Science.gov

Sample records for radiative capture mechanisms

  1. Radiative capture reactions in astrophysics

    DOE PAGES

    Brune, Carl R.; Davids, Barry

    2015-08-07

    Here, the radiative capture reactions of greatest importance in nuclear astrophysics are identified and placed in their stellar contexts. Recent experimental efforts to estimate their thermally averaged rates are surveyed.

  2. Radiative capture versus Coulomb dissociation.

    SciTech Connect

    Esbensen, H.; Physics

    2006-01-01

    Measurements of the Coulomb dissociation of {sup 8}B have been used to infer the rate of the inverse radiative proton capture on {sup 7}Be. The analysis is usually based on the assumptions that the two processes are related by detailed balance and described by E1 transitions. However, there are corrections to this relation. The Coulomb form factors for the two processes, for example, are not identical. There are also E2 transitions and higher-order effects in the Coulomb dissociation, and the nuclear induced breakup cannot always be ignored. While adding first-order E2 transitions enhances the decay energy spectrum, the other mechanisms cause a suppression at low relative energies. The net result may accidentally be close to the conventional first-order E1 calculation, but there are differences which cannot be ignored if accuracies of 10% or better are needed.

  3. From radiation-induced chromosome damage to cell death: modelling basic mechanisms and applications to boron neutron capture therapy.

    PubMed

    Ballarini, F; Bortolussi, S; Clerici, A M; Ferrari, C; Protti, N; Altieri, S

    2011-02-01

    Cell death is a crucial endpoint in radiation-induced biological damage: on one side, cell death is a reference endpoint to characterise the action of radiation in biological targets; on the other side, any cancer therapy aims to kill tumour cells. Starting from Lea's target theory, many models have been proposed to interpret radiation-induced cell killing; after briefly discussing some of these models, in this paper, a mechanistic approach based on an experimentally observed link between chromosome aberrations and cell death was presented. More specifically, a model and a Monte Carlo code originally developed for chromosome aberrations were extended to simulate radiation-induced cell death applying an experimentally observed one-to-one relationship between the average number of 'lethal aberrations' (dicentrics, rings and deletions) per cell and -ln S, S being the fraction of surviving cells. Although such observation was related to X rays, in the present work, the approach was also applied to protons and alpha particles. A good agreement between simulation outcomes and literature data provided a model validation for different radiation types. The same approach was then successfully applied to simulate the survival of cells enriched with boron and irradiated with thermal neutrons at the Triga Mark II reactor in Pavia, to mimic a typical treatment for boron neutron capture therapy.

  4. Magnetic capture docking mechanism

    NASA Technical Reports Server (NTRS)

    Howard, Nathan (Inventor); Nguyen, Hai D. (Inventor)

    2010-01-01

    A mechanism uses a magnetic field to dock a satellite to a host vehicle. A docking component of the mechanism residing on the host vehicle has a magnet that is used to induce a coupled magnetic field with a docking component of the mechanism residing on the satellite. An alignment guide axially aligns the docking component of the satellite with the docking component of the host device dependent on the coupled magnetic field. Rotational alignment guides are used to rotationally align the docking component of the satellite with the docking component of the host device. A ball-lock mechanism is used to mechanically secure the docking component of the host vehicle and the docking component of the satellite.

  5. Radiative pion capture by C12.

    NASA Technical Reports Server (NTRS)

    Lam, W. C.; Gotow, K.; Macdonald, B.; Trower, W. P.; Anderson, D. K.

    1972-01-01

    The energy spectrum of neutrons from radiative pion capture by carbon is investigated. Radiative pion capture is identified by coincidence of a stop signal and a signal from one of six lead-glass gamma detectors when negative pions traverse a beam telescope and are stopped in a carbon target. The energy of the neutrons is measured using the time interval between a stop signal coincident with a gamma-counter signal and a signal from a liquid-oscillator neutron counter. Asymmetry in the neutron-photon angular correlation increases with neutron energy and is accounted for by direct neutron emission.

  6. Radiative pion capture by C12.

    NASA Technical Reports Server (NTRS)

    Lam, W. C.; Gotow, K.; Macdonald, B.; Trower, W. P.; Anderson, D. K.

    1972-01-01

    The energy spectrum of neutrons from radiative pion capture by carbon is investigated. Radiative pion capture is identified by coincidence of a stop signal and a signal from one of six lead-glass gamma detectors when negative pions traverse a beam telescope and are stopped in a carbon target. The energy of the neutrons is measured using the time interval between a stop signal coincident with a gamma-counter signal and a signal from a liquid-oscillator neutron counter. Asymmetry in the neutron-photon angular correlation increases with neutron energy and is accounted for by direct neutron emission.

  7. Radiative electron capture by channeled ions

    SciTech Connect

    Pitarke, J.M. . Zientzi Fakultatea); Ritchie, R.H. Tennessee Univ., Knoxville, TN . Dept. of Physics)

    1989-01-01

    Considerable experimental data have been accumulated relative to the emission of photons accompanying electron capture by swift, highly stripped atoms penetrating crystalline matter under channeling conditions. Recent data suggest that the photon energies may be less than that expected from simple considerations of transitions from the valence band of the solid to hydrogenic states on the moving ion. We have studied theoretically the impact parameter dependence of the radiative electron capture (REC) process, the effect of the ion's wake and the effect of capture from inner shells of the solid on the photon emission probability, using a statistical approach. Numerical comparisons of our results with experiment are made. 13 refs., 6 figs.

  8. Measurement of double-radiative pion capture on hydrogen

    NASA Astrophysics Data System (ADS)

    Tripathi, Sugata

    The first measurement of double radiative pion capture on hydrogen is presented. The experiment was conducted at the TRIUMF cyclotron using the RMC spectrometer, and detected gamma-ray coincidences following pi - stops in liquid hydrogen. The branching ratio for the double radiative capture reaction was found to be (3.05 +/- 0.27 (stat.) +/- 0.31 (syst.)) x 10-5. The measured branching ratio and angle-energy distributions support the theoretical prediction of a dominant contribution from the pi-pi + → gammagamma annihilation mechanism.

  9. Virtual Gamma Ray Radiation Sources through Neutron Radiative Capture

    SciTech Connect

    Scott Wilde, Raymond Keegan

    2008-07-01

    The countrate response of a gamma spectrometry system from a neutron radiation source behind a plane of moderating material doped with a nuclide of a large radiative neutron capture cross-section exhibits a countrate response analogous to a gamma radiation source at the same position from the detector. Using a planar, surface area of the neutron moderating material exposed to the neutron radiation produces a larger area under the prompt gamma ray peak in the detector than a smaller area of dimensions relative to the active volume of the gamma detection system.

  10. Reconciling Coulomb breakup and neutron radiative capture

    NASA Astrophysics Data System (ADS)

    Capel, P.; Nollet, Y.

    2017-07-01

    The Coulomb-breakup method to extract the cross section for neutron radiative capture at astrophysical energies is analyzed in detail. In particular, its sensitivity to the description of the neutron-core continuum is ascertained. We consider the case of 14C(n ,γ )15C for which both the radiative capture at low energy and the Coulomb breakup of 15C into 14C+n on Pb at 68 MeV/nucleon have been measured with accuracy. We confirm the direct proportionality of the cross section for both reactions to the square of the asymptotic normalization constant of 15C observed by Summers and Nunes [Phys. Rev. C 78, 011601(R) (2008), 10.1103/PhysRevC.78.011601], but we also show that the 14C-n continuum plays a significant role in the calculations. Fortunately, the method proposed by Summers and Nunes can be improved to absorb that continuum dependence. We show that a more precise radiative-capture cross section can be extracted selecting the breakup data at forward angles and low 14C-n relative energies.

  11. Competition between radiative recombination and nuclear excitation by electron capture

    NASA Astrophysics Data System (ADS)

    Pály, A.; Harman, Z.; Surzhykov, A.; Scheid, W.

    2007-03-01

    The process of electron recombination is investigated considering the possible resonant channel of nuclear excitation by electron capture (NEEC), in which a continuum electron is captured into a bound state of an ion with the simultaneous excitation of the nucleus. Transition rates and total cross sections for NEEC followed by the radiative decay of the nucleus are presented for various heavy-ion collision systems. The role played by radiative recombination (RR) in the NEEC recombination mechanism is investigated and theoretical estimates of the magnitude of the interference between the two processes are presented. We discuss the experimental possibility of discerning NEEC from the RR background, studying the angular distribution of the radiation emitted in the two processes.

  12. Measuring radiative capture rates at DRAGON

    NASA Astrophysics Data System (ADS)

    Hager, U.; Davids, B.; Fallis, J.; Greife, U.; Hutcheon, D. A.; Rojas, A.; Ruiz, C.

    2013-04-01

    The DRAGON recoil separator facility is located at the ISAC facility at TRIUMF, Vancouver. It is designed to measure radiative alpha and proton capture reactions of astrophysical importance in inverse kinematics. The Supernanogan ion source at ISAC provides stable beams of high intensities. The DRAGON collaboration has taken advantage of this over the last years by measuring several reactions requiring high-intensity stable oxygen beams. In particular,the ^17O(p,γ) and ^16O(α,γ) reaction rates were recently measured. The former reaction is part of the hot CNO cycle, and strongly influences the abundance of ^18F in classical novae. Because of its relatively long lifetime, ^18F is a possible target for satellite-based gamma-ray spectroscopy. The ^16O(α,γ) reaction plays a role in steady-state helium burning in massive stars, where it follows the ^12C(α,γ) reaction. At astrophysically relevant energies, the reaction proceeds exclusively via direct capture, resulting in a low rate. In both cases, the unique capabilities of DRAGON enabled determination not only of the total reaction rates, but also of decay branching ratios. Results from both experiments will be presented.

  13. Soft-Capture Mechanism For Collet Joint

    NASA Technical Reports Server (NTRS)

    Huff, John E., Jr.

    1992-01-01

    Soft-capture mechanism part of latching-and-rigidifying mechanism joining strut rigidly to node on truss. Latching-and-rigidifying mechanism of spreading-collet type, in which collet inserted into base that mates with collet to assure proper alignment, then collet spread to rigidify joint, fixing alignment. Designed to be operable by heavily gloved hand or by robot.

  14. Radiative nucleon capture with quasi-separable potentials

    NASA Astrophysics Data System (ADS)

    Shubhchintak; Bertulani, C. A.; Mukhamedzhanov, A. M.; Kruppa, A. T.

    2016-12-01

    We study radiative capture reactions using quasi-separable potentials. This procedure allows an easier treatment of non-local effects that can be extended to three-body problems. Using this technique, we calculate the neutron and proton radiative capture cross sections on 12C. The results obtained are shown to be in good agreement with the available experimental data.

  15. Apparatus and method for detecting full-capture radiation events

    DOEpatents

    Odell, Daniel M. C.

    1994-01-01

    An apparatus and method for sampling the output signal of a radiation detector and distinguishing full-capture radiation events from Compton scattering events. The output signal of a radiation detector is continuously sampled. The samples are converted to digital values and input to a discriminator where samples that are representative of events are identified. The discriminator transfers only event samples, that is, samples representing full-capture events and Compton events, to a signal processor where the samples are saved in a three-dimensional count matrix with time (from the time of onset of the pulse) on the first axis, sample pulse current amplitude on the second axis, and number of samples on the third axis. The stored data are analyzed to separate the Compton events from full-capture events, and the energy of the full-capture events is determined without having determined the energies of any of the individual radiation detector events.

  16. Cross section expansion for direct neutron radiative capture

    SciTech Connect

    Baye, D.

    2004-07-01

    Cross sections for neutron radiative capture multiplied by the relative velocity can be expressed as a Taylor expansion in powers of the relative energy. The coefficients of this expansion are expressed in the potential model as integrals involving solutions of the radial Schroedinger equation and of its inhomogeneous energy derivatives calculated at zero energy. Similarities and differences with charged-particle capture are emphasized. The {sup 12}C(n,{gamma}){sup 13}C capture reaction is treated as an example. The coefficients of the Taylor expansion lead to simple parametrizations of the experimental partial cross sections for neutron capture to each {sup 13}C bound state.

  17. Radiative electron capture in nonequilibrium plasmas

    SciTech Connect

    Milchberg, H.M.; Weisheit, J.C.

    1982-01-19

    Formulae have been obtained for the degree of linear polarization of recombination radiation from a homogeneous plasma having an anisotropic electron velocity distribution, f(v vector), characterized by an axis of symmetry. Polarization measurements are described which utilize these formulae to determine aspects of the anisotropy such as the symmetry axis direction and the lowest order even angular moments of f(v vector). As a special case, if the plasma conforms to a distribution such as a bi-Maxwellian with drift, one can determine the quantities u/sub D//T/sub parallel to/ and (1/T/sub parallel to/ - 1/T/sub perpendicular to/) which involve the electron drift speed, and the perpendicular and parallel electron temperatures. Also, the radiative recombination rate has been calculated for ions whose speeds are comparable to or greater than the electron thermal speed. The change in the rate is small for thermonuclear products in fusion plasmas, but large for cosmic rays in interstellar plasma.

  18. Radiative muon capture in hydrogen and nucleon excitation

    SciTech Connect

    Beder, D. S.; Fearing, H. W.

    1989-06-01

    We extend our previous calculations of radiative muon capture on a nucleonand present detailed calculations of the role of the ..delta..(1232) using animproved ..delta..-nucleon-..gamma.. vertex and for a variety of values of theinduced pseudoscalar coupling /ital g//sub /ital P//. We also present calculations ofthe photon-muon spin asymmetry and examine effects of the ..delta..(1232)there.

  19. Neutron radiative capture methods for surface elemental analysis

    USGS Publications Warehouse

    Trombka, J.I.; Senftle, F.; Schmadebeck, R.

    1970-01-01

    Both an accelerator and a 252Cf neutron source have been used to induce characteristic gamma radiation from extended soil samples. To demonstrate the method, measurements of the neutron-induced radiative capture and activation gamma rays have been made with both Ge(Li) and NaI(Tl) detectors, Because of the possible application to space flight geochemical analysis, it is believed that NaI(Tl) detectors must be used. Analytical procedures have been developed to obtain both qualitative and semiquantitative results from an interpretation of the measured NaI(Tl) pulse-height spectrum. Experiment results and the analytic procedure are presented. ?? 1970.

  20. Spin observables in deuteron proton radiative capture at intermediate energies

    NASA Astrophysics Data System (ADS)

    Mehmandoost-Khajeh-Dad, A. A.; Amir-Ahmadi, H. R.; Bacelar, J. C. S.; van den Berg, A. M.; Castelijns, R.; Deltuva, A.; van Garderen, E. D.; Glöckle, W.; Golak, J.; Kalantar-Nayestanaki, N.; Kamada, H.; Kiš, M.; Koohi-Fayegh-Dehkordi, R.; Löhner, H.; Mahjour-Shafiei, M.; Mardanpour, H.; Messchendorp, J. G.; Nogga, A.; Sauer, P.; Shende, S. V.; Skibinski, R.; Witała, H.; Wörtche, H. J.

    2005-06-01

    A radiative deuteron-proton capture experiment was carried out at KVI using polarized-deuteron beams at incident energies of 55, 66.5, and 90 MeV/nucleon. Vector and tensor-analyzing powers were obtained for a large angular range. The results are interpreted with the help of Faddeev calculations, which are based on modern two- and three-nucleon potentials. Our data are described well by the calculations, and disagree significantly with the observed tensor anomaly at RCNP.

  1. The radiation biology of boron neutron capture therapy.

    PubMed

    Coderre, J A; Morris, G M

    1999-01-01

    Boron neutron capture therapy (BNCT) is a targeted radiation therapy that significantly increases the therapeutic ratio relative to conventional radiotherapeutic modalities. BNCT is a binary approach: A boron-10 (10B)-labeled compound is administered that delivers high concentrations of 10B to the target tumor relative to surrounding normal tissues. This is followed by irradiation with thermal neutrons or epithermal neutrons which become thermalized at depth in tissues. The short range (5-9 microm) of the alpha and 7Li particles released from the 10B(n,alpha)7Li neutron capture reaction make the microdistribution of 10B of critical importance in therapy. The radiation field in tissues during BNCT consists of a mixture of components with differing LET characteristics. Studies have been carried out in both normal and neoplastic tissues to characterize the relative biological effectiveness of each radiation component. The distribution patterns and radiobiological characteristics of the two 10B delivery agents in current clinical use, the amino acid p-boronophenylalanine (BPA) and the sulfhydryl borane (BSH), have been evaluated in a range of normal tissues and tumor types. Considered overall, BSH-mediated BNCT elicits proportionately less damage to normal tissue than does BNCT mediated with BPA. However, BPA exhibits superior in vivo tumor targeting and has proven much more effective in the treatment of brain tumors in rats. In terms of fractionation effects, boron neutron capture irradiation modalities are comparable with other high-LET radiation modalities such as fast-neutron therapy. There was no appreciable advantage in increasing the number of daily fractions of thermal neutrons beyond two with regard to sparing of normal tissue in the rat spinal cord model. The experimental studies described in this review constitute the radiobiological basis for the new BNCT clinical trials for glioblastoma at Brookhaven National Laboratory, at the Massachusetts Institute of

  2. Determination of the effective sample thickness via radiative capture

    DOE PAGES

    Hurst, A. M.; Summers, N. C.; Szentmiklosi, L.; ...

    2015-09-14

    Our procedure for determining the effective thickness of non-uniform irregular-shaped samples via radiative capture is described. In this technique, partial γ-ray production cross sections of a compound nucleus produced in a neutron-capture reaction are measured using Prompt Gamma Activation Analysis and compared to their corresponding standardized absolute values. For the low-energy transitions, the measured cross sections are lower than their standard values due to significant photoelectric absorption of the γ rays within the bulk-sample volume itself. Using standard theoretical techniques, the amount of γ-ray self absorption and neutron self shielding can then be calculated by iteratively varying the sample thicknessmore » until the observed cross sections converge with the known standards. The overall attenuation provides a measure of the effective sample thickness illuminated by the neutron beam. This procedure is illustrated through radiative neutron capture using powdered oxide samples comprising enriched 186W and 182W from which their tungsten-equivalent effective thicknesses are deduced to be 0.077(3) mm and 0.042(8) mm, respectively.« less

  3. Determination of the effective sample thickness via radiative capture

    SciTech Connect

    Hurst, A. M.; Summers, N. C.; Szentmiklosi, L.; Firestone, R. B.; Basunia, M. S.; Escher, J. E.; Sleaford, B. W.

    2015-09-14

    Our procedure for determining the effective thickness of non-uniform irregular-shaped samples via radiative capture is described. In this technique, partial γ-ray production cross sections of a compound nucleus produced in a neutron-capture reaction are measured using Prompt Gamma Activation Analysis and compared to their corresponding standardized absolute values. For the low-energy transitions, the measured cross sections are lower than their standard values due to significant photoelectric absorption of the γ rays within the bulk-sample volume itself. Using standard theoretical techniques, the amount of γ-ray self absorption and neutron self shielding can then be calculated by iteratively varying the sample thickness until the observed cross sections converge with the known standards. The overall attenuation provides a measure of the effective sample thickness illuminated by the neutron beam. This procedure is illustrated through radiative neutron capture using powdered oxide samples comprising enriched 186W and 182W from which their tungsten-equivalent effective thicknesses are deduced to be 0.077(3) mm and 0.042(8) mm, respectively.

  4. Nucleon radiative capture and the inverse reaction at intermediate energies

    SciTech Connect

    Halpern, I.

    1991-01-01

    The processes which can lead to the radiative capture of fast nucleons include direct transitions in the nuclear potential, transitions in which coherent multipole resonances are excited, transitions by nucleons which are excited in early intranuclear collisions, bremsstrahlung from nucleon-nucleon collisions and photon evaporation'' from a thermally equilibrated nucleus. Corresponding processes occur when an energetic photon ejects fast nucleons from a nucleus. As experimental information from capture and photoreactions has become more detailed, inconsistencies and uncertainties have appeared which reflect difficulties in identifying and separating the responsible processes. This has led to more sophisticated and more complicated theoretical treatments which in turn have promoted new and more demanding experiments. 38 refs. 10 figs.

  5. Parity violation in radiative neutron capture on the deuteron

    NASA Astrophysics Data System (ADS)

    Song, Young-Ho; Lazauskas, Rimantas; Gudkov, Vladimir

    2012-10-01

    Parity-violating (PV) effects in neutron-deuteron radiative capture are studied using Desplanques, Donoghue, and Holstein (DDH) and effective field theory weak potentials. The values of PV effects are calculated using wave functions, obtained by solving three-body Faddeev equations in configuration space for realistic strong potentials. The relations between physical observables and low-energy constants are presented, and dependencies of the calculated PV effects on strong and weak potentials are discussed. The presented analysis shows the possible reason for the existing discrepancy in PV nuclear data analysis using the DDH approach and reveals a new opportunity to study short-range interactions in nuclei.

