved in salivary gland development could facilitate regeneration and restoration of function following damage. PMID:25409170

  18. Reduction of arsenite-enhanced ultraviolet radiation-induced DNA damage by supplemental zinc.

    PubMed

    Cooper, Karen L; King, Brenee S; Sandoval, Monica M; Liu, Ke Jian; Hudson, Laurie G

    2013-06-01

    Arsenic is a recognized human carcinogen and there is evidence that arsenic augments the carcinogenicity of DNA damaging agents such as ultraviolet radiation (UVR) thereby acting as a co-carcinogen. Inhibition of DNA repair is one proposed mechanism to account for the co-carcinogenic actions of arsenic. We and others find that arsenite interferes with the function of certain zinc finger DNA repair proteins. Furthermore, we reported that zinc reverses the effects of arsenite in cultured cells and a DNA repair target protein, poly (ADP-ribose) polymerase-1. In order to determine whether zinc ameliorates the effects of arsenite on UVR-induced DNA damage in human keratinocytes and in an in vivo model, normal human epidermal keratinocytes and SKH-1 hairless mice were exposed to arsenite, zinc or both before solar-simulated (ss) UVR exposure. Poly (ADP-ribose) polymerase activity, DNA damage and mutation frequencies at the Hprt locus were measured in each treatment group in normal human keratinocytes. DNA damage was assessed in vivo by immunohistochemical staining of skin sections isolated from SKH-1 hairless mice. Cell-based findings demonstrate that ssUVR-induced DNA damage and mutagenesis are enhanced by arsenite, and supplemental zinc partially reverses the arsenite effect. In vivo studies confirm that zinc supplementation decreases arsenite-enhanced DNA damage in response to ssUVR exposure. From these data we can conclude that zinc offsets the impact of arsenic on ssUVR-stimulated DNA damage in cells and in vivo suggesting that zinc supplementation may provide a strategy to improve DNA repair capacity in arsenic exposed human populations. PMID:23523584

  19. Modulation of Radiation-Induced Genetic Damage by HCMV in Peripheral Blood Lymphocytes from a Brain Tumor Case-Control Study

    PubMed Central

    Rourke, Elizabeth A.; Lopez, Mirtha S.; Monroy, Claudia M.; Scheurer, Michael E.; Etzel, Carol J.; Albrecht, Thomas; Bondy, Melissa L.; El-Zein, Randa A.

    2010-01-01

    Human cytomegalovirus (HCMV) infection occurs early in life and viral persistence remains through life. An association between HCMV infection and malignant gliomas has been reported, suggesting that HCMV may play a role in glioma pathogenesis and could facilitate an accrual of genotoxic damage in the presence of γ-radiation; an established risk factor for gliomas. We tested the hypothesis that HCMV infection modifies the sensitivity of cells to γ-radiation-induced genetic damage. We used peripheral blood lymphocytes (PBLs) from 110 glioma patients and 100 controls to measure the level of chromosome damage and cell death. We evaluated baseline, HCMV-, γ-radiation and HCMV + γ-radiation induced genetic instability with the comprehensive Cytokinesis-Blocked Micronucleus Cytome (CBMN-CYT). HCMV, similar to radiation, induced a significant increase in aberration frequency among cases and controls. PBLs infected with HCMV prior to challenge with γ-radiation led to a significant increase in aberrations as compared to baseline, γ-radiation and HCMV alone. With regards to apoptosis, glioma cases showed a lower percentage of induction following in vitro exposure to γ-radiation and HCMV infection as compared to controls. This strongly suggests that, HCMV infection enhances the sensitivity of PBLs to γ-radiation-induced genetic damage possibly through an increase in chromosome damage and decrease in apoptosis. PMID:24281077

  20. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    DOE PAGESBeta

    Cheaito, Ramez; Gorham, Caroline S.; Carnegie Mellon Univ., Pittsburgh, PA; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacementmore » damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.« less

  1. Dissecting the molecular mechanism of ionizing radiation-induced tissue damage in the feather follicle.

    PubMed

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage. PMID:24586618

  2. Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage

    SciTech Connect

    Cheaito, Ramez; Gorham, Caroline S.; Misra, Amit; Hattar, Khalid; Hopkins, Patrick E.

    2015-05-01

    The progressive build up of displacement damage and fission products inside different systems and components of a nuclear reactor can lead to significant defect formation, degradation, and damage of the constituent materials. This structural modification can highly influence the thermal transport mechanisms and various mechanical properties of solids. In this paper we demonstrate the use of time-domain thermoreflectance (TDTR), a non-destructive method capable of measuring the thermal transport in material systems from nano to bulk scales, to study the effect of radiation damage and the subsequent changes in the thermal properties of materials. We use TDTR to show that displacement damage from ion irradiation can significantly reduce the thermal conductivity of Optimized ZIRLO, a material used as fuel cladding in several current nuclear reactors. We find that the thermal conductivity of copper-niobium nanostructured multilayers does not change with helium ion irradiation doses of up to 1015 cm-2 and ion energy of 200 keV suggesting that these structures can be used and radiation tolerant materials in nuclear reactors. We compare the effect of ion doses and ion beam energies on the measured thermal conductivity of bulk silicon. Results demonstrate that TDTR thermal measurements can be used to quantify depth dependent damage.

  3. Topical vitamin C protects porcine skin from ultraviolet radiation-induced damage.

    PubMed

    Darr, D; Combs, S; Dunston, S; Manning, T; Pinnell, S

    1992-09-01

    Ultraviolet radiation damage to the skin is due, in part, to the generation of reactive oxygen species. Vitamin C (L-ascorbic acid) functions as a biological co-factor and antioxidant due to its reducing properties. Topical application of vitamin C has been shown to elevate significantly cutaneous levels of this vitamin in pigs, and this correlates with protection of the skin from UVB damage as measured by erythema and sunburn cell formation. This protection is biological and due to the reducing properties of the molecule. Further, we provide evidence that the vitamin C levels of the skin can be severely depleted after UV irradiation, which would lower this organ's innate protective mechanism as well as leaving it at risk of impaired healing after photoinduced damage. In addition, vitamin C protects porcine skin from UVA-mediated phototoxic reactions (PUVA) and therefore shows promise as a broad-spectrum photoprotectant. PMID:1390169

  4. Considerations for evaluating ultraviolet radiation-induced genetic damage relative to Antarctic ozone depletion.

    PubMed

    Karentz, D

    1994-12-01

    Springtime ozone depletion over the Antarctic results in increased UVB in local marine environments. It has been established that decreases in primary productivity occur with decreases in ozone concentrations, but the impact of increased UVB on the functioning and stability of the ecosystem has not yet been determined. Very little has been done to evaluate the potential for genetic damage caused by the increase in UVB, and this type of damage is most significant relative to the fitness and maintenance of populations. An essential problem in evaluating genotoxic effects is the lack of appropriate techniques to sample and quantify genetic damage in field populations under ambient UVB levels. In addition, it is currently not feasible to estimate exposure levels for organisms in their natural habitats. PMID:7713036

  5. Prevention of UVB Radiation-induced Epidermal Damage by Expression of Heat Shock Protein 70*

    PubMed Central

    Matsuda, Minoru; Hoshino, Tatsuya; Yamashita, Yasuhiro; Tanaka, Ken-ichiro; Maji, Daisuke; Sato, Keizo; Adachi, Hiroaki; Sobue, Gen; Ihn, Hironobu; Funasaka, Yoko; Mizushima, Tohru

    2010-01-01

    Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-κB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IκB-α (an inhibitor of NF-κB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IκB-α in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2′-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects. PMID:20018843

  6. Novel Regenerative Peptide TP508 Mitigates Radiation-Induced Gastrointestinal Damage By Activating Stem Cells and Preserving Crypt Integrity

    PubMed Central

    Kantara, Carla; Moya, Stephanie M.; Houchen, Courtney W.; Umar, Shahid; Ullrich, Robert L.; Singh, Pomila; Carney, Darrell H.

    2015-01-01

    In recent years, increasing threats of radiation exposure and nuclear disasters have become a significant concern for the United States and countries worldwide. Exposure to high doses of radiation triggers a number of potentially lethal effects. Among the most severe is the gastrointestinal (GI) toxicity syndrome caused by the destruction of the intestinal barrier, resulting in bacterial translocation, systemic bacteremia, sepsis and death. The lack of effective radioprotective agents capable of mitigating radiation-induced damage has prompted a search for novel countermeasures that can mitigate the effects of radiation post-exposure, accelerate tissue repair in radiation-exposed individuals, and prevent mortality. We report that a single injection of regenerative peptide TP508 (rusalatide acetate, Chrysalin®) 24h after lethal radiation exposure (9Gy, LD100/15) appears to significantly increase survival and delay mortality by mitigating radiation-induced intestinal and colonic toxicity. TP508 treatment post-exposure prevents the disintegration of gastrointestinal crypts, stimulates the expression of adherens junction protein E-cadherin, activates crypt cell proliferation, and decreases apoptosis. TP508 post-exposure treatment also up-regulates the expression of DCLK1 and LGR5 markers of stem cells that have been shown to be responsible for maintaining and regenerating intestinal crypts. Thus, TP508 appears to mitigate the effects of GI toxicity by activating radioresistant stem cells and increasing the stemness potential of crypts to maintain and restore intestinal integrity. These results suggest that TP508 may be an effective emergency nuclear countermeasure that could be delivered within 24h post-exposure to increase survival and delay mortality, giving victims time to reach clinical sites for advanced medical treatment. PMID:26280221

  7. Radiation-Induced Damage to Microstructure of Parotid Gland: Evaluation Using High-Resolution Magnetic Resonance Imaging

    SciTech Connect

    Kan, Tomoko; Kodani, Kazuhiko; Michimoto, Koichi; Fujii, Shinya; Ogawa, Toshihide

    2010-07-15

    Purpose: To elucidate the radiation-induced damage to the microstructure of the parotid gland using high-resolution magnetic resonance imaging. Methods and Materials: High-resolution magnetic resonance imaging of the parotid gland was performed before radiotherapy (RT) and during the RT period or {<=}3 weeks after RT completion for 12 head-and-neck cancer patients using a 1.5-T scanner with a microscopy coil. The maximal cross-sectional area of the gland was evaluated, and changes in the internal architecture of the gland were assessed both visually and quantitatively. Results: Magnetic resonance images were obtained at a median parotid gland dose of 36 Gy (range, 11-64). According to the quantitative analysis, the maximal cross-sectional area of the gland was reduced, the width of the main duct was narrowed, and the intensity ratio of the main duct lumen to background was significantly decreased after RT (p <.0001). According to the visual assessment, the width of the main duct tended to narrow and the contrast of the duct lumen tended to be decreased, but no significant differences were noted. The visibility of the duct branches was unclear in 10 patients (p = .039), and the septum became dense in 11 patients (p = .006) after RT. Conclusion: High-resolution magnetic resonance imaging is a noninvasive method of evaluating radiation-induced changes to the internal architecture of the parotid gland. Morphologic changes in the irradiated parotid gland were demonstrated during the RT course even when a relatively small dose was delivered to the gland.

  8. TGF-.beta. antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, Mary H.

    1997-01-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-.beta. antagonist, such as an anti-TGF-.beta. antibody or a TGF-.beta. latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  9. TGF-{beta} antagonists as mitigators of radiation-induced tissue damage

    DOEpatents

    Barcellos-Hoff, M.H.

    1997-04-01

    A method for treating tissue damage caused by radiation is described by use of a TGF-{beta} antagonist, such as an anti-TGF-{beta} antibody or a TGF-{beta} latency associated protein. It is administered not more than a week after exposure, and is particularly useful in mitigating the side effects of breast cancer therapy.

  10. Structural Stability of Human Fibroblast Growth Factor-1 Is Essential for Protective Effects Against Radiation-Induced Intestinal Damage

    SciTech Connect

    Nakayama, Fumiaki; Umeda, Sachiko; Yasuda, Takeshi; Asada, Masahiro; Motomura, Kaori; Suzuki, Masashi; Zakrzewska, Malgorzata; Imamura, Toru; Imai, Takashi

    2013-02-01

    Purpose: Human fibroblast growth factor-1 (FGF1) has radioprotective effects on the intestine, although its structural instability limits its potential for practical use. Several stable FGF1 mutants were created increasing stability in the order, wild-type FGF1, single mutants (Q40P, S47I, and H93G), Q40P/S47I, and Q40P/S47I/H93G. This study evaluated the contribution of the structural stability of FGF1 to its radioprotective effect. Methods and Materials: Each FGF1 mutant was administered intraperitoneally to BALB/c mice in the absence of heparin 24 h before or after total body irradiation (TBI) with {gamma}-rays at 8-12 Gy. Several radioprotective effects were examined in the jejunum. Results: Q40P/S47I/H93G could activate all subtypes of FGF receptors in vitro much more strongly than the wild-type without endogenous or exogenous heparin. Preirradiation treatment with Q40P/S47I/H93G significantly increased crypt survival more than wild-type FGF1 after TBI at 10 or 12 Gy, and postirradiation treatment with Q40P/S47I/H93G was effective in promoting crypt survival after TBI at 10, 11, or 12 Gy. In addition, crypt cell proliferation, crypt depth, and epithelial differentiation were significantly promoted by postirradiation treatment with Q40P/S47I/H93G. The level of stability of FGF1 mutants correlated with their mitogenic activities in vitro in the absence of heparin; however, preirradiation treatment with the mutants increased the crypt number to almost the same level as Q40P/S47I/H93G. When given 24 h after TBI at 10 Gy, all FGF1 mutants increased crypt survival more than wild-type FGF1, and Q40P/S47I/H93G had the strongest mitogenic effects in intestinal epithelial cells after radiation damage. Moreover, Q40P/S47I/H93G prolonged mouse survival after TBI because of the repair of intestinal damage. Conclusion: These findings suggest that the structural stability of FGF1 can contribute to the enhancement of protective effects against radiation-induced intestinal

  11. Stability of Radiation Induced Chromosome Damage in Human Peripheral Blood Lymphocytes

    NASA Technical Reports Server (NTRS)

    Cucinotta, F. A.; George, K.; Willingham, V.

    2006-01-01

    Chromosome damage in an individual's peripheral blood lymphocytes can be an indicator of radiation exposure and this data can be used to evaluate dose after accidental or occupational exposure. Evidence suggests that the yield of chromosome damage in lymphocytes is also a relevant biomarker of cancer risk in humans that reflects individual cancer susceptibility. It follows that biomonitoring studies can be used to uncover subjects who are particularly susceptible to radiation damage and therefore at higher risk of cancer. Translocations and other stable aberrations are commonly believed to persist in peripheral blood cells for many years after exposure, and it has been suggested that translocations can be used for assessing retrospective radiation doses or chronic exposures. However, recent investigations suggest that translocations might not always persist indefinitely. We measured chromosome aberrations in the blood lymphocytes of six astronauts before their respective missions of approximately 3 to 6 months onboard the international space station, and again at various intervals up to 5 years after flight. In samples collected a few days after return to earth, the yield of chromosome translocations had significantly increased compared with preflight values, and results indicate that biodosimetry estimates lie within the range expected from physical dosimetry. However, for five of the astronauts, follow up analysis revealed a temporal decline in translocations with half-lives ranging from 10 to 58 months. The yield of exchanges remained unchanged for the sixth astronaut during an observation period of 5 months post-flight. These results may indicate complications with the use of stable aberrations for retrospective dose reconstruction and could affect cancer risk predictions that are estimated from yields of chromosome damage obtained shortly after exposure.

  12. Proton beam radiation induces DNA damage and cell apoptosis in glioma stem cells through reactive oxygen species

    PubMed Central

    Alan Mitteer, R.; Wang, Yanling; Shah, Jennifer; Gordon, Sherika; Fager, Marcus; Butter, Param-Puneet; Jun Kim, Hyun; Guardiola-Salmeron, Consuelo; Carabe-Fernandez, Alejandro; Fan, Yi

    2015-01-01

    Glioblastoma multiforme (GBM) is among the most lethal of human malignancies. Most GBM tumors are refractory to cytotoxic therapies. Glioma stem cells (GSCs) significantly contribute to GBM progression and post-treatment tumor relapse, therefore serving as a key therapeutic target; however, GSCs are resistant to conventional radiation therapy. Proton therapy is one of the newer cancer treatment modalities and its effects on GSCs function remain unclear. Here, by utilizing patient-derived GSCs, we show that proton radiation generates greater cytotoxicity in GSCs than x-ray photon radiation. Compared with photon radiation, proton beam irradiation induces more single and double strand DNA breaks, less H2AX phosphorylation, increased Chk2 phosphorylation, and reduced cell cycle recovery from G2 arrest, leading to caspase-3 activation, PARP cleavage, and cell apoptosis. Furthermore, proton radiation generates a large quantity of reactive oxygen species (ROS), which is required for DNA damage, cell cycle redistribution, apoptosis, and cytotoxicity. Together, these findings indicate that proton radiation has a higher efficacy in treating GSCs than photon radiation. Our data reveal a ROS-dependent mechanism by which proton radiation induces DNA damage and cell apoptosis in GSCs. Thus, proton therapy may be more efficient than conventional x-ray photon therapy for eliminating GSCs in GBM patients. PMID:26354413

  13. Effect of Tinospora cordifolia on the reduction of ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells.

    PubMed

    Masuma, Runa; Okuno, Tsutomu; Kabir Choudhuri, Mohammad Shahabuddin; Saito, Takeshi; Kurasaki, Masaaki

    2014-01-01

    The safety of Tinospora cordifolia and its potential to protect against ultraviolet radiation-induced cytotoxicity and DNA damage in PC12 cells were investigated. To evaluate the safety of T. cordifolia, cell viability and agarose gel electrophoresis were carried out using PC12 cells treated with 0 to 100 μg mL(-1) of methanol extract of T. cordifolia. T. cordifolia extracts did not show cytotoxicity ranging 0 to 100 μg mL(-1). In addition, T. cordifolia extracts significantly increased cell viability at 1 ng, 10 ng and 1 μg mL(-1) concentrations in serum-deprived medium compared to control. To confirm the protective role against UV-induced damage, PC12 cells alone or in the presence of 10 ng, 100 ng, or 1 μg mL(-1) of T. cordifolia extract were exposed to 250, 270 and 290 nm of UV radiation, which corresponded to doses of 120, 150 and 300 mJ cm(-2), respectively. Treatment with T. cordifolia extracts significantly increased the cell survival rate irradiated at 290 nm. In addition, T. cordifolia extracts significantly reduced cyclobutane pyrimidine dimer formation induced by UV irradiation at all wavelengths. In conclusion, T. cordifolia is not toxic and safe for cells. Our findings can support its application as phototherapy in the medical sector. PMID:24762179

  14. Induction and persistence of radiation-induced DNA damage is more pronounced in young animals than in old animals

    PubMed Central

    Hudson, Darryl; Kovalchuk, Igor; Koturbash, Igor; Kolb, Bryan; Martin, Olga A.; Kovalchuk, Olga

    2011-01-01

    Younger individuals are more prone to develop cancer upon ionizing radiation (IR) exposure. Radiation-induced tumors are associated with inefficient repair of IR-induced DNA damage and genome instability. Phosphorylation of histone H2AX (γ-H2AX) is the initial event in repair of IR-induced DNA damage on the chromatin flanking the DNA strand breaks. This step is crucially important for the repair of DNA strand breaks and for the maintenance of genome stability. We studied the molecular underpinnings of the age-related IR effects using an animal model. By assaying for IR-induced γ-H2AX foci we analyzed the induction and repair of the DNA strand breaks in spleen, thymus, liver, lung, kidney, cerebellum, hippocampus, frontal cortex and olfactory bulb of 7, 14, 24, 30 and 45 days old male and female mice as a function of age. We demonstrate that tissues of younger animals are much more susceptible to IR-induced DNA damage. Younger animals exhibited higher levels of γ-H2AX formation which partially correlated with cellular proliferation and expression of DNA repair proteins. Induction and persistence of γ-H2AX foci was the highest in lymphoid organs (thymus and spleen) of 7 and 14 day old mice. The lowest focal induction was seen in lung and brain of young animals. The mechanisms of cell and tissue-specificity of in vivo IR responses need to be further dissected. This study provides a roadmap for the future analyses of DNA damage and repair induction in young individuals. PMID:21685513

  15. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    SciTech Connect

    Angeluts, A A; Esaulkov, M N; Kosareva, O G; Solyankin, P M; Shkurinov, A P; Gapeyev, A B; Pashovkin, T N; Matyunin, S N; Nazarov, M M; Cherkasova, O P

    2014-03-28

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 – 200 μW cm{sup -2} within the frequency range of 0.1 – 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes. (biophotonics)

  16. Study of terahertz-radiation-induced DNA damage in human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Angeluts, A. A.; Gapeyev, A. B.; Esaulkov, M. N.; Kosareva, O. G.; Matyunin, S. N.; Nazarov, M. M.; Pashovkin, T. N.; Solyankin, P. M.; Cherkasova, O. P.; Shkurinov, A. P.

    2014-03-01

    We have carried out the studies aimed at assessing the effect of terahertz radiation on DNA molecules in human blood leukocytes. Genotoxic testing of terahertz radiation was performed in three different oscillation regimes, the blood leukocytes from healthy donors being irradiated for 20 minutes with the mean intensity of 8 - 200 μW cm-2 within the frequency range of 0.1 - 6.5 THz. Using the comet assay it is shown that in the selected regimes such radiation does not induce a direct DNA damage in viable human blood leukocytes.

  17. Ionizing Radiation-Induced DNA Damage and Its Repair in Human Cells

    SciTech Connect

    Dizdaroglu, Miral

    1999-05-12

    DNA damage in mammalian chromatin in vitro and in cultured mammalian cells including human cells was studied. In the first phase of these studies, a cell culture laboratory was established. Necessary equipment including an incubator, a sterile laminar flow hood and several centrifuges was purchased. We have successfully grown several cell lines such as murine hybridoma cells, V79 cells and human K562 leukemia cells. This was followed by the establishment of a methodology for the isolation of chromatin from cells. This was a very important step, because a routine and successful isolation of chromatin was a prerequisite for the success of the further studies in this project, the aim of which was the measurement of DNA darnage in mammalian chromatin in vitro and in cultured cells. Chromatin isolation was accomplished using a slightly modified procedure of the one described by Mee & Adelstein (1981). For identification and quantitation of DNA damage in cells, analysis of chromatin was preferred over the analysis of "naked DNA" for the following reasons: i. DNA may not be extracted efficiently from nucleoprotein in exposed cells, due to formation of DNA-protein cross-links, ii. the extractability of DNA is well known to decrease with increasing doses of radiation, iii. portions of DNA may not be extracted due to fragmentation, iv. unextracted DNA may contain a significant portion of damaged DNA bases and DNA-protein cross-links. The technique of gas chromatography/mass spectrometry (GC/MS), which was used in the present project, permits the identification and quantitation of modified DNA bases in chromatin in the presence of proteins without the necessity of first isolating DNA from chromatin. This has been demonstrated previously by the results from our laboratory and by the results obtained during the course of the present project. The quality of isolated chromatin was tested by measurement of its content of DNA, proteins, and RNA, by analysis of its protein

  18. Ionizing radiation-induced DNA injury and damage detection in patients with breast cancer

    PubMed Central

    Borrego-Soto, Gissela; Ortiz-López, Rocío; Rojas-Martínez, Augusto

    2015-01-01

    Abstract Breast cancer is the most common malignancy in women. Radiotherapy is frequently used in patients with breast cancer, but some patients may be more susceptible to ionizing radiation, and increased exposure to radiation sources may be associated to radiation adverse events. This susceptibility may be related to deficiencies in DNA repair mechanisms that are activated after cell-radiation, which causes DNA damage, particularly DNA double strand breaks. Some of these genetic susceptibilities in DNA-repair mechanisms are implicated in the etiology of hereditary breast/ovarian cancer (pathologic mutations in the BRCA 1 and 2 genes), but other less penetrant variants in genes involved in sporadic breast cancer have been described. These same genetic susceptibilities may be involved in negative radiotherapeutic outcomes. For these reasons, it is necessary to implement methods for detecting patients who are susceptible to radiotherapy-related adverse events. This review discusses mechanisms of DNA damage and repair, genes related to these functions, and the diagnosis methods designed and under research for detection of breast cancer patients with increased radiosensitivity. PMID:26692152

  19. Regulation of homologous recombinational repair by lamin B1 in radiation-induced DNA damage.

    PubMed

    Liu, Ning-Ang; Sun, Jiying; Kono, Kazuteru; Horikoshi, Yasunori; Ikura, Tsuyoshi; Tong, Xing; Haraguchi, Tokuko; Tashiro, Satoshi

    2015-06-01

    DNA double-strand breaks (DSBs) are the major lethal lesion induced by ionizing radiation (IR). RAD51-dependent homologous recombination (HR) is one of the most important pathways in DSB repair and genome integrity maintenance. However, the mechanism of HR regulation by RAD51 remains unclear. To understand the mechanism of RAD51-dependent HR, we searched for interacting partners of RAD51 by a proteomics analysis and identified lamin B1 in human cells. Lamins are nuclear lamina proteins that play important roles in the structural organization of the nucleus and the regulation of chromosome functions. Immunoblotting analyses revealed that siRNA-mediated lamin B1 depletion repressed the DNA damage-dependent increase of RAD51 after IR. The repression was abolished by the proteasome inhibitor MG132, suggesting that lamin B1 stabilizes RAD51 by preventing proteasome-mediated degradation in cells with IR-induced DNA damage. We also showed that lamin B1 depletion repressed RAD51 focus formation and decreased the survival rates after IR. On the basis of these results, we propose that lamin B1 promotes DSB repair and cell survival by maintaining the RAD51 protein levels for HR upon DSB induction after IR. PMID:25733566

  20. Infrared A radiation promotes survival of human melanocytes carrying ultraviolet radiation-induced DNA damage.

    PubMed

    Kimeswenger, Susanne; Schwarz, Agatha; Födinger, Dagmar; Müller, Susanne; Pehamberger, Hubert; Schwarz, Thomas; Jantschitsch, Christian

    2016-06-01

    The link between solar radiation and melanoma is still elusive. Although infrared radiation (IR) accounts for over 50% of terrestrial solar energy, its influence on human skin is not well explored. There is increasing evidence that IR influences the expression patterns of several molecules independently of heat. A previous in vivo study revealed that pretreatment with IR might promote the development of UVR-induced non-epithelial skin cancer and possibly of melanoma in mice. To expand on this, the aim of the present study was to evaluate the impact of IR on UVR-induced apoptosis and DNA repair in normal human epidermal melanocytes. The balance between these two effects is a key factor of malignant transformation. Human melanocytes were exposed to physiologic doses of IR and UVR. Compared to cells irradiated with UVR only, simultaneous exposure to IR significantly reduced the apoptotic rate. However, IR did not influence the repair of UVR-induced DNA damage. IR partly reversed the pro-apoptotic effects of UVR via modification of the expression and activity of proteins mainly of the extrinsic apoptotic pathway. In conclusion, IR enhances the survival of melanocytes carrying UVR-induced DNA damage and thereby might contribute to melanomagenesis. PMID:26844814

  1. Pre-activation of mesenchymal stem cells with TNF-α, IL-1β and nitric oxide enhances its paracrine effects on radiation-induced intestinal injury

    PubMed Central

    Chen, Hao; Min, Xiao-Hui; Wang, Qi-Yi; Leung, Felix W.; Shi, Liu; Zhou, Yu; Yu, Tao; Wang, Chuan-Ming; An, Geng; Sha, Wei-Hong; Chen, Qi-Kui

    2015-01-01

    Conditioned medium from mesenchymal stem cells (MSC-CM) may represent a promising alternative to MSCs transplantation, however, the low concentrations of growth factors in non-activated MSC-CM hamper its clinical application. Recent data indicated that the paracrine potential of MSCs could be enhanced by inflammatory factors. Herein, we pre-activated bone-marrow-derived MSCs under radiation-induced inflammatory condition (MSCIEC-6(IR)) and investigated the evidence and mechanism for the differential effects of MSC-CMIEC-6(IR) and non-activated MSC-CM on radiation-induced intestinal injury (RIII). Systemic infusion of MSC-CMIEC-6(IR), but not non-activated MSC-CM, dramatically improved intestinal damage and survival of irradiated rats. Such benefits may involve the modulation of epithelial regeneration and inflammation, as indicated by the regeneration of intestinal epithelial/stem cells, the regulation of the pro-/anti-inflammatory cytokine balance. The mechanism for the superior paracrine efficacy of MSCIEC-6(IR) is related to a higher secretion of regenerative, immunomodulatory and trafficking molecules, including the pivotal factor IGF-1, induced by TNF-α, IL-1β and nitric oxide partially via a heme oxygenase-1 dependent mechanism. Together, our findings suggest that pre-activation of MSCs with TNF-α, IL-1β and nitric oxide enhances its paracine effects on RIII via a heme oxygenase-1 dependent mechanism, which may help us to maximize the paracrine potential of MSCs. PMID:25732721

  2. [Radiation-induced damage of mitochondrial genome and its role in long-term effects of irradiation].

    PubMed

    Berogovskaia, N N; Savich, A V

    1994-01-01

    The role of mt-genome mutations in radiation-induced carcinogenesis has been hypothesized. The data on radiation chemistry of nucleic acids has been used to evaluate mutagenic effect of carcinogenic doses of ionizing radiation. The assumptions about the ways of biological augmentation of primary radiation-induced lesions in mt-genome has been given. PMID:8069366

  3. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    PubMed Central

    Sterpone, Silvia; Cozzi, Renata

    2010-01-01

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer. PMID:20798883

  4. Microbeam Radiation-Induced Tissue Damage Depends on the Stage of Vascular Maturation

    SciTech Connect

    Sabatasso, Sara; Laissue, Jean Albert; Hlushchuk, Ruslan; Graber, Werner; Bravin, Alberto; Braeuer-Krisch, Elke; Corde, Stephanie; Blattmann, Hans; Gruber, Guenther; Djonov, Valentin

    2011-08-01

    Purpose: To explore the effects of microbeam radiation (MR) on vascular biology, we used the chick chorioallantoic membrane (CAM) model of an almost pure vascular system with immature vessels (lacking periendothelial coverage) at Day 8 and mature vessels (with coverage) at Day 12 of development. Methods and Materials: CAMs were irradiated with microplanar beams (width, {approx}25 {mu}m; interbeam spacing, {approx}200 {mu}m) at entrance doses of 200 or 300 Gy and, for comparison, with a broad beam (seamless radiation [SLR]), with entrance doses of 5 to 40 Gy. Results: In vivo monitoring of Day-8 CAM vasculature 6 h after 200 Gy MR revealed a near total destruction of the immature capillary plexus. Conversely, 200 Gy MR barely affected Day-12 CAM mature microvasculature. Morphological evaluation of Day-12 CAMs after the dose was increased to 300 Gy revealed opened interendothelial junctions, which could explain the transient mesenchymal edema immediately after irradiation. Electron micrographs revealed cytoplasmic vacuolization of endothelial cells in the beam path, with disrupted luminal surfaces; often the lumen was engorged with erythrocytes and leukocytes. After 30 min, the capillary plexus adopted a striated metronomic pattern, with alternating destroyed and intact zones, corresponding to the beam and the interbeam paths within the array. SLR at a dose of 10 Gy caused growth retardation, resulting in a remarkable reduction in the vascular endpoint density 24 h postirradiation. A dose of 40 Gy damaged the entire CAM vasculature. Conclusions: The effects of MR are mediated by capillary damage, with tissue injury caused by insufficient blood supply. Vascular toxicity and physiological effects of MR depend on the stage of capillary maturation and appear in the first 15 to 60 min after irradiation. Conversely, the effects of SLR, due to the arrest of cell proliferation, persist for a longer time.

  5. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts

    NASA Technical Reports Server (NTRS)

    George, K.; Cucinotta, F. A.

    2008-01-01

    Cytogenetic analysis of astronauts blood lymphocytes provides a direct in vivo measurement of space radiation damage, which takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times beginning directly after return from space to several years after flight. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and the Relative Biological Effect (RBE) was estimated by comparison with individually measured physically absorbed doses. Values for average RBE were compared to the average quality factor (Q), from direct measurements of the lineal energy spectra using a tissue-equivalent proportional counter (TEPC) and radiation transport codes. Results prove that cytogenetic biodosimetry analyses on blood collected within a week or two of return from space provides a reliable estimate of equivalent radiation dose and risk after protracted exposure to space radiation of a few months or more. However, data collected several months or years after flight suggests that the yield of chromosome translocations may decline with time after the mission, indicating that retrospective doses may be more difficult to estimate. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from one crewmember, who has participated in two separate long-duration space missions and has been followed up for over 10 years, provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  6. The role of intercellular communication and oxidative metabolism in the propagation of ionizing radiation-induced biological effects

    NASA Astrophysics Data System (ADS)

    Autsavapromporn, Narongchai

    unlikely to be a substrate of glutathione peroxidase. To further understand the role of GJIC, we tested the effect of specific connexin channel permeabilities on radiation-induced cell killing and induction of DNA damage. We used human adenocarcinoma (HeLa) cells in which specific connexins can be expressed in the absence of endogenous connexins. When exposed to protons, γ rays, α particles, or iron ions, connexin26 and connexin43 channels mediated the propagation of toxic effects among irradiated cells; in contrast, connexin32 channels conferred protective effects. Collectively, these studies provide a novel mechanistic understanding of the molecular events that mediate the fate of cell populations exposed to different types of ionizing radiation. They show that the LET of the radiation significantly impacts these events. The enhancement of cell killing in the hours after exposure of tumor cells to high charge and high energy particles and or α particles support the use of these particles in cancer radiotherapy. Characterization of the molecules that are communicated through junctional channels from tumor to normal cells would help formulate countermeasures to protect normal tissues during radiotherapy. Future in vivo research would contribute to validating these concepts.

  7. Protection from radiation-induced damage to spermatogenesis by hormone treatment

    SciTech Connect

    Kurdoglu, B.; Wilson, G.; Parchuri, N.; Ye, W.; Meistrich, M.L.

    1994-07-01

    Infertility caused by killing of the spermatogonial stem cells occurs frequently in men treated for cancer with radiotherapy and chemotherapy. We investigated whether pretreatment of rats with testosterone plus estradiol, which reversibly inhibits the completion of spermatogenesis and protects spermatogonial stem cells from procarbazine-induced damage, would also protect these cells from radiation. Adult male LBNF rats were implanted for 6 weeks with capsules containing testosterone and estradiol and then irradiated with doses from 2.5-7.0 Gy. Controls were irradiated with 1.8-3.5 Gy. Implants were removed 1 day after irradiation, and all animals were killed 10 weeks later for assessment of stem cell survival by counting repopulating tubules in histological sections and by sperm head counts. At doses of 2.5 and 3.5 Gy the repopulation indices and sperm head counts were significantly higher (P < 0.001) in the rats treated with testosterone and estradiol than in the controls. Protection factors calculated from the dose-response curves were in the range of 1.5-2.2. Elucidation of the mechanism of protection is essential to apply it to clinical situations. The fact that the spermatogonia are protected against radiation as well as procarbazine indicates that the mechanism does not involve drug delivery or metabolism. 32 refs., 3 figs.

  8. Radiation-induced lung damage promotes breast cancer lung-metastasis through CXCR4 signaling

    PubMed Central

    Feys, Lynn; Descamps, Benedicte; Vanhove, Christian; Vral, Anne; Veldeman, Liv; Vermeulen, Stefan; De Wagter, Carlos; Bracke, Marc; De Wever, Olivier

    2015-01-01

    Radiotherapy is a mainstay in the postoperative treatment of breast cancer as it reduces the risks of local recurrence and mortality after both conservative surgery and mastectomy. Despite recent efforts to decrease irradiation volumes through accelerated partial irradiation techniques, late cardiac and pulmonary toxicity still occurs after breast irradiation. The importance of this pulmonary injury towards lung metastasis is unclear. Preirradiation of lung epithelial cells induces DNA damage, p53 activation and a secretome enriched in the chemokines SDF-1/CXCL12 and MIF. Irradiated lung epithelial cells stimulate adhesion, spreading, growth, and (transendothelial) migration of human MDA-MB-231 and murine 4T1 breast cancer cells. These metastasis-associated cellular activities were largely mimicked by recombinant CXCL12 and MIF. Moreover, an allosteric inhibitor of the CXCR4 receptor prevented the metastasis-associated cellular activities stimulated by the secretome of irradiated lung epithelial cells. Furthermore, partial (10%) irradiation of the right lung significantly stimulated breast cancer lung-specific metastasis in the syngeneic, orthotopic 4T1 breast cancer model. Our results warrant further investigation of the potential pro-metastatic effects of radiation and indicate the need to develop efficient drugs that will be successful in combination with radiotherapy to prevent therapy-induced spread of cancer cells. PMID:26396176

  9. Animal models and medical countermeasures development for radiation-induced lung damage: report from an NIAID Workshop.

    PubMed

    Williams, Jacqueline P; Jackson, Isabel L; Shah, Jui R; Czarniecki, Christine W; Maidment, Bert W; DiCarlo, Andrea L

    2012-05-01

    Since 9/11, there have been concerns that terrorists may detonate a radiological or nuclear device in an American city. Aside from several decorporation and blocking agents for use against internal radionuclide contamination, there are currently no medications within the Strategic National Stockpile that are approved to treat the immediate or delayed complications resulting from accidental exposure to radiation. Although the majority of research attention has focused on developing countermeasures that target the bone marrow and gastrointestinal tract, since they represent the most acutely radiosensitive organs, individuals who survive early radiation syndromes will likely suffer late effects in the months that follow. Of particular concern are the delayed effects seen in the lung that play a major role in late mortality seen in radiation-exposed patients and accident victims. To address these concerns, the National Institute of Allergy and Infectious Diseases convened a workshop to discuss pulmonary model development, mechanisms of radiation-induced lung injury, targets for medical countermeasures development, and end points to evaluate treatment efficacy. Other topics covered included guidance on the challenges of developing and licensing drugs and treatments specific to a radiation lung damage indication. This report reviews the data presented, as well as key points from the ensuing discussion. PMID:22468702

  10. Detection of some irradiated spices on the basis of radiation induced damage of starch

    NASA Astrophysics Data System (ADS)

    Farkas, J.; Sharif, M. M.; Koncz, Á.

    Untreated and irradiated samples of spices were suspended in water, alkalized, and after heat-gelatinization, the apparent viscosity was determined by a rotational viscometer. Several spices, i.e. white pepper, black pepper, nutmeg and ginger showed considerable loss of viscosity as a function of γ-radiation dose in the dose range required for microbial decontamination of natural spices. Less promising results were obtained with spices such as allspice, garlic powder, and onion powder forming low-viscosity heat-treated suspensions even when unirradiated viscometric studies were also performed with a number of pepper samples of various origin to estimate the "natural" variation of rheological properties. Irradiation and storage studies were performed with ground black pepper samples of moisture contents in equilibrium with air of 25%, 50% and 75% R.H., respectively, either untreated or irradiated with 4, 8, 16 or 32 kGy, to study the effect of equilibrium relative humidity and storage time on detectability of radiation treatment. During the entire storage period of 100 days, statistically significant differences of the apparent viscosities of heat-gelatinized suspensions remained detectable between untreated samples and those irradiated with 8 kGy or higher doses. The apparent viscosity of high-moisture (75% E.R.H.) untreated samples was decreasing during long-term storage. Differences between viscosities of untreated and irradiated samples were enlarged when measured at elevated temperatures such as 50°C in the rotational viscometer, or in the boiling-water bath of a falling number apparatus. Other analytical indices such as onset and peak temperatures of gelatinization endotherms by DSC (damaged starch content), by colorimetry, reducing sugar content, alcohol-induced turbidity of hot water extracts of pepper samples, have been changed less dramatically by irradiation than the apparent viscosity of the gelatinized suspensions

  11. Reciprocal Paracrine Interactions Between Normal Human Epithelial and Mesenchymal Cells Protect Cellular DNA from Radiation-Induced Damage

    SciTech Connect

    Nakazawa, Yuka; Saenko, Vladimir Rogounovitch, Tatiana; Suzuki, Keiji; Mitsutake, Norisato; Matsuse, Michiko; Yamashita, Shunichi

    2008-06-01

    Purpose: To explore whether interactions between normal epithelial and mesenchymal cells can modulate the extent of radiation-induced DNA damage in one or both types of cells. Methods and Materials: Human primary thyrocytes (PT), diploid fibroblasts BJ, MRC-5, and WI-38, normal human mammary epithelial cells (HMEC), and endothelial human umbilical cord vein endothelial cells (HUV-EC-C), cultured either individually or in co-cultures or after conditioned medium transfer, were irradiated with 0.25 to 5 Gy of {gamma}-rays and assayed for the extent of DNA damage. Results: The number of {gamma}-H2AX foci in co-cultures of PT and BJ fibroblasts was approximately 25% lower than in individual cultures at 1 Gy in both types of cells. Reciprocal conditioned medium transfer to individual cultures before irradiation resulted in approximately a 35% reduction of the number {gamma}-H2AX foci at 1 Gy in both types of cells, demonstrating the role of paracrine soluble factors. The DNA-protected state of cells was achieved within 15 min after conditioned medium transfer; it was reproducible and reciprocal in several lines of epithelial cells and fibroblasts, fibroblasts, and endothelial cells but not in epithelial and endothelial cells. Unlike normal cells, human epithelial cancer cells failed to establish DNA-protected states in fibroblasts and vice versa. Conclusions: The results imply the existence of a network of reciprocal interactions between normal epithelial and some types of mesenchymal cells mediated by soluble factors that act in a paracrine manner to protect DNA from genotoxic stress.

  12. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    PubMed Central

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  13. Radiation induced DNA damage and damage repair in human tumor and fibroblast cell lines assessed by histone H2AX phosphorylation

    SciTech Connect

    Mahrhofer, Hartmut; Buerger, Susann; Oppitz, Ulrich; Flentje, Michael; Djuzenova, Cholpon S. . E-mail: djuzenova_t@klinik.uni-wuerzburg.de

    2006-02-01

    Purpose: To analyze the radiation-induced levels of {gamma}H2AX and its decay kinetics in 10 human cell lines covering a wide range of cellular radiosensitivity (SF2, 0.06-0.63). Methods and Materials: Five tumor cell lines included Colo-800 melanoma, two glioblastoma (MO59J and MO59K), fibrosarcoma HT 1080, and breast carcinoma MCF7. Five primary skin fibroblasts lines included two normal strains, an ataxia telangiectasia strain, and two fibroblast strains from breast cancer patients with an adverse early skin reaction to radiotherapy. Cellular radiosensitivity was assessed by colony-forming test. Deoxyribonucleic acid damage and repair were analyzed according to nuclear {gamma}H2AX foci intensity, with digital image analysis. Results: The cell lines tested showed a wide degree of variation in the background intensity of immunostained nuclear histone {gamma}H2AX, which was higher for the tumor cell lines compared with the fibroblast strains. It was not possible to predict clonogenic cell survival (SF2) for the 10 cell lines studied from the radiation-induced {gamma}H2AX intensity. In addition, the slopes of the dose-response (0-4 Gy) curves, the rates of {gamma}H2AX disappearance, and its residual expression ({<=}18 h after irradiation) did not correlate with SF2 values. Conclusions: The results from 10 cell lines showed that measurements of immunofluorescence intensity by digital image analysis of phosphorylated histone H2AX as a surrogate marker of DNA double-strand breaks did not allow reliable ranking of cell strains according to their clonogenic survival after irradiation.

  14. Investigation into the role of the cholinergic system in radiation-induced damage in the rat liver and ileum

    PubMed Central

    Özyurt, Hazan; Özden, A. Sevgi; Çevİk, Özge; Özgen, Zerrin; ÇadIrcI, Selin; Elmas, Merve Açıkel; Ercan, Feriha; Şener, Göksel; Gören, M.Z.

    2014-01-01

    It has been previously shown that acetylcholine (ACh) may affect pro-inflammatory and anti-inflammatory cytokines. The role of the cholinergic system in radiation-induced inflammatory responses and tissue damage remains unclear. Therefore, the present study was designed to determine the radio-protective properties of the cholinergic system in the ileum and the liver of rats. Rats were exposed to 8-Gy single-fraction whole-abdominal irradiation and were then decapitated at either 36 h or 10 d post-irradiation. The rats were treated either with intraperitoneal physiological saline (1 ml/kg), physostigmine (80 µg/kg) or atropine (50 μg/kg) twice daily for 36 h or 10 d. Cardiac blood samples and liver and ileal tissues were obtained in which TNF-α, IL-1β and IL-10 levels were assayed using ELISA. In the liver and ileal homogenates, caspase-3 immunoblots were performed and myeloperoxidase (MPO) activity was analyzed. Plasma levels of IL-1β and TNF-α increased significantly following radiation (P < 0.01 and P < 0.001, respectively) as compared with non-irradiated controls, and physostigmine treatment prevented the increase in the pro-inflammatory cytokines (P < 0.01 and P < 0.001, respectively). Plasma IL-10 levels were not found to be significantly changed following radiation, whereas physostigmine augmented IL-10 levels during the late phase (P < 0.01). In the liver and ileum homogenates, IL-1β and TNF-α levels were also elevated following radiation, and this effect was inhibited by physostigmine treatment but not by atropine. Similarly, physostigmine also reversed the changes in MPO activity and in the caspase-3 levels in the liver and ileum. Histological examination revealed related changes. Physostigmine experiments suggested that ACh has a radio-protective effect not involving the muscarinic receptors. PMID:24914105

  15. Protection of Radiation-Induced Damage to the Hematopoietic System, Small Intestine and Salivary Glands in Rats by JNJ7777120 Compound, a Histamine H4 Ligand

    PubMed Central

    Martinel Lamas, Diego J.; Carabajal, Eliana; Prestifilippo, Juan P.; Rossi, Luis; Elverdin, Juan C.; Merani, Susana; Bergoc, Rosa M.; Rivera, Elena S.; Medina, Vanina A.

    2013-01-01

    Based on previous data on the histamine radioprotective effect on highly radiosensitive tissues, in the present work we aimed at investigating the radioprotective potential of the H4R ligand, JNJ7777120, on ionizing radiation-induced injury and genotoxic damage in small intestine, salivary glands and hematopoietic tissue. For that purpose, rats were divided into 4 groups. JNJ7777120 and JNJ7777120-irradiated groups received a daily subcutaneous JNJ7777120 injection (10 mg/kg) starting 24 h before irradiation. Irradiated groups received a single dose of 5 Gy on whole-body using Cesium-137 source and were sacrificed 3 or 30 days after irradiation. Tissues were removed, fixed, stained with hematoxylin and eosin or PAS staining and histological characteristics were evaluated. Proliferative and apoptotic markers were studied by immunohistochemistry, while micronucleus assay was performed to evaluate DNA damage. Submandibular gland (SMG) function was evaluated by methacholine-induced salivation. Results indicate that JNJ7777120 treatment diminished mucosal atrophy and preserved villi and the number of crypts after radiation exposure (240±8 vs. 165±10, P<0.01). This effect was associated to a reduced apoptosis and DNA damage in intestinal crypts. JNJ7777120 reduced radiation-induced aplasia, preserving medullar components and reducing formation of micronucleus and also it accelerated bone marrow repopulation. Furthermore, it reduced micronucleus frequency in peripheral blood (27±8 vs. 149±22, in 1,000 erythrocytes, P<0.01). JNJ7777120 completely reversed radiation-induced reduced salivation, conserving glandular mass with normal histological appearance and reducing apoptosis and atrophy of SMG. JNJ7777120 exhibits radioprotective effects against radiation-induced cytotoxic and genotoxic damages in small intestine, SMG and hematopoietic tissues and, thus, could be of clinical value for patients undergoing radiotherapy. PMID:23922686

  16. Radiation-induced cardiovascular effects

    NASA Astrophysics Data System (ADS)

    Tapio, Soile

    Recent epidemiological studies indicate that exposure to ionising radiation enhances the risk of cardiovascular mortality and morbidity in a moderate but significant manner. Our goal is to identify molecular mechanisms involved in the pathogenesis of radiation-induced cardiovascular disease using cellular and mouse models. Two radiation targets are studied in detail: the vascular endothelium that plays a pivotal role in the regulation of cardiac function, and the myocardium, in particular damage to the cardiac mitochondria. Ionising radiation causes immediate and persistent alterations in several biological pathways in the endothelium in a dose- and dose-rate dependent manner. High acute and cumulative doses result in rapid, non-transient remodelling of the endothelial cytoskeleton, as well as increased lipid peroxidation and protein oxidation of the heart tissue, independent of whether exposure is local or total body. Proteomic and functional changes are observed in lipid metabolism, glycolysis, mitochondrial function (respiration, ROS production etc.), oxidative stress, cellular adhesion, and cellular structure. The transcriptional regulators Akt and PPAR alpha seem to play a central role in the radiation-response of the endothelium and myocardium, respectively. We have recently started co-operation with GSI in Darmstadt to study the effect of heavy ions on the endothelium. Our research will facilitate the identification of biomarkers associated with adverse cardiac effects of ionising radiation and may lead to the development of countermeasures against radiation-induced cardiac damage.

  17. Profiling mitochondrial proteins in radiation-induced genome-unstable cell lines with persistent oxidative stress by mass spectrometry

    SciTech Connect

    Miller, John H.; Jin, Shuangshuang; Morgan, William F.; Yang, Austin; Wan, Yunhu; Aypar, Umut; Peters, Jonathan S.; Springer, David L.

    2008-06-01

    Radiation-induced genome instability (RIGI) is a response to radiation exposure in which the progeny of surviving cells exhibit increased frequency of chromosomal changes many generations after the initial insult. Persistently elevated oxidative stress accompanying RIGI and the ability of free-radical scavengers, given before irradiation, to reduce the incidence of instability suggest that radiation induced alterations to mitochondrial function likely play a role in RIGI. To further elucidate this mechanism, we performed high-throughput quantitative mass spectrometry on samples enriched in mitochondrial proteins from three chromosomally-unstable GM10115 Chinese-hamster-ovary cell lines and their stable parental cell line. Out of several hundred identified proteins, sufficient data were collected on 74 mitochondrial proteins to test for statistically significant differences in their abundance between unstable and stable cell lines. Each of the unstable cell lines showed a distinct profile of statistically-significant differential abundant mitochondrial proteins. The LS-12 cell line was characterized by 8 downregulated proteins, whereas the CS-9 cell line exhibited 5 distinct up-regulated proteins. The unstable 115 cell line had two down-regulated proteins, one of which was also downregulated in LS-12, and one up-regulated protein relative to stable parental cells. The mitochondrial protein profiles for LS-12 and C-9 provide further evidence that mitochondrial dysfunction is involved in the genome instability of these cell lines.

  18. The effect of 2-[(aminopropyl)amino] ethanethiol (WR-1065) on radiation induced DNA double strand damage and repair in V79 cells.

    PubMed Central

    Sigdestad, C. P.; Treacy, S. H.; Knapp, L. A.; Grdina, D. J.

    1987-01-01

    Radiation induced DNA double strand breaks are believed to be important lesions involved in processes related to cell killing, induction of chromosome aberrations and carcinogenesis. This paper reports the effects of the radioprotector 2-[(aminopropyl)amino]ethanethiol (WR-1065) on radiation-induced DNA damage and repair in V79 cells using the neutral elution method performed at pH 7.2 or pH 9.6. WR-1065 (4 mM) was added to the culture medium either 30 minutes prior to and during irradiation with Cobalt-60 gamma rays (for dose response experiments) or during the repair times tested (for DNA rejoining experiments). The results indicate that WR-1065 is an effective protector against the formation of radiation-induced double-strand breaks in DNA as measured using a neutral elution technique at either pH. The protector reduced the strand scission factors by 1.44 and 1.77 in experiments run at pH 9.6 and pH 7.2, respectively. The kinetics of DNA double-strand rejoining were dependent upon the pH at which the neutral elution procedure was performed. Unlike the results obtained with alkaline elution, rejoining of DNA breaks was unaffected by the presence of WR-1065 at either pH. PMID:3606941

  19. Dried Plum Protects From Radiation-Induced Bone Loss by Attenuating Pro-Osteoclastic and Oxidative Stress Responses

    NASA Technical Reports Server (NTRS)

    Globus, Ruth

    2015-01-01

    Future space explorations beyond the earths magnetosphere will increase human exposure to space radiation and associated risks to skeletal health. We hypothesize that oxidative stress resulting from radiation exposure plays a major role in progressive bone loss and dysfunction in associated tissue. In animal studies, increased free radical formation is associated with pathological changes in bone structure, enhanced bone resorption, reduced bone formation and decreased bone mineral density, which can lead to skeletal fragility. Our long-term goals are to define the mechanisms and risk of bone loss in the spaceflight environment and to facilitate the development of effective countermeasures. We had previously reported that exposure to low or high-LET radiation correlates with an acute increase in the expression of pro-osteoclastic and oxidative stress genes in bone during the early response to radiation followed by pathological changes in skeletal structure. We then conducted systematic screening for potential countermeasures against bone loss where we tested the ability of various antioxidants to mitigate the radiation-induced increase in expression of these markers. For the screen, 16-week old C57Bl6J mice were treated with a dietary antioxidant cocktail, injectable DHLA or a dried plum-enriched diet (DP). Mice were then exposed to 2Gy 137Cs radiation and one day later, marrow cells were collected and the relevant genes analyzed for expression levels. Among the candidate countermeasures tested, DP was most effective in reducing the expression of genes associated with bone loss. Furthermore, analysis of skeletal structure by microcomputed tomography (microCT) revealed that DP also prevents the radiation-induced deterioration in skeletal microarchitecture as indicated by parameters such as percent bone volume (BVTV), trabecular spacing and trabecular number. We also found that DP has similar protective effects on skeletal structure in a follow-up study using 1 Gy of

  20. Radiation-induced autophagy: mechanisms and consequences.

    PubMed

    Chaurasia, Madhuri; Bhatt, Anant Narayan; Das, Asmita; Dwarakanath, Bilikere S; Sharma, Kulbhushan

    2016-01-01

    Autophagy is an evolutionary conserved, indispensable, lysosome-mediated degradation process, which helps in maintaining homeostasis during various cellular traumas. During stress, a context-dependent role of autophagy has been observed which drives the cell towards survival or death depending upon the type, time, and extent of the damage. The process of autophagy is stimulated during various cellular insults, e.g. oxidative stress, endoplasmic reticulum stress, imbalances in calcium homeostasis, and altered mitochondrial potential. Ionizing radiation causes ROS-dependent as well as ROS-independent damage in cells that involve macromolecular (mainly DNA) damage, as well as ER stress induction, both capable of inducing autophagy. This review summarizes the current understanding on the roles of oxidative stress, ER stress, DNA damage, altered mitochondrial potential, and calcium imbalance in radiation-induced autophagy as well as the merits and limitations of targeting autophagy as an approach for radioprotection and radiosensitization. PMID:26764568

  1. Pravastatin limits radiation-induced vascular dysfunction in the skin.

    PubMed

    Holler, Valerie; Buard, Valerie; Gaugler, Marie-Helene; Guipaud, Olivier; Baudelin, Cedric; Sache, Amandine; Perez, Maria del R; Squiban, Claire; Tamarat, Radia; Milliat, Fabien; Benderitter, Marc

    2009-05-01

    About half of people with cancer are treated with radiation therapy; however, normal tissue toxicity still remains a dose-limiting factor for this treatment. The skin response to ionizing radiation may involve multiple inflammatory outbreaks. The endothelium is known to play a critical role in radiation-induced vascular injury. Furthermore, endothelial dysfunction reflects a decreased availability of nitric oxide. Statins have been reported to preserve endothelial function through their antioxidant and anti-inflammatory activities. In this study, wild type and endothelial nitric oxide synthase (eNOS)(-/-) mice were subjected to dorsal skin irradiation and treated with pravastatin for 28 days. We demonstrated that pravastatin has a therapeutic effect on skin lesions and abolishes radiation-induced vascular functional activation by decreasing interactions between leukocytes and endothelium. Pravastatin limits the radiation-induced increase of blood CCL2 and CXCL1 production expression of inflammatory adhesion molecules such as E-selectin and intercellular adhesion molecule-1, and inflammatory cell migration in tissues. Pravastatin limits the in vivo and in vitro radiation-induced downregulation of eNOS. Moreover, pravastatin has no effect in eNOS(-/-) mice, demonstrating that eNOS plays a key role in the beneficial effect of pravastatin in radiation-induced skin lesions. In conclusion, pravastatin may be a good therapeutic approach to prevent or reduce radiation-induced skin damage. PMID:19212344

  2. Age- and time interval-specific gamma radiation-induced DNA damage in adult maize weevils, Sitophilus zeamais Motschulsky, assessed using comet assays.

    PubMed

    Hasan, Md Mahbub; Todoriki, Setsuko; Miyanoshita, Akihiro; Imamura, Taro

    2012-01-24

    The gamma radiation-induced DNA damage in adult maize weevils, Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae), was assessed using single-cell electrophoresis (comet assay). Analysis of DNA damage following 0.5 and 1.0 kGy of gamma radiation was performed using cells from 1- and 15-day-old adults. Gamma-irradiated adults from both age groups showed typical DNA fragmentation, whereas cells from non-irradiated adults showed more intact DNA than young S. zeamais. Investigations using the comet assay showed that tail length, % tail DNA and % DNA damage all increased in adults of both age groups when compared to the control insects. A maximum comet length of 227.33 μm was recorded for 15-day-old adults at 24h after irradiation with 1.0 kGy and a minimum of 50.12 μm for 1-day-old adults at 0 h after irradiation with 0.5 kGy. The percentage of DNA damage increased up to 57.31% and 68.15% for 1- and 15-day-old adults, respectively, at 24h after irradiation with 1.0 kGy, whereas only 8.58% and 12.22% DNA damage were observed in the control batches. The results also showed that percentage of DNA damage increased at 24h after irradiation compared to that at 0 h. However, further studies are needed to confirm these results. PMID:22142832

  3. Countering effects of a combination of podophyllotoxin, podophyllotoxin β-D-glucoside and rutin hydrate in minimizing radiation induced chromosomal damage, ROS and apoptosis in human blood lymphocytes.