  6. Radiative p 16O Capture at Astrophyiscal Energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.

    2016-12-01

    Within the framework of the modified potential cluster model with forbidden states and classification of states according to the Young tableaux, the possibility is considered of describing experimental data for the astrophysical S-factor of radiative p 16O capture to the ground state of the 17F nucleus. It is shown that on the basis of E1 transitions from p 16O scattering states to the ground state of 17F in the p 16O channel overall success is achieved in explaining the magnitude of the measured cross sections at astrophysical energies.

  7. Ionizing radiation: mechanisms and therapeutics.

    PubMed

    Furdui, Cristina M

    2014-07-10

    While chemotherapy and radiation therapy have been integral components of cancer management for decades, the issues of local recurrence, clinical resistance, and toxicities resulting from these treatment modalities have increased the interest in novel therapeutic approaches that could attenuate tumor progression and prevent recurrences. This Forum highlights current research focused on elucidation of the mechanisms of response to radiation treatment and the development of out-of-the-box therapeutic strategies for cancer treatment with radiation. Experts in the field of radiation research contribute with review articles describing the current knowledge on DNA damage response mechanisms, regulation of signaling involved in the DNA damage response by miRNA, the function of tumor hypoxia in tumor response to radiation, and the role of stem cells in protection of normal tissue against radiation damage.

  8. Radiative muon capture on carbon, oxygen, and calcium

    SciTech Connect

    Armstrong, D.S.; Ahmad, S.; Burnham, R.A.; Gorringe, T.P.; Hasinoff, M.D.; Larabee, A.J.; Waltham, C.E. ); Azuelos, G.; Macdonald, J.A.; Numao, T.; Poutissou, J. ); Blecher, M.; Wright, D.H. ); Clifford, E.T.H.; Summhammer, J. University of Victoria, Victoria, British Columbia ); Depommier, P.; Poutissou, R. ); Mes, H. ); Robertson, B.C. )

    1991-03-01

    The photon energy spectra from radiative muon capture on {sup 12}C, {sup 16}O, and {sup 40}Ca have been measured using a time projection chamber as a pair spectrometer. The branching ratio for radiative muon capture is sensitive to {ital g}{sub {ital p}}, the induced pseudoscalar coupling constant of the weak interaction. Expressed in terms of the axial-vector weak coupling constant {ital g}{sub {ital a}}, values of {ital g}{sub {ital p}}/{ital g}{sub {ital a}}=5.7{plus minus}0.8 and {ital g}{sub {ital p}}/{ital g}{sub {ital a}}=7.3{plus minus}0.9 are obtained for {sup 40}Ca and {sup 16}O, respectively, from comparison with phenomenological calculations of the nuclear response. From comparison with microscopic calculations, values of {ital g}{sub {ital p}}/{ital g}{sub {ital a}}=4.6{plus minus}1.8, 13.6{sub {minus}1.9}{sup +1.6}, and 16.2{sub {minus}0.7}{sup +1.3} for {sup 40}Ca, {sup 16}O, and {sup 12}C, respectively, are obtained. The microscopic results are suggestive of a renormalization of the nucleonic form factors within the nucleus.

  9. Direct measurements of radiative capture reactions with DRAGON

    NASA Astrophysics Data System (ADS)

    Christian, Gregory

    2015-10-01

    Direct measurements of radiative proton and alpha capture reactions are crucial for understanding nucleosynthesis in a variety of astrophysical environments, including classical novae, supernovae, X-Ray bursts, and quiescent stellar burning. Often the most important reactions have very low cross sections or involve unstable targets, making laboratory measurements extremely challenging. The detector of recoils and gammas of nuclear reactions (DRAGON) at TRIUMF is a recoil mass separator designed to measure radiative capture reactions in inverse kinematics, with beam suppression factors as high as 1016. When combined with the intense radioactive beams available at the ISAC-I facility, DRAGON's capabilities are unique and world-leading. In this talk, I will give a brief technical overview of DRAGON before presenting results from recent experiments. Some highlights include the first-ever direct measurement of 38K(p , γ) 39Ca, a crucial reaction for determining the endpoint of nova nucleosynthesis, and measurements of 76Se(α , γ) 80Kr. The latter measurements determine the rate of the reverse reaction, 80Kr(γ , α) 76Se, an important waiting point in the synthesis of the p-nuclei. I will also discuss future (and ongoing) developments at DRAGON, including the commissioning of a new chamber for high-precision elastic scattering measurements and plans to determine the 330 keV resonance strength in 18F(p , γ) 19Ne via measurements of 15O(α , γ) 19Ne and 15O + α elastic scattering.

  10. Microspine Gripping Mechanism for Asteroid Capture

    NASA Technical Reports Server (NTRS)

    Merriam, Ezekiel G.; Berg, Andrew B.; Willig, Andrew; Parness, Aaron; Frey, Tim; Howell, Larry L.

    2016-01-01

    This paper details the development and early testing of a compliant suspension for a microspine gripper device for asteroid capture or micro-gravity percussive drilling. The microspine gripper architecture is reviewed, and a proposed microspine suspension design is presented and discussed. Prototyping methods are discussed, as well as testing methods and results. A path forward is identified from the results of the testing completed thus far. Key findings include: the microspine concept has been established as a valid architecture and the compliant suspension exhibits the desired stiffness characteristics for good gripping behavior. These developments will aid in developing the capability to grasp irregularly shaped boulders in micro-gravity.

  11. Proceedings of the fourth workshop on radiative capture 1990, October 19--21, 1990

    SciTech Connect

    Wender, S.A. ); Gossett, C. . Nuclear Physics Lab.); Feldman, J. . Saskatchewan Accelerator Lab.)

    1991-01-01

    The Fourth Workshop on Radiative Capture was held at the Berkeley Conference Center, Berkeley, CA, on October 19--21, 1990. This two-day workshop, which had seventeen presentations, addressed current theoretical and experimental issues in the field of nucleon capture and other nuclear radiative processes. The scientific program was divided into three sessions: (1) radiative capture at low energies; (2) few-nucleon systems and capture at intermediate energies; and (3) nucleon capture and other radiative processes. This proceedings of the conference contains the abstracts of the presented talks and the transparencies used by the speakers. Summary papers of the talks are also included when they were supplied by the speaker.

  12. Radiative n 14N capture at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.

    2013-06-01

    In the potential cluster model with forbidden states and classification of orbital cluster states according to Young's schemes, the possibility is considered of describing the experimental data for the total cross sections of radiative n 14N capture at energies from 25.0 meV (25•10-3 eV) to 1.0 MeV. It is shown that on the whole it is possible to successfully explain the behavior of these cross sections outside the resonant energy region on the basis of the E1 transition from the 2S1/2 scattering wave with zero phase to the bound 2Р1/2 state of the 15N nucleus in the n14N channel.

  13. Boron neutron capture therapy (BNCT): A radiation oncology perspective

    SciTech Connect

    Dorn, R.V. III Idaho National Engineering Lab., Idaho Falls, ID )

    1994-03-30

    Boron neutron capture therapy (BNCT) offers considerable promise in the search for the ideal cancer therapy, a therapy which selectively and maximally damages malignant cells while sparing normal tissue. This bimodal treatment modality selectivity concentrates a boron compound in malignant cells, and then [open quotes]activates[close quotes] this compound with slow neutrons resulting in a highly lethal event within the cancer cell. This article reviews this treatment modality from a radiation oncology, biology, and physics perspective. The remainder of the articles in this special issue provide a survey of the current [open quotes]state-of-the-art[close quotes] in this rapidly expanding field, including information with regard to boron compounds and their localization. 118 refs., 3 figs.

  14. Radiative neutron capture: Hauser Feshbach vs. statistical resonances

    NASA Astrophysics Data System (ADS)

    Rochman, D.; Goriely, S.; Koning, A. J.; Ferroukhi, H.

    2017-01-01

    The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated on the basis of the statistical Hauser Feshbach (HF) reaction model, leading to smooth and monotonically varying temperature-dependent Maxwellian-averaged cross sections (MACS). The HF approximation is known to be valid if the number of resonances in the compound system is relatively high. However, such a condition is hardly fulfilled for keV neutrons captured on light or exotic neutron-rich nuclei. For this reason, a different procedure is proposed here, based on the generation of statistical resonances. This novel technique, called the ;High Fidelity Resonance; (HFR) method is shown to provide similar results as the HF approach for nuclei with a high level density but to deviate and be more realistic than HF predictions for light and neutron-rich nuclei or at relatively low sub-keV energies. The MACS derived with the HFR method are systematically compared with the traditional HF calculations for some 3300 neutron-rich nuclei and shown to give rise to significantly larger predictions with respect to the HF approach at energies of astrophysical relevance. For this reason, the HF approach should not be applied to light or neutron-rich nuclei. The Doppler broadening of the generated resonances is also studied and found to have a negligible impact on the calculated MACS.

  15. The mechanism of selective molecular capture in carbon nanotube networks.

    PubMed

    Wan, Yu; Guan, Jun; Yang, Xudong; Zheng, Quanshui; Xu, Zhiping

    2014-07-28

    Recently, air pollution issues have drawn significant attention to the development of efficient air filters, and one of the most promising materials for this purpose is nanofibers. We explore here the mechanism of selective molecular capture of volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which demonstrate the advantages of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.

  16. Radiative Capture of Polarized Protons by Tritium at Low Energies

    NASA Astrophysics Data System (ADS)

    Wagenaar, Douglas Jay

    A study of the ('3)H((')p,(gamma))('4)He reaction was made at low proton energies in order to better understand the multipole nature of the emitted (gamma)-rays. Angular distributions of cross section and analyzing power were measured for incident proton energies of 2.0, 5.0, and 9.0 MeV. In addition, the analyzing power at 90(DEGREES) was measured at eleven proton bombarding energies ranging from 0.8 to 9.0 MeV. The coefficients a(,k) and b(,k) were determined from fitting Legendre and associated Legendre polynomial series, respectively, to the angular distributions. The extracted b(,1)-coefficients showed energy structure suggestive of multipole contributions from other than E1 or E2 radiations. A transition matrix element (T-matrix) analysis of the three angular distributions was performed to extract the relative E1 and E2 cross sections and their component singlet and triplet strengths. The triplet (or spin-flip) E2 strength was found to be large (albeit with large error) at 5.0 and 9.0 MeV and negligible at 2.0 MeV. The T-matrix analysis was expanded to include the possibilities of E3, M1, and M2 matrix elements. The E3 and M2 matrix elements failed to give reasonable fits to the data when they were combined with the E1 and E2 elements. Only when M1 strength was included in the T-matrix analysis could viable fits be found at all angular distribution energies. A direct-capture model calculation was performed for the ('3)H((')p,(gamma))- ('4)He reaction for proton energies up to 9.0 MeV. Good agreement was achieved with all experimental a(,k)- and b(,k)-coefficients except b(,1). The model also failed to predict the behavior of the A(90(DEGREES)) data. When M1 was added to the calculation in strengths comparable to those found in the T-matrix analysis, however, good agreement with the b(,1)-coefficient and the A(90(DEGREES)) curve resulted. It was concluded that M1 strengths of 0.5 to 1% of the total cross section are present in the ('3)H(p,(gamma))('4)He

  17. Strong multiple-capture effect in slow Ar^17+-Ar collisions: a quantum mechanical analysis

    NASA Astrophysics Data System (ADS)

    Salehzadeh, Arash; Kirchner, Tom

    2012-10-01

    A recent X-ray spectroscopy experiment on 255 keV Ar^17+-Ar collisions [1] provided evidence for strong multiple-electron capture --- a feature that is supported by classical trajectory Monte Carlo calculations for similar collision systems [2]. We have coupled a quantum-mechanical independent-electron model calculation for the Ar^17+-Ar system with (semi-) phenomenological Auger and radiative cascade models to test these findings. The capture calculations are performed using the basis generator method and include single-particle states on the projectile up to the 10th shell. The cross sections obtained for shell-specific multiple capture are fed into a stabilization scheme proposed in Ref. [3] in order to obtain n-specific cross sections for apparent single (and double) capture that in turn are fed into a radiative cascade code [1] to obtain X-ray emission intensities that can be compared with the experimental data. Good agreement is found for the Lyman series from n=3 to n=7 if the multiple-capture contributions are included, whereas calculations that ignore them are in stark conflict with the data. [4pt] [1] M. Trassinelli et al., J. Phys. B 45, 085202 (2012)[0pt] [2] S. Otranto and R. Olson, Phys. Rev. A 83, 032710 (2011)[0pt] [3] R. Ali et al., Phys. Rev A 49, 3586 (1994).

  18. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties.

    PubMed

    Shepherd, Jessica G; Joseph, Stephen; Sohi, Saran P; Heal, Kate V

    2017-07-01

    A multi-technique analysis was performed on a range of biochar materials derived from secondary organic resources and aimed at sustainable recovery and re-use of wastewater phosphorus (P). Our purpose was to identify mechanisms of P capture in biochar and thereby inform its future optimisation as a sustainable P fertiliser. The biochar feedstock comprised pellets of anaerobically digested sewage sludge (PAD) or pellets of the same blended in the ratio 9:1 with ochre sourced from minewater treatment (POCAD), components which have limited alternative economic value. In the present study the feedstocks were pyrolysed at two highest treatment temperatures of 450 and 550 °C. Each of the resulting biochars were repeatedly exposed to a 20 mg l(-1) PO4-P solution, to produce a parallel set of P-exposed biochars. Biochar exterior and/or interior surfaces were quantitatively characterised using laser-ablation (LA)-ICP-MS, X-ray diffraction, X-ray photo-electron spectroscopy (XPS) and scanning electron microscopy coupled with energy dispersive X-ray. The results highlighted the general importance of Fe minerals in P capture. XPS analysis of POCAD550 indicated lower oxidation state Fe2p3 bonding compared to POCAD450, and LA-ICP-MS indicated stronger covariation of Fe and S, even after P exposure. This suggests that low-solubility Fe/S compounds are formed during pyrolysis, are affected by process parameters and impact on P capture. Other data suggested capture roles for aluminium, calcium and silicon. Overall, our analyses suggest that a range of mechanisms for P capture are concurrently active in biochar. We highlighted the potential to manipulate these through choice of form and composition of feedstock as well as pyrolysis processing, so that biochar may be increasingly tailored towards specific functionality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Radiative double electron capture in collisions of fully-stripped fluorine ions with thin carbon foils

    NASA Astrophysics Data System (ADS)

    Elkafrawy, Tamer Mohammad Samy

    Radiative double electron capture (RDEC) is a one-step process in ion-atom collisions occurring when two target electrons are captured to a bound state of the projectile simultaneously with the emission of a single photon. The emitted photon has approximately double the energy of the photon emitted due to radiative electron capture (REC), which occurs when a target electron is captured to a projectile bound state with simultaneous emission of a photon. REC and RDEC can be treated as time-reversed photoionization (PI) and double photoionization (DPI), respectively, if loosely-bound target electrons are captured. This concept can be formulated with the principle of detailed balance, in which the processes of our interest can be described in terms of their time-reversed ones. Fully-stripped ions were used as projectiles in the performed RDEC experiments, providing a recipient system free of electron-related Coulomb fields. This allows the target electrons to be transferred without interaction with any of the projectile electrons, enabling accurate investigation of the electron-electron interaction in the vicinity of electromagnetic field. In this dissertation, RDEC was investigated during the collision of fully-stripped fluorine ions with a thin carbon foil and the results are compared with the recent experimental and theoretical studies. In the current work, x rays associated with projectile charge-changing by single and double electron capture and no charge change by F9+ ions were observed and compared with recent work for O8+ ions and with theory. Both the F 9+ and O8+ ions had energies in the ˜MeV/u range. REC, in turn, was investigated as a means to compare with the theoretical predictions of the RDEC/REC cross section ratio. The most significant background processes including various mechanisms of x-ray emission that may interfere with the energy region of interest are addressed in detail. This enables isolation of the contributions of REC and RDEC from the

  20. Radiative capture of nucleons at astrophysical energies with single-particle states

    SciTech Connect

    Huang, J.T.; Bertulani, C.A.; Guimaraes, V.

    2010-11-15

    Radiative capture of nucleons at energies of astrophysical interest is one of the most important processes for nucleosynthesis. The nucleon capture can occur either by a compound nucleus reaction or by a direct process. The compound reaction cross sections are usually very small, especially for light nuclei. The direct capture proceeds either via the formation of a single-particle resonance or a non-resonant capture process. In this work we calculate radiative capture cross sections and astrophysical S-factors for nuclei in the mass region A<20 using single-particle states. We carefully discuss the parameter fitting procedure adopted in the simplified two-body treatment of the capture process. Then we produce a detailed list of cases for which the model works well. Useful quantities, such as spectroscopic factors and asymptotic normalization coefficients, are obtained and compared to published data.

  1. Radiative neutron capture cross sections on 176Lu at DANCE

    NASA Astrophysics Data System (ADS)

    Roig, O.; Jandel, M.; Méot, V.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.

    2016-03-01

    The cross section of the neutron capture reaction 176Lu(n ,γ ) has been measured for a wide incident neutron energy range with the Detector for Advanced Neutron Capture Experiments at the Los Alamos Neutron Science Center. The thermal neutron capture cross section was determined to be (1912 ±132 ) b for one of the Lu natural isotopes, 176Lu. The resonance part was measured and compared to the Mughabghab's atlas using the R -matrix code, sammy. At higher neutron energies the measured cross sections are compared to ENDF/B-VII.1, JEFF-3.2, and BRC evaluated nuclear data. The Maxwellian averaged cross sections in a stellar plasma for thermal energies between 5 keV and 100 keV were extracted using these data.

  2. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress.

    PubMed

    Schooneveld, E M; Pietropaolo, A; Andreani, C; Perelli Cippo, E; Rhodes, N J; Senesi, R; Tardocchi, M; Gorini, G

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  3. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  4. Structural effects of 34Na in the 33Na(n ,γ )34Na radiative capture reaction

    NASA Astrophysics Data System (ADS)

    Singh, G.; Shubhchintak, Chatterjee, R.

    2017-06-01

    Background: The path towards the production of r -process seed nuclei follows a course where the neutron rich light and medium mass nuclei play a crucial role. The neutron capture rates for these exotic nuclei could dominate over their α -capture rates, thereby enhancing their abundances at or near the drip line. Sodium isotopes especially should have a strong neutron capture flow to gain abundance at the drip line. In this context, study of 33Na(n ,γ )34Na and 33Na(α ,n )36Al reactions becomes indispensable. Purpose: In this paper, we calculate the radiative neutron capture cross section for the 33Na(n ,γ )34Na reaction involving deformation effects. Subsequently, the rate for this reaction is found and compared with that of the α -capture for the 33Na(α ,n )36Al reaction to determine the possible path flow for the abundances of sodium isotopes. Method: We use the entirely quantum mechanical theory of finite-range distorted-wave Born approximation upgraded to incorporate deformation effects, and calculate the Coulomb dissociation of 34Na as it undergoes elastic breakup on 208Pb when directed at a beam energy of 100 MeV/u. Using the principle of detailed balance to study the reverse photodisintegration reaction, we find the radiative neutron capture cross section with variation in one-neutron binding energy and quadrupole deformation of 34Na. The rate of this 33Na(n ,γ )34Na reaction is then compared with that of the α -capture by 33Na deduced from the Hauser-Feshbach theory. Results: The nonresonant one-neutron radiative capture cross section for 33Na(n ,γ )34Na is calculated and is found to increase with increasing deformation of 34Na. An analytic scrutiny of the capture cross section with neutron separation energy as a parameter is also done at different energy ranges. The calculated reaction rate is compared with the rate of the 33Na(α ,n )36Al reaction, and is found to be significantly higher below a temperature of T9=2 . Conclusion: At the

  5. [Minimally invasive cytoselective radiation therapy using boron neutron capture reaction].

    PubMed

    Nakamura, Hiroyuki

    2010-12-01

    The cell-killing effect of boron neutron capture therapy (BNCT) is due to the nuclear reaction of two essentially nontoxic species, boron-10 ((10)B) and thermal neutrons, whose destructive effect is well observed in boron-loaded tissues. High accumulation and selective delivery of boron into tumor tissue are the most important requirements to achieve efficient neutron capture therapy of cancers. This review focuses on liposomal boron delivery system (BDS) as a recent promising approach that meet these requirements for BNCT. BDS involves two strategies: (1) encapsulation of boron in the aqueous core of liposomes and (2) accumulation of boron in the liposomal bilayer. In this review, recent development of liposomal boron delivery system is summarized.

  6. Radiative neutron capture cross section from 236U

    NASA Astrophysics Data System (ADS)

    Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Roman, A. R.; Rusev, G.; Walker, C. L.; Couture, A.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Kawano, T.