    PubMed

    Dutta, Sangeeta; Yashavarddhan, M H; Srivastava, Nitya Nand; Ranjan, Rajiv; Bajaj, Sania; Kalita, Bhargab; Singh, Abhinav; Flora, Swaran J S; Gupta, Manju Lata

    2016-05-01

    The present study was conceptualized with the aim of developing a safe radioprotector for human application against radiation induced toxicity. For this study, a formulation (G-002M) prepared by combining three active principles isolated from rhizomes of Podophyllum hexandrum, was evaluated for its potential to protect genomic DNA of human blood cells exposed to different doses of radiation (5,7&10Gy). Blood samples were pretreated (-1hr to exposure) with G-002M. Parameters of Premature Chromosome Condensation (PCC) assay like PCC-index, PCC-rings and PCC-fragments were used to estimate radiation induced chromosomal aberrations. Radiation (7Gy) induce ROS generation and its modulation by G-002M was determined by flow-cytometry and fluorescent microscopy while apoptosis (0,2,24&48 hr) was analyzed using TUNEL assay. Effect on spindle organization in G2/M arrested cells by all the three compounds individually was studied using immunofluorescence microscopy. Irradiation caused dose dependent linear increase in PCC-rings and fragments, while decline in PCC index. G-002M pretreatment significantly decreased these chromosomal aberrations at all the radiation doses and assisted cell survival as indicated by increased PCC index compared with radiation only group. Significant decrease in radiation induced intracellular ROS (45 ± 3%) and apoptosis (49.9%) was also exhibited by the formulation. On podophyllotoxin treatment, most of the cells have shown blocked spindles however, depicted normal arrangement. G-002M also demonstrated a highly significant Dose Modifying Factor or DMF (PCC-rings: 2.27 and PCC-fragments: 1.60). Present study based on many parameters along with DMF study, strongly suggests that G-002M is an effective formulation with a potential to minimize chromosomal damage even at very high radiation doses. PMID:26993954

  4. Ionizing radiation induced catalysis on metal oxide particles. 1998 annual progress report

    SciTech Connect

    Fryberger, T.; Chambers, S.A.; Daschbach, J.L.; Henderson, M.A.; Peden, C.H.F.; Su, Y.; Wang, Y.

    1998-06-01

    'High-level radioactive waste storage tanks within DOE sites contain significant amounts of organic components (solid and liquid phases) in the form of solvents, extractants, complexing agents, process chemicals, cleaning agents and a variety of miscellaneous compounds. These organics pose several safety and pretreatment concerns, particularly for the Hanford tank waste. Remediation technologies are needed that significantly reduce the amounts of problem organics without resulting in toxic or flammable gas emissions, and without requiring thermal treatments. These restrictions pose serious technological barriers for current organic destruction methods which utilize oxidation achieved by thermal or chemical activation. This project focuses on using ionizing radiation (a,b,g) to catalytically destroy organics over oxide materials through reduction/oxidation (redox) chemistry resulting from electron-hole (e{sup -}/h{sup +}) pair generation. Conceptually this process is an extension of visible and near-UV photocatalytic processes known to occur at the interfaces of narrow bandgap semiconductors in both solution and gas phases. In these processes, an electron is excited across the energy gap between the filled and empty states in the semiconductor. The excited electron does reductive chemistry and the hole (where the electron was excited from) does oxidative chemistry. The energy separation between the hole and the excited electron reflects the redox capability of the e{sup -}/h{sup +} pair, and is dictated by the energy of the absorbed photon and the bandgap of the material. The use of ionizing radiation overcomes optical transparency limitations associated with visible and near-UV illumination (g-rays penetrate much farther into a solution than UV/Vis light), and permits the use of wider bandgap materials (such as ZrO{sub 2}) which possess potentially greater redox capabilities than those with narrow bandgap materials. Experiments have been aimed at understanding the

  5. Protective Effect of Diphlorethohydroxycarmalol against Ultraviolet B Radiation-Induced DNA Damage by Inducing the Nucleotide Excision Repair System in HaCaT Human Keratinocytes

    PubMed Central

    Piao, Mei Jing; Madduma Hewage, Susara Ruwan Kumara; Han, Xia; Kang, Kyoung Ah; Kang, Hee Kyoung; Lee, Nam Ho; Hyun, Jin Won

    2015-01-01

    We investigated the protective properties of diphlorethohydroxycarmalol (DPHC), a phlorotannin, against ultraviolet B (UVB) radiation-induced cyclobutane pyrimidine dimers (CPDs) in HaCaT human keratinocytes. The nucleotide excision repair (NER) system is the pathway by which cells identify and repair bulky, helix-distorting DNA lesions such as ultraviolet (UV) radiation-induced CPDs and 6-4 photoproducts. CPDs levels were elevated in UVB-exposed cells; however, this increase was reduced by DPHC. Expression levels of xeroderma pigmentosum complementation group C (XPC) and excision repair cross-complementing 1 (ERCC1), which are essential components of the NER pathway, were induced in DPHC-treated cells. Expression of XPC and ERCC1 were reduced following UVB exposure, whereas DPHC treatment partially restored the levels of both proteins. DPHC also increased expression of transcription factor specificity protein 1 (SP1) and sirtuin 1, an up-regulator of XPC, in UVB-exposed cells. DPHC restored binding of the SP1 to the XPC promoter, which is reduced in UVB-exposed cells. These results indicate that DPHC can protect cells against UVB-induced DNA damage by inducing the NER system. PMID:26404324

  6. The repair of gamma-radiation-induced DNA damage is inhibited by microcystin-LR, the PP1 and PP2A phosphatase inhibitor.

    PubMed

    Lankoff, A; Bialczyk, J; Dziga, D; Carmichael, W W; Gradzka, I; Lisowska, H; Kuszewski, T; Gozdz, S; Piorun, I; Wojcik, A

    2006-01-01

    The genotoxic activity of microcystin-LR (MC-LR) is a matter of debate. MC-LR is known to be a phosphatase inhibitor and it may be expected that it is involved in the regulation of the activity of DNA-dependent protein kinase (DNA-PK), the key enzyme involved in the repair of radiation-induced DNA damage. We studied the effect of MC-LR on the repair capacity of radiation-induced DNA damage in human lymphocytes and human glioblastoma cell lines MO59J and MO59K. A dose of 0.5 microg/ml of MC-LR was chosen because it induced very little early apoptosis which gives no false positive results in the comet assay. Human lymphocytes in G0-phase of the cell cycle were pre-treated with MC-LR for 3 h and irradiated with 2 Gy of gamma radiation. The kinetics of DNA repair was assessed by the comet assay. In addition the frequencies of chromosomal aberrations were analysed. The pre-treatment with MC-LR inhibited the repair of radiation-induced damage and lead to enhanced frequencies of chromosomal aberrations including dicentric chromosomes. The results of a split-dose experiment, where cells were exposed to two 1.5 Gy doses of radiation separated by 3 h with or without MC-LR, confirmed that the toxin increased the frequency of dicentric chromosomes. We also determined the effect of MC-LR and ionizing radiation on the frequency of gamma-H2AX foci. The pre-treatment with MC-LR resulted in reduced numbers of gamma-H2AX foci in irradiated cells. In order to elucidate the impact of MC-LR on DNA-PK we examined the kinetics of DNA repair in human glioblastoma MO59J and MO59K cells. Both cell lines were exposed to 10 Gy of X-rays and DNA repair was analysed by the comet assay. A strong inhibitory effect was observed in the MO59K but not in the MO59J cells. These results indicate that DNA-PK might be involved in DNA repair inhibition by MC-LR. PMID:16434448

  7. Radiation induced oxidation of sulphydryl molecules in aqueous solutions. A comprehensive review

    NASA Astrophysics Data System (ADS)

    Lal, Manohar

    1994-06-01

    Radiation degradation studies of thiols in aqueous solutions under variety of conditions during the past more than three decades are reviewed. Radiolytic mechanism of γ-irradiated air free, air and N 2O-saturated solutions of cysteine, cysteamine, dithiothreitol, mercaptoethanol, glutathione and papain are high lighted. A large variety of thiols repair organic radicals by H atom transfer from SH group. The repair rate constants are found to be between 5 × 10 6M -1s -1 to 4.0 × 10 8M -1s -1. The data are tabulated. The rate constants of e -aq and ȮH radicals with variety of thiols evaluated by pulse radioanalysis and flash photolysis are found to be very high and are computed. Sulphur centered radicals e.g. RṠ;, RSSR ⨪ generated in the pulse radioanalysis of thiols are very important species. Their reactions with oxygen and other compounds are of relevance to radiation biology. The results, reaction mechanism, the repair rate constant, the rate constants of e -aq and ȮH radicals with thiols and the rate constants of sulphur centered radicals with oxygen and other compounds of biological interest can be of great use in the interpretation of the mechanism of the protection of cells, animals, DNA and other biological molecules and may well provide basic essential information for the understanding of radiation biology. The protection of biological target at chemical level is generally understood in terms of protecting compounds participating directly in the radiochemical event and reducing the damage to biological target. The damage to the biological target is repaired by the hydrogen transfer from the thiol. Biochemical and metabolic mechanisms are quite complex. There is no single mechanism which explains all the experimental observations on the metabolism of thiols. More work needs to be done in order to understand the metabolic aspect of the protection mechanism.

  8. Exposure to radiofrequency radiation induces oxidative stress in duckweed Lemna minor L.

    PubMed

    Tkalec, Mirta; Malarić, Kresimir; Pevalek-Kozlina, Branka

    2007-12-15

    Widespread use of radiofrequency radiation emitting devices increased the exposure to electromagnetic fields (EMFs) from 300 MHz to 300 GHz. Various biological effects of exposure to these fields have been documented so far, but very little work has been carried out on plants. The aim of the present work was to investigate the physiological responses of the plant Lemna minor after exposure to radiofrequency EMFs, and in particular, to clarify the possible role of oxidative stress in the observed effects. Duckweed was exposed for 2 h to EMFs of 400 and 900 MHz at field strengths of 10, 23, 41 and 120 V m(-1). The effect of a longer exposure time (4 h) and modulation was also investigated. After exposure, parameters of oxidative stress, such as lipid peroxidation, H(2)O(2) content, activities and isoenzyme pattern of antioxidative enzymes as well as HSP70 expression were evaluated. At 400 MHz, lipid peroxidation and H(2)O(2) content were significantly enhanced in duckweed exposed to EMFs of 23 and 120 V m(-1) while other exposure treatments did not have an effect. Compared to the controls, the activities of antioxidative enzymes showed different behaviour: catalase (CAT) activity increased after most exposure treatments while pyrogallol (PPX) and ascorbate peroxidase (APX) activities were not changed. Exceptions were reduced PPX and APX activity after longer exposure at 23 V m(-1) and increased PPX activity after exposures at 10 and 120 V m(-1). By contrast, at 900 MHz almost all exposure treatments significantly increased level of lipid peroxidation and H(2)O(2) content but mostly decreased PPX activity and did not affect CAT activity. Exceptions were exposures to a modulated field and to the field of 120 V m(-1) which increased PPX and CAT activity. At this frequency APX activity was significantly decreased after exposure at 10 V m(-1) and longer exposure at 23 V m(-1) but it increased after a shorter exposure at 23 V m(-1). At both frequencies no differences in

  9. Radiation induced oxidative degradation of polymers—III. Effect of radiation on mechanical properties

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao; Arakawa, Kazuo; Ito, Masayuki; Hayakawa, Naohiro; Machi, Sueo

    The changes of mechanical properties of various kinds of polyethylene (PE) and ethylene-propylene copolymer (EPR) with the irradiation in air, in oxygen of 10 atm, and under vacuum were investigated. The decrease in the elongation ( E b) and the tensile strength ( T b) of PE by the irradiation in oxygen is larger than under vacuum. The changes of E b well reflect the degradation of PE. In case of EPR, the T b decreases sharply with dose in any environments, and the E b decreases under vacuum to a larger extent than in oxygen. The modulus at 200% elongation of EPR increases with dose under vacuum, but decreases in oxygen. When the samples were irradiated in air, the changes of the mechanical properties were the intermediate between oxygen and vacuum and dependent on the ratio of oxidation and non-oxidation layers in the film. The antioxidant (Irganox 1010 or DPPD) mixed in polymers was found to retard effectively the polymer degradation by the irradiation in oxygen.

  10. Effects of dietary supplements on space radiation-induced oxidative stress in Sprague-Dawley rats.

    PubMed

    Guan, Jun; Wan, X Steven; Zhou, Zhaozong; Ware, Jeffrey; Donahue, Jeremiah J; Biaglow, John E; Kennedy, Ann R

    2004-11-01

    Of particular concern for the health of astronauts during space travel is radiation from protons and high-mass, high-atomic-number (Z), and high-energy particles (HZE particles). Space radiation is known to induce oxidative stress in astronauts after extended space flight. In the present study, the total antioxidant status was used as a biomarker to evaluate oxidative stress induced by gamma rays, protons and HZE-particle radiation. The results demonstrate that the plasma level of total antioxidants in Sprague-Dawley rats was significantly decreased (P < 0.01) in a dose-dependent manner within 4 h after exposure to gamma rays. Exposure to protons and HZE-particle radiation also significantly decreased the serum or plasma level of total antioxidants in the irradiated animals. Diet supplementation with L-selenomethionine alone or a combination of selected antioxidant agents was shown to partially or completely prevent the decrease in the serum or plasma levels of total antioxidants in animals exposed to gamma rays, protons or HZE particles. These findings suggest that exposure to space radiation may compromise the capacity of the host antioxidant defense and that this adverse biological effect can be prevented at least partially by dietary supplementation with L-selenomethionine and antioxidants. PMID:15624312

  11. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model.

    PubMed

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-08-01

    Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO2 in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10Gy×2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy. PMID:23831468

  12. Oxidative damage in chemical teratogenesis.

    PubMed

    Wells, P G; Kim, P M; Laposa, R R; Nicol, C J; Parman, T; Winn, L M

    1997-12-12

    The teratogenicity of many xenobiotics is thought to depend at least in part upon their bioactivation by embryonic cytochromes P450, prostaglandin H synthase (PHS) and lipoxygenases (LPOs) to electrophilic and/or free radical reactive intermediates that covalently bind to or oxidize cellular macromolecules such as DNA, protein and lipid, resulting in in utero death or teratogenesis. Using as models the tobacco carcinogens benzo[a]pyrene (B[a]P) and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), the anticonvulsant drug phenytoin, structurally related anticonvulsants (e.g. mephenytoin, nirvanol, trimethadione, dimethadione) and the sedative drug thalidomide, we have examined the potential teratologic relevance of free radical-initiated, reactive oxygen species (ROS)-mediated oxidative molecular target damage, genotoxicity (micronucleus formation) and DNA repair in mouse and rabbit models in vivo and in embryo culture, and in vitro using purified enzymes or cultured rat skin fibroblasts. These teratogens were bioactivated by PHS and LPOs to free radical reactive intermediary metabolites, characterized by electron spin resonance spectrometry, that initiated ROS formation, including hydroxyl radicals, which were characterized by salicylate hydroxylation. ROS-initiated oxidation of DNA (8-hydroxy-2'-deoxyguanosine formation), protein (carbonyl formation), glutathione (GSH) and lipid (peroxidation), and embryotoxicity were shown for phenytoin, its major hydroxylated metabolite 5-(p-hydroxyphenyl)-5-phenylhydantoin [HPPH], thalidomide, B[a]P and NNK in vivo and/or in embryo culture, the latter indicating a teratologically critical role for embryonic, as distinct from maternal, processes. DNA oxidation and teratogenicity of phenytoin and thalidomide were reduced by PHS inhibitors. Oxidative macromolecular lesions and teratogenicity also were reduced by the free radical trapping agent phenylbutylnitrone (PBN), and the antioxidants caffeic acid and vitamin E. In embryo

  13. Radiation-induced nitric oxide mitigates tumor hypoxia and radioresistance in a murine SCCVII tumor model

    SciTech Connect

    Nagane, Masaki; Yasui, Hironobu; Yamamori, Tohru; Zhao, Songji; Kuge, Yuji; Tamaki, Nagara; Kameya, Hiromi; Nakamura, Hideo; Fujii, Hirotada; Inanami, Osamu

    2013-08-02

    Highlights: •IR-induced NO increased tissue perfusion and pO{sub 2}. •IR increased NO production in tumors without changes in the mRNA and protein levels of NOS isoforms. •NOS activity assay showed that IR upregulated eNOS activity in tumors. •IR-induced NO decreased tumor hypoxia and altered tumor radiosensitivity. -- Abstract: Tumor hypoxia, which occurs mainly as a result of inadequate tissue perfusion in solid tumors, is a well-known challenge for successful radiotherapy. Recent evidence suggests that ionizing radiation (IR) upregulates nitric oxide (NO) production and that IR-induced NO has the potential to increase intratumoral circulation. However, the kinetics of NO production and the responsible isoforms for NO synthase in tumors exposed to IR remain unclear. In this study, we aimed to elucidate the mechanism by which IR stimulates NO production in tumors and the effect of IR-induced NO on tumor radiosensitivity. Hoechst33342 perfusion assay and electron spin resonance oxymetry showed that IR increased tissue perfusion and pO{sub 2} in tumor tissue. Immunohistochemical analysis using two different hypoxic probes showed that IR decreased hypoxic regions in tumors; treatment with a nitric oxide synthase (NOS) inhibitor, L-NAME, abrogated the effects of IR. Moreover, IR increased endothelial NOS (eNOS) activity without affecting its mRNA or protein expression levels in SCCVII-transplanted tumors. Tumor growth delay assay showed that L-NAME decreased the anti-tumor effect of fractionated radiation (10 Gy × 2). These results suggested that IR increased eNOS activity and subsequent tissue perfusion in tumors. Increases in intratumoral circulation simultaneously decreased tumor hypoxia. As a result, IR-induced NO increased tumor radiosensitivity. Our study provides a new insight into the NO-dependent mechanism for efficient fractionated radiotherapy.

  14. Preventive efficacy of hydroalcoholic extract of Cymbopogon citratus against radiation-induced DNA damage on V79 cells and free radical scavenging ability against radicals generated in vitro.

    PubMed

    Rao, B S S; Shanbhoge, R; Rao, B N; Adiga, S K; Upadhya, D; Aithal, B K; Kumar, M R S

    2009-04-01

    This study presents the findings of free radical scavenging and antigenotoxic effect of hydroalcoholic extract of Cymbopogon citratus (CCE). The CCE at a concentration of 60 microg/mL resulted in a significant scavenging ability of 2,2-diphenyl-2-picryl hydrazyl (DPPH; (85%), 2,2-azinobis (3-ethyl benzothiazoline-6-sulphonic acid) (ABTS; 77%), hydroxyl (70%), superoxide (76%), nitric oxide (78%) free radicals generated using in vitro and also a moderate anti-lipid peroxidative effect (57%). Further, the radiation-induced antigenotoxic potential of CCE was assessed in Chinese hamster lung fibroblast cells (V79) using micronucleus assay. The CCE resulted in a dose-dependent decrease in the yield of radiation-induced micronuclei, with a maximum effect at 125 microg/mL CCE for 1 h before 2 Gy of radiation. Similarly, there was a significant (P < 0.05-0.0001) decrease in percentage of micronuclei when V79 cells were treated with optimal dose of CCE (125 microg/mL) before exposure to different doses of gamma radiation, that is, 0.5-4 Gy, compared with radiation alone groups. The results of the micronucleus study indicated antigenotoxic effect demonstrating the radioprotective potential of CCE and, which may partly due to its and antioxidant capacity as it presented its ability to scavenge various free radicals in vitro and anti-lipid peroxidative potential. PMID:19734270

  15. Radiation-induced graft copolymerization of dimethylaminoethyl methacrylate onto graphene oxide for Cr(VI) removal

    NASA Astrophysics Data System (ADS)

    Ma, Hui-Ling; Zhang, Youwei; Zhang, Long; Wang, Liancai; Sun, Chao; Liu, Pinggui; He, Lihua; Zeng, Xinmiao; Zhai, Maolin

    2016-07-01

    Dimethylaminoethyl methacrylate (DMAEMA)-grafted graphene oxide hybrid materials (GO-g-P) were fabricated using γ-ray irradiation at ambient temperature. The morphology and structure of GO-g-P were characterized by Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron (XPS), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). It was confirmed that DMAEMA was grafted successfully on the surface of graphene sheet. The grafting yield of GO-g-P increased with monomer concentration (0-2.5 mol L-1) and dose (0-40 kGy). The resulting adsorbent (GO-g-P) with amine groups was highly efficient for removing Cr(VI) from its acidic aqueous solution and could be easily separated by filtration. The optimum pH for Cr(VI) removal was observed at pH 1.1 and the Cr(VI) uptake of GO-g-P at this pH was 82.4 mg g-1.

  16. Sodium orthovanadate (vanadate), a potent mitigator of radiation-induced damage to the hematopoietic system in mice

    PubMed Central

    Wang, Bing; Tanaka, Kaoru; Morita, Akinori; Ninomiya, Yasuharu; Maruyama, Kouichi; Fujita, Kazuko; Hosoi, Yoshio; Nenoi, Mitsuru

    2013-01-01

    Previous in vitro and in vivo studies have shown that sodium orthovanadate (vanadate), an inorganic vanadium compound, could effectively suppress radiation-induced p53-mediated apoptosis via both transcription-dependent and transcription-independent pathways. As a potent radiation protector administered at a dose of 20 mg/kg body weight (20 mg/kg) prior to total body irradiation (TBI) by intra-peritoneal (ip) injection, it completely protected mice from hematopoietic syndrome and partially from gastrointestinal syndrome. In the present study, radiation mitigation effects from vanadate were investigated by ip injection of vanadate after TBI in mice. Results showed that a single administration of vanadate at a dose of 20 mg/kg markedly improved the 30-day survival rate and the peripheral blood hemogram, relieved bone marrow aplasia and decreased occurrence of the bone marrow micronucleated erythrocytes in the surviving animals. The dose reduction factor was 1.2 when a single dose of 20 mg/kg was administered 15 min after TBI in mice using the 30-day survival test as the endpoint. Results also showed that either doubling the vanadate dose (40 mg/kg) in a single administration or continuing the vanadate treatment (after a single administration at 20 mg/kg) from the following day at a dose of 5 mg/kg per day for 4 consecutive days further significantly improved the efficacy for rescuing bone marrow failure in the 30-day survival test. Taken together, these findings indicate that vanadate would be a potent mitigator suppressing the acute lethality (hematopoietic syndrome) and minimizing the detrimental effects (anhematopoiesis and delayed genotoxic effects) induced by TBI in mice. PMID:23349341

  17. Interaction of thiols and non-thiol {center_dot}OH scavengers in the modification of radiation-induced DNA damage

    SciTech Connect

    Krisch, R.E.; Ayene, I.S.; Koch, C.J.

    1995-12-31

    Oxygen has long been known to sensitize cells to the lethal effects of ionizing radiation and is widely believed to do so by the fixation of potentially reversible radical damage to cellular DNA. A number of studies have suggested that this widely observed oxygen enhancement of cell killing requires the presence of reduced thiols. Published in vitro studies of the modification of DNA damage by glutathione or other thiols have generally shown peak oxygen enhancement ratios (OERs) much higher than those observed for cell killing. However, these studies measured loss of DNA transforming activity or induction of single-strand DNA breaks (SSBs), related endpoints which are not thought to represent lethal lesions, rather than double-strand breaks (DSBs), which are generally believed to be the dominant lethal lesions from ionizing radiation. In addition, non-thiol scavengers of OH radicals were not generally present. There is also evidence that, in addition to their protective effects, some non-thiol {center_dot}OH scavengers can produce radicals which are damaging to DNA under anoxic conditions. In the present investigation, the authors have adapted a previously used in vitro model system to simultaneously investigate the effects on radiation-induced single- and double-strand DNA breaks of various combinations of glutathione and glycerol, a widely used non-thiol scavenger, in the presence and absence of oxygen.

  18. Persistence of Space Radiation-Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts and the Effects of Repeat Long Duration Space Missions

    NASA Technical Reports Server (NTRS)

    George, Kerry A.; Cucinotta, Francis A.

    2009-01-01

    The yield of chromosome damage in astronauts blood lymphocytes has been shown to increase after long duration space missions of a few months or more. This provides a useful in vivo measurement of space radiation induced damage that takes into account individual radiosensitivity and considers the influence of microgravity and other stress conditions. We present our latest follow-up analyses of chromosome damage in astronauts blood lymphocytes assessed by fluorescence in situ hybridization (FISH) chromosome painting and collected at various times, from directly after return from space to several years after flight. For most individuals the analysis of individual time-courses for translocations revealed a temporal decline of yields with different half-lives. Dose was derived from frequencies of chromosome exchanges using preflight calibration curves, and estimates derived from samples collected a few days after return to earth lie within the range expected from physical dosimetry. However, a temporal decline in yields may indicate complications with the use of stable aberrations for retrospective dose reconstruction, and the differences in the decay time may reflect individual variability in risk from space radiation exposure. Limited data on three individuals who have participated in repeat long duration space flights indicates a lack of correlation between time in space and translocation yields, and show a possible adaptive response to space radiation exposure.

  19. Lung Oxidative Damage by Hypoxia

    PubMed Central

    Araneda, O. F.; Tuesta, M.

    2012-01-01

    One of the most important functions of lungs is to maintain an adequate oxygenation in the organism. This organ can be affected by hypoxia facing both physiological and pathological situations. Exposure to this condition favors the increase of reactive oxygen species from mitochondria, as from NADPH oxidase, xanthine oxidase/reductase, and nitric oxide synthase enzymes, as well as establishing an inflammatory process. In lungs, hypoxia also modifies the levels of antioxidant substances causing pulmonary oxidative damage. Imbalance of redox state in lungs induced by hypoxia has been suggested as a participant in the changes observed in lung function in the hypoxic context, such as hypoxic vasoconstriction and pulmonary edema, in addition to vascular remodeling and chronic pulmonary hypertension. In this work, experimental evidence that shows the implied mechanisms in pulmonary redox state by hypoxia is reviewed. Herein, studies of cultures of different lung cells and complete isolated lung and tests conducted in vivo in the different forms of hypoxia, conducted in both animal models and humans, are described. PMID:22966417

  20. Ultraviolet Radiation-Induced Cytogenetic Damage in White, Hispanic and Black Skin Melanocytes: A Risk for Cutaneous Melanoma

    PubMed Central

    Dasgupta, Amrita; Katdare, Meena

    2015-01-01

    Cutaneous Melanoma (CM) is a leading cause of cancer deaths, with reports indicating a rising trend in the incidence rate of melanoma among Hispanics in certain U.S. states. The level of melanin pigmentation in the skin is suggested to render photoprotection from the DNA-damaging effects of Ultraviolet Radiation (UVR). UVR-induced DNA damage leads to cytogenetic defects visualized as the formation of micronuclei, multinuclei and polymorphic nuclei in cells, and a hallmark of cancer risk. The causative relationship between Sun exposure and CM is controversial, especially in Hispanics and needs further evaluation. This study was initiated with melanocytes from White, Hispanic and Black neonatal foreskins which were exposed to UVR to assess their susceptibility to UVR-induced modulation of cellular growth, cytogenetic damage, intracellular and released melanin. Our results show that White and Hispanic skin melanocytes with similar levels of constitutive melanin are susceptible to UVR-induced cytogenetic damage, whereas Black skin melanocytes are not. Our data suggest that the risk of developing UVR-induced CM in a skin type is correlated with the level of cutaneous pigmentation and its ethnic background. This study provides a benchmark for further investigation on the damaging effects of UVR as risk for CM in Hispanics. PMID:26287245

  1. Electromagnetic noise inhibits radiofrequency radiation-induced DNA damage and reactive oxygen species increase in human lens epithelial cells

    PubMed Central

    Wu, Wei; Wang, KaiJun; Ni, Shuang; Ye, PanPan; Yu, YiBo; Ye, Juan; Sun, LiXia

    2008-01-01

    Purpose The goal of this study was to investigate whether superposing of electromagnetic noise could block or attenuate DNA damage and intracellular reactive oxygen species (ROS) increase of cultured human lens epithelial cells (HLECs) induced by acute exposure to 1.8 GHz radiofrequency field (RF) of the Global System for Mobile Communications (GSM). Methods An sXc-1800 RF exposure system was used to produce a GSM signal at 1.8 GHz (217 Hz amplitude-modulated) with the specific absorption rate (SAR) of 1, 2, 3, and 4 W/kg. After 2 h of intermittent exposure, the ROS level was assessed by the fluorescent probe, 2',7'-dichlorodihydrofluorescein diacetate (DCFH-DA). DNA damage to HLECs was examined by alkaline comet assay and the phosphorylated form of histone variant H2AX (γH2AX) foci formation assay. Results After exposure to 1.8 GHz RF for 2 h, HLECs exhibited significant intracellular ROS increase in the 2, 3, and 4 W/kg groups. RF radiation at the SAR of 3 W/kg and 4 W/kg could induce significant DNA damage, examined by alkaline comet assay, which was used to detect mainly single strand breaks (SSBs), while no statistical difference in double strand breaks (DSBs), evaluated by γH2AX foci, was found between RF exposure (SAR: 3 and 4 W/kg) and sham exposure groups. When RF was superposed with 2 μT electromagnetic noise could block RF-induced ROS increase and DNA damage. Conclusions DNA damage induced by 1.8 GHz radiofrequency field for 2 h, which was mainly SSBs, may be associated with the increased ROS production. Electromagnetic noise could block RF-induced ROS formation and DNA damage. PMID:18509546

  2. BRCA1-BARD1 complexes are required for p53Ser-15 phosphorylation and a G1/S arrest following ionizing radiation-induced DNA damage.

    PubMed

    Fabbro, Megan; Savage, Kienan; Hobson, Karen; Deans, Andrew J; Powell, Simon N; McArthur, Grant A; Khanna, Kum Kum

    2004-07-23

    BRCA1 is a major player in the DNA damage response. This is evident from its loss, which causes cells to become sensitive to a wide variety of DNA damaging agents. The major BRCA1 binding partner, BARD1, is also implicated in the DNA damage response, and recent reports indicate that BRCA1 and BARD1 co-operate in this pathway. In this report, we utilized small interfering RNA to deplete BRCA1 and BARD1 to demonstrate that the BRCA1-BARD1 complex is required for ATM/ATR (ataxia-telangiectasia-mutated/ATM and Rad3-related)-mediated phosphorylation of p53(Ser-15) following IR- and UV radiation-induced DNA damage. In contrast, phosphorylation of a number of other ATM/ATR targets including H2AX, Chk2, Chk1, and c-jun does not depend on the presence of BRCA1-BARD1 complexes. Moreover, prior ATM/ATR-dependent phosphorylation of BRCA1 at Ser-1423 or Ser-1524 regulates the ability of ATM/ATR to phosphorylate p53(Ser-15) efficiently. Phosphorylation of p53(Ser-15) is necessary for an IR-induced G(1)/S arrest via transcriptional induction of the cyclin-dependent kinase inhibitor p21. Consistent with these data, repressing p53(Ser-15) phosphorylation by BRCA1-BARD1 depletion compromises p21 induction and the G(1)/S checkpoint arrest in response to IR but not UV radia-tion. These findings suggest that BRCA1-BARD1 complexes act as an adaptor to mediate ATM/ATR-directed phosphorylation of p53, influencing G(1)/S cell cycle progression after DNA damage. PMID:15159397

  3. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE PAGESBeta

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    2014-05-28

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[18F] fluoro-2-deoxy-d-glucose (18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected with a rangemore » of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  4. Telomerase activation as a repair response to radiation-induced DNA damage in Y79 retinoblastoma cells.

    PubMed

    Akiyama, Masaharu; Ozaki, Kohji; Kawano, Takeshi; Yamada, Osamu; Kawauchi, Kiyotaka; Ida, Hiroyuki; Yamada, Hisashi

    2013-10-28

    The molecular mechanism of telomerase activation induced by ionizing radiation (IR) remains poorly understood. We demonstrate that DNA damage induced by IR at doses of 2-5 Gy triggers activation of Akt, predominant to that of protein phosphatase 2A (PP2A), resulting in human telomerase reverse transcriptase (hTERT) phosphorylation and increased telomerase activity in Y79 cells. DNA damage induced by IR at doses greater than 10 Gy might trigger PP2A activation, predominant to that of Akt, resulting in hTERT dephosphorylation and decreased telomerase activity. Our results suggest that differential activation of Akt and PP2A may be responsible for telomerase regulation. PMID:23850566

  5. DNA repair efficiency in germ cells and early mouse embryos and consequences for radiation-induced transgenerational genomic damage

    SciTech Connect

    Marchetti, Francesco; Wyrobek, Andrew J.

    2009-01-18

    Exposure to ionizing radiation and other environmental agents can affect the genomic integrity of germ cells and induce adverse health effects in the progeny. Efficient DNA repair during gametogenesis and the early embryonic cycles after fertilization is critical for preventing transmission of DNA damage to the progeny and relies on maternal factors stored in the egg before fertilization. The ability of the maternal repair machinery to repair DNA damage in both parental genomes in the fertilizing egg is especially crucial for the fertilizing male genome that has not experienced a DNA repair-competent cellular environment for several weeks prior to fertilization. During the DNA repair-deficient period of spermatogenesis, DNA lesions may accumulate in sperm and be carried into the egg where, if not properly repaired, could result in the formation of heritable chromosomal aberrations or mutations and associated birth defects. Studies with female mice deficient in specific DNA repair genes have shown that: (i) cell cycle checkpoints are activated in the fertilized egg by DNA damage carried by the sperm; and (ii) the maternal genotype plays a major role in determining the efficiency of repairing genomic lesions in the fertilizing sperm and directly affect the risk for abnormal reproductive outcomes. There is also growing evidence that implicates DNA damage carried by the fertilizing gamete as a mediator of postfertilization processes that contribute to genomic instability in subsequent generations. Transgenerational genomic instability most likely involves epigenetic mechanisms or error-prone DNA repair processes in the early embryo. Maternal and embryonic DNA repair processes during the early phases of mammalian embryonic development can have far reaching consequences for the genomic integrity and health of subsequent generations.

  6. Protective effects of analogs of luteinizing hormone-releasing hormone against x-radiation-induced testicular damage in rats

    SciTech Connect

    Schally, A.V.; Paz-Bouza, J.I.; Schlosser, J.V.; Karashima, T.; Debeljuk, L.; Gandle, B.; Sampson, M.

    1987-02-01

    Possible protective effects of the agonist (D-Trp/sup 6/)LH-RH and antagonist N-Ac(D-Phe(pCl)/sup 1,2/,D-Trp/sup 3/,D-Arg/sup 6/,D-Ala/sup 10/)LH-RH against testicular damage caused by x-radiation were investigated in rats. Three months after being subjected to x-irradiation of the testes with 415 or 622 rads, control rats showed marked reduction in the weights of the testes and elevated levels of LH and follicle-stimulating hormone (FSH), indicating tubular damage. Histological studies demonstrated that, in testes of rats given 415 rads, most seminiferous tubules had only Sertoli cells and no germinal cells, and, in the group give 622 rads, the depression of spermatogenesis was even more marked. Rats pretreated for 50 days with LH-RH antagonist showed a complete recovery of testicular weights and spermatogenesis 3 months after 415 rads and showed partial recovery after 622 rads, and LH and FSH levels returned to normal in both of these groups. Three experiments were also carried out in which the rats were pretreated for 1-2 months with long-acting microcapsules of the agonist (D-Trp/sup 6/)LH-RH. Some rats were then subjected to gonadal irradiation with 415 or 622 rads and allowed a recovery period of 2-4 months. On the basis of testicular weights, histology, and gonadotropin levels, it could be concluded that the agonist (D-Trp/sup 6/)LH-RH did not protect the rat testes exposed to 622 rads and, at most, only partially protected against 415 rads. These results suggest that pretreatment with LH-RH antagonists and possibly agonists, might decrease the testicular damage caused by radiation and accelerate the recovery of reproductive functions.

  7. Non-DBS DNA Repair Genes Regulate Radiation-induced Cytogenetic Damage Repair and Cell Cycle Progression

    NASA Technical Reports Server (NTRS)

    Zhang, Ye; Rohde, Larry H.; Emami, Kamal; Casey, Rachael; Wu, Honglu

    2008-01-01

    Changes of gene expression profile are one of the most important biological responses in living cells after ionizing radiation (IR) exposure. Although some studies have shown that genes up-regulated by IR may play important roles in DNA damage repair, the relationship between the regulation of gene expression by IR, particularly genes not known for their roles in DSB repair, and its impact on cytogenetic responses has not been systematically studied. In the present study, the expression of 25 genes selected on the basis of their transcriptional changes in response to IR was individually knocked down by transfection with small interfering RNA in human fibroblast cells. The purpose of this study is to identify new roles of these selected genes on regulating DSB repair and cell cycle progression , as measured in the micronuclei formation and chromosome aberration. In response to IR, the formation of MN was significantly increased by suppressed expression of 5 genes: Ku70 in the DSB repair pathway, XPA in the NER pathway, RPA1 in the MMR pathway, and RAD17 and RBBP8 in cell cycle control. Knocked-down expression of 4 genes (MRE11A, RAD51 in the DSB pathway, SESN1, and SUMO1) significantly inhibited cell cycle progression, possibly because of severe impairment of DNA damage repair. Furthermore, loss of XPA, P21, or MLH1 expression resulted in both significantly enhanced cell cycle progression and increased yields of chromosome aberrations, indicating that these gene products modulate both cell cycle control and DNA damage repair. Most of the 11 genes that affected cytogenetic responses are not known to have clear roles influencing DBS repair. Nine of these 11 genes were up-regulated in cells exposed to gamma radiation, suggesting that genes transcriptionally modulated by IR were critical to regulate the biological consequences after IR.

  8. Crosstalk between telomere maintenance and radiation effects: A key player in the process of radiation-induced carcinogenesis

    PubMed Central

    Shim, Grace; Ricoul, Michelle; Hempel, William M.; Azzam, Edouard I.; Sabatier, Laure

    2014-01-01

    It is well established that ionizing radiation induces chromosomal damage, both following direct radiation exposure and via non-targeted (bystander) effects, activating DNA damage repair pathways, of which the proteins are closely linked to telomeric proteins and telomere maintenance. Long-term propagation of this radiation-induced chromosomal damage during cell proliferation results in chromosomal instability. Many studies have shown the link between radiation exposure and radiation-induced changes in oxidative stress and DNA damage repair in both targeted and non-targeted cells. However, the effect of these factors on telomeres, long established as guardians of the genome, still remains to be clarified. In this review, we will focus on what is known about how telomeres are affected by exposure to low- and high-LET ionizing radiation and during proliferation, and will discuss how telomeres may be a key player in the process of radiation-induced carcinogenesis. PMID:24486376

  9. Process and Radiation Induced Defects in Electronic Materials and Devices

    NASA Technical Reports Server (NTRS)

    Washington, Kenneth; Fogarty, T. N.

    1997-01-01

    Process and radiation induced defects are characterized by a variety of electrical techniques, including capacitance-voltage measurements and charge pumping. Separation of defect type into stacking faults, displacement damage, oxide traps, interface states, etc. and their related causes are discussed. The defects are then related to effects on device parameters. Silicon MOS technology is emphasized. Several reviews of radiation effects and silicon processing exist.

  10. Radiation-Induced Oxidative Stress at Out-of-Field Lung Tissues after Pelvis Irradiation in Rats

    PubMed Central

    Najafi, Masoud; Fardid, Reza; Takhshid, Mohammad Ali; Mosleh-Shirazi, Mohammad Amin; Rezaeyan, Abol-Hassan; Salajegheh, Ashkan

    2016-01-01

    Objective The out-of-field/non-target effect is one of the most important phenomena of ionizing radiation that leads to molecular and cellular damage to distant non-irradiated tissues. The most important concern about this phenomenon is carcinogenesis many years after radiation treatment. In vivo mechanisms and consequences of this phenomenon are not known completely. Therefore, this study aimed to evaluate the oxidative damages to out-of-field lung tissues 24 and 72 hours after pelvic irradiation in rats. Materials and Methods In this experimentalinterventional study, Sprague-Dawleymale rats (n=49) were divided into seven groups (n=7/each group), including two groups of pelvis- exposed rats (out-of-field groups), two groups of whole bodyexposed rats (scatter groups), two groups of lung-exposed rats (direct irradiation groups), and one control sham group. Out- of-field groups were irradiated at a 2×2 cm area in the pelvis region with 3 Gy using 1.25 MeV cobalt-60 gamma-ray source, and subsequently, malondialdehyde (MDA) and glutathione (GSH) levels as well as superoxide dismutase (SOD) activity in out-of-field lung tissues were measured. Results were compared to direct irradiation, control and scatter groups at 24 and 72 hours after exposure. Data were analyzed using Mann-Whitney U test. Results SOD activity decreased in out-of-field lung tissue 24 and 72 hours after irradiation as compared with the controls and scatter groups. GSH level decreased 24 hours after exposure and increased 72 hours after exposure in the out-of-field groups as compared with the scatter groups. MDA level in out-of-field groups only increased 24 hours after irradiation. Conclusion Pelvis irradiation induced oxidative damage in distant lung tissue that led to a dramatic decrease in SOD activity. This oxidative stress was remarkable, but it was less durable as compared to direct irradiation. PMID:27602315

  11. Differential Processing of Low and High LET Radiation Induced DNA Damage: Investigation of Switch from ATM to ATR Signaling

    NASA Technical Reports Server (NTRS)

    Saha, Janapriya; Wang, Minli; Hada, Megumi; Cucinotta, Francis A.

    2011-01-01

    The members of the phosphatidylinositol kinase-like kinase family of proteins namely ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) are directly responsible for the maintenance of genomic integrity by mounting DDR through signaling and facilitating the recruitment of repair factors at the sites of DNA damage along with coordinating the deployment of cell cycle checkpoints to permit repair by phosphorylating Checkpoint kinase Chk1, Chk2 and p53. High LET radiation from GCR (Galactic Cosmic Rays) consisting mainly of protons and high energy and charged (HZE) particles from SPE (Solar Particle Event) pose a major health risk for astronauts on their space flight missions. The determination of these risks and the design of potential safeguards require sound knowledge of the biological consequences of lesion induction and the capability of the cells to counter them. We here strive to determine the coordination of ATM and ATR kinases at the break sites directly affecting checkpoint signaling and DNA repair and whether differential processing of breaks induced by low and high LET radiation leads to possible augmentation of swap of these damage sensors at the sites of DNA damage. Exposure of cells to IR triggers rapid autophosphorylation of serine-1981 that causes dimer dissociation and initiates monomer formation of ATM. ATM kinase activity depends on the disruption of the dimer, which allows access and phosphorylation of downstream ATM substrates like Chk2. Evidence suggests that ATM is activated by the alterations in higher-order chromatin structure although direct binding of ATM to DSB ends may be a crucial step in its activation. On the other hand, in case of ATR, RPA (replication protein A)-coated ssDNA (single-stranded DNA) generated as a result of stalled DNA replication or during processing of chromosomal lesions is crucial for the localization of ATR to sites of DNA damage in association with ATR-interacting protein (ATRIP). Although the

  12. Preventive or Potential Therapeutic Value of Nutraceuticals against Ionizing Radiation-Induced Oxidative Stress in Exposed Subjects and Frequent Fliers

    PubMed Central

    Giardi, Maria Teresa; Touloupakis, Eleftherios; Bertolotto, Delfina; Mascetti, Gabriele

    2013-01-01

    Humans are constantly exposed to ionizing radiation deriving from outer space sources or activities related to medical care. Absorption of ionizing radiation doses over a prolonged period of time can result in oxidative damage and cellular dysfunction inducing several diseases, especially in ageing subjects. In this report, we analyze the effects of ionizing radiation, particularly at low doses, in relation to a variety of human pathologies, including cancer, and cardiovascular and retinal diseases. We discuss scientific data in support of protection strategies by safe antioxidant formulations that can provide preventive or potential therapeutic value in response to long-term diseases that may develop following exposure. PMID:23965979

  13. Caffeic Acid Phenethyl Ester Increases Radiosensitivity of Estrogen Receptor-Positive and -Negative Breast Cancer Cells by Prolonging Radiation-Induced DNA Damage

    PubMed Central

    Khoram, Nastaran Masoudi; Bigdeli, Bahareh; Nikoofar, Alireza

    2016-01-01

    Purpose Breast cancer is an important cause of death among women. The development of radioresistance in breast cancer leads to recurrence after radiotherapy. Caffeic acid phenethyl ester (CAPE), a polyphenolic compound of honeybee propolis, is known to have anticancer properties. In this study, we examined whether CAPE enhanced the radiation sensitivity of MDA-MB-231 (estrogen receptor-negative) and T47D (estrogen receptor-positive) cell lines. Methods The cytotoxic effect of CAPE on MDA-MB-231 and T47D breast cancer cells was evaluated by performing an 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. To assess clonogenic ability, MDA-MB-231 and T47D cells were treated with CAPE (1 µM) for 72 hours before irradiation, and then, a colony assay was performed. A comet assay was used to determine the number of DNA strand breaks at four different times. Results CAPE decreased the viability of both cell lines in a dose- and time-dependent manner. In the clonogenic assay, pretreatment of cells with CAPE before irradiation significantly reduced the surviving fraction of MDA-MB-231 cells at doses of 6 and 8 Gy. A reduction in the surviving fraction of T47D cells was observed relative to MDA-MB-231 at lower doses of radiation. Additionally, CAPE maintained radiation-induced DNA damage in T47D cells for a longer period than in MDA-MB-231 cells. Conclusion Our results indicate that CAPE impairs DNA damage repair immediately after irradiation. The induction of radiosensitivity by CAPE in radioresistant breast cancer cells may be caused by prolonged DNA damage. PMID:27066092

  14. Radiation-Induced Astrogliosis and Blood-Brain Barrier Damage Can Be Abrogated Using Anti-TNF Treatment

    SciTech Connect

    Wilson, Christy M.; Gaber, M. Waleed Sabek, Omaima M.; Zawaski, Janice A.; Merchant, Thomas E.

    2009-07-01

    Purpose: In this article, we investigate the role of tumor necrosis factor-alpha (TNF) in the initiation of acute damage to the blood-brain barrier (BBB) and brain tissue following radiotherapy (RT) for CNS tumors. Methods and Materials: Intravital microscopy and a closed cranial window technique were used to measure quantitatively BBB permeability to FITC-dextran 4.4-kDa molecules, leukocyte adhesion (Rhodamine-6G) and vessel diameters before and after 20-Gy cranial radiation with and without treatment with anti-TNF. Immunohistochemistry was used to quantify astrogliosis post-RT and immunofluorescence was used to visualize protein expression of TNF and ICAM-1 post-RT. Recombinant TNF (rTNF) was used to elucidate the role of TNF in leukocyte adhesion and vessel diameter. Results: Mice treated with anti-TNF showed significantly lower permeability and leukocyte adhesion at 24 and 48 h post-RT vs. RT-only animals. We observed a significant decrease in arteriole diameters at 48 h post-RT that was inhibited in TNF-treated animals. We also saw a significant increase in activated astrocytes following RT that was significantly lower in the anti-TNF-treated group. In addition, immunofluorescence showed protein expression of TNF and ICAM-1 in the cerebral cortex that was inhibited with anti-TNF treatment. Finally, administration of rTNF induced a decrease in arteriole diameter and a significant increase in leukocyte adhesion in venules and arterioles. Conclusions: TNF plays a significant role in acute changes in BBB permeability, leukocyte adhesion, arteriole diameter, and astrocyte activation following cranial radiation. Treatment with anti-TNF protects the brain's microvascular network from the acute damage following RT.

  15. Tissue Damage and Oxidant/Antioxidant Balance

    PubMed Central

    Kisaoglu, Abdullah; Borekci, Bunyamin; Yapca, O. Erkan; Bilen, Habib; Suleyman, Halis

    2013-01-01

    The oxidant/antioxidant balance in healthy tissues is maintained with a predominance of antioxidants. Various factors that can lead to tissue damage disrupt the oxidant/antioxidant balance in favor of oxidants. In this study, disruptions of the oxidant/antioxidant balance in favor of oxidants were found to be a consequence of the over-consumption of antioxidants. For this reason, antioxidants are considered to be of importance in the prevention and treatment of various types of tissue damage that are aggravated by stress. PMID:25610248

  16. Gracilaria bursa-pastoris (Gmelin) Silva extract attenuates ultraviolet B radiation-induced oxidative stress in human keratinocytes.

    PubMed

    Piao, M J; Kim, K C; Zheng, J; Yao, C W; Cha, J W; Kang, H K; Yoo, E S; Koh, Y S; Ko, M H; Lee, N H; Hyun, Jin Won

    2014-01-01

    The purpose of this study was to assess the protective effects of an ethanol extract derived from the red alga Gracilaria bursa-pastoris (Gmelin) Silva (GBE) on ultraviolet B (UVB)-irradiated human HaCaT keratinocytes. GBE exhibited scavenging activity against intracellular reactive oxygen species that were induced by either hydrogen peroxide or UVB radiation. In addition, both the superoxide anion and the hydroxyl radical were scavenged by GBE in cell-free systems. GBE absorbed light in the UVB range (280-320 nm) of the electromagnetic spectrum and lessened the extent of UVB-induced oxidative damage to cellular lipids, proteins, and DNA. Finally, GBE-treated keratinocytes showed a reduction in UVB-induced apoptosis, as exemplified by fewer apoptotic bodies. These results suggest that GBE exerts cytoprotective actions against UVB-stimulated oxidative stress by scavenging ROS and absorbing UVB rays, thereby attenuating injury to cellular constituents and preventing cell death. PMID:24579808

  17. Amelioration of both early and late radiation-induced damage to pig skin by essential fatty acids

    SciTech Connect

    Hopewell, J.W.; Van den Aardweg, G.J.M.J.; Morris, G.M.

    1994-12-01

    To evaluate the possible role of essential fatty acids, specifically gamma-linolenic and eicosapentaenoic acid, in the amelioration of early and late radiation damage to the skin. Skin sites on the flank of 22-25 kg female large white pigs were irradiated with either single or fractionated doses (20 F/28 days) of {beta}-rays from 22.5 mm diameter {sup 90}Sr/{sup 90}Y plaques at a dose rate of {approximately}3 Gy/min. Essential fatty acids were administered orally in the form of two {open_quotes}active{close_quotes} oils, So-1100 and So-5407, which contained gamma-linolenic acid and a mixture of that oil with eicosapentaenoic acid, respectively. Oils (1.5-6.0 ml) were given daily for 4 weeks prior, both 4 weeks prior and 10-16 weeks after, or in the case of one single dose study, just for 10 weeks after irradiation. Control animals received a {open_quotes}placebo{close_quotes} oil, So-1129, containing no gamma linolenic acid or eicosapentaenoic acid over similar time scales before and after irradiation. Acute and late skin reactions were assessed visually and the dose-related incidence of a specific reaction used to compare the effects of different treatment schedules. A reduction in the severity of both the early and late radiation reactions in the skin was only observed when {open_quotes}active{close_quotes} oils were given over the time course of the expression of radiation damage. Prior treatment with oils did not modify the radiation reaction. A 3.0 ml daily dose of either So-1100 or So-5407 given prior to, but also after irradiation with single and fractionated doses of {beta}-rays produced the most significant modification to the radiation reactions, effects consistent with dose modification factors between 1.06-1.24 for the acute reactions of bright red erythema and/or moist desquamation, and of 1.14-1.35 for the late reactions of dusky/mauve erythema and dermal necrosis. 38 refs., 5 tabs.

  18. Vacuum Ultraviolet and Ultraviolet Radiation-Induced Effect of Hydrogenated Silicon Nitride Etching: Surface Reaction Enhancement and Damage Generation

    NASA Astrophysics Data System (ADS)

    Fukasawa, Masanaga; Miyawaki, Yudai; Kondo, Yusuke; Takeda, Keigo; Kondo, Hiroki; Ishikawa, Kenji; Sekine, Makoto; Matsugai, Hiroyasu; Honda, Takayoshi; Minami, Masaki; Uesawa, Fumikatsu; Hori, Masaru; Tatsumi, Tetsuya

    2012-02-01

    Photon-enhanced etching of SiNx:H films caused by the interaction between vacuum ultraviolet (VUV)/ultraviolet (UV) radiation and radicals in the fluorocarbon plasma was investigated by a technique with a novel sample setup of the pallet for plasma evaluation. The simultaneous injection of UV radiation and radicals causes a dramatic etch rate enhancement of SiNx:H films. Only UV radiation causes the film shrinkage of SiNx:H films owing to hydrogen desorption from the film. Capacitance-voltage characteristics of SiNx:H/Si substrates were studied before and after UV radiation. The interface trap density increased monotonically upon irradiating the UV photons with a wavelength of 248 nm. The estimated effective interface trap generation probability is 4.74 ×10-7 eV-1·photon-1. Therefore, the monitoring of the VUV/UV spectra during plasma processing and the understanding of its impact on the surface reaction, film damage and electrical performance of underlying devices are indispensable to fabricate advanced devices.

  19. Radioprotective effect of Haberlea rhodopensis (Friv.) leaf extract on gamma-radiation-induced DNA damage, lipid peroxidation and antioxidant levels in rabbit blood.

    PubMed

    Georgieva, Svetlana; Popov, Borislav; Bonev, Georgi

    2013-01-01

    Different concentrations of H. rhodopensis total extract (HRE; 0.03, 0.06 and 0.12 g/kg body weight) were injected im, into rabbits 2 h before collecting the blood samples. The whole blood samples were exposed in vitro to 2.0 Gy 60Co gamma-radiation. The radiation-induced changes were estimated by using the chromosome aberration test (CA) and cytokinesis blocked micronucleus assay (CBMN) in peripheral lymphocytes, and by determining the malondialdehyde levels (MDA) in blood plasma and the superoxide dismutase (SOD) and catalase (CAT) activity in erythrocytes. Radiation significantly increased the chromosome aberration and micronuclei frequencies as well as MDA levels and decreased the antioxidant enzyme activity. On the other hand, the HRE pretreatment significantly decreased the CA, MN frequencies and MDA levels and increased the SOD and CAT activity in a concentration dependent manner. The most effective was the highest concentration of HRE (0.12 g/kg body weight). The results suggest that HRE as a natural product with a nantioxidant capacity could play a modulatory role against the cellular damage induced by gamma-irradiation. The possible mechanism involved in the radioprotective potential of HRE is discussed. PMID:23441477

  20. A comet assay study reveals that aluminium induces DNA damage and inhibits the repair of radiation-induced lesions in human peripheral blood lymphocytes.

    PubMed

    Lankoff, Anna; Banasik, Anna; Duma, Anna; Ochniak, Edyta; Lisowska, Halina; Kuszewski, Tomasz; Góźdź, Stanisław; Wojcik, Andrzej

    2006-02-01

    Although it is known that many metals induce DNA damage and inhibit DNA repair, information regarding aluminium (Al) is scarce. The aim of this study was to analyze the level of DNA damage in human peripheral blood lymphocytes treated with Al and the impact of Al on the repair of DNA damage induced by ionizing radiation. Cells were treated with different doses of aluminium chloride (1, 2, 5, 10 and 25 microg/ml AlCl(3)) for 72 h. The level of DNA damage and of apoptosis was determined by the comet assay. The level of oxidative damage was determined by the application of endonuclease III and formamidopyrimidine DNA glycosylase. The results on apoptosis were confirmed by flow cytometry. Based on the fluorescence intensity, cells were divided into cohorts of different relative DNA content that corresponds to G(1), S and G(2) phases of the cell cycle. Our results revealed that Al induces DNA damage in a dose-dependent manner, however, at the dose of 25 microg/ml the level of damage declined. This decline was accompanied by a high level of apoptosis indicating selective elimination of damaged cells. Cells pre-treated with Al showed a decreased repair capacity indicating that Al inhibits DNA repair. The possible mechanisms by which Al induces DNA damage and inhibits the repair are discussed. PMID:16139969

  1. Adipose Mesenchymal Stem Cell Secretome Modulated in Hypoxia for Remodeling of Radiation-Induced Salivary Gland Damage

    PubMed Central

    An, Hye-Young; Shin, Hyun-Soo; Choi, Jeong-Seok; Kim, Hun Jung

    2015-01-01

    Background and Purpose This study was conducted to determine whether a secretome from mesenchymal stem cells (MSC) modulated by hypoxic conditions to contain therapeutic factors contributes to salivary gland (SG) tissue remodeling and has the potential to improve irradiation (IR)-induced salivary hypofunction in a mouse model. Materials and Methods Human adipose mesenchymal stem cells (hAdMSC) were isolated, expanded, and exposed to hypoxic conditions (O2 < 5%). The hypoxia-conditioned medium was then filtered to a high molecular weight fraction and prepared as a hAdMSC secretome. The hAdMSC secretome was subsequently infused into the tail vein of C3H mice immediately after local IR once a day for seven consecutive days. The control group received equal volume (500 μL) of vehicle (PBS) only. SG function and structural tissue remodeling by the hAdMSC secretome were investigated. Human parotid epithelial cells (HPEC) were obtained, expanded in vitro, and then irradiated and treated with either the hypoxia-conditioned medium or a normoxic control medium. Cell proliferation and IR-induced cell death were examined to determine the mechanism by which the hAdMSC secretome exerted its effects. Results The conditioned hAdMSC secretome contained high levels of GM-CSF, VEGF, IL-6, and IGF-1. Repeated systemic infusion with the hAdMSC secretome resulted in improved salivation capacity and increased levels of salivary proteins, including amylase and EGF, relative to the PBS group. The microscopic structural integrity of SG was maintained and salivary epithelial (AQP-5), endothelial (CD31), myoepithelial (α-SMA) and SG progenitor cells (c-Kit) were successfully protected from radiation damage and remodeled. The hAdMSC secretome strongly induced proliferation of HPEC and led to a significant decrease in cell death in vivo and in vitro. Moreover, the anti-apoptotic effects of the hAdMSC secretome were found to be promoted after hypoxia-preconditioning relative to normoxia

  2. A model for radiation-induced off-state leakage current in N-channel metal-oxide-semiconductor transistors with shallow trench isolation

    NASA Astrophysics Data System (ADS)

    Wang, Sihao; Pei, Yunpeng; Huang, Ru; Wang, Wenhua; Liu, Wen; Xue, Shoubin; An, Xia; Tian, Jingquan; Wang, Yangyuan

    2010-01-01

    A radiation-induced leakage current model in deep submicron bulk silicon N-channel metal-oxide-semiconductor field effect transistor (NMOSFET) is proposed in this paper for circuit simulations. The model takes into account the impact of the substrate doping concentration, the angle of shallow trench isolation (STI) region, and the junction depth of source/drain, which can predict the off-state leakage current of the NMOSFET with STI region irradiated at different radiation doses. The model is verified by comparing with the experimental results. The model can be easily implemented into the circuit simulator to evaluate the impact of total ionizing dose effect on the performance of circuit.

  3. The oxidative environment and protein damage.

    PubMed

    Davies, Michael J

    2005-01-17

    Proteins are a major target for oxidants as a result of their abundance in biological systems, and their high rate constants for reaction. Kinetic data for a number of radicals and non-radical oxidants (e.g. singlet oxygen and hypochlorous acid) are consistent with proteins consuming the majority of these species generated within cells. Oxidation can occur at both the protein backbone and on the amino acid side-chains, with the ratio of attack dependent on a number of factors. With some oxidants, damage is limited and specific to certain residues, whereas other species, such as the hydroxyl radical, give rise to widespread, relatively non-specific damage. Some of the major oxidation pathways, and products formed, are reviewed. The latter include reactive species, such as peroxides, which can induce further oxidation and chain reactions (within proteins, and via damage transfer to other molecules) and stable products. Particular emphasis is given to the oxidation of methionine residues, as this species is readily oxidised by a wide range of oxidants. Some side-chain oxidation products, including methionine sulfoxide, can be employed as sensitive, specific, markers of oxidative damage. The product profile can, in some cases, provide valuable information on the species involved; selected examples of this approach are discussed. Most protein damage is non-repairable, and has deleterious consequences on protein structure and function; methionine sulfoxide formation can however be reversed in some circumstances. The major fate of oxidised proteins is catabolism by proteosomal and lysosomal pathways, but some materials appear to be poorly degraded and accumulate within cells. The accumulation of such damaged material may contribute to a range of human pathologies. PMID:15680218

  4. Role of nitric oxide synthase, superoxide dismutase, and glutathione peroxidase in radiation-induced decrease in norepinephrine release

    SciTech Connect

    Kandasamy, S.B.

    1994-11-17

    Although the central nervous system (CNS) is considered to be relatively resistant to the direct effects of ionizing radiation, the dose and the time elapsed after radiation exposure can have a complex effect on the CNS. The hippocampus is important in critical functions such as learning, memory, and motor performance, and these functions are impaired after exposure to ionizing radiation. Noradrenergic systems are important in mediating arousal, food intake, and to some extent motor functions. Histofluorescence and immunohistochemical techniques have shown noradrenergic pathways in the hippocampus. Several factors can contribute to acute nervous system damage in vivo: (1) reduced systemic blood pressure following exposure to 25-100 Gy of gamma radiation, (2) decreased cerebral blood flow in various regions of the brain, including the hippocampus, (3) ischemia produced by the decreased blood flow, which is likely to affect neuronal activity; (4) free radical generation with resulting oxygen radicals implicated in cell damage following ischemia; (5) brain ischemia-induced release of an excessive amount of glutamate in the hippocampus, which acts on nitric oxide (NO) synthase to form NO through N-methvl-D-aspartate (NMDA) receptors, causing toxic effects.

  5. Low dose/low fluence ionizing radiation-induced biological effects: The role of intercellular communication and oxidative metabolism

    NASA Astrophysics Data System (ADS)

    Azzam, Edouard

    Mechanistic investigations have been considered critical to understanding the health risks of exposure to ionizing radiation. To gain greater insight in the biological effects of exposure to low dose/low fluence space radiations with different linear energy transfer (LET) properties, we examined short and long-term biological responses to energetic protons and high charge (Z) and high energy (E) ions (HZE particles) in human cells maintained in culture and in targeted and non-targeted tissues of irradiated rodents. Particular focus of the studies has been on mod-ulation of gene expression, proliferative capacity, induction of DNA damage and perturbations in oxidative metabolism. Exposure to mean doses of 1000 MeV/nucleon iron ions, by which a small to moderate proportion of cells in an exposed population is targeted through the nucleus by an HZE particle, induced stressful effects in the irradiated and non-irradiated cells in the population. Direct intercellular communication via gap-junctions was a primary mediator of the propagation of stressful effects from irradiated to non-irradiated cells. Compromised prolif-erative capacity, elevated level of DNA damage and oxidative stress evaluated by measurements of protein carbonylation, lipid peroxidation and activity of metabolic enzymes persisted in the progeny of irradiated and non-irradiated cells. In contrast, progeny of cells exposed to high or low doses from 150-1000 MeV protons retained the ability to form colonies and harbored similar levels of micronuclei, a surrogate form of DNA damage, as control, which correlated with normal reactive oxygen species (ROS) levels. Importantly, a significant increase in the spontaneous neoplastic transformation frequency was observed in progeny of bystander mouse embryo fibroblasts (MEFs) co-cultured with MEFs irradiated with energetic iron ions but not protons. Of particular significance, stressful effects were detected in non-targeted tissues of rats that received partial

  6. Cardiovascular diseases: oxidative damage and antioxidant protection.

    PubMed

    Zhang, P-Y; Xu, X; Li, X-C

    2014-10-01

    Atherosclerosis, the hardening of arteries under oxidative stress is related to oxidative changes of low density lipoproteins (LDL). The antioxidants prevent the formation of oxidized LDL during atherogenesis. Perhaps more than one mechanism is involved in the atherosclerosis disease where LDL is oxidized in all the cells of arterial wall during the development of this disease. The oxidation of LDL produces lipid peroxidation products such as isoprostans from arachidonic, eicosapentaenoic and docosahexaenoic acids, oxysterols from cholesterol, hydroxyl fatty acids, lipid peroxides and aldehydes. The lipid peroxidation bioassay can serve as a marker for the risk of cardiovascular. An in vivo test of levels of oxidative lipid damage is an early prediction of development of cardiovascular disease (CVD). Serum paraoxonase (PON) activity is correlated to severity of the coronary artery disease. The antioxidants level in the serum and serum paraoxonase activity provides information for the risk of CVD. The antioxidant enzyme superoxide dismutase is responsible for dismutation of superoxide, a free radical chain initiator. The subcellular changes in the equilibrium in favor of free radicals can cause increase in the oxidative stress which leads to cardiomyopathy, heart attack or cardiac dysfunction. The oxidative damage and defense of heart disease has been reported where dietary antioxidants protect the free radical damage to DNA, proteins and lipids. The ascorbic acid, vitamin C is an effective antioxidant and high vitamin E intake can reduce the risk of coronary heart disease (CHD) by inhibition of atherogenic forms of oxidized LDL. The vitamin A and beta-carotene protect lipid peroxidation and provitamin-A activity. It has been recently suggested that the protection of oxidative damage and related CVD is best served by antioxidants found in the fruits and vegetables. The oxidative damage and antioxidant protection of CVD have been described here. PMID:25392110

  7. Gamma radiation induces growth retardation, impaired egg production, and oxidative stress in the marine copepod Paracyclopina nana.

    PubMed

    Won, Eun-Ji; Lee, Jae-Seong

    2014-05-01

    Accidental nuclear radioisotope release into the ocean from nuclear power plants is of concern due to ecological and health risks. In this study, we used the marine copepod Paracyclopina nana to examine the effects of radioisotopes on marine organisms upon gamma radiation, and to measure the effects on growth and fecundity, which affect population and community structure. Upon gamma radiation, mortality (LD50 - 96 h=172 Gy) in P. nana was significantly increased in a dose-dependent manner in ovigerous P. nana females. For developmental impairment of gamma-irradiated nauplii, we observed growth retardation; in over 30 Gy-irradiated groups, offspring did not grow to adults. Particularly, over 50 Gy-irradiated ovigerous P. nana females did not have normal bilateral egg sacs, and their offspring did not develop normally to adulthood. Additionally, at over 30 Gy, we found dose-dependent increases in oxidative levels with elevated antioxidant enzyme activities and DNA repair activities. These findings indicate that gamma radiation can induce oxidative stress and DNA damage with growth retardation and impaired reproduction. PMID:24632311

  8. Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA damage.

    PubMed

    Paul, Shiv Shankar; Selim, Md; Saha, Abhijit; Mukherjea, Kalyan K

    2014-02-21

    The synthesis and structural characterization of two novel dioxomolybdenum(VI) (1) and dioxotungsten(VI) (2) complexes with 2-phenylacetylhydroxamic acid (PAHH) [M(O)2(PAH)2] [M = Mo, W] have been accomplished. The dioxomolybdenum(VI) and dioxotungsten(VI) moiety is coordinated by the hydroxamate group (-CONHO(-)) of the 2-phenylacetylhydroxamate (PAH) ligand in a bi-dentate fashion. In both the complexes the PAHH ligand is coordinated through oxygen atoms forming a five membered chelate. The hydrogen atom of N-H of the hydroxamate group is engaged in intermolecular H-bonding with the carbonyl oxygen of another coordinated hydroxamate ligand, thereby forming an extended 1D chain. The ligand as well as both the complexes exhibit the ability to protect from radiation induced damage both in CTDNA as well as in pUC19 plasmid DNA. As the damage to DNA is caused by the radicals generated during radiolysis, its scavenging imparts protection from the damage to DNA. To understand the mechanism of protection, binding affinities of the ligand and the complex with DNA were determined using absorption and emission spectral studies and viscosity measurements, whereby the results indicate that both the complexes and the hydroxamate ligand interact with calf thymus DNA in the minor groove. The intrinsic binding constants, obtained from UV-vis studies, are 7.2 × 10(3) M(-1), 5.2 × 10(4) M(-1) and 1.2 × 10(4) M(-1) for the ligand and complexes 1 and 2 respectively. The Stern-Volmer quenching constants obtained from a luminescence study for both the complexes are 5.6 × 10(4) M(-1) and 1.6 × 10(4) M(-1) respectively. The dioxomolybdenum(VI) complex is found to be a more potent radioprotector compared to the dioxotungsten(VI) complex and the ligand. Radical scavenging chemical studies suggest that the complexes have a greater ability to scavenge both the hydroxyl as well as the superoxide radicals compared to the ligand. The free radical scavenging ability of the ligand and the

  9. Space Radiation Induced Cytogenetic Damage in the Blood Lymphocytes of Astronauts: Persistence of Damage After Flight and the Effects of Repeat Long Duration Missions

    NASA Technical Reports Server (NTRS)

    George, Kerry; Rhone, Jordan; Chappell, L. J.; Cucinotta, F. A.

    2010-01-01

    Cytogenetic damage was assessed in blood lymphocytes from astronauts before and after they participated in long-duration space missions of three months or more. The frequency of chromosome damage was measured by fluorescence in situ hybridization (FISH) chromosome painting before flight and at various intervals from a few days to many months after return from the mission. For all individuals, the frequency of chromosome exchanges measured within a month of return from space was higher than their prefight yield. However, some individuals showed a temporal decline in chromosome damage with time after flight. Statistical analysis using combined data for all astronauts indicated a significant overall decreasing trend in total chromosome exchanges with time after flight, although this trend was not seen for all astronauts and the yield of chromosome damage in some individuals actually increased with time after flight. The decreasing trend in total exchanges was slightly more significant when statistical analysis was restricted to data collected more than 220 days after return from flight. In addition, limited data on multiple flights show a lack of correlation between time in space and translocation yields. Data from three crewmembers who has participated in two separate long-duration space missions provide limited information on the effect of repeat flights and show a possible adaptive response to space radiation exposure.

  10. Early and late skin reactions to radiotherapy for breast cancer and their correlation with radiation-induced DNA damage in lymphocytes

    PubMed Central

    López, Escarlata; Guerrero, Rosario; Núñez, Maria Isabel; del Moral, Rosario; Villalobos, Mercedes; Martínez-Galán, Joaquina; Valenzuela, Maria Teresa; Muñoz-Gámez, José Antonio; Oliver, Francisco Javier; Martín-Oliva, David; de Almodóvar, José Mariano Ruiz

    2005-01-01

    Introduction Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. Methods Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. Results Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. Conclusion After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity

  11. Age associated oxidative damage in lymphocytes

    PubMed Central

    Gautam, Nandeslu; Das, Subhasis; Mahapatra, Santanu Kar; Chakraborty, Subhankari Prasad; Kundu, Pratip Kumar

    2010-01-01

    Lymphocytes are an important immunological cell and have been played a significant role in acquired immune system; hence, may play in pivotal role in immunosenescence. Oxidative stress has been reported to increase in elderly subjects, possibly arising from an uncontrolled production of free radicals with aging and decreased antioxidant defenses. This study was aimed to evaluate the level of lipid-protein damage and antioxidant status in lymphocytes of healthy individuals to correlate between oxidative damage with the aging process. Twenty healthy individuals of each age group (11–20; 21–30; 31–40; 41–50; and 51–60 years) were selected randomly. Blood samples were drawn by medical practitioner and lymphocytes were isolated from blood samples. Malondialdehyde (MDA), protein carbonyls (PC) level were evaluated to determine the lipid and protein damage in lymphocytes. Superoxide dismutase (SOD), catalase (CAT), glutathione and glutathione dependent enzymes were estimated to evaluate the antioxidant status in the lymphocytes. Increased MDA and PC levels strongly support the increased oxidative damage in elderly subject than young subjects. The results indicated that, balance of oxidant and antioxidant systems in lymphocytes shifts in favor of accelerated oxidative damage during aging. Thus oxidative stress in lymphocytes may particular interest in aging and may play important role in immunosenescence. PMID:20972374

  12. Functional Consequences of Radiation-Induced Oxidative Stress in Cultured Neural Stem Cells and the Brain Exposed to Charged Particle Irradiation

    PubMed Central

    Tseng, Bertrand P.; Giedzinski, Erich; Izadi, Atefeh; Suarez, Tatiana; Lan, Mary L.; Tran, Katherine K.; Acharya, Munjal M.; Nelson, Gregory A.; Raber, Jacob; Parihar, Vipan K.

    2014-01-01

    Abstract Aims: Redox homeostasis is critical in regulating the fate and function of multipotent cells in the central nervous system (CNS). Here, we investigated whether low dose charged particle irradiation could elicit oxidative stress in neural stem and precursor cells and whether radiation-induced changes in redox metabolism would coincide with cognitive impairment. Results: Low doses (<1 Gy) of charged particles caused an acute and persistent oxidative stress. Early after (<1 week) irradiation, increased levels of reactive oxygen and nitrogen species were generally dose responsive, but were less dependent on dose weeks to months thereafter. Exposure to ion fluences resulting in less than one ion traversal per cell was sufficient to elicit radiation-induced oxidative stress. Whole body irradiation triggered a compensatory response in the rodent brain that led to a significant increase in antioxidant capacity 2 weeks following exposure, before returning to background levels at week 4. Low dose irradiation was also found to significantly impair novel object recognition in mice 2 and 12 weeks following irradiation. Innovation: Data provide evidence that acute exposure of neural stem cells and the CNS to very low doses and fluences of charged particles can elicit a persisting oxidative stress lasting weeks to months that is associated with impaired cognition. Conclusions: Exposure to low doses of charged particles causes a persistent oxidative stress and cognitive impairment over protracted times. Data suggest that astronauts subjected to space radiation may develop a heightened risk for mission critical performance decrements in space, along with a risk of developing long-term neurocognitive sequelae. Antioxid. Redox Signal. 20, 1410–1422. PMID:23802883

  13. Oxidative stress and oxidative damage in chemical carcinogenesis

    SciTech Connect

    Klaunig, James E. Wang Zemin; Pu Xinzhu; Zhou Shaoyu

    2011-07-15

    Reactive oxygen species (ROS) are induced through a variety of endogenous and exogenous sources. Overwhelming of antioxidant and DNA repair mechanisms in the cell by ROS may result in oxidative stress and oxidative damage to the cell. This resulting oxidative stress can damage critical cellular macromolecules and/or modulate gene expression pathways. Cancer induction by chemical and physical agents involves a multi-step process. This process includes multiple molecular and cellular events to transform a normal cell to a malignant neoplastic cell. Oxidative damage resulting from ROS generation can participate in all stages of the cancer process. An association of ROS generation and human cancer induction has been shown. It appears that oxidative stress may both cause as well as modify the cancer process. Recently association between polymorphisms in oxidative DNA repair genes and antioxidant genes (single nucleotide polymorphisms) and human cancer susceptibility has been shown.

  14. The empirical dependence of radiation-induced charge neutralization on negative bias in dosimeters based on the metal-oxide-semiconductor field-effect transistor

    SciTech Connect

    Benson, Chris; Albadri, Abdulrahman; Joyce, Malcolm J.; Price, Robert A.

    2006-08-15

    The dependence of radiation-induced charge neutralization (RICN) has been studied in metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters. These devices were first exposed to x rays under positive bias and then to further dose increments at a selection of reverse bias levels. A nonlinear empirical trend has been established that is consistent with that identified in the data obtained in this work. Estimates for the reverse bias level corresponding to the maximum rate of RICN have been extracted from the data. These optimum bias levels appear to be independent of the level of initial absorbed dose under positive bias. The established models for threshold voltage change have been considered and indicate a related nonlinear trend for neutralization cross section {sigma}{sub N} as a function of oxide field. These data are discussed in the context of dose measurement with MOSFETs and within the framework of statistical mechanics associated with neutral traps and their field dependence.

  15. Oxidative damage and mitochondrial decay in aging.

    PubMed Central

    Shigenaga, M K; Hagen, T M; Ames, B N

    1994-01-01

    We argue for the critical role of oxidative damage in causing the mitochondrial dysfunction of aging. Oxidants generated by mitochondria appear to be the major source of the oxidative lesions that accumulate with age. Several mitochondrial functions decline with age. The contributing factors include the intrinsic rate of proton leakage across the inner mitochondrial membrane (a correlate of oxidant formation), decreased membrane fluidity, and decreased levels and function of cardiolipin, which supports the function of many of the proteins of the inner mitochondrial membrane. Acetyl-L-carnitine, a high-energy mitochondrial substrate, appears to reverse many age-associated deficits in cellular function, in part by increasing cellular ATP production. Such evidence supports the suggestion that age-associated accumulation of mitochondrial deficits due to oxidative damage is likely to be a major contributor to cellular, tissue, and organismal aging. PMID:7971961

  16. Oxidative stress, mitochondrial damage and neurodegenerative diseases

    PubMed Central

    Guo, Chunyan; Sun, Li; Chen, Xueping; Zhang, Danshen

    2013-01-01

    Oxidative stress and mitochondrial damage have been implicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Oxidative stress is characterized by the overproduction of reactive oxygen species, which can induce mitochondrial DNA mutations, damage the mitochondrial respiratory chain, alter membrane permeability, and influence Ca2+ homeostasis and mitochondrial defense systems. All these changes are implicated in the development of these neurodegenerative diseases, mediating or amplifying neuronal dysfunction and triggering neurodegeneration. This paper summarizes the contribution of oxidative stress and mitochondrial damage to the onset of neurodegenerative eases and discusses strategies to modify mitochondrial dysfunction that may be attractive therapeutic interventions for the treatment of various neurodegenerative diseases. PMID:25206509

  17. [Radiation-induced neuropathy].

    PubMed

    Kolak, Agnieszka; Starosławska, Elzbieta; Kieszko, Dariusz; Cisek, Paweł; Patyra, Krzysztof Ireneusz; Surdyka, Dariusz; Dobrzyńska-Rutkowska, Aneta; Łopacka-Szatan, Karolina; Burdan, Franciszek

    2013-12-01

    Radiation-induced neuropathy is commonly observed among oncological patients. Radiation can affect the nervous tissue directly or indirectly by inducing vasculopathy or dysfunction of internal organs. Symptoms may be mild and reversible (e.g., pain, nausea, vomiting, fever, drowsiness, fatigue, paresthesia) or life-threatening (cerebral oedema, increased intracranial pressure, seizures). Such complications are clinically divided into peripheral (plexopathies, neuropathies of spinal and cranial nerves) and central neuropathy (myelopathy, encephalopathy, cognitive impairment). The degree of neuronal damages primarily depends on the total and fractional radiation dose and applied therapeutic methods. The conformal and megavoltage radiotherapy seems to be the safeties ones. Diagnostic protocol includes physical examination, imaging (in particular magnetic resonance), electromyography, nerve conduction study and sometimes histological examination. Prevention and early detection of neurological complications are necessary in order to prevent a permanent dysfunction of the nervous system. Presently their treatment is mostly symptomatic, but in same cases a surgical intervention is required. An experimental and clinical data indicates some effectiveness of different neuroprotective agents (e.g. anticoagulants, vitamin E, hyperbaric oxygen, pentoxifylline, bevacizumab, methylphenidate, donepezil), which should be administered before and/or during radiotherapy. PMID:24490474

  18. Combined low initial DNA damage and high radiation-induced apoptosis confers clinical resistance to long-term toxicity in breast cancer patients treated with high-dose radiotherapy

    PubMed Central

    2011-01-01

    Background Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. Methods Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. Conclusions A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe

  19. TH-E-BRF-04: Characterizing the Response of Texture-Based CT Image Features for Quantification of Radiation-Induced Normal Lung Damage

    SciTech Connect

    Krafft, S; Court, L; Briere, T; Martel, M

    2014-06-15

    Purpose: Radiation induced lung damage (RILD) is an important dose-limiting toxicity for patients treated with radiation therapy. Scoring systems for RILD are subjective and limit our ability to find robust predictors of toxicity. We investigate the dose and time-related response for texture-based lung CT image features that serve as potential quantitative measures of RILD. Methods: Pre- and post-RT diagnostic imaging studies were collected for retrospective analysis of 21 patients treated with photon or proton radiotherapy for NSCLC. Total lung and selected isodose contours (0–5, 5–15, 15–25Gy, etc.) were deformably registered from the treatment planning scan to the pre-RT and available follow-up CT studies for each patient. A CT image analysis framework was utilized to extract 3698 unique texture-based features (including co-occurrence and run length matrices) for each region of interest defined by the isodose contours and the total lung volume. Linear mixed models were fit to determine the relationship between feature change (relative to pre-RT), planned dose and time post-RT. Results: Seventy-three follow-up CT scans from 21 patients (median: 3 scans/patient) were analyzed to describe CT image feature change. At the p=0.05 level, dose affected feature change in 2706 (73.1%) of the available features. Similarly, time affected feature change in 408 (11.0%) of the available features. Both dose and time were significant predictors of feature change in a total of 231 (6.2%) of the extracted image features. Conclusion: Characterizing the dose and time-related response of a large number of texture-based CT image features is the first step toward identifying objective measures of lung toxicity necessary for assessment and prediction of RILD. There is evidence that numerous features are sensitive to both the radiation dose and time after RT. Beyond characterizing feature response, further investigation is warranted to determine the utility of these features as

  20. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice

    PubMed Central

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis. PMID:26114656

  1. Clarithromycin Attenuates Radiation-Induced Lung Injury in Mice.

    PubMed

    Lee, Seung Jun; Yi, Chin-ok; Heo, Rok Won; Song, Dae Hyun; Cho, Yu Ji; Jeong, Yi Yeong; Kang, Ki Mun; Roh, Gu Seob; Lee, Jong Deog

    2015-01-01

    Radiation-induced lung injury (RILI) is a common and unavoidable complication of thoracic radiotherapy. The current study was conducted to evaluate the ability of clarithromycin (CLA) to prevent radiation-induced pneumonitis, oxidative stress, and lung fibrosis in an animal model. C57BL/6J mice were assigned to control, irradiation only, irradiation plus CLA, and CLA only groups. Test mice received single thoracic exposures to radiation and/or oral CLA (100 mg/kg/day). Histopathologic findings and markers of inflammation, fibrosis, and oxidative stress were compared by group. On a microscopic level, CLA inhibited macrophage influx, alveolar fibrosis, parenchymal collapse, consolidation, and epithelial cell changes. The concentration of collagen in lung tissue was lower in irradiation plus CLA mice. Radiation-induced expression of tumor necrosis factor (TNF)-α, TNF receptor 1, acetylated nuclear factor kappa B, cyclooxygenase 2, vascular cell adhesion molecule 1, and matrix metallopeptidase 9 were also attenuated by CLA. Expression levels of nuclear factor erythroid 2-related factor 2 and heme oxygenase 1, transforming growth factor-β1, connective tissue growth factor, and type I collagen in radiation-treated lungs were also attenuated by CLA. These findings indicate that CLA ameliorates the deleterious effects of thoracic irradiation in mice by reducing pulmonary inflammation, oxidative damage, and fibrosis. PMID:26114656

  2. The oxidative damage initiation hypothesis for meiosis.

    PubMed

    Hörandl, Elvira; Hadacek, Franz

    2013-12-01

    The maintenance of sexual reproduction in eukaryotes is still a major enigma in evolutionary biology. Meiosis represents the only common feature of sex in all eukaryotic kingdoms, and thus, we regard it a key issue for discussing its function. Almost all asexuality modes maintain meiosis either in a modified form or as an alternative pathway, and facultatively apomictic plants increase frequencies of sexuality relative to apomixis after abiotic stress. On the physiological level, abiotic stress causes oxidative stress. We hypothesize that repair of oxidative damage on nuclear DNA could be a major driving force in the evolution of meiosis. We present a hypothetical model for the possible redox chemistry that underlies the binding of the meiosis-specific protein Spo11 to DNA. During prophase of meiosis I, oxidized sites at the DNA molecule are being targeted by the catalytic tyrosine moieties of Spo11 protein, which acts like an antioxidant reducing the oxidized target. The oxidized tyrosine residues, tyrosyl radicals, attack the phosphodiester bonds of the DNA backbone causing DNA double strand breaks that can be repaired by various mechanisms. Polyploidy in apomictic plants could mitigate oxidative DNA damage and decrease Spo11 activation. Our hypothesis may contribute to explaining various enigmatic phenomena: first, DSB formation outnumbers crossovers and, thus, effective recombination events by far because the target of meiosis may be the removal of oxidative lesions; second, it offers an argument for why expression of sexuality is responsive to stress in many eukaryotes; and third, repair of oxidative DNA damage turns meiosis into an essential characteristic of eukaryotic reproduction. PMID:23995700

  3. Novel mechanism for the radiation-induced bystander effect: nitric oxide and ethylene determine the response in sponge cells.

    PubMed

    Müller, Werner E G; Ushijima, Hiroshi; Batel, Renato; Krasko, Anatoli; Borejko, Alexandra; Müller, Isabel M; Schröder, Heinz-C

    2006-05-11

    Until now the bystander effect had only been described in vertebrates. In the present study the existence of this effect has been demonstrated for the phylogenetically oldest metazoan phylum, the Porifera. We used the demosponge Suberites domuncula for the experiments in the two-chamber-system. The lower dish contained irradiated "donor" cells (single cells) and the upper dish the primmorphs ("recipient" primmorphs). The "donor" cells were treated with UV-B light (40 mJ/cm2) and 100 microM hydrogen peroxide (H2O2), factors that exist also in the natural marine aquatic environment of sponges; these factors caused a high level of DNA strand breaks followed by a reduced viability of the cells. If these cells were added to the "recipient" primmorphs these 3D-cell cultures started to undergo apoptosis. This effect could be abolished by the NO-specific scavenger PTIO and ethylene. The conclusion that NO is synthesized by the UV-B/H2O2-treated cells was supported analytically. The cDNA encoding the enzyme dimethylarginine dimethylaminohydrolase (DDAH) was isolated from the "donor" cells. High levels of DDAH transcripts were measured in UV-B/H2O2-treated "donor" cells while after ethylene treatment the steady-state level of expression drops drastically. We conclude that in the absence of ethylene the concentration of the physiological inhibitor for the NO synthase ADMA is low, due to the high level of DDAH. In consequence, high amounts of NO are released from "donor" cells which cause apoptosis in "recipient" primmorphs. In contrast, ethylene reduces the DDAH expression with the consequence of higher levels of ADMA which prevent the formation of larger amounts of NO. This study describes the radiation-induced bystander effect also for the most basal metazoans and demonstrates that this effect is controlled by the two gases NO and ethylene. PMID:16427660

  4. Oxidative DNA Damage and Nucleotide Excision Repair

    PubMed Central

    Melis, Joost P.M.; Luijten, Mirjam

    2013-01-01

    Abstract Significance: Oxidative DNA damage is repaired by multiple, overlapping DNA repair pathways. Accumulating evidence supports the hypothesis that nucleotide excision repair (NER), besides base excision repair (BER), is also involved in neutralizing oxidative DNA damage. Recent Advances: NER includes two distinct sub-pathways: transcription-coupled NER (TC-NER) and global genome repair (GG-NER). The CSA and CSB proteins initiate the onset of TC-NER. Recent findings show that not only CSB, but also CSA is involved in the repair of oxidative DNA lesions, in the nucleus as well as in mitochondria. The XPG protein is also of importance for the removal of oxidative DNA lesions, as it may enhance the initial step of BER. Substantial evidence exists that support a role for XPC in NER and BER. XPC deficiency not only results in decreased repair of oxidative lesions, but has also been linked to disturbed redox homeostasis. Critical Issues: The role of NER proteins in the regulation of the cellular response to oxidative (mitochondrial and nuclear) DNA damage may be the underlying mechanism of the pathology of accelerated aging in Cockayne syndrome patients, a driving force for internal cancer development in XP-A and XP-C patients, and a contributor to the mixed exhibited phenotypes of XP-G patients. Future Directions: Accumulating evidence indicates that DNA repair factors can be involved in multiple DNA repair pathways. However, the distinct detailed mechanism and consequences of these additional functions remain to be elucidated and can possibly shine a light on clinically related issues. Antioxid. Redox Signal. 18, 2409–2419. PMID:23216312

  5. Oxidative DNA damage accumulation in gastric carcinogenesis

    PubMed Central

    Farinati, F; Cardin, R; Degan, P; Rugge, M; Di, M; Bonvicini, P; Naccarato, R

    1998-01-01

    Background—Gastric carcinogenesis is a multifactorial, multistep process, in which chronic inflammation plays a major role. 
Aims—In order to ascertain whether free radical mediated oxidative DNA damage is involved in such a process, concentrations of 8-hydroxydeoxyguanosine (8OHdG), a mutagenic/carcinogenic adduct, and thiobarbituric acid reactive substances (TBARS), as an indirect measure of free radical mediated damage, were determined in biopsy specimens from patients undergoing endoscopy. 
Patients—Eighty eight patients were divided into histological subgroups as follows: 27 with chronic non-atrophic gastritis, 41 with atrophic gastritis, six with gastric cancer, and 14 unaffected controls. 
Methods—Intestinal metaplasia, Helicobacter pylori infection, and disease activity were semiquantitatively scored. 8OHdG concentrations were assessed by HPLC with electrochemical detection, and TBARS concentrations were fluorimetrically assayed. 
Results—8OHdG concentrations (mean number of adducts/105 dG residues) were significantly higher in chronic atrophic gastritis (p=0.0009). Significantly higher concentrations were also detected in the presence of severe disease activity (p=0.02), intestinal metaplasia (p=0.035), and H pylori infection (p=0.001). TBARS concentrations were also higher in atrophic gastritis, though not significantly so. In a multiple logistic regression analysis, 8OHdG concentrations correlated best with the presence and severity of H pylori infection (r=0.53, p=0.002). 
Conclusions—Chronic gastritis is characterised by the accumulation of oxidative DNA damage with mutagenic and carcinogenic potential. H pylori infection is the major determinant for DNA adduct formation. 

 Keywords: free radicals; oxidative DNA damage; gastric carcinogenesis; precancerous changes; peroxidative damage PMID:9577340

  6. Protective effect of 3,4-dihydroxybenzoic acid isolated from Cladophora wrightiana Harvey against ultraviolet B radiation-induced cell damage in human HaCaT keratinocytes.

    PubMed

    Cha, Ji Won; Piao, Mei Jing; Kim, Ki Cheon; Zheng, Jian; Yao, Cheng Wen; Hyun, Chang Lim; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Lee, Nam Ho; Ko, Mi Hee; Hyun, Jin Won

    2014-03-01

    The aim of the present study was to elucidate the protective properties of 3,4-dihydroxybenzoic acid (DBA) isolated from Cladophora wrightiana Harvey (a green alga) against ultraviolet B (UVB)-induced damage to human HaCaT keratinocytes. DBA exhibited scavenging actions against the 1,1-diphenyl-2-picrylhydrazyl radical, the superoxide anion, and the hydroxyl radical. Furthermore, DBA decreased the levels of intracellular reactive oxygen species generated by hydrogen peroxide or UVB treatment of the cells. DBA also decreased the UVB-augmented levels of phospho-histone H2A.X and the extent of comet tail formation, which are both indications of DNA damage. In addition, the compound safeguarded keratinocytes from UVB-induced injury by reversing the production of apoptotic bodies, overturning the disruption of mitochondrial membrane potential, increasing the expression of the anti-apoptotic protein, B-cell lymphoma 2, and decreasing the expression of the pro-apoptotic proteins, Bcl-2-associated X and cleaved caspase-3. Taken together, these results demonstrate that DBA isolated from a green alga protects human keratinocytes against UVB-induced oxidative stress and apoptosis. PMID:24414942

  7. Caffeic acid phenethyl ester attenuates ionize radiation-induced intestinal injury through modulation of oxidative stress, apoptosis and p38MAPK in rats.

    PubMed

    Jin, Liu-Gen; Chu, Jian-Jun; Pang, Qing-Feng; Zhang, Fu-Zheng; Wu, Gang; Zhou, Le-Yuan; Zhang, Xiao-Jun; Xing, Chun-Gen

    2015-07-01

    Caffeic acid phenyl ester (CAPE) is a potent anti-inflammatory agent and it can eliminate the free radicals. This study aimed to investigate the radioprotective effects of CAPE on X-ray irradiation induced intestinal injury in rats. Rats were intragastrically administered with 10 μmol/kg/d CAPE for 7 consecutive days before exposing them to a single dose of X-ray irradiation (9Gy) to abdomen. Rats were sacrificed 72 h after exposure to radiation. We found that pretreatment with CAPE effectively attenuated intestinal pathology changes, apoptosis, oxidative stress, bacterial translocation, the content of nitric oxide and myeloperoxidase as well as the concentration of plasma tumor necrosis factor-α. Pretreatment with CAPE also reversed the activation of p38MAPK and the increased expression of intercellular cell adhesion molecule-1 induced by radiation in intestinal mucosa. Taken together, these results suggest that pretreatment with CAPE could be a promising candidate for treating radiation-induced intestinal injury. PMID:26122083

  8. Oxidant damage during and after spaceflight

    NASA Technical Reports Server (NTRS)

    Stein, T. P.; Leskiw, M. J.

    2000-01-01

    The objectives of this study were to assess oxidant damage during and after spaceflight and to compare the results against bed rest with 6 degrees head-down tilt. We measured the urinary excretion of the F(2) isoprostane, 8-iso-prostaglandin (PG) F(2alpha), and 8-oxo-7,8-dihydro-2 deoxyguanosine (8-OH DG) before, during, and after long-duration spaceflight (4-9 mo) on the Russian space station MIR, short-duration spaceflight on the shuttle, and 17 days of bed rest. Sample collections on MIR were obtained between 88 and 186 days in orbit. 8-iso-PGF(2alpha) and 8-OH DG are markers for oxidative damage to membrane lipids and DNA, respectively. Data are mean +/- SE. On MIR, isoprostane levels were decreased inflight (96. 9 +/- 11.6 vs. 76.7 +/- 14.9 ng. kg(-1). day(-1), P < 0.05, n = 6) due to decreased dietary intake secondary to impaired thermoregulation. Isoprostane excretion was increased postflight (245.7 +/- 55.8 ng. kg(-1). day(-1), P < 0.01). 8-OH DG excretion was unchanged with spaceflight and increased postflight (269 +/- 84 vs 442 +/- 180 ng. kg(-1). day(-1), P < 0.05). On the shuttle, 8-OH DG excretion was unchanged in- and postflight, but 8-iso-PGF(2alpha) excretion was decreased inflight (15.6 +/- 4.3 vs 8.0 +/- 2.7 ng. kg(-1). day(-1), P < 0.05). No changes were found with bed rest, but 8-iso-PGF(2alpha) was increased during the recovery phase (48.9 +/- 23.0 vs 65.4 +/- 28.3 ng. kg(-1). day(-1), P < 0.05). The changes in isoprostane production were attributed to decreased production of oxygen radicals from the electron transport chain due to the reduced energy intake inflight. The postflight increases in the excretion of the products of oxidative damage were attributed to a combination of an increase in metabolic activity and the loss of some host antioxidant defenses inflight. We conclude that 1) oxidative damage was decreased inflight, and 2) oxidative damage was increased postflight.

  9. Radiation-induced gliomas

    PubMed Central

    Prasad, Gautam; Haas-Kogan, Daphne A.

    2013-01-01

    Radiation-induced gliomas represent a relatively rare but well-characterized entity in the neuro-oncologic literature. Extensive retrospective cohort data in pediatric populations after therapeutic intracranial radiation show a clearly increased risk in glioma incidence that is both patient age- and radiation dose/volume-dependent. Data in adults are more limited but show heightened risk in certain groups exposed to radiation. In both populations, there is no evidence linking increased risk associated with routine exposure to diagnostic radiation. At the molecular level, recent studies have found distinct genetic differences between radiation-induced gliomas and their spontaneously-occurring counterparts. Clinically, there is understandable reluctance on the part of clinicians to re-treat patients due to concern for cumulative neurotoxicity. However, available data suggest that aggressive intervention can lead to improved outcomes in patients with radiation-induced gliomas. PMID:19831840

  10. Impact of α-, γ-, and δ-tocopherol on the radiation induced oxidation of rapeseed oil triacylglycerols

    NASA Astrophysics Data System (ADS)

    Braunrath, Robert; Isnardy, Bettina; Solar, Sonja; Elmadfa, Ibrahim

    2010-07-01

    Gamma-irradiation (doses: 2, 4, 7, and 10 kGy) was used as oxidation tool to study the antioxidant effects of α-, γ-, and δ-tocopherol (enrichments 500-5000 ppm) in purified rapeseed oil triacylglycerols (RSOTG). Fatty acid composition, tocopherol degradation, primary (conjugated dienes (CD) and peroxide value (POV)) and secondary (p-anisidine value) oxidation products were chosen as test parameters. Fatty acid composition did not change. While secondary oxidation products could not be found in the irradiated samples, the POVs and CDs showed a significant, dose-dependent increase. α-Tocopherol did not inhibit the formation of peroxides, whereas γ- and δ-tocopherol reduced the POVs by more than 30%. No uniform effect of the different tocopherol concentrations at the particular doses could be established. The influence of the individual tocopherols on the CD formation was not pronounced. The degradation of the tocopherols decreased with increasing concentration. None of the tocopherols showed a prooxidant effect.

  11. Photo-protective effect of sargachromenol against UVB radiation-induced damage through modulating cellular antioxidant systems and apoptosis in human keratinocytes.

    PubMed

    Fernando, Pattage Madushan Dilhara Jayatissa; Piao, Mei Jing; Hewage, Susara Ruwan Kumara Madduma; Kang, Hee Kyoung; Yoo, Eun Sook; Koh, Young Sang; Ko, Mi Hee; Ko, Chang Sik; Byeon, Sang Hee; Mun, Seung Ri; Lee, Nam Ho; Hyun, Jin Won

    2016-04-01

    The aim of this study was to evaluate the photo-preventive effects of sargachromenol (SC) against ultraviolet B (UVB)-induced oxidative stress in human keratinocytes via assessing the antioxidant properties and underlying molecular mechanisms. SC exhibited a significant scavenging effect on UVB-induced intracellular reactive oxygen species (ROS). SC attenuated UVB-induced oxidative macromolecular damage, including the protein carbonyl content, DNA strand break, and 8-isoprostane level. Furthermore, SC decreased UVB-induced Bax, cleaved caspase-9, and cleaved caspase-3 protein levels, but increased that of Bcl-2, which are well-known key mediators of apoptosis. Moreover, SC increased superoxide dismutase, catalase, and heme oxygenase-1 protein expression. Pre-treatment with SC upregulated the main transcription factor of antioxidant enzymes, erythroid 2-related factor 2 level, which was reduced by UVB irradiation. Extracellular signal-regulated kinase (ERK) and Jun N-terminal kinases (JNK) are involved in the regulation of many cellular events, including apoptosis. SC treatment reversed ERK and JNK activation induced by UVB. Collectively, these data indicate that SC can provide remarkable cytoprotection against the adverse effects of UVB radiation by modulating cellular antioxidant systems, and suggest the potential of developing a medical agent for ROS-induced skin diseases. PMID:26991844

  12. Biphasic Effects of Nitric Oxide Radicals on Radiation-Induced Lethality and Chromosome Aberrations in Human Lung Cancer Cells Carrying Different p53 Gene Status

    SciTech Connect

    Su Xiaoming; Takahashi, Akihisa; Guo Guozhen; Mori, Eiichiro; Okamoto, Noritomo; Ohnishi, Ken; Iwasaki, Toshiyasu; Ohnishi, Takeo

    2010-06-01

    Purpose: The aim of this study was to clarify the effects of nitric oxide (NO) on radiation-induced cell killing and chromosome aberrations in two human lung cancer cell lines with a different p53 gene status. Methods and Materials: We used wild-type (wt) p53 and mutated (m) p53 cell lines that were derived from the human lung cancer H1299 cell line, which is p53 null. The wtp53 and mp53 cell lines were generated by transfection of the appropriate p53 constructs into the parental cells. Cells were pretreated with different concentrations of isosorbide dinitrate (ISDN) (an NO donor) and/or 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) (an NO scavenger) and then exposed to X-rays. Cell survival, apoptosis, and chromosome aberrations were scored by use of a colony-forming assay, Hoechst 33342 staining assay and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP [deoxyuridine triphosphate] nick end labeling) assay, and chromosomal banding techniques, respectively. Results: In wtp53 cells the induction of radioresistance and the inhibition of apoptosis and chromosome aberrations were observed in the presence of ISDN at low 2- to 10-{mu}mol/L concentrations before X-irradiation. The addition of c-PTIO and ISDN into the culture medium 6 h before irradiation almost completely suppressed these effects. However, at high concentrations of ISDN (100-500 {mu}mol/L), clear evidence of radiosensitization, enhancement of apoptosis, and chromosome aberrations was detected. However, these phenomena were not observed in mp53 cells at either concentration range with ISDN. Conclusions: These results indicate that low and high concentrations of NO radicals can choreograph inverse radiosensitivity, apoptosis, and chromosome aberrations in human lung cancer cells and that NO radicals can affect the fate of wtp53 cells.

  13. Characterizing radiation-induced oxidation of DNA by way of the monohydrated guanine-cytosine radical cation.

    PubMed

    Jaeger, Heather M; Schaefer, Henry F

    2009-06-11

    The interaction of one water molecule with the guanine-cytosine radical cation has been studied with ab initio and density functional methods in order to help elucidate the nature of oxidized aqueous DNA. The theoretical spin density of [GC]*(+) reveals that the radical center is localized on guanine. The adiabatic ionization potential lowers from 7.63 to 6.71 eV in concurrence with the formation of the Watson-Crick base pair and hydration by one water molecule. A natural bond orbital analysis of partial charges shows that approximately 80% of the positive charge persists on guanine upon hydration and formation of the Watson-Crick base pair with cytosine. Hydration energies were computed with second-order Z-averaged perturbation theory (ZAPT2) using the aug-cc-pVDZ basis set at 11 stationary points on the B3LYP/DZP++ potential energy surface. The hydration energy at the global minimum is 14.2 kcal mol(-1). The lowest energy structures correspond to hydration near the glycosidic bond sites. Structural changes in the Watson-Crick base pair are predominantly seen for monohydration in the groove regions of double-helix DNA. PMID:19445496

  14. Oxidation of DNA: damage to nucleobases.

    PubMed

    Kanvah, Sriram; Joseph, Joshy; Schuster, Gary B; Barnett, Robert N; Cleveland, Charles L; Landman, Uzi

    2010-02-16

    All organisms store the information necessary to maintain life in their DNA. Any process that damages DNA, causing a loss or corruption of that information, jeopardizes the viability of the organism. One-electron oxidation is such a process. In this Account, we address three of the central features of one-electron oxidation of DNA: (i) the migration of the radical cation away from the site of its formation; (ii) the electronic and structural factors that determine the nucleobases at which irreversible reactions most readily occur; (iii) the mechanism of reaction for nucleobase radical cations. The loss of an electron (ionization) from DNA generates an electron "hole" (a radical cation), located most often on its nucleobases, that migrates reversibly through duplex DNA by hopping until it is trapped in an irreversible chemical reaction. The particular sequence of nucleobases in a DNA oligomer determines both the efficiency of hopping and the specific location and nature of the damaging chemical reaction. In aqueous solution, DNA is a polyanion because of the negative charge carried by its phosphate groups. Counterions to the phosphate groups (typically Na(+)) play an important role in facilitating both hopping and the eventual reaction of the radical cation with H(2)O. Irreversible reaction of a radical cation with H(2)O in duplex DNA occurs preferentially at the most reactive site. In normal DNA, comprising the four common DNA nucleobases G, C, A, and T, reaction occurs most commonly at a guanine, resulting in its conversion primarily to 8-oxo-7,8-dihydroguanine (8-OxoG). Both electronic and steric effects control the outcome of this process. If the DNA oligomer does not contain a suitable guanine, then reaction of the radical cation occurs at the thymine of a TT step, primarily by a tandem process. The oxidative damage of DNA is a complex process, influenced by charge transport and reactions that are controlled by a combination of enthalpic, entropic, steric, and

  15. Metallothionein blocks oxidative DNA damage in vitro

    PubMed Central

    Qu, Wei; Pi, Jingbo; Waalkes, Michael P.

    2012-01-01

    The role of metallothionein (MT) in mitigation of oxidative DNA damage (ODD) induced either by cadmium (Cd) or the direct oxidant hydrogen peroxide (H2O2) was systematically examined by using MT-I/II double knockout (MT-null) or MT-competent wild-type (WT) cells. Both toxicants were much more lethal to MT-null cells (Cd LC50 = 6.6 μM; H2O2 LC50 = 550 μM) than WT cells (Cd LC50 = 16.5 μM; H2O2 LC50 = 930 μM). Cd induced concentration-related MT increases in WT cells, while the basal levels were undetectable and not increased by Cd in MT-null cells. ODD, measured by the immuno-spin trapping method, was minimally induced by sub-toxic Cd levels (1 or 5 μM; 24 h) in WT cells, but markedly increased in MT-null cells (> 430%). Similarly, ODD was induced to higher levels by lower concentrations of H2O2 in MT-null cells than WT cells. Transfection of MT-I into MT-null cells reduced both Cd- and H2O2-induced cytolethality and ODD. Cd increased expression of the oxidant defense genes, HO-1 and GSTa2 to a much greater extent in MT-null cells than WT. Cd or H2O2 exposure increased expression of key transport genes, Mrp1 and Mrp2, in WT cells but not in MT-null cells. MT protects against Cd- and H2O2-induced ODD in MT competent cells possibly by multiple mechanisms, potentially including direct metal ion sequestration and sequestration of oxidant radicals by MT. MT-deficient cells appear to adapt to Cd primarily by turning on oxidant response systems, while MT-competent cells activate MT and transport systems. PMID:22914987

  16. Radiation-induced osteochondromas

    SciTech Connect

    Libshitz, H.I.; Cohen, M.A.

    1982-03-01

    Radiation-induced osteochondromas, either single or multiple, occur more commonly than is generally recognized. The incidence following irradiation for childhood malignancy is approximately 12%. Any open epiphysis is vulnerable. Age at irradiation, time of appearance following therapy, dose and type of radiation, and clinical course in 14 cases are dicussed. Due to growth of the lesion and/or pain, 3 tumors were excised. None revealed malignant degeneration.

  17. Eating increases oxidative damage in a reptile.

    PubMed

    Butler, Michael W; Lutz, Thomas J; Fokidis, H Bobby; Stahlschmidt, Zachary R

    2016-07-01

    While eating has substantial benefits in terms of both nutrient and energy acquisition, there are physiological costs associated with digesting and metabolizing a meal. Frequently, these costs have been documented in the context of energy expenditure while other physiological costs have been relatively unexplored. Here, we tested whether the seemingly innocuous act of eating affects either systemic pro-oxidant (reactive oxygen metabolite, ROM) levels or antioxidant capacity of corn snakes (Pantherophis guttatus) by collecting plasma during absorptive (peak increase in metabolic rate due to digestion of a meal) and non-absorptive (baseline) states. When individuals were digesting a meal, there was a minimal increase in antioxidant capacity relative to baseline (4%), but a substantial increase in ROMs (nearly 155%), even when controlling for circulating nutrient levels. We report an oxidative cost of eating that is much greater than that due to long distance flight or mounting an immune response in other taxa. This result demonstrates the importance of investigating non-energetic costs associated with meal processing, and it begs future work to identify the mechanism(s) driving this increase in ROM levels. Because energetic costs associated with eating are taxonomically widespread, identifying the taxonomic breadth of eating-induced ROM increases may provide insights into the interplay between oxidative damage and life history theory. PMID:27099366

  18. The Analysis of the Patterns of Radiation-Induced DNA Damage Foci by a Stochastic Monte Carlo Model of DNA Double Strand Breaks Induction by Heavy Ions and Image Segmentation Software

    NASA Technical Reports Server (NTRS)

    Ponomarev, Artem; Cucinotta, F.

    2011-01-01

    To create a generalized mechanistic model of DNA damage in human cells that will generate analytical and image data corresponding to experimentally observed DNA damage foci and will help to improve the experimental foci yields by simulating spatial foci patterns and resolving problems with quantitative image analysis. Material and Methods: The analysis of patterns of RIFs (radiation-induced foci) produced by low- and high-LET (linear energy transfer) radiation was conducted by using a Monte Carlo model that combines the heavy ion track structure with characteristics of the human genome on the level of chromosomes. The foci patterns were also simulated in the maximum projection plane for flat nuclei. Some data analysis was done with the help of image segmentation software that identifies individual classes of RIFs and colocolized RIFs, which is of importance to some experimental assays that assign DNA damage a dual phosphorescent signal. Results: The model predicts the spatial and genomic distributions of DNA DSBs (double strand breaks) and associated RIFs in a human cell nucleus for a particular dose of either low- or high-LET radiation. We used the model to do analyses for different irradiation scenarios. In the beam-parallel-to-the-disk-of-a-flattened-nucleus scenario we found that the foci appeared to be merged due to their high density, while, in the perpendicular-beam scenario, the foci appeared as one bright spot per hit. The statistics and spatial distribution of regions of densely arranged foci, termed DNA foci chains, were predicted numerically using this model. Another analysis was done to evaluate the number of ion hits per nucleus, which were visible from streaks of closely located foci. In another analysis, our image segmentaiton software determined foci yields directly from images with single-class or colocolized foci. Conclusions: We showed that DSB clustering needs to be taken into account to determine the true DNA damage foci yield, which helps to

  19. Post Treatment With an FGF Chimeric Growth Factor Enhances Epithelial Cell Proliferation to Improve Recovery From Radiation-Induced Intestinal Damage

    SciTech Connect

    Nakayama, Fumiaki; Hagiwara, Akiko; Umeda, Sachiko; Asada, Masahiro; Goto, Megumi; Oki, Junko; Suzuki, Masashi; Imamura, Toru; Akashi, Makoto

    2010-11-01

    Purpose: A fibroblast growth factor (FGF) 1-FGF2 chimera (FGFC) was created previously and showed greater structural stability than FGF1. This chimera was capable of stimulating epithelial cell proliferation much more strongly than FGF1 or FGF2 even without heparin. Therefore FGFC was expected to have greater biologic activity in vivo. This study evaluated and compared the protective activity of FGFC and FGF1 against radiation-induced intestinal injuries. Methods and Materials: We administered FGFC and FGF1 intraperitoneally to BALB/c mice 24 h before or after total-body irradiation (TBI). The numbers of surviving crypts were determined 3.5 days after TBI with gamma rays at doses ranging from 8 to 12 Gy. Results: The effect of FGFC was equal to or slightly superior to FGF1 with heparin. However, FGFC was significantly more effective in promoting crypt survival than FGF1 (p < 0.01) when 10 {mu}g of each FGF was administered without heparin before irradiation. In addition, FGFC was significantly more effective at promoting crypt survival (p < 0.05) than FGF1 even when administered without heparin at 24 h after TBI at 10, 11, or 12 Gy. We found that FGFC post treatment significantly promoted 5-bromo-2'-deoxyuridine incorporation into crypts and increased crypt depth, resulting in more epithelial differentiation. However, the number of apoptotic cells in FGFC-treated mice decreased to almost the same level as that in FGF1-treated mice. Conclusions: These findings suggest that FGFC strongly enhanced radioprotection with the induction of epithelial proliferation without exogenous heparin after irradiation and is useful in clinical applications for both the prevention and post treatment of radiation injuries.

  20. Comparative study of radiation-induced damage in magnesium aluminate spinel by means of IL, CL and RBS/C techniques

    NASA Astrophysics Data System (ADS)

    Jozwik, Iwona; Jagielski, Jacek; Gawlik, Grzegorz; Jozwik, Przemyslaw; Ratajczak, Renata; Panczer, Gerard; Moncoffre, Nathalie; Wajler, Anna; Sidorowicz, Agata; Thomé, Lionel

    2016-03-01

    A comparative study of damage accumulation in magnesium aluminate spinel (MgAl2O4) has been conducted using ionoluminescence (IL), cathodoluminescence (CL) and Rutherford Backscattering Spectrometry/channeling (RBS/C) techniques. MgAl2O4 single crystal and polycrystalline samples were irradiated with 320 keV Ar+ ions at fluencies ranging from 1 × 1012 to 2 × 1016 cm-2 in order to create various levels of radiation damage. RBS/C measurements provided quantitative data about damage concentration in the samples. These values were then compared to the luminescence measurements. The results obtained by IL and RBS/C methods demonstrate a two-step character of damage buildup process. The CL data analysis points to the three-step damage accumulation mechanism involving the first defect transformation at fluencies of about 1013 cm-2 and second at about 1015 cm-2. The rate of changes resulting from the formation of nonluminescent recombination centers is clearly nonlinear and cannot be described in terms of continuous accumulation of point defects. Both, IL and CL techniques, appear as new, complementary tools bringing new possibilities in the damage accumulation studies in single- and polycrystalline materials.

  1. Comparative study of radiation-induced damage in magnesium aluminate spinel by means of IL, CL and RBS/C techniques

    NASA Astrophysics Data System (ADS)

    Jozwik, Iwona; Jagielski, Jacek; Gawlik, Grzegorz; Jozwik, Przemyslaw; Ratajczak, Renata; Panczer, Gerard; Moncoffre, Nathalie; Wajler, Anna; Sidorowicz, Agata; Thomé, Lionel

    2016-06-01

    A comparative study of damage accumulation in magnesium aluminate spinel (MgAl2O4) has been conducted using ionoluminescence (IL), cathodoluminescence (CL) and Rutherford Backscattering Spectrometry/channeling (RBS/C) techniques. MgAl2O4 single crystal and polycrystalline samples were irradiated with 320 keV Ar+ ions at fluencies ranging from 1 × 1012 to 2 × 1016 cm-2 in order to create various levels of radiation damage. RBS/C measurements provided quantitative data about damage concentration in the samples. These values were then compared to the luminescence measurements. The results obtained by IL and RBS/C methods demonstrate a two-step character of damage buildup process. The CL data analysis points to the three-step damage accumulation mechanism involving the first defect transformation at fluencies of about 1013 cm-2 and second at about 1015 cm-2. The rate of changes resulting from the formation of nonluminescent recombination centers is clearly nonlinear and cannot be described in terms of continuous accumulation of point defects. Both, IL and CL techniques, appear as new, complementary tools bringing new possibilities in the damage accumulation studies in single- and polycrystalline materials.

  2. Overexpression of glutamate–cysteine ligase protects human COV434 granulosa tumour cells against oxidative and γ-radiation-induced cell death

    PubMed Central

    Cortes-Wanstreet, Mabel M.; Giedzinski, Erich; Limoli, Charles L.; Luderer, Ulrike

    2009-01-01

    Ionizing radiation is toxic to ovarian follicles and can cause infertility. Generation of reactive oxygen species (ROS) has been implicated in the toxicity of ionizing radiation in several cell types. We have shown that depletion of the antioxidant glutathione (GSH) sensitizes follicles and granulosa cells to toxicant-induced apoptosis and that supplementation of GSH is protective. The rate-limiting reaction in GSH biosynthesis is catalysed by glutamate–cysteine ligase (GCL), which consists of a catalytic subunit (GCLC) and a regulatory subunit (GCLM). We hypothesized that overexpression of Gclc or Gclm to increase GSH synthesis would protect granulosa cells against oxidant- and radiation-induced cell death. The COV434 line of human granulosa tumour cells was stably transfected with vectors designed for the constitutive expression of Gclc, Gclm, both Gclc and Gclm or empty vector. GCL protein and enzymatic activity and total GSH levels were significantly increased in the GCL subunit-transfected cells. GCL-transfected cells were resistant to cell killing by treatment with hydrogen peroxide compared to control cells. Cell viability declined less in all the GCL subunit-transfected cell lines 1–8 h after 0.5 mM hydrogen peroxide treatment than in control cells. We next examined the effects of GCL overexpression on responses to ionizing radiation. ROS were measured using a redox-sensitive fluorogenic dye in cells irradiated with 0, 1 or 5 Gy of γ-rays. There was a dose-dependent increase in ROS within 30 min in all cell lines, an effect that was significantly attenuated in Gcl-transfected cells. Apoptosis, assessed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelling and activated caspase-3 immunoblotting, was significantly decreased in irradiated Gclc-transfected cells compared to irradiated control cells. Suppression of GSH synthesis in Gclc-transfected cells reversed resistance to radiation. These findings show that

  3. [Quantification of radiation-induced genetic risk].