    2017-08-01

    The 236U(n ,γ ) reaction cross section has been measured for the incident neutron energy range from 10 eV to 800 keV by using the Detector for Advanced Neutron Capture Experiments (DANCE) γ -ray calorimeter at the Los Alamos Neutron Science Center. The cross section was determined with the ratio method, which is a technique that uses the 235U(n ,f ) reaction as a reference. The results of the experiment are reported in the resolved and unresolved resonance energy regions. Individual neutron resonance parameters were obtained below 1 keV incident energy by using the R -matrix code sammy. The cross section in the unresolved resonance region is determined with improved experimental uncertainty. It agrees with both ENDF/B-VII.1 and JEFF-3.2 nuclear data libraries. The results above 10 keV agree better with the JEFF-3.2 library.

  7. Gamma-Ray Strength Function Method:. Away from Photoneutron Emission to Radiative Neutron Capture

    NASA Astrophysics Data System (ADS)

    Utsunomiya, H.; Akimune, H.; Yamagata, T.; Iwamoto, C.; Goriely, S.; Daoutidis, I.; Toyokawa, H.; Harada, H.; Kitatani, F.; Iwamoto, N.; Lui, Y. W.; Arteaga, D. P.; Hilaire, S.; Koning, A. J.

    2013-03-01

    Radiative neutron capture cross sections are of direct relevance for the synthesis of heavy elements referred to as the s-process and the r-process in nuclear astrophysics and constitute basic data in the field of nuclear engineering. The surrogate reaction technique is in active use to indirectly determine radiative neutron capture cross sections for unstable nuclei. We have devised an indirect method alternative to the surrogate reaction technique on the basis of the γ-ray strength function (γSF), a nuclear statistical quantity that interconnects photoneutron emission and radiative neutron capture in the Hauser-Feshbach model calculation. We outline the γSF method and show applications of the method to tin, palladium, and zirconium isotopes. In the application of the γSF method, it is important to use γSF's that incorporate extra strengths of PDR and/or M1 resonance emerging around neutron threshold.

  8. Coupled radiation effects in thermochemical nonequilibrium shock-capturing flowfield calculations

    NASA Astrophysics Data System (ADS)

    Hartung, Lin C.; Mitcheltree, Robert A.; Gnoffo, Peter A.

    1992-07-01

    Lunar and Mars return conditions are examined using the LAURA flowfield code and the LORAN radiation code to assess the effect of radiative coupling on axisymmetric thermochemical nonequilibrium flows. Coupling of the two codes is achieved iteratively. Special treatment required to couple radiation in a shock-capturing method is discussed. Results indicate that while coupling effects are generally the same as occur in equilibrium flows, under certain conditions radiation can modify the chemical kinetics of a nonequilibrium flow and thus alter relaxation processes. Coupling effects are found to be small for all cases considered, except for a five meter diameter aerobrake returning from Mars at 13.6 km/sec.

  9. Coupled Radiation Effects in Thermochemical Nonequilibrium Shock-Capturing Flowfield Calculations

    NASA Technical Reports Server (NTRS)

    Hartung, Lin C.; Mitcheltree, Robert A.; Gnoffo, Peter A.

    1993-01-01

    Lunar and Mars return conditions are examined using the LAURA flow field code and the LORAN radiation code to assess the effect of radiative coupling on axisymmetric thermochemical nonequilibrium flows. Coupling of the two codes is achieved iteratively. Special treatment required to couple radiation in a shock-capturing method is discussed. Results indicate that while coupling effects are generally the same as occur in equilibrium flows, under certain conditions radiation can modify the chemical kinetics of a nonequilibrium flow and thus alter relaxation processes. Coupling effects are found to be small for all cases considered, except for a five meter diameter aerobrake returning from Mars at 13.6 kilometers per second.

  10. 12C+16O sub-barrier radiative capture cross-section measurements

    NASA Astrophysics Data System (ADS)

    Goasduff, A.; Courtin, S.; Haas, F.; Lebhertz, D.; Jenkins, D. G.; Beck, C.; Fallis, J.; Ruiz, C.; Hutcheon, D. A.; Amandruz, P.-A.; Davis, C.; Hager, U.; Ottewell, D.; Ruprecht, G.

    2011-10-01

    We have performed a heavy ion radiative capture reaction between two light heavy ions, 12C and 16O, leading to 28Si. The present experiment has been performed below Coulomb barrier energies in order to reduce the phase space and to try to shed light on structural effects. Obtained γ-spectra display a previously unobserved strong feeding of intermediate states around 11 MeV at these energies. This new decay branch is not fully reproduced by statistical nor semi-statistical decay scenarii and may imply structural effects. Radiative capture cross-sections are extracted from the data.

  11. Capture and use of solar radiation, water, and nitrogen by sugar beet (Beta vulgaris L.).

    PubMed

    Jaggard, K W; Qi, A; Ober, E S

    2009-01-01

    Sugar beet is spring-sown for sugar production in most sugar beet-growing countries. It is grown as a vegetative crop and it accumulates yield (sugar) from very early in its growth cycle. As long as the sugar beet plants do not flower, the sugar accumulation period is indefinite and yield continues to increase. This paper reviews the success of the sugar beet crop in capturing and using solar radiation, water and mineral nitrogen resources. The prospects for improved resource capture and therefore increased sugar yield are also considered, particularly the potential to increase solar radiation interception in the future by sowing the crop in the autumn.

  12. Limit on the radiative neutrinoless double electron capture of ^{36}Ar from GERDA Phase I

    NASA Astrophysics Data System (ADS)

    Agostini, M.; Allardt, M.; Bakalyarov, A. M.; Balata, M.; Barabanov, I.; Barros, N.; Baudis, L.; Bauer, C.; Bellotti, E.; Belogurov, S.; Belyaev, S. T.; Benato, G.; Bettini, A.; Bezrukov, L.; Bode, T.; Borowicz, D.; Brudanin, V.; Brugnera, R.; Caldwell, A.; Cattadori, C.; Chernogorov, A.; D'Andrea, V.; Demidova, E. V.; di Vacri, A.; Domula, A.; Doroshkevich, E.; Egorov, V.; Falkenstein, R.; Fedorova, O.; Freund, K.; Frodyma, N.; Gangapshev, A.; Garfagnini, A.; Gooch, C.; Grabmayr, P.; Gurentsov, V.; Gusev, K.; Hakenmüller, J.; Hegai, A.; Heisel, M.; Hemmer, S.; Heusser, G.; Hofmann, W.; Hult, M.; Inzhechik, L. V.; Csáthy, J. Janicskó; Jochum, J.; Junker, M.; Kazalov, V.; Kihm, T.; Kirpichnikov, I. V.; Kirsch, A.; Kish, A.; Klimenko, A.; Kneißl, R.; Knöpfle, K. T.; Kochetov, O.; Kornoukhov, V. N.; Kuzminov, V. V.; Laubenstein, M.; Lazzaro, A.; Lebedev, V. I.; Lehnert, B.; Liao, H. Y.; Lindner, M.; Lippi, I.; Lubashevskiy, A.; Lubsandorzhiev, B.; Lutter, G.; Macolino, C.; Majorovits, B.; Maneschg, W.; Medinaceli, E.; Miloradovic, M.; Mingazheva, R.; Misiaszek, M.; Moseev, P.; Nemchenok, I.; Palioselitis, D.; Panas, K.; Pandola, L.; Pelczar, K.; Pullia, A.; Riboldi, S.; Rumyantseva, N.; Sada, C.; Salamida, F.; Salathe, M.; Schmitt, C.; Schneider, B.; Schönert, S.; Schreiner, J.; Schütz, A.-K.; Schulz, O.; Schwingenheuer, B.; Selivanenko, O.; Shirchenko, M.; Simgen, H.; Smolnikov, A.; Stanco, L.; Stepaniuk, M.; Vanhoefer, L.; Vasenko, A. A.; Veresnikova, A.; von Sturm, K.; Wagner, V.; Walter, M.; Wegmann, A.; Wester, T.; Wiesinger, C.; Wilsenach, H.; Wojcik, M.; Yanovich, E.; Zhitnikov, I.; Zhukov, S. V.; Zinatulina, D.; Zuber, K.; Zuzel, G.

    2016-12-01

    Neutrinoless double electron capture is a process that, if detected, would give evidence of lepton number violation and the Majorana nature of neutrinos. A search for neutrinoless double electron capture of ^{36}Ar has been performed with germanium detectors installed in liquid argon using data from Phase I of the GERmanium Detector Array ( Gerda) experiment at the Gran Sasso Laboratory of INFN, Italy. No signal was observed and an experimental lower limit on the half-life of the radiative neutrinoless double electron capture of ^{36}Ar was established: T_{1/2} > 3.6 × 10^{21} years at 90% CI.

  13. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture

    PubMed Central

    2016-01-01

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D80DQFD and N218DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H218O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-2H2]FDP and (R)-[1-2H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues were

  14. Mechanism of Germacradien-4-ol Synthase-Controlled Water Capture.

    PubMed

    Grundy, Daniel J; Chen, Mengbin; González, Verónica; Leoni, Stefano; Miller, David J; Christianson, David W; Allemann, Rudolf K

    2016-04-12

    The sesquiterpene synthase germacradiene-4-ol synthase (GdolS) from Streptomyces citricolor is one of only a few known high-fidelity terpene synthases that convert farnesyl diphosphate (FDP) into a single hydroxylated product. Crystals of unliganded GdolS-E248A diffracted to 1.50 Å and revealed a typical class 1 sesquiterpene synthase fold with the active site in an open conformation. The metal binding motifs were identified as D(80)DQFD and N(218)DVRSFAQE. Some bound water molecules were evident in the X-ray crystal structure, but none were obviously positioned to quench a putative final carbocation intermediate. Incubations in H2(18)O generated labeled product, confirming that the alcohol functionality arises from nucleophilic capture of the final carbocation by water originating from solution. Site-directed mutagenesis of amino acid residues from both within the metal binding motifs and without identified by sequence alignment with aristolochene synthase from Aspergillus terreus generated mostly functional germacradien-4-ol synthases. Only GdolS-N218Q generated radically different products (∼50% germacrene A), but no direct evidence of the mechanism of incorporation of water into the active site was obtained. Fluorinated FDP analogues 2F-FDP and 15,15,15-F3-FDP were potent noncompetitive inhibitors of GdolS. 12,13-DiF-FDP generated 12,13-(E)-β-farnesene upon being incubated with GdolS, suggesting stepwise formation of the germacryl cation during the catalytic cycle. Incubation of GdolS with [1-(2)H2]FDP and (R)-[1-(2)H]FDP demonstrated that following germacryl cation formation a [1,3]-hydride shift generates the final carbocation prior to nucleophilic capture. The stereochemistry of this shift is not defined, and the deuteron in the final product was scrambled. Because no clear candidate residue for binding of a nucleophilic water molecule in the active site and no significant perturbation of product distribution from the replacement of active site residues

  15. Flexible, Mechanically Durable Aerogel Composites for Oil Capture and Recovery.

    PubMed

    Karatum, Osman; Steiner, Stephen A; Griffin, Justin S; Shi, Wenbo; Plata, Desiree L

    2016-01-13

    More than 30 years separate the two largest oil spills in North American history (the Ixtoc I and Macondo well blowouts), yet the responses to both disasters were nearly identical in spite of advanced material innovation during the same time period. Novel, mechanically durable sorbents could enable (a) sorbent use in the open ocean, (b) automated deployment to minimize workforce exposure to toxic chemicals, and (c) mechanical recovery of spilled oils. Here, we explore the use of two mechanically durable, low-density (0.1-0.2 g cm(-3)), highly porous (85-99% porosity), hydrophobic (water contact angles >120°), flexible aerogel composite blankets as sorbent materials for automated oil capture and recovery: Cabot Thermal Wrap (TW) and Aspen Aerogels Spaceloft (SL). Uptake of crude oils (Iraq and Sweet Bryan Mound oils) was 8.0 ± 0.1 and 6.5 ± 0.3 g g(-1) for SL and 14.0 ± 0.1 and 12.2 ± 0.1 g g(-1) for TW, respectively, nearly twice as high as similar polyurethane- and polypropylene-based devices. Compound-specific uptake experiments and discrimination against water uptake suggested an adsorption-influenced sorption mechanism. Consistent with that mechanism, chemical extraction oil recoveries were 95 ± 2 (SL) and 90 ± 2% (TW), but this is an undesirable extraction route in decentralized oil cleanup efforts. In contrast, mechanical extraction routes are favorable, and a modest compression force (38 N) yielded 44.7 ± 0.5% initially to 42.0 ± 0.4% over 10 reuse cycles for SL and initially 55.0 ± 0.1% for TW, degrading to 30.0 ± 0.2% by the end of 10 cycles. The mechanical integrity of SL deteriorated substantially (800 ± 200 to 80 ± 30 kPa), whereas TW was more robust (380 ± 80 to 700 ± 100 kPa) over 10 uptake-and-compression extraction cycles.

  16. [Mechanisms of electromagnetic radiation damaging male reproduction].

    PubMed

    Xue, Lei; Chen, Hao-Yu; Wang, Shui-Ming

    2012-08-01

    More and more evidence from over 50 years of researches on the effects of electromagnetic radiation on male reproduction show that a certain dose of electromagnetic radiation obviously damages male reproduction, particularly the structure and function of spermatogenic cells. The mechanisms of the injury may be associated with energy dysmetabolism, lipid peroxidation, abnormal expressions of apoptosis-related genes and proteins, and DNA damage.

  17. New Methods for the Determination of Total Radiative Thermal Neutron Capture Cross Sections

    SciTech Connect

    Firestone, R. B.; Krticka, M.; McNabb, D. P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Revay, Zs.

    2008-04-17

    Precise gamma-ray thermal neutron capture cross sections have been measured at the Budapest Reactor for all elements with Z = 1-83,92 except for He and Pm. These measurements and additional data from the literature been compiled to generate the Evaluated Gamma-ray Activation File (EGAF), which is disseminated by LBNL and the IAEA. These data are nearly complete for most isotopes with Z<20 so the total radiative thermal neutron capture cross sections can be determined directly from the decay scheme. For light isotopes agreement with the recommended values is generally satisfactory although large discrepancies exist for {sup 11}B, {sup 12,13}C, {sup 15}N, {sup 28,30}Si, {sup 34}S, {sup 37}Cl, and {sup 40,41}K. Neutron capture decay data for heavier isotopes are typically incomplete due to the contribution of unresolved continuum transitions so only partial radiative thermal neutron capture cross sections can be determined. The contribution of the continuum to the neutron capture decay scheme arises from a large number of unresolved levels and transitions and can be calculated by assuming that the fluctuations in level densities and transition probabilities are statistical. We have calculated the continuum contribution to neutron capture decay for the palladium isotopes with the Monte Carlo code DICEBOX. These calculations were normalized to the experimental cross sections deexciting low excitation levels to determine the total radiative thermal neutron capture cross section. The resulting palladium cross sections values were determined with a precision comparable to the recommended values even when only one gamma-ray cross section was measured. The calculated and experimental level feedings could also be compared to determine spin and parity assignments for low-lying levels.

  18. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    SciTech Connect

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-12-31

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, {alpha})7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,{gamma})2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning.

  19. The mechanism of Vavilov-Cherenkov radiation

    NASA Astrophysics Data System (ADS)

    Kobzev, A. P.

    2010-05-01

    The mechanism of generation of Vavilov-Cherenkov radiation is discussed in this article. The developers of the theory of the Vavilov-Cherenkov effect, I.E. Tamm and I.M. Frank, attributed this effect to their discovery of a new mechanism of radiation when a charged particle moves uniformly and rectilinearly in the medium. As such a mechanism presupposes the violation of the laws of conservation of energy and momentum, they proposed the abolition of these laws to account for the Vavilov-Cherenkov radiation mechanism. This idea has received a considerably wide acceptance in the creation of other theories, for example, transition radiation theory. In this paper, the radiation mechanism for the charge constant motion is demonstrated to be incorrect, because it contradicts not only the laws of conservation of energy and momentum, but also the very definitions of uniform and rectilinear motion (Newton's First Law). A consistent explanation of the Vavilov-Cherenkov radiation microscopic mechanism that does not contradict the basic laws is proposed. It is shown that the radiation arises from the interaction of the moving charge with bound charges that are spaced fairly far away from its trajectory. The Vavilov-Cherenkov radiation mechanism bears a slowing down character, but it differs fundamentally from bremsstrahlung, primarily because the Vavilov-Cherenkov radiation onset results from a two-stage process. First, the moving particle polarizes the medium; then, the already polarized atoms radiate coherently, provided that the particle velocity exceeds the phase speed of light in the medium. If the particle velocity is less than the phase speed of light in the medium, the polarized atoms return energy to the outgoing particle. In this case, radiation is not observed. Special attention is given to the relatively constant particle velocity as the condition of the coherent composition of waves. However, its motion cannot be designated as a uniform and rectilinear one in the

  20. Quantum interference between nuclear excitation by electron capture and radiative recombination

    NASA Astrophysics Data System (ADS)

    Pálffy, Adriana; Harman, Zoltán; Scheid, Werner

    2007-01-01

    We investigate the quantum interference between the resonant process of nuclear excitation by electron capture (NEEC) followed by the radiative decay of the excited nucleus, and radiative recombination (RR). In order to derive the interference cross section, a Feshbach projection operator formalism is used. The electromagnetic field is considered by means of multipole fields. The nucleus is described by a phenomenological collective model and by making use of experimental data. The Fano profile parameters as well as the interference cross section for electric and magnetic multipole transitions in various heavy ions are presented. We discuss the experimental possibility of discerning NEEC from the RR background.

  1. The Radiative Strength Function Using the Neutron-Capture Reaction on 151,153Eu

    SciTech Connect

    Agvaanluvsan, U; Alpizar-Vicente, A; Becker, J A; Becvar, F; Bredeweg, T A; Clement, R; Esch, E; Folden, C M; Hatarik, R; Haight, R C; Hoffman, D C; Krticka, M; Macri, R A; Mitchell, G E; Nitsche, H; O'Donnell, J M; Parker, W; Reifarth, R; Rundberg, R S; Schwantes, J M; Sheets, S A; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wilk, P; Wouters, J M; Wu, C Y

    2005-10-04

    Radiative strength functions in {sup 152,154}Eu nuclei for {gamma}-ray energies below 6 MeV have been investigated. Neutron capture for incident neutron energies <1eV up to 100 keV has been measured for {sup 151,153}Eu targets. Properties of resonances in these two nuclei are examined. The measurements are compared to simulation of cascades performed with various models for the radiative strength function. Comparison between experimental data and simulation suggests an existence of the low-energy resonance in these two nuclei.

  2. Radiative Capture Processes in Multi-Size-Scale Algebraic Version of Resonating Group Model

    NASA Astrophysics Data System (ADS)

    Solovyev, A. S.; Igashov, S. Yu; Tchuvil'sky, Yu M.

    2017-06-01

    Novel microscopic approach based on so-called multi-size-scale algebraic version of the resonating group model to describing radiative capture reactions is developed. The main idea of the approach is to expand nuclear system wave functions of discrete spectrum and continuum over basis wave functions of the algebraic version of the resonating group model with different values of oscillator radius. It allows to calculate astrophysical S-factor or cross section for radiative capture reaction and at the same time to reproduce exactly the experimental values for breakup thresholds of the final nucleus states into two fragments -colliding nuclei, as well as to obtain corresponding scattering phase shifts fitting existing experimental data. The approach is applied to description of the important mirror3H(α, γ)7Li and3He(α, γ)7Be reactions to demonstrate its possibilities. Calculated results are in good agreement with experimental data.

  3. A New Decay Path in the {sup 12}C+{sup 16}O Radiative Capture Reaction

    SciTech Connect

    Courtin, S.; Lebhertz, D.; Haas, F.; Beck, C.; Michalon, A.; Salsac, M.-D.; Jenkins, D. G.; Marley, P.; Lister, C. J.

    2009-03-04

    The {sup 12}C({sup 16}O,{gamma}){sup 28}Si radiative capture reaction has been studied at energies close to the Coulomb barrier at Triumf (Vancouver) using the Dragon spectrometer and its associated BGO array. It has been observed that the {gamma} decay flux proceeds mainly via states around 10-11 MeV and via the direct feeding of the {sup 28}Si 3{sub 1}{sup -}(6879 keV) and 4{sub 2}{sup +}(6888 keV) deformed states. A discussion is presented about this selective feeding as well as perspectives for the use of novel detection systems for the study of light heavy-ion radiative capture reactions.

  4. Search for deeply bound pionic states in 208Pb via radiative atomic capture of negative pions

    NASA Astrophysics Data System (ADS)

    Raywood, K. J.; Lange, J. B.; Jones, G.; Pavan, M.; Sevior, M. E.; Hutcheon, D. A.; Olin, A.; Ottewell, D.; Yen, S.; Lee, S. J.; Sim, K. S.; Altman, A.; Friedman, E.; Trudel, A.