    PubMed

    Ehling, U H

    1987-05-01

    Associated with technical advances of our civilization is a radiation- and chemically-induced increase in the germ cell mutation rate in man. This would result in an increase in the frequency of genetic diseases and would be detrimental to future generations. It is the duty of our generation to keep this risk as low as possible. The estimation of the radiation-induced genetic risk of human populations is based on the extrapolation of results from animal experiments. Radiation-induced mutations are stochastic events. The probability of the event depends on the dose; the degree of the damage does not. The different methods to estimate the radiation-induced genetic risk will be discussed. The accuracy of the predicted results will be evaluated by a comparison with the observed incidence of dominant mutations in offspring born to radiation exposed survivors of the Hiroshima and Nagasaki atomic bombings. These methods will be used to predict the genetic damage from the fallout of the reactor accident at Chernobyl. For the exposure dose we used the upper limits of the mean effective life time equivalent dose from the fallout values in the Munich region. According to the direct method for the risk estimation we will expect for each 100 to 500 spontaneous dominant mutations one radiation-induced mutation in the first generation. With the indirect method we estimate a ratio of 100 dominant spontaneous mutations to one radiation-induced dominant mutation. The possibilities and the limitations of the different methods to estimate the genetic risk will be discussed. The discrepancy between the high safety standards for radiation protection and the low level of knowledge for the toxicological evaluation of chemical mutagens will be emphasized. PMID:3589954

  4. Sperm DNA oxidative damage and DNA adducts.

    PubMed

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-12-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps=0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps=0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps=0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on sperm

  5. Silibinin Inhibits Ultraviolet B Radiation-Induced DNA-Damage and Apoptosis by Enhancing Interleukin-12 Expression in JB6 Cells and SKH-1 Hairless Mouse Skin

    PubMed Central

    Narayanapillai, Sreekanth; Agarwal, Chapla; Deep, Gagan; Agarwal, Rajesh

    2013-01-01

    Recent studies have demonstrated silibinin efficacy against ultraviolet B (UVB)-induced skin carcinogenesis via different mechanisms in cell lines and animal models; however, its role in regulating interleukin-12 (IL-12), an immunomodulatory cytokine that reduces UVB-induced DNA damage and apoptosis, is not known. Here, we report that UVB irradiation causes caspase 3 and PARP cleavage and apoptosis, and addition of recombinant IL-12 or silibinin immediately after UVB significantly protects UVB-induced apoptosis in JB6 cells. IL-12 antibody-mediated blocking of IL-12 activity compromised the protective effects of both IL-12 and silibinin. Both silibinin and IL-12 also accelerated the repair of UVB-caused cyclobutane-pyrimidine dimers (CPDs) in JB6 cells. Additional studies confirmed that indeed silibinin causes a significant increase in IL-12 levels in UVB-irradiated JB6 cells as well as in mouse skin epidermis, and that similar to cell-culture findings, silibinin topical application immediately after UVB exposure causes a strong protection against UVB-induced TUNEL positive cells in epidermis possibly through a significantly accelerated repair of UVB-caused CPDs. Together, these findings for the first time provide an important insight regarding the pharmacological mechanism wherein silibinin induces endogenous IL-12 in its efficacy against UVB-caused skin damages. In view of the fact that an enhanced endogenous IL-12 level could effectively remove UVB-caused DNA damage and associated skin cancer, our findings suggest that the use of silibinin in UVB-damaged human skin would also be a practical and translational strategy to manage solar radiation-caused skin damages as well as skin cancer. PMID:23359305

  6. Amifostine alleviates radiation-induced lethal small bowel damage via promotion of 14-3-3σ-mediated nuclear p53 accumulation.

    PubMed

    Huang, Eng-Yen; Wang, Feng-Sheng; Chen, Yu-Min; Chen, Yi-Fan; Wang, Chung-Chi; Lin, I-Hui; Huang, Yu-Jie; Yang, Kuender D

    2014-10-30

    Amifostine (AM) is a radioprotector that scavenges free radicals and is used in patients undergoing radiotherapy. p53 has long been implicated in cell cycle arrest for cellular repair after radiation exposure. We therefore investigated the protective p53-dependent mechanism of AM on small bowel damage after lethal whole-abdominal irradiation (WAI). AM increased both the survival rate of rats and crypt survival following lethal 18 Gy WAI. The p53 inhibitor PFT-α compromised AM-mediated effects when administered prior to AM administration. AM significantly increased clonogenic survival in IEC-6 cells expressing wild type p53 but not in p53 knockdown cells. AM significantly increased p53 nuclear accumulation and p53 tetramer expression before irradiation through the inhibition of p53 degradation. AM inhibited p53 interactions with MDM2 but enhanced p53 interactions with 14-3-3σ. Knockdown of 14-3-3σ also compromised the effect of AM on clonogenic survival and p53 nuclear accumulation in IEC-6 cells. For the first time, our data reveal that AM alleviates lethal small bowel damage through the induction of 14-3-3σ and subsequent accumulation of p53. Enhancement of the p53/14-3-3σ interaction results in p53 tetramerization in the nucleus that rescues lethal small bowel damage. PMID:25230151

  7. [Radiation-induced cancers].

    PubMed

    Dutrillaux, B

    1998-01-01

    The induction of malignant diseases is one of the most concerning late effects of ionising radiation. A large amount of information has been collected form atomic bomb survivors, patients after therapeutic irradiation, occupational follow-up and accidentally exposed populations. Major uncertainties persist in the (very) low dose range i.e., population and workers radioprotection. A review of the biological mechanisms leading to cancer strongly suggests that the vast majority of radiation-induced malignancies arise as a consequence of recessive mutations of tumour-suppressor genes. These mutations can be unveiled by ageing, this process being possibly furthered by constitutional or acquired genomic instability. The individual risk is likely to be very low, probably because of the usual dose level. However, the magnitude of medical exposure and the reliance of our societies on nuclear industry are so high that irreproachable decision-making processes and standards for practice are inescapable. PMID:9868399

  8. Radiation-Induced Bioradicals

    NASA Astrophysics Data System (ADS)

    Lahorte, Philippe; Mondelaers, Wim

    This chapter represents the second part of a review in which the production and application of radiation-induced radicals in biological matter are discussed. In part one the general aspects of the four stages (physical, physicochemical, chemical and biological) of interaction of radiation with matter in general and biological matter in particular, were discussed. Here an overview is presented of modem technologies and theoretical methods available for studying these radiation effects. The relevance is highlighted of electron paramagnetic resonance spectroscopy and quantum chemical calculations with respect to obtaining structural information on bioradicals, and a survey is given of the research studies in this field. We also discuss some basic aspects of modem accelerator technologies which can be used for creating radicals and we conclude with an overview of applications of radiation processing in biology and related fields such as biomedical and environmental engineering, food technology, medicine and pharmacy.

  9. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    SciTech Connect

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    2014-05-28

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[18F] fluoro-2-deoxy-d-glucose (18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected with a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation

  10. High-Temperature Oxide Regrowth on Mechanically-Damaged Surfaces

    SciTech Connect

    Blau, Peter Julian; Lowe, Tracie M

    2008-01-01

    Here we report the effects of mechanical damage from a sharp stylus on the regrowth of oxide layers on a Ni-based superalloy known as Pyromet 80A . It was found that the oxide that reformed on the damaged portion of a pre-oxidized surface differed from that which formed on undamaged areas after the equal exposures to elevated temperature in air. These findings have broad implications for modeling the processes of material degradation in applications such as exhaust valves in internal combustion engines because they imply that static oxidation data for candidate materials may not adequately reflect their reaction to operating environments that involve both mechanical contact and oxidation.

  11. Protective effects of black tea extract against oxidative DNA damage in human lymphocytes.

    PubMed

    Ježovičová, Miriam; Koňariková, Katarína; Ďuračková, Zdeňka; Keresteš, Ján; Králik, Gabriel; Žitňanová, Ingrid

    2016-02-01

    The aim of the present study was to examine the genoprotective and radioprotective effects of black tea extract (BTE) against the induction of single strand DNA breaks in human lymphocytes subjected to hydrogen peroxide (H2O2) or gamma-rays (2 Gy dose). Lymphocytes were incubated with or without different concentrations of BTE (0.005-500 µg/ml) for 30 min, followed by treatment with or without H2O2 (0.088 µmol/l) for 5 min. To examine the radioprotective effect of BTE, the lymphocytes were incubated with or without BTE for 30 and 60 min prior to and following in vitro irradiation. Oxidative damage to DNA was monitored using a comet assay. BTE at lower concentrations prevented H2O2-induced DNA damage. An increase in BTE concentrations resulted in increased formation of single strand DNA breaks. BTE also exerted significant protective effects against gamma radiation-induced total DNA damage in healthy lymphocytes during their 30 or 60 min incubation with BTE prior to or following irradiation. Therefore, the protective effect of BTE against irradiation was time-dependent. The results contribute to the research on potential beneficial effects of natural compounds, such as BTE, in cancer and its protective effects of normal tissue during radiation therapy. PMID:26718244

  12. Oxidative damage to human plasma proteins by ozone.

    PubMed

    Cross, C E; Reznick, A Z; Packer, L; Davis, P A; Suzuki, Y J; Halliwell, B

    1992-01-01

    Exposure of human plasma to ozone produces oxidative protein damage, measured as protein carbonyl formation. Isolated human albumin or creatine phosphokinase are oxidized much faster than are total proteins. Consideration must be given to proteins as targets of oxidative injury by ozone in vivo. PMID:1568641

  13. Nicotinamide enhances repair of arsenic and ultraviolet radiation-induced DNA damage in HaCaT keratinocytes and ex vivo human skin.

    PubMed

    Thompson, Benjamin C; Halliday, Gary M; Damian, Diona L

    2015-01-01

    Arsenic-induced skin cancer is a significant global health burden. In areas with arsenic contamination of water sources, such as China, Pakistan, Myanmar, Cambodia and especially Bangladesh and West Bengal, large populations are at risk of arsenic-induced skin cancer. Arsenic acts as a co-carcinogen with ultraviolet (UV) radiation and affects DNA damage and repair. Nicotinamide (vitamin B3) reduces premalignant keratoses in sun-damaged skin, likely by prevention of UV-induced cellular energy depletion and enhancement of DNA repair. We investigated whether nicotinamide modifies DNA repair following exposure to UV radiation and sodium arsenite. HaCaT keratinocytes and ex vivo human skin were exposed to 2μM sodium arsenite and low dose (2J/cm2) solar-simulated UV, with and without nicotinamide supplementation. DNA photolesions in the form of 8-oxo-7,8-dihydro-2'-deoxyguanosine and cyclobutane pyrimidine dimers were detected by immunofluorescence. Arsenic exposure significantly increased levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine in irradiated cells. Nicotinamide reduced both types of photolesions in HaCaT keratinocytes and in ex vivo human skin, likely by enhancing DNA repair. These results demonstrate a reduction of two different photolesions over time in two different models in UV and arsenic exposed cells. Nicotinamide is a nontoxic, inexpensive agent with potential for chemoprevention of arsenic induced skin cancer. PMID:25658450

  14. Radiation Induced Genomic Instability

    SciTech Connect

    Morgan, William F.

    2011-03-01

    Radiation induced genomic instability can be observed in the progeny of irradiated cells multiple generations after irradiation of parental cells. The phenotype is well established both in vivo (Morgan 2003) and in vitro (Morgan 2003), and may be critical in radiation carcinogenesis (Little 2000, Huang et al. 2003). Instability can be induced by both the deposition of energy in irradiated cells as well as by signals transmitted by irradiated (targeted) cells to non-irradiated (non-targeted) cells (Kadhim et al. 1992, Lorimore et al. 1998). Thus both targeted and non-targeted cells can pass on the legacy of radiation to their progeny. However the radiation induced events and cellular processes that respond to both targeted and non-targeted radiation effects that lead to the unstable phenotype remain elusive. The cell system we have used to study radiation induced genomic instability utilizes human hamster GM10115 cells. These cells have a single copy of human chromosome 4 in a background of hamster chromosomes. Instability is evaluated in the clonal progeny of irradiated cells and a clone is considered unstable if it contains three or more metaphase sub-populations involving unique rearrangements of the human chromosome (Marder and Morgan 1993). Many of these unstable clones have been maintained in culture for many years and have been extensively characterized. As initially described by Clutton et al., (Clutton et al. 1996) many of our unstable clones exhibit persistently elevated levels of reactive oxygen species (Limoli et al. 2003), which appear to be due dysfunctional mitochondria (Kim et al. 2006, Kim et al. 2006). Interestingly, but perhaps not surprisingly, our unstable clones do not demonstrate a “mutator phenotype” (Limoli et al. 1997), but they do continue to rearrange their genomes for many years. The limiting factor with this system is the target – the human chromosome. While some clones demonstrate amplification of this chromosome and thus lend

  15. Coupling of Geant4-DNA physics models into the GATE Monte Carlo platform: Evaluation of radiation-induced damage for clinical and preclinical radiation therapy beams

    NASA Astrophysics Data System (ADS)

    Pham, Q. T.; Anne, A.; Bony, M.; Delage, E.; Donnarieix, D.; Dufaure, A.; Gautier, M.; Lee, S. B.; Micheau, P.; Montarou, G.; Perrot, Y.; Shin, J. I.; Incerti, S.; Maigne, L.

    2015-06-01

    The GATE Monte Carlo simulation platform based on the Geant4 toolkit is in constant improvement for dosimetric calculations. In this paper, we present the integration of Geant4-DNA processes into the GATE 7.0 platform in the objective to perform multi-scale simulations (from macroscopic to nanometer scale). We simulated three types of clinical and preclinical beams: a 6 MeV electron clinical beam, a X-ray irradiator beam and a clinical proton beam for which we validated depth dose distributions against measurements in water. Frequencies of energy depositions and DNA damage were evaluated using a specific algorithm in charge of allocating energy depositions to atoms constituting DNA molecules represented by their PDB (Protein Data Bank) description.

  16. Postmenopausal loss of Ra acquired in adolescence or young adulthood: quantitative relationship to radiation-induced skeletal damage and dosimetric implications

    SciTech Connect

    Keane, A.T.; Rundo, J.; Essling, M.A.

    1988-05-01

    From the results of serial measurements of body /sup 226/Ra activity in 13 former luminous dial workers 30-60 y after relatively brief periods of intake of luminous compounds in adolescence or young adulthood, we determined the postmenopausal rate of elimination of Ra in percent of contemporary body Ra content per year. This rate was negatively correlated with the reduced x-ray score, a measure of radiation osteonecrosis observed radiographically in the 13 subjects (r = -0.85, P less than 0.001). The clearance rates of subjects retaining low Ra activity were greater than predicted by retention models. We conclude that for those members of the Ra-exposed population under study for health effects at our institution who sustained the lesser degrees of macroscopic skeletal damage, present estimates of skeletal absorbed dose are systematically low, by at most a factor of 2.

  17. Postmenopausal loss of Ra acquired in adolescence or young adulthood: quantitative relationship to radiation-induced skeletal damage and dosimetric implications.

    PubMed

    Keane, A T; Rundo, J; Essling, M A

    1988-05-01

    From the results of serial measurements of body 226Ra activity in 13 former luminous dial workers 30-60 y after relatively brief periods of intake of luminous compounds in adolescence or young adulthood, we determined the postmenopausal rate of elimination of Ra in percent of contemporary body Ra content per year. This rate was negatively correlated with the "reduced x-ray score," a measure of radiation osteonecrosis observed radiographically in the 13 subjects (r = -0.85, P less than 0.001). The clearance rates of subjects retaining low Ra activity were greater than predicted by retention models. We conclude that for those members of the Ra-exposed population under study for health effects at our institution who sustained the lesser degrees of macroscopic skeletal damage, present estimates of skeletal absorbed dose are systematically low, by at most a factor of 2. PMID:3360604

  18. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, July 1, 1991--June 1, 1992

    SciTech Connect

    1992-12-31

    The primary goal of this program is to achieve a more thorough understanding of the mechanisms employed by higher organisms to resist DNA damage. Concurrently this effort contributes to an improved understanding of the processes of mutagenesis and carcinogenesis in higher eukaryotes. Drosophila was initially chosen as a model organism for investigating functions that control mutagen resistance because of the ease with which one can isolate and characterize mutagen-sensitive mutants in this multicellular organism. This laboratory then went on to investigate the DNA repair defects of such mutants while others performed complementary genetic and cytogenetic studies which relate DNA repair processes to mutagenesis and chromosome stability. Currently, recombinant DNA technology is being employed to investigate the mechanisms of mutagen resistance defined by those mutants. The following two studies experienced the most significant progress during the past year: cloning and genetic characterization of the mus209 gene, and genetic and molecular analysis of the mus308 gene.

  19. Nrf2 facilitates repair of radiation induced DNA damage through homologous recombination repair pathway in a ROS independent manner in cancer cells.

    PubMed

    Jayakumar, Sundarraj; Pal, Debojyoti; Sandur, Santosh K

    2015-09-01

    Nrf2 is a redox sensitive transcription factor that is involved in the co-ordinated transcription of genes involved in redox homeostasis. But the role of Nrf2 in DNA repair is not investigated in detail. We have employed A549 and MCF7 cells to study the role of Nrf2 on DNA repair by inhibiting Nrf2 using all-trans retinoic acid (ATRA) or by knock down approach prior to radiation exposure (4 Gy). DNA damage and repair analysis was studied by γH2AX foci formation and comet assay. Results suggested that the inhibition of Nrf2 in A549 or MCF7 cells led to significant slowdown in DNA repair as compared to respective radiation controls. The persistence of residual DNA damage even in the presence of free radical scavenger N-acetyl cysteine, suggested that the influence of Nrf2 on DNA repair was not linked to its antioxidant functions. Further, its influence on non-homologous end joining repair pathway was studied by inhibiting both Nrf2 and DNA-PK together. This led to synergistic reduction of survival fraction, indicating that Nrf2 may not be influencing the NHEJ pathway. To investigate the role of homologous recombination repair (HR) pathway, RAD51 foci formation was monitored. There was a significant reduction in the foci formation in cells treated with ATRA or shRNA against Nrf2 as compared to their respective radiation controls. Further, Nrf2 inhibition led to significant reduction in mRNA levels of RAD51. BLAST analysis was also performed on upstream regions of DNA repair genes to identify antioxidant response element and found that many repair genes that are involved in HR pathway may be regulated by Nrf2. Together, these results suggest the involvement of Nrf2 in DNA repair, a hitherto unknown function of Nrf2, putatively through its influence on HR pathway. PMID:26133502

  20. Management of radiation-induced urethral strictures

    PubMed Central

    Hofer, Matthias D.

    2015-01-01

    Radiation as a treatment option for prostate cancer has been chosen by many patients. One of the side effects encountered are radiation-induced urethral strictures which occur in up to 11% of patients. Radiation damage has often left the irradiated field fibrotic and with poor vascularization which make these strictures a challenging entity to treat. The mainstay of urologic management remains an urethroplasty procedure for which several approaches exist with variable optimal indication. Excision and primary anastomoses are ideal for shorter bulbar strictures that comprise the majority of radiation-induced urethral strictures. One advantage of this technique is that it does not require tissue transfers and success rates of 70-95% have consistently been reported. Substitution urethroplasty using remote graft tissue such as buccal mucosa are indicated if the length of the stricture precludes a tension-free primary anastomosis. Despite the challenge of graft survival in radiation-damaged and poorly vascularized recipient tissue, up to 83% of patients have been treated successfully although the numbers described in the literature are small. The most extensive repairs involve the use of tissue flaps, for example gracilis muscle, which may be required if the involved periurethral tissue is unable to provide sufficient vascular support for a post-operative urethral healing process. In summary, radiation-induced urethral strictures are a challenging entity. Most strictures are amenable to excision and primary anastomosis (EPA) with encouraging success rates but substitution urethroplasty may be indicated when extensive repair is needed. PMID:26816812

  1. Role of oxidative damage in toxicity of particulates.

    PubMed

    Møller, Peter; Jacobsen, Nicklas R; Folkmann, Janne K; Danielsen, Pernille H; Mikkelsen, Lone; Hemmingsen, Jette G; Vesterdal, Lise K; Forchhammer, Lykke; Wallin, Håkan; Loft, Steffen

    2010-01-01

    Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates. PMID:19886744

  2. Bile acids in radiation-induced diarrhea

    SciTech Connect

    Arlow, F.L.; Dekovich, A.A.; Priest, R.J.; Beher, W.T.

    1987-10-01

    Radiation-induced bowel disease manifested by debilitating diarrhea is an unfortunate consequence of therapeutic irradiation for pelvic malignancies. Although the mechanism for this diarrhea is not well understood, many believe it is the result of damage to small bowel mucosa and subsequent bile acid malabsorption. Excess amounts of bile acids, especially the dihydroxy components, are known to induce water and electrolyte secretion and increase bowel motility. We have directly measured individual and total bile acids in the stool samples of 11 patients with radiation-induced diarrhea and have found bile acids elevated two to six times normal in eight of them. Our patients with diarrhea and increased bile acids in their stools had prompt improvement when given cholestyramine. They had fewer stools and returned to a more normal life-style.

  3. [Studies of the repair of radiation-induced genetic damage in Drosophila]. Annual progress report, October 1, 1988--June 1, 1989

    SciTech Connect

    1989-12-31

    The primary goal of this study is to achieve a more thorough understanding of the mechanisms employed by higher organisms to repair DNA damage induced by both ionizing and nonionizing radiation. These studies are also contributing to an improved understanding of the processes of mutagenesis and carcinogenesis in higher eukaryotes. The studies employ Drosophila as a model organism for investigating repair functions that are common to all higher eukaryotes. Drosophila was chosen in the early phases of this study primarily because of the ease with which one can isolate and characterize repair-deficient mutants in a metazoan organism. The laboratory has gone on to investigate the metabolic defects of such mutants while others have performed complementary genetic and cytogenetic studies which relate DNA repair processes to mutagenesis and chromosome stability. The repair studies have exploited the capacity to introduce mutant Drosophila cells into tissue culture and thereby compare repair defects directly with those of homologous human disorders. Researchers are currently employing recombinant DNA technology to investigate the mechanisms of the DNA repair pathways defined by those mutants.

  4. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases.

    PubMed

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-08-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  5. Ionizing Radiation-Induced Endothelial Cell Senescence and Cardiovascular Diseases

    PubMed Central

    Wang, Yingying; Boerma, Marjan; Zhou, Daohong

    2016-01-01

    Exposure to ionizing radiation induces not only apoptosis but also senescence. While the role of endothelial cell apoptosis in mediating radiation-induced acute tissue injury has been extensively studied, little is known about the role of endothelial cell senescence in the pathogenesis of radiation-induced late effects. Senescent endothelial cells exhibit decreased production of nitric oxide and expression of thrombomodulin, increased expression of adhesion molecules, elevated production of reactive oxygen species and inflammatory cytokines and an inability to proliferate and form capillary-like structures in vitro. These findings suggest that endothelial cell senescence can lead to endothelial dysfunction by dysregulation of vasodilation and hemostasis, induction of oxidative stress and inflammation and inhibition of angiogenesis, which can potentially contribute to radiation-induced late effects such as cardiovascular diseases (CVDs). In this article, we discuss the mechanisms by which radiation induces endothelial cell senescence, the roles of endothelial cell senescence in radiation-induced CVDs and potential strategies to prevent, mitigate and treat radiation-induced CVDs by targeting senescent endothelial cells. PMID:27387862

  6. Silencing expression of the catalytic subunit of DNA-dependent protein kinase by small interfering RNA sensitizes human cells for radiation-induced chromosome damage, cell killing, and mutation

    NASA Technical Reports Server (NTRS)

    Peng, Yuanlin; Zhang, Qinming; Nagasawa, Hatsumi; Okayasu, Ryuichi; Liber, Howard L.; Bedford, Joel S.

    2002-01-01

    Targeted gene silencing in mammalian cells by RNA interference (RNAi) using small interfering RNAs (siRNAs) was recently described by Elbashir et al. (S. M. Elbashir et al., Nature (Lond.), 411: 494-498, 2001). We have used this methodology in several human cell strains to reduce expression of the Prkdc (DNA-PKcs) gene coding for the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) that is involved in the nonhomologous end joining of DNA double-strand breaks. We have also demonstrated a radiosensitization for several phenotypic endpoints of radiation damage. In low-passage normal human fibroblasts, siRNA knock-down of DNA-PKcs resulted in a reduced capacity for restitution of radiation-induced interphase chromosome breaks as measured by premature chromosome condensation, an increased yield of acentric chromosome fragments at the first postirradiation mitosis, and an increased radiosensitivity for cell killing. For three strains of related human lymphoblasts, DNA-PKcs-targeted siRNA transfection resulted in little or no increase in radiosensitivity with respect to cell killing, a 1.5-fold decrease in induced mutant yield in TK6- and p53-null NH32 cells, but about a 2-fold increase in induced mutant yield in p53-mutant WTK1 cells at both the hypoxanthine quanine phosphoribosyl transferase (hprt) and the thymidine kinase loci.

  7. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance.

    PubMed

    Patwardhan, R S; Sharma, D; Checker, R; Thoh, M; Sandur, S K

    2015-10-01

    Ionizing radiation (IR)-induced oxidative stress in tumor cells is effectively managed by constitutive and inducible antioxidant defense systems. This study was initiated to understand the relative contribution of different redox regulatory systems in determining the tumor radio-resistance. In this study, human T-cell lymphoma (Jurkat) cells were exposed to IR (4 Gy) and monitored for the spatio-temporal changes in cellular redox regulatory parameters. We monitored the changes in the levels of reactive oxygen species (ROS) (total, mitochondrial, primary, and secondary), thiols (total, surface, and intracellular), GSH/GSSG ratio, antioxidant enzyme activity viz. thioredoxin (Trx), Trx reductase (TrxR), glutathione peroxidase, and glutathione reductase with respect to time. We have also measured protein glutathionylation. We observed that tumor cells mount a biphasic response after IR exposure which can be divided into early (0-6 h) and late (16-48 h) responses in terms of changes in cellular redox parameters. During early response, constitutively active GSH and Trx systems respond to restore cellular redox balance to pre-exposure levels and help in activation of redox-sensitive transcription factor Nrf-2. During late response, increase in the levels of antioxidants GSH and Trx rescue cells against IR-mediated damage. We observed that disruption of either glutathione or thioredoxin metabolism led to partial impairment of ability of cells to survive against IR-induced damage. But simultaneous disruption of both the pathways significantly increased radio sensitivity of Jurkat cells. This highlighted the importance of these two antioxidant pathways in regulating redox homeostasis under conditions of IR-induced oxidative stress. PMID:26021764

  8. NAD-dependent malate dehydrogenase protects against oxidative damage in Escherichia coli K-12 through the action of oxaloacetate.

    PubMed

    Oh, Tae Jeong; Kim, In Gyu; Park, Seon Young; Kim, Kug Chan; Shim, Hye Won

    2002-01-01

    Reactive oxygen species including hydrogen peroxide (H(2)O(2)) and hydroxyl radical (OH) can be generated by ionizing radiation and has the potential to induce diseases. We provide the evidence that NAD-dependent malate dehydrogenase (MDH) is involved in the antioxidant role in preventing H(2)O(2) or γ-radiation-induced damage in Escherichia coli through the action of oxaloacetate. The E. colimdh mutant strain defective in MDH activity was more sensitive to H(2)O(2) or γ-radiation than was the wild type strain, when challenged in the exponential growth phase. The mdh mutant cells pretreated with oxaloacetate (2.5 mM), a product of NAD-dependent MDH activity, prior to H(2)O(2) treatment or γ-irradiation are resistant to H(2)O(2) or γ-radiation-induced damage, so cell survivability is restored to similar levels with the wild type. The SOS induction of umu'-'lacZ fusion gene by H(2)O(2) is significantly repressed by pretreatment of oxaloacetate in a dose-dependent way. These results indicate that oxaloacetate effectively protects E. coli cells against damage caused by oxidative stress. Oxaloacetate strongly prevented the DNA strand breaks by OH in a metal-catalyzed oxidation (MCO) system that generated H(2)O(2) as a mediator. By contrast, the prevention of DNA damage by oxaloacetate in an γ-irradiation system that directly generates OH from H(2)O in vitro was far less than that in an MCO system. Our results demonstrated that oxaloacetate, metabolite of NAD-dependent MDH action, plays a role as an antioxidant, possibly by scavenging H(2)O(2). PMID:21782581

  9. The study of radiation-induced damage and remodeling of extracellular matrix of rectum and bladder by second-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Kochueva, Marina V.; Sergeeva, Ekaterina A.; Ignatjeva, Natalya Yu.; Zakharkina, Olga L.; Kuznetzov, Sergej S.; Kiseleva, Elena B.; Babak, Ksenia V.; Kamensky, Vladislav A.; Maslennikova, Anna V.

    2014-02-01

    Adverse events in normal tissues after irradiation of malignant tumors are of great importance in modern radiation oncology. Second harmonic generation (SHG) microscopy allows observe the structure of collagen fibers and bundles without additional staining. The study objective was evaluation the dose-time dependences of the structural changes occurring in collagen of rat rectum and bladder after gamma-irradiation. Animals were irradiated by a local field at single doses of 10 Gy and 40 Gy. The study of collagen state was carried out in a week and a month after radiation exposure. Paraffin-embedded material was sectioned on the slices 10 mkm thick and SHG-imaging was performed by LSM 510 Meta (Carl Zeiss, Germany). Excitation was implemented with a pulsed (100-fs) titanium-sapphire laser at a wavelength of 800 nm and a pulse repetition frequency of 80 MHz, registration was performed at two wavelengths: 362-415 nm according to collagen fluorescence and 512-576 nm according to myoglobin fluorescence. In a week after irradiation, sings of epithelial damage and edema of submucosal layer, more significant after the dose of 40 Gy were observed on LSM-images. The SHG signal decreased at this time reflecting the processes of collagen degradation independently either in bladder or in rectum. In a month after radiation the increase of size and number of collagen-bearing structures was observed, more essential after irradiation in a dose of 40 Gy. LSM microscopy with SHG allows evaluate changes of normal tissues after ionizing radiation and get information in addition to standard and special histological staining.

  10. Protein kinase C epsilon, which sensitizes skin to sun's UV radiation-induced cutaneous damage and development of squamous cell carcinomas, associates with Stat3.

    PubMed

    Aziz, Moammir H; Manoharan, Herbert T; Verma, Ajit K

    2007-02-01

    Chronic exposure to UV radiation (UVR) is the major etiologic factor in the development of human skin cancers including squamous cell carcinoma (SCC). We have shown that protein kinase C(epsilon) (PKC(epsilon)), a Ca(2+)-independent, phospholipid-dependent serine/threonine kinase, is an endogenous photosensitizer. PKC(epsilon) is among the six isoforms (alpha, delta, epsilon, eta, mu, and zeta) expressed in both mouse and human skin. PKC(epsilon) transgenic mice, which overexpress PKC(epsilon) in the basal epidermal cells and cells of the hair follicle, are highly sensitive to UVR-induced cutaneous damage and development of SCC. We now present that PKC(epsilon)-overexpressing, but not PKC(delta)-overexpressing, transgenic mice, when exposed to a single (4 kJ/m(2)) or repeated (four doses, 2 kJ/m(2)/dose, thrice weekly) UVR, emitted by Kodacel-filtered FS-40 sun lamps, elicit constitutive phosphorylation of signal transducers and activators of transcription 3 (Stat3) at both Tyr705 and Ser727 residues. UVR-induced phosphorylation of Stat3 accompanied increased expression of Stat3-regulated genes (c-myc, cyclin D1, cdc25A, and COX-2). In reciprocal immunoprecipitation/blotting experiments, phosphorylated Stat3 co-immunoprecipitated with PKC(epsilon). As observed in vivo using PKC(epsilon) knockout mice and in vitro in an immunocomplex kinase assay, PKC(epsilon) phosphorylated Stat3 at Ser727 residue. These results indicate for the first time that (a) PKC(epsilon) is a Stat3Ser727 kinase; (b) PKC(epsilon)-mediated phosphorylation of StatSer727 may be essential for transcriptional activity of Stat3; and (c) UVR-induced phosphorylation of Ser727 may be a key component of the mechanism by which PKC(epsilon) imparts sensitivity to UVR-induced development of SCC. PMID:17283176

  11. Metabolic activation of carcinogenic ethylbenzene leads to oxidative DNA damage.

    PubMed

    Midorikawa, Kaoru; Uchida, Takafumi; Okamoto, Yoshinori; Toda, Chitose; Sakai, Yoshie; Ueda, Koji; Hiraku, Yusuke; Murata, Mariko; Kawanishi, Shosuke; Kojima, Nakao

    2004-12-01

    Ethylbenzene is carcinogenic to rats and mice, while it has no mutagenic activity. We have investigated whether ethylbenzene undergoes metabolic activation, leading to DNA damage. Ethylbenzene was metabolized to 1-phenylethanol, acetophenone, 2-ethylphenol and 4-ethylphenol by rat liver microsomes. Furthermore, 2-ethylphenol and 4-ethylphenol were metabolically transformed to ring-dihydroxylated metabolites such as ethylhydroquinone and 4-ethylcatechol, respectively. Experiment with 32P-labeled DNA fragment revealed that both ethylhydroquinone and 4-ethylcatechol caused DNA damage in the presence of Cu(II). These dihydroxylated compounds also induced the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine in calf thymus DNA in the presence of Cu(II). Catalase, methional and Cu(I)-specific chelator, bathocuproine, significantly (P<0.05) inhibited oxidative DNA damage, whereas free hydroxyl radical scavenger and superoxide dismutase did not. These results suggest that Cu(I) and H2O2 produced via oxidation of ethylhydroquinone and 4-ethylcatechol are involved in oxidative DNA damage. Addition of an endogenous reductant NADH dramatically enhanced 4-ethylcatechol-induced oxidative DNA damage, whereas ethylhydroquinone-induced DNA damage was slightly enhanced. Enhancing effect of NADH on oxidative DNA damage by 4-ethylcatechol may be explained by assuming that reactive species are generated from the redox cycle. In conclusion, these active dihydroxylated metabolites would be involved in the mechanism of carcinogenesis by ethylbenzene. PMID:15560893

  12. Quercitrin protects skin from UVB-induced oxidative damage

    SciTech Connect

    Yin, Yuanqin; Li, Wenqi; Son, Young-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J.; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-06-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. - Highlights: • Oxidative stress plays a key role in UV-induced cell and tissue injuries. • Quercitrin decreases ROS generation and restores antioxidants irradiated by UVB. • Quercitrin reduces UVB-irradiated oxidative DNA damage, apoptosis, and inflammation. • Quercitrin functions as an antioxidant against UVB-induced skin injuries.

  13. Reducing systems protecting the bacterial cell envelope from oxidative damage.

    PubMed

    Arts, Isabelle S; Gennaris, Alexandra; Collet, Jean-François

    2015-06-22

    Exposure of cells to elevated levels of reactive oxygen species (ROS) damages DNA, membrane lipids and proteins, which can potentially lead to cell death. In proteins, the sulfur-containing residues cysteine and methionine are particularly sensitive to oxidation, forming sulfenic acids and methionine sulfoxides, respectively. The presence of protection mechanisms to scavenge ROS and repair damaged cellular components is therefore essential for cell survival. The bacterial cell envelope, which constitutes the first protection barrier from the extracellular environment, is particularly exposed to the oxidizing molecules generated by the host cells to kill invading microorganisms. Therefore, the presence of oxidative stress defense mechanisms in that compartment is crucial for cell survival. Here, we review recent findings that led to the identification of several reducing pathways protecting the cell envelope from oxidative damage. We focus in particular on the mechanisms that repair envelope proteins with oxidized cysteine and methionine residues and we discuss the major questions that remain to be solved. PMID:25957772

  14. Long-term consequences of radiation-induced bystander effects depend on radiation quality and dose and correlate with oxidative stress.

    PubMed

    Buonanno, Manuela; de Toledo, Sonia M; Pain, Debkumar; Azzam, Edouard I

    2011-04-01

    Widespread evidence indicates that exposure of cell populations to ionizing radiation results in significant biological changes in both the irradiated and nonirradiated bystander cells in the population. We investigated the role of radiation quality, or linear energy transfer (LET), and radiation dose in the propagation of stressful effects in the progeny of bystander cells. Confluent normal human cell cultures were exposed to low or high doses of 1GeV/u iron ions (LET ∼ 151 keV/µm), 600 MeV/u silicon ions (LET ∼ 51 keV/µm), or 1 GeV protons (LET ∼ 0.2 keV/µm). Within minutes after irradiation, the cells were trypsinized and co-cultured with nonirradiated cells for 5 h. During this time, irradiated and nonirradiated cells were grown on either side of an insert with 3-µm pores. Nonirradiated cells were then harvested and allowed to grow for 20 generations. Relative to controls, the progeny of bystander cells that were co-cultured with cells irradiated with iron or silicon ions, but not protons, exhibited reduced cloning efficiency and harbored higher levels of chromosomal damage, protein oxidation and lipid peroxidation. This correlated with decreased activity of antioxidant enzymes, inactivation of the redox-sensitive metabolic enzyme aconitase, and altered translation of proteins encoded by mitochondrial DNA. Together, the results demonstrate that the long-term consequences of the induced nontargeted effects greatly depend on the quality and dose of the radiation and involve persistent oxidative stress due to induced perturbations in oxidative metabolism. They are relevant to estimates of health risks from exposures to space radiation and the emergence of second malignancies after radiotherapy. PMID:21319986

  15. Long-Term Consequences of Radiation-Induced Bystander Effects Depend on Radiation Quality and Dose and Correlate with Oxidative Stress

    PubMed Central

    Buonanno, Manuela; de Toledo, Sonia M.; Pain, Debkumar; Azzam, Edouard I.

    2011-01-01

    Widespread evidence indicates that exposure of cell populations to ionizing radiation results in significant biological changes in both the irradiated and nonirradiated bystander cells in the population. We investigated the role of radiation quality, or linear energy transfer (LET), and radiation dose in the propagation of stressful effects in the progeny of bystander cells. Confluent normal human cell cultures were exposed to low or high doses of 1GeV/u iron ions (LET ~ 151 keV/μm), 600 MeV/u silicon ions (LET ~ 51 keV/μm), or 1 GeV protons (LET ~ 0.2 keV/μm). Within minutes after irradiation, the cells were trypsinized and co-cultured with nonirradiated cells for 5 h. During this time, irradiated and nonirradiated cells were grown on either side of an insert with 3-μm pores. Nonirradiated cells were then harvested and allowed to grow for 20 generations. Relative to controls, the progeny of bystander cells that were co-cultured with cells irradiated with iron or silicon ions, but not protons, exhibited reduced cloning efficiency and harbored higher levels of chromosomal damage, protein oxidation and lipid peroxidation. This correlated with decreased activity of antioxidant enzymes, inactivation of the redox-sensitive metabolic enzyme aconitase, and altered translation of proteins encoded by mitochondrial DNA. Together, the results demonstrate that the long-term consequences of the induced nontargeted effects greatly depend on the quality and dose of the radiation and involve persistent oxidative stress due to induced perturbations in oxidative metabolism. They are relevant to estimates of health risks from exposures to space radiation and the emergence of second malignancies after radiotherapy. PMID:21319986

  16. Radiation-induced brain injury: A review

    PubMed Central

    Greene-Schloesser, Dana; Robbins, Mike E.; Peiffer, Ann M.; Shaw, Edward G.; Wheeler, Kenneth T.; Chan, Michael D.

    2012-01-01

    Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their

  17. Antioxidant Nutrients and Oxidative DNA Damage in Humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Oxidative stress has been implicated in the pathogenesis of chronic diseases related to aging, such as cancer and cardiovascular disease. When the excessive amount of reactive oxygen species accumulates in vivo, it can cause oxidative damage to lipids, proteins and DNA. In particular DNA is one of...

  18. Punica granatum peel extract protects against ionizing radiation-induced enteritis and leukocyte apoptosis in rats.

    PubMed

    Toklu, Hale Z; Sehirli, Ozer; Ozyurt, Hazan; Mayadağli, A Alpaslan; Ekşioğlu-Demiralp, Emel; Cetinel, Sule; Sahin, Hülya; Yeğen, Berrak C; Ulusoylu Dumlu, Melek; Gökmen, Vural; Sener, Göksel

    2009-07-01

    Radiation-induced enteritis is a well-recognized sequel of therapeutic irradiation. Therefore we examined the radioprotective properties of Punica granatum peel extract (PPE) on the oxidative damage in the ileum. Rats were exposed to a single whole-body X-ray irradiation of 800 cGy. Irradiated rats were pretreated orally with saline or PPE (50 mg/kg/day) for 10 days before irradiation and the following 10 days, while control rats received saline or PPE but no irradiation. Then plasma and ileum samples were obtained. Irradiation caused a decrease in glutathione and total antioxidant capacity, which was accompanied by increases in malondialdehyde levels, myeloperoxidase activity, collagen content of the tissue with a concomitant increase 8-hydroxy-2'-deoxyguanosine (an index of oxidative DNA damage). Similarly, pro-inflammatory cytokines (TNF-alpha, IL-1beta and IL-6) and lactate dehydrogenase were elevated in irradiated groups as compared to control. PPE treatment reversed all these biochemical indices, as well as histopathological alterations induced by irradiation. Furthermore, flow cytometric measurements revealed that leukocyte apoptosis and cell death were increased in irradiated animals, while PPE reversed these effects. PPE supplementation reduced oxidative damage in the ileal tissues, probably by a mechanism that is associated with the decreased production of reactive oxygen metabolites and enhancement of antioxidant mechanisms. Adjuvant therapy of PPE may have a potential to support a successful radiotherapy by protecting against radiation-induced enteritis. PMID:19478462

  19. OXIDATIVE DNA DAMAGE IN DIESEL BUS MECHANICS

    EPA Science Inventory

    Rationale:

    Diesel exposure has been associated with adverse health effects, including susceptibility to asthma, allergy and cancer. Previous epidemiological studies demonstrated increased cancer incidence among workers exposed to diesel. This is likely due to oxid...

  20. Strong, damage tolerant oxide-fiber/oxide matrix composites

    NASA Astrophysics Data System (ADS)

    Bao, Yahua

    cationic polyelectrolytes to have a positive surface charge and then dipped into diluted, negatively-charged AlPO4 colloidal suspension (0.05M) at pH 7.5. Amorphous AlPO4 (crystallizes to tridymite- and cristobalite-forms at 1080°C) nano particles were coated on fibers layer-by-layer using an electrostatic attraction protocol. A uniform and smooth coating was formed which allowed fiber pullout from the matrix of a Nextel 720/alumina mini-composite hot-pressed at 1250°C/20MPa. Reaction-bonded mullite (RBM), with low formation temperature and sintering shrinkage was synthesized by incorporation of mixed-rare-earth-oxide (MREO) and mullite seeds. Pure mullite formed with 7.5wt% MREO at 1300°C. Introduction of 5wt% mullite seeds gave RBM with less than 3% shrinkage and 20% porosity. AlPO4-coated Nextel 720/RBM composites were successful fabricated by EPID and pressureless sintering at 1300°C. Significant fiber pullout occurred and the 4-point bend strength was around 170MPa (with 25-30vol% fibers) at room temperature and 1100°C and a Work-of-Fracture 7KJ/m2. At 1200°C, the composite failed in shear due to the MREO-based glassy phase in the matrix. AlPO4-coated Nextel 720 fiber/aluminosilicate (no MREO) showed damage tolerance at 1200°C with a bend strength 170MPa.

  1. Superoxide and the production of oxidative DNA damage.

    PubMed Central

    Keyer, K; Gort, A S; Imlay, J A

    1995-01-01

    The conventional model of oxidative DNA damage posits a role for superoxide (O2-) as a reductant for iron, which subsequently generates a hydroxyl radical by transferring the electron to H2O2. The hydroxyl radical then attacks DNA. Indeed, mutants of Escherichia coli that lack superoxide dismutase (SOD) were 10-fold more vulnerable to DNA oxidation by H2O2 than were wild-type cells. Even the pace of DNA damage by endogenous oxidants was great enough that the SOD mutants could not tolerate air if enzymes that repair oxidative DNA lesions were inactive. However, DNA oxidation proceeds in SOD-proficient cells without the involvement of O2-, as evidenced by the failure of SOD overproduction or anaerobiosis to suppress damage by H2O2. Furthermore, the mechanism by which excess O2- causes damage was called into question when the hypersensitivity of SOD mutants to DNA damage persisted for at least 20 min after O2- had been dispelled through the imposition of anaerobiosis. That behavior contradicted the standard model, which requires that O2- be present to rereduce cellular iron during the period of exposure to H2O2. Evidently, DNA oxidation is driven by a reductant other than O2-, which leaves the mechanism of damage promotion by O2- unsettled. One possibility is that, through its well-established ability to leach iron from iron-sulfur clusters, O2- increases the amount of free iron that is available to catalyze hydroxyl radical production. Experiments with iron transport mutants confirmed that increases in free-iron concentration have the effect of accelerating DNA oxidation. Thus, O2- may be genotoxic only in doses that exceed those found in SOD-proficient cells, and in those limited circumstances it may promote DNA damage by increasing the amount of DNA-bound iron. PMID:7592468

  2. Potential role of punicalagin against oxidative stress induced testicular damage

    PubMed Central

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg−1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  3. Protective effect of Pterostilbene against free radical mediated oxidative damage

    PubMed Central

    2013-01-01

    Background Pterostilbene, a methoxylated analog of Resveratrol, is gradually gaining more importance as a therapeutic drug owing to its higher lipophilicity, bioavailability and biological activity than Resveratrol. This study was undertaken to characterize its ability to scavenge free radicals such as superoxide, hydroxyl and hydrogen peroxide and to protect bio-molecules within a cell against oxidative insult. Methods Anti-oxidant activity of Pterostilbene was evaluated extensively by employing several in vitro radical scavenging/inhibiting assays and pulse radiolysis study. In addition, its ability to protect rat liver mitochondria against tertiary-butyl hydroperoxide (TBHP) and hydroxyl radical generated oxidative damage was determined by measuring the damage markers such as protein carbonyls, protein sulphydryls, lipid hydroperoxides, lipid peroxides and 8-hydroxy-2'-deoxyguanosine. Pterostilbene was also evaluated for its ability to inhibit •OH radical induced single strand breaks in pBR322 DNA. Result Pterostilbene exhibited strong anti-oxidant activity against various free radicals such as DPPH, ABTS, hydroxyl, superoxide and hydrogen peroxide in a concentration dependent manner. Pterostilbene conferred protection to proteins, lipids and DNA in isolated mitochondrial fractions against TBHP and hydroxyl radical induced oxidative damage. It also protected pBR322 DNA against oxidative assault. Conclusions Thus, present study provides an evidence for the strong anti-oxidant property of Pterostilbene, methoxylated analog of Resveratrol, thereby potentiating its role as an anti-oxidant. PMID:24070177

  4. Potential role of punicalagin against oxidative stress induced testicular damage.

    PubMed

    Rao, Faiza; Tian, Hui; Li, Wenqing; Hung, Helong; Sun, Fei

    2016-01-01

    Punicalagin is isolated from pomegranate and widely used for the treatment of different diseases in Chinese traditional medicine. This study aimed to evaluate the effect of Punicalagin (purity ≥98%) on oxidative stress induced testicular damage and its effect on fertility. We detected the antioxidant potential of punicalagin in lipopolysaccharide (LPS) induced oxidative stress damage in testes, also tried to uncover the boosting fertility effect of Punicalagin (PU) against oxidative stress-induced infertility. Results demonstrated that 9 mg kg-1 for 7 days treatment significantly decreases LPS induced oxidative damage in testes and nitric oxide production. The administration of oxidative stress resulted in a significant reduction in testes antioxidants GSH, T-SOD, and CAT raised LPO, but treatment with punicalagin for 7 days increased antioxidant defense GSH, T-SOD, and CAT by the end of the experiment and reduced LPO level as well. PU also significantly activates Nrf2, which is involved in regulation of antioxidant defense systems. Hence, the present research categorically elucidates the protective effect of punicalagin against LPS induced oxidative stress induced perturbation in the process of spermatogenesis and significantly increased sperm health and number. Moreover, fertility success significantly decreased in LPS-injected mice compared to controls. Mice injected with LPS had fertility indices of 12.5%, while others treated with a combination of PU + LPS exhibited 75% indices. By promoting fertility and eliminating oxidative stress and inflammation, PU may be a useful nutrient for the treatment of infertility. PMID:26763544

  5. Inhibition of transcription by oxidative DNA damage products

    SciTech Connect

    Byrd, S.; Reines, D.; Doetsch, P.W. )

    1991-03-11

    Thymine glycol is a major oxidative DNA base damage product that can be produced spontaneously in normal cells or by certain chemicals and ionizing radiation. This lesion as well as other oxidatively damaged bases are recognized and removed in eukaryotic cells by the DNA repair enzyme redoxyendonuclease which the authors have identified in a variety of cell types. Transcriptional regulation is a key element in the control of gene expression. Deficiencies in the various steps of transcription of an essential gene may have catastrophic effects for a cell. In terminally differentiated cells, the removal of RNA-polymerase blocking lesions could be viewed as a critical function for DNA repair systems in such cells. Very little information exists on the effects of oxidative base damage products on the process of transcription. The authors show here that thymine glycol containing DNA templates can inhibit transcriptional elongation when these lesions are chemically introduced into a DNA template. A DNA segment containing a region of the human H3.3 histone gene was utilized to determine the effects of oxidative DNA base damage on transcription by pure E. coli core RNA polymerase and rat liver RNA polymerase II. Both eukaryotic and prokaryotic RNA polymerases are blocked by the presence of thymine glycols appearing in certain clusters of thymines in the oxidatively damaged transcription template. To obtain quantitative efficiencies of transcriptional arrest, the authors are engineering a DNA template containing a single defined oxidatively damaged residue. The authors' results support the idea that an important function of DNA repair systems in terminally differentiated cells is to ensure the efficient transcription of genes necessary for normal cellular function.

  6. Evidence of neuronal oxidative damage in Alzheimer's disease.

    PubMed Central

    Good, P. F.; Werner, P.; Hsu, A.; Olanow, C. W.; Perl, D. P.

    1996-01-01

    Oxidative stress has been proposed as a pathogenetic mechanism in Alzheimer's disease. One mechanism of oxidative damage is the nitration of tyrosine residues in proteins, mediated by peroxynitrite breakdown. Peroxynitrite, a reaction product of nitric oxide and superoxide radicals, has been implicated in N-methyl-D-aspartate receptor-mediated excitotoxic damage. Reported evidence of oxidative stress in Alzheimer's disease includes increased iron, alterations in protective enzymes, and markers of oxidative damage to proteins and lipids. In this report, we demonstrate the presence of nitrotyrosine in neurofibrillary tangles of Alzheimer's disease. Nitrotyrosine was not detected in controls lacking neurofibrillary tangles. Immunolabeling was demonstrated to be specific nitrotyrosine in a series of control experiments. These observations link oxidative stress with a key pathological lesion of Alzheimer's disease, the neurofibrillary tangle, and demonstrate a pathogenetic mechanism in common with the other major neurodegenerative diseases of aging, Parkinson's disease and amyotrophic lateral sclerosis. These findings further implicate nitric oxide expression and excitotoxicity in the pathogenesis of cell death in Alzheimer's disease. Images Figure 1 Figure 2 PMID:8686745

  7. Quercitrin Protects Skin from UVB-induced Oxidative Damage

    PubMed Central

    Yin, Yuanqin; Li, Wenqi; Son, Yong-Ok; Sun, Lijuan; Lu, Jian; Kim, Donghern; Wang, Xin; Yao, Hua; Wang, Lei; Pratheeshkumar, Poyil; Hitron, Andrew J; Luo, Jia; Gao, Ning; Shi, Xianglin; Zhang, Zhuo

    2013-01-01

    Exposure of the skin to ultraviolet B (UVB) radiation causes oxidative damage to skin, resulting in sunburn, photoaging, and skin cancer. It is generally believed that the skin damage induced by UV irradiation is a consequence of generation of reactive oxygen species (ROS). Recently, there is an increased interest in the use of natural products as chemopreventive agents for non-melanoma skin cancer (NMSC) due to their antioxidants and anti-inflammatory properties. Quercitrin, glycosylated form of quercetin, is the most common flavonoid in nature with antioxidant properties. The present study investigated the possible beneficial effects of quercitrin to inhibit UVB irradiation-induced oxidative damage in vitro and in vivo. Our results showed that quercitrin decreased ROS generation induced by UVB irradiation in JB6 cells. Quercitrin restored catalase expression and GSH/GSSG ratio reduced by UVB exposure, two major antioxidant enzymes, leading to reductions of oxidative DNA damage and apoptosis and protection of the skin from inflammation caused by UVB exposure. The present study demonstrated that quercitrin functions as an antioxidant against UVB irradiation-induced oxidative damage to skin. PMID:23545178

  8. Oxidative DNA damage stalls the human mitochondrial replisome

    PubMed Central

    Stojkovič, Gorazd; Makarova, Alena V.; Wanrooij, Paulina H.; Forslund, Josefin; Burgers, Peter M.; Wanrooij, Sjoerd

    2016-01-01

    Oxidative stress is capable of causing damage to various cellular constituents, including DNA. There is however limited knowledge on how oxidative stress influences mitochondrial DNA and its replication. Here, we have used purified mtDNA replication proteins, i.e. DNA polymerase γ holoenzyme, the mitochondrial single-stranded DNA binding protein mtSSB, the replicative helicase Twinkle and the proposed mitochondrial translesion synthesis polymerase PrimPol to study lesion bypass synthesis on oxidative damage-containing DNA templates. Our studies were carried out at dNTP levels representative of those prevailing either in cycling or in non-dividing cells. At dNTP concentrations that mimic those in cycling cells, the replication machinery showed substantial stalling at sites of damage, and these problems were further exacerbated at the lower dNTP concentrations present in resting cells. PrimPol, the translesion synthesis polymerase identified inside mammalian mitochondria, did not promote mtDNA replication fork bypass of the damage. This argues against a conventional role for PrimPol as a mitochondrial translesion synthesis DNA polymerase for oxidative DNA damage; however, we show that Twinkle, the mtDNA replicative helicase, is able to stimulate PrimPol DNA synthesis in vitro, suggestive of an as yet unidentified role of PrimPol in mtDNA metabolism. PMID:27364318

  9. Radiation-Induced Phase Transformations in Ilmenite-Group Minerals

    SciTech Connect

    Mitchell, J. N.

    1997-12-31

    Transmission electron microscopy (TEM) is a powerful tool for characterizing and understanding radiation-induced structural changes in materials. We have irradiated single crystals of ilmenite (FeTiO{sub 3}) and geikielite (MgTiO{sub 3}) using ions and electrons to better understand the response of complex oxides to radiation. Ion irradiation experiments of bulk single crystals at 100 K show that ilmenite amorphized at doses of less than 1x10(exp15) Ar(2+)/sq cm and at a damage level in the peak damage region of 1 displacement per atom (dpa). Transmission electron microscopy and electron diffraction of a cross-sectioned portion of this crystal confirmed the formation of a 150 am thick amorphous layer. Geikielite proved to be more radiation resistant, requiring a flux of 2x10(exp 15) Xe(2+)/sq cm to induce amorphization at 100 K. This material did not amorphize at 470 K, despite a dose of 2.5 x10(exp 16) Xe(2+)/sq cm and a damage level as high as 25 dpa. Low temperature irradiations of electron- transparent crystals with 1 MeV Kr(+) also show that ilmenite amorphized after a damage level of 2.25 dpa at 175 K.Similar experiments on geikielite show that the microstructure is partially amorphous and partially crystalline after 10 dpa at 150 K. Concurrent ion and electron irradiation of both materials with 1 MeV Kr(+) and 0.9 MeV electrons produced dislocation loops in both materials, but no amorphous regions were formed. Differences in the radiation response of these isostructural oxides suggests that in systems with Mg-Fe solid solution, the Mg-rich compositions may be more resistant to structural changes.

  10. Biomarkers of oxidative damage to DNA and repair.

    PubMed

    Loft, Steffen; Høgh Danielsen, Pernille; Mikkelsen, Lone; Risom, Lotte; Forchhammer, Lykke; Møller, Peter

    2008-10-01

    Oxidative-stress-induced damage to DNA includes a multitude of lesions, many of which are mutagenic and have multiple roles in cancer and aging. Many lesions have been characterized by MS-based methods after extraction and digestion of DNA. These preparation steps may cause spurious base oxidation, which is less likely to occur with methods such as the comet assay, which are based on nicking of the DNA strand at modified bases, but offer less specificity. The European Standards Committee on Oxidative DNA Damage has concluded that the true levels of the most widely studied lesion, 8-oxodG (8-oxo-7,8-dihydro-2'-deoxyguanosine), in cellular DNA is between 0.5 and 5 lesions per 10(6) dG bases. Base excision repair of oxidative damage to DNA can be assessed by nicking assays based on oligonucleotides with lesions or the comet assay, by mRNA expression levels or, in the case of, e.g., OGG1 (8-oxoguanine DNA glycosylase 1), responsible for repair of 8-oxodG, by genotyping. Products of repair in DNA or the nucleotide pool, such as 8-oxodG, excreted into the urine can be assessed by MS-based methods and generally reflects the rate of damage. Experimental and population-based studies indicate that many environmental factors, including particulate air pollution, cause oxidative damage to DNA, whereas diets rich in fruit and vegetables or antioxidant supplements may reduce the levels and enhance repair. Urinary excretion of 8-oxodG, genotype and expression of OGG1 have been associated with risk of cancer in cohort settings, whereas altered levels of damage, repair or urinary excretion in case-control settings may be a consequence rather than the cause of the disease. PMID:18793191

  11. Role of Oxidative RNA Damage in Chronic-Degenerative Diseases

    PubMed Central

    2015-01-01

    Normal cellular metabolism and exposure to ionizing and ultraviolet radiations and exogenous agents produce reactive oxygen species (ROS). Due to their reactivity, they can interact with many critical biomolecules and induce cell damage. The reaction of ROS with free nucleobases, nucleosides, nucleotides, or oligonucleotides can generate numerous distinct modifications in nucleic acids. Oxidative damage to DNA has been widely investigated and is strongly implicated in the development of many chronic-degenerative diseases. In contrast, RNA damage is a poorly examined field in biomedical research. In this review, I discuss the importance of RNA as a target of oxidative damage and the role of oxidative damage to RNA in the pathogenesis of some chronic-degenerative diseases, such as neurological disorders, atherosclerosis, and cancer. Furthermore, I review recent evidence suggesting that RNA may be the target for toxic agents and indicating RNA degradation as a powerful tool to treat any pathology in which there is an aberrant expression of mRNA and/or its gene products. PMID:26078805

  12. Can graphene oxide cause damage to eyesight?

    PubMed

    Yan, Lu; Wang, Yaping; Xu, Xu; Zeng, Chao; Hou, Jiangping; Lin, Mimi; Xu, Jingzhou; Sun, Fei; Huang, Xiaojie; Dai, Liming; Lu, Fan; Liu, Yong

    2012-06-18

    As graphene becomes one of the most exciting candidates for multifunctional biomedical applications, contact between eyes and graphene-based materials is inevitable. On the other hand, eyes, as a special organ in the human body, have unique advantages to be used for testing new biomedical research and development, such as drug delivery. Intraocular biocompatible studies on graphene-related materials are thus essential. Here, we report our recent studies on intraocular biocompatibility and cytotoxicity of graphene oxide (GO) both in vitro and in vivo. The successful preparation of GO nanosheets was confirmed using atomic force microscopy, contact angle analyzer, Fourier transform infrared spectroscopy, and Raman spectroscopy. The influence of GO on human retinal pigment epithelium (RPE) cells in terms of the cell morphology, viability, membrane integrity, and apoptosis was investigated using various techniques, including optical micrography, cell counting kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, and apoptosis assay. The addition of GO had little influence on cell morphology, but the change was visible after long-time culturing. RPE cells showed higher than 60% cell viability by CCK-8 assay in GO solutions and less than 8% LDH release, although a small amount of apoptosis (1.5%) was observed. In vitro results suggested good biocompatibility of GO to RPE cells with slight adverse influence, on the cell viability and morphology in long-time periods, along with aggregation of GO. Thus, some further studies are needed to clarify the cytotoxicity mechanism of GO. GO intravitreally injected eyes showed few changes in eyeball appearance, intraocular pressure (IOP), eyesight, and histological photos. Our results suggested that GO did not cause any significant toxicity to the cell growth and proliferation. Intravitreal injection of GO into rabbits' eyes did not lead to much change in the eyeball appearance, IOP, electroretinogram, and histological examination

  13. Fungicide prochloraz induces oxidative stress and DNA damage in vitro.

    PubMed

    Lundqvist, J; Hellman, B; Oskarsson, A

    2016-05-01

    Prochloraz is widely used in horticulture and agriculture, e.g. as a post-harvest anti-mold treatment. Prochloraz is a known endocrine disruptor causing developmental toxicity with multiple mechanisms of action. However, data are scarce concerning other toxic effects. Since oxidative stress response, with formation of reactive oxygen species (ROS), is a common mechanism for different toxic endpoints, e.g. genotoxicity, carcinogenicity and teratogenicity, the aim of this study was to investigate if prochloraz can induce oxidative stress and/or DNA damage in human cells. A cell culture based in vitro model was used to study oxidative stress response by prochloraz, as measured by the activity of the nuclear factor erythroid 2-related factor 2 (Nrf2), a key molecule in oxidative defense mechanisms. It was observed that prochloraz induced oxidative stress in cultured human adrenocortical H295R and hepatoma HepG2 cells at non-toxic concentrations. Further, we used Comet assay to investigate the DNA damaging potential of prochloraz, and found that non-toxic concentrations of prochloraz induced DNA damage in HepG2 cells. These are novel findings, contradicting previous studies in the field of prochloraz and genotoxicity. This study reports a new mechanism by which prochloraz may exert toxicity. Our findings suggest that prochloraz might have genotoxic properties. PMID:26945613

  14. FIBER OPTIC BIOSENSOR FOR DNA DAMAGE

    EPA Science Inventory

    This paper describes a fiber optic biosensor for the rapid and sensitive detection of radiation-induced or chemically-induced oxidative DNA damage. The assay is based on the hybridization and temperature-induced dissociation (melting curves) of synthetic oligonucleotides. The...