    1997-05-01

    A search for narrow, deeply bound pionic atom states via atomic radiative capture of negative pions in a target of 208Pb was carried out for pion kinetic energies of 20 and 25 MeV. Although no clear signature of any such gamma ray emission could be observed in the data, fits of the gamma ray spectra between the energies of 12 and 42 MeV involving a quadratic background together with a pair of peaks (1s, 2p) whose relative intensity was taken from theory yielded an overall strength for the peaks which are consistent (to a 67% confidence level) with radiative capture whose integrated cross section is 20.0 +/- 10.0 μb/sr at 90° for 20 MeV incident pions. A lower probability (40% confidence level) result was obtained when the fit was carried out without the peaks included, just the continuum background.

  5. Radiative proton capture to low-lying T =0 and T =1 states in 10B

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D. R.; Datar, V. M.; Kumar, Suresh; Mirgule, E. T.; Mishra, G.; Rout, P. C.; Ghosh, C.; Nanal, V.; Joshi, S.; Kujur, R.

    2017-01-01

    Cross sections of the radiative proton capture reaction 9Be(p ,γ ) , leading to the low-lying excited states in 10B with isospin T =0 and 1, have been measured over the proton energy range of 7 to 20 MeV. For this, the method of coincidence between the primary and the secondary γ rays has been used. These γ rays are emitted following, respectively, the proton capture to an excited state and the subsequent decay of that state. A direct-semidirect capture model calculation has been performed and compared with the experimental data. The experimental results do not show a strong isospin dependence of the GDR strength function built on the low-lying states. The derived photoproton cross sections on these states and the earlier-measured photoneutron cross sections on the ground state of 10B show a large difference.

  6. Radioactivity induced by neutrons: Enrico Fermi and a thermodynamic approach to radiative capture

    NASA Astrophysics Data System (ADS)

    De Gregorio, Alberto

    2006-07-01

    When Fermi learned that slow neutrons are much more effective than fast ones in inducing radioactivity, he explained this phenomenon by mentioning the well-known scattering cross section between neutrons and protons. At this early stage, he did not refer to the capture cross section by target nuclei. At the same time a thermodynamic approach to neutron-proton capture was being discussed by physicists: neutron capture was interpretated as the reverse of deuteron photodissociation and detailed balance among neutrons, protons, deuterons, and radiation was invoked. This thermodynamic approach might underlie Fermi's early explanation of the great efficiency of slow neutrons. Fermi repeatedly used a thermodynamic approach that had been used in describing some of the physical properties of conductors by Richardson and had been influential in Fermi's youth.

  7. Measurement of radiative capture resonance energies with an extended gas target

    NASA Astrophysics Data System (ADS)

    Hutcheon, D. A.; Ruiz, C.; Fallis, J.; D'Auria, J. M.; Davids, B.; Hager, U.; Martin, L.; Ottewell, D. F.; Reeve, S.; Rojas, A.

    2012-10-01

    The DRAGON facility for the study of radiative capture reactions has an extended gas target, surrounded by an array of BGO detectors. The distribution of detected gamma rays amongst the segmented array permits an estimate of the reaction position and consequently of the resonance energy. We report a study of the technique, using the 24Mg(p, γ)25Al reaction. Energy determination to better than 0.5% has been demonstrated.

  8. Marrying ab initio calculations and Halo-EFT: 7Li and 7Be radiative nucleon captures

    NASA Astrophysics Data System (ADS)

    Zhang, Xilin; Nollett, Kenneth; Phillips, Daniel

    2013-10-01

    We combine ab initio quantum-Monte-Carlo (QMC) calculations with the Halo-Effective-Field-Theory (Halo-EFT) framework, in order to study low-energy radiative nucleon capture to a weakly bound (halo) nucleus. Here we focus on the reactions 7Li(n, γ)8Li and 7Be(p, γ)8B, which are subjects of long-standing interest for astrophysics. In the low-energy region we can approximate 8Li (8B) as composed of a 7Li (7Be) core (and also its excitation), and a neutron (proton) with an anomalously extended wave function. The scattering and bound states can be studied in Halo-EFT, in which both core and the nucleon are treated as fundamental degrees of freedom. In our leading order calculation, we use asymptotic normalization coefficients from QMC calculations to fix the parameters in the Lagrangian, which we then apply to study radiative captures. This obviates computing the captures by directly using numerically intensive QMC methods, while still incorporating the nuclear dynamics that these methods provide. In addition, the model-independent EFT framework provides novel insights into the manner in which these two nucleon-capture processes are related to one another. This work is supported by US Department of Energy under grant DE-FG02-93ER-40756.

  9. Lead poisoning in automobile radiator mechanics.

    PubMed

    Goldman, R H; Baker, E L; Hannan, M; Kamerow, D B

    1987-07-23

    Exposure to lead occurs during automobile radiator repair when soldered joints are heated, but this relatively common hazard has received little public recognition. We therefore studied lead exposure among automobile radiator mechanics in the Boston area. Twenty-seven shops were surveyed, and most were found to be small and poorly ventilated. Seventy-five workers were interviewed and tested for blood lead and free erythrocyte protoporphyrin levels. Fifty-six of the 75 actually repaired radiators, and they had a mean blood lead level of 37.1 micrograms per deciliter (range, 16 to 73). Thirty-nine percent of these mechanics had levels higher than 40 micrograms per deciliter; hematologic, neurologic, and renal effects are known to develop at or above this blood lead level. Multiple regression analysis showed that the number of radiator repair work stations (an index of exposure) was the variable most significantly associated with increased blood lead levels. We conclude that excessive exposure to lead occurs frequently among radiator repair workers and should be prevented by improved ventilation, engineering controls, and the use of respirators (if indicated) while working.

  10. Investigation of 186Re via radiative thermal-neutron capture on 185Re

    NASA Astrophysics Data System (ADS)

    Matters, D. A.; Lerch, A. G.; Hurst, A. M.; Szentmiklósi, L.; Carroll, J. J.; Detwiler, B.; Révay, Zs.; McClory, J. W.; McHale, S. R.; Firestone, R. B.; Sleaford, B. W.; Krtička, M.; Belgya, T.

    2016-05-01

    Partial γ -ray production cross sections and the total radiative thermal-neutron capture cross section for the 185Re(n ,γ ) 186Re reaction were measured using the Prompt Gamma Activation Analysis facility at the Budapest Research Reactor with an enriched 185Re target. The 186Re cross sections were standardized using well-known 35Cl(n ,γ )36Cl cross sections from irradiation of a stoichiometric natReCl3 target. The resulting cross sections for transitions feeding the 186Re ground state from low-lying levels below a cutoff energy of Ec=746 keV were combined with a modeled probability of ground-state feeding from levels above Ec to arrive at a total cross section of σ0=111 (6 ) b for radiative thermal-neutron capture on 185Re. A comparison of modeled discrete-level populations with measured transition intensities led to proposed revisions for seven tentative spin-parity assignments in the adopted level scheme for 186Re. Additionally, 102 primary γ rays were measured, including 50 previously unknown. A neutron-separation energy of Sn=6179.59 (5 ) keV was determined from a global least-squares fit of the measured γ -ray energies to the known 186Re decay scheme. The total capture cross section and separation energy results are comparable to earlier measurements of these values.

  11. Search for 28Si cluster states through the 12C+16O radiative capture

    NASA Astrophysics Data System (ADS)

    Courtin, S.; Goasduff, A.; Haas, F.; Lebhertz, D.; Jenkins, D. G.; Hutcheon, D. A.; Davis, C.; Ruiz, C.

    2013-03-01

    The 12C+16O resonant radiative capture reaction has been studied at 5 bombarding energies around the Coulomb barrier, between Elab = 15.4 and 21.4 MeV. These experiments have been performed at the TRIUMF laboratory (Vancouver, Canada) using the Dragon 0° spectrometer and the associated BGO array. The most remarkable result is the previously unobserved decay path through 28Si doorway states of energies around 12 MeV leading to the measurement of new capture cross-sections. The feeding of specific, deformed states in 28Si from the resonances is discussed, as well as the selective feeding of 1+ T=1 states around 11 MeV.

  12. Cumulative Radiative Forcing Implications of Deployment Strategies for Carbon Capture and Storage

    NASA Astrophysics Data System (ADS)

    Sathre, R. C.; Masanet, E.

    2011-12-01

    Carbon capture and storage (CCS) is increasingly discussed as a potential means of mitigating the climate disruption associated with fossil fuel use. Some technologies for capturing, transporting, and sequestering carbon dioxide (CO2) are already mature, while others technologies under development may lead to more cost- and energy-efficient CCS systems. Various elements of CCS systems are currently in operation at relatively small scale, but will need to be scaled up very substantially in order to make a significant contribution to climate change mitigation. Because the rate of fossil fuel CO2 emission is continuing to increase and the emitted CO2 will remain in the atmosphere for long time periods, the speed at which CCS is deployed will strongly affect the cumulative CO2 emission and the climate impacts. To better understand these issues, in this analysis we integrate scenario forecasting of energy supply systems, life cycle emission modeling, and time-dependent calculations of cumulative radiative forcing. We develop a series of CCS deployment scenarios that describe plausible future trajectories for CCS implementation in the US electric power plant fleet. The scenarios incorporate dimensions such as speed of deployment build-out, year of initiating deployment, efficiency of capture technology, and installation in new power plants vs. retrofitting existing plants. We conduct life cycle greenhouse gas (GHG) emissions analyses of each scenario to estimate annual emission profiles of CO2, CH4, and N2O over a 90-year time horizon, from 2010 to 2100. We then model the atmospheric dynamics of the emitted GHGs including atmospheric decay and instantaneous radiative forcing patterns over time. Finally, we determine the cumulative radiative forcing of each scenario, which we use as a proxy for surface temperature change and resulting disruption to physical, ecological and social systems. The results show strong climate mitigation benefits of early, aggressive

  13. Modern Chiral Forces Applied to the Nucleon-Deuteron Radiative Capture

    NASA Astrophysics Data System (ADS)

    Skibiński, Roman; Golak, Jacek; Topolnicki, Kacper; Witała, Henryk; Epelbaum, Evgeny; Kamada, Hiroyuki; Krebs, Hermann; Meißner, Ulf-G.; Nogga, Andreas

    2017-03-01

    The chiral nucleon-nucleon interaction with semi-local regularization up to the fifth order of chiral expansion is applied to the nucleon-deuteron radiative capture process. Our theoretical approach is based on the formalism of Faddeev equations and the Siegert theorem is exploited to construct the electromagnetic current operator. The very weak dependence of the differential cross section on values of the regularization parameter is observed. This suggests that the improved chiral two-body interaction is a promising starting point to study electromagnetic processes at low energies.

  14. Model-Independent Calculation of Radiative Neutron Capture on Lithium-7

    SciTech Connect

    Rupak, Gautam; Higa, Renato

    2011-06-03

    The radiative neutron capture on lithium-7 is calculated model independently using a low-energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix elements. It depends on the poorly known p-wave effective range parameter r{sub 1}. This constitutes the largest uncertainty in traditional model calculations. It is explicitly demonstrated by comparing with potential model calculations. A single parameter fit describes the low-energy data extremely well and yields r{sub 1{approx_equal}}-1.47 fm{sup -1}.

  15. High-speed imagery captures new sea spray formation mechanism

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-10-01

    When strong winds blow over ocean waves, small droplets of sea spray rise into the air, enhancing the exchange of heat, mass, and energy between the air and the sea. How effective sea spray is at mediating each of these dynamics depends on the rate at which droplets are created and the drop size distribution of the mist. Unfortunately, research has been limited by a dearth of observational evidence that could explain the details of sea spray generation, including understanding the drop size distribution or the effects of different wind speeds. Previous research with high-speed cameras aiming to capture the moment of drop formation was limited by camera resolutions too low to see all but the largest drops.

  16. Mechanical stability study of capture cavity II at Fermilab

    SciTech Connect

    McGee, M.W.; Pischalnikov, Y.; /Fermilab

    2007-06-01

    Problematic resonant conditions at both 18 Hz and 180 Hz were encountered and identified early during the commissioning of Capture Cavity II (CC2) at Fermilab. CC2 consists of an external vacuum vessel and a superconducting high gradient (close to 25 MV/m) 9-cell 1.3 GHz niobium cavity, transported from DESY for use in the A0 Photoinjector at Fermilab. An ANSYS modal finite element analysis (FEA) was performed in order to isolate the source of the resonance and directed the effort towards stabilization. Using a fast piezoelectric tuner to excite (or shake) the cavity at different frequencies (from 5 Hz to 250 Hz) at a low-range sweep for analysis purposes. Both warm (300 K) and cold (1.8 K) accelerometer measurements at the cavity were taken as the resonant ''fix'' was applied. FEA results, cultural and technical noise investigation, and stabilization techniques are discussed.

  17. Boron neutron capture therapy and radiation synovectomy research at the Massachusetts Institute of Technology Research Reactor

    SciTech Connect

    Zamenhof, R.G.; Nwanguma, C.I.; Wazer, D.E.; Saris, S.; Madoc-Jones, H. ); Sledge, C.B.; Shortkroff, S. )

    1992-04-01

    In this paper, current research in boron neutron capture therapy (BNCT) and radiation synovectomy at the Massachusetts Institute of Technology Research Reactor is reviewed. In the last few years, major emphasis has been placed on the development of BNCT primarily for treatment of brain tumors. This has required a concerted effort in epithermal beam design and construction as well as the development of analytical capabilities for {sup 10}B analysis and patient treatment planning. Prompt gamma analysis and high-resolution track-etch autoradiography have been developed to meet the needs, respectively, for accurate bulk analysis and for quantitative imaging of {sup 10}B in tissue at subcellular resolutions. Monte Carlo-based treatment planning codes have been developed to ensure optimized and individualized patient treatments. In addition, the development of radiation synovectomy as an alternative therapy to surgical intervention is joints that are affected by rheumatoid arthritis is described.

  18. Nonequilibrium Diffusion and Capture Mechanism Ensures Tip Localization of Regulating Proteins on Dynamic Filaments.

    PubMed

    Reithmann, Emanuel; Reese, Louis; Frey, Erwin

    2016-08-12

    Diffusive motion of regulatory enzymes on biopolymers with eventual capture at a reaction site is a common feature in cell biology. Using a lattice gas model we study the impact of diffusion and capture for a microtubule polymerase and a depolymerase. Our results show that the capture mechanism localizes the proteins and creates large-scale spatial correlations. We develop an analytic approximation that globally accounts for relevant correlations and yields results that are in excellent agreement with experimental data. Our results show that diffusion and capture operates most efficiently at cellular enzyme concentrations which points to in vivo relevance.

  19. Nonequilibrium Diffusion and Capture Mechanism Ensures Tip Localization of Regulating Proteins on Dynamic Filaments

    NASA Astrophysics Data System (ADS)

    Reithmann, Emanuel; Reese, Louis; Frey, Erwin

    2016-08-01

    Diffusive motion of regulatory enzymes on biopolymers with eventual capture at a reaction site is a common feature in cell biology. Using a lattice gas model we study the impact of diffusion and capture for a microtubule polymerase and a depolymerase. Our results show that the capture mechanism localizes the proteins and creates large-scale spatial correlations. We develop an analytic approximation that globally accounts for relevant correlations and yields results that are in excellent agreement with experimental data. Our results show that diffusion and capture operates most efficiently at cellular enzyme concentrations which points to in vivo relevance.

  20. Decay strength distributions in {sup 12}C({sup 12}C,{gamma}) radiative capture

    SciTech Connect

    Jenkins, D. G.; Fulton, B. R.; Marley, P.; Fox, S. P.; Glover, R.; Wadsworth, R.; Watson, D. L.; Courtin, S.; Haas, F.; Lebhertz, D.; Beck, C.; Papka, P.; Rousseau, M.; Sanchez i Zafra, A.; Hutcheon, D. A.; Davis, C.; Ottewell, D.; Pavan, M. M.; Pearson, J.; Ruiz, C.

    2007-10-15

    The heavy-ion radiative capture reaction, {sup 12}C({sup 12}C,{gamma}), has been investigated at energies both on- and off-resonance, with a particular focus on known resonances at E{sub c.m.}=6.0, 6.8, 7.5, and 8.0 MeV. Gamma rays detected in a BGO scintillator array were recorded in coincidence with {sup 24}Mg residues at the focal plane of the DRAGON recoil separator at TRIUMF. In this manner, the relative strength of all decay pathways through excited states up to the particle threshold could be examined for the first time. Isovector M1 transitions are found to be a important component of the radiative capture from the E{sub c.m.}=6.0 and 6.8 MeV resonances. Comparison with Monte Carlo simulations suggests that these resonances may have either J=0 or 2, with a preference for J=2. The higher energy resonances at E{sub c.m.}=7.5 and 8.0 MeV have a rather different decay pattern. The former is a clear candidate for a J=4 resonance, whereas the latter has a dominant J=4 character superposed on a J=2 resonant component underneath. The relationship between these resonances and the well-known quasimolecular resonances as well as resonances in breakup and electrofission of {sup 24}Mg into two {sup 12}C nuclei are discussed.

  1. Neutron diffraction measurements at the INES diffractometer using a neutron radiative capture based counting technique

    NASA Astrophysics Data System (ADS)

    Festa, G.; Pietropaolo, A.; Grazzi, F.; Barzagli, E.; Scherillo, A.; Schooneveld, E. M.

    2011-10-01

    The global shortage of 3He gas is an issue to be addressed in neutron detection. In the context of the research and development activity related to the replacement of 3He for neutron counting systems, neutron diffraction measurements performed on the INES beam line at the ISIS pulsed spallation neutron source are presented. For these measurements two different neutron counting devices have been used: a 20 bar pressure squashed 3He tube and a Yttrium-Aluminum-Perovskite scintillation detector. The scintillation detector was coupled to a cadmium sheet that registers the prompt radiative capture gamma rays generated by the ( n, γ) nuclear reactions occurring in cadmium. The assessment of the scintillator based counting system was done by performing a Rietveld refinement analysis on the diffraction pattern from an ancient Japanese blade and comparing the results with those obtained by a 3He tube placed at the same angular position. The results obtained demonstrate the considerable potential of the proposed counting approach based on the radiative capture gamma rays at spallation neutron sources.

  2. The statistical-mechanics of chromosome conformation capture.

    PubMed

    O'Sullivan, Justin M; Hendy, Michael D; Pichugina, Tatyana; Wake, Graeme C; Langowski, Jörg

    2013-01-01

    Since Jacob and Monod's characterization of the role of DNA elements in gene control, it has been recognized that the linear organization of genome structure is important for the regulation of gene transcription and hence the manifestation of phenotypes. Similarly, it has long been hypothesized that the spatial organization (in three dimensions evolving through time), as part of the epigenome, makes a significant contribution to the genotype-phenotype transition. Proximity ligation assays commonly known as chromosome conformation capture (3C) and 3C based methodologies (e.g., GCC, HiC and ChIA-Pet) are increasingly being incorporated into empirical studies to investigate the role that three-dimensional genome structure plays in the regulation of phenotype. The apparent simplicity of these methodologies-crosslink chromatin, digest, dilute, ligate, detect interactions-belies the complexity of the data and the considerations that should be taken into account to ensure the generation and accurate interpretation of reliable data. Here we discuss the probabilistic nature of these methodologies and how this contributes to their endogenous limitations.

  3. Astrophysical S factors for radiative proton capture by {sup 3}H and {sup 7}Li nuclei

    SciTech Connect

    Dubovichenko, S. B.

    2011-03-15

    Within the potential cluster model where orbital states are classified according to Young diagrams and isospin, astrophysical S factors are considered for radiative proton capture by {sup 3}H and {sup 7}Li nuclei at energies of up to 1 and 10 keV, respectively. It is shown that the approach used, which takes into account only the E1 transition for the p{sup 3}H capture process, makes it possible to describe well the most recent experimental data at c.m. energies in the range from 50 keV to 5MeV. In the case of proton capture by {sup 7}Li nuclei, an M1 processwas taken into account in addition to the E1 transition, and a general behavior and the magnitude of the experimental S factor could be correctly reproduced owing to this at astrophysical energies, including the region around the resonance at 0.441 MeV (in the laboratory frame).

  4. Design Rules and Analysis of a Capture Mechanism for Rendezvous between a Space Tether and Payload

    NASA Technical Reports Server (NTRS)

    Sorensen, Kirk F.; Canfield, Stephen L.; Norris, Marshall A.