  15. Maternal diabetes triggers DNA damage and DNA damage response in neurulation stage embryos through oxidative stress.

    PubMed

    Dong, Daoyin; Yu, Jingwen; Wu, Yanqing; Fu, Noah; Villela, Natalia Arias; Yang, Peixin

    2015-11-13

    DNA damage and DNA damage response (DDR) in neurulation stage embryos under maternal diabetes conditions are not well understood. The purpose of this study was to investigate whether maternal diabetes and high glucose in vitro induce DNA damage and DDR in the developing embryo through oxidative stress. In vivo experiments were conducted by mating superoxide dismutase 1 (SOD1) transgenic male mice with wild-type (WT) female mice with or without diabetes. Embryonic day 8.75 (E8.75) embryos were tested for the DNA damage markers, phosphorylated histone H2A.X (p-H2A.X) and DDR signaling intermediates, including phosphorylated checkpoint 1 (p-Chk1), phosphorylated checkpoint 2 (p-Chk2), and p53. Levels of the same DNA damage markers and DDR signaling intermediates were also determined in the mouse C17.2 neural stem cell line. Maternal diabetes and high glucose in vitro significantly increased the levels of p-H2A.X. Levels of p-Chk1, p-Chk2, and p53, were elevated under both maternal diabetic and high glucose conditions. SOD1 overexpression blocked maternal diabetes-induced DNA damage and DDR in vivo. Tempol, a SOD1 mimetic, diminished high glucose-induced DNA damage and DDR in vitro. In conclusion, maternal diabetes and high glucose in vitro induce DNA damage and activates DDR through oxidative stress, which may contribute to the pathogenesis of diabetes-associated embryopathy. PMID:26427872

  16. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    NASA Astrophysics Data System (ADS)

    Lushchik, A.; Lushchik, Ch.; Popov, A. I.; Schwartz, K.; Shablonin, E.; Vasil'chenko, E.

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic-covalent Lu3Al5O12 single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions (197Au, 209Bi, 238U, fluence of 1012 ions/cm2) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|Al or Ce|Al - a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce3+ single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|Lu-Ce|Al or Cr3+-Cr3+ in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|Al strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  17. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models.

    PubMed

    Atha, Donald H; Wang, Huanhua; Petersen, Elijah J; Cleveland, Danielle; Holbrook, R David; Jaruga, Pawel; Dizdaroglu, Miral; Xing, Baoshan; Nelson, Bryant C

    2012-02-01

    Engineered nanoparticles, due to their unique electrical, mechanical, and catalytic properties, are presently found in many commercial products and will be intentionally or inadvertently released at increasing concentrations into the natural environment. Metal- and metal oxide-based nanomaterials have been shown to act as mediators of DNA damage in mammalian cells, organisms, and even in bacteria, but the molecular mechanisms through which this occurs are poorly understood. For the first time, we report that copper oxide nanoparticles induce DNA damage in agricultural and grassland plants. Significant accumulation of oxidatively modified, mutagenic DNA lesions (7,8-dihydro-8-oxoguanine; 2,6-diamino-4-hydroxy-5-formamidopyrimidine; 4,6-diamino-5-formamidopyrimidine) and strong plant growth inhibition were observed for radish (Raphanus sativus), perennial ryegrass (Lolium perenne), and annual ryegrass (Lolium rigidum) under controlled laboratory conditions. Lesion accumulation levels mediated by copper ions and macroscale copper particles were measured in tandem to clarify the mechanisms of DNA damage. To our knowledge, this is the first evidence of multiple DNA lesion formation and accumulation in plants. These findings provide impetus for future investigations on nanoparticle-mediated DNA damage and repair mechanisms in plants. PMID:22201446

  18. Bilirubin and its oxidation products damage brain white matter.

    PubMed

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-11-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  19. Bilirubin and its oxidation products damage brain white matter

    PubMed Central

    Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

    2014-01-01

    Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5 mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

  20. Characterization of radiation-induced Apoptosis in rodent cell lines

    SciTech Connect

    Guo, Min; Chen, Changhu; Ling, C.C.

    1997-03-01

    For REC:myc(ch1), Rat1 and Rat1:myc{sub b} cells, we determined the events in the development of radiation-induced apoptosis to be in the following order: cell division followed by chromatin condensation, membrane blebbing, loss of adhesion and the uptake of vital dye. Experimental data which were obtained using {sup 4}He ions of well defined energies and which compared the dependence of apoptosis and clonogenic survival on {sup 4}He range strongly suggested that in our cells both apoptosis and loss of clonogenic survival resulted from radiation damage to the cell nucleus. Corroboratory evidence was that BrdU incorporation sensitized these cells to radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc{sub b} cells, we concluded that radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis. Comparing the dose response for apoptosis and the clonogenic survival curves for Rat1 and Rat1:myc{sub b} cells, we concluded that radiation-induced apoptosis contributed to the overall radiation-induced cell inactivation as assayed by clonogenic survival, and that a modified linear-quadratic model, proposed previously, modeled such a contribution effectively. In the same context, the selective increase in radiation-induced apoptosis during late S and G{sub 2} phases reduced the relative radioresistance observed for clonogenic survival during late S and G{sub 2} phases. 30 refs., 8 figs.

  1. Bee Products Prevent Agrichemical-Induced Oxidative Damage in Fish

    PubMed Central

    Ferreira, Daiane; Rocha, Helio Carlos; Kreutz, Luiz Carlos; Loro, Vania Lucia; Marqueze, Alessandra; Koakoski, Gessi; Santos da Rosa, João Gabriel; Gusso, Darlan; Oliveira, Thiago Acosta; de Abreu, Murilo Sander; Barcellos, Leonardo José Gil

    2013-01-01

    In southern South America and other parts of the world, aquaculture is an activity that complements agriculture. Small amounts of agrichemicals can reach aquaculture ponds, which results in numerous problems caused by oxidative stress in non-target organisms. Substances that can prevent or reverse agrichemical-induced oxidative damage may be used to combat these effects. This study includes four experiments. In each experiment, 96 mixed-sex, 6-month-old Rhamdia quelen (118±15 g) were distributed into eight experimental groups: a control group that was not exposed to contaminated water, three groups that were exposed to various concentrations of bee products, three groups that were exposed to various concentrations of bee products plus tebuconazole (TEB; Folicur 200 CE™) and a group that was exposed to 0.88 mg L−1 of TEB alone (corresponding to 16.6% of the 96-h LC50). We show that waterborne bee products, including royal jelly (RJ), honey (H), bee pollen (BP) and propolis (P), reversed the oxidative damage caused by exposure to TEB. These effects were likely caused by the high polyphenol contents of these bee-derived compounds. The most likely mechanism of action for the protective effects of bee products against tissue oxidation and the resultant damage is that the enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST) are increased. PMID:24098336

  2. NDE for Characterizing Oxidation Damage in Reinforced Carbon-Carbon

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Rauser, Richard W.; Jacobson, nathan S.; Wincheski, Russell A.; Walker, James L.; Cosgriff, Laura A.

    2009-01-01

    In this study, coated reinforced carbon-carbon (RCC) samples of similar structure and composition as that from the NASA space shuttle orbiter s thermal protection system were fabricated with slots in their coating simulating craze cracks. These specimens were used to study oxidation damage detection and characterization using NDE methods. These specimens were heat treated in air at 1143 and 1200 C to create cavities in the carbon substrate underneath the coating as oxygen reacted with the carbon and resulted in its consumption. The cavities varied in diameter from approximately 1 to 3 mm. Single-sided NDE methods were used since they might be practical for on-wing inspection, while x-ray micro-computed tomography (CT) was used to measure cavity sizes in order to validate oxidation models under development for carbon-carbon materials. An RCC sample having a naturally-cracked coating and subsequent oxidation damage was also studied with x-ray micro-CT. This effort is a follow-on study to one that characterized NDE methods for assessing oxidation damage in an RCC sample with drilled holes in the coating. The results of that study are briefly reviewed in this article as well. Additionally, a short discussion on the future role of simulation to aid in these studies is provided.

  3. Nicaraven Attenuates Radiation-Induced Injury in Hematopoietic Stem/Progenitor Cells in Mice

    PubMed Central

    Kawakatsu, Miho; Urata, Yoshishige; Imai, Ryo; Goto, Shinji; Ono, Yusuke; Nishida, Noriyuki; Li, Tao-Sheng

    2013-01-01

    Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy γ-ray radiation daily for 5 days in succession (a total of 5 Gy), and given nicaraven or a placebo after each exposure. The mice were sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity, and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-2′-deoxyguanosine, a marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma of mice. Our data suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells, which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound. PMID:23555869

  4. Nicaraven attenuates radiation-induced injury in hematopoietic stem/progenitor cells in mice.

    PubMed

    Kawakatsu, Miho; Urata, Yoshishige; Imai, Ryo; Goto, Shinji; Ono, Yusuke; Nishida, Noriyuki; Li, Tao-Sheng

    2013-01-01

    Nicaraven, a chemically synthesized hydroxyl radical-specific scavenger, has been demonstrated to protect against ischemia-reperfusion injury in various organs. We investigated whether nicaraven can attenuate radiation-induced injury in hematopoietic stem/progenitor cells, which is the conmen complication of radiotherapy and one of the major causes of death in sub-acute phase after accidental exposure to high dose radiation. C57BL/6 mice were exposed to 1 Gy γ-ray radiation daily for 5 days in succession (a total of 5 Gy), and given nicaraven or a placebo after each exposure. The mice were sacrificed 2 days after the last radiation treatment, and the protective effects and relevant mechanisms of nicaraven in hematopoietic stem/progenitor cells with radiation-induced damage were investigated by ex vivo examination. We found that post-radiation administration of nicaraven significantly increased the number, improved the colony-forming capacity, and decreased the DNA damage of hematopoietic stem/progenitor cells. The urinary levels of 8-oxo-2'-deoxyguanosine, a marker of DNA oxidation, were significantly lower in mice that were given nicaraven compared with those that received a placebo treatment, although the levels of intracellular and mitochondrial reactive oxygen species in the bone marrow cells did not differ significantly between the two groups. Interestingly, compared with the placebo treatment, the administration of nicaraven significantly decreased the levels of the inflammatory cytokines IL-6 and TNF-α in the plasma of mice. Our data suggest that nicaraven effectively diminished the effects of radiation-induced injury in hematopoietic stem/progenitor cells, which is likely associated with the anti-oxidative and anti-inflammatory properties of this compound. PMID:23555869

  5. Chemical and Biological Consequences of Oxidatively Damaged Guanine in DNA

    PubMed Central

    Delaney, Sarah; Jarem, Daniel A.; Volle, Catherine B.; Yennie, Craig J.

    2013-01-01

    Of the four native nucleosides, 2′-deoxyguanosine (dGuo) is most easily oxidized. Two lesions derived from dGuo are 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodGuo) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (Fapy)·dGuo. Furthermore, while steady-state levels of 8-oxodGuo can be detected in genomic DNA, it is also known that 8-oxodGuo is more easily oxidized than dGuo. Thus, 8-oxodGuo is susceptible to further oxidation to form several hyperoxidized dGuo products. This review addresses the structural impact, the mutagenic and genotoxic potential, and biological implications of oxidatively damaged DNA, in particular 8-oxodGuo, Fapy·dGuo, and the hyperoxidized dGuo products. PMID:22239655

  6. Interactions of amino acids with oxidized guanine in the gas phase associated with the protection of damaged DNA.

    PubMed

    Zhao, Jing; Yang, Hongfang; Zhang, Meng; Bu, Yuxiang

    2013-04-01

    Density functional theory calculations were employed to study the stabilization process of the guanine radical cation through amino acid interactions as well as to understand the protection mechanisms. On the basis of our calculations, several protection mechanisms are proposed in this work subject to the type of the amino acid. Our results indicate that a series of three-electron bonds can be formed between the amino acids and the guanine radical cation which may serve as relay stations supporting hole transport. In the three-electron-bonded, π-π-stacked, and H-bonded modes, amino acids can protect guanine from oxidation or radiation damage by sharing the hole, while amino acids with reducing properties can repair the guanine radical cation through proton-coupled electron transfer or electron transfer. Another important finding is that positively charged amino acids (ArgH(+), LysH(+), and HisH(+)) can inhibit ionization of guanine through raising its ionization potential. In this situation, a negative dissociation energy for hydrogen bonds in the hole-trapped and positively charged amino acid-Guanine dimer is observed, which explains the low hole-trapping efficiency. We hope that this work provides valuable information on how to protect DNA from oxidation- or radiation-induced damages in biological systems. PMID:23427004

  7. Radiation-induced genomic instability

    NASA Technical Reports Server (NTRS)

    Kronenberg, A.

    1994-01-01

    Quantitative assessment of the heritable somatic effects of ionizing radiation exposures has relied upon the assumption that radiation-induced lesions were 'fixed' in the DNA prior to the first postirradiation mitosis. Lesion conversion was thought to occur during the initial round of DNA replication or as a consequence of error-prone enzymatic processing of lesions. The standard experimental protocols for the assessment of a variety of radiation-induced endpoints (cell death, specific locus mutations, neoplastic transformation and chromosome aberrations) evaluate these various endpoints at a single snapshot in time. In contrast with the aforementioned approaches, some studies have specifically assessed radiation effects as a function of time following exposure. Evidence has accumulated in support of the hypothesis that radiation exposure induces a persistent destabilization of the genome. This instability has been observed as a delayed expression of lethal mutations, as an enhanced rate of accumulation of non-lethal heritable alterations, and as a progressive intraclonal chromosomal heterogeneity. The genetic controls and biochemical mechanisms underlying radiation-induced genomic instability have not yet been delineated. The aim is to integrate the accumulated evidence that suggests that radiation exposure has a persistent effect on the stability of the mammalian genome.

  8. Oxidative DNA damage in peripheral blood lymphocytes of coal workers.

    PubMed

    Schins, R P; Schilderman, P A; Borm, P J

    1995-01-01

    Reactive oxygen species are important mediators of both mineral dust-induced (malignant) lung disease and in vitro DNA damage. Therefore, we studied in vivo oxidative DNA damage in coal workers who had been chronically exposed to silica-containing dust. In peripheral blood lymphocytes of 38 retired coal miners (eight with coal workers pneumoconiosis, 30 references) and 24 age-matched, non-dust-exposed controls 7-hydro-8-oxo-2'-deoxyguanosine (8-oxodG) was determined by reversed phase high-performance liquid chromatography with electrochemical detection. The ratio of 8-oxodG residues to deoxyguanosine (dG) was related to individual cumulative dust exposure estimates and pneumoconiotic stage as established by chest radiography. The ratio of 8-oxodG to dG(x 10(-5)) in lymphocytes did not differ between miners with coal workers' pneumoconiosis (2.61 +/- 0.44) and miners without coal workers' pneumoconiosis (2.96 +/- 1.86). However, oxidative DNA damage in all miners was higher than in the non-dust-exposed controls (1.67 +/- 1.31). 8-oxodG/dG ratio was not related to individual cumulative coal dust exposure, age or smoking (pack years) when evaluated by multiple linear regression. We suggest that oxidative damage to the DNA of peripheral blood lymphocytes may be introduced by increased oxidative stress responses in subjects chronically exposed to mineral dusts. Whether this is an important pathway in the suggested carcinogenicity of silica is still an open question. PMID:7591172

  9. Reduction in oxidatively generated DNA damage following smoking cessation

    PubMed Central

    2011-01-01

    Background Cigarette smoking is a known cause of cancer, and cancer may be in part due to effects of oxidative stress. However, whether smoking cessation reverses oxidatively induced DNA damage unclear. The current study sought to examine the extent to which three DNA lesions showed significant reductions after participants quit smoking. Methods Participants (n = 19) in this study were recruited from an ongoing 16-week smoking cessation clinical trial and provided blood samples from which leukocyte DNA was extracted and assessed for 3 DNA lesions (thymine glycol modification [d(TgpA)]; formamide breakdown of pyrimidine bases [d(TgpA)]; 8-oxo-7,8-dihydroguanine [d(Gh)]) via liquid chromatography tandem mass spectrometry (LC-MS/MS). Change in lesions over time was assessed using generalized estimating equations, controlling for gender, age, and treatment condition. Results Overall time effects for the d(TgpA) (χ2(3) = 8.068, p < 0.045), d(PfpA) (χ2(3) = 8.477, p < 0.037), and d(Gh) (χ2(3) = 37.599, p < 0.001) lesions were seen, indicating levels of each decreased significantly after CO-confirmed smoking cessation. The d(TgpA) and d(PfpA) lesions show relatively greater rebound at Week 16 compared to the d(Gh) lesion (88% of baseline for d(TgpA), 64% of baseline for d(PfpA), vs 46% of baseline for d(Gh)). Conclusions Overall, results from this analysis suggest that cigarette smoking contributes to oxidatively induced DNA damage, and that smoking cessation appears to reduce levels of specific damage markers between 30-50 percent in the short term. Future research may shed light on the broader array of oxidative damage influenced by smoking and over longer durations of abstinence, to provide further insights into mechanisms underlying carcinogenesis. PMID:21569419

  10. Dietary Nickel Chloride Induces Oxidative Intestinal Damage in Broilers

    PubMed Central

    Wu, Bangyuan; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Huang, Jianying

    2013-01-01

    The purpose of this study was to investigate the oxidative damage induced by dietary nickel chloride (NiCl2) in the intestinal mucosa of different parts of the intestine of broilers, including duodenum, jejunum and ileum. A total of 240 one-day-old broilers were divided into four groups and fed on a corn-soybean basal diet as control diet or the same basal diet supplemented with 300, 600 or 900 mg/kg NiCl2 during a 42-day experimental period. The results showed that the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px), and the ability to inhibit hydroxy radical and glutathione (GSH) content were significantly (p < 0.05 or p < 0.01) decreased in the 300, 600 and 900 mg/kg groups in comparison with those of the control group. In contrast, malondialdehyde (MDA) content was significantly (p < 0.05 or p < 0.01) higher in the 300, 600 and 900 mg/kg groups than that in the control group. It was concluded that dietary NiCl2 in excess of 300 mg/kg could cause oxidative damage in the intestinal mucosa in broilers, which finally impaired the intestinal functions including absorptive function and mucosal immune function. The oxidative damage might be a main mechanism on the effects of NiCl2 on the intestinal health of broilers. PMID:23702803

  11. Plasmalogen phospholipids protect internodal myelin from oxidative damage.

    PubMed

    Luoma, Adrienne M; Kuo, Fonghsu; Cakici, Ozgur; Crowther, Michelle N; Denninger, Andrew R; Avila, Robin L; Brites, Pedro; Kirschner, Daniel A

    2015-07-01

    Reactive oxygen species (ROS) are implicated in a range of degenerative conditions, including aging, neurodegenerative diseases, and neurological disorders. Myelin is a lipid-rich multilamellar sheath that facilitates rapid nerve conduction in vertebrates. Given the high energetic demands and low antioxidant capacity of the cells that elaborate the sheaths, myelin is considered intrinsically vulnerable to oxidative damage, raising the question whether additional mechanisms prevent structural damage. We characterized the structural and biochemical basis of ROS-mediated myelin damage in murine tissues from both central nervous system (CNS) and peripheral nervous system (PNS). To determine whether ROS can cause structural damage to the internodal myelin, whole sciatic and optic nerves were incubated ex vivo with a hydroxyl radical-generating system consisting of copper (Cu), hydrogen peroxide (HP), and ortho-phenanthroline (OP). Quantitative assessment of unfixed tissue by X-ray diffraction revealed irreversible compaction of myelin membrane stacking in both sciatic and optic nerves. Incubation in the presence of the hydroxyl radical scavenger sodium formate prevented this damage, implicating hydroxyl radical species. Myelin membranes are particularly enriched in plasmalogens, a class of ether-linked phospholipids proposed to have antioxidant properties. Myelin in sciatic nerve from plasmalogen-deficient (Pex7 knockout) mice was significantly more vulnerable to Cu/OP/HP-mediated ROS-induced compaction than myelin from WT mice. Our results directly support the role of plasmalogens as endogenous antioxidants providing a defense that protects ROS-vulnerable myelin. PMID:25801291

  12. Personal Exposure to Ultrafine Particles and Oxidative DNA Damage

    PubMed Central

    Vinzents, Peter S.; Møller, Peter; Sørensen, Mette; Knudsen, Lisbeth E.; Hertel, Ole; Jensen, Finn Palmgren; Schibye, Bente; Loft, Steffen

    2005-01-01

    Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from venous blood the morning after exposure measurement. Cumulated outdoor and cumulated indoor exposures to UFPs each were independent significant predictors of the level of purine oxidation in DNA but not of strand breaks. Ambient air concentrations of particulate matter with an aero-dynamic diameter of ≤10 μm (PM10), nitrous oxide, nitrogen dioxide, carbon monoxide, and/or number concentration of UFPs at urban background or busy street monitoring stations was not a significant predictor of DNA damage, although personal UFP exposure was correlated with urban background concentrations of CO and NO2, particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution. PMID:16263500

  13. Radiation-induced biomarkers for the detection and assessment of absorbed radiation doses

    PubMed Central

    Rana, Sudha; Kumar, Raj; Sultana, Sarwat; Sharma, Rakesh Kumar

    2010-01-01

    Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites. Oxidative damages by ionizing radiation result in carcinogenesis, lowering of the immune response and, ultimately, damage to the hematopoietic system, gastrointestinal system and central nervous system. Biodosimetry is based on the measurement of the radiation-induced changes, which can correlate them with the absorbed dose. Radiation biomarkers such as chromosome aberration are most widely used. Serum enzymes such as serum amylase and diamine oxidase are the most promising biodosimeters. The level of gene expression and protein are also good biomarkers of radiation. PMID:21829314

  14. Exposure to benzene metabolites causes oxidative damage in Saccharomyces cerevisiae.

    PubMed

    Raj, Abhishek; Nachiappan, Vasanthi

    2016-06-01

    Hydroquinone (HQ) and benzoquinone (BQ) are known benzene metabolites that form reactive intermediates such as reactive oxygen species (ROS). This study attempts to understand the effect of benzene metabolites (HQ and BQ) on the antioxidant status, cell morphology, ROS levels and lipid alterations in the yeast Saccharomyces cerevisiae. There was a reduction in the growth pattern of wild-type cells exposed to HQ/BQ. Exposure of yeast cells to benzene metabolites increased the activity of the anti-oxidant enzymes catalase, superoxide dismutase and glutathione peroxidase but lead to a decrease in ascorbic acid and reduced glutathione. Increased triglyceride level and decreased phospholipid levels were observed with exposure to HQ and BQ. These results suggest that the enzymatic antioxidants were increased and are involved in the protection against macromolecular damage during oxidative stress; presumptively, these enzymes are essential for scavenging the pro-oxidant effects of benzene metabolites. PMID:27016252

  15. Prevention of oxidative DNA damage in rats by brussels sprouts.

    PubMed

    Deng, X S; Tuo, J; Poulsen, H E; Loft, S

    1998-03-01

    The alleged cancer preventive effects of cruciferous vegetables could be related to protection from mutagenic oxidative DNA damage. We have studied the effects of Brussels sprouts, some non-cruciferous vegetables and isolated glucosinolates on spontaneous and induced oxidative DNA damage in terms of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in groups of 6-8 male Wistar rats. Excess oxidative DNA damage was induced by 2-nitropropane (2-NP 100 mg/kg). Four days oral administration of 3 g of cooked Brussels sprouts homogenate reduced the spontaneous urinary 8-oxodG excretion by 31% (p<0.05) whereas raw sprouts, beans and endive (1:1), isolated indolyl glucosinolates and breakdown products had no significant effect. An aqueous extract of cooked Brussels sprouts (corresponding to 6.7 g vegetable per day for 4 days) decreased the spontaneous 8-oxodG excretion from 92 +/- 12 to 52 +/- 15 pmol/24 h (p<0.05). After 2-NP administration the 8-oxodG excretion was increased to 132 +/- 26 pmol/24 h (p<0.05) whereas pretreatment with the sprouts extract reduced this to 102 +/- 30 pmol/24 h (p<0.05). The spontaneous level of 8-oxodG in nuclear DNA from liver and bone marrow was not significantly affected by the sprouts extract whereas the level decreased by 27% in the kidney (p<0.05). In the liver 2-NP increased the 8-oxodG levels in nuclear DNA 8.7 and 3.8 times (p<0.05) 6 and 24 h after dose, respectively. The sprouts extract reduced this increase by 57% (p<0.05) at 6 h whereas there was no significant effect at 24 h. In the kidneys 2-NP increased the 8-oxodG levels 2.2 and 1.2 times (p<0.05) 6 and 24 h after dose, respectively. Pretreatment with the sprouts extract abolished these increases (p<0.05). Similarly, in the bone marrow the extract protected completely (p<0.05) against a 4.9-fold 2-NP induced increase (p<0.05) in the 8-oxodG level. These findings demonstrate that cooked Brussels sprouts contain bioactive substance(s) with a potential for reducing the physiological

  16. Garlic supplementation prevents oxidative DNA damage in essential hypertension.

    PubMed

    Dhawan, Veena; Jain, Sanjay

    2005-07-01

    Oxygen-free radicals and other oxygen/nitrogen species are constantly generated in the human body. Most are intercepted by antioxidant defences and perform useful metabolic roles, whereas others escape to damage biomolecules like DNA, lipids and proteins. Garlic has been shown to contain antioxidant phytochemicals that prevent oxidative damage. These include unique water-soluble organosulphur compounds, lipid-soluble organosulphur compounds and flavonoids. Therefore, in the present study, we have tried to explore the antioxidant effect of garlic supplementation on oxidative stress-induced DNA damage, nitric oxide (NO) and superoxide generation and on the total antioxidant status (TAS) in patients of essential hypertension (EH). Twenty patients of EH as diagnosed by JNC VI criteria (Group I) and 20 age and sex-matched normotensive controls (Group II) were enrolled in the study. Both groups were given garlic pearls (GP) in a dose of 250 mg per day for 2 months. Baseline samples were taken at the start of the study, i.e. 0 day, and thereafter 2 months follow-up. 8-Hydroxy-2'-deoxyguanosine (8-OHdG), lipids, lipid peroxidation (MDA), NO and antioxidant vitamins A, E and C were determined. A moderate decline in blood pressure (BP) and a significant reduction in 8-OHdG, NO levels and lipid peroxidation were observed in Group I subjects with GP supplementation. Further, a significant increase in vitamin levels and TAS was also observed in this group as compared to the control subjects. These findings point out the beneficial effects of garlic supplementation in reducing blood pressure and counteracting oxidative stress, and thereby, offering cardioprotection in essential hypertensives. PMID:16335787

  17. Transcription-coupled homologous recombination after oxidative damage.

    PubMed

    Wei, Leizhen; Levine, Arthur Samuel; Lan, Li

    2016-08-01

    Oxidative DNA damage induces genomic instability and may lead to mutagenesis and carcinogenesis. As severe blockades to RNA polymerase II (RNA POLII) during transcription, oxidative DNA damage and the associated DNA strand breaks have a profoundly deleterious impact on cell survival. To protect the integrity of coding regions, high fidelity DNA repair at a transcriptionally active site in non-dividing somatic cells, (i.e., terminally differentiated and quiescent/G0 cells) is necessary to maintain the sequence integrity of transcribed regions. Recent studies indicate that an RNA-templated, transcription-associated recombination mechanism is important to protect coding regions from DNA damage-induced genomic instability. Here, we describe the discovery that G1/G0 cells exhibit Cockayne syndrome (CS) B (CSB)-dependent assembly of homologous recombination (HR) factors at double strand break (DSB) sites within actively transcribed regions. This discovery is a challenge to the current dogma that HR occurs only in S/G2 cells where undamaged sister chromatids are available as donor templates. PMID:27233112

  18. In vitro toxicity of iron oxide nanoparticle: oxidative damages on Hep G2 cells.

    PubMed

    Sadeghi, Leila; Tanwir, Farzeen; Yousefi Babadi, Vahid

    2015-02-01

    During the past years many studies have been done highlighting the great need for a more thorough understanding of cell-iron oxide nanoparticle interactions. To improve our knowledge in this field, there is a great need for standardized protocols that would allow to comparing the cytotoxic potential of any Fe2O3-NP type with previously studied particles. Several approaches are reported that several parameters which are of great importance for Fe2O3 nanoparticle induced toxicity. Nanoparticles because of their very small size can pass through the cell membrane and can make oxidative damage in all parts of the cells such as mitochondria, membrane, DNA due to high surface area. This study focuses on acute cytotoxicity of reactive oxygen species and DNA damaging effects of mentioned nanoparticles. Results showed increase of the oxidative damage leads cells to the apoptosis, therefore reduced cell viability. It is interesting that all of the results are concentration and time dependent. PMID:25497787

  19. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage.

    PubMed Central

    Li, Ning; Sioutas, Constantinos; Cho, Arthur; Schmitz, Debra; Misra, Chandan; Sempf, Joan; Wang, Meiying; Oberley, Terry; Froines, John; Nel, Andre

    2003-01-01

    The objectives of this study were to determine whether differences in the size and composition of coarse (2.5-10 micro m), fine (< 2.5 microm), and ultrafine (< 0.1 microm) particulate matter (PM) are related to their uptake in macrophages and epithelial cells and their ability to induce oxidative stress. The premise for this study is the increasing awareness that various PM components induce pulmonary inflammation through the generation of oxidative stress. Coarse, fine, and ultrafine particles (UFPs) were collected by ambient particle concentrators in the Los Angeles basin in California and used to study their chemical composition in parallel with assays for generation of reactive oxygen species (ROS) and ability to induce oxidative stress in macrophages and epithelial cells. UFPs were most potent toward inducing cellular heme oxygenase-1 (HO-1) expression and depleting intracellular glutathione. HO-1 expression, a sensitive marker for oxidative stress, is directly correlated with the high organic carbon and polycyclic aromatic hydrocarbon (PAH) content of UFPs. The dithiothreitol (DTT) assay, a quantitative measure of in vitro ROS formation, was correlated with PAH content and HO-1 expression. UFPs also had the highest ROS activity in the DTT assay. Because the small size of UFPs allows better tissue penetration, we used electron microscopy to study subcellular localization. UFPs and, to a lesser extent, fine particles, localize in mitochondria, where they induce major structural damage. This may contribute to oxidative stress. Our studies demonstrate that the increased biological potency of UFPs is related to the content of redox cycling organic chemicals and their ability to damage mitochondria. PMID:12676598

  20. Oxidative Damage in the Aging Heart: an Experimental Rat Model

    PubMed Central

    Marques, Gustavo Lenci; Neto, Francisco Filipak; Ribeiro, Ciro Alberto de Oliveira; Liebel, Samuel; de Fraga, Rogério; Bueno, Ronaldo da Rocha Loures

    2015-01-01

    Introduction: Several theories have been proposed to explain the cause of ‘aging’; however, the factors that affect this complex process are still poorly understood. Of these theories, the accumulation of oxidative damage over time is among the most accepted. Particularly, the heart is one of the most affected organs by oxidative stress. The current study, therefore, aimed to investigate oxidative stress markers in myocardial tissue of rats at different ages. Methods: Seventy-two rats were distributed into 6 groups of 12 animals each and maintained for 3, 6, 9, 12, 18 and 24 months. After euthanasia, the heart was removed and the levels of non-protein thiols, lipid peroxidation, and protein carbonylation, as well as superoxide dismutase and catalase activities were determined. Results: Superoxide dismutase, catalase activity and lipid peroxidation were reduced in the older groups of animals, when compared with the younger group. However, protein carbonylation showed an increase in the 12-month group followed by a decrease in the older groups. In addition, the levels of non-protein thiols were increased in the 12-month group and not detected in the older groups. Conclusion: Our data showed that oxidative stress is not associated with aging in the heart. However, an increase in non-protein thiols may be an important factor that compensates for the decrease of superoxide dismutase and catalase activity in the oldest rats, to maintain appropriate antioxidant defenses against oxidative insults. PMID:27006709

  1. Oxidative damage and neurodegeneration in manganese-induced neurotoxicity

    SciTech Connect

    Milatovic, Dejan; Yu, Yingchun

    2009-10-15

    Exposure to excessive manganese (Mn) levels results in neurotoxicity to the extrapyramidal system and the development of Parkinson's disease (PD)-like movement disorder, referred to as manganism. Although the mechanisms by which Mn induces neuronal damage are not well defined, its neurotoxicity appears to be regulated by a number of factors, including oxidative injury, mitochondrial dysfunction and neuroinflammation. To investigate the mechanisms underlying Mn neurotoxicity, we studied the effects of Mn on reactive oxygen species (ROS) formation, changes in high-energy phosphates (HEP), neuroinflammation mediators and associated neuronal dysfunctions both in vitro and in vivo. Primary cortical neuronal cultures showed concentration-dependent alterations in biomarkers of oxidative damage, F{sub 2}-isoprostanes (F{sub 2}-IsoPs) and mitochondrial dysfunction (ATP), as early as 2 h following Mn exposure. Treatment of neurons with 500 {mu}M Mn also resulted in time-dependent increases in the levels of the inflammatory biomarker, prostaglandin E{sub 2} (PGE{sub 2}). In vivo analyses corroborated these findings, establishing that either a single or three (100 mg/kg, s.c.) Mn injections (days 1, 4 and 7) induced significant increases in F{sub 2}-IsoPs and PGE{sub 2} in adult mouse brain 24 h following the last injection. Quantitative morphometric analyses of Golgi-impregnated striatal sections from mice exposed to single or three Mn injections revealed progressive spine degeneration and dendritic damage of medium spiny neurons (MSNs). These findings suggest that oxidative stress, mitochondrial dysfunction and neuroinflammation are underlying mechanisms in Mn-induced neurodegeneration.

  2. Protective properties of ginsenoside Rb3 against UV-B radiation-induced oxidative stress in HaCaT keratinocytes.

    PubMed

    Oh, Sun-Joo; Oh, Yuri; Ryu, In Wang; Kim, Kyunghoon; Lim, Chang-Jin

    2015-01-01

    This work aimed to evaluate the skin anti-photoaging properties of ginsenoside Rb3 (Rb3), one of the main protopanaxdiol-type ginsenosides from ginseng, in HaCaT keratinocytes. The skin anti-photoaging activity was assessed by analyzing the levels of reactive oxygen species (ROS), pro-matrix metalloproteinase-2 (proMMP-2), pro-matrix metalloproteinase-9 (proMMP-9), total glutathione (GSH), and superoxide dismutase (SOD) activity as well as cell viability in HaCaT keratinocytes under UV-B irradiation. When HaCaT keratinocytes were exposed to Rb3 prior to UV-B irradiation, Rb3 exhibited suppressive activities on UV-B-induced ROS, proMMP-2, and proMMP-9 enhancements. On the contrary, Rb3 displayed enhancing activities on UV-B-reduced total GSH and SOD activity levels. Rb3 could not interfere with cell viabilities in UV-B-irradiated HaCaT keratinocytes. Rb3 plays a protective role against UV-B-induced oxidative stress in human HaCaT keratinocytes, proposing its potential skin anti-photoaging properties. PMID:26287932

  3. Textile industrial effluent induces mutagenicity and oxidative DNA damage and exploits oxidative stress biomarkers in rats.

    PubMed

    Akhtar, Muhammad Furqan; Ashraf, Muhammad; Anjum, Aftab Ahmad; Javeed, Aqeel; Sharif, Ali; Saleem, Ammara; Akhtar, Bushra

    2016-01-01

    Exposure to complex mixtures like textile effluent poses risks to animal and human health such as mutations, genotoxicity and oxidative damage. Aim of the present study was to quantify metals in industrial effluent and to determine its mutagenic, genotoxic and cytotoxic potential and effects on oxidative stress biomarkers in effluent exposed rats. Metal analysis revealed presence of high amounts of zinc, copper, chromium, iron, arsenic and mercury in industrial effluent. Ames test with/without enzyme activation and MTT assay showed strong association of industrial effluent with mutagenicity and cytotoxicity respectively. In-vitro comet assay revealed evidence of high oxidative DNA damage. When Wistar rats were exposed to industrial effluent in different dilutions for 60 days, then activities of total superoxide dismutase and catalase and hydrogen peroxide concentration were found to be significantly lower in kidney, liver and blood/plasma of effluent exposed rats than control. Vitamin C in a dose of 50 mg/kg/day significantly reduced oxidative effects of effluent in rats. On the basis of this study it is concluded that industrial effluent may cause mutagenicity, in-vitro oxidative stress-related DNA damage and cytotoxicity and may be associated with oxidative stress in rats. Vitamin C may have ameliorating effect when exposed to effluent. PMID:26710178

  4. Spaceflight environment induces mitochondrial oxidative damage in ocular tissue.

    PubMed

    Mao, Xiao W; Pecaut, Michael J; Stodieck, Louis S; Ferguson, Virginia L; Bateman, Ted A; Bouxsein, Mary; Jones, Tamako A; Moldovan, Maria; Cunningham, Christopher E; Chieu, Jenny; Gridley, Daila S

    2013-10-01

    A recent report shows that more than 30% of the astronauts returning from Space Shuttle missions or the International Space Station (ISS) were diagnosed with eye problems that can cause reduced visual acuity. We investigate here whether spaceflight environment-associated retinal damage might be related to oxidative stress-induced mitochondrial apoptosis. Female C57BL/6 mice were flown in the space shuttle Atlantis (STS-135), and within 3-5 h of landing, the spaceflight and ground-control mice, similarly housed in animal enclosure modules (AEMs) were euthanized and their eyes were removed for analysis. Changes in expression of genes involved in oxidative stress, mitochondrial and endothelial cell biology were examined. Apoptosis in the retina was analyzed by caspase-3 immunocytochemical analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay. Levels of 4-hydroxynonenal (4-HNE) protein, an oxidative specific marker for lipid peroxidation were also measured. Evaluation of spaceflight mice and AEM ground-control mice showed that expression of several genes playing central roles in regulating the mitochondria-associated apoptotic pathway were significantly altered in mouse ocular tissue after spaceflight compared to AEM ground-control mice. In addition, the mRNA levels of several genes, which are responsible for regulating the production of reactive oxygen species were also significantly up-regulated in spaceflight samples compared to AEM ground-control mice. Further more, the level of HNE protein was significantly elevated in the retina after spaceflight compared to controls. Our results also revealed that spaceflight conditions induced significant apoptosis in the retina especially inner nuclear layer (INL) and ganglion cell layer (GCL) compared to AEM ground controls. The data provided the first evidence that spaceflight conditions induce oxidative damage that results in mitochondrial apoptosis in the retina. This data suggest

  5. Oxidant conditioning protects cartilage from mechanically induced damage.

    PubMed

    Ramakrishnan, Prem; Hecht, Benjamin A; Pedersen, Douglas R; Lavery, Matthew R; Maynard, Jerry; Buckwalter, Joseph A; Martin, James A

    2010-07-01

    Articular cartilage degeneration in osteoarthritis has been linked to abnormal mechanical stresses that are known to cause chondrocyte apoptosis and metabolic derangement in in vitro models. Evidence implicating oxidative damage as the immediate cause of these harmful effects suggests that the antioxidant defenses of chondrocytes might influence their tolerance for mechanical injury. Based on evidence that antioxidant defenses in many cell types are stimulated by moderate oxidant exposure, we hypothesized that oxidant preconditioning would reduce acute chondrocyte death and proteoglycan depletion in cartilage explants after exposure to abnormal mechanical stresses. Porcine cartilage explants were treated every 48 h with tert-butyl hydrogen peroxide (tBHP) at nonlethal concentrations (25, 100, 250, and 500 microM) for a varying number of times (one, two, or four) prior to a bout of unconfined axial compression (5 MPa, 1 Hz, 1800 cycles). When compared with untreated controls, tBHP had significant positive effects on post-compression viability, lactate production, and proteoglycan losses. Overall, the most effective regime was 100 microM tBHP applied four times. RNA analysis revealed significant effects of 100 microM tBHP on gene expression. Catalase, hypoxia-inducible factor-1alpha (HIF-1alpha), and glyceraldehyde 6-phosphate dehydrogenase (GAPDH) were significantly increased relative to untreated controls in explants treated four times with 100 microM tBHP, a regime that also resulted in a significant decrease in matrix metalloproteinase-3 (MMP-3) expression. These findings demonstrate that repeated exposure of cartilage to sublethal concentrations of peroxide can moderate the acute effects of mechanical stress, a conclusion supported by evidence of peroxide-induced changes in gene expression that could render chondrocytes more resistant to oxidative damage. PMID:20058262

  6. Predicting the radiation tolerance of oxides

    SciTech Connect

    Sickafus, K.; Grimes, R. W.

    2001-01-01

    We have used atomistic computer simulations and ion beam irradiations to examine radiation damage accumulation in multicomponent oxides, We have developed contour energy maps via computer simulations to predict the effects of oxide structure and chemical composition on radiation-induced atomic disorder, defect migration, and swelling. Ion irradiation damage experiments have been perfonned on, pyrochlore and fluorite-structured oxide ceramics to test the predictions from computer models.

  7. Protective Effect of Carvacrol on Oxidative Stress and Cellular DNA Damage Induced by UVB Irradiation in Human Peripheral Lymphocytes.

    PubMed

    Aristatile, Balakrishnan; Al-Numair, Khalid S; Al-Assaf, Abdullah H; Veeramani, Chinnadurai; Pugalendi, Kodukkur Viswanathan

    2015-11-01

    Exposure to ultraviolet B (UVB; 280-320 nm) radiation induces the formation of reactive oxygen species (ROS) in the biological system. In this study, we examined the protective effect of carvacrol on UVB-induced lipid peroxidation and oxidative DNA damage with reference to alterations in cellular an-tioxidant status in human lymphocytes. A series of in vitro assays (hydroxyl radical, superoxide, nitric oxide, DPPH (2,2-Diphenyl-1-picryl hydrazyl), and ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging assays) demonstrate antioxidant property of carvacrol in our study. UVB exposure significantly increased thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides (LHPs), % tail DNA and tail moment; decreased % cell viability and antioxidant status in UVB-irradiated lymphocytes. Treatment with carvacrol 30 min prior to UVB-exposure resulted in a significant decline of TBARS, LHP, % tail DNA, and tail moment and increased % cell viability as carvacrol concentration increased. UVB irradiated lymphocytes with carvacrol alone (at 10 μg/mL) gave no significant change in cell viability, TBARS, LHP, % tail DNA, and tail moment when compared with normal lymphocytes. On the basis of our results, we conclude that carvacrol, a dietary antioxidant, mediates its protective effect through modulation of UVB-induced ROS. PMID:26768646

  8. Ultrasonic assessment of interfacial oxidation damage in ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Chu, Y. C.; Rokhlin, S. I.; Baaklini, G. Y.

    1993-01-01

    A new approach to characterizing oxidation damage in ceramic matrix composites using ultrasonic techniques is proposed. In this approach, the elastic constants of the composite are determined nondestructively by measuring the angular dependence of both longitudinal and transverse wave velocities. A micromechanical model for composites with anisotropic constituents is used to find the anisotropic properties of an effective fiber, which is a combination of the fiber and the interface. Interfacial properties are extracted from the properties of this effective fiber by analyzing the difference between effective and actual fiber properties. Unidirectional /0/28 SiC/Si3N4 composites with 30 percent fiber volume fraction and 30 percent matrix porosity are used. The samples are exposed in a flowing oxygen environment at elevated temperatures, up to 1400 C, for 100 hours and then measured by ultrasonic methods at room temperature. The Young's modulus in the fiber direction of the sample oxidized at 600 C decreased significantly but it was unchanged for samples oxidized at temperatures above 1200 C. The transverse moduli obtained from ultrasonic measurements decrease continuously up to 1200 C. The shear stiffnesses show behavior similar to the transverse moduli. The effective elastic moduli of the interfacial carbon coating are determined from the experimental data, and their change due to thermal oxidation is discussed.

  9. Poor outcome in radiation-induced constrictive pericarditis

    SciTech Connect

    Karram, T.; Rinkevitch, D.; Markiewicz, W. )

    1993-01-15

    The purpose was to compare the outcome of patients with radiation-induced constrictive pericarditis versus patients with constiction due to another etiology. Twenty patients with constrictive pericarditis were seen during 1975-1986 at a single medical center. Six had radiation-induced constrictive pericarditis (Group A). The etiology was idiopathic in ten subjects and secondary to carcinomatous encasement, chronic renal failure, purulent infection and tuberculosis in one patient each (Group B, N = 14). Meang age was 53.4 [+-] 15.5 years. Extensive pericardiectomy was performed in 3/6 Group A and 13/14 Group B patients. All Group A patients died, 4 weeks - 11 years post-diagnosis (median = 10 months). Two Group A patients died suddenly, one died post-operatively of respiratory failure, another of pneumonia and two of recurrent carcinoma. Thirteen Group B patients are alive (median follow-up = 72 months). The only death in this group was due to metastatic cancer. The poor outcome with radiation-induced constriction is probably multi-factorial. Poor surgical outcome is to be expected in patients with evidence of recurrent tumor, high-dose irradiation, pulmonary fibrosis or associated radiation-induced myocardinal, valvular or coronary damage.

  10. Benzoyl peroxide increases UVA-induced plasma membrane damage and lipid oxidation in murine leukemia L1210 cells.

    PubMed

    Ibbotson, S H; Lambert, C R; Moran, M N; Lynch, M C; Kochevar, I E

    1998-01-01

    Ultraviolet A radiation induces oxidative stress and cell damage. The purpose of this investigation was to examine whether ultraviolet A-induced cell injury was amplified by the presence of a non-ultraviolet A absorbing molecule capable of generating free radicals. Benzoyl peroxide was used as a lipid soluble potential radical-generating agent. Plasma membrane permeability assessed by trypan blue uptake was used to measure cell damage in murine leukemia L1210 cells. Cells were irradiated with a pulsed Nd/YAG laser at 355 nm using 0-160 J per cm2. The ratio of the fluence-response slope in the presence of 40 microM benzoyl peroxide to that of irradiated controls was 4.3 +/- 2.6. Benzoyl peroxide alone or benzoyl peroxide added after irradiation did not cause increased trypan blue uptake. The ratio of the fluence-response slopes in the presence of 40 microM benzoyl peroxide to that of irradiated controls was 4.7 +/- 1.4 when cells were irradiated (0-43 J per cm2) with a xenon lamp, filtered to remove wavelengths <320 nm. The increased trypan blue uptake in 355 nm-irradiated cells in the presence of benzoyl peroxide was inhibited in a concentration-dependent manner by butylated hydroxytoluene, vitamin E, and trolox, a water-soluble vitamin E derivative. Lipid oxidation, assessed as thiobarbituric acid reactive substances, was significantly increased in samples irradiated with ultraviolet A in the presence of benzoyl peroxide at fluences >34 J per cm2. The increased trypan blue uptake and thiobarbituric acid reactive substances were inhibited by butylated hydroxytoluene. These results suggest that agents not absorbing ultraviolet A radiation may enhance ultraviolet A-initiated oxidative stress in cells. PMID:9424093

  11. Liposomal Antioxidants for Protection against Oxidant-Induced Damage

    PubMed Central

    Suntres, Zacharias E.

    2011-01-01

    Reactive oxygen species (ROS), including superoxide anion, hydrogen peroxide, and hydroxyl radical, can be formed as normal products of aerobic metabolism and can be produced at elevated rates under pathophysiological conditions. Overproduction and/or insufficient removal of ROS result in significant damage to cell structure and functions. In vitro studies showed that antioxidants, when applied directly and at relatively high concentrations to cellular systems, are effective in conferring protection against the damaging actions of ROS, but results from animal and human studies showed that several antioxidants provide only modest benefit and even possible harm. Antioxidants have yet to be rendered into reliable and safe therapies because of their poor solubility, inability to cross membrane barriers, extensive first-pass metabolism, and rapid clearance from cells. There is considerable interest towards the development of drug-delivery systems that would result in the selective delivery of antioxidants to tissues in sufficient concentrations to ameliorate oxidant-induced tissue injuries. Liposomes are biocompatible, biodegradable, and nontoxic artificial phospholipid vesicles that offer the possibility of carrying hydrophilic, hydrophobic, and amphiphilic molecules. This paper focus on the use of liposomes for the delivery of antioxidants in the prevention or treatment of pathological conditions related to oxidative stress. PMID:21876690

  12. Fisetin Protects DNA Against Oxidative Damage and Its Possible Mechanism

    PubMed Central

    Wang, Tingting; Lin, Huajuan; Tu, Qian; Liu, Jingjing; Li, Xican

    2016-01-01

    Purpose: The paper tries to assess the protective effect of fisetin against •OH-induced DNA damage, then to investigate the possible mechanism. Methods: The protective effect was evaluated based on the content of malondialdehyde (MDA). The possible mechanism was analyzed using various antioxidant methods in vitro, including •OH scavenging (deoxyribose degradation), •O2- scavenging (pyrogallol autoxidation), DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays. Results: Fisetin increased dose-dependently its protective percentages against •OH-induced DNA damage (IC50 value =1535.00±29.60 µM). It also increased its radical-scavenging percentages in a dose-dependent manner in various antioxidants assays. Its IC50 values in •OH scavenging, •O2- scavenging, DPPH• scavenging, ABTS•+ scavenging, and Cu2+-reducing power assays, were 47.41±4.50 µM, 34.05±0.87 µM, 9.69±0.53 µM, 2.43±0.14 µM, and 1.49±0.16 µM, respectively. Conclusion: Fisetin can effectively protect DNA against •OH-induced oxidative damage possibly via reactive oxygen species (ROS) scavenging approach, which is assumed to be hydrogen atom (H•) and/or single electron (e) donation (HAT/SET) pathways. In the HAT pathway, the 3’,4’-dihydroxyl moiety in B ring of fisetin is thought to play an important role, because it can be ultimately oxidized to a stable ortho-benzoquinone form. PMID:27478791

  13. Pathophysiology of Bronchoconstriction: Role of Oxidatively Damaged DNA Repair

    PubMed Central

    Bacsi, Attila; Pan, Lang; Ba, Xueqing; Boldogh, Istvan

    2016-01-01

    Purpose of review To provide an overview on the present understanding of roles of oxidative DNA damage repair in cell signaling underlying bronchoconstriction common to, but not restricted to various forms of asthma and chronic obstructive pulmonary disease Recent findings Bronchoconstriction is a tightening of smooth muscle surrounding the bronchi and bronchioles with consequent wheezing and shortness of breath. Key stimuli include air pollutants, viral infections, allergens, thermal and osmotic changes, and shear stress of mucosal epithelium, triggering a wide range of cellular, vascular and neural events. Although activation of nerve fibers, the role of G-proteins, protein kinases and Ca++, and molecular interaction within contracting filaments of muscle are well defined, the overarching mechanisms by which a wide range of stimuli initiate these events are not fully understood. Many, if not all, stimuli increase levels of reactive oxygen species (ROS), which are signaling and oxidatively modifying macromolecules, including DNA. The primary ROS target in DNA is guanine, and 8-oxoguanine is one of the most abundant base lesions. It is repaired by 8-oxoguanine DNA glycosylase1 (OGG1) during base excision repair processes. The product, free 8-oxoG base, is bound by OGG1 with high affinity, and the complex then functions as an activator of small GTPases, triggering pathways for inducing gene expression and contraction of intracellular filaments in mast and smooth muscle cells. Summary Oxidative DNA damage repair-mediated cell activation signaling result in gene expression that “primes” the mucosal epithelium and submucosal tissues to generate mediators of airway smooth muscle contractions. PMID:26694039

  14. Heavy-ion radiation induced bystander effect in mice

    NASA Astrophysics Data System (ADS)

    Liang, Shujian; Sun, Yeqing; Zhang, Meng; Wang, Wei; Cui, Changna

    2012-07-01

    Radiation-induced bystander effect is defined as the induction of damage in neighboring non-hit cells by signals released from directly-irradiated cells. Recently, Low dose of high LET radiation induced bystander effects in vivo have been reported more and more. It has been indicated that radiation induced bystander effect was localized not only in bystander tissues but also in distant organs. Genomic, epigenetic, metabolomics and proteomics play significant roles in regulating heavy-ion radiation stress responses in mice. To identify the molecular mechanism that underlies bystander effects of heavy-ion radiation, the male mice head were exposed to 2000mGy dose of 12C heavy-ion radiation and the distant organ liver was detected on 1h, 6h, 12h and 24h after radiation, respectively. MSAP was used to monitor the level of polymorphic DNA methylation changes. The results show that heavy-ion irradiate mouse head can induce liver DNA methylation changes significantly. The percent of DNA methylation changes are time-dependent and highest at 6h after radiation. We also prove that the hypo-methylation changes on 1h and 6h after irradiation. But the expression level of DNA methyltransferase DNMT3a is not changed. UPLC/Synapt HDMS G2 was employed to detect the proteomics of bystander liver 1h after irradiation. 64 proteins are found significantly different between treatment and control group. GO process show that six of 64 which were unique in irradiation group are associated with apoptosis and DNA damage response. The results suggest that mice head exposed to heavy-ion radiation can induce damage and methylation pattern changed in distant organ liver. Moreover, our findings are important to understand the molecular mechanism of radiation induced bystander effects in vivo.

  15. Protective Effect of Folic Acid on Oxidative DNA Damage

    PubMed Central

    Guo, Xiaojuan; Cui, Huan; Zhang, Haiyang; Guan, Xiaoju; Zhang, Zheng; Jia, Chaonan; Wu, Jia; Yang, Hui; Qiu, Wenting; Zhang, Chuanwu; Yang, Zuopeng; Chen, Zhu; Mao, Guangyun

    2015-01-01

    Abstract Although previous reports have linked DNA damage with both transmissions across generations as well as our own survival, it is unknown how to reverse the lesion. Based on the data from a Randomized, Double-blind, Placebo Controlled Clinical Trial, this study aimed to assess the efficacy of folic acid supplementation (FAS) on DNA oxidative damage reversal. In this randomized clinical trial (RCT), a total of 450 participants were enrolled and randomly assigned to 3 groups to receive folic acid (FA) 0.4 mg/day (low-FA), 0.8 mg/day (high-FA), or placebo (control) for 8 weeks. The urinary 8-hydroxy-2’-deoxyguanosine (8-OHdG) and creatinine (Cr) concentration at pre- and post-FAS were measured with modified enzyme-linked immunosorbent assay (ELISA) and high-performance liquid chromatography (HPLC), respectively. A multivariate general linear model was applied to assess the individual effects of FAS and the joint effects between FAS and hypercholesterolemia on oxidative DNA damage improvement. This clinical trial was registered with ClinicalTrials.gov, number NCT02235948. Of the 438 subjects that received FA fortification or placebo, the median (first quartile, third quartile) of urinary 8-OHdG/Cr for placebo, low-FA, and high-FA groups were 58.19 (43.90, 82.26), 53.51 (38.97, 72.74), 54.73 (39.58, 76.63) ng/mg at baseline and 57.77 (44.35, 81.33), 51.73 (38.20, 71.30), and 50.65 (37.64, 76.17) ng/mg at the 56th day, respectively. A significant decrease of urinary 8-OHdG was observed after 56 days FA fortification (P < 0.001). Compared with the placebo, after adjusting for some potential confounding factors, including the baseline urinary 8-OHdG/Cr, the urinary 8-OHdG/Cr concentration significantly decreased after 56 days FAS [β (95% confidence interval) = −0.88 (−1.62, −0.14) and P = 0.020 for low-FA; and β (95% confidence interval) = −2.68 (−3.42, −1.94) and P < 0.001 for high-FA] in a dose-response fashion (Ptrend

  16. Evaluation of Oxidation Damage in Thermal Barrier Coating Systems

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1996-01-01

    A method based on the technique of dilatometry has been established to quantitatively evaluate the interfacial damage due to the oxidation in a thermal barrier coating system. Strain isolation and adhesion coefficients have been proposed to characterize the thermal barrier coating (TBC) performance based on its thermal expansion behavior. It has been found that, for a thermal barrier coating system consisting of ZrO2-8%Y2O3/FeCrAlY/4140 steel substrate, the oxidation of the bond coat and substrate significantly reduced the ceramic coating adherence, as inferred from the dilatometry measurements. The in-situ thermal expansion measurements under 30 deg C to 700 deg C thermal cycling in air showed that the adhesion coefficient, A(sub i) decreased by 25% during the first 35 oxidation cycles. Metallography showed that delamination occurred at both the ceramic/bond coat and bond coat/substrate interfaces. In addition, the strain isolation effect has been improved by increasing the FeCrAlY bond coat thickness. The strain isolation coefficient, Si, increased from about 0.04 to 0.25, as the bond coat thickness changed from 0.1 mm to 1.0 mm. It may be possible to design optimum values of strain isolation and interface adhesion coefficients to achieve the best TBC performance.