    2006-01-01

    Momentum-exchange/electrodynamic reboost (MXER) tether systems have been proposed to serve as an "upper stage in space". A MXER tether station would boost spacecraft from low Earth orbit to a high-energy orbit quickly, like a high-thrust rocket. Then, it would slowly rebuild its orbital momentum through electrodynamic thrust, minimizing the use of propellant. One of the primary challenges in developing a momentum-exchange/electrodynamic reboost tether system as identified by the 2003 MXER Technology Assessment Group is in the development of a mechanism that will enable the processes of capture, carry and release of a payload by the rotating tether as required by the MXER tether approach. This paper will present a concept that will achieve the desired goals of the capture system. This solution is presented as a multi-DOF (degree-of-freedom) capture mechanism with nearly passive operation that features matching of the capture space and expected window of capture error, efficient use of mass and nearly passive actuation during the capture process. This paper will describe the proposed capture mechanism concept and provide an evaluation of the concept through a dynamic model and experimental tests performed on a prototype article of the mechanism in a dynamically similar environment. This paper will also develop a set of rules to guide the design of such a capture mechanism based on analytical and experimental analyses. The primary contributions of this paper will be a description of the proposed capture mechanism concept, a collection of rules to guide its design, and empirical and model information that can be used to evaluate the capability of the concept

  5. Friction, mechanical and ageing properties of surface modified materials for space debris capture

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Perero, S.; Gautier di Confiengo, G.; Chiesa, A.; Messidoro, A.; Ferraris, M.

    2016-03-01

    Space debris removal is a challenging problem for a clean and safe space environment. The present paper focuses on a novel concept of capture mechanism in the framework of technologies, strategies and concepts known as "tentacles with belts" method. Within this framework two different strategies (based on inorganic or organic materials) have been developed in order to improve the capture efficiency of the belts. The mechanical, tribological and ageing characterization of modified belt fabrics for space application is reported and discussed.

  6. Dominant loss mechanisms in the radiation belts

    NASA Astrophysics Data System (ADS)

    Shprits, Y.; Drozdov, A.; Kellerman, A. C.; Spasojevic, M.; Usanova, M.; Agapitov, O. V.; Raita, T.; Engebretson, M.; Baker, D. N.; Spence, H. E.; Zhu, H.

    2016-12-01

    Recent research provided significant improvements in our understanding of the acceleration mechanisms in the radiation belts. Loss processes are still poorly understood. In this study we present detailed analysis of the global evolution of electron radial flux profiles, pitch angle distributions and phase space density for a range of energies/values of the first adiabatic invariant. We show that various loss mechanisms are operational at various energies. Global simulations at all energies, radial distances, and pitch angels are compared to Van Allen Probes observations. VERB 3D model is capable of reproducing the dynamics of pitch angle distributions and energy spectra, demonstrating which loss mechanisms dominate at different energies. Analysis of the profiles of phase space density provides additional confirmation for our conclusions.

  7. Mechanisms of interaction of radiation with matter

    SciTech Connect

    Geacintov, N.E.; Pope, M.

    1992-08-31

    This project is concerned with studies of biological activity-structure relationships in which the mechanisms of interaction of ionizing radiation and benzopyrene (PB) compounds with DNA are being investigated and compared. Emphasis is focused on effects of DNA conformation on its mechanisms of interaction with ionizing radiation, on the influence of structure and stereochemistry of BP metabolites on mechanisms of DNA damage, and on influence of DNA conformation on interactions between BP metabolites and DNA molecules, and the structures of the complexes and adducts which are formed. One basic theme of this project is the use of photoexcited states of BP and nucleic acids as probes of these interactions. In part I of this report, recent progress on elucidating the structures of selected BP-oligonucleotide model adducts by high resolution NMR and gel electrophoresis techniques is summarized. It is shown that the stereochemical properties of benzo(a)pyrene diol epoxide-DNA adducts play a crucial role in determining their interactions with certain exonucleases. These results provide useful models for deriving a better understanding of differences biological activities of BP compounds and the relationships between mutagenicities and the structure properties of BP-DNA adducts. In Part II of this report, a new time-resolved method based on picosecond laser pulse techniques for elucidating the electronic levels involved in electron photoemission and electron transfer in BP and nucleic acid solids is described.

  8. Capture mechanism in Palaeotropical pitcher plants (Nepenthaceae) is constrained by climate

    PubMed Central

    Moran, Jonathan A.; Gray, Laura K.; Clarke, Charles; Chin, Lijin

    2013-01-01

    Background and Aims Nepenthes (Nepenthaceae, approx. 120 species) are carnivorous pitcher plants with a centre of diversity comprising the Philippines, Borneo, Sumatra and Sulawesi. Nepenthes pitchers use three main mechanisms for capturing prey: epicuticular waxes inside the pitcher; a wettable peristome (a collar-shaped structure around the opening); and viscoelastic fluid. Previous studies have provided evidence suggesting that the first mechanism may be more suited to seasonal climates, whereas the latter two might be more suited to perhumid environments. In this study, this idea was tested using climate envelope modelling. Methods A total of 94 species, comprising 1978 populations, were grouped by prey capture mechanism (large peristome, small peristome, waxy, waxless, viscoelastic, non-viscoelastic, ‘wet’ syndrome and ‘dry’ syndrome). Nineteen bioclimatic variables were used to model habitat suitability at approx. 1 km resolution for each group, using Maxent, a presence-only species distribution modelling program. Key Results Prey capture groups putatively associated with perhumid conditions (large peristome, waxless, viscoelastic and ‘wet’ syndrome) had more restricted areas of probable habitat suitability than those associated putatively with less humid conditions (small peristome, waxy, non-viscoelastic and‘dry’ syndrome). Overall, the viscoelastic group showed the most restricted area of modelled suitable habitat. Conclusions The current study is the first to demonstrate that the prey capture mechanism in a carnivorous plant is constrained by climate. Nepenthes species employing peristome-based and viscoelastic fluid-based capture are largely restricted to perhumid regions; in contrast, the wax-based mechanism allows successful capture in both perhumid and more seasonal areas. Possible reasons for the maintenance of peristome-based and viscoelastic fluid-based capture mechanisms in Nepenthes are discussed in relation to the costs and

  9. Improved mechanism for capturing muscle power for circulatory support.

    PubMed

    Trumble, Dennis R; Melvin, David B; Byrne, Mark T; Magovern, James A

    2005-09-01

    Although it is now understood that trained skeletal muscle can generate enough steady-state power to provide significant circulatory support, there are currently no means by which to tap this endogenous energy source to aid the failing heart. To that end, an implantable muscle energy converter (MEC) has been constructed and its function has been improved to optimize durability, anatomic fit, and mechanical efficiency. Bench tests show that MEC transmission losses average less than 10% of total work input and that about 85% of this muscle power is successfully transferred to the working fluid of the pump. Results from canine implant trials confirm excellent biocompatibility and demonstrate that contractile work of the latissimus dorsi muscle-measured to 290 mJ/stroke in one dog-can be transmitted within the body at levels consistent with cardiac assist requirements. These findings suggest that muscle-powered cardiac assist devices are feasible and that efforts to further develop this technology are warranted.

  10. Review of the fundamentals of the neutron-capture reaction

    SciTech Connect

    Chrien, R. E.

    1982-01-01

    Fifty years of research into the nature of the radiative capture reaction mechanisms is briefly summarized. A variety of such mechanisms is exploited to explain neutron capture over nine decades of neutron energy.

  11. Acute Cerebrovascular Radiation Syndrome: Radiation Neurotoxicity , mechanisms of CNS radiation injury, advanced countermeasures for Radiation Protection of Central Nervous System.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Jones, Jeffrey; Maliev, Slava

    . Antiradiation Vaccine and Antiradiation IgG preparations - prospective effective antidote/countermeasure for ϒ-irradiation, heavy ions irradiation, neutron irradiation. Recommendations for treatment and immune-prophylaxis of CNS injury, induced by radiation, were proposed. Specific immune therapy and specific immune prophylaxis reduce symptoms of ACvRS. This manuscript summarizes the results of experiments and considering possibility for blocking toxicological mechanisms of action of Radiation and Radiation Neurotoxins and prevention or diminishing clinical signs of injury of CNS. Experimental data suggest that Antiradiation vaccine and Antiradiation IgG with specific antibodies to Radiation Neurotoxins, Cytotoxins protect CNS against high doses of radiation.

  12. Thermal neutron radiative capture cross-section of 186W(n, γ)187W reaction

    NASA Astrophysics Data System (ADS)

    Tan, V. H.; Son, P. N.

    2016-06-01

    The thermal neutron radiative capture cross section for 186W(n, γ)187W reaction was measured by the activation method using the filtered neutron beam at the Dalat research reactor. An optimal composition of Si and Bi, in single crystal form, has been used as neutron filters to create the high-purity filtered neutron beam with Cadmium ratio of Rcd = 420 and peak energy En = 0.025 eV. The induced activities in the irradiated samples were measured by a high resolution HPGe digital gamma-ray spectrometer. The present result of cross section has been determined relatively to the reference value of the standard reaction 197Au(n, γ)198Au. The necessary correction factors for gamma-ray true coincidence summing, and thermal neutron self-shielding effects were taken into account in this experiment by Monte Carlo simulations.

  13. Radiative-neutron-capture gamma-ray analysis by a linear combination technique

    USGS Publications Warehouse

    Tanner, A.B.; Bhargava, R.C.; Senftle, F.E.; Brinkerhoff, J.M.

    1972-01-01

    The linear combination technique, when applied to a gamma-ray spectrum, gives a single number indicative of the extent to which the spectral lines of a sought element are present in a complex spectrum. Spectra are taken of the sought element and of various other substances whose spectra interfere with that of the sought element. A weighting function is then computed for application to spectra of unknown materials. The technique was used to determine calcium by radiative-neutron-capture gamma-ray analysis in the presence of interfering elements, notably titanium, and the results were compared with those for two popular methods of peak area integration. Although linearity of response was similar for the methods, the linear combination technique was much better at rejecting interferences. For analyses involving mixtures of unknown composition the technique consequently offers improved sensitivity. ?? 1972.

  14. New results for reaction rate of the proton radiative capture on 3H

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.; Dzhazairov-Kakhramanov, A. V.; Afanasyeva, N. V.

    2017-07-01

    Calculations of the reaction rate of the proton radiative capture on 3H at temperatures from 0.01 T9 up to 5 T9, which are based on the theoretical results for the astrophysical S-factor and take into account the latest experimental data, were carried out. Theoretical results for the S-factor at energies from 1 keV up to 5 MeV were obtained in the framework of the modified potential cluster model with the classification of orbital states according to Young tableaux. On the basis of used nuclear model of the interaction of p and 3H particles there was shown possibility of description the latest experimental data for the S-factor at the energy range from 50 keV up to 5 MeV.

  15. Improved Mechanism for Capturing Muscle Power for Circulatory Support

    PubMed Central

    Trumble, Dennis R.; Melvin, David B.; Byrne, Mark T.; Magovern, James A.

    2016-01-01

    Although it is now understood that trained skeletal muscle can generate enough steady-state power to provide significant circulatory support, there are currently no means by which to tap this endogenous energy source to aid the failing heart. To that end, an implantable muscle energy converter (MEC) has been constructed and its function has been improved to optimize durability, anatomic fit, and mechanical efficiency. Bench tests show that MEC transmission losses average less than 10% of total work input and that about 85% of this muscle power is successfully transferred to the working fluid of the pump. Results from canine implant trials confirm excellent biocompatibility and demonstrate that contractile work of the latissimus dorsi muscle—measured to 290 mJ/stroke in one dog—can be transmitted within the body at levels consistent with cardiac assist requirements. These findings suggest that muscle-powered cardiac assist devices are feasible and that efforts to further develop this technology are warranted. PMID:16143010

  16. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    PubMed Central

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation. PMID:27930331

  17. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III–V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  18. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation.

    PubMed

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D; Alivisatos, A Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G; Rogers, John A

    2016-12-20

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV(+) scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV(+) modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  19. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    DOE PAGES

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; ...

    2016-12-05

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PVmore » conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme ("+" denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.« less

  20. Measuring Neutron-Proton Radiative Capture Cross-section at Low Energy

    NASA Astrophysics Data System (ADS)

    Yu, To Chin; Kovash, Michael; Matthews, June; Yang, Hongwei; Yang, Yunjie

    2015-10-01

    The experiment aims to fill in a gap in our data for the cross-section of neutron-proton radiative capture (p(n,d γ)) at energies below 500 keV. Current measurements in this energy range are scarce and inconsistent with theoretical predictions and with each other. A well-determined cross-section of the capture reaction in the low energy range is useful in nuclear physics due to its fundamental nature. The measurement is also of interest in cosmology. Big Bang Nucleosynthesis (BBN), the process by which light elements are formed in early universe, is very sensitive to the p(n,d γ) cross-section in the low energy range. The measurement enables us to put tighter constraints on the theoretical predictions of BBN. We have conducted preliminary measurements in the van de Graaff accelerator facility at the University of Kentucky. Our array of detectors consists of three plastic scintillators to serve as proton targets and deuteron detectors, and five BGO scintillators to detect γ-rays. The combination results in an over-determination of reaction kinematics that discriminates against scattering processes and other backgrounds. We have obtained some early results which show promise for the precise measurement of the p(n,d γ) cross-section.

  1. Determination of radiative neutron capture cross sections for unstable nuclei by the {gamma}-ray strength function method

    SciTech Connect

    Utsunomiya, H.; Goriely, S.

    2012-11-12

    An indirect method referred to as the {gamma}-ray strength function method has been devised to determine radiative neutron capture cross sections for unstable nuclei along the valley of {beta}-stability. This method is based on the {gamma}-ray strength function which interconnects radiative neutron capture and photoneutron emission within the statistical model. The method was applied to several unstable nuclei such as {sup 93,95}Zr, {sup 107}Pd, and 121,123Sn. This method offers a versatile application extended to unstable nuclei far from the stability when combined with Coulomb dissociation experiments at RIKEN-RIBF and GSI.

  2. A new analytical formula for neutron capture gamma dose calculations in double-bend mazes in radiation therapy

    PubMed Central

    Ghiasi, Hosein; Mesbahi, Asghar

    2012-01-01

    Background Photoneutrons are produced in radiation therapy with high energy photons. Also, capture gamma rays are the byproduct of neutrons interactions with wall material of radiotherapy rooms. Aim In the current study an analytical formula was proposed for capture gamma dose calculations in double bend mazes in radiation therapy rooms. Materials and methods A total of 40 different layouts with double-bend mazes and a 18 MeV photon beam of Varian 2100 Clinac were simulated using MCNPX Monte Carlo (MC) code. Neutron capture gamma ray dose equivalent was calculated by the MC method along the maze and at the maze entrance door of all the simulated rooms. Then, all MC resulted data were fitted to an empirical formula for capture gamma dose calculations. Wu–McGinley analytical formula for capture gamma dose equivalent at the maze entrance door in single-bend mazes was also used for comparison purposes. Results For capture gamma dose equivalents at the maze entrance door, the difference of 2–11% was seen between MC and the derived equation, while the difference of 36–87% was found between MC and the Wu–McGinley methods. Conclusion Our results showed that the derived formula results were consistent with the MC results for all of 40 different geometries. However, as a new formula, further evaluations are required to validate its use in practical situations. Finally, its application is recommend for capture gamma dose calculations in double-bend mazes to improve shielding calculations. PMID:24377027

  3. Macroscopic geometric heterogeneity effects in radiation dose distribution analysis for boron neutron capture therapy.

    PubMed

    Moran, J M; Nigg, D W; Wheeler, F J; Bauer, W F

    1992-01-01

    Calculations of radiation flux and dose distributions for boron neutron capture therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This paper describes such a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for the tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for this model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous-tissue model. Comparison of the results showed that peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10%-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  4. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    SciTech Connect

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  5. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    SciTech Connect

    Moran, Jean M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  6. THE RADIATIVE NEUTRON CAPTURE ON 2H, 6Li, 7Li, 12C AND 13C AT ASTROPHYSICAL ENERGIES

    NASA Astrophysics Data System (ADS)

    Dubovichenko, Sergey; Dzhazairov-Kakhramanov, Albert; Burkova, Natalia

    2013-05-01

    The continued interest in the study of radiative neutron capture on atomic nuclei is due, on the one hand, to the important role played by this process in the analysis of many fundamental properties of nuclei and nuclear reactions, and, on the other hand, to the wide use of the capture cross-section data in the various applications of nuclear physics and nuclear astrophysics, and, also, to the importance of the analysis of primordial nucleosynthesis in the Universe. This paper is devoted to the description of results for the processes of the radiative neutron capture on certain light atomic nuclei at thermal and astrophysical energies. The consideration of these processes is done within the framework of the potential cluster model (PCM), general description of which was given earlier. The methods of usage of the results obtained, based on the phase shift analysis intercluster potentials, are demonstrated in calculations of the radiative capture characteristics. The considered capture reactions are not part of stellar thermonuclear cycles, but involve in the basic reaction chain of primordial nucleosynthesis in the course of the Universe formation.

  7. Radiative capture reaction for 17Ne formation within a full three-body model

    NASA Astrophysics Data System (ADS)

    Casal, J.; Garrido, E.; de Diego, R.; Arias, J. M.; Rodríguez-Gallardo, M.

    2016-11-01

    Background: The breakout from the hot Carbon-Nitrogen-Oxigen (CNO) cycles can trigger the rp-process in type I x-ray bursts. In this environment, a competition between 15O(α ,γ )19Ne and the two-proton capture reaction 15O(2 p ,γ )17Ne is expected. Purpose: Determine the three-body radiative capture reaction rate for 17Ne formation including sequential and direct, resonant and nonresonant contributions on an equal footing. Method: Two different discretization methods have been applied to generate 17Ne states in a full three-body model: the analytical transformed harmonic oscillator method and the hyperspherical adiabatic expansion method. The binary p -15O interaction has been adjusted to reproduce the known spectrum of the unbound 16F nucleus. The dominant E 1 contributions to the 15O(2 p ,γ )17Ne reaction rate have been calculated from the inverse photodissociation process. Results: Three-body calculations provide a reliable description of 17Ne states. The agreement with the available experimental data on 17Ne is discussed. It is shown that the 15O(2 p ,γ )17Ne reaction rates computed within the two methods agree in a broad range of temperatures. The present calculations are compared with a previous theoretical estimation of the reaction rate. Conclusions: It is found that the full three-body model provides a reaction rate several orders of magnitude larger than the only previous estimation. The implications for the rp-process in type I x-ray bursts should be investigated.

  8. Radiation health: mechanisms of radiation-induced cataracts in astronauts.

    PubMed

    Frey, Mary Anne

    2009-06-01

    Dr. Blakely and colleagues have conducted a series of experiments to explain the molecular basis by which space radiation causes cataracts, particularly with regard to elucidating how space radiation alters gene expression profiles in the process of lens cell differentiation. To do this, they "developed an in vitro model of differentiating human lens epithelial cells...that mimicked the normal growth environment in the tissue" (2). They have shown that radiation, especially high-LET (linear energy transfer) iron ion radiation, affects gene and protein expression of many cells involved in lens cell differentiation and cell cycle regulation. They have also developed a schematic model to explain the action of ionizing radiation on specific molecules leading to perturbations in cell cycle regulation and ultimately affecting lens cell differentiation. These results can provide a basis for developing countermeasures to protect astronauts in long-duration spaceflight and for improving risk assessments of space-radiation-caused cataracts. This research can also benefit individuals on Earth who are exposed to clinical and occupational radiation.

  9. 12C(16O,γ)28Si radiative capture: Structural and statistical aspects of the γ decay

    NASA Astrophysics Data System (ADS)

    Lebhertz, D.; Courtin, S.; Haas, F.; Jenkins, D. G.; Simenel, C.; Salsac, M.-D.; Hutcheon, D. A.; Beck, C.; Cseh, J.; Darai, J.; Davis, C.; Glover, R. G.; Goasduff, A.; Kent, P. E.; Levai, G.; Marley, P. L.; Michalon, A.; Pearson, J. E.; Rousseau, M.; Rowley, N.; Ruiz, C.

    2012-03-01

    The heavy-ion radiative capture reaction 12C(16O,γ)28Si has been studied at three energies Ec.m.=8.5, 8.8, and 9 MeV which are close to the Coulomb barrier. The weak radiative capture process has been identified by measuring the 28Si recoils in the highly selective 0∘ spectrometer DRAGON at TRIUMF (Vancouver). The coincident γ rays have been recorded in the associated BGO array. This has allowed a complete measurement of the γ spectrum and the relative strength of all decay pathways. An important part of the decay through quasibound states close to the particle threshold and the feeding of bound states with particular deformation have been identified for the first time. Comparisons with Monte Carlo simulations allowed the extraction of the full experimental radiative capture cross section. Our results suggest an important contribution of spins Jπ=5- and 6+ in the entrance channel. The surprisingly large cross sections from 12 μb at Ec.m.=8.5 MeV to 25 μb at Ec.m.=9.0 MeV for the heavy-ion radiative capture process are discussed in terms of the interplay between statistical and structural aspects of the process.