  17. Detecting Radiation-Induced Injury Using Rapid 3D Variogram Analysis of CT Images of Rat Lungs

    SciTech Connect

    Jacob, Rick E.; Murphy, Mark K.; Creim, Jeffrey A.; Carson, James P.

    2013-10-01

    A new heterogeneity analysis approach to discern radiation-induced lung damage was tested on CT images of irradiated rats. The method, combining octree decomposition with variogram analysis, demonstrated a significant correlation with radiation exposure levels, whereas conventional measurements and pulmonary function tests did not. The results suggest the new approach may be highly sensitive for assessing even subtle radiation-induced changes

  18. Molecular targets in radiation-induced blood-brain barrier disruption

    SciTech Connect

    Nordal, Robert A.; Wong, C. Shun . E-mail: shun.wang@sw.ca

    2005-05-01

    Disruption of the blood-brain barrier (BBB) is a key feature of radiation injury to the central nervous system. Studies suggest that endothelial cell apoptosis, gene expression changes, and alteration of the microenvironment are important in initiation and progression of injury. Although substantial effort has been directed at understanding the impact of radiation on endothelial cells and oligodendrocytes, growing evidence suggests that other cell types, including astrocytes, are important in responses that include induced gene expression and microenvironmental changes. Endothelial apoptosis is important in early BBB disruption. Hypoxia and oxidative stress in the later period that precedes tissue damage might lead to astrocytic responses that impact cell survival and cell interactions. Cell death, gene expression changes, and a toxic microenvironment can be viewed as interacting elements in a model of radiation-induced disruption of the BBB. These processes implicate particular genes and proteins as targets in potential strategies for neuroprotection.

  19. 20-Hydroxyecdysone prevents oxidative stress damage in adult Pyrrhocoris apterus.

    PubMed

    Krishnan, Natraj; Vecera, Josef; Kodrík, Dalibor; Sehnal, Frantisek

    2007-07-01

    Injections of 38 pmol paraquat (1,1'-dimethyl-4,4'-bypyridilium) into adult Pyrrhocoris apterus (average body weight 29.6 mg in males and 36.9 mg in females) caused a significant elevation of lipid peroxidation and protein carbonylation and a decline of membrane fluidity in the microsomal brain fraction. Another manifestation of oxidative stress was a depletion of the reduced glutathione pool and reduction of the gamma-glutamyl transpeptidase activity in the brain extracts. The damaging action of paraquat on the brain was counteracted by simultaneous injection of 1 pmol 20-hydroxyecdysone (20E). 20E restrained lipid peroxidation and the formation of protein carbonyls, ameliorated changes in microsomal membrane fluidity, enhanced the level of reduced glutathione, and upregulated the activity of gamma-glutamyl transpeptidase. At the organismic level, 20E curtailed three detrimental effects caused by paraquat injection: the disappearance of a blood protein, the suppression of fecundity and egg hatchability, and the shortening of adult life span. The data showed that 20E provided a systemic antioxidant protection but the significance of endogenous ecdysteroids in the management of oxidative stress remains to be shown. PMID:17570141

  20. In vitro apoptotic and DNA damaging potential of nanobarium oxide

    PubMed Central

    Alarifi, Saud; Ali, Daoud; Al-Bishri, Widad

    2016-01-01

    Barium oxide nanoparticles (BaONPs) are an important industrial compound and are widely used in polymers and paints. In this study, apoptotic and genotoxic effects of BaONPs in mouse embryonic fibroblast (L929) cells were determined by using single-cell gel test. In vitro cytotoxicity assays were performed to assess BaONPs’ toxicity in L929 cells. Mild cytotoxicity was observed in L929 cells due to BaONPs. BaONPs increased lipid peroxidation, catalase, and superoxide dismutase levels and lowered glutathione levels in L929 cells. This was accompanied by concomitant generation of reactive oxygen species and activation of caspase-3 in BaONPs-treated L929 cells. On the other hand, when we exposed L929 cells to BaONPs for 24 and 48 hours (comet assay), there was a duration- and dose-dependent increase in DNA impairment detected in the single-cell gel test. Thus, BaONPs exhibit genotoxic and apoptotic effects in L929 cells, most likely due to initiation of oxidative damage. PMID:26834473

  1. Electrochemically Reduced Water Protects Neural Cells from Oxidative Damage

    PubMed Central

    Hamasaki, Takeki; Kinjo, Tomoya; Nakamichi, Noboru; Teruya, Kiichiro; Kabayama, Shigeru

    2014-01-01

    Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50–200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca2+ influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW. PMID:25383141

  2. Electrochemically reduced water protects neural cells from oxidative damage.

    PubMed

    Kashiwagi, Taichi; Yan, Hanxu; Hamasaki, Takeki; Kinjo, Tomoya; Nakamichi, Noboru; Teruya, Kiichiro; Kabayama, Shigeru; Shirahata, Sanetaka

    2014-01-01

    Aging-related neurodegenerative disorders are closely associated with mitochondrial dysfunction and oxidative stresses and their incidence tends to increase with aging. Brain is the most vulnerable to reactive species generated by a higher rate of oxygen consumption and glucose utilization compared to other organs. Electrochemically reduced water (ERW) was demonstrated to scavenge reactive oxygen species (ROS) in several cell types. In the present study, the protective effect of ERW against hydrogen peroxide (H2O2) and nitric oxide (NO) was investigated in several rodent neuronal cell lines and primary cells. ERW was found to significantly suppress H2O2 (50-200 μM) induced PC12 and SFME cell deaths. ERW scavenged intracellular ROS and exhibited a protective effect against neuronal network damage caused by 200 μM H2O2 in N1E-115 cells. ERW significantly suppressed NO-induced cytotoxicity in PC12 cells despite the fact that it did not have the ability to scavenge intracellular NO. ERW significantly suppressed both glutamate induced Ca(2+) influx and the resulting cytotoxicity in primary cells. These results collectively demonstrated for the first time that ERW protects several types of neuronal cells by scavenging ROS because of the presence of hydrogen and platinum nanoparticles dissolved in ERW. PMID:25383141

  3. Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis.

    PubMed

    Einor, D; Bonisoli-Alquati, A; Costantini, D; Mousseau, T A; Møller, A P

    2016-04-01

    One mechanism proposed as a link between exposure to ionizing radiation and detrimental effects on organisms is oxidative damage. To test this hypothesis, we surveyed the scientific literature on the effects of chronic low-dose ionizing radiation (LDIR) on antioxidant responses and oxidative damage. We found 40 publications and 212 effect sizes for antioxidant responses and 288 effect sizes for effects of oxidative damage. We performed a meta-analysis of signed and unsigned effect sizes. We found large unsigned effects for both categories (0.918 for oxidative damage; 0.973 for antioxidant response). Mean signed effect size weighted by sample size was 0.276 for oxidative damage and -0.350 for antioxidant defenses, with significant heterogeneity among effects for both categories, implying that ionizing radiation caused small to intermediate increases in oxidative damage and small to intermediate decreases in antioxidant defenses. Our estimates are robust, as shown by very high fail-safe numbers. Species, biological matrix (tissue, blood, sperm) and age predicted the magnitude of effects for oxidative damage as well as antioxidant response. Meta-regression models showed that effect sizes for oxidative damage varied among species and age classes, while effect sizes for antioxidant responses varied among species and biological matrices. Our results are consistent with the description of mechanisms underlying pathological effects of chronic exposure to LDIR. Our results also highlight the importance of resistance to oxidative stress as one possible mechanism associated with variation in species responses to LDIR-contaminated areas. PMID:26851726

  4. Aging-associated oxidized albumin promotes cellular senescence and endothelial damage

    PubMed Central

    Luna, Carlos; Alique, Matilde; Navalmoral, Estefanía; Noci, Maria-Victoria; Bohorquez-Magro, Lourdes; Carracedo, Julia; Ramírez, Rafael

    2016-01-01

    Increased levels of oxidized proteins with aging have been considered a cardiovascular risk factor. However, it is unclear whether oxidized albumin, which is the most abundant serum protein, induces endothelial damage. The results of this study indicated that with aging processes, the levels of oxidized proteins as well as endothelial microparticles release increased, a novel marker of endothelial damage. Among these, oxidized albumin seems to play a principal role. Through in vitro studies, endothelial cells cultured with oxidized albumin exhibited an increment of endothelial damage markers such as adhesion molecules and apoptosis levels. In addition, albumin oxidation increased the amount of endothelial microparticles that were released. Moreover, endothelial cells with increased oxidative stress undergo senescence. In addition, endothelial cells cultured with oxidized albumin shown a reduction in endothelial cell migration measured by wound healing. As a result, we provide the first evidence that oxidized albumin induces endothelial injury which then contributes to the increase of cardiovascular disease in the elderly subjects. PMID:27042026

  5. Nature of radiation-induced defects in quartz

    NASA Astrophysics Data System (ADS)

    Wang, Bu; Yu, Yingtian; Pignatelli, Isabella; Sant, Gaurav; Bauchy, Mathieu

    2015-07-01

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si-O connectivity defects, e.g., small Si-O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E' centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  6. Nature of radiation-induced defects in quartz

    SciTech Connect

    Wang, Bu; Yu, Yingtian; Bauchy, Mathieu; Pignatelli, Isabella; Sant, Gaurav

    2015-07-14

    Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist of over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.

  7. Oxidative damage induced by herbicides is mediated by thiol oxidation and hydroperoxides production.

    PubMed

    Braconi, Daniela; Bernardini, Giulia; Fiorani, Mara; Azzolini, Catia; Marzocchi, Barbara; Proietti, Fabrizio; Collodel, Giulia; Santucci, Annalisa

    2010-08-01

    Toxicological and environmental issues are associated with the extensive use of agricultural pesticides, although the knowledge of their toxic effects as commercial formulations is still far from being complete. This work investigated the impact of three herbicides as commercial formulations on the oxidative status of a wild type Saccharomyces cerevisiae strain. With yeast being a well-established model of eukaryotic cells, especially as far as regards the stress response, these results may be indicative of potential damages on higher eukaryotes. It was found that herbicide-mediated toxicity towards yeast cells could be the result of an increased production of hydroperoxides (like in the case of the herbicides Pointer and Silglif) or advanced oxidation protein products and lipid peroxidation (especially in the case of the herbicide Proper Energy). Through a redox-proteomic approach it was found also that, besides a common signature, each herbicide showed a specific pattern for protein thiols oxidation. PMID:20528566

  8. Radiation-induced physical changes in UHMWPE implant components.

    PubMed

    Naidu, S H; Bixler, B L; Moulton, M J

    1997-02-01

    Post-irradiation aging of ultra-high molecular weight polyethylene (UHMWPE) is not well understood. Retrieval studies and in vitro aged specimens have shown oxidative changes along with increases in crystallinity. Critical analysis and review of the polymer science and polymer physics literature shows that while oxidation may be important during the first year post-irradiation, subsequent aging occurs because of initial gamma radiation-induced chain scission leading to eventual isothermal crystallization of polymer chains in the amorphous regions of the UHMWPE bulk. Mechanical properties of aged UHMWPE are not as yet clear and, until such data become available, gamma irradiation sterilization must be used with caution. PMID:9048391

  9. CONDITIONS INFLUENCING YIELD AND ANALYSIS OF 8-HYDROXY-2'-DEOXYGUANOSINE IN OXIDATIVELY DAMAGED DNA

    EPA Science Inventory

    We have conducted studies to obtain practical knowledge regarding the stability, digestion, and analytical determination of the content of 8-hydroxy-2-deoxyguanosine (8-OHdG) in oxidatively damaged DNA. tilizing H2O2 plus uv light to form oxidatively damaged DNA, we found that st...

  10. Pyruvate metabolism: A therapeutic opportunity in radiation-induced skin injury

    SciTech Connect

    Yoo, Hyun; Kang, Jeong Wook; Lee, Dong Won; Oh, Sang Ho; Lee, Yun-Sil; Lee, Eun-Jung; Cho, Jaeho

    2015-05-08

    Ionizing radiation is used to treat a range of cancers. Despite recent technological progress, radiation therapy can damage the skin at the administration site. The specific molecular mechanisms involved in this effect have not been fully characterized. In this study, the effects of pyruvate, on radiation-induced skin injury were investigated, including the role of the pyruvate dehydrogenase kinase 2 (PDK2) signaling pathway. Next generation sequencing (NGS) identified a wide range of gene expression differences between the control and irradiated mice, including reduced expression of PDK2. This was confirmed using Q-PCR. Cell culture studies demonstrated that PDK2 overexpression and a high cellular pyruvate concentration inhibited radiation-induced cytokine expression. Immunohistochemical studies demonstrated radiation-induced skin thickening and gene expression changes. Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness and inflammatory cytokine expression. These findings indicated that regulation of the pyruvate metabolic pathway could provide an effective approach to the control of radiation-induced skin damage. - Highlights: • The effects of radiation on skin thickness in mice. • Next generation sequencing revealed that radiation inhibited pyruvate dehydrogenase kinase 2 expression. • PDK2 inhibited irradiation-induced cytokine gene expression. • Oral pyruvate treatment markedly downregulated radiation-induced changes in skin thickness.

  11. Radiation-induced sarcoma of the thyroid

    SciTech Connect

    Griem, K.L.; Robb, P.K.; Caldarelli, D.D.; Templeton, A.C. )

    1989-08-01

    A 23-year-old white man presented with a thyroid mass 12 years after receiving high-dose radiotherapy for a T2 and N1 lymphoepithelioma of the nasopharynx. Following subtotal thyroidectomy, a histopathologic examination revealed liposarcoma of the thyroid gland. The relationship between sarcomas and irradiation is described and Cahan and colleagues' criteria for radiation-induced sarcomas are reviewed. To our knowledge, we are presenting the first such case of a radiation-induced sarcoma of the thyroid gland.

  12. Radiation-induced neoplasms of the brain

    SciTech Connect

    Kumar, P.P.; Good, R.R.; Skultety, F.M.; Leibrock, L.G.; Severson, G.S.

    1987-04-01

    The histopathology of two patients with radiation-induced neoplasms of the brain following therapeutic irradiation for intracranial malignancies is described. The second neoplasms were an atypical meningioma and a polymorphous cell sarcoma, respectively. They occurred 12 and 23 years after irradiation (4000 rad), within the original field of irradiation. In both cases, the radiation-induced tumors were histologically distinct from the initial medulloblastomas. Both patients were retreated with local irradiation using permanent implantation of radioactive iodine-125 seeds.

  13. An Update on Oxidative Damage to Spermatozoa and Oocytes

    PubMed Central

    Opuwari, Chinyerum S.; Henkel, Ralf R.

    2016-01-01

    On the one hand, reactive oxygen species (ROS) are mandatory mediators for essential cellular functions including the function of germ cells (oocytes and spermatozoa) and thereby the fertilization process. However, the exposure of these cells to excessive levels of oxidative stress by too high levels of ROS or too low levels of antioxidative protection will render these cells dysfunctional thereby failing the fertilization process and causing couples to be infertile. Numerous causes are responsible for the delicate bodily redox system being out of balance and causing disease and infertility. Many of these causes are modifiable such as lifestyle factors like obesity, poor nutrition, heat stress, smoking, or alcohol abuse. Possible correctable measures include foremost lifestyle changes, but also supplementation with antioxidants to scavenge excessive ROS. However, this should only be done after careful examination of the patient and establishment of the individual bodily antioxidant needs. In addition, other corrective measures include sperm separation for assisted reproductive techniques. However, these techniques have to be carried out very carefully as they, if applied wrongly, bear risks of generating ROS damaging the germ cells and preventing fertilization. PMID:26942204

  14. Modified hydroxyethyl starch protects cells from oxidative damage.

    PubMed

    Filippov, Sergey K; Sergeeva, Olga Yu; Vlasov, Petr S; Zavyalova, Margarita S; Belostotskaya, Galina B; Garamus, Vasil M; Khrustaleva, Raisa S; Stepanek, Petr; Domnina, Nina S

    2015-12-10

    This article describes the synthesis of novel starch-antioxidant conjugates, which show great potential for biomedical applications to protect cells from oxidative damage. These conjugates were synthesized by the modification of a hydroxyethyl starch (molecular weight=200,000g/mol) with various sterically hindered phenols that differ in radical scavenging activity. They possess substantial radical scavenging activity toward a model free radical. It was found that the polymer conjugate conformation depends on the antioxidant structure and degree of substitution. We constructed the complete conformational phase behavior for the polymers with increasing degrees of substitution from small-angle neutron scattering data. It was observed that the conjugate conformation changes are the result of water shifting from a thermodynamically favorable solvent to an unfavorable one, a process that then leads to compaction of the conjugate. We selected the conjugates that possess high substitution degree but still exhibit coil conformation for biological studies. The high efficiency of the conjugates was confirmed by different in vitro (hypotonic hemolysis of erythrocytes/osmotic resistance of erythrocytes and the change of [Ca(2+)]i inside freshly isolated cardiomyocytes) and in vivo (acute hemorrhage/massive blood loss) methods. PMID:26428130

  15. Transgenic Mouse Model for Reducing Oxidative Damage in Bone

    NASA Technical Reports Server (NTRS)

    Schreurs, A.-S.; Torres, S.; Truong, T.; Kumar, A.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.

    2014-01-01

    Exposure to musculoskeletal disuse and radiation result in bone loss; we hypothesized that these catabolic treatments cause excess reactive oxygen species (ROS), and thereby alter the tight balance between bone resorption by osteoclasts and bone formation by osteoblasts, culminating in bone loss. To test this, we used transgenic mice which over-express the human gene for catalase, targeted to mitochondria (MCAT). Catalase is an anti-oxidant that converts the ROS hydrogen peroxide into water and oxygen. MCAT mice were shown previously to display reduced mitochondrial oxidative stress and radiosensitivity of the CNS compared to wild type controls (WT). As expected, MCAT mice expressed the transgene in skeletal tissue, and in marrow-derived osteoblasts and osteoclast precursors cultured ex vivo, and also showed greater catalase activity compared to wildtype (WT) mice (3-6 fold). Colony expansion in marrow cells cultured under osteoblastogenic conditions was 2-fold greater in the MCAT mice compared to WT mice, while the extent of mineralization was unaffected. MCAT mice had slightly longer tibiae than WT mice (2%, P less than 0.01), although cortical bone area was slightly lower in MCAT mice than WT mice (10%, p=0.09). To challenge the skeletal system, mice were treated by exposure to combined disuse (2 wk Hindlimb Unloading) and total body irradiation Cs(137) (2 Gy, 0.8 Gy/min), then bone parameters were analyzed by 2-factor ANOVA to detect possible interaction effects. Treatment caused a 2-fold increase (p=0.015) in malondialdehyde levels of bone tissue (ELISA) in WT mice, but had no effect in MCAT mice. These findings indicate that the transgene conferred protection from oxidative damage caused by treatment. Unexpected differences between WT and MCAT mice emerged in skeletal responses to treatment.. In WT mice, treatment did not alter osteoblastogenesis, cortical bone area, moment of inertia, or bone perimeter, whereas in MCAT mice, treatment increased these

  16. Caryocar brasiliense camb protects against genomic and oxidative damage in urethane-induced lung carcinogenesis

    PubMed Central

    Colombo, N.B.R.; Rangel, M.P.; Martins, V.; Hage, M.; Gelain, D.P.; Barbeiro, D.F.; Grisolia, C.K.; Parra, E.R.; Capelozzi, V.L.

    2015-01-01

    The antioxidant effects of Caryocar brasiliense Camb, commonly known as the pequi fruit, have not been evaluated to determine their protective effects against oxidative damage in lung carcinogenesis. In the present study, we evaluated the role of pequi fruit against urethane-induced DNA damage and oxidative stress in forty 8-12 week old male BALB/C mice. An in vivo comet assay was performed to assess DNA damage in lung tissues and changes in lipid peroxidation and redox cycle antioxidants were monitored for oxidative stress. Prior supplementation with pequi oil or its extract (15 µL, 60 days) significantly reduced urethane-induced oxidative stress. A protective effect against DNA damage was associated with the modulation of lipid peroxidation and low protein and gene expression of nitric oxide synthase. These findings suggest that the intake of pequi fruit might protect against in vivo genotoxicity and oxidative stress. PMID:26200231

  17. Monosodium glutamate-induced oxidative kidney damage and possible mechanisms: a mini-review.

    PubMed

    Sharma, Amod

    2015-01-01

    Animal studies suggest that chronic monosodium glutamate (MSG) intake induces kidney damage by oxidative stress. However, the underlying mechanisms are still unclear, despite the growing evidence and consensus that α-ketoglutarate dehydrogenase, glutamate receptors and cystine-glutamate antiporter play an important role in up-regulation of oxidative stress in MSG-induced renal toxicity. This review summaries evidence from studies into MSG-induced renal oxidative damage, possible mechanisms and their importance from a toxicological viewpoint. PMID:26493866

  18. Effects of Lycium barbarum Polysaccharides on Apoptosis, Cellular Adhesion, and Oxidative Damage in Bone Marrow Mononuclear Cells of Mice Exposed to Ionizing Radiation Injury

    PubMed Central

    Zhou, Jing; Pang, Hua; Li, Wenbo; Liu, Qiong; Xu, Lu; Liu, Qian; Liu, Ying

    2016-01-01

    Lycium barbarum has been used for more than 2500 years as a traditional herb and food in China. We investigated the effects of Lycium barbarum polysaccharides (LBP) on apoptosis, oxidative damage, and expression of adhesion molecules in bone marrow mononuclear cells (BMNC) of mice injured by ionizing radiation. Kunming mice were exposed to X-rays; then mice in the LBP groups were continuously injected with various concentrations of LBP intraperitoneally for 14 days. Mice in the control group were continuously injected with normal saline (NS) by the same route for 14 days. A normal group was set up. After 1, 7, and 14 days of treatment, mice were killed and BMNC were extracted. Cell cycle, apoptosis, and the expression of adhesion molecules CD44 and CD49d were detected by flow cytometry. The levels of malondialdehyde (MDA) and superoxide dismutase (SOD) were identified by colorimetric analyses. LBP significantly decreased the percentage of G0/G1 phase, apoptosis, MDA level, and expression of CD44 and CD49d and distinctly increased the activity of SOD. LBP showed a protective effect on BMNC against ionizing radiation-induced apoptosis and oxidative damage and altered the expression of adhesion molecule. PMID:27314019

  19. Polymorphic trial in oxidative damage of arsenic exposed Vietnamese

    SciTech Connect

    Fujihara, Junko; Soejima, Mikiko; Yasuda, Toshihiro; Koda, Yoshiro; Kunito, Takashi; Iwata, Hisato; Tanabe, Shinsuke; Takeshita, Haruo

    2011-10-15

    Arsenic causes DNA damage and changes the cellular capacity for DNA repair. Genes in the base excision repair (BER) pathway influence the generation and repair of oxidative lesions. Single nucleotide polymorphisms (SNPs) in human 8-oxoguanine DNA glycosylase (hOGG1) Ser326Cys; apurinic/apyrimidinic endonuclease (APE1) Asp148Glu; X-ray and repair and cross-complementing group 1 (XRCC1) Arg280His and Arg399Gln in the BER genes were analyzed, and the relationship between these 4 SNPs and the urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) concentrations of 100 Vietnamese population exposed to arsenic was investigated. Individuals with hOGG1 326Cys/Cys showed significantly higher urinary 8-OHdG concentrations than did those with 326 Ser/Cys and Ser/Ser. As for APE1 Asp148Glu, heterozygous subjects showed significantly higher urinary 8-OHdG concentrations than did those homozygous for Asp/Asp. Moreover, global ethnic comparison of the allelic frequencies of the 4SNPs was performed in 10 population and previous reported data. The mutant allele frequencies of hOGG1 Ser326Cys in the Asian populations were higher than those in the African and Caucasian populations. As for APE1 Asp148Glu, Caucasians showed higher mutant frequencies than those shown by African and Asian populations. Among Asian populations, the Bangladeshi population showed relatively higher mutant allele frequencies of the APE1 Asp148Glu polymorphism. This study is the first to demonstrate the existence of genetic heterogeneity in a worldwide distribution of SNPs (hOGG1 Ser326Cys, APE1 Asp148Glu, XRCC1 Arg280His, and XRCC1 Arg399Gln) in the BER genes. - Highlights: > We showed that hOGG1 and APE1 are associated with urinary 8-OHdG concentrations. > We showed the existence of inter-ethnic differences in hOGG1 and APE1 polymorphism. > These polymorphisms is a genetic marker of susceptibility to oxidative stress.

  20. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review

    PubMed Central

    BLOKHINA, OLGA; VIROLAINEN, EIJA; FAGERSTEDT, KURT V.

    2003-01-01

    Oxidative stress is induced by a wide range of environmental factors including UV stress, pathogen invasion (hypersensitive reaction), herbicide action and oxygen shortage. Oxygen deprivation stress in plant cells is distinguished by three physiologically different states: transient hypoxia, anoxia and reoxygenation. Generation of reactive oxygen species (ROS) is characteristic for hypoxia and especially for reoxygenation. Of the ROS, hydrogen peroxide (H2O2) and superoxide (O2·–) are both produced in a number of cellular reactions, including the iron‐catalysed Fenton reaction, and by various enzymes such as lipoxygenases, peroxidases, NADPH oxidase and xanthine oxidase. The main cellular components susceptible to damage by free radicals are lipids (peroxidation of unsaturated fatty acids in membranes), proteins (denaturation), carbohydrates and nucleic acids. Consequences of hypoxia‐induced oxidative stress depend on tissue and/or species (i.e. their tolerance to anoxia), on membrane properties, on endogenous antioxidant content and on the ability to induce the response in the antioxidant system. Effective utilization of energy resources (starch, sugars) and the switch to anaerobic metabolism and the preservation of the redox status of the cell are vital for survival. The formation of ROS is prevented by an antioxidant system: low molecular mass antioxidants (ascorbic acid, glutathione, tocopherols), enzymes regenerating the reduced forms of antioxidants, and ROS‐interacting enzymes such as SOD, peroxidases and catalases. In plant tissues many phenolic compounds (in addition to tocopherols) are potential antioxidants: flavonoids, tannins and lignin precursors may work as ROS‐scavenging compounds. Antioxidants act as a cooperative network, employing a series of redox reactions. Interactions between ascorbic acid and glutathione, and ascorbic acid and phenolic compounds are well known. Under oxygen deprivation stress some contradictory results on the

  1. Combined Treatment With Peroxisome Proliferator-Activated Receptor (PPAR) Gamma Ligands and Gamma Radiation Induces Apoptosis by PPARγ-Independent Up-Regulation of Reactive Oxygen Species-Induced Deoxyribonucleic Acid Damage Signals in Non-Small Cell Lung Cancer Cells

    SciTech Connect

    Han, Eun Jong; Im, Chang-Nim; Park, Seon Hwa; Moon, Eun-Yi; Hong, Sung Hee

    2013-04-01

    Purpose: To investigate possible radiosensitizing activities of the well-known peroxisome proliferator-activated receptor (PPAR)γ ligand ciglitazone and novel PPARγ ligands CAY10415 and CAY10506 in non-small cell lung cancer (NSCLC) cells. Methods and Materials: Radiosensitivity was assessed using a clonogenic cell survival assay. To investigate the mechanism underlying PPARγ ligand-induced radiosensitization, the subdiploid cellular DNA fraction was analyzed by flow cytometry. Activation of the caspase pathway by combined PPARγ ligands and γ-radiation treatment was detected by immunoblot analysis. Reactive oxygen species (ROS) were measured using 2,7-dichlorodihydrofluorescein diacetate and flow cytometry. Results: The 3 PPARγ ligands induced cell death and ROS generation in a PPARγ-independent manner, enhanced γ-radiation–induced apoptosis and caspase-3–mediated poly (ADP-ribose) polymerase (PARP) cleavage in vitro. The combined PPARγ ligand/γ-radiation treatment triggered caspase-8 activation, and this initiator caspase played an important role in the combination-induced apoptosis. Peroxisome proliferator-activated receptor-γ ligands may enhance the γ-radiation-induced DNA damage response, possibly by increasing γ-H2AX expression. Moreover, the combination treatment significantly increased ROS generation, and the ROS scavenger N-acetylcysteine inhibited the combined treatment-induced ROS generation and apoptotic cell death. Conclusions: Taken together, these results indicated that the combined treatment of PPARγ ligands and γ-radiation synergistically induced DNA damage and apoptosis, which was regulated by ROS.

  2. Oxidative DNA damage caused by inflammation may link to stress-induced non-targeted effects

    PubMed Central

    Sprung, Carl N.; Ivashkevich, Alesia; Forrester, Helen B.; Redon, Christophe E.; Georgakilas, Alexandros; Martin, Olga A.

    2013-01-01

    A spectrum of radiation-induced non-targeted effects has been reported during the last two decades since Nagasawa and Little first described a phenomenon in cultured cells that was later called the “bystander effect”. These non-targeted effects include radiotherapy-related abscopal effects, where changes in organs or tissues occur distant from the irradiated region. The spectrum of non-targeted effects continue to broaden over time and now embrace many types of exogenous and endogenous stressors that induce a systemic genotoxic response including a widely studied tumor microenvironment. Here we discuss processes and factors leading to DNA damage induction in non-targeted cells and tissues and highlight similarities in the regulation of systemic effects caused by different stressors. PMID:24041866

  3. Clustered DNA damages induced in human hematopoietic cells by low doses of ionizing radiation

    NASA Technical Reports Server (NTRS)

    Sutherland, Betsy M.; Bennett, Paula V.; Cintron-Torres, Nela; Hada, Megumi; Trunk, John; Monteleone, Denise; Sutherland, John C.; Laval, Jacques; Stanislaus, Marisha; Gewirtz, Alan

    2002-01-01

    Ionizing radiation induces clusters of DNA damages--oxidized bases, abasic sites and strand breaks--on opposing strands within a few helical turns. Such damages have been postulated to be difficult to repair, as are double strand breaks (one type of cluster). We have shown that low doses of low and high linear energy transfer (LET) radiation induce such damage clusters in human cells. In human cells, DSB are about 30% of the total of complex damages, and the levels of DSBs and oxidized pyrimidine clusters are similar. The dose responses for cluster induction in cells can be described by a linear relationship, implying that even low doses of ionizing radiation can produce clustered damages. Studies are in progress to determine whether clusters can be produced by mechanisms other than ionizing radiation, as well as the levels of various cluster types formed by low and high LET radiation.

  4. Interactions between Biliverdin, Oxidative Damage, and Spleen Morphology after Simulated Aggressive Encounters in Veiled Chameleons

    PubMed Central

    Butler, Michael W.; Ligon, Russell A.

    2015-01-01

    Stressors frequently increase oxidative damage–unless organisms simultaneously mount effective antioxidant responses. One putative mitigative mechanism is the use of biliverdin, an antioxidant produced in the spleen during erythrocyte degradation. We hypothesized that both wild and captive-bred male veiled chameleons (Chamaeleo calyptratus), which are highly aggressive to conspecifics, would respond to agonistic displays with increased levels of oxidative damage, but that increased levels of biliverdin would limit this increase. We found that even just visual exposure to a potential combatant resulted in decreased body mass during the subsequent 48-hour period, but that hematocrit, biliverdin concentration in the bile, relative spleen size, and oxidative damage in plasma, liver, and spleen were unaffected. Contrary to our predictions, we found that individuals with smaller spleens exhibited greater decreases in hematocrit and higher bile biliverdin concentrations, suggesting a revision to the idea of spleen-dependent erythrocyte processing. Interestingly, individuals with larger spleens had reduced oxidative damage in both the liver and spleen, demonstrating the spleen’s importance in modulating oxidative damage. We also uncovered differences in spleen size and oxidative damage between wild and captive-bred chameleons, highlighting environmentally dependent differences in oxidative physiology. Lastly, we found no relationship between oxidative damage and biliverdin concentration, calling into question biliverdin’s antioxidant role in this species. PMID:26368930

  5. Experimental Study on Radiation Induced Boiling Enhancement for Stainless Steel Plate

    SciTech Connect

    Koji Okamoto; Hiroshi Akiyama; Haruki Madarame; Tomoji Takamasa

    2002-07-01

    The Radiation Induced Boiling Enhancement phenomena (RIBE) were confirmed using the SUS304 foil. The SUS304 with plasma oxidized surface shows higher CHF, i.e., about 20% improvement. While, the natural and mixed gas oxidized surface does not show the boiling enhancement. The RIBE has been highly related to the surface conditions. (authors)

  6. Nitric Oxide Suppresses β-Cell Apoptosis by Inhibiting the DNA Damage Response.

    PubMed

    Oleson, Bryndon J; Broniowska, Katarzyna A; Naatz, Aaron; Hogg, Neil; Tarakanova, Vera L; Corbett, John A

    2016-08-01

    Nitric oxide, produced in pancreatic β cells in response to proinflammatory cytokines, plays a dual role in the regulation of β-cell fate. While nitric oxide induces cellular damage and impairs β-cell function, it also promotes β-cell survival through activation of protective pathways that promote β-cell recovery. In this study, we identify a novel mechanism in which nitric oxide prevents β-cell apoptosis by attenuating the DNA damage response (DDR). Nitric oxide suppresses activation of the DDR (as measured by γH2AX formation and the phosphorylation of KAP1 and p53) in response to multiple genotoxic agents, including camptothecin, H2O2, and nitric oxide itself, despite the presence of DNA damage. While camptothecin and H2O2 both induce DDR activation, nitric oxide suppresses only camptothecin-induced apoptosis and not H2O2-induced necrosis. The ability of nitric oxide to suppress the DDR appears to be selective for pancreatic β cells, as nitric oxide fails to inhibit DDR signaling in macrophages, hepatocytes, and fibroblasts, three additional cell types examined. While originally described as the damaging agent responsible for cytokine-induced β-cell death, these studies identify a novel role for nitric oxide as a protective molecule that promotes β-cell survival by suppressing DDR signaling and attenuating DNA damage-induced apoptosis. PMID:27185882

  7. Microdosimetry of DNA conformations: relation between direct effect of (60)Co gamma rays and topology of DNA geometrical models in the calculation of A-, B- and Z-DNA radiation-induced damage yields.

    PubMed

    Semsarha, Farid; Raisali, Gholamreza; Goliaei, Bahram; Khalafi, Hossein

    2016-05-01

    In order to obtain the energy deposition pattern of ionizing radiation in the nanometric scale of genetic material and to investigate the different sensitivities of the DNA conformations, direct effects of (60)Co gamma rays on the three A, B and Z conformations of DNA have been studied. For this purpose, single-strand breaks (SSB), double-strand breaks (DSB), base damage (BD), hit probabilities and three microdosimetry quantities (imparted energy, mean chord length and lineal energy) in the mentioned DNA conformations have been calculated and compared by using GEometry ANd Tracking 4 (Geant4) toolkit. The results show that A-, B- and Z-DNA conformations have the highest yields of DSB (1.2 Gy(-1) Gbp(-1)), SSB (25.2 Gy(-1) Gbp(-1)) and BD (4.81 Gy(-1) Gbp(-1)), respectively. Based on the investigation of direct effects of radiation, it can be concluded that the DSB yield is largely correlated to the topological characteristics of DNA models, although the SSB yield is not. Moreover, according to the comparative results of the present study, a reliable candidate parameter for describing the relationship between DNA damage yields and geometry of DNA models in the theoretical radiation biology research studies would be the mean chord length (4 V/S) of the models. PMID:26984469

  8. Zinc protects HepG2 cells against the oxidative damage and DNA damage induced by ochratoxin A

    SciTech Connect

    Zheng, Juanjuan; Zhang, Yu; Xu, Wentao; Luo, YunBo; Hao, Junran; Shen, Xiao Li; Yang, Xuan; Li, Xiaohong; Huang, Kunlun

    2013-04-15

    Oxidative stress and DNA damage are the most studied mechanisms by which ochratoxin A (OTA) induces its toxic effects, which include nephrotoxicity, hepatotoxicity, immunotoxicity and genotoxicity. Zinc, which is an essential trace element, is considered a potential antioxidant. The aim of this paper was to investigate whether zinc supplement could inhibit OTA-induced oxidative damage and DNA damage in HepG2 cells and the mechanism of inhibition. The results indicated that that exposure of OTA decreased the intracellular zinc concentration; zinc supplement significantly reduced the OTA-induced production of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity but did not affect the OTA-induced decrease in the mitochondrial membrane potential (Δψ{sub m}). Meanwhile, the addition of the zinc chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) strongly aggravated the OTA-induced oxidative damage. This study also demonstrated that zinc helped to maintain the integrity of DNA through the reduction of OTA-induced DNA strand breaks, 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation and DNA hypomethylation. OTA increased the mRNA expression of metallothionein1-A (MT1A), metallothionein2-A (MT2A) and Cu/Zn superoxide dismutase (SOD1). Zinc supplement further enhanced the mRNA expression of MT1A and MT2A, but it had no effect on the mRNA expression of SOD1 and catalase (CAT). Zinc was for the first time proven to reduce the cytotoxicity of OTA through inhibiting the oxidative damage and DNA damage, and regulating the expression of zinc-associated genes. Thus, the addition of zinc can potentially be used to reduce the OTA toxicity of contaminated feeds. - Highlights: ► OTA decreased the intracellular zinc concentration. ► OTA induced the formation of 8-OHdG in HepG2 cells. ► It was testified for the first time that OTA induced DNA hypomethylation. ► Zinc protects against the oxidative damage and DNA damage induced by

  9. Oxidative damage of DNA by chromium(V) complexes: relative importance of base versus sugar oxidation.

    PubMed Central

    Bose, R N; Moghaddas, S; Mazzer, P A; Dudones, L P; Joudah, L; Stroup, D

    1999-01-01

    Chromium(V)-mediated oxidative damage of deoxy-ribonucleic acids was investigated at neutral pH in aqueous solution by utilizing bis(2-ethyl-2-hydroxy-butanato)oxochromate(V) (I) and bis(hydroxyethyl)-amino-tris(hydroxymethyl)methane)oxochromate(V) (II). Single-stranded and double-stranded (ds) calf thymus and human placenta DNA, as well as two oligomers, 5'-GATCTAGTAGGAGGACAAATAGTGTTTG-3' and 5'-GATCCAAGCAAACACTATTTGTCCTCCTACTA-3', were reacted with the chromium(V) complexes. Most products were separated and characterized by chroma-tographic and spectroscopic methods. Polyacrylamide gel electrophoresis experiments reveal more damage at G sites in comparison to other bases. Three primary oxidation products, 5-methylene-2-furanone (5-MF), furfural and 8-oxo-2'-deoxyguanosine, were characterized. A minor product, which appears to be thymine propenal, was also observed. The dsDNA produces more furfural than furanone. The formation of these two products resulted from hydrogen ion or hydride transfer from C1' and C5' positions of the ribose to the oxo-chromium(V) center. Since no enhancements of these products (except propenal) were observed in the presence of oxygen, mechanisms pertaining to the participation of activated oxygen species may be ruled out. The oxidation of the G base is most likely associated with an oxygen atom transfer from the oxo-metallates to the double bond between C8 and N7 of the purine ring. The formation of the propenal may be associated with an oxygen-activated species, since a marginal enhancement of this product was observed in the presence of oxygen. The formation of furfural in higher abundance over 5-MF for dsDNA was attributed to the ease of hydrogen ion (or hydride transfer) from the C5' compared to C1' position of the ribose within a Cr(V)-DNA intermediate in which the metal center is bound to the phosphate diester moiety. PMID:10219096

  10. Oxidative damage of DNA by chromium(V) complexes: relative importance of base versus sugar oxidation.

    PubMed

    Bose, R N; Moghaddas, S; Mazzer, P A; Dudones, L P; Joudah, L; Stroup, D

    1999-05-15

    Chromium(V)-mediated oxidative damage of deoxy-ribonucleic acids was investigated at neutral pH in aqueous solution by utilizing bis(2-ethyl-2-hydroxy-butanato)oxochromate(V) (I) and bis(hydroxyethyl)-amino-tris(hydroxymethyl)methane)oxochromate(V) (II). Single-stranded and double-stranded (ds) calf thymus and human placenta DNA, as well as two oligomers, 5'-GATCTAGTAGGAGGACAAATAGTGTTTG-3' and 5'-GATCCAAGCAAACACTATTTGTCCTCCTACTA-3', were reacted with the chromium(V) complexes. Most products were separated and characterized by chroma-tographic and spectroscopic methods. Polyacrylamide gel electrophoresis experiments reveal more damage at G sites in comparison to other bases. Three primary oxidation products, 5-methylene-2-furanone (5-MF), furfural and 8-oxo-2'-deoxyguanosine, were characterized. A minor product, which appears to be thymine propenal, was also observed. The dsDNA produces more furfural than furanone. The formation of these two products resulted from hydrogen ion or hydride transfer from C1' and C5' positions of the ribose to the oxo-chromium(V) center. Since no enhancements of these products (except propenal) were observed in the presence of oxygen, mechanisms pertaining to the participation of activated oxygen species may be ruled out. The oxidation of the G base is most likely associated with an oxygen atom transfer from the oxo-metallates to the double bond between C8 and N7 of the purine ring. The formation of the propenal may be associated with an oxygen-activated species, since a marginal enhancement of this product was observed in the presence of oxygen. The formation of furfural in higher abundance over 5-MF for dsDNA was attributed to the ease of hydrogen ion (or hydride transfer) from the C5' compared to C1' position of the ribose within a Cr(V)-DNA intermediate in which the metal center is bound to the phosphate diester moiety. PMID:10219096

  11. Biomarkers of oxidative stress and DNA damage in agricultural workers: A pilot study

    SciTech Connect

    Muniz, Juan F. McCauley, Linda; Scherer, J.; Lasarev, M.; Koshy, M.; Kow, Y.W.; Nazar-Stewart, Valle; Kisby, G.E.

    2008-02-15

    Oxidative stress and DNA damage have been proposed as mechanisms linking pesticide exposure to health effects such as cancer and neurological diseases. A study of pesticide applicators and farmworkers was conducted to examine the relationship between organophosphate pesticide exposure and biomarkers of oxidative stress and DNA damage. Urine samples were analyzed for OP metabolites and 8-hydroxy-2'-deoxyguanosine (8-OH-dG). Lymphocytes were analyzed for oxidative DNA repair activity and DNA damage (Comet assay), and serum was analyzed for lipid peroxides (i.e., malondialdehyde, MDA). Cellular damage in agricultural workers was validated using lymphocyte cell cultures. Urinary OP metabolites were significantly higher in farmworkers and applicators (p < 0.001) when compared to controls. 8-OH-dG levels were 8.5 times and 2.3 times higher in farmworkers or applicators (respectively) than in controls. Serum MDA levels were 4.9 times and 24 times higher in farmworkers or applicators (respectively) than in controls. DNA damage (Comet assay) and oxidative DNA repair were significantly greater in lymphocytes from applicators and farmworkers when compared with controls. Markers of oxidative stress (i.e., increased reactive oxygen species and reduced glutathione levels) and DNA damage were also observed in lymphocyte cell cultures treated with an OP. The findings from these in vivo and in vitro studies indicate that organophosphate pesticides induce oxidative stress and DNA damage in agricultural workers. These biomarkers may be useful for increasing our understanding of the link between pesticides and a number of health effects.

  12. Radiation-induced thyroid disease

    SciTech Connect

    Maxon, H.R.

    1985-09-01

    Ionizing radiation has been demonstrated to result in a number of changes in the human thyroid gland. At lower radiation dose levels (between 10 and 1500 rads), benign and malignant neoplasms appear to be the dominant effect, whereas at higher dose levels functional changes and thyroiditis become more prevalent. In all instances, the likelihood of the effect is related to the amount and type of radiation exposure, time since exposure, and host factors such as age, sex, and heredity. The author's current approach to the evaluation of patients with past external radiation therapy to the thyroid is discussed. The use of prophylactic thyroxine (T4) therapy is controversial. While T4 therapy may not be useful in preventing carcinogenesis when instituted many years after radiation exposure, theoretically T4 may block TSH secretion and stimulation of damaged cells to undergo malignant transformation when instituted soon after radiation exposure.

  13. Vertebrate POLQ and POLβ Cooperate in Base Excision Repair of Oxidative DNA Damage

    PubMed Central

    Yoshimura, Michio; Kohzaki, Masaoki; Nakamura, Jun; Asagoshi, Kenjiro; Sonoda, Eiichiro; Hou, Esther; Prasad, Rajendra; Wilson, Samuel H.; Tano, Keizo; Yasui, Akira; Lan, Li; Seki, Mineaki; Wood, Richard D.; Arakawa, Hiroshi; Buerstedde, Jean-Marie; Hochegger, Helfrid; Okada, Takashi; Hiraoka, Masahiro; Takeda, Shunichi

    2007-01-01

    Summary Base excision repair (BER) plays an essential role in protecting cells from mutagenic base damage caused by oxidative stress, hydrolysis, and environmental factors. POLQ is a DNA polymerase, which appears to be involved in translesion DNA synthesis (TLS) past base damage. We disrupted POLQ, and its homologs HEL308 and POLN in chicken DT40 cells, and also created polq/hel308 and polq/poln double mutants. We found that POLQ-deficient mutants exhibit hypersensitivity to oxidative base damage induced by H2O2, but not to UV or cisplatin. Surprisingly, this phenotype was synergistically increased by concomitant deletion of the major BER polymerase, POLβ. Moreover, extracts from a polq null mutant cell line show reduced BER activity, and POLQ, like POLβ, accumulated rapidly at sites of base damage. Accordingly, POLQ and POLβ share an overlapping function in the repair of oxidative base damage. Taken together, these results suggest a role for vertebrate POLQ in BER. PMID:17018297

  14. Radiation induced genome instability: multiscale modelling and data analysis

    NASA Astrophysics Data System (ADS)

    Andreev, Sergey; Eidelman, Yuri

    2012-07-01

    Genome instability (GI) is thought to be an important step in cancer induction and progression. Radiation induced GI is usually defined as genome alterations in the progeny of irradiated cells. The aim of this report is to demonstrate an opportunity for integrative analysis of radiation induced GI on the basis of multiscale modelling. Integrative, systems level modelling is necessary to assess different pathways resulting in GI in which a variety of genetic and epigenetic processes are involved. The multilevel modelling includes the Monte Carlo based simulation of several key processes involved in GI: DNA double strand breaks (DSBs) generation in cells initially irradiated as well as in descendants of irradiated cells, damage transmission through mitosis. Taking the cell-cycle-dependent generation of DNA/chromosome breakage into account ensures an advantage in estimating the contribution of different DNA damage response pathways to GI, as to nonhomologous vs homologous recombination repair mechanisms, the role of DSBs at telomeres or interstitial chromosomal sites, etc. The preliminary estimates show that both telomeric and non-telomeric DSB interactions are involved in delayed effects of radiation although differentially for different cell types. The computational experiments provide the data on the wide spectrum of GI endpoints (dicentrics, micronuclei, nonclonal translocations, chromatid exchanges, chromosome fragments) similar to those obtained experimentally for various cell lines under various experimental conditions. The modelling based analysis of experimental data demonstrates that radiation induced GI may be viewed as processes of delayed DSB induction/interaction/transmission being a key for quantification of GI. On the other hand, this conclusion is not sufficient to understand GI as a whole because factors of DNA non-damaging origin can also induce GI. Additionally, new data on induced pluripotent stem cells reveal that GI is acquired in normal mature

  15. AMBIENT PARTICULATE MATTER STIMULATES OXIDATIVE STRESS IN BRAIN MICROGLIA AND DAMAGES NEURONS IN CULTURE.

    EPA Science Inventory

    Ambient particulate matter (PM) damages biological targets through oxidative stress (OS) pathways. Several reports indicate that the brain is one of those targets. Since microglia (brain macrophage) are critical to OS-mediated neurodegeneration, their response to concentrated amb...

  16. Potato consumption on oxidative stress, inflammatory damage and immune response in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pigmented potatoes contain high concentrations of antioxidants including phenolic acids, anthocyanins and carotenoids, which are implicated in the inhibition or prevention of cellular oxidative damage and chronic disease susceptibility. Research has demonstrated the beneficial effects of antioxidant...

  17. In situ analysis of repair processes for oxidative DNA damage in mammalian cells

    NASA Astrophysics Data System (ADS)

    Lan, Li; Nakajima, Satoshi; Oohata, Yoshitsugu; Takao, Masashi; Okano, Satoshi; Masutani, Mitsuko; Wilson, Samuel H.; Yasui, Akira

    2004-09-01

    Oxidative DNA damage causes blocks and errors in transcription and replication, leading to cell death and genomic instability. Although repair mechanisms of the damage have been extensively analyzed in vitro, the actual in vivo repair processes remain largely unknown. Here, by irradiation with an UVA laser through a microscope lens, we have conditionally produced single-strand breaks and oxidative base damage at restricted nuclear regions of mammalian cells. We showed, in real time after irradiation by using antibodies and GFP-tagged proteins, rapid and ordered DNA repair processes of oxidative DNA damage in human cells. Furthermore, we characterized repair pathways by using repair-defective mammalian cells and found that DNA polymerase accumulated at single-strand breaks and oxidative base damage by means of its 31- and 8-kDa domains, respectively, and that XRCC1 is essential for both polymerase -dependent and proliferating cell nuclear antigen-dependent repair pathways of single-strand breaks. Thus, the repair of oxidative DNA damage is based on temporal and functional interactions among various proteins operating at the site of DNA damage in living cells.

  18. A Comparison of the Effects of Neuronal Nitric Oxide Synthase and Inducible Nitric Oxide Synthase Inhibition on Cartilage Damage

    PubMed Central

    Gokay, Nevzat Selim; Yilmaz, Ibrahim; Demiroz, Ahu Senem; Gokce, Alper; Dervisoglu, Sergülen; Gokay, Banu Vural

    2016-01-01

    The objective of this study was to investigate the effects of selective inducible nitric oxide synthase and neuronal nitric oxide synthase inhibitors on cartilage regeneration. The study involved 27 Wistar rats that were divided into five groups. On Day 1, both knees of 3 rats were resected and placed in a formalin solution as a control group. The remaining 24 rats were separated into 4 groups, and their right knees were surgically damaged. Depending on the groups, the rats were injected with intra-articular normal saline solution, neuronal nitric oxide synthase inhibitor 7-nitroindazole (50 mg/kg), inducible nitric oxide synthase inhibitor amino-guanidine (30 mg/kg), or nitric oxide precursor L-arginine (200 mg/kg). After 21 days, the right and left knees of the rats were resected and placed in formalin solution. The samples were histopathologically examined by a blinded evaluator and scored on 8 parameters. Although selective neuronal nitric oxide synthase inhibition exhibited significant (P = 0.044) positive effects on cartilage regeneration following cartilage damage, it was determined that inducible nitric oxide synthase inhibition had no statistically significant effect on cartilage regeneration. It was observed that the nitric oxide synthase activation triggered advanced arthrosis symptoms, such as osteophyte formation. The fact that selective neuronal nitric oxide synthase inhibitors were observed to have mitigating effects on the severity of the damage may, in the future, influence the development of new agents to be used in the treatment of cartilage disorders. PMID:27382570

  19. Iodinated contrast media cause direct tubular cell damage, leading to oxidative stress, low nitric oxide, and impairment of tubuloglomerular feedback

    PubMed Central

    Liu, Zhi Zhao; Schmerbach, Kristin; Lu, Yuan; Perlewitz, Andrea; Nikitina, Tatiana; Cantow, Kathleen; Seeliger, Erdmann; Persson, Pontus B.; Liu, Ruisheng; Sendeski, Mauricio M.

    2014-01-01

    Iodinated contrast media (CM) have adverse effects that may result in contrast-induced acute kidney injury. Oxidative stress is believed to play a role in CM-induced kidney injury. We test the hypothesis that oxidative stress and reduced nitric oxide in tubules are consequences of CM-induced direct cell damage and that increased local oxidative stress may increase tubuloglomerular feedback. Rat thick ascending limbs (TAL) were isolated and perfused. Superoxide and nitric oxide were quantified using fluorescence techniques. Cell death rate was estimated using propidium iodide and trypan blue. The function of macula densa and tubuloglomerular feedback responsiveness were measured in isolated, perfused juxtaglomerular apparatuses (JGA) of rabbits. The expression of genes related to oxidative stress and the activity of superoxide dismutase (SOD) were investigated in the renal medulla of rats that received CM. CM increased superoxide concentration and reduced nitric oxide bioavailability in TAL. Propidium iodide fluorescence and trypan blue uptake increased more in CM-perfused TAL than in controls, indicating increased rate of cell death. There were no marked acute changes in the expression of genes related to oxidative stress in medullary segments of Henle's loop. SOD activity did not differ between CM and control groups. The tubuloglomerular feedback in isolated JGA was increased by CM. Tubular cell damage and accompanying oxidative stress in our model are consequences of CM-induced direct cell damage, which also modifies the tubulovascular interaction at the macula densa, and may therefore contribute to disturbances of renal perfusion and filtration. PMID:24431205

  20. A FLUORESCENCE BASED ASSAY FOR DNA DAMAGE INDUCED BY STYRENE OXIDE

    EPA Science Inventory

    A rapid and simple assay to detect DNA damage to calf thymus DNA caused by styrene oxide (SO) is reported. This assay is based on changes observed in the melting and annealing behavior of the damaged DNA. The melting annealing process was monitored using a fluorescence indicat...

  1. Metal Oxide Silicon /MOS/ transistors protected from destructive damage by wire

    NASA Technical Reports Server (NTRS)

    Deboo, G. J.; Devine, E. J.

    1966-01-01

    Loop of flexible, small diameter, nickel wire protects metal oxide silicon /MOS/ transistors from a damaging electrostatic potential. The wire is attached to a music-wire spring, slipped over the MOS transistor case, and released so the spring tensions the wire loop around all the transistor leads, shorting them together. This allows handling without danger of damage.

  2. Ochratoxin A induces oxidative DNA damage in liver and kidney after oral dosing to rats.

    PubMed

    Kamp, Hennicke G; Eisenbrand, Gerhard; Janzowski, Christine; Kiossev, Jetchko; Latendresse, John R; Schlatter, Josef; Turesky, Robert J

    2005-12-01

    The nephrotoxic/carcinogenic mycotoxin ochratoxin A (OTA) occurs as a contaminant in food and feed and may be linked to human endemic Balkan nephropathy. The mechanism of OTA-derived carcinogenicity is still under debate, since reactive metabolites of OTA and DNA adducts have not been unambiguously identified. Oxidative DNA damage, however, has been observed in vitro after incubation of mammalian cells with OTA. In this study, we investigated whether OTA induces oxidative DNA damage in vivo as well. Male F344 rats were dosed with 0, 0.03, 0.1, 0.3 mg/kg bw per day OTA for 4 wk (gavage, 7 days/wk, five animals per dose group). Subsequently, oxidative DNA damage was determined in liver and kidney by the comet assay (single cell gel electrophoresis) with/without use of the repair enzyme formamido-pyrimidine-DNA-glycosylase (FPG). The administration of OTA had no effect on basic DNA damage (determined without FPG); however, OTA-mediated oxidative damage was detected with FPG treatment in kidney and liver DNA of all dose groups. Since the doses were in a range that had caused kidney tumors in a 2-year carcinogenicity study with rats, the oxidative DNA damage induced by OTA may help to explain its mechanism of carcinogenicity. For the selective induction of tumors in the kidney, increased oxidative stress in connection with severe cytotoxicity and increased cell proliferation might represent driving factors. PMID:16302199

  3. Ascorbic acid protects lipids in human plasma and low-density lipoprotein against oxidative damage

    SciTech Connect

    Frei, B. )

    1991-12-01

    The authors exposed human blood plasma and low-density lipoprotein (LDL) to many different oxidative challenges and followed the temporal consumption of endogenous antioxidants in relation to the initiation of oxidative damage. Under all types of oxidizing conditions, ascorbic acid completely protects lipids in plasma and LDL against detectable peroxidative damage as assessed by a specific and highly sensitive assay for lipid peroxidation. Ascorbic acid proved to be superior to the other water-soluble plasma antioxidants bilirubin, uric acid, and protein thiols as well as to the lipoprotein-associated antioxidants alpha-tocopherol, ubiquinol-10, lycopene, and beta-carotene. Although these antioxidants can lower the rate of detectable lipid peroxidation, they are not able to prevent its initiation. Only ascorbic acid is reactive enough to effectively intercept oxidants in the aqueous phase before they can attack and cause detectable oxidative damage to lipids.

  4. Space radiation-induced inhibition of neurogenesis in the hippocampal dentate gyrus and memory impairment in mice: ameliorative potential of the melatonin metabolite, AFMK.

    PubMed

    Manda, Kailash; Ueno, Megumi; Anzai, Kazunori

    2008-11-01

    Evaluation of potential health effects from high energy charged particle radiation exposure during long duration space travel is important for the future of manned missions. Cognitive health of an organism is considered to be maintained by the capacity of hippocampal precursors to proliferate and differentiate. Environmental stressors including irradiation have been shown to inhibit neurogenesis and are associated with the onset of cognitive impairments. The present study reports on the protective effects of N(1)-acetyl-N(2)-formyl-5-methoxykynuramine (AFMK), a melatonin metabolite, against high energy charged particle radiation-induced oxidative damage to the brain. We observed that radiation exposure (2.0 Gy of 500 MeV/nucleon (56)Fe beams, a ground-based model of space radiation) impaired the spatial memory of mice at later intervals without affecting the motor activities. AFMK pretreatment significantly ameliorated these neurobehavioral ailments. Radiation-induced changes in the population of immature and proliferating neurons in the dentate gyrus were localized using anti-doublecortin (Dcx) and anti-Ki-67 expression. AFMK pretreatment significantly inhibited the loss of Dcx and Ki-67 positive cells. Moreover, AFMK pretreatment ameliorated the radiation-induced augmentation of protein carbonyls and 4-hydroxyalkenal + malondialdehyde (MDA + HAE) in the brain and maintained the total antioxidant capacity of plasma and nonprotein sulfhydryl contents in brain. PMID:18631288

  5. Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

    PubMed Central

    Lee, Yong Woo; Cho, Hyung Joon; Lee, Won Hee; Sonntag, William E.