  10. Real-Time Imaging of Ground Cover: Relationships with Radiation Capture, Canopy Photosynthesis, and Daily Growth Rate

    NASA Technical Reports Server (NTRS)

    Klassen, S. P.; Ritchie, G.; Frantz, J. M.; Pinnock, D.; Bugbee, B.

    2003-01-01

    Cumulative absorbed radiation is highly correlated with crop biomass and yield. In this chapter we describe the use of a digital camera and commercial imaging software for estimating daily radiation capture, canopy photosynthesis, and relative growth rate. Digital images were used to determine percentage of ground cover of lettuce (Lactuca sativa L.) communities grown at five temperatures. Plants were grown in a steady-state, 10-chamber CO2 gas exchange system, which was used to measure canopy photosynthesis and daily carbon gain. Daily measurements of percentage of ground cover were highly correlated with daily measurements of both absorbed radiation (r(sup 2) = 0.99) and daily carbon gain (r(sup 2) = 0.99). Differences among temperature treatments indicated that these relationships were influenced by leaf angle, leaf area index, and chlorophyll content. An analysis of the daily images also provided good estimates of relative growth rates, which were verified by gas exchange measurements of daily carbon gain. In a separate study we found that images taken at hourly intervals were effective for monitoring real-time growth. Our data suggests that hourly images can be used for early detection of plant stress. Applications, limitations, and potential errors are discussed. We have long known that crop yield is determined by the efficiency of four component processes: (i) radiation capture, (ii) quantum yield, (iii) carbon use efficiency, and (iv) carbon partitioning efficiency (Charles-Edwards, 1982; Penning de Vries & van Laar, 1982; Thornley, 1976). More than one-half century ago, Watson (1947, 1952) showed that variation in radiation capture accounted for almost all of the variation in yield between sites in temperate regions, because the three other components are relatively constant when the crop is not severely stressed. More recently, Monteith (1977) reviewed the literature on the close correlation between radiation capture and yield. Bugbee and Monje (1992

  11. Real-Time Imaging of Ground Cover: Relationships with Radiation Capture, Canopy Photosynthesis, and Daily Growth Rate

    NASA Technical Reports Server (NTRS)

    Klassen, S. P.; Ritchie, G.; Frantz, J. M.; Pinnock, D.; Bugbee, B.

    2003-01-01

    Cumulative absorbed radiation is highly correlated with crop biomass and yield. In this chapter we describe the use of a digital camera and commercial imaging software for estimating daily radiation capture, canopy photosynthesis, and relative growth rate. Digital images were used to determine percentage of ground cover of lettuce (Lactuca sativa L.) communities grown at five temperatures. Plants were grown in a steady-state, 10-chamber CO2 gas exchange system, which was used to measure canopy photosynthesis and daily carbon gain. Daily measurements of percentage of ground cover were highly correlated with daily measurements of both absorbed radiation (r(sup 2) = 0.99) and daily carbon gain (r(sup 2) = 0.99). Differences among temperature treatments indicated that these relationships were influenced by leaf angle, leaf area index, and chlorophyll content. An analysis of the daily images also provided good estimates of relative growth rates, which were verified by gas exchange measurements of daily carbon gain. In a separate study we found that images taken at hourly intervals were effective for monitoring real-time growth. Our data suggests that hourly images can be used for early detection of plant stress. Applications, limitations, and potential errors are discussed. We have long known that crop yield is determined by the efficiency of four component processes: (i) radiation capture, (ii) quantum yield, (iii) carbon use efficiency, and (iv) carbon partitioning efficiency (Charles-Edwards, 1982; Penning de Vries & van Laar, 1982; Thornley, 1976). More than one-half century ago, Watson (1947, 1952) showed that variation in radiation capture accounted for almost all of the variation in yield between sites in temperate regions, because the three other components are relatively constant when the crop is not severely stressed. More recently, Monteith (1977) reviewed the literature on the close correlation between radiation capture and yield. Bugbee and Monje (1992

  12. Preliminary system design of a Three Arm Capture Mechanism (TACM) flight demonstration article

    NASA Technical Reports Server (NTRS)

    Schaefer, Otto; Stasi, Bill

    1993-01-01

    The overall objective of the Three Arm Capture Mechanism (TACM) is to serve as a demonstration of capability for capture of objects in space. These objects could be satellites, expended boosters, pieces of debris, etc.; anything of significant size. With this capability we can significantly diminish the danger of major collisions of debris with valuable space assets and with each other, which would otherwise produce many smaller, high velocity pieces of debris which also become concerns. The captured objects would be jettisoned into the atmosphere, relocated in 'parking' orbits, or recovered for disposition or refurbishment. The dollar value of satellites launched into space continues to grow along with the cost of insurance; having a capture capability takes a positive step towards diminishing this added cost. The effort covered is a planning step towards a flight demonstration of the satellite capture capability. Based on the requirement to capture a communication class satellite, its associated booster, or both, a preliminary system definition of a retrieval kit is defined. The objective of the flight demonstration is to demonstrate the techniques proposed to perform the mission and to obtain data on technical issues requiring an in situ space environment. The former especially includes issues such as automated image recognition techniques and control strategies that enable an unmanned vehicle to rendezvous and capture a satellite, contact dynamics between the two bodies, and the flight segment level of automation required to support the mission. A development plan for the operational retrieval capability includes analysis work, computer and ground test simulations, and finally a flight demonstration. A concept to perform a selected mission capturing a precessing communications satellite is described. Further development efforts using analytical tools and laboratory facilities are required prior to reaching the point at which a full commitment to the flight

  13. Ab initio calculation of the $np \\to d ³$ radiative capture process

    SciTech Connect

    Beane, Silas R.; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.

    2015-09-24

    In this study, lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process $np \\to d\\gamma$, and the photo-disintegration processes $\\gamma^{(\\ast)} d \\to np$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of $m_\\pi \\sim 450$ and 806 MeV, and are combined with pionless nuclear effective field theory to determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross section of $\\sigma^{lqcd}(np\\to d\\gamma)=332.4({\\tiny \\begin{array}{l}+5.4 \\\\ - 4.7\\end{array}})\\ mb$ is obtained at an incident neutron speed of $v=2,200\\ m/s$, consistent with the experimental value of $\\sigma^{expt}(np \\to d\\gamma) = 334.2(0.5)\\ mb$.

  14. Ab initio Calculation of the n p →d γ Radiative Capture Process

    NASA Astrophysics Data System (ADS)

    Beane, Silas R.; Chang, Emmanuel; Detmold, William; Orginos, Kostas; Parreño, Assumpta; Savage, Martin J.; Tiburzi, Brian C.; Nplqcd Collaboration

    2015-09-01

    Lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture process n p →d γ , and the photo-disintegration processes γ(*)d →n p . In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of mπ˜450 and 806 MeV, and are combined with pionless nuclear effective field theory to determine the amplitudes for these low-energy inelastic processes. At mπ˜806 MeV , using only lattice QCD inputs, a cross section σ806 MeV˜17 mb is found at an incident neutron speed of v =2 ,200 m /s . Extrapolating the short-distance contribution to the physical pion mass and combining the result with phenomenological scattering information and one-body couplings, a cross section of σlqcd(n p →d γ )=334.9 ( +5.2 -5.4 ) mb is obtained at the same incident neutron speed, consistent with the experimental value of σexpt(n p →d γ )=334.2 (0.5 ) mb .

  15. Ab initio calculation of the $$np \\to d ³$$ radiative capture process

    DOE PAGES

    Beane, Silas R.; Chang, Emmanuel; Detmold, William; ...

    2015-09-24

    In this study, lattice QCD calculations of two-nucleon systems are used to isolate the short-distance two-body electromagnetic contributions to the radiative capture processmore » $$np \\to d\\gamma$$, and the photo-disintegration processes $$\\gamma^{(\\ast)} d \\to np$$. In nuclear potential models, such contributions are described by phenomenological meson-exchange currents, while in the present work, they are determined directly from the quark and gluon interactions of QCD. Calculations of neutron-proton energy levels in multiple background magnetic fields are performed at two values of the quark masses, corresponding to pion masses of $$m_\\pi \\sim 450$$ and 806 MeV, and are combined with pionless nuclear effective field theory to determine these low-energy inelastic processes. Extrapolating to the physical pion mass, a cross section of $$\\sigma^{lqcd}(np\\to d\\gamma)=332.4({\\tiny \\begin{array}{l}+5.4 \\\\ - 4.7\\end{array}})\\ mb$$ is obtained at an incident neutron speed of $$v=2,200\\ m/s$$, consistent with the experimental value of $$\\sigma^{expt}(np \\to d\\gamma) = 334.2(0.5)\\ mb$$.« less

  16. Radiative neutron capture on a proton at big-bang nucleosynthesis energies

    SciTech Connect

    Ando, S.; Cyburt, R. H.; Hong, S. W.; Hyun, C. H.

    2006-08-15

    The total cross section for radiative neutron capture on a proton, np{yields}d{gamma}, is evaluated at big-bang nucleosynthesis (BBN) energies. The electromagnetic transition amplitudes are calculated up to next-to-leading-order within the framework of pionless effective field theory with dibaryon fields. We also calculate the d{gamma}{yields}np cross section and the photon analyzing power for the d{gamma}(vector sign){yields}np process from the amplitudes. The values of low-energy constants that appear in the amplitudes are estimated by a Markov Chain Monte Carlo analysis using the relevant low-energy experimental data. Our result agrees well with those of other theoretical calculations except for the np{yields}d{gamma} cross section at some energies estimated by an R-matrix analysis. We also study the uncertainties in our estimation of the np{yields}d{gamma} cross section at relevant BBN energies and find that the estimated cross section is reliable to within {approx}1% error.

  17. Using the FMA for radiative capture cross-section measurements of interest to astrophysics

    SciTech Connect

    Davids, C.N.; Back, B.B.; Blumenthal, D.J.

    1995-08-01

    We assessed the capability of the Fragment Mass Analyzer (FMA) to study radiative capture reactions of astrophysical interest using inverse kinematics. Results from measurements on the {sup 1}H({sup 13}C,{sup 14}N){gamma} reaction show that the FMA is an ideal high-efficiency tool for these experiments, where the recoil ion is detected and identified at the FMA focal plane. Intermediate slits acting on energy/charge and mass/charge were introduced into the FMA, which reduced the scattered primary beam fraction at the focal plane to <10{sup -11}. A small gas ionization chamber was placed behind the position-sensitive focal-plane detector, followed by a Si detector. Measurements of mass/charge, energy loss, and residual energy of the transmitted ions were made, giving at least another two orders of magnitude separation of recoils from scattered beam. A new ionization detector operating in the same gas volume as the focal plane detector will provide even better separation by eliminating the need for two of the three windows used in the test measurement. At energies of {approximately} 0.5 MeV/nucleon, the recoil ions populate primarily a single charge state, resulting in a detection efficiency of > 50%. This will be particularly valuable for use with radioactive beams.

  18. A cylindrical drift chamber for radiative muon capture experiments at TRIUMF

    SciTech Connect

    Henderson, R.S.; Dawson, R.J.; Azuelos, G.; Robertson, B.C. ); Hasinoff, M.D.; Ahamad, S.; Gorringe, T.P. ); Serna-Angel, A.; Blecher, M.; Wright, D.H. )

    1990-06-01

    In the Standard Model, the weak interaction is purely V-A in character. However in semileptonic reactions the strong force induces additional couplings. Radiative muon capture (RMC), {mu}{sup {minus}}{ital Z} {r arrow} {nu}({ital Z}{minus}1){gamma}, is a process which is particularly sensitive to the induced pseudoscalar coupling constant, {ital g{sub p}}, which is still very poorly determined experimentally. Due to the extremely small branching ratio ({approximately} 6 {times} 10{sup {minus}8}), the elementary reaction {mu}{sup {minus}}{ital p} {r arrow} {nu}{ital n}{gamma} has never been measured. Effort to date has concentrated on nuclear RMC where the branching ratio is much larger, but the interpretation of these results is hindered by nuclear structure uncertainties. A measurement is being carried out at TRIUMF to determine the rate of RMC on hydrogen to a precision of 8% leading to a determination of {ital g{sub p}} with an error of 10%. The detection system is based on a large volume cylindrical drift chamber, in an axial magnetic field, acting as an e{sup +}e{sup {minus}} pair spectrometer with a solid angle of {approx equal} 2 {pi}. The design, construction and performance of the cylindrical drift chamber are discussed.

  19. Photon strength functions in Gd isotopes studied from radiative capture of resonance neutrons

    NASA Astrophysics Data System (ADS)

    Kroll, J.; Baramsai, B.; Mitchell, G. E.; Agvaanluvsan, U.; Bečvář, F.; Bredeweg, T. A.; Chyzh, A.; Couture, A.; Dashdorj, D.; Haight, R. C.; Jandel, M.; Keksis, A. L.; Krtička, M.; O'Donnell, J. M.; Parker, W.; Rundberg, R. S.; Ullmann, J. L.; Valenta, S.; Vieira, D. J.; Walker, C.; Wu, C. Y.

    2014-04-01

    The experimental spectra of γ rays following radiative neutron capture on isolated resonances of stable 152,154-158Gd targets were measured by the DANCE calorimeter installed at the Los Alamos Neutron Scattering Center in New Mexico, USA. These spectra were analyzed within the extreme statistical model to get new information on the photon strength functions. Special emphasis was put on study of the scissors vibrational mode present in these isotopes. Our data show that the scissors-mode resonances are built not only on the ground states but also on the excited levels of all studied Gd isotopes. The scissors mode strength observed in 157,159Gd products is significantly higher than in neighboring even-even nuclei 156,158Gd. Such a difference indicates the existence of an odd-even effect in the scissors mode strength. Moreover, there exists no universal parameter-free model of the electric dipole photon strength function describing the experimental data in all of the Gd isotopes studied. The results for the scissors mode are compared with the (γ, γ') data for the ground-state transitions and with the results from 3He-induced reactions.

  20. Molecular mechanisms of ultraviolet radiation carcinogenesis.

    PubMed

    Ananthaswamy, H N; Pierceall, W E

    1990-12-01

    UV radiation is a potent DNA damaging agent and a known inducer of skin cancer in experimental animals. There is excellent scientific evidence to indicate that most non-melanoma human skin cancers are induced by repeated exposure to sunlight. UV radiation is unique in that it induces DNA damage that differs from the lesions induced by any other carcinogen. The prevalence of skin cancer on sun-exposed body sites in individuals with the inherited disorder XP suggests that defective repair of UV-induced DNA damage can lead to cancer induction. Carcinogenesis in the skin, as elsewhere, is a multistep process in which a series of genetic and epigenetic events leads to the emergence of a clone of cells that have escaped normal growth control mechanisms. The principal candidates that are involved in these events are oncogenes and tumor suppressor genes. Oncogenes display a positive effect on transformation, whereas tumor suppressor genes have an essentially negative effect, blocking transformation. Activated ras oncogenes have been identified in human skin cancers. In most cases, the mutations in the ras oncogenes have been localized to pyrimidine-rich sequences, which indicates that these sites are probably the targets for UV-induced DNA damage and subsequent mutation and transformation. The finding that activation of ras oncogenes in benign and self-regressing keratoacanthomas in both humans and in animals indicates that they play a role in the early stages of carcinogenesis (Corominas et al., 1989; Kumar et al., 1990). Since cancers do not arise immediately after exposure to physical or chemical carcinogens, ras oncogenes must remain latent for long periods of time. Tumor growth and progression into the more malignant stages may require additional events involving activation of other oncogenes or deletion of growth suppressor genes. In addition, amplification of proto-oncogenes or other genes may also be involved in tumor induction or progression. In contrast to the

  1. Integrated capture, transport, and magneto-mechanical resonant sensing of superparamagnetic microbeads using magnetic domain walls.

    PubMed

    Rapoport, E; Montana, D; Beach, G S D

    2012-11-07

    An integrated platform for the capture, transport, and detection of individual superparamagnetic microbeads is described for lab-on-a-chip biomedical applications. Magnetic domain walls in magnetic tracks have previously been shown to be capable of capturing and transporting individual beads through a fluid at high speeds. Here it is shown that the strong magnetostatic interaction between a bead and a domain wall leads to a distinct magneto-mechanical resonance that reflects the susceptibility and hydrodynamic size of the trapped bead. Numerical and analytical modeling is used to quantitatively explain this resonance, and the magneto-mechanical resonant response under sinusoidal drive is experimentally characterized both optically and electrically. The observed bead resonance presents a new mechanism for microbead sensing and metrology. The dual functionality of domain walls as both bead carriers and sensors is a promising platform for the development of lab-on-a-bead technologies.

  2. Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis.

    PubMed

    Marcucci, L E; Mangano, G; Kievsky, A; Viviani, M

    2016-03-11

    The astrophysical S factor for the radiative capture d(p,γ)^{3}He in the energy range of interest for big bang nucleosynthesis (BBN) is calculated using an ab initio approach. The nuclear Hamiltonian retains both two- and three-nucleon interactions-the Argonne v_{18} and the Urbana IX, respectively. Both one- and many-body contributions to the nuclear current operator are included. The former retain for the first time, besides the 1/m leading order contribution (m is the nucleon mass), also the next-to-leading order term, proportional to 1/m^{3}. The many-body currents are constructed in order to satisfy the current conservation relation with the adopted Hamiltonian model. The hyperspherical harmonics technique is applied to solve the A=3 bound and scattering states. Particular attention is paid in this second case in order to obtain, in the energy range of BBN, an uncertainty on the astrophysical S factor of the order or below ∼1%. Then, in this energy range, the S factor is found to be ∼10% larger than the currently adopted values. Part of this increase (1%-3%) is due to the 1/m^{3} one-body operator, while the remaining is due to the new more accurate scattering wave functions. We have studied the implication of this new determination for the d(p,γ)^{3}He S factor on the deuterium primordial abundance. We find that the predicted theoretical value for ^{2}H/H is in excellent agreement with its experimental determination, using the most recent determination of the baryon density of the Planck experiment, and with a standard number of relativistic degrees of freedom N_{eff}=3.046 during primordial nucleosynthesis. This calls for a more accurate measurement of the astrophysical S factor in order to confirm the present predictions.

  3. Implication of the Proton-Deuteron Radiative Capture for Big Bang Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Marcucci, L. E.; Mangano, G.; Kievsky, A.; Viviani, M.

    2016-03-01

    The astrophysical S factor for the radiative capture d (p ,γ ) 3He in the energy range of interest for big bang nucleosynthesis (BBN) is calculated using an ab initio approach. The nuclear Hamiltonian retains both two- and three-nucleon interactions—the Argonne v18 and the Urbana IX, respectively. Both one- and many-body contributions to the nuclear current operator are included. The former retain for the first time, besides the 1 /m leading order contribution (m is the nucleon mass), also the next-to-leading order term, proportional to 1 /m3. The many-body currents are constructed in order to satisfy the current conservation relation with the adopted Hamiltonian model. The hyperspherical harmonics technique is applied to solve the A =3 bound and scattering states. Particular attention is paid in this second case in order to obtain, in the energy range of BBN, an uncertainty on the astrophysical S factor of the order or below ˜1 %. Then, in this energy range, the S factor is found to be ˜10 % larger than the currently adopted values. Part of this increase (1%-3%) is due to the 1 /m3 one-body operator, while the remaining is due to the new more accurate scattering wave functions. We have studied the implication of this new determination for the d (p ,γ )3He S factor on the deuterium primordial abundance. We find that the predicted theoretical value for 2H/H is in excellent agreement with its experimental determination, using the most recent determination of the baryon density of the Planck experiment, and with a standard number of relativistic degrees of freedom Neff=3.046 during primordial nucleosynthesis. This calls for a more accurate measurement of the astrophysical S factor in order to confirm the present predictions.

  4. Mechanisms of hypertension in renal radiation

    SciTech Connect

    Juncos, L.; Cornejo, J.C.; Cejas, H.; Broglia, C. )

    1990-02-01

    This study was undertaken to investigate the role played by renal functional and structural changes in the development of radiation-induced hypertension. Four groups of rats were studied: (1) left kidney radiated, (2) sham procedure, (3) uninephrectomy followed 3 weeks later by radiation of the contralateral kidney, and (4) uninephrectomy followed by sham procedure 3 weeks later. All radiated rats became hypertensive at 12 weeks (p less than 0.05) and had higher protein excretion (p less than 0.05). In the presence of an intact contralateral kidney, radiation causes mild-to-moderate histological abnormalities, and therefore, creatinine clearance and water and sodium handling do not change. Plasma renin activity increased in this group (p less than 0.05). Radiated uninephrectomized rats showed decreased creatinine clearance (p less than 0.05), but renin activity remained unchanged. These rats developed severe histological abnormalities in glomeruli, interstitia, tubuli, and vessels resulting in increased sodium and water output. The average of individual tubular and interstitial scores correlated significantly with both water intake and output but not with sodium excretion. These studies suggest that in the presence of an intact kidney, renin is an important determinant in the development or maintenance of radiation hypertension, whereas in the absence of the contralateral kidney, severe histological changes and renal failure are prominent despite increased water intake and output. The more severe glomerular sclerosis and proteinuria in the latter model could be related to diminished renal mass.

  5. New decay branches of the radiative capture reaction {sup 12}C({sup 16}O,{gamma}){sup 28}Si

    SciTech Connect

    Lebhertz, D.; Courtin, S.; Haas, F.; Salsac, M.-D.; Beck, C.; Michalon, A.; Rousseau, M.; Marley, P. L.; Glover, R. G.; Kent, P. E.; Hutcheon, D. A.; Davis, C.; Pearson, J. E.

    2009-01-28

    Resonances in the {sup 12}C({sup 16}O,{gamma}){sup 28}Si radiative capture process at energies around the Coulomb barrier have been probed using the very selective 0 deg. Dragon spectrometer at Triumf and its associated BGO {gamma}-array. For the first time the full level scheme involved in this process has been measured and shows previously unobserved {gamma}-decay to doorway states around 11 MeV in {sup 28}Si.

  6. The C12(O16,γSi28) radiative capture reaction at sub-barrier energies

    NASA Astrophysics Data System (ADS)

    Goasduff, A.; Courtin, S.; Haas, F.; Lebhertz, D.; Jenkins, D. G.; Fallis, J.; Ruiz, C.; Hutcheon, D. A.; Amandruz, P.-A.; Davis, C.; Hager, U.; Ottewell, D.; Ruprecht, G.

    2014-01-01

    The heavy-ion radiative capture C12(O16,γSi28) was measured at the sub-Coulomb barrier bombarding energy Elab=15.7 MeV, which corresponds to the lowest important resonance observed in the C12+ O16 fusion excitation function. Thanks to combination of the bismuth germanate (BGO) γ-ray array and the 0∘ DRAGON electromagnetic spectrometer at TRIUMF, the γ-decay spectrum from the entrance channel down to the ground state of 28Si was measured. Comparisons of the experimental spectrum to γ spectrum extracted from Monte Carlo simulations of the complete setup suggest a Jπ=2+ spin-parity assignment to the entrance channel and yield the radiative capture cross section σRC=0.22±0.04μb. Combining this present spin assignment with previous data on radiative capture, a J (J+1) systematics was constructed, and it indicated a moment of inertia commensurate with the C12+O16 grazing angular momentum. Strong dipole transitions are observed from the entrance channel to T =1 states around 11.5 MeV and are found to result from enhanced M1IV transitions to states exhausting a large part of the M1 sum rule built on the ground state of 28Si. This specific decay was also reported at bombarding energies close to the Coulomb barrier in our previous study of the C12(C12,γ24Mg) heavy-ion radiative capture reaction. Similarities between both systems are investigated.

  7. RADIATIVE NEUTRON CAPTURE ON 9Be, 14C, 14N, 15N AND 16O AT THERMAL AND ASTROPHYSICAL ENERGIES

    NASA Astrophysics Data System (ADS)

    Dubovichenko, Sergey; Dzhazairov-Kakhramanov, Albert; Afanasyeva, Nadezhda

    2013-10-01

    The total cross-sections of the radiative neutron capture processes on 9Be, 14C, 14N, 15N and 16O are described in the framework of the modified potential cluster model with the classification of orbital states according to Young tableaux. The continued interest in the study of these reactions is due, on the one hand, to the important role played by this process in the analysis of many fundamental properties of nuclei and nuclear reactions, and, on the other hand, to the wide use of the capture cross-section data in the various applications of nuclear physics and nuclear astrophysics, and, also, to the importance of the analysis of primordial nucleosynthesis in the Universe. This article is devoted to the description of results for the processes of the radiative neutron capture on certain light atomic nuclei at thermal and astrophysical energies. The considered capture reactions are not part of stellar thermonuclear cycles, but involve in the reaction chains of inhomogeneous Big Bang models.

  8. Mesure du taux de la capture radiative du muon par l'hydrogene liquide

    NASA Astrophysics Data System (ADS)

    Jonkmans, Guy

    À basse énergie, l'interaction faible entre leptons et quarks est décrite par une interaction de la forme courant × courant de type V - A. La présence de l'interaction forte induit des couplages additionnels qui doivent être déterminés expérimentalement. De ceux-ci, le couplage pseudoscalaire induit, gp , est mesuré avec la plus grande incertitude et fait l'objet de la présente recherche. L'hypothèse du Courant Axial Partiellement Conservé (CAPC) et l'usage de la relation de Goldberger-Treiman relie gp au couplage axial ga . Cette relation a été vérifiée traditionnellement par la Capture Ordinaire du Muon (COM) à une valeur fixe du moment de transfert q. La Capture Radiative du Muon (CRM), m- p-->nnmg , est un meilleur outil pour l'étude de gp à cause de sa dépendance variable en q2 qui offre une plus grande sensibilité dans la partie à haute énergie du spectre des photons. Toutefois, le petit rapport d'embranchement (~10-8) de la CRM par rapport à la désintégration du muon a retardé cette mesure jusqu'à ce jour. La théorie et les difficultés expérimentales associées à la détection des photons de CRM sont présentées au deuxième chapitre. On décrit ensuite, au troisième chapitre, les composantes du système de détection. Ce détecteur est un spectromètre à paires de grand angle solide (~3p) et qui permet l'observation des photons par l'analyse des électrons et des positrons de photo-conversion. Ainsi, le bruit de fond important des neutrons de la COM ne constitue pas un problème pour cette mesure. Nous décrivons, au quatrième chapitre, toutes les étapes de l'analyse, nécessaires pour la réduction des multiples bruits de fond. Le cinquième chapitre présente le calcul des efficacités ainsi que l'estimation des erreurs systématiques. Le sixième chapitre démontre comment l'on extrait le rapport d'embranchement pour la CRM ainsi que la valeur ae gp . On insiste sur la dépendance de gp en fonction de la valeur de

  9. Satellite capture mechanism in a sun-planet-binary four-body system

    NASA Astrophysics Data System (ADS)

    Gong, Shengping; Li, Miao

    2017-02-01

    This paper studies the binary disruption problem and asteroid capture mechanism in a sun-planet-binary four-body system. Firstly, the binary disruption condition is studied and the result shows that the binary is always disrupted at the perigee of their orbit instantaneously. Secondly, an analytic expression to describe the energy exchange between the binary is derived based on the `instantaneous disruption' hypothesis. The analytic result is validated through numerical integration. We obtain the energy exchange in encounters simultaneously by the analytic expression and numerical integration. The maximum deviation of these two results is always less than 25 % and the mean deviation is about 8.69 %. The analytic expression can give us an intuitive description of the energy exchange between the binary. It indicates that the energy change depends on the hyperbolic shape of the binary orbit with respect to the planet, the masses of planet and the primary member of the binary, the binary phase at perigee. We can illustrate the capture/escape processes and give the capture/escape region of the binary clearly by numerical simulation. We analyze the influence of some critical factors to the capture region finally.

  10. Investigation of photoneutron and capture gamma-ray production in Pb and W under irradiation from 16N decay radiation

    NASA Astrophysics Data System (ADS)

    Kebwaro, Jeremiah Monari; Zhao, Yaolin; He, Chaohui

    2015-09-01

    Lead and tungsten are potential alternative materials for shielding reactor ex-core components with high 16N activity when available space limits application of concrete. Since the two materials are vulnerable to photonuclear reactions, the nature and intensity of the secondary radiation resulting from (γ,n) and (n,γ) reactions when 16N decay radiation interact with these materials need to be well known for effective shielding design. In this study the MCNP code was used to calculate the photoneutron and capture gamma-ray spectra in the two materials when irradiated by 16N decay radiation. It was observed that some of the photoneutrons generated in the two materials lie in the low-energy range which is considered optimum for (n,γ) reactions. Lead is more transparent to the photoneutrons when compared to tungsten. The calculations also revealed that the bremsstrahlung generated by the beta spectrum was not sufficient to trigger any additional photoneutrons. Both energetic and less energetic capture gamma-rays are observed when photoneutrons interact with nuclei of the two materials. Depending on the strength of the 16N source term, the secondary radiation could affect the effectiveness of the shield and need to be considered during design.

  11. Radiative capture reactions with heavy beams: extending the capabilities of DRAGON

    NASA Astrophysics Data System (ADS)

    Simon, Anna; Fallis, Jennifer; Spyrou, Artemis; Laird, Alison M.; Ruiz, Chris; Buchmann, Lothar; Fulton, Brian R.; Hutcheon, Dave; Martin, Lars; Ottewell, Dave; Rojas, Alex

    2013-05-01

    Understanding the nucleosynthesis of stable proton-rich nuclei requires knowledge of the cross sections for both proton and alpha capture reactions. As some of the nucleosynthesis paths responsible for the production of these nuclei involve reactions on unstable isotopes, it is of particular importance to develop techniques to investigate these reactions. This requires radioactive beams and measurements in inverse kinematics, thus making recoil separators an ideal tool for direct measurements of proton and alpha capture reactions. Here, the application of the DRAGON recoil separator for measurements of capture reactions for heavy beams is presented. The performance of the separator was tested using the 58Ni(p,γ)59Cu reaction.

  12. Mechanisms of low temperature capture and regeneration of CO2 using diamino protic ionic liquids.

    PubMed

    Simons, Tristan J; Verheyen, Thomas; Izgorodina, Ekaterina I; Vijayaraghavan, R; Young, Scott; Pearson, Andrew K; Pas, Steven J; MacFarlane, Douglas R

    2016-01-14

    Carbon dioxide (CO2) chemical absorption and regeneration was investigated in two diamino carboxylate protic ionic liquids (PILs), dimethylethylenediamine formate (DMEDAH formate) and dimethylpropylenediamine acetate (DMPDAH acetate), using novel calorimetric techniques. The PILs under study have previously been shown to possess a CO2 absorption capacity similar to the industrial standard, 30% aqueous MEA, while requiring much lower temperatures to release the captured CO2. We show that this is in part due to the fact that the PILs exhibit enthalpies of CO2 desorption as low as 40 kJ mol(-1), significantly lower than the 85 kJ mol(-1) required for 30% aqueous MEA. Computational and spectroscopic analyses were used to probe the mechanism of CO2 capture, which was found to proceed via the formation of carbamate moieties on the primary amine of both DMEDAH and DMPDAH. Evidence was also found that weakly acidic counter-ions such as formate and acetate provide, unexpectedly, an additional proton acceptor site in the traditional carbamate mechanism, revealing opportunities to increase CO2 uptake capacity in the future through careful design of the anion and cation used in the PIL capture agent.

  13. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  14. Early mechanisms in radiation-induced biological damage

    SciTech Connect

    Powers, E.L.

    1983-01-01

    An introduction to the mechanisms of radiation action in biological systems is presented. Several questions about the nature of the radiation damage process are discussed, including recognition of the oxygen effects, dose-response relationships, and the importance of the hydroxyl radical. (ACR)

  15. The Mechanism of Radiation in Pulsars

    NASA Astrophysics Data System (ADS)

    Ardavan, H.

    1994-05-01

    The radiation from an electric current distribution, the cylindrical components of whose density depend on the azimuthal angle φ and time t in only the combination φ-ωt (with a constant angular frequency ω), is considered. It is shown that in cases where such a current also flows outside the light cylinder r = c/ω, and so has a rotating distribution pattern that attains superluminal linear phase speeds, a broadband coherent radiation is emitted that is, in all its salient features, similar to the radiation received from pulsars (r and c stand for the cylindrical radius and the speed of light in vacuo, respectively). The emitted radiation is beamed into a finite solid angle that depends on the extent of the source distribution and that points in a direction normal to the axis of rotation. At any given observation point within this solid angle, the electromagnetic field arises almost exclusively from those volume elements of the source whose positions at the retarded time match the positions of the set of rigidly rotating points that approach the observer with the wave speed and zero acceleration in the radiation direction. These are the points - collectively forming a space curve - at which the Green function for the problem is most singular. Because the signals received at two neighbouring instants in time thus arise from distinct filamentary parts of the source which have both different extents and different strengths, the resulting overall waveform in the far zone consists of the superposition of a (continuous) set of narrow micropulses with uneven amplitudes. Each micropulse embodies a caustic and hence has an amplitude that does not obey the spherical spreading law: its flux density falls off like R-1p, rather than like R-2p, with distance Rp from the source. That this is not incompatible with the conservation of energy is mainly due to the fact that the micropulses are narrower the larger the distance at which they are observed. The radiation therefore

  16. First-principles assessment of CO2 capture mechanisms in aqueous piperazine solution.

    PubMed

    Stowe, Haley M; Paek, Eunsu; Hwang, Gyeong S

    2016-09-14

    Piperazine (PZ) and its blends have emerged as attractive solvents for CO2 capture, but the underlying reaction mechanisms still remain uncertain. Our study particularly focuses on assessing the relative roles of PZCOO(-) and PZH(+) produced from the PZ + CO2 reaction. PZCOO(-) is found to directly react with CO2 forming COO(-)PZCOO(-), whereas PZH(+) will not. However, COO(-)PZCOO(-) appears very unlikely to be produced in thermodynamic equilibrium with monocarbamates, suggesting that its existence would predominantly originate from the surface reaction that likely occurs. We also find production of H(+)PZCOO(-) to be more probable with increasing CO2 loading, due partly to the thermodynamic favorability of the PZH(+) + PZCOO(-) → H(+)PZCOO(-) + PZ reaction; the facile PZ liberation may contribute to its relatively high CO2 absorption rate. This study highlights an accurate description of surface reaction and the solvent composition effect is critical in thermodynamic and kinetic models for predicting the CO2 capture processes.

  17. Mechanisms for radiation damadge in DNA

    SciTech Connect

    Sevilla, M.D.

    1994-11-01

    A comprehensive report is provided of the author`s research since 1986 on radiolysis of DNA as well as current state of knowledge in this area. In particular study areas such as the influence of hydration on the absolute yield of primary ionic free radicals in irradiated DNA at 77K, Ab Initio molecular orbital calculations of DNA base pairs and their radical ions, and radiation-induced DNA damage as a function of hydration are discussed.

  18. Emetic Mechanism in Acute Radiation Sickness

    DTIC Science & Technology

    1987-08-20

    humans renders the subjects refractory to a wide variety of chemical emetic agents, now numbering more than 25 substances of both exogenous and endogenous...tractus solitarius with each of three neurons (shown as large triangles) in the nucleus of the tractus solitarius (NTS). These hells of NTS connect...Outputs are innervated through autonomic ganglia or by direct efferent connections. I4 Acute radiation-induced vomiting is generally typified by the

  19. Radiation nephritis. Clinical manifestations and pathophysiologic mechanisms

    SciTech Connect

    Krochak, R.J.; Baker, D.G.

    1986-05-01

    Radiation nephritis is both volume and dose related. Clinical experience would indicate that a minimum of one third of the renal volume needs to be excluded from nephrotoxic doses which appears to have a threshold of 2,000 cGy. The site of damage leading to renal failure appears to be the microvasculature ultimately expressed as glomerulosclerosis. How much direct damage to the tubular system contributes to this process is unclear, but undoubtedly the resultant systemic physiologic effects potentiate the expression of damage in the irradiated kidney. The acute syndrome, with all the potential manifestations of renal failure, rarely presents sooner than six months and appears to have no clear prodrome, although it would seem reasonable that a subclinical syndrome consisting of abnormalities detectable by urinalysis may occur. Treatment of radiation-induced nephritis or hypertension is no different from treatment for nephritis from any other cause and should be aggressive with lifelong follow-up. Carcinogenesis is a rare late expression of radiation-induced kidney damage. 25 references.

  20. Spectroscopic comparison of effects of electron radiation on mechanical properties of two polyimides

    NASA Technical Reports Server (NTRS)

    Long, Edward R., Jr.; Long, Sheila Ann T.

    1987-01-01

    The differences in the radiation durabilities of two polyimide materials, Du Pont Kapton and General Electric Ultem, are compared. An explanation of the basic mechanisms which occur during exposure to electron radiation from analyses of infrared (IR) and electron paramagnetic resonance (EPR) spectroscopic data for each material is provided. The molecular model for Kapton was, in part, established from earlier modeling for Ultem (pp. 1293-1298 of IEEE Transactions on Nuclear Science, December 1984). Techniques for understanding the durability of one complex polymer based on the understanding of a different and equally complex polymer are demonstrated. The spectroscopic data showed that the primary radiation-generated change in the tensile properties of Ultem (a large reduction in tensile elongation) was due to crosslinking, which followed the capture by phenyl radicals of hydrogen atoms removed from gem-dimethyl groups. In contrast, the tensile properties of Kapton remained unchanged because radical-radical recombination, a self-mending process, took place.

  1. CO2 capture in ionic liquid 1-alkyl-3-methylimidazolium acetate: a concerted mechanism without carbene.

    PubMed

    Yan, Fangyong; Dhumal, Nilesh R; Kim, Hyung J

    2017-01-04

    Ionic liquids (ILs) provide a promising medium for CO2 capture. Recently, the family of ILs comprising imidazolium-based cations and acetate anions, such as 1-ethyl-3-methylimidazolium acetate (EMI(+)OAc(-)), has been found to react with CO2 and form carboxylate compounds. N-Heterocyclic carbene (NHC) is widely assumed to be responsible by directly reacting with CO2 though NHC has not been detected in these ILs. Herein, a computational analysis of CO2 capture in EMI(+)OAc(-) is presented. Quantum chemistry calculations predict that NHC is unstable in a polar environment, suggesting that NHC is not formed in EMI(+)OAc(-). Ab initio molecular dynamics simulations indicate that an EMI(+) ion "activated" by the approach of a CO2 molecule can donate its acidic proton to a neighboring OAc(-) anion and form a carboxylate compound with the CO2 molecule. Analysis of this termolecular process indicates that the EMI(+)-to-OAc(-) proton transfer and the formation of 1-ethyl-3-methylimidazolium-2-carboxylate occur essentially concurrently. Based on these findings, a novel concerted mechanism that does not involve NHC is proposed for CO2 capture.

  2. Experiments and simulation of a net closing mechanism for tether-net capture of space debris

    NASA Astrophysics Data System (ADS)

    Sharf, Inna; Thomsen, Benjamin; Botta, Eleonora M.; Misra, Arun K.

    2017-10-01

    This research addresses the design and testing of a debris containment system for use in a tether-net approach to space debris removal. The tether-net active debris removal involves the ejection of a net from a spacecraft by applying impulses to masses on the net, subsequent expansion of the net, the envelopment and capture of the debris target, and the de-orbiting of the debris via a tether to the chaser spacecraft. To ensure a debris removal mission's success, it is important that the debris be successfully captured and then, secured within the net. To this end, we present a concept for a net closing mechanism, which we believe will permit consistently successful debris capture via a simple and unobtrusive design. This net closing system functions by extending the main tether connecting the chaser spacecraft and the net vertex to the perimeter and around the perimeter of the net, allowing the tether to actuate closure of the net in a manner similar to a cinch cord. A particular embodiment of the design in a laboratory test-bed is described: the test-bed itself is comprised of a scaled-down tether-net, a supporting frame and a mock-up debris. Experiments conducted with the facility demonstrate the practicality of the net closing system. A model of the net closure concept has been integrated into the previously developed dynamics simulator of the chaser/tether-net/debris system. Simulations under tether tensioning conditions demonstrate the effectiveness of the closure concept for debris containment, in the gravity-free environment of space, for a realistic debris target. The on-ground experimental test-bed is also used to showcase its utility for validating the dynamics simulation of the net deployment, and a full-scale automated setup would make possible a range of validation studies of other aspects of a tether-net debris capture mission.

  3. Ultraviolet radiation and skin cancer: molecular mechanisms.

    PubMed

    Hussein, Mahmoud R

    2005-03-01

    Every living organism on the surface of the earth is exposed to the ultraviolet (UV) fraction of the sunlight. This electromagnetic energy has both life-giving and life-endangering effects. UV radiation can damage DNA and thus mutagenize several genes involved in the development of the skin cancer. The presence of typical signature of UV-induced mutations on these genes indicates that the ultraviolet-B part of sunlight is responsible for the evolution of cutaneous carcinogenesis. During this process, variable alterations of the oncogenic, tumor-suppressive, and cell-cycle control signaling pathways occur. These pathways include (a) mutated PTCH (in the mitogenic Sonic Hedgehog pathway) and mutated p53 tumor-suppressor gene in basal cell carcinomas, (b) an activated mitogenic ras pathway and mutated p53 in squamous cell carcinomas, and (c) an activated ras pathway, inactive p16, and p53 tumor suppressors in melanomas. This review presents background information about the skin optics, UV radiation, and molecular events involved in photocarcinogenesis.