    2012-01-01

    Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy. PMID:24009822

  6. Oxidative damage to poultry: from farm to fork.

    PubMed

    Estévez, M

    2015-06-01

    Poultry and poultry meat are particularly susceptible to oxidative reactions. Oxidation processes have been for decades the focus of animal and meat scientists owing to the negative impact of these reactions on animal growth, performance, and food quality. Lipid oxidation has been recognized a major threat to the quality of processed poultry products. The recent discoveries on the occurrence of protein oxidation in muscle foods have increased the scientific and technological interest in a topic that broadens the horizons of food biochemistry into innovative fields. Furthermore, in recent years we have witnessed a growing interest in consumers on the impact of diet and oxidation on health and aging. Hence, the general description of oxidative reactions as harmful phenomena goes beyond the actual impact on animal production and food quality and reaches the potential influence of oxidized foods on consumer health. Likewise, the current antioxidant strategies aim for the protection of the living tissues, the food systems, and a potential health benefit in the consumer upon ingestion. Along these lines, the application of phytochemicals and other microelements (Se, Cu) with antioxidant potential in the feeds or directly in the meat product are strategies of substantial significance. The present paper reviews in a concise manner the most relevant and novel aspects of the mechanisms and consequences of oxidative reactions in poultry and poultry meat, and describes current antioxidant strategies against these undesirable reactions. PMID:25825786

  7. Characterization of RNA damage under oxidative stress in Escherichia coli

    PubMed Central

    Liu, Min; Gong, Xin; Alluri, Ravi Kumar; Wu, Jinhua; Sablo, Tene’; Li, Zhongwei

    2012-01-01

    We have examined the level of 8-hydroxyguanosine (8-oxo-G), an oxidized form of guanosine, in RNA in Escherichia coli under normal and oxidative stress conditions. The level of 8-oxo-G in RNA rises rapidly and remains high for hours in response to hydrogen peroxide (H2O2) challenge in a dose-dependent manner. H2O2 induced elevation of 8-oxo-G content is much higher in RNA than that of 8-hydroxydeoxyguanosine (8-oxo-dG) in DNA. Under normal conditions, the 8-oxo-G level is low in RNA isolated from the ribosome and it is nearly three times higher in non-ribosomal RNAs. In contrast, 8-oxo-G generated by a short exposure to H2O2 is almost equally distributed in various RNA species, suggesting that although ribosomal RNAs are normally less oxidized, they are not protected against exogenous H2O2. Interestingly, highly folded RNA is not protected from oxidation because 8-oxo-G generated by H2O2 treatment in vitro increases to approximately the same levels in tRNA and rRNA in both native and denatured forms. Lastly, increased RNA oxidation is closely associated with cell death by oxidative stress. Our data suggests that RNA is a primary target for reactive oxygen species and RNA oxidation is part of the paradox that cells have to deal with under oxidative stress. PMID:22718628

  8. An ECVAG† trial on assessment of oxidative damage to DNA measured by the comet assay

    PubMed Central

    Johansson, Clara; Møller, Peter; Forchhammer, Lykke; Loft, Steffen; Godschalk, Roger W. L.; Langie, Sabine A. S.; Lumeij, Stijn; Jones, George D. D.; Kwok, Rachel W. L.; Azqueta, Amaya; Phillips, David H.; Sozeri, Osman; Routledge, Michael N.; Charlton, Alexander J.; Riso, Patrizia; Porrini, Marisa; Allione, Alessandra; Matullo, Giuseppe; Palus, Jadwiga; Stepnik, Maciej; Collins, Andrew R.; Möller, Lennart

    2010-01-01

    The increasing use of single cell gel electrophoresis (the comet assay) highlights its popularity as a method for detecting DNA damage, including the use of enzymes for assessment of oxidatively damaged DNA. However, comparison of DNA damage levels between laboratories can be difficult due to differences in assay protocols (e.g. lysis conditions, enzyme treatment, the duration of the alkaline treatment and electrophoresis) and in the end points used for reporting results (e.g. %DNA in tail, arbitrary units, tail moment and tail length). One way to facilitate comparisons is to convert primary comet assay end points to number of lesions/106 bp by calibration with ionizing radiation. The aim of this study was to investigate the inter-laboratory variation in assessment of oxidatively damaged DNA by the comet assay in terms of oxidized purines converted to strand breaks with formamidopyrimidine DNA glycosylase (FPG). Coded samples with DNA oxidation damage induced by treatment with different concentrations of photosensitizer (Ro 19-8022) plus light and calibration samples irradiated with ionizing radiation were distributed to the 10 participating laboratories to measure DNA damage using their own comet assay protocols. Nine of 10 laboratories reported the same ranking of the level of damage in the coded samples. The variation in assessment of oxidatively damaged DNA was largely due to differences in protocols. After conversion of the data to lesions/106 bp using laboratory-specific calibration curves, the variation between the laboratories was reduced. The contribution of the concentration of photosensitizer to the variation in net FPG-sensitive sites increased from 49 to 73%, whereas the inter-laboratory variation decreased. The participating laboratories were successful in finding a dose–response of oxidatively damaged DNA in coded samples, but there remains a need to standardize the protocols to enable direct comparisons between laboratories. PMID:19948595

  9. Noninvasive prediction of prostatic DNA damage by oxidative stress challenge of peripheral blood lymphocytes.

    PubMed

    Waters, David J; Shen, Shuren; Xu, Huiping; Kengeri, Seema S; Cooley, Dawn M; Chiang, Emily C; Chen, Yu; Schlittler, Deborah; Oteham, Carol; Combs, Gerald F; Glickman, Lawrence T; Morris, J Steven; Bostwick, David G

    2007-09-01

    To move closer to the goal of individualized risk prediction for prostate cancer, we used an in vivo canine model to evaluate whether the susceptibility of peripheral blood lymphocytes (PBLs) to oxidative stress-induced DNA damage could identify those individuals with the highest prostatic DNA damage. This hypothesis was tested in a population of 69 elderly male beagle dogs after they had completed a 7-month randomized feeding trial to achieve the broad range of dietary selenium status observed in U.S. men. The alkaline Comet assay was used to directly compare the extent of DNA damage in PBLs with prostatic DNA damage in each dog. Using stepwise logistic regression, the sensitivity of PBLs to oxidative stress challenge with hydrogen peroxide (H(2)O(2)) predicted dogs in the highest tertile of prostatic DNA damage. Dogs with PBLs highly sensitive to H(2)O(2) were 7.6 times [95% confidence interval (95% CI), 1.5-38.3] more likely to have high prostatic DNA damage than those in the H(2)O(2)-resistant group. This risk stratification was observed in multivariate analysis that considered other factors that might influence DNA damage, such as age, toenail selenium concentration, and serum testosterone concentration. Our data show that the sensitivity of PBLs to oxidative stress challenge, but not endogenous DNA damage in PBLs, provides a noninvasive surrogate marker for prostatic DNA damage. These findings lend support to the concept that oxidative stress contributes to genotoxic damage, and that oxidative stress challenge may stratify men for prostate cancer risk. PMID:17855713

  10. Specialty supplement use and biologic measures of oxidative stress and DNA damage

    PubMed Central

    Kantor, Elizabeth D.; Ulrich, Cornelia M.; Owen, Robert W.; Schmezer, Peter; Neuhouser, Marian L.; Lampe, Johanna W.; Peters, Ulrike; Shen, Danny D.; Vaughan, Thomas L.; White, Emily

    2013-01-01

    Background Oxidative stress and resulting cellular damage have been suggested to play a role in the etiology of several chronic diseases, including cancer and cardiovascular disease. Identifying factors associated with reduced oxidative stress and resulting damage may guide future disease-prevention strategies. Methods In the VITamins And Lifestyle (VITAL) biomarker-study of 209 persons living in the Seattle area, we examined the association between current use of several specialty supplements and oxidative stress, DNA damage, and DNA repair capacity. Use of glucosamine, chondroitin, fish oil, methylsulfonylmethane (MSM), co-enzyme Q10 (CoQ10), ginseng, ginkgo, and saw palmetto was ascertained by a supplement inventory/interview, while use of fiber supplements was ascertained by questionnaire. Supplements used by more than 30 persons (glucosamine and chondroitin) were evaluated as the trend across number of pills/week (non-use, <14 pills/week, 14+ pills/week), while less-commonly used supplements were evaluated as use/non-use. Oxidative stress was measured by urinary 8-isoprostane and PGF2α concentrations using enzyme immunoassays (EIA), while lymphocyte DNA damage and DNA repair capacity were measured using the Comet assay. Multivariate-adjusted linear regression was used to model the associations between supplement use and oxidative stress/DNA damage. Results Use of glucosamine (p-trend:0.01), chondroitin (p-trend:0.003), and fiber supplements (p:0.01) was associated with reduced PGF2α concentrations, while CoQ10 supplementation was associated with reduced baseline DNA damage (p:0.003). Conclusions Use of certain specialty supplements may be associated with reduced oxidative stress and DNA damage. Impact Further research is needed to evaluate the association between specialty supplement use and markers of oxidative stress and DNA damage. PMID:23917455

  11. Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells

    PubMed Central

    Coluzzi, Elisa; Colamartino, Monica; Cozzi, Renata; Leone, Stefano; Meneghini, Carlo; O’Callaghan, Nathan; Sgura, Antonella

    2014-01-01

    One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect. PMID:25354277

  12. Nitric oxide and reactive oxygen species: Clues to target oxidative damage repair defective breast cancers.

    PubMed

    Somasundaram, Veena; Nadhan, Revathy; K Hemalatha, Sreelatha; Kumar Sengodan, Satheesh; Srinivas, Priya

    2016-05-01

    The identification of various biomolecules in cancer progression and therapy has led to the exploration of the roles of two cardinal players, namely Nitric Oxide (NO) and Reactive Oxygen Species (ROS) in cancer. Both ROS and NO display bimodal fashions of functional activity in a concentration dependent manner, by inducing either pro- or anti- tumorigenic signals. Researchers have identified the potential capability of NO and ROS in therapies owing to their role in eliciting pro-apoptotic signals at higher concentrations and their ability to sensitize cancer cells to one another as well as to other therapeutics. We review the prospects of NO and ROS in cancer progression and therapy, and analyze the role of a combinatorial therapy wherein an NO donor (SNAP) is used to sensitize the oxidative damage repair defective, triple negative breast cancer cells (HCC 1937) to a potent ROS inducer. Preliminary findings support the potential to employ various combinatorial regimes for anti-cancer therapies with regard to exploiting the chemo-sensitization property of NO donors. PMID:27017408

  13. Flow cytometric detection of oxidative DNA damage in fish spermatozoa exposed to cadmium - Short communication.

    PubMed

    Nagy, Szabolcs; Kakasi, Balázs; Bercsényi, Miklós

    2016-03-01

    The aim of the present pilot study was to apply a flow cytometric assay, the so-called OxyDNA test, to determine the level of oxidative DNA damage in fish spermatozoa exposed to different concentrations (0.01-10,000 mg/L) of cadmium. Milt was collected from three randomly selected Prussian carp (Carassius auratus gibelio) males. Oxidative DNA damage was assessed with the OxyDNA kit and using flow cytometry. The ratio of OxyDNA-positive events increased significantly at higher cadmium concentrations. The results indicate that direct contact of fish spermatozoa with cadmium-polluted water initiates genotoxic damage. PMID:26919149

  14. Redox-dependent regulation, redox control and oxidative damage in plant cells subjected to abiotic stress.

    PubMed

    Dietz, Karl-Josef

    2010-01-01

    Stress development intricately involves uncontrolled redox reactions and oxidative damage to functional macromolecules. Three phases characterize progressing abiotic stress and the stress strength; in the first phase redox-dependent deregulation in metabolism, in the second phase detectable development of oxidative damage and in the third phase cell death. Each phase is characterized by traceable biochemical features and specific molecular responses that reflect on the one hand cell damage but on the other hand indicate specific regulation and redox signalling aiming at compensation of stress impact. PMID:20387040

  15. Effect of low and high temperature anneal on process-induced damage of gate oxide

    SciTech Connect

    King, J.C.; Hu, C. . Dept. of Electrical Engineering and Computer Sciences)

    1994-11-01

    The authors have investigated the ability of high and low temperature anneals to repair the gate oxide damage due to simulated electrical stress caused by wafer charging resulting from plasma etching, etc. Even 800 C anneal cannot restore the stability in interface trap generation. Even 900 C anneal cannot repair the deteriorated charge-to-breakdown and oxide charge trapping. As a small consolation, the ineffectiveness of anneal in repairing the process-induced damage allows them to monitor the damages even at the end of the fabrication process.

  16. Leaky lysosomes in lung transplant macrophages: azithromycin prevents oxidative damage

    PubMed Central

    2012-01-01

    Background Lung allografts contain large amounts of iron (Fe), which inside lung macrophages may promote oxidative lysosomal membrane permeabilization (LMP), cell death and inflammation. The macrolide antibiotic azithromycin (AZM) accumulates 1000-fold inside the acidic lysosomes and may interfere with the lysosomal pool of Fe. Objective Oxidative lysosomal leakage was assessed in lung macrophages from lung transplant recipients without or with AZM treatment and from healthy subjects. The efficiency of AZM to protect lysosomes and cells against oxidants was further assessed employing murine J774 macrophages. Methods Macrophages harvested from 8 transplant recipients (5 without and 3 with ongoing AZM treatment) and 7 healthy subjects, and J774 cells pre-treated with AZM, a high-molecular-weight derivative of the Fe chelator desferrioxamine or ammonium chloride were oxidatively stressed. LMP, cell death, Fe, reduced glutathione (GSH) and H-ferritin were assessed. Results Oxidant challenged macrophages from transplants recipients without AZM exhibited significantly more LMP and cell death than macrophages from healthy subjects. Those macrophages contained significantly more Fe, while GSH and H-ferritin did not differ significantly. Although macrophages from transplant recipients treated with AZM contained both significantly more Fe and less GSH, which would sensitize cells to oxidants, these macrophages resisted oxidant challenge well. The preventive effect of AZM on oxidative LMP and J774 cell death was 60 to 300 times greater than the other drugs tested. Conclusions AZM makes lung transplant macrophages and their lysososomes more resistant to oxidant challenge. Possibly, prevention of obliterative bronchiolitis in lung transplants by AZM is partly due to this action. PMID:23006592

  17. Electrical self-healing of mechanically damaged zinc oxide nanobelts.

    PubMed

    Zang, Jianfeng; Xu, Zhi-Hui; Webb, Richard A; Li, Xiaodong

    2011-01-12

    We report the observation of remarkable electrical self-healing in mechanically damaged ZnO nanobelts. Nanoindentation into intrinsically defect-free ZnO nanobelts induces deformation and crack damage, causing a dramatic electrical signal decrease. Two self-healing regimes in the nanoindented ZnO nanobelts are revealed. The physical mechanism for the observed phenomena is analyzed in terms of the nanoindentation-induced dislocations, the short-range atomic diffusion in nanostructures, and the local heating of the dislocation zone in the electrical measurement. PMID:21121680

  18. Protective Effects of Gelam Honey against Oxidative Damage in Young and Aged Rats

    PubMed Central

    Sahhugi, Zulaikha; Jubri, Zakiah

    2014-01-01

    Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities. PMID:25505937

  19. Pathophysiology of Radiation-Induced Dysphagia in Head and Neck Cancer.

    PubMed

    King, Suzanne N; Dunlap, Neal E; Tennant, Paul A; Pitts, Teresa

    2016-06-01

    Oncologic treatments, such as curative radiotherapy and chemoradiation, for head and neck cancer can cause long-term swallowing impairments (dysphagia) that negatively impact quality of life. Radiation-induced dysphagia comprised a broad spectrum of structural, mechanical, and neurologic deficits. An understanding of the biomolecular effects of radiation on the time course of wound healing and underlying morphological tissue responses that precede radiation damage will improve options available for dysphagia treatment. The goal of this review is to discuss the pathophysiology of radiation-induced injury and elucidate areas that need further exploration. PMID:27098922

  20. Mechanisms of Diabetes-Induced Liver Damage: The role of oxidative stress and inflammation.

    PubMed

    Mohamed, Jamaludin; Nazratun Nafizah, A H; Zariyantey, A H; Budin, S B

    2016-05-01

    Diabetes mellitus is a non-communicable disease that occurs in both developed and developing countries. This metabolic disease affects all systems in the body, including the liver. Hyperglycaemia, mainly caused by insulin resistance, affects the metabolism of lipids, carbohydrates and proteins and can lead to non-alcoholic fatty liver disease, which can further progress to non-alcoholic steatohepatitis, cirrhosis and, finally, hepatocellular carcinomas. The underlying mechanism of diabetes that contributes to liver damage is the combination of increased oxidative stress and an aberrant inflammatory response; this activates the transcription of pro-apoptotic genes and damages hepatocytes. Significant involvement of pro-inflammatory cytokines-including interleukin (IL)-1β, IL-6 and tumour necrosis factor-α-exacerbates the accumulation of oxidative damage products in the liver, such as malondialdehyde, fluorescent pigments and conjugated dienes. This review summarises the biochemical, histological and macromolecular changes that contribute to oxidative liver damage among diabetic individuals. PMID:27226903

  1. Precursor ion damage and single event gate rupture in thin oxides

    SciTech Connect

    Sexton, F.W.; Fleetwood, D.M.; Shaneyfelt, M.R.; Dodd, P.E.; Hash, G.L.; Schanwald, L.P.; Krisch, K.S.

    1998-02-01

    Gate oxide electric fields are expected to increase to greater than 5 MV/cm as feature size approaches 0.1 micrometers in advanced integrated circuit (IC) technologies. Work by Johnston, et al. raised the concern that single event gate rupture (SEGR) may limit the scaling of advanced ICs for space applications. SEGR has also been observed in field programmable gate arrays, which rely on thin dielectrics for electrical programming at very high electric fields. The focus of this effort is to further explore the mechanisms for SEGR in thin gate oxides. The authors examine the characteristics of heavy ion induced breakdown and compare them to ion induced damage in thin gate oxides. Further, the authors study the impact of precursor damage in oxides on SEGR threshold. Finally, they compare thermal and nitrided oxides to see if SEGR is improved by incorporating nitrogen in the oxide.

  2. Lipids and Oxidative Stress Associated with Ethanol-Induced Neurological Damage

    PubMed Central

    2016-01-01

    The excessive intake of alcohol is a serious public health problem, especially given the severe damage provoked by chronic or prenatal exposure to alcohol that affects many physiological processes, such as memory, motor function, and cognitive abilities. This damage is related to the ethanol oxidation in the brain. The metabolism of ethanol to acetaldehyde and then to acetate is associated with the production of reactive oxygen species that accentuate the oxidative state of cells. This metabolism of ethanol can induce the oxidation of the fatty acids in phospholipids, and the bioactive aldehydes produced are known to be associated with neurotoxicity and neurodegeneration. As such, here we will review the role of lipids in the neuronal damage induced by ethanol-related oxidative stress and the role that lipids play in the related compensatory or defense mechanisms. PMID:26949445

  3. Exercise-induced oxidatively damaged DNA in humans: evaluation in plasma or urine?

    PubMed

    Karpouzi, Christina; Nikolaidis, Stefanos; Kabasakalis, Athanasios; Tsalis, George; Mougios, Vassilis

    2016-01-01

    Physical exercise can induce oxidative damage in humans. 8-Hydroxy-2'-deoxyguanosine (8-OHdG) is a widely known biomarker of DNA oxidation, which can be determined in blood and urine. The aim of the present study was to compare these two biological fluids in terms of which is more suitable for the estimation of the oxidative damage of DNA by measuring the concentration of 8-OHdG one hour after maximal exercise by enzyme immunoassay. The concentration of 8-OHdG increased with exercise only in plasma (p < 0.001), and values differed between exercise tests in both plasma and urine (p < 0.05). In conclusion, plasma appears to be more sensitive to exercise-induced 8-OHdG changes than urine and, hence, a more appropriate medium for assessing oxidative damage of DNA, although the poor repeatability of the measurement needs to be addressed in future studies. PMID:26849281

  4. DNA Mismatch Repair and Oxidative DNA Damage: Implications for Cancer Biology and Treatment

    PubMed Central

    Bridge, Gemma; Rashid, Sukaina; Martin, Sarah A.

    2014-01-01

    Many components of the cell, including lipids, proteins and both nuclear and mitochondrial DNA, are vulnerable to deleterious modifications caused by reactive oxygen species. If not repaired, oxidative DNA damage can lead to disease-causing mutations, such as in cancer. Base excision repair and nucleotide excision repair are the two DNA repair pathways believed to orchestrate the removal of oxidative lesions. However, recent findings suggest that the mismatch repair pathway may also be important for the response to oxidative DNA damage. This is particularly relevant in cancer where mismatch repair genes are frequently mutated or epigenetically silenced. In this review we explore how the regulation of oxidative DNA damage by mismatch repair proteins may impact on carcinogenesis. We discuss recent studies that identify potential new treatments for mismatch repair deficient tumours, which exploit this non-canonical role of mismatch repair using synthetic lethal targeting. PMID:25099886

  5. Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage

    SciTech Connect

    Laha, Dipranjan; Pramanik, Arindam; Laskar, Aparna; Jana, Madhurya; Pramanik, Panchanan; Karmakar, Parimal

    2014-11-15

    Highlights: • Spherical and sheet shaped copper oxide nanoparticles were synthesized. • Physical characterizations of these nanoparticles were done by TEM, DLS, XRD, FTIR. • They showed shape dependent antibacterial activity on different bacterial strain. • They induced both membrane damage and ROS mediated DNA damage in bacteria. - Abstract: In this work, we synthesized spherical and sheet shaped copper oxide nanoparticles and their physical characterizations were done by the X-ray diffraction, fourier transform infrared spectroscopy, transmission electron microscopy and dynamic light scattering. The antibacterial activity of these nanoparticles was determined on both gram positive and gram negative bacterial. Spherical shaped copper oxide nanoparticles showed more antibacterial property on gram positive bacteria where as sheet shaped copper oxide nanoparticles are more active on gram negative bacteria. We also demonstrated that copper oxide nanoparticles produced reactive oxygen species in both gram negative and gram positive bacteria. Furthermore, they induced membrane damage as determined by atomic force microscopy and scanning electron microscopy. Thus production of and membrane damage are major mechanisms of the bactericidal activity of these copper oxide nanoparticles. Finally it was concluded that antibacterial activity of nanoparticles depend on physicochemical properties of copper oxide nanoparticles and bacterial strain.

  6. Curcumin reduces oxidative and nitrative DNA damage through balancing of oxidant-antioxidant status in hamsters infected with Opisthorchis viverrini.

    PubMed

    Pinlaor, Somchai; Yongvanit, Puangrat; Prakobwong, Suksanti; Kaewsamut, Butsara; Khoontawad, Jarinya; Pinlaor, Porntip; Hiraku, Yusuke

    2009-10-01

    Opisthorchis viverrini (OV) infection is endemic in northeastern Thailand. We have previously reported that OV infection induces oxidative and nitrative DNA damage via chronic inflammation, which contributes to the disease and cholangiocarcinogenesis. Here, we examined the effect of curcumin, an antioxidant, on pathogenesis in OV-infected hamsters. DNA lesions were detected by double immunofluorescence and the hepatic expression of oxidant-generating and antioxidant genes was assessed by quantitative RT-PCR analysis. Dietary 1.0% curcumin significantly decreased OV-induced accumulation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), an oxidative DNA lesion, and 8-nitroguanine, a nitrative DNA lesion, in the nucleus of bile duct epithelial and inflammatory cells. Expression of oxidant-generating genes (inducible nitric oxide synthase; iNOS, its nuclear transcriptional factor, NF-kappaB, and cyclooxygenase-2), and plasma levels of nitrate, malondialdehyde, and alanine aminotransferase, were also decreased in curcumin-treated group. In contrast, curcumin increased the mRNA expression of antioxidant enzymes (Mn-superoxide dismutase and catalase), and ferric-reducing anti-oxidant power in the plasma. In conclusion, curcumin reduced oxidative and nitrative DNA damage by suppression of oxidant-generating genes and enhancement of antioxidant genes, leading to inhibition of oxidative and nitrative stress. Therefore, curcumin may be used as a chemopreventive agent to reduce the severity of OV-associated diseases and the risk of cholangiocarcinoma (CCA). PMID:19753608

  7. Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice.

    PubMed

    Rigo, Lucas Almeida; da Silva, Cássia Regina; de Oliveira, Sara Marchesan; Cabreira, Thaíssa Nunes; de Bona da Silva, Cristiane; Ferreira, Juliano; Beck, Ruy Carlos Ruver

    2015-06-01

    Excessive UV-B radiation by sunlight produces inflammatory and oxidative damage of skin, which can lead to sunburn, photoaging, and cancer. This study evaluated whether nanoencapsulation improves the protective effects of rice bran oil against UVB radiation-induced skin damage in mice. Lipid-core nanocapsules containing rice bran oil were prepared, and had mean size around 200 nm, negative zeta potential (∼-9 mV), and low polydispersity index (<0.20). In order to allow application on the skin, a hydrogel containing the nanoencapsulated rice bran oil was prepared. This formulation was able to prevent ear edema induced by UVB irradiation by 60 ± 9%, when compared with a hydrogel containing LNC prepared with a mixture of medium chain triglycerides instead of rice bran oil. Protein carbonylation levels (biomarker of oxidative stress) and NF-κB nuclear translocation (biomarker of pro-inflammatory and carcinogenesis response) were reduced (81% and 87%, respectively) in animals treated with the hydrogel containing the nanoencapsulated rice bran oil. These in vivo results demonstrate the beneficial effects of nanoencapsulation to improve the protective properties of rice bran oil on skin damage caused by UVB exposure. PMID:25818120

  8. Oxidative damage mediated by herbicides on yeast cells.

    PubMed

    Braconi, Daniela; Possenti, Silvia; Laschi, Marcella; Geminiani, Michela; Lusini, Paola; Bernardini, Giulia; Santucci, Annalisa

    2008-05-28

    Agricultural herbicides are among the most commonly used pesticides worldwide, posing serious concerns for both humans, exposed to these chemicals through many routes, and the environment. To clarify the effects of three herbicides as commercial formulations (namely, Pointer, Silglif, and Proper Energy), parameters related to oxidative issues were investigated on an autochthonous wine yeast strain. It was demonstrated that herbicides were able to affect the enzymatic activities of catalase and superoxide dismutase, as well as to induce carbonylation and thiol oxidation as post-translational modifications of proteins. Saccharomyces cerevisiae is an optimal model system to study responses to xenobiotics and oxidative stress. Thus, the results obtained could further the understanding of mechanisms underlying the toxicity of herbicides. PMID:18442254

  9. Radiation-induced meningiomas in pediatric patients

    SciTech Connect

    Moss, S.D.; Rockswold, G.L.; Chou, S.N.; Yock, D.; Berger, M.S.

    1988-04-01

    Radiation-induced meningiomas rarely have latency periods short enough from the time of irradiation to the clinical presentation of the tumor to present in the pediatric patient. Three cases of radiation-induced intracranial meningiomas in pediatric patients are presented. The first involved a meningioma of the right frontal region in a 10-year-old boy 6 years after the resection and irradiation of a 4th ventricular medulloblastoma. Review of our pediatric tumor cases produced a second case of a left temporal fossa meningioma presenting in a 15-year-old boy with a history of irradiation for retinoblastoma at age 3 years and a third case of a right frontoparietal meningioma in a 15-year-old girl after irradiation for acute lymphoblastic leukemia. Only three cases of meningiomas presenting in the pediatric age group after radiation therapy to the head were detected in our review of the literature.

  10. Irradiated esophageal cells are protected from radiation-induced recombination by MnSOD gene therapy.

    PubMed

    Niu, Yunyun; Wang, Hong; Wiktor-Brown, Dominika; Rugo, Rebecca; Shen, Hongmei; Huq, M Saiful; Engelward, Bevin; Epperly, Michael; Greenberger, Joel S

    2010-04-01

    Radiation-induced DNA damage is a precursor to mutagenesis and cytotoxicity. During radiotherapy, exposure of healthy tissues can lead to severe side effects. We explored the potential of mitochondrial SOD (MnSOD) gene therapy to protect esophageal, pancreatic and bone marrow cells from radiation-induced genomic instability. Specifically, we measured the frequency of homologous recombination (HR) at an integrated transgene in the Fluorescent Yellow Direct Repeat (FYDR) mice, in which an HR event can give rise to a fluorescent signal. Mitochondrial SOD plasmid/liposome complex (MnSOD-PL) was administered to esophageal cells 24 h prior to 29 Gy upper-body irradiation. Single cell suspensions from FYDR, positive control FYDR-REC, and negative control C57BL/6NHsd (wild-type) mouse esophagus, pancreas and bone marrow were evaluated by flow cytometry. Radiation induced a statistically significant increase in HR 7 days after irradiation compared to unirradiated FYDR mice. MnSOD-PL significantly reduced the induction of HR by radiation at day 7 and also reduced the level of HR in the pancreas. Irradiation of the femur and tibial marrow with 8 Gy also induced a significant increase in HR at 7 days. Radioprotection by intraesophageal administration of MnSOD-PL was correlated with a reduced level of radiation-induced HR in esophageal cells. These results demonstrate the efficacy of MnSOD-PL for suppressing radiation-induced HR in vivo. PMID:20334517

  11. Eccentric localization of catalase to protect chromosomes from oxidative damages during meiotic maturation in mouse oocytes.

    PubMed

    Park, Yong Seok; You, Seung Yeop; Cho, Sungrae; Jeon, Hyuk-Joon; Lee, Sukchan; Cho, Dong-Hyung; Kim, Jae-Sung; Oh, Jeong Su

    2016-09-01

    The maintenance of genomic integrity and stability is essential for the survival of every organism. Unfortunately, DNA is vulnerable to attack by a variety of damaging agents. Oxidative stress is a major cause of DNA damage because reactive oxygen species (ROS) are produced as by-products of normal cellular metabolism. Cells have developed eloquent antioxidant defense systems to protect themselves from oxidative damage along with aerobic metabolism. Here, we show that catalase (CAT) is present in mouse oocytes to protect the genome from oxidative damage during meiotic maturation. CAT was expressed in the nucleus to form unique vesicular structures. However, after nuclear envelope breakdown, CAT was redistributed in the cytoplasm with particular focus at the chromosomes. Inhibition of CAT activity increased endogenous ROS levels, but did not perturb meiotic maturation. In addition, CAT inhibition produced chromosomal defects, including chromosome misalignment and DNA damage. Therefore, our data suggest that CAT is required not only to scavenge ROS, but also to protect DNA from oxidative damage during meiotic maturation in mouse oocytes. PMID:27160095

  12. Study of chemical and radiation induced carcinogenesis

    SciTech Connect

    Chmura, A.

    1995-11-01

    The study of chemical and radiation induced carcinogenesis has up to now based many of its results on the detection of genetic aberrations using the fluorescent in situ hybridization (FISH) technique. FISH is time consuming and this tends to hinder its use for looking at large numbers of samples. We are currently developing new technological advances which will increase the speed, clarity and functionality of the FISH technique. These advances include multi-labeled probes, amplification techniques, and separation techniques.

  13. The influence of oxidative damage on viscosity of seminal fluid in infertile men.

    PubMed

    Aydemir, Birsen; Onaran, Ilhan; Kiziler, Ali Riza; Alici, Bulent; Akyolcu, Mehmet Can

    2008-01-01

    Increased oxidative damage has been suggested to play an important role in the viscosity changes of blood. However, changes in levels of oxidative damage products in semen and their relationship to seminal fluid viscosity are unknown. The aim of our study was to investigate whether oxidative damage was associated with seminal plasma viscosity in infertile subjects. The levels of malondialdehyde, and protein carbonyls were measured in sperm and seminal plasma from 102 individuals, including 60 infertile patients. Seminal fluid viscosity and semen viscosity were studied by use of capillary viscometer and glass pipettes, respectively. Significantly higher levels of oxidative stress and damage markers were found in subfertile subjects compared with the control subjects. The seminal fluid viscosities of patients were found to be significantly higher, although all of the control and patient subjects had normal viscoelasticity when semen samples were assessed according to World Health Organization guidelines. From Pearson correlation analysis, there were significant positive correlations between seminal fluid viscosity and seminal malondialdehyde and carbonyl levels in infertile males (r = .676, P < .01; r = .276, P < .05, respectively). Our results suggest that increased oxidative damage might be a factor for hyperviscosity of seminal plasma in infertile males. PMID:17673435

  14. Smoking-promoted oxidative DNA damage response is highly correlated to lung carcinogenesis

    PubMed Central

    Li, Miao; Zhou, Hongbin; Lv, Dan; Deng, Zaichun; Ying, Songmin; Chen, Zhihua; Li, Wen; Shen, Huahao

    2016-01-01

    Oxidative stress induced by tobacco smoking is one of the main causes of DNA damage and is known to be involved in various cancers. Smoking is the leading cause of lung cancer, while the role of cigarette smoke-induced oxidative DNA damage response during lung carcinogenesis is largely unknown. In this study, we investigated oxidative DNA damage response levels in smoking and nonsmoking patients with lung cancer, and evaluated the potential diagnostic value of 8-OHdG for lung cancer. We observed a higher level of 8-OHdG expression and secretion in airways of lung cancer patients than that of noncancer controls. 8-OHdG expression was associated with the TNM stages. Additionally, cigarette smoke-induced oxidative DNA damage response was observed in bronchial epithelial cells in vitro and in vivo. A statistical significance correlation was found between the levels of 8-OHdG and smoking index. With a cut-off value of 2.86 ng/ml, 8-OHdG showed a sensitivity and specificity of 70.0% and 73.7%, respectively, to identify a patient with lung cancer. These findings not only underscore the importance of smoking in oxidative DNA damage response of lung cancer patients, but also suggest 8-OHdG as a potential diagnostic biomarker for lung cancer. PMID:26942876

  15. Microstructural coarsening effects on redox instability and mechanical damage in solid oxide fuel cell anodes

    NASA Astrophysics Data System (ADS)

    Abdeljawad, F.; Haataja, M.

    2013-11-01

    In state-of-the-art high temperature solid oxide fuel cells (SOFCs), a porous composite of nickel and yttria stabilized zirconia (Ni/YSZ) is employed as the anode. The rapid oxidation of Ni into NiO is regarded as the main cause of the so-called reduction-oxidation (redox) instability in Ni/YSZ anodes, due to the presence of extensive bulk volume changes associated with this reaction. As a consequence, the development of internal stresses can lead to performance degradation and/or structural failure. In this study, we employ a recently developed continuum formalism to quantify the mechanical deformation behavior and evolution of internal stresses in Ni/YSZ porous anodes due to re-oxidation. In our approach, a local failure criterion is coupled to the continuum framework in order to account for the heterogeneous damage accumulation in the YSZ phase. The hallmark of our approach is the ability to track the spatial evolution of mechanical damage and capture the interaction of YSZ damaged regions with the local microstructure. Simulation results highlight the importance of the microstructure characterized by Ni to YSZ particle size ratio on the redox behavior and damage accumulation in as-synthesized SOFC anode systems. Moreover, a redox-strain-to-failure criterion is developed to quantify the degree by which coarsened anode microstructures become more susceptible to mechanical damage during re-oxidation.

  16. Imaging Radiation-Induced Normal Tissue Injury

    PubMed Central

    Robbins, Mike E.; Brunso-Bechtold, Judy K.; Peiffer, Ann M.; Tsien, Christina I.; Bailey, Janet E.; Marks, Lawrence B.

    2013-01-01

    Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research. In the last two decades, preclinical studies have clearly established that late radiation injury can be prevented/ameliorated by pharmacological therapies aimed at modulating the cascade of events leading to the clinical expression of radiation-induced late effects. These insights have been accompanied by significant technological advances in imaging that are moving radiation oncology and normal tissue radiobiology from disciplines driven by anatomy and macrostructure to ones in which important quantitative functional, microstructural, and metabolic data can be noninvasively and serially determined. In the current article, we review use of positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance (MR) imaging and MR spectroscopy to generate pathophysiological and functional data in the central nervous system, lung, and heart that offer the promise of, (1) identifying individuals who are at risk of developing radiation-induced late effects, and (2) monitoring the efficacy of interventions to prevent/ameliorate them. PMID:22348250

  17. Modulation of radiation-induced apoptosis and G{sub 2}/M block in murine T-lymphoma cells

    SciTech Connect

    Palayoor, S.T.; Macklis, R.M.; Bump, E.A.; Coleman, C.N.

    1995-03-01

    Radiation-induced apoptosis in lymphocyte-derived cell lines is characterized by endonucleolytic cleavage of cellular DNA within hours after radiation exposure. We have studied this phenomenon qualitatively (DNA gel electrophoresis) and quantitatively (diphenylamine reagent assay) in murine EL4 T-lymphoma cells exposed to {sup 137}Cs {gamma} irradiation. Fragmentation was discernible within 18-24 h after exposure. It increased with time and dose and reached a plateau after 8 Gy of {gamma} radiation. We studied the effect of several pharmacological agents on the radiation-induced G{sub 2}/M block and DNA fragmentation. The agents which reduced the radiation-induced G{sub 2}/M-phase arrest (caffeine, theobromine, theophylline and 2-aminopurine) enhanced the degree of DNA fragmentation at 24 h. In contrast, the agents which sustained the radiation-induced G{sub 2}/M-phase arrest (TPA, DBcAMP, IBMX and 3-aminobenzamide) inhibited the DNA fragmentation at 24 h. These studies on EL4 lymphoma cells are consistent with the hypothesis that cells with radiation-induced genetic damage are eliminated by apoptosis subsequent to a G{sub 2}/M block. Furthermore, it may be possible to modulate the process of radiation-induced apoptosis in lymphoma cells with pharmacological agents that modify the radiation-induced G{sub 2}/M block, and to use this effect in the treatment of patients with malignant disease. 59 refs., 7 figs.

  18. MECHANISMS FOR COUNTERING OXIDATIVE STRESS AND DAMAGE IN RETINAL PIGMENT EPITHELIUM

    PubMed Central

    Plafker, Scott M.; O’Mealey, Gary B.; Szweda, Luke I.

    2013-01-01

    Clinical and experimental evidence supports that chronic oxidative stress is a primary contributing factor to numerous retinal degenerative diseases, such as age-related macular degeneration (AMD). Eyes obtained postmortem from AMD patients have extensive free radical damage to the proteins, lipids, DNA, and mitochondria of their retinal pigment epithelial (RPE) cells. In addition, several mouse models of chronic oxidative stress develop many of the pathological hallmarks of AMD. However, the extent to which oxidative stress is an etiologic component versus its involvement in disease progression remains a major unanswered question. Further, whether the primary target of oxidative stress and damage is photoreceptors or RPE cells, or both, is still unclear. In this review, we discuss the major functions of RPE cells with an emphasis on the oxidative challenges these cells encounter and the endogenous antioxidant mechanisms employed to neutralize the deleterious effects that such stresses can elicit if left unchecked. PMID:22878106

  19. Radiation-Induced Liver Fibrosis Is Mitigated by Gene Therapy Inhibiting Transforming Growth Factor-{beta} Signaling in the Rat

    SciTech Connect

    Du Shisuo; Qiang Ming; Zeng Zhaochong; Zhou Jian; Tan Yunshan; Zhang Zhengyu; Zeng Haiying; Liu Zhongshan

    2010-12-01

    Purpose: We determined whether anti-transforming growth factor-{beta} (TGF-{beta}) intervention could halt the progression of established radiation-induced liver fibrosis (RILF). Methods and Materials: A replication-defective adenoviral vector expressing the extracellular portion of human T{beta}RII and the Fc portion of immunoglobulin G fusion protein (AdT{beta}RIIFc) was produced. The entire rat liver was exposed to 30 Gy irradiation to generate a RILF model (RILFM). Then, RILFM animals were treated with AdT{beta}RIIFc (1 x 10{sup 11} plaque-forming units [PFU] of T{beta}RII), control virus (1 x 10{sup 11} PFU of AdGFP), or saline. Delayed radiation liver injury was assessed by histology and immunohistochemistry. Chronic oxidative stress damage, hepatic stellate cell activation, and hepatocyte regeneration were also analyzed. Results: In rats infected with AdT{beta}RIIFc, fibrosis was significantly improved compared with rats treated with AdGFP or saline, as assessed by histology, hydroxyproline content, and serum level of hyaluronic acid. Compared with AdGFP rats, AdT{beta}RIIFc-treated rats exhibited decreased oxidative stress damage and hepatic stellate cell activation and preserved liver function. Conclusions: Our results demonstrate that TGF-{beta} plays a critical role in the progression of liver fibrosis and suggest that anti-TGF-{beta} intervention is feasible and ameliorates established liver fibrosis. In addition, chronic oxidative stress may be involved in the progression of RILF.

  20. Radiation induced corrosion of copper for spent nuclear fuel storage

    NASA Astrophysics Data System (ADS)

    Björkbacka, Åsa; Hosseinpour, Saman; Johnson, Magnus; Leygraf, Christofer; Jonsson, Mats

    2013-11-01

    The long term safety of repositories for radioactive waste is one of the main concerns for countries utilizing nuclear power. The integrity of engineered and natural barriers in such repositories must be carefully evaluated in order to minimize the release of radionuclides to the biosphere. One of the most developed concepts of long term storage of spent nuclear fuel is the Swedish KBS-3 method. According to this method, the spent fuel will be sealed inside copper canisters surrounded by bentonite clay and placed 500 m down in stable bedrock. Despite the importance of the process of radiation induced corrosion of copper, relatively few studies have been reported. In this work the effect of the total gamma dose on radiation induced corrosion of copper in anoxic pure water has been studied experimentally. Copper samples submerged in water were exposed to a series of total doses using three different dose rates. Unirradiated samples were used as reference samples throughout. The copper surfaces were examined qualitatively using IRAS and XPS and quantitatively using cathodic reduction. The concentration of copper in solution after irradiation was measured using ICP-AES. The influence of aqueous radiation chemistry on the corrosion process was evaluated based on numerical simulations. The experiments show that the dissolution as well as the oxide layer thickness increase upon radiation. Interestingly, the evaluation using numerical simulations indicates that aqueous radiation chemistry is not the only process driving the corrosion of copper in these systems.

  1. Biomarkers of oxidative damage and antioxidant defense capacity in Caiman latirostris blood.

    PubMed

    Poletta, Gisela L; Simoniello, María Fernanda; Mudry, Marta D

    2016-01-01

    Several xenobiotics, and among them pesticides, can produce oxidative stress, providing a mechanistic basis for their observed toxicity. Chronic oxidative stress induces deleterious modifications to DNA, lipids and proteins that are used as effective biomarkers to study pollutant-mediated oxidative stress. No previous report existed on the application of oxidative damage and antioxidant defense biomarkers in Caiman latirostris blood, while few studies reported in other crocodilians were done in organs or muscles of dead animals. The aim of this study was to characterize a new set of oxidative stress biomarkers in C. latirostris blood, through the modification of conventional techniques: 1) damage to lipids by thiobarbituric acid reactive substances (TBARS), 2) damage to DNA by comet assay modified with the enzymes FPG and Endo III, and 3) antioxidant defenses: catalase, superoxide dismutase and glutathione; in order to apply them in future biomonitoring studies. We successfully adapted standard procedures for CAT, SOD, GSH and TBARS determination in C. latirostris blood. Calibration curves for FPG and Endo III showed that the three dilutions tested were appropriate to conduct the modified comet assay for the detection of oxidized bases in C. latirostris erythrocytes. One hour of incubation allowed a complete repair of the damage generated. The incorporation of these biomarkers in biomonitoring studies of caiman populations exposed to xenobiotics is highly important considering that this species has recovered from a serious endangered state through the implementation of sustainable use programs in Argentina, and represents nowadays a relevant economic resource for many human communities. PMID:26299575

  2. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage.

    PubMed

    Song, Byoung-Joon; Moon, Kwan-Hoon; Upreti, Vijay V; Eddington, Natalie D; Lee, Insong J

    2010-08-01

    Despite numerous reports about the acute and sub-chronic toxicities caused by MDMA (3,4-methylenedioxymethamphetamine, ecstasy), the underlying mechanism of organ damage is poorly understood. The aim of this review is to present an update of the mechanistic studies on MDMA-mediated organ damage partly caused by increased oxidative/nitrosative stress. Because of the extensive reviews on MDMA-mediated oxidative stress and tissue damage, we specifically focus on the mechanisms and consequences of oxidative-modifications of mitochondrial proteins, leading to mitochondrial dysfunction. We briefly describe a method to systematically identify oxidatively-modified mitochondrial proteins in control and MDMA-exposed rats by using biotin-N-maleimide (biotin-NM) as a sensitive probe for oxidized proteins. We also describe various applications and advantages of this Cys-targeted proteomics method and alternative approaches to overcome potential limitations of this method in studying oxidized proteins from MDMA-exposed tissues. Finally we discuss the mechanism of synergistic drug-interaction between MDMA and other abused substances including alcohol (ethanol) as well as application of this redox-based proteomics method in translational studies for developing effective preventive and therapeutic agents against MDMA-induced organ damage. PMID:20420575

  3. Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin

    PubMed Central

    Samhan-Arias, Alejandro K.; Ji, Jing; Demidova, Olga M.; Sparvero, Louis J.; Feng, Weihong; Tyurin, Vladimir; Tyurina, Yulia Y.; Epperly, Michael W.; Shvedova, Anna A.; Greenberger, Joel S.; Bayir, Hülya; Kagan, Valerian E.; Amoscato, Andrew A.

    2012-01-01

    Oxidized phospholipid species are important, biologically relevant, lipid signaling molecules that usually exist in low abundance in biological tissues. Along with their inherent stability issues, these oxidized lipids present themselves as a challenge in their detection and identification. Often times, oxidized lipid species can co-chromatograph with non-oxidized species making the detection of the former extremely difficult, even with the use of mass spectrometry. In this study, a normal-phase and reverse-phase two dimensional HPLC-mass spectrometric system was applied to separate oxidized phospholipids from their non-oxidized counterparts, allowing unambiguous detection in a total lipid extract. We have utilized bovine heart cardiolipin as well as commercially available tetralinoleoyl cardiolipin oxidized with cytochrome c (cyt c) and hydrogen peroxide as well as with lipoxygenase to test the separation power of the system. Our findings indicate that oxidized species of not only cardiolipin, but other phospholipid species, can be effectively separated from their non-oxidized counterparts in this two dimensional system. We utilized three types of biological tissues and oxidative insults, namely rotenone treatment of lymphocytes to induce mitochondrial damage and cell death, pulmonary inhalation exposure to single walled carbon nanotubes, as well as total body irradiation, in order to identify cardiolipin oxidation products, critical to the cell damage/cell death pathways in these tissues following cellular stress/injury. Our results indicate that selective cardiolipin (CL) oxidation is a result of a non-random free radical process. In addition, we assessed the ability of the system to identify CL oxidation products in the brain, a tissue known for its extreme complexity and diversity of CL species. The ability of the two-dimensional HPLC-mass spectrometric system to detect and characterize oxidized lipid products will allow new studies to be formulated to probe

  4. Oxidative DNA damage induced by a metabolite of 2-naphthylamine, a smoking-related bladder carcinogen.

    PubMed

    Ohnishi, Shiho; Murata, Mariko; Kawanishi, Shosuke

    2002-07-01

    2-Naphthylamine (2-NA), a bladder carcinogen, is contained in cigarette smoke. DNA adduct formation is thought to be a major cause of DNA damage by carcinogenic aromatic amines. We have investigated whether a metabolite of 2-NA, 2-nitroso-1-naphthol (NO-naphthol) causes oxidative DNA damage, using (32)P-labeled DNA fragments. We compared the mechanism of DNA damage induced by NO-naphthol with that by N-hydroxy-4-aminobiphenyl (4-ABP(NHOH)), a metabolite of 4-aminobiphenyl, another smoking-related bladder carcinogen. NO-naphthol caused Cu(II)-mediated DNA damage at T > C > G residues, with non-enzymatic reduction by NADH. Catalase and bathocuproine, a Cu(I)-specific chelator, inhibited the DNA damage, suggesting the involvement of H(2)O(2) and Cu(I). Some free. OH scavengers also attenuated NO-naphthol-induced DNA damage, while free. OH scavengers had no effect on the DNA damage induced by 4-ABP(NHOH). This difference suggests that the reactive species formed by NO-naphthol has more free. OH-character than that by 4-ABP(NHOH). A high-pressure liquid chromatograph equipped with an electrochemical detector showed that NO-naphthol induced 8-oxo-7,8-dihydro-2'-deoxyguanosine formation in the presence of NADH and Cu(II). The oxidative DNA damage by these amino-aromatic compounds may participate in smoking-related bladder cancer, in addition to DNA adduct formation. PMID:12149138

  5. Sources and consequences of oxidative damage from mitochondria and neurotransmitter signaling.

    PubMed

    Brennan-Minnella, Angela M; Arron, Sarah T; Chou, Kai-Ming; Cunningham, Eric; Cleaver, James E

    2016-06-01

    Cancer and neurodegeneration represent the extreme responses of growing and terminally differentiated cells to cellular and genomic damage. The damage recognition mechanisms of nucleotide excision repair, epitomized by xeroderma pigmentosum (XP), and Cockayne syndrome (CS), lie at these extremes. Patients with mutations in the DDB2 and XPC damage recognition steps of global genome repair exhibit almost exclusively actinic skin cancer. Patients with mutations in the RNA pol II cofactors CSA and CSB, that regulate transcription coupled repair, exhibit developmental and neurological symptoms, but not cancer. The absence of skin cancer despite increased photosensitivity in CS implies that the DNA repair deficiency is not associated with increased ultraviolet (UV)-induced mutagenesis, unlike DNA repair deficiency in XP that leads to high levels of UV-induced mutagenesis. One attempt to explain the pathology of CS is to attribute genomic damage to endogenously generated reactive oxygen species (ROS). We show that inhibition of complex I of the mitochondria generates increased ROS, above an already elevated level in CSB cells, but without nuclear DNA damage. CSB, but not CSA, quenches ROS liberated from complex I by rotenone. Extracellular signaling by N-methyl-D-aspartic acid in neurons, however, generates ROS enzymatically through oxidase that does lead to oxidative damage to nuclear DNA. The pathology of CS may therefore be caused by impaired oxidative phosphorylation or nuclear damage from neurotransmitters, but without damage-specific mutagenesis. Environ. Mol. Mutagen. 57:322-330, 2016. © 2016 Wiley Periodicals, Inc. PMID:27311994

  6. Radioprotectors and Mitigators of Radiation-Induced Normal Tissue Injury

    PubMed Central

    Cotrim, Ana P.; Hyodo, Fuminori; Baum, Bruce J.; Krishna, Murali C.; Mitchell, James B.

    2010-01-01

    Radiation is used in the treatment of a broad range of malignancies. Exposure of normal tissue to radiation may result in both acute and chronic toxicities that can result in an inability to deliver the intended therapy, a range of symptoms, and a decrease in quality of life. Radioprotectors are compounds that are designed to reduce the damage in normal tissues caused by radiation. These compounds are often antioxidants and must be present before or at the time of radiation for effectiveness. Other agents, termed mitigators, may be used to minimize toxicity even after radiation has been delivered. Herein, we review agents in clinical use or in development as radioprotectors and mitigators of radiation-induced normal tissue injury. Few agents are approved for clinical use, but many new compounds show promising results in preclinical testing. PMID:20413641

  7. Phytochemicals for prevention of solar ultraviolet radiation-induced damages.

    PubMed

    Adhami, Vaqar M; Syed, Deeba N; Khan, Naghma; Afaq, Farrukh

    2008-01-01

    While solar light is indispensable for sustenance of life, excessive exposure can cause several skin-related disorders. The UV part of solar radiation, in particular, is linked to disorders ranging from mild inflammatory effects of the skin to as serious as causing several different types of cancers. Changes in lifestyle together with depletion in the atmospheric ozone layer during the last few decades have led to an increase in the incidence of skin cancer. Skin cancers consisting of basal and squamous cell carcinomas are especially linked to the UVB part of solar radiation. Reducing excessive exposure to solar radiation is desirable; however, as this approach is unavoidable, it is suggested that other novel strategies be developed to reduce the effects of solar radiation to skin. One approach to reduce the harmful effects of solar radiation is through the use of phytochemicals, an approach that is popularly known as "Photochemoprotection." In recent years many phytochemicals with potential antioxidant properties have been identified and found to be photoprotective in nature. We describe here some of the most popular phytochemicals being studied that have the potential to reduce the harmful effects associated with solar UV radiation. PMID:18266816

  8. [Radiation-Induced Radiculopathy with Paresis of the Neck and Autochthonous Back Muscles with Additional Myopathy].

    PubMed

    Ellrichmann, G; Lukas, C; Adamietz, I A; Grunwald, C; Schneider-Gold, C; Gold, R

    2016-06-01

    Radiation-induced tissue damage is caused by ionizing radiation mainly affecting the skin, vascular, neuronal or muscle tissue. Early damages occur within weeks and months while late damages may occur months or even decades after radiation.Radiation-induced paresis of the spine or the trunk muscles with camptocormia or dropped-head syndrome are rare but have already been described as long-term sequelae after treatment of Hodgkin's lymphoma. The differential diagnosis includes limb-girdle muscular dystrophy, fascioscapulohumeral muscular dystrophy (FSHD) or lysosomal storage diseases (e. g. Acid Maltase Deficiency). We present the case of a patient with long lasting diagnostics over many months due to different inconclusive results. PMID:27391986

  9. Oxidative Damage and Antioxidative Therapy in Systemic Sclerosis

    PubMed Central

    Grygiel-Górniak, Bogna

    2014-01-01

    Systemic sclerosis (SSc) is an autoimmune connective tissue disorder of unknown etiology. This disease is characterized by a large variety of clinical patterns, which include the fibrosis of skin and visceral organs causing a variety of clinical manifestations. Genetic and environmental factors participate in the etiology of this disease; however, recently many studies underline the oxidative background influencing the course and complications of this disease. Reactive oxygen species (ROS) synthesized in SSc can mediate extra- and intracellular oxidative processes affecting endothelial cells and fibroblasts. The estimation of prooxidative markers in the pathogenesis of SSc can enable the identification of useful markers for disease activity and, thus, may help in planning appropriate therapy focusing on the fibrotic or vascular pattern. Recently, many attempts have been made to find antioxidative molecules (nutritional and pharmacological) reducing the prooxidant state in a variety of cells—mainly in endothelium and proliferating fibroblasts. This paper presents both the background of oxidative stress processes in systemic sclerosis mediated by different mechanisms and the evidence suggesting which of the dietary and pharmacological antioxidants can be used as therapeutic targets for this disease. PMID:25313270

  10. Oxidative damage by ozone and nitrogen dioxide: synergistic toxicity in vivo but no evidence of synergistic oxidative damage in an extracellular fluid.

    PubMed

    O'Neill, C A; van der Vliet, A; Eiserich, J P; Last, J A; Halliwell, B; Cross, C E

    1995-01-01

    Inhalation of ozone (O3) and/or nitrogen dioxide (.NO2) is associated with the development of inflammation in the respiratory tract and various alterations in pulmonary functions. Respiratory tract lining fluids (RTLFs) represent the first biological fluids coming into contact with these inhaled toxicants. Using plasma as a surrogate for RTLFs, we have previously shown that O3 [Cross, Motchnik, Bruener, Jones, Kaur, Ames and Halliwell (1992) FEBS Lett. 298, 269-272] and .NO2 [Halliwell, Hu, Louie, Duvall, Tarkington, Motchnik and Cross (1992) FEBS Lett. 313, 62-66] are both capable of depleting antioxidants and damaging proteins and lipids. O3 particularly damages proteins, whereas .NO2 induces the peroxidation of lipids and nitrates aromatic amino acids. It has been reported that O3 and .NO2 cause synergistic toxicity in rodents [Gielzleichter, Witschi and Last (1992) Tox. Appl. Pharmacol. 116, 1-9]. In the present chapter, we review evidence showing that combined exposure of these two oxidant gases to human plasma fails to exert synergistic oxidative damage to plasma constituents, and in fact, O3 and .NO2 antagonize each other's actions. We conclude that the potentiating effect of these two gases on morbidity and mortality in rodents represents a complex interactive biological effect rather than a simple synergistic oxidative effect in extracellular fluids. PMID:8660391

  11. Elevated oxidative damage is correlated with reduced fitness in interpopulation hybrids of a marine copepod

    PubMed Central

    Barreto, Felipe S.; Burton, Ronald S.

    2013-01-01

    Aerobic energy production occurs via the oxidative phosphorylation pathway (OXPHOS), which is critically dependent on interactions between the 13 mitochondrial DNA (mtDNA)-encoded and approximately 70 nuclear-encoded protein subunits. Disruptive mutations in any component of OXPHOS can result in impaired ATP production and exacerbated oxidative stress; in mammalian systems, such mutations are associated with ageing as well as numerous diseases. Recent studies have suggested that oxidative stress plays a role in fitness trade-offs in life-history evolution and functional ecology. Here, we show that outcrossing between populations with divergent mtDNA can exacerbate cellular oxidative stress in hybrid offspring. In the copepod Tigriopus californicus, we found that hybrids that showed evidence of fitness breakdown (low fecundity) also exhibited elevated levels of oxidative damage to DNA, whereas those with no clear breakdown did not show significantly elevated damage. The extent of oxidative stress in hybrids appears to be dependent on the degree of genetic divergence between their respective parental populations, but this pattern requires further testing using multiple crosses at different levels of divergence. Given previous evidence in T. californicus that hybridization disrupts nuclear/mitochondrial interactions and reduces hybrid fitness, our results suggest that such negative intergenomic epistasis may also increase the production of damaging cellular oxidants; consequently, mtDNA evolution may play a significant role in generating postzygotic isolating barriers among diverging populations. PMID:23902912

  12. Facioscapulohumeral dystrophy myoblasts efficiently repair moderate levels of oxidative DNA damage.

    PubMed

    Bou Saada, Yara; Dib, Carla; Dmitriev, Petr; Hamade, Aline; Carnac, Gilles; Laoudj-Chenivesse, Dalila; Lipinski, Marc; Vassetzky, Yegor S

    2016-04-01

    Facioscapulohumeral dystrophy (FSHD) is a progressive muscular dystrophy linked to a deletion of a subset of D4Z4 macrosatellite repeats accompanied by a chromatin relaxation of the D4Z4 array on chromosome 4q. In vitro, FSHD primary myoblasts show altered expression of oxidative-related genes and are more susceptible to oxidative stress. Double homeobox 4 (DUX4) gene, encoded within each D4Z4 unit, is normally transcriptionally silenced but is found aberrantly expressed in skeletal muscles of FSHD patients. Its expression leads to a deregulation of DUX4 target genes including those implicated in redox balance. Here, we assessed DNA repair efficiency of oxidative DNA damage in FSHD myoblasts and DUX4-transfected myoblasts. We have shown that the DNA repair activity is altered neither in FSHD myoblasts nor in immortalized human myoblasts transiently expressing DUX4. DNA damage caused by moderate doses of an oxidant is efficiently repaired while FSHD myoblasts exposed for 24 h to high levels of oxidative stress accumulated more DNA damage than normal myoblasts, suggesting that FSHD myoblasts remain more vulnerable to oxidative stress at high doses of oxidants. PMID:26860865

  13. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells

    PubMed Central

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells’ molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  14. Docosahexaenoic Acid Induces Oxidative DNA Damage and Apoptosis, and Enhances the Chemosensitivity of Cancer Cells.

    PubMed

    Song, Eun Ah; Kim, Hyeyoung

    2016-01-01

    The human diet contains low amounts of ω-3 polyunsaturated fatty acids (PUFAs) and high amounts of ω-6 PUFAs, which has been reported to contribute to the incidence of cancer. Epidemiological studies have shown that a high consumption of fish oil or ω-3 PUFAs reduced the risk of colon, pancreatic, and endometrial cancers. The ω-3 PUFA, docosahexaenoic acid (DHA), shows anticancer activity by inducing apoptosis of some human cancer cells without toxicity against normal cells. DHA induces oxidative stress and oxidative DNA adduct formation by depleting intracellular glutathione (GSH) and decreasing the mitochondrial function of cancer cells. Oxidative DNA damage and DNA strand breaks activate DNA damage responses to repair the damaged DNA. However, excessive DNA damage beyond the capacity of the DNA repair processes may initiate apoptotic signaling pathways and cell cycle arrest in cancer cells. DHA shows a variable inhibitory effect on cancer cell growth depending on the cells' molecular properties and degree of malignancy. It has been shown to affect DNA repair processes including DNA-dependent protein kinases and mismatch repair in cancer cells. Moreover, DHA enhanced the efficacy of anticancer drugs by increasing drug uptake and suppressing survival pathways in cancer cells. In this review, DHA-induced oxidative DNA damage, apoptotic signaling, and enhancement of chemosensitivity in cancer cells will be discussed based on recent studies. PMID:27527148

  15. AZT treatment induces molecular and ultrastructural oxidative damage to muscle mitochondria. Prevention by antioxidant vitamins.

    PubMed

    de la Asunción, J G; del Olmo, M L; Sastre, J; Millán, A; Pellín, A; Pallardó, F V; Viña, J

    1998-07-01

    AIDS patients who receive zidovudine (AZT) frequently suffer from myopathy. This has been attributed to mitochondrial (mt) damage, and specifically to the loss of mtDNA. This study examines whether AZT causes oxidative damage to DNA in patients and to skeletal muscle mitochondria in mice, and whether this damage may be prevented by supranutritional doses of antioxidant vitamins. Asymptomatic HIV-infected patients treated with AZT have a higher urinary excretion (355+/-100 pmol/kg/d) of 8-oxo-7, 8-dihydro-2'-deoxyguanosine (8-oxo-dG) (a marker of oxidative damage to DNA) than untreated controls (asymptomatic HIV-infected patients) (182+/-29 pmol/kg/d). This was prevented (110+/-79 pmol/kg/d) by simultaneous oral treatment with AZT plus antioxidant vitamins (C and E). Mice treated with AZT also had a significantly higher urinary excretion of 8-oxo-dG than controls. Skeletal muscle mtDNA of mice treated with AZT had more 8-oxo-dG than controls. mt lipoperoxidation was also increased and skeletal muscle glutathione was oxidized. These effects may be due to an increased peroxide production by muscle mitochondria of AZT-treated animals. Dietary supplements with vitamins C and E at supranutritional doses protect against oxidative damage to skeletal muscle mitochondria caused by AZT. PMID:9649550

  16. Protective effect of diallyl trisulfide against naphthalene-induced oxidative stress and inflammatory damage in mice.

    PubMed

    Zhang, Fang; Zhang, Yongchun; Wang, Kaiming; Liu, Guangpu; Yang, Min; Zhao, Zhongxi; Li, Shanzhong; Cai, Jianhua; Cao, Jimin

    2016-06-01

    The aim of this study was to investigate the possible protective effects of diallyl trisulfide (DATS) against naphthalene-induced oxidative and inflammatory damage in the livers and lungs of mice. Elevated serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels showed significant hepatic damage after the challenge with 100 mg/kg naphthalene. Hepatic malondialdehyde (MDA) contents and the activity of myeloperoxidase (MPO) increased significantly, accompanying a decrease in the hepatic activity of total superoxide dismutase (SOD) and glutathione (GSH) levels after the naphthalene damage. In addition, the serum levels of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 8 (IL-8) increased significantly in the groups damaged with naphthalene. The main parameters related to oxidative stress and inflammatory responses in the lungs, including the NO, MPO, and GSH contents, were determined, and the histopathological and immunohistochemical changes in the lung and liver tissues were also observed. In the DATS-treated groups, all of the oxidative and inflammatory damage in the serum, liver, and lung tissues were significantly prevented. PMID:26813860

  17. Mechanisms of oxidative damage of low density lipoprotein in human atherosclerosis.

    PubMed

    Heinecke, J W

    1997-10-01

    Oxidatively damaged LDL may play a critical role in the pathogenesis of atherosclerotic vascular disease. Several pathways promote LDL oxidation in vitro but the physiologically relevant mechanisms have proven difficult to identify. Detection of stable compounds that result from specific reaction pathways has provided the first insights into the mechanism of oxidative damage in the human artery wall. Mass spectrometric analysis of protein oxidation products isolated from atherosclerotic tissue implicate tyrosyl radical, reactive nitrogen intermediates and hypochlorous acid in LDL oxidation and lesion formation in vivo. Hypochlorous acid is only generated by the phagocytic enzyme myeloperoxidase, which can also generate tyrosyl radical and reactive nitrogen intermediates. Chiral phase high-pressure liquid chromatography analysis of lipid oxidation products suggests that cellular lipoxygenases may also play a role at certain stages. In contrast, LDL isolated from atherosclerotic tissue is not enriched in protein oxidation products characteristic of free metal ions, which are the most widely studied in vitro model of LDL oxidation. These observations provide the first direct chemical evidence for reaction pathways that promote LDL oxidation in human atherosclerosis. PMID:9335950

  18. Excess processing of oxidative damaged bases causes hypersensitivity to oxidative stress and low dose rate irradiation.

    PubMed

    Yoshikawa, Y; Yamasaki, A; Takatori, K; Suzuki, M; Kobayashi, J; Takao, M; Zhang-Akiyama, Q-M

    2015-10-01

    Ionizing radiations such as X-ray and γ-ray can directly or indirectly produce clustered or multiple damages in DNA. Previous studies have reported that overexpression of DNA glycosylases in Escherichia coli (E. coli) and human lymphoblast cells caused increased sensitivity to γ-ray and X-ray irradiation. However, the effects and the mechanisms of other radiation, such as low dose rate radiation, heavy-ion beams, or hydrogen peroxide (H2O2), are still poorly understood. In the present study, we constructed a stable HeLaS3 cell line overexpressing human 8-oxoguanine DNA N-glycosylase 1 (hOGG1) protein. We determined the survival of HeLaS3 and HeLaS3/hOGG1 cells exposed to UV, heavy-ion beams, γ-rays, and H2O2. The results showed that HeLaS3 cells overexpressing hOGG1 were more sensitive to γ-rays, OH(•), and H2O2, but not to UV or heavy-ion beams, than control HeLaS3. We further determined the levels of 8-oxoG foci and of chromosomal double-strand breaks (DSBs) by detecting γ-H2AX foci formation in DNA. The results demonstrated that both γ-rays and H2O2 induced 8-oxoguanine (8-oxoG) foci formation in HeLaS3 cells. hOGG1-overexpressing cells had increased amounts of γ-H2AX foci and decreased amounts of 8-oxoG foci compared with HeLaS3 control cells. These results suggest that excess hOGG1 removes the oxidatively damaged 8-oxoG in DNA more efficiently and therefore generates more DSBs. Micronucleus formation also supported this conclusion. Low dose-rate γ-ray effects were also investigated. We first found that overexpression of hOGG1 also caused increased sensitivity to low dose rate γ-ray irradiation. The rate of micronucleus formation supported the notion that low dose rate irradiation increased genome instability. PMID:26059740

  19. Dicarbonyls linked to damage in the powerhouse: glycation of mitochondrial proteins and oxidative stress

    PubMed Central

    Rabbani, Naila; Thornalley, Paul J.

    2009-01-01

    Protection of mitochondrial proteins from glycation by endogenous dicarbonyl compounds, methylglyoxal and glyoxal, was found recently to prevent increased formation of reactive oxygen species and oxidative and nitrosative damage to the proteome during aging and produce life extension in the nematode Caenorhabditis elegans. This suggests that dicarbonyl glycation damage to the mitochondrial proteome may be a preceding event to mitochondrial dysfunction leading to oxidative stress. Future research will address the functional charges in mitochondrial proteins that are the targets for dicarbonyl glycation. PMID:18793186

  20. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    PubMed

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  1. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System

    PubMed Central

    Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system. PMID:26637174

  2. Evolved Cellular Mechanisms to Respond to Genotoxic Insults: Implications for Radiation-Induced Hematologic Malignancies.

    PubMed

    Fleenor, Courtney J; Higa, Kelly; Weil, Michael M; DeGregori, James

    2015-10-01

    Human exposure to ionizing radiation is highly associated with adverse health effects, including reduced hematopoietic cell function and increased risk of carcinogenesis. The hematopoietic deficits manifest across blood cell types and persist for years after radiation exposure, suggesting a long-lived and multi-potent cellular reservoir for radiation-induced effects. As such, research has focused on identifying both the immediate and latent hematopoietic stem cell responses to radiation exposure. Radiation-associated effects on hematopoietic function and malignancy development have generally been attributed to the direct induction of mutations resulting from radiation-induced DNA damage. Other studies have illuminated the role of cellular programs that both limit and enhance radiation-induced tissue phenotypes and carcinogenesis. In this review, distinct but collaborative cellular responses to genotoxic insults are highlighted, with an emphasis on how these programmed responses impact hematopoietic cellular fitness and competition. These radiation-induced cellular programs include apoptosis, senescence and impaired self-renewal within the hematopoietic stem cell (HSC) pool. In the context of sporadic DNA damage to a cell, these cellular responses act in concert to restore tissue function and prevent selection for adaptive oncogenic mutations. But in the contexts of whole-tissue exposure or whole-body exposure to genotoxins, such as radiotherapy or chemotherapy, we propose that these programs can contribute to long-lasting tissue impairment and increased carcinogenesis. PMID:26414506

  3. Oxidative damage increases intracellular free calcium [Ca2+]i concentration in human erythrocytes incubated with lead.

    PubMed

    Quintanar-Escorza, M A; González-Martínez, M T; del Pilar, Intriago-Ortega Ma; Calderón-Salinas, J V

    2010-08-01

    One important effect of lead toxicity in erythrocytes consists of increasing [Ca(2+)](i) which in turn may cause alterations in cell shape and volume and it is associated with cellular rigidity, hemolysis, senescence and apoptosis. In this work, we proposed the use of erythrocytes incubated with Pb(2+) to assess association of the mechanisms of lead erythrocyte oxidative damage and calcium homeostasis. Lead incubation produced an increase in [Ca(2+)](i) dose- and time-dependent, which mainly involved Ca(2+) entry mechanism. Additionally, in this in vitro model alterations similar to erythrocytes of lead-exposed workers were produced: Increase in Ca(2+) influx, decrease in (Ca(2+)-Mg(2+))-ATPase activity and GSH/GSGG ratio; increase in lipoperoxidation, protein carbonylation and osmotic fragility accompanied of dramatic morphological changes. Co-incubation with trolox, a soluble vitamin-E analog is able to prevent these alterations indicating that lead damage mechanism is strongly associated with oxidative damage with an intermediate toxic effect via [Ca(2+)](i) increase. Furthermore, erythrocytes oxidation induced with a free radical generator (APPH) showed effects in [Ca(2+)](i) and oxidative damage similar to those found in erythrocytes incubated with lead. Co-incubation with trolox prevents the oxidative effects induced by AAPH in erythrocytes. These results suggest that increase of [Ca(2+)](i) depends on the oxidative status of the erythrocytes incubated with lead. We consider that this model contributes in the understanding of the relation between oxidative damage induced by lead exposure and Ca(2+) homeostasis, the consequences related to these phenomena and the molecular basis of lead toxicity in no excitable cells. PMID:20460147

  4. Proteomic-based mechanistic investigation of low-dose radiation-induced cellular responses/effects

    SciTech Connect

    Chen, Xian

    2013-10-23

    The goal of our project is to apply our unique systems investigation strategy to reveal the molecular mechanisms underlying the radiation induction and transmission of oxidative damage, adaptive response, and bystander effect at low-doses. Beginning with simple in vitro systems such as fibroblast or epithelial pure culture, our amino acid-coded mass tagging (AACT) comparative proteomic platform will be used to measure quantitatively proteomic changes at high- or low-dose level with respect to their endogenous damage levels respectively, in which a broad range of unique regulated proteins sensitive to low-dose IR will be distinguished. To zoom in how these regulated proteins interact with other in the form of networks in induction/transmission pathways, these regulated proteins will be selected as baits for making a series of fibroblast cell lines that stably express each of them. Using our newly developed method of ?dual-tagging? quantitative proteomics that integrate the capabilities of natural complex expression/formation, simple epitope affinity isolation (not through tandem affinity purification or TAP), and ?in-spectra? AACT quantitative measurements using mass spectrometry (MS), we will be able to distinguish systematically interacting proteins with each bait in real time. Further, in addition to both proteome-wide (global differentially expressed proteins) and pathway-scale (bait-specific) profiling information, we will perform a computational network analysis to elucidate a global pathway/mechanisms underlying cellular responses to real-time low-dose IR. Similarly, we will extend our scheme to investigate systematically those induction/transmission pathways occurring in a fibroblast-epithelial interacting model in which the bystander cell (fibroblast) monitor the IR damage to the target cell (epithelial cell). The results will provide the proteome base (molecular mechanisms/pathways for signaling) for the low dose radiation-induced essential tissue

  5. Attenuation of oxidative stress & DNA damage in varicocelectomy: Implications in infertility management

    PubMed Central

    Dada, Rima; Shamsi, Monis Bilal; Venkatesh, Sunderarjan; Gupta, Naramada Prasad; Kumar, Rajeev

    2010-01-01

    Sperm DNA integrity is of vital importance for foetal development and birth of healthy offspring. Oxidative stress and consequent DNA damage are the major cause of decline in semen quality in men with varicocele. A preliminary study was conducted on 11 men with clinical varicocele who also had high levels of reactive oxygen species (ROS), to assess DNA damage in sperms and ROS levels before and after varicocelectomy. Varicocelectomy resulted in rapid (1 month) significant (P<0.001) decline in free radical levels and slow (3-6 months) significant decline in DNA damage levels. Thus men undergoing varicocelectomy should try concieving only 6 months following surgery. PMID:21245622

  6. Iron Oxide Nanoparticles Induce Dopaminergic Damage: In vitro Pathways and In Vivo Imaging Reveals Mechanism of Neuronal Damage.

    PubMed

    Imam, Syed Z; Lantz-McPeak, Susan M; Cuevas, Elvis; Rosas-Hernandez, Hector; Liachenko, Serguei; Zhang, Yongbin; Sarkar, Sumit; Ramu, Jaivijay; Robinson, Bonnie L; Jones, Yvonne; Gough, Bobby; Paule, Merle G; Ali, Syed F; Binienda, Zbigniew K

    2015-10-01

    Various iron-oxide nanoparticles have been in use for a long time as therapeutic and imaging agents and for supplemental delivery in cases of iron-deficiency. While all of these products have a specified size range of ∼ 40 nm and above, efforts are underway to produce smaller particles, down to ∼ 1 nm. Here, we show that after a 24-h exposure of SHSY-5Y human neuroblastoma cells to 10 μg/ml of 10 and 30 nm ferric oxide nanoparticles (Fe-NPs), cellular dopamine content was depleted by 68 and 52 %, respectively. Increases in activated tyrosine kinase c-Abl, a molecular switch induced by oxidative stress, and neuronal α-synuclein expression, a protein marker associated with neuronal injury, were also observed (55 and 38 % percent increases, respectively). Inhibition of cell-proliferation, significant reductions in the number of active mitochondria, and a dose-dependent increase in reactive oxygen species (ROS) were observed in neuronal cells. Additionally, using a rat in vitro blood-brain barrier (BBB) model, a dose-dependent increase in ROS accompanied by increased fluorescein efflux demonstrated compromised BBB integrity. To assess translational implications, in vivo Fe-NP-induced neurotoxicity was determined using in vivo MRI and post-mortem neurochemical and neuropathological correlates in adult male rats after exposure to 50 mg/kg of 10 nm Fe-NPs. Significant decrease in T 2 values was observed. Dynamic observations suggested transfer and retention of Fe-NPs from brain vasculature into brain ventricles. A significant decrease in striatal dopamine and its metabolites was also observed, and neuropathological correlates provided additional evidence of significant nerve cell body and dopaminergic terminal damage as well as damage to neuronal vasculature after exposure to 10 nm Fe-NPs. These data demonstrate a neurotoxic potential of very small size iron nanoparticles and suggest that use of these ferric oxide nanoparticles may result in neurotoxicity, thereby

  7. Oxidative DNA Damage from Nanoparticle Exposure and Its Application to Workers' Health: A Literature Review

    PubMed Central

    Rim, Kyung-Taek; Song, Se-Wook; Kim, Hyeon-Yeong

    2013-01-01

    The use of nanoparticles (NPs) in industry is increasing, bringing with it a number of adverse health effects on workers. Like other chemical carcinogens, NPs can cause cancer via oxidative DNA damage. Of all the molecules vulnerable to oxidative modification by NPs, DNA has received the greatest attention, and biomarkers of exposure and effect are nearing validation. This review concentrates on studies published between 2000 and 2012 that attempted to detect oxidative DNA damage in humans, laboratory animals, and cell lines. It is important to review these studies to improve the current understanding of the oxidative DNA damage caused by NP exposure in the workplace. In addition to examining studies on oxidative damage, this review briefly describes NPs, giving some examples of their adverse effects, and reviews occupational exposure assessments and approaches to minimizing exposure (e.g., personal protective equipment and engineering controls such as fume hoods). Current recommendations to minimize exposure are largely based on common sense, analogy to ultrafine material toxicity, and general health and safety recommendations. PMID:24422173

  8. Oxidative damage to RPA limits the nucleotide excision repair capacity of human cells

    PubMed Central

    Guven, Melisa; Brem, Reto; Macpherson, Peter; Peacock, Matthew; Karran, Peter

    2015-01-01

    Nucleotide excision repair (NER) protects against sunlight-induced skin cancer. Defective NER is associated with photosensitivity and a high skin cancer incidence. Some clinical treatments that cause photosensitivity can also increase skin cancer risk. Among these, the immunosuppressant azathioprine and the fluoroquinolone antibiotics ciprofloxacin and ofloxacin, interact with UVA radiation to generate reactive oxygen species (ROS) that diminish NER capacity by causing protein damage. The RPA DNA binding protein plays a pivotal role in DNA metabolism and is an essential component of NER. The relationship between protein oxidation and NER inhibition was investigated in cultured human cells expressing different levels of RPA. We show here that RPA is limiting for NER and that oxidative damage to RPA compromises NER capability. Our findings reveal that cellular RPA is surprisingly vulnerable to oxidation and we identify oxidized forms of RPA that are associated with impaired NER. The vulnerability of NER to inhibition by oxidation provides a connection between cutaneous photosensitivity, protein damage and increased skin cancer risk. Our findings emphasize that damage to DNA repair proteins, as well as to DNA itself is likely to be an important contributor to skin cancer risk. PMID:26134950

  9. Accumulation of oxidative DNA damage in brain mitochondria in mouse model of hereditary ferritinopathy.

    PubMed

    Deng, Xiaoling; Vidal, Ruben; Englander, Ella W

    2010-07-19

    Tissue iron content is strictly regulated to concomitantly satisfy specialized metabolic requirements and avoid toxicity. Ferritin, a multi-subunit iron storage protein, is central to maintenance of iron homeostasis in the brain. Mutations in the ferritin light chain (FTL)-encoding gene underlie the autosomal dominant, neurodegenerative disease, neuroferritinopathy/hereditary ferritinopathy (HF). HF is characterized by progressive accumulation of ferritin and iron. To gain insight into mechanisms by which FTL mutations promote neurodegeneration, a transgenic mouse, expressing human mutant form of FTL, was recently generated. The FTL mouse exhibits buildup of iron in the brain and presents manifestations of oxidative stress reminiscent of the human disease. Here, we asked whether oxidative DNA damage accumulates in the FTL mouse brain. Long-range PCR (L-PCR) amplification-mediated DNA damage detection assays revealed that the integrity of mitochondrial DNA (mtDNA) in the brain was significantly compromised in the 12- but not 6-month-old FTL mice. Furthermore, L-PCR employed in conjunction with DNA modifying enzymes, which target specific DNA adducts, revealed the types of oxidative adducts accumulating in mtDNA in the FTL brain. Consistently with DNA damage predicted to form under conditions of excessive oxidative stress, detected adducts include, oxidized guanines, abasic sites and strand breaks. Elevated mtDNA damage may impair mitochondrial function and brain energetics and in the long term contribute to neuronal loss and exacerbate neurodegeneration in HF. PMID:20478358

  10. Complexities of the DNA Base Excision Repair Pathway for Repair of Oxidative DNA Damage

    PubMed Central

    Mitra, Sankar; Boldogh, Istvan; Izumi, Tadahide; Hazra, Tapas K.

    2016-01-01

    Oxidative damage represents the most significant insult to organisms because of continuous production of the reactive oxygen species (ROS) in vivo. Oxidative damage in DNA, a critical target of ROS, is repaired primarily via the base excision repair (BER) pathway which appears to be the simplest among the three excision repair pathways. However, it is now evident that although BER can be carried with four or five enzymes in vitro, a large number of proteins, including some required for nucleotide excision repair (NER), are needed for in vivo repair of oxidative damage. Furthermore, BER in transcribed vs. nontranscribed DNA regions requires distinct sets of proteins, as in the case of NER. We propose an additional complexity in repair of replicating vs. nonreplicating DNA. Unlike DNA bulky adducts, the oxidized base lesions could be incorporated in the nascent DNA strand, repair of which may share components of the mismatch repair process. Distinct enzyme specificities are thus warranted for repair of lesions in the parental vs. nascent DNA strand. Repair synthesis may be carried out by DNA polymerase β or replicative polymerases δ and ε. Thus, multiple subpathways are needed for repairing oxidative DNA damage, and the pathway decision may require coordination of the successive steps in repair. Such coordination includes transfer of the product of a DNA glycosylase to AP-endonuclease, the next enzyme in the pathway. Interactions among proteins in the pathway may also reflect such coordination, characterization of which should help elucidate these subpathways and their in vivo regulation. PMID:11746753

  11. Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review.

    PubMed

    Rim, Kyung-Taek; Song, Se-Wook; Kim, Hyeon-Yeong

    2013-12-01

    The use of nanoparticles (NPs) in industry is increasing, bringing with it a number of adverse health effects on workers. Like other chemical carcinogens, NPs can cause cancer via oxidative DNA damage. Of all the molecules vulnerable to oxidative modification by NPs, DNA has received the greatest attention, and biomarkers of exposure and effect are nearing validation. This review concentrates on studies published between 2000 and 2012 that attempted to detect oxidative DNA damage in humans, laboratory animals, and cell lines. It is important to review these studies to improve the current understanding of the oxidative DNA damage caused by NP exposure in the workplace. In addition to examining studies on oxidative damage, this review briefly describes NPs, giving some examples of their adverse effects, and reviews occupational exposure assessments and approaches to minimizing exposure (e.g., personal protective equipment and engineering controls such as fume hoods). Current recommendations to minimize exposure are largely based on common sense, analogy to ultrafine material toxicity, and general health and safety recommendations. PMID:24422173

  12. Is There Excess Oxidative Stress and Damage in Eyes of Patients with Retinitis Pigmentosa?

    PubMed

    Campochiaro, Peter A; Strauss, Rupert W; Lu, Lili; Hafiz, Gulnar; Wolfson, Yulia; Shah, Syed M; Sophie, Raafay; Mir, Tahreem A; Scholl, Hendrik P

    2015-09-01

    Retinitis pigmentosa (RP) is a group of diseases in which a mutation in one of the large variety of genes causes death of rod photoreceptors. After rods die, cone photoreceptors gradually die resulting in constriction of visual fields and eventual blindness in many patients. Studies in animal models of RP have demonstrated that oxidative damage is a major contributor to cone cell death. In this study, we extended those findings to patients with RP, because compared to control patients, those with RP showed significant reduction in the reduced to oxidized glutathione (GSH/GSSG) ratio in aqueous humor and a significant increase in aqueous protein carbonyl content. In contrast, there was no significant decrease in the serum GSH/GSSG ratio or increase in carbonyl content of serum proteins. These data indicate that patients with RP have ocular oxidative stress and damage in the absence of manifestations of systemic oxidative stress and/or damage indicating that demonstrations of oxidative damage-induced cone cell death in animal models of RP may translate to human RP. These observations lead to the hypothesis that potent antioxidants will promote cone survival and function in patients with RP and that the aqueous GSH/GSSG ratio and carbonyl content on proteins may provide useful biomarkers. Antioxid. Redox Signal. 23, 643-648. PMID:25820114

  13. Is There Excess Oxidative Stress and Damage in Eyes of Patients with Retinitis Pigmentosa?

    PubMed Central

    Strauss, Rupert W.; Lu, Lili; Hafiz, Gulnar; Wolfson, Yulia; Shah, Syed M.; Sophie, Raafay; Mir, Tahreem A.; Scholl, Hendrik P.

    2015-01-01

    Abstract Retinitis pigmentosa (RP) is a group of diseases in which a mutation in one of the large variety of genes causes death of rod photoreceptors. After rods die, cone photoreceptors gradually die resulting in constriction of visual fields and eventual blindness in many patients. Studies in animal models of RP have demonstrated that oxidative damage is a major contributor to cone cell death. In this study, we extended those findings to patients with RP, because compared to control patients, those with RP showed significant reduction in the reduced to oxidized glutathione (GSH/GSSG) ratio in aqueous humor and a significant increase in aqueous protein carbonyl content. In contrast, there was no significant decrease in the serum GSH/GSSG ratio or increase in carbonyl content of serum proteins. These data indicate that patients with RP have ocular oxidative stress and damage in the absence of manifestations of systemic oxidative stress and/or damage indicating that demonstrations of oxidative damage-induced cone cell death in animal models of RP may translate to human RP. These observations lead to the hypothesis that potent antioxidants will promote cone survival and function in patients with RP and that the aqueous GSH/GSSG ratio and carbonyl content on proteins may provide useful biomarkers. Antioxid. Redox Signal. 23, 643–648. PMID:25820114

  14. Naringin protects memory impairment and mitochondrial oxidative damage against aluminum-induced neurotoxicity in rats.

    PubMed

    Prakash, Atish; Shur, Bhargabi; Kumar, Anil

    2013-09-01

    Aluminum has been indicated in neurodegenerative disorders and naringin, a bioflavonoid has been used to reduce neurotoxic effects of aluminum against aluminum chloride-induced rats. Therefore, present study has been designed to explore the possible role of naringin against aluminum-induced cognitive dysfunction and oxidative damage in rats. Aluminum (100 mg/kg) and naringin (40 and 80 mg/kg) drug treatment were administered orally for six weeks to male wistar rats. Various behavioral performance tasks, biochemical, mitochondrial oxidative parameters, and aluminum concentration in the brain were assessed. Aluminum chloride treatment significantly caused cognitive dysfunction and mitochondria oxidative damage as compared to vehicle treated control group. Besides, aluminum chloride treatment significantly increased acetyl cholinesterase activity and aluminum concentration in the brain as compared to sham. Chronic administration of naringin significantly improved cognitive performance and attenuated mitochondria oxidative damage, acetyl cholinesterase activity, and aluminum concentration in aluminum-treated rats as compared to control rats. Results of the study demonstrate neuroprotective potential of naringin against aluminum chloride-induced cognitive dysfunction and mitochondrial oxidative damage. PMID:23510099

  15. DNA damage and oxidative stress induced by acetylsalicylic acid in Daphnia magna.

    PubMed

    Gómez-Oliván, Leobardo Manuel; Galar-Martínez, Marcela; Islas-Flores, Hariz; García-Medina, Sandra; SanJuan-Reyes, Nely

    2014-08-01

    Acetylsalicylic acid is a nonsteroidal anti-inflammatory widely used due to its low cost and high effectiveness. This compound has been found in water bodies worldwide and is toxic to aquatic organisms; nevertheless its capacity to induce oxidative stress in bioindicators like Daphnia magna remains unknown. This study aimed to evaluate toxicity in D. magna induced by acetylsalicylic acid in water, using oxidative stress and DNA damage biomarkers. An acute toxicity test was conducted in order to determine the median lethal concentration (48-h LC50) and the concentrations to be used in the subsequent subacute toxicity test in which the following biomarkers were evaluated: lipid peroxidation, oxidized protein content, activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, and level of DNA damage. Lipid peroxidation level and oxidized protein content were significantly increased (p<0.05), and antioxidant enzymes significantly altered with respect to controls; while the DNA damage were significantly increased (p<0.05) too. In conclusion, acetylsalicylic acid induces oxidative stress and DNA damage in D. magna. PMID:24747829

  16. Ratiometric Raman Spectroscopy for Quantification of Protein Oxidative Damage

    PubMed Central

    Jiang, Dongping; Yanney, Michael; Zou, Sige; Sygula, Andrzej

    2009-01-01

    A novel ratiometric Raman spectroscopic (RMRS) method has been developed for quantitative determination of protein carbonyl levels. Oxidized bovine serum albumin (BSA) and oxidized lysozyme were used as model proteins to demonstrate this method. The technique involves conjugation of protein carbonyls with dinitrophenyl hydrazine (DNPH), followed by drop coating deposition Raman spectral acquisition (DCDR). The RMRS method is easy to implement as it requires only one conjugation reaction, a single spectral acquisition, and does not require sample calibration. Characteristic peaks from both protein and DNPH moieties are obtained in a single spectral acquisition, allowing the protein carbonyl level to be calculated from the peak intensity ratio. Detection sensitivity for the RMRS method is ~0.33 pmol carbonyl/measurement. Fluorescence and/or immunoassay based techniques only detect a signal from the labeling molecule and thus yield no structural or quantitative information for the modified protein while the RMRS technique provides for protein identification and protein carbonyl quantification in a single experiment. PMID:19457432

  17. Honey bee (Apis mellifera) drones survive oxidative stress due to increased tolerance instead of avoidance or repair of oxidative damage.

    PubMed

    Li-Byarlay, Hongmei; Huang, Ming Hua; Simone-Finstrom, Michael; Strand, Micheline K; Tarpy, David R; Rueppell, Olav

    2016-10-01

    Oxidative stress can lead to premature aging symptoms and cause acute mortality at higher doses in a range of organisms. Oxidative stress resistance and longevity are mechanistically and phenotypically linked; considerable variation in oxidative stress resistance exists among and within species and typically covaries with life expectancy. However, it is unclear whether stress-resistant, long-lived individuals avoid, repair, or tolerate molecular damage to survive longer than others. The honey bee (Apis mellifera L.) is an emerging model system that is well-suited to address this question. Furthermore, this species is the most economically important pollinator, whose health may be compromised by pesticide exposure, including oxidative stressors. Here, we develop a protocol for inducing oxidative stress in honey bee males (drones) via Paraquat injection. After injection, individuals from different colony sources were kept in common social conditions to monitor their survival compared to saline-injected controls. Oxidative stress was measured in susceptible and resistant individuals. Paraquat drastically reduced survival but individuals varied in their resistance to treatment within and among colony sources. Longer-lived individuals exhibited higher levels of lipid peroxidation than individuals dying early. In contrast, the level of protein carbonylation was not significantly different between the two groups. This first study of oxidative stress in male honey bees suggests that survival of an acute oxidative stressor is due to tolerance, not prevention or repair, of oxidative damage to lipids. It also demonstrates colony differences in oxidative stress resistance that might be useful for breeding stress-resistant honey bees. PMID:27422326

  18. Effects of (+)-catechin and (-)-epicatechin on heterocyclic amines-induced oxidative DNA damage.

    PubMed

    Haza, Ana Isabel; Morales, Paloma

    2011-01-01

    The aim of the present study was to evaluate the protective effect of (+)-catechin and (-)-epicatechin against 2-amino-3,8- dimethylimidazo[4,5-f]quinoxaline (8-MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]-quinoxaline (4,8-diMeIQx) and 2-amino-1-methyl-6-phenyl-imidazo[4,5-b]pyridine (PhIP)-induced DNA damage in human hepatoma cells (HepG2). DNA damage (strand breaks and oxidized purines/pyrimidines) was evaluated by the alkaline single-cell gel electrophoresis or comet assay. Increasing concentrations of 8-MeIQx, 4,8-diMeIQx and PhIP induced a significant increase in DNA strand breaks and oxidized purines and pyrimidines in a dose-dependent manner. Among those, PhIP (300 µm) exerted the highest genotoxicity. (+)-Catechin exerted protection against oxidized purines induced by 8-MeIQx, 4,8-diMeIQx and PhIP. Oxidized pyrimidines and DNA strand breaks induced by PhIP were also prevented by (+)-catechin. Otherwise, (-)-epicatechin protected against the oxidized pyrimidines induced by PhIP and the oxidized purines induced by 8-MeIQx and 4,8-diMeIQx. One feasible mechanism by which (+)-catechin and (-)-epicatechin exert their protective effect towards heterocyclic amines-induced oxidative DNA damage may be by modulation of phase I and II enzyme activities. The ethoxyresorufin O-deethylation (CYP1A1) activity was moderately inhibited by (+)-catechin, while little effect was observed by (-)-epicatechin. However, (+)-catechin showed the greatest increase in UDP-glucuronyltransferase activity. In conclusion, our results clearly indicate that (+)-catechin was more efficient than (-)-epicatechin in preventing DNA damage (strand breaks and oxidized purines/pyrimidines) induced by PhIP than that induced by 8-MeIQx and 4,8-diMeIQx. PMID:20583320

  19. Genistein mitigates radiation-induced testicular injury.

    PubMed

    Kim, Joong-Sun; Heo, Kyu; Yi, Joo-Mi; Gong, Eun Ji; Yang, Kwangmo; Moon, Changjong; Kim, Sung-Ho

    2012-08-01

    The present study investigated the radioprotective effect of a multifunctional soy isoflavone, genistein, with the testicular system. Genistein was administered (200 mg/kg body weight) to male C3H/HeN mice by subcutaneous injection 24 h prior to pelvic irradiation (5 Gy). Histopathological parameters were evaluated 12 h and 21 days post-irradiation. Genistein protected the germ cells from radiation-induced apoptosis (p < 0.05 vs vehicle-treated irradiated mice at 12 h post-irradiation). Genistein significantly attenuated radiation-induced reduction in testis weight, seminiferous tubular diameter, seminiferous epithelial depth and sperm head count in the testes (p < 0.05 vs vehicle-treated irradiated mice at 21 days post-irradiation). Repopulation and stem cell survival indices of the seminiferous tubules were increased in the genistein-treated group compared with the vehicle-treated irradiation group at 21 days post-irradiation (p < 0.01). The irradiation-mediated decrease in the sperm count and sperm mobility in the epididymis was counteracted by genistein (p < 0.01), but no effect on the frequency of abnormal sperm was evident. Reactive oxygen species (ROS) were evaluated using DCFDA method and exposure to irradiation elevated ROS levels in the testis and genistein treatment resulted in a significant attenuation of radiation-induced ROS production. The results indicate that genistein protects from testicular dysfunction induced by gamma-irradiation by an antiapoptotic effect and recovery of spermatogenesis. PMID:22162311

  20. The role of nitric oxide on DNA damage induced by benzene metabolites

    PubMed Central

    MELIKIAN, ASSIEH A.; CHEN, KUN-MING; LI, HEYI; SODUM, RAMA; FIALA, EMERICH; EL-BAYOUMY, KARAM

    2013-01-01

    Benzene, a tobacco constituent, is a leukemogen in humans and a carcinogen in rodents. Several benzene metabolites generate superoxide anion (O2•−) and induce nitric oxide synthase in the bone marrow of mice. We hypothesized that the reaction of nitric oxide (•NO) with O2•− leads to the formation of peroxynitrite as an intermediate during benzene metabolism. This hypothesis was supported by demonstrating that the exposure of mice to benzene produced nitrated metabolites and enhanced the levels of protein-bound 3-nitrotyrosine in the bone marrow of mice in vivo. In the current study, we investigated the influence of nitric oxide, generated from sodium 1-(N,N-diethylamino)diazen-1-ium-1,2-diolate, on DNA strand breaks induced by each single or binary benzene metabolite at different doses and compared the levels of the DNA damage induced by each benzene metabolite in the presence of nitric oxide with the levels of DNA strand breaks induced by peroxynitrite at similar doses in vitro. We found that among benzene metabolites only 1,2,4-trihydroxybenzene (BT) can induce significant DNA damage in the absence of nitric oxide. While 1,4-dihydroxybenzene (HQ), 1,4-benzo-quinone (BQ) and 1,2-dihydroxybenzene (CAT) require •NO to induce DNA strand breaks, hydroquinone was the most potent DNA-damaging benzene metabolite in the presence of •NO. The order of DNA breaks by benzene metabolites in the presence of •NO is: Peroxynitrite = HQ > BT > BQ > CAT. The •NO and O2•− scavengers inhibited DNA damage induced by [HQ+•NO]. Benzene, trans,trans-muconaldehyde, and phenol, do not induce DNA strand breaks either in the absence or presence of •NO. However, adding phenol to [HQ+•NO] leads to greater DNA damage than [HQ+•NO] alone. Collectively, these results suggest that nitric oxide is an important factor in DNA damage induced by certain benzene metabolites, probably via the formation of the peroxynitrite intermediate. Phenol, the major benzene metabolite

  1. Genistein prevents ultraviolet B radiation-induced nitrosative skin injury and promotes cell proliferation.

    PubMed

    Terra, V A; Souza-Neto, F P; Frade, M A C; Ramalho, L N Z; Andrade, T A M; Pasta, A A C; Conchon, A C; Guedes, F A; Luiz, R C; Cecchini, R; Cecchini, A L

    2015-03-01

    Nitric oxide (NO) levels increase considerably after 24h of exposure of skin to ultraviolet B (UVB) radiation, which leads to nitrosative skin injury. In addition, increased NO levels after exposure to UVB radiation are associated with inhibition of cell proliferation. Compared to the UV-control group, UV-genistein at 10 mg/kg (UV-GEN10) group showed tissue protection, decreased lipid peroxide and nitrotyrosine formation, and low CAT activity. Furthermore, NO levels and iNOS labeling remained high. In this group, the reduction in lipid peroxides and nitrotyrosine was accompanied by upregulation of cell proliferation factors (Ki67 and PCNA), which indicated that prevention of nitrosative skin injury promoted cell proliferation and DNA repair. Genistein also prevented nitrosative events, inhibited ONOO(-) formation, which leads to tissue protection and cell proliferation. The UV-GEN15 group did not result in a greater protective effect compared to that with UV-GEN10 group. In the UV-GEN15 group, histological examination of the epidermis showed morphological alterations without efficient protection against lipid peroxide formation, as well as inhibition of Ki67 and PCNA, and VEGF labeling, which suggested inhibition of cell proliferation. These results help to elucidate the mechanisms underlying the photoprotective effect of genistein and reveal the importance of UVB radiation-induced nitrosative damage. PMID:25668145

  2. Effect of alpha-lipoic acid on radiation-induced small intestine injury in mice

    PubMed Central

    Jeong, Bae Kwon; Song, Jin Ho; Jeong, Hojin; Choi, Hoon Sik; Jung, Jung Hwa; Hahm, Jong Ryeal; Woo, Seung Hoon; Jung, Myeong Hee; Choi, Bong-Hoi; Kim, Jin Hyun; Kang, Ki Mun

    2016-01-01

    Purpose Radiation therapy is a highly effective treatment for patients with solid tumors. However, it can cause damage and inflammation in normal tissues. Here, we investigated the effects of alpha-lipoic acid (ALA) as radioprotection agent for the small intestine in a mouse model. Materials and Methods Whole abdomen was evenly irradiated with total a dose of 15 Gy. Mice were treated with either ALA (100 mg/kg, intraperitoneal injection [i.p.]) or saline (equal volume, i.p.) the prior to radiation as 100 mg/kg/day for 3 days. Body weight, food intake, histopathology, and biochemical parameters were evaluated. Results Significant differences in body weight and food intake were observed between the radiation (RT) and ALA + RT groups. Moreover, the number of crypt cells was higher in the ALA + RT group. Inflammation was decreased and recovery time was shortened in the ALA + RT group compared with the RT group. The levels of inflammation-related factors (i.e., phosphorylated nuclear factor kappa B and matrix metalloproteinase-9) and mitogen-activated protein kinases were significantly decreased in the ALA + RT group compared with those in the RT group. Conclusions ALA treatment prior to radiation decreases the severity and duration of radiation-induced enteritis by reducing inflammation, oxidative stress, and cell death. PMID:26943777

  3. Oxidative damage to macromolecules in human Parkinson’s disease and the rotenone model

    PubMed Central

    Sanders, Laurie H.; Greenamyre, J. Timothy

    2013-01-01

    Parkinson’s disease (PD), the most common neurodegenerative movement disorder, is associated with selective degeneration of nigrostriatal dopamine neurons. While the underlying mechanisms contributing to neurodegeneration in PD appear to be multifactorial, mitochondrial impairment and oxidative stress are widely considered to be central to many forms of the disease. Whether oxidative stress is a cause or consequence of dopaminergic death, there is substantial evidence for oxidative stress in both human PD patients and in animal models of PD, especially using rotenone, a complex I inhibitor. There are many indices of oxidative stress, but this review covers the recent evidence for oxidative damage to nucleic acids, lipids and proteins in both the brain and peripheral tissues in human PD and in the rotenone model. Limitations of the existing literature and future perspectives are discussed. Understanding how each particular macromolecule is damaged by oxidative stress and the interplay of secondary damage to other biomolecules may help design better targets for treatment of PD. PMID:23328732

  4. Radiation-induced intracranial malignant gliomas

    SciTech Connect

    Shapiro, S.; Mealey, J. Jr.; Sartorius, C.

    1989-07-01

    The authors present seven cases of malignant gliomas that occurred after radiation therapy administered for diseases different from the subsequent glial tumor. Included among these seven are three patients who were treated with interstitial brachytherapy. Previously reported cases of radiation-induced glioma are reviewed and analyzed for common characteristics. Children receiving central nervous system irradiation appear particularly susceptible to induction of malignant gliomas by radiation. Interstitial brachytherapy may be used successfully instead of external beam radiotherapy in previously irradiated, tumor-free brain, and thus may reduce the risk of radiation necrosis. 31 references.

  5. Radiation-induced hydrogen transfer in metals

    NASA Astrophysics Data System (ADS)

    Tyurin, Yu I.; Vlasov, V. A.; Dolgov, A. S.

    2015-11-01

    The paper presents processes of hydrogen (deuterium) diffusion and release from hydrogen-saturated condensed matters in atomic, molecular and ionized states under the influence of the electron beam and X-ray radiation in the pre-threshold region. The dependence is described between the hydrogen isotope release intensity and the current density and the electron beam energy affecting sample, hydrogen concentration in the material volume and time of radiation exposure to the sample. The energy distribution of the emitted positive ions of hydrogen isotopes is investigated herein. Mechanisms of radiation-induced hydrogen transfer in condensed matters are suggested.

  6. A report on radiation-induced gliomas

    SciTech Connect

    Salvati, M.; Artico, M.; Caruso, R.; Rocchi, G.; Orlando, E.R.; Nucci, F. )

    1991-01-15

    Radiation-induced gliomas are uncommon, with only 73 cases on record to date. The disease that most frequently occasioned radiation therapy has been acute lymphoblastic leukemia (ALL). Three more cases are added here, two after irradiation for ALL and one after irradiation for tinea capitis. In a review of the relevant literature, the authors stress the possibility that the ALL-glioma and the retinoblastoma-glioma links point to syndromes in their own right that may occur without radiation therapy.56 references.

  7. The Effects of Caffeine Supplements on Exercise-Induced Oxidative Damages

    PubMed Central

    Zeraatpishe, Akbar; Malekirad, Ali Akbar; Nik-Kherad, Javad; Jafari, Afshar; Yousefi Babadi, Saeed; Tanwir, Farzeen; Espanani, Hamid Reza

    2015-01-01

    Background: There is an interaction between oxidative equilibrium and anti-oxidants in oxidative stress. Therefore, oxidative stress has an effect on intercellular oxidation and causes atrophy and is an underlying factor in many diseases. Objectives: The aim of this study was to investigate the effect of running downhill and the short-term effect of caffeine supplementation on oxidative stress in non-athletic men. Patients and Methods: Twenty men, aged 25 - 28 years, from Tabriz, Iran were been selected and divided in two homogeneous groups of 10 men: the supplementation group and the placebo group. In the next stage, groups received caffeine supplementation (caffeine capsules at a dose of 5 mg/kg of body weight daily for 14 days) or placebo (5 mg/kg of dextrose during supplementation) and ran downhill (30 minutes of treadmill running with a slope of −10 degrees with 65% maximal oxygen consumption); blood sampling was also performed. Results: Anti-oxidant capacity by the ferric reducing ability of plasma (FRAP) techniques and serum malondialdehyde (MDA) were measured by the thiobarbituric acid (TBA) method, while the total number of thiol molecules (TTM) with Hu and DNA damage was evaluated using ELISA. Conclusions: The results of this study indicated that running downhill caused significant changes in all measured parameters, but the short-term caffeine supplementation did not have a significant effect on the indices of oxidative stress or DNA damage measured. PMID:26715963

  8. Increased DNA and RNA damage by oxidation in patients with bipolar I disorder.

    PubMed

    Jacoby, A S; Vinberg, M; Poulsen, H E; Kessing, L V; Munkholm, K

    2016-01-01

    The mechanisms underlying bipolar disorder (BD) and the associated medical burden are unclear. Damage generated by oxidation of nucleosides may be implicated in BD pathophysiology; however, evidence from in vivo studies is limited and the extent of state-related alterations is unclear. This prospective study investigated for we believe the first time the damage generated by oxidation of DNA and RNA strictly in patients with type I BD in a manic or mixed state and subsequent episodes and remission compared with healthy control subjects. Urinary excretion of 8-oxo-deoxyguanosine (8-oxodG) and 8-oxo-guanosine (8-oxoGuo), valid markers of whole-body DNA and RNA damage by oxidation, respectively, was measured in 54 patients with BD I and in 35 healthy control subjects using a modified ultraperformance liquid chromatography and mass spectrometry assay. Repeated measurements were evaluated in various affective phases during a 6- to 12-month period and compared with repeated measurements in healthy control subjects. Independent of lifestyle and demographic variables, a 34% (P<0.0001) increase in RNA damage by oxidation across all affective states, including euthymia, was found in patients with BD I compared with healthy control subjects. Increases in DNA and RNA oxidation of 18% (P<0.0001) and 8% (P=0.02), respectively, were found in manic/hypomanic states compared with euthymia, and levels of 8-oxodG decreased 15% (P<0.0001) from a manic or mixed episode to remission. The results indicate a role for DNA and RNA damage by oxidation in BD pathophysiology and a potential for urinary 8-oxodG and 8-oxoGuo to function as biological markers of diagnosis, state and treatment response in BD. PMID:27505230

  9. Effect of Oxidative Damage on the Stability and Dimerization of Superoxide Dismutase 1.

    PubMed

    Petrov, Drazen; Daura, Xavier; Zagrovic, Bojan

    2016-04-12

    During their life cycle, proteins are subject to different modifications involving reactive oxygen species. Such oxidative damage to proteins may lead to the formation of insoluble aggregates and cytotoxicity and is associated with age-related disorders including neurodegenerative diseases, cancer, and diabetes. Superoxide dismutase 1 (SOD1), a key antioxidant enzyme in human cells, is particularly susceptible to such modifications. Moreover, this homodimeric metalloenzyme has been directly linked to both familial and sporadic amyotrophic lateral sclerosis (ALS), a devastating, late-onset motor neuronal disease, with more than 150 ALS-related mutations in the SOD1 gene. Importantly, oxidatively damaged SOD1 aggregates have been observed in both familial and sporadic forms of the disease. However, the molecular mechanisms as well as potential implications of oxidative stress in SOD1-induced cytotoxicity remain elusive. In this study, we examine the effects of oxidative modification on SOD1 monomer and homodimer stability, the key molecular properties related to SOD1 aggregation. We use molecular dynamics simulations in combination with thermodynamic integration to study microscopic-level site-specific effects of oxidative "mutations" at the dimer interface, including lysine, arginine, proline and threonine carbonylation, and cysteine oxidation. Our results show that oxidative damage of even single residues at the interface may drastically destabilize the SOD1 homodimer, with several modifications exhibiting a comparable effect to that of the most drastic ALS-causing mutations known. Additionally, we show that the SOD1 monomer stability decreases upon oxidative stress, which may lead to partial local unfolding and consequently to increased aggregation propensity. Importantly, these results suggest that oxidative stress may play a key role in development of ALS, with the mutations in the SOD1 gene being an additional factor. PMID:27074676

  10. UV Radiation Induces Delayed Hyperrecombination Associated with Hypermutation in Human Cells†

    PubMed Central

    Durant, Stephen T.; Paffett, Kimberly S.; Shrivastav, Meena; Timmins, Graham S.; Morgan, William F.; Nickoloff, Jac A.

    2006-01-01

    Ionizing radiation induces delayed genomic instability in human cells, including chromosomal abnormalities and hyperrecombination. Here, we investigate delayed genome instability of cells exposed to UV radiation. We examined homologous recombination-mediated reactivation of a green fluorescent protein (GFP) gene in p53-proficient human cells. We observed an ∼5-fold enhancement of delayed hyperrecombination (DHR) among cells surviving a low dose of UV-C (5 J/m2), revealed as mixed GFP+/− colonies. UV-B did not induce DHR at an equitoxic (75 J/m2) dose or a higher dose (150 J/m2). UV is known to induce delayed hypermutation associated with increased oxidative stress. We found that hypoxanthine phosphoribosyltransferase (HPRT) mutation frequencies were ∼5-fold higher in strains derived from GFP+/− (DHR) colonies than in strains in which recombination was directly induced by UV (GFP+ colonies). To determine whether hypermutation was directly caused by hyperrecombination, we analyzed hprt mutation spectra. Large-scale alterations reflecting large deletions and insertions were observed in 25% of GFP+ strains, and most mutants had a single change in HPRT. In striking contrast, all mutations arising in the hypermutable GFP+/− strains were small (1- to 2-base) changes, including substitutions, deletions, and insertions (reminiscent of mutagenesis from oxidative damage), and the majority were compound, with an average of four hprt mutations per mutant. The absence of large hprt deletions in DHR strains indicates that DHR does not cause hypermutation. We propose that UV-induced DHR and hypermutation result from a common source, namely, increased oxidative stress. These two forms of delayed genome instability may collaborate in skin cancer initiation and progression. PMID:16880516

  11. Oxidative Damage and Autophagy in the Human Trabecular Meshwork as Related with Ageing

    PubMed Central

    Pulliero, Alessandra; Seydel, Anke; Camoirano, Anna; Saccà, Sergio Claudio; Sandri, Marco; Izzotti, Alberto

    2014-01-01

    Autophagy is an intracellular lysosomal degradation process induced under stress conditions. Autophagy also plays a major role in ocular patho-physiology. Molecular aging does occur in the trabecular meshwork, the main regulator of aqueous humor outflow, and trabecular meshwork senescence is accompanied by increased oxidative stress. However, the role of autophagy in trabecular meshwork patho-physiology has not yet been examined in vivo in human ocular tissues. The purpose of the herein presented study is to evaluate autophagy occurrence in ex-vivo collected human trabecular meshwork specimens and to evaluate the relationship between autophagy, oxidative stress, and aging in this tissue. Fresh trabecular meshwork specimens were collected from 28 healthy corneal donors devoid of ocular pathologies and oxidative DNA damage, and LC3 and p62 protein expression analyzed. In a subset of 10 subjects, further to trabecular meshwork proteins, the amounts of cathepesin L and ubiquitin was analyzed by antibody microarray in aqueous humor. Obtained results demonstrate that autophagy activation, measured by LC3II/I ratio, is related with. oxidative damage occurrence during aging in human trabecular meshwork. The expression of autophagy marker p62 was lower in subjects older than 60 years as compared to younger subjects. These findings reflect the occurrence of an agedependent increase in the autophagy as occurring in the trabecular meshwork. Furthermore, we showed that aging promotes trabecular-meshwork senescence due to increased oxidative stress paralleled by autophagy increase. Indeed, both oxidative DNA damage and autophagy were more abundant in subjects older than 60 years. These findings shed new light on the role of oxidative damage and autophagy during trabecular-meshwork aging. PMID:24945152

  12. Melatonin Attenuates Oxidative Damage Induced by Acrylamide In Vitro and In Vivo

    PubMed Central

    Pan, Xiaoqi; Zhu, Lanlan; Lu, Huiping; Wang, Dun; Lu, Qing; Yan, Hong

    2015-01-01

    Acrylamide (ACR) has been classified as a neurotoxic agent in animals and humans. Melatonin (MT) has been shown to be potentially effective in preventing oxidative stress related neurodegenerative disorders. In this study, whether MT exerted a protective effect against ACR-induced oxidative damage was investigated. Results in cells showed that reactive oxygen species (ROS) and malondialdehyde (MDA) significantly increased after ACR treatment for 24 h. MT preconditioning or cotreatment with ACR reduced ROS and MDA products, whereas the inhibitory effect of MT on oxidant generation was attenuated by blocking the MT receptor. Increased DNA fragmentation caused by ACR was significantly decreased by MT coadministration. In vivo, rats at 40 mg/kg/day ACR by gavage for 12 days showed weight loss and gait abnormality, Purkinje cell nuclear condensation, and DNA damage in rat cerebellum. MT (i.p) cotreatment with ACR not only recovered weight and gait of rats, but also decreased nuclear condensation and DNA damage in rat cerebellum. Using MDA generation, glutathione (GSH) level, superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px) activities in rat cerebellum as indicators, MT alleviated ACR-induced lipid peroxidation and depressed antioxidant capacity. Our results suggest that MT effectively prevents oxidative damage induced by ACR. PMID:26185593

  13. Oxidative damage lipid peroxidation in the kidney of choline-deficient rats.

    PubMed

    Ossani, Georgina; Dalghi, Marianela; Repetto, Marisa

    2007-01-01

    Phosphatidylcholine is the most abundant phospholipid constituent of cell membranes and choline is a quaternary amine required for phosphatidylcholine synthesis. The impairment of membrane functions is considered as an indication of oxidative damage. In order to kinetically analyze the time course of the pathogenesis of renal necrosis following to choline deficiency in weanling rats, we determined markers of membrane lipid peroxidation (thiobarbituric acid reactive substances; TBARS and hydroperoxide-induced chemiluminescence (BOOH-CL) ) and studied the histopathological damage. Plasma TBARS (t(1/2) = 2.5 days) was an early indicator of systemic oxidative stress, likely involving liver and kidney. The levels of TBARS an BOOH-CL increased by 80% and by 183%, respectively, in kidney homogenates with t(1/2) = 1.5 days and 4 days, respectively. The levels of BOOH-CL were statistically higher in rats fed a choline-deficient diet at day 6, in a mixture of membranes (from plasmatic, smooth and rough endoplasmic reticulum and Golgi), in mitochondrial membranes and in lysosomal membranes. The results indicate that choline deficiency produces oxidative damage in kidney subcellular membranes. Necrosis involved mainly convoluted tubules and appeared with a t(1/2) = 5.5 days. An increase in the production of reactive oxygen species, triggered by NADH overproduction in the mitochondrial dysfunction associated with choline deficiency appears as one of the pathogenic mechanism of mitochondrial and cellular oxidative damage in choline-deficiency. PMID:17127370

  14. Leukotriene C4 is the major trigger of stress-induced oxidative DNA damage

    PubMed Central

    Dvash, Efrat; Har-Tal, Michal; Barak, Sara; Meir, Ofir; Rubinstein, Menachem

    2015-01-01

    Endoplasmic reticulum (ER) stress and major chemotherapeutic agents damage DNA by generating reactive oxygen species (ROS). Here we show that ER stress and chemotherapy induce leukotriene C4 (LTC4) biosynthesis by transcriptionally upregulating and activating the enzyme microsomal glutathione-S-transferase 2 (MGST2) in cells of non-haematopoietic lineage. ER stress and chemotherapy also trigger nuclear translocation of the two LTC4 receptors. Acting in an intracrine manner, LTC4 then elicits nuclear translocation of NADPH oxidase 4 (NOX4), ROS accumulation and oxidative DNA damage. Mgst2 deficiency, RNAi and LTC4 receptor antagonists abolish ER stress- and chemotherapy-induced ROS and oxidative DNA damage in vitro and in mouse kidneys. Cell death and mouse morbidity are also significantly attenuated. Hence, MGST2-generated LTC4 is a major mediator of ER stress- and chemotherapy-triggered oxidative stress and oxidative DNA damage. LTC4 inhibitors, commonly used for asthma, could find broad clinical use in major human pathologies associated with ER stress-activated NOX4. PMID:26656251

  15. Sildenafil Attenuates Inflammation and Oxidative Stress in Pelvic Ganglia Neurons after Bilateral Cavernosal Nerve Damage

    PubMed Central

    Garcia, Leah A.; Hlaing, Su M.; Gutierrez, Richard A.; Sanchez, Maria D.; Kovanecz, Istvan; Artaza, Jorge N.; Ferrini, Monica G.

    2014-01-01

    Erectile dysfunction is a common complication for patients undergoing su