  4. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ) at DANCE

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Morillon, B.; Romain, P.; Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2017-09-01

    The isomeric ratios for the neutron capture reaction 176Lu(n,γ) to the Jπ = 5/2-, 761.7 keV, T1/2 = 32.8 ns and the Jπ = 15/2+, 1356.9 keV, T1/2 = 11.1 ns levels of 177Lu, have been measured for the first time with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. These measured isomeric ratios are compared with TALYS calculations.

  5. Boron neutron capture therapy using mixed epithermal and thermal neutron beams in patients with malignant glioma-correlation between radiation dose and radiation injury and clinical outcome

    SciTech Connect

    Kageji, Teruyoshi . E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, Shinji; Matsuzaki, Kazuhito; Mizobuchi, Yoshifumi; Toi, Hiroyuki; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2006-08-01

    Purpose: To clarify the correlation between the radiation dose and clinical outcome of sodium borocaptate-based intraoperative boron neutron capture therapy in patients with malignant glioma. Methods and Materials: The first protocol (P1998, n = 8) prescribed a maximal gross tumor volume (GTV) dose of 15 Gy. In 2001, a dose-escalated protocol was introduced (P2001, n 11), which prescribed a maximal vascular volume dose of 15 Gy or, alternatively, a clinical target volume (CTV) dose of 18 Gy. Results: The GTV and CTV doses in P2001 were 1.1-1.3 times greater than those in P1998. The maximal vascular volume dose of those with acute radiation injury was 15.8 Gy. The mean GTV and CTV dose in long-term survivors with glioblastoma was 26.4 and 16.5 Gy, respectively. A statistically significant correlation between the GTV dose and median survival time was found. In the 11 glioblastoma patients in P2001, the median survival time was 19.5 months and 1- and 2-year survival rate was 60.6% and 37.9%, respectively. Conclusion: Dose escalation contributed to the improvement in clinical outcome. To avoid radiation injury, the maximal vascular volume dose should be <12 Gy. For long-term survival in patients with glioblastoma after boron neutron capture therapy, the optimal mean dose of the GTV and CTV was 26 and 16 Gy, respectively.

  6. Generation mechanism of power line harmonic radiation

    NASA Astrophysics Data System (ADS)

    Kostrov, Alexander; Gushchin, Mikhail; Korobkov, Sergei

    The questions concerning the generation of power line harmonic radiation (PLHR) and magne-tospheric line radiation (MLR) are discussed, including the effective source of high harmonics of 50/60 Hz, and fine dynamic structure of the frequency spectrum of PLHR and MLR. It is shown, that thyristor-based power regulators used by large electrical power consumers produce the periodic sequences of current pulses with duration of about 10 microseconds in a power line. The repetition rate of these pulses is typically 100/120 Hz; the bandwidth is as broad as 100 kHz. For high harmonics of 50/60 Hz, the power line represents an effective traveling-wave (or Beverage) antenna, especially in a frequency range of several kHz corresponding to VLF whistler band in Earth ionosphere and magnetosphere. For the fixed length of the power line, which acts as antenna, radiation directivity diagram in relation to horizon depends of frequency. Hence the spatial separation of whistlers emitted at various frequencies (1-10 kHz in a consid-ered case) is possible, with subsequent propagation of whistlers with different frequencies along different L-shells. Estimations show that the efficiency of power line as travelling-wave antenna can be changed by variations of its load, but not more than twice ("weekend effect"). Since the PLHR can represent the sequence of short electromagnetic bursts, then careful se-lection of frequency-time resolution of the data acquisition equipment is needed. Typically, the time constant of the data recording and processing is too large, and the spectra of PLHR or MLR are characterized by a well-known line structure. At the same time, original bursty structure of PLHR can not be defined. Fine structure of MLR is also discussed. Frequency drift of MLR can be explained by the perturbations of the magnetospheric plasma by intense ULF waves and particle flows affecting the propagation of PLHR. Hence the physical nature of PLHR and MLR is the same, excepting the

  7. Understanding CO2 capture mechanisms in aqueous hydrazine via combined NMR and first-principles studies.

    PubMed

    Lee, Byeongno; Stowe, Haley M; Lee, Kyu Hyung; Hur, Nam Hwi; Hwang, Son-Jong; Paek, Eunsu; Hwang, Gyeong S

    2017-09-13

    Aqueous amines are currently the most promising solution for large-scale CO2 capture from industrial sources. However, molecular design and optimization of amine-based solvents have proceeded slowly due to a lack of understanding of the underlying reaction mechanisms. Unique and unexpected reaction mechanisms involved in CO2 absorption into aqueous hydrazine are identified using (1)H, (13)C, and (15)N NMR spectroscopy combined with first-principles quantum-mechanical simulations. We find production of both hydrazine mono-carbamate (NH2-NH-COO(-)) and hydrazine di-carbamate ((-)OOC-NH-NH-COO(-)), with the latter becoming more populated with increasing CO2 loading. Exchange NMR spectroscopy also demonstrates that the reaction products are in dynamic equilibrium under ambient conditions due to CO2 exchange between mono-carbamate and di-carbamate as well as fast proton transfer between un-protonated free hydrazine and mono-carbamate. The exchange rate rises steeply at high CO2 loadings, enhancing CO2 release, which appears to be a unique property of hydrazine in aqueous solution. The underlying mechanisms of these processes are further evaluated using quantum mechanical calculations. We also analyze and discuss reversible precipitation of carbamate and conversion of bicarbonate to carbamates. The comprehensive mechanistic study provides useful guidance for optimal design of amine-based solvents and processes to reduce the cost of carbon capture. Moreover, this work demonstrates the value of a combined experimental and computational approach for exploring the complex reaction dynamics of CO2 in aqueous amines.

  8. Radiative 8Li(n, γ)9Li Capture at Low Energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.

    2017-01-01

    Within the framework of the modified cluster model with forbidden states and classification of states according to the Young tableaux, the possibility is considered of describing the available experimental data for the total cross sections of n8Li capture at thermal and astrophysical energies.

  9. Radiative 8Li( n, γ)9Li Capture at Low Energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, S. B.

    2017-01-01

    Within the framework of the modified cluster model with forbidden states and classification of states according to the Young tableaux, the possibility is considered of describing the available experimental data for the total cross sections of n8Li capture at thermal and astrophysical energies.

  10. Unpacking the mechanisms captured by a correlative species distribution model to improve predictions of climate refugia.

    PubMed

    Briscoe, Natalie J; Kearney, Michael R; Taylor, Chris A; Wintle, Brendan A

    2016-07-01

    Climate refugia are regions that animals can retreat to, persist in and potentially then expand from under changing environmental conditions. Most forecasts of climate change refugia for species are based on correlative species distribution models (SDMs) using long-term climate averages, projected to future climate scenarios. Limitations of such methods include the need to extrapolate into novel environments and uncertainty regarding the extent to which proximate variables included in the model capture processes driving distribution limits (and thus can be assumed to provide reliable predictions under new conditions). These limitations are well documented; however, their impact on the quality of climate refugia predictions is difficult to quantify. Here, we develop a detailed bioenergetics model for the koala. It indicates that range limits are driven by heat-induced water stress, with the timing of rainfall and heat waves limiting the koala in the warmer parts of its range. We compare refugia predictions from the bioenergetics model with predictions from a suite of competing correlative SDMs under a range of future climate scenarios. SDMs were fitted using combinations of long-term climate and weather extremes variables, to test how well each set of predictions captures the knowledge embedded in the bioenergetics model. Correlative models produced broadly similar predictions to the bioenergetics model across much of the species' current range - with SDMs that included weather extremes showing highest congruence. However, predictions in some regions diverged significantly when projecting to future climates due to the breakdown in correlation between climate variables. We provide unique insight into the mechanisms driving koala distribution and illustrate the importance of subtle relationships between the timing of weather events, particularly rain relative to hot-spells, in driving species-climate relationships and distributions. By unpacking the mechanisms

  11. Observation of Nonclassical Radiation Pressure Forces on a Mechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Clark, Jeremy; Lecocq, Florent; Simmonds, Raymond; Aumentado, Jose; Teufel, John

    Squeezed states of light are known to be useful for enhancing mechanical displacement sensing since they can be tailored to reduce the ``photon counting noise'' that limits the measurement's noise floor. On the other hand, recent experiments in cavity optomechanics have reached measurement regimes where an interrogating light field exerts radiation pressure noise on a mechanical oscillator. One outstanding challenge has been to explore the intersection between such experiments. I will present data obtained using a superconducting cavity optomechanical system wherein a mechanical oscillator is driven by nonclassical radiation pressure imparted by squeezed microwave fields. JBC acknowledges the NRC for financial support.

  12. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    SciTech Connect

    Sinclair, W.K.; Fry, R.J.M.

    1987-01-01

    An overview of presentations and discussions which took place at the US Department of Energy/Commission of European Communities (DOE/CEC) workshop on ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection,'' held at San Diego, California, January 21-22, 1987, is provided. The Department has traditionally supported fundamental research on interactions of ionizing radiation with different biological systems and at all levels of biological organization. The aim of this workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection.

  13. Developing Capture Mechanisms and High-Fidelity Dynamic Models for the MXER Tether System

    NASA Technical Reports Server (NTRS)

    Canfield, Steven L.

    2007-01-01

    A team consisting of collaborators from Tennessee Technological University (TTU), Marshall Space Flight Center, BD Systems, and the University of Delaware (herein called the TTU team) conducted specific research and development activities in MXER tether systems during the base period of May 15, 2004 through September 30, 2006 under contract number NNM04AB13C. The team addressed two primary topics related to the MXER tether system: 1) Development of validated high-fidelity dynamic models of an elastic rotating tether and 2) development of feasible mechanisms to enable reliable rendezvous and capture. This contractor report will describe in detail the activities that were performed during the base period of this cycle-2 MXER tether activity and will summarize the results of this funded activity. The primary deliverables of this project were the quad trap, a robust capture mechanism proposed, developed, tested, and demonstrated with a high degree of feasibility and the detailed development of a validated high-fidelity elastic tether dynamic model provided through multiple formulations.

  14. Mechanism of Electrophilic Fluorination with Pd(IV): Fluoride Capture and Subsequent Oxidative Fluoride Transfer†, ‡

    PubMed Central

    Brandt, Jochen R.; Lee, Eunsung; Boursalian, Gregory B.

    2013-01-01

    Electrophilic fluorinating reagents derived from fluoride are desirable for the synthesis of 18F-labeled molecules for positron emission tomography (PET). Here, we study the mechanism by which a Pd(IV)-complex captures fluoride and subsequently transfers it to nucleophiles. The intermediate Pd(IV)-F is formed with high rates even at the nano- to micromolar fluoride concentrations typical for radiosyntheses with 18F due to fast formation of an outer-sphere complex between fluoride and Pd(IV). The subsequent fluorine transfer from the Pd(IV)-F complex is proposed to proceed through an unusual SET/fluoride transfer/SET mechanism. The findings detailed in this manuscript provide a theoretical foundation suitable for addressing a more general approach for electrophilic fluorination with high specific activity 18F PET imaging. PMID:24376910

  15. Radiation-induced mechanical property changes in filled rubber.

    PubMed

    Maiti, A; Weisgraber, T H; Gee, R H; Small, W; Alviso, C T; Chinn, S C; Maxwell, R S

    2011-06-01

    In a recent paper we exposed a filled elastomer to controlled radiation dosages and explored changes in its cross-link density and molecular weight distribution between network junctions [A. Maiti et al., Phys. Rev. E 83, 031802 (2011)]. Here we report mechanical response measurements when the material is exposed to radiation while being under finite nonzero strain. We observe interesting hysteretic behavior and material softening representative of the Mullins effect, and materials hardening due to radiation. The net magnitude of the elastic modulus depends upon the radiation dosage, strain level, and strain-cycling history of the material. Using the framework of Tobolsky's two-stage independent network theory we develop a model that can quantitatively interpret the observed elastic modulus and its radiation and strain dependence.

  16. Radiation-induced mechanical property changes in filled rubber

    SciTech Connect

    Maiti, A.; Weisgraber, T. H.; Gee, R. H.; Small, W.; Alviso, C. T.; Chinn, S. C.; Maxwell, R. S.

    2011-06-15

    In a recent paper we exposed a filled elastomer to controlled radiation dosages and explored changes in its cross-link density and molecular weight distribution between network junctions [A. Maiti et al., Phys. Rev. E 83, 031802 (2011)]. Here we report mechanical response measurements when the material is exposed to radiation while being under finite nonzero strain. We observe interesting hysteretic behavior and material softening representative of the Mullins effect, and materials hardening due to radiation. The net magnitude of the elastic modulus depends upon the radiation dosage, strain level, and strain-cycling history of the material. Using the framework of Tobolsky's two-stage independent network theory we develop a model that can quantitatively interpret the observed elastic modulus and its radiation and strain dependence.

  17. Mechanisms of radiation-induced gene responses

    SciTech Connect

    Woloschak, G.E.; Paunesku, T.

    1996-10-01

    In the process of identifying genes differentially expressed in cells exposed ultraviolet radiation, we have identified a transcript having a 26-bp region that is highly conserved in a variety of species including Bacillus circulans, yeast, pumpkin, Drosophila, mouse, and man. When the 5` region (flanking region or UTR) of a gene, the sequence is predominantly in +/+ orientation with respect to the coding DNA strand; while in the coding region and the 3` region (UTR), the sequence is most frequently in the +/-orientation with respect to the coding DNA strand. In two genes, the element is split into two parts; however, in most cases, it is found only once but with a minimum of 11 consecutive nucleotides precisely depicting the original sequence. The element is found in a large number of different genes with diverse functions (from human ras p21 to B. circulans chitonase). Gel shift assays demonstrated the presence of a protein in HeLa cell extracts that binds to the sense and antisense single-stranded consensus oligomers, as well as to the double- stranded oligonucleotide. When double-stranded oligomer was used, the size shift demonstrated as additional protein-oligomer complex larger than the one bound to either sense or antisense single-stranded consensus oligomers alone. It is speculated either that this element binds to protein(s) important in maintaining DNA is a single-stranded orientation for transcription or, alternatively that this element is important in the transcription-coupled DNA repair process.

  18. Examining the mechanisms of overgeneral autobiographical memory: capture and rumination, and impaired executive control.

    PubMed

    Sumner, Jennifer A; Griffith, James W; Mineka, Susan

    2011-02-01

    Overgeneral autobiographical memory (OGM) is an important cognitive phenomenon in depression, but questions remain regarding the underlying mechanisms. The CaR-FA-X model (Williams et al., 2007) proposes three mechanisms that may contribute to OGM, but little work has examined the possible additive and/or interactive effects among them. We examined two mechanisms of CaR-FA-X: capture and rumination, and impaired executive control. We analysed data from undergraduates (N=109) scoring high or low on rumination who were presented with cues of high and low self-relevance on the Autobiographical Memory Test (AMT). Executive control was operationalised as performance on both the Stroop Colour-Word Task and the Controlled Oral Word Association Test (COWAT). Hierarchical generalised linear modelling was used to predict whether participants would generate a specific memory on a trial of the AMT. Higher COWAT scores, lower rumination, and greater cue self-relevance predicted a higher probability of a specific memory. There was also a rumination×cue self-relevance interaction: Higher (vs lower) rumination was associated with a lower probability of a specific memory primarily for low self-relevant cues. We found no evidence of interactions between these mechanisms. Findings are interpreted with respect to current autobiographical memory models. Future directions for OGM mechanism research are discussed.

  19. Nitrogen and plant population change radiation capture and utilization capacity of sunflower in semi-arid environment.

    PubMed

    Awais, Muhammad; Wajid, Aftab; Bashir, Muhammad Usman; Habib-Ur-Rahman, Muhammad; Raza, Muhammad Aown Sammar; Ahmad, Ashfaq; Saleem, Muhammad Farrukh; Hammad, Hafiz Mohkum; Mubeen, Muhammad; Saeed, Umer; Arshad, Muhammad Naveed; Fahad, Shah; Nasim, Wajid

    2017-07-01

    The combination of nitrogen and plant population expresses the spatial distribution of crop plants. The spatial distribution influences canopy structure and development, radiation capture, accumulated intercepted radiation (Sa), radiation use efficiency (RUE), and subsequently dry matter production. We hypothesized that the sunflower crop at higher plant populations and nitrogen (N) rates would achieve early canopy cover, capture more radiant energy, utilize radiation energy more efficiently, and ultimately increase economic yield. To investigate the above hypothesis, we examined the influences of leaf area index (LAI) at different plant populations (83,333, 66,666, and 55,555 plants ha(-1)) and N rates (90, 120, and 150 kg ha(-1)) on radiation interception (Fi), photosynthetically active radiation (PAR) accumulation (Sa), total dry matter (TDM), achene yield (AY), and RUE of sunflower. The experimental work was conducted during 2012 and 2013 on sandy loam soil in Punjab, Pakistan. The sunflower crop captured more than 96% of incident radiant energy (mean of all treatments), 98% with a higher plant population (83,333 plants ha(-1)), and 97% with higher N application (150 kg ha(-1)) at the fifth harvest (60 days after sowing) during both study years. The plant population of 83,333 plants ha(-1) with 150 kg N ha(-1) ominously promoted crop, RUE, and finally productivity of sunflower (AY and TDM). Sunflower canopy (LAI) showed a very close and strong association with Fi (R (2) = 0.99 in both years), PAR (R (2) = 0.74 and 0.79 in 2012 and 2013, respectively), TDM (R (2) = 0.97 in 2012 and 0.91 in 2013), AY (R (2) = 0.95 in both years), RUE for TDM (RUETDM) (R (2) = 0.63 and 0.71 in 2012 and 2013, respectively), and RUE for AY (RUEAY) (R (2) = 0.88 and 0.87 in 2012 and 2013, respectively). Similarly, AY (R (2) = 0.73 in 2012 and 0.79 in 2013) and TDM (R (2) = 0.75 in 2012 and 0.84 in 2013) indicated significant dependence on PAR accumulation

  20. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ) at DANCE

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Jandel, M.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-03-01

    The isomeric ratio for the neutron capture reaction 176Lu(n,γ) on the Jπ= 5/2-, 761.7 keV, T1/2=32.8 ns level of 177mLu, has been determined in the neutron energy range 8.5 eV-100 keV for the first time using the DANCE array at the Los Alamos National Laboratory.

  1. Mechanisms of radiation-induced neoplastic cell transformation

    SciTech Connect

    Yang, T.C.H.; Tobias, C.A.

    1984-04-01

    Studies with cultured mammalian cells demonstrated clearly that radiation can transform cells directly and can enhance the cell transformation by oncogenic DNA viruses. In general, high-LET heavy-ion radiation can be more effective than X and gamma rays in inducing neoplastic cell transformation. Various experimental results indicate that radiation-induced DNA damage, most likely double-strand breaks, is important for both the initiation of cell transformation and for the enhancement of viral transformation. Some of the transformation and enhancement lesions can be repaired properly in the cell, and the amount of irrepairable lesions produced by a given dose depends on the quality of radiation. An inhibition of repair processes with chemical agents can increase the transformation frequency of cells exposed to radiation and/or oncogenic viruses, suggesting that repair mechanisms may play an important role in the radiation transformation. The progression of radiation-transformed cells appears to be a long and complicated process that can be modulated by some nonmutagenic chemical agents, e.g., DMSO. Normal cells can inhibit the expression of transforming properties of tumorigenic cells through an as yet unknown mechanism. The progression and expression of transformation may involve some epigenetic changes in the irradiated cells. 38 references, 15 figures, 1 table.

  2. The enhancement mechanism of thin plasma layer on antenna radiation

    SciTech Connect

    Wang, Chunsheng Jiang, Binhao; Li, Xueai

    2015-03-09

    A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.

  3. Millimeter wave detection of nuclear radiation: an alternative detection mechanism.

    PubMed

    Gopalsami, N; Chien, H T; Heifetz, A; Koehl, E R; Raptis, A C

    2009-08-01

    We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam.

  4. Biological effects and mechanisms of shortwave radiation: a review.

    PubMed

    Yu, Chao; Peng, Rui-Yun

    2017-01-01

    With the increasing knowledge of shortwave radiation, it is widely used in wireless communications, radar observations, industrial manufacturing, and medical treatments. Despite of the benefits from shortwave, these wide applications expose humans to the risk of shortwave electromagnetic radiation, which is alleged to cause potential damage to biological systems. This review focused on the exposure to shortwave electromagnetic radiation, considering in vitro, in vivo and epidemiological results that have provided insight into the biological effects and mechanisms of shortwave. Additionally, some protective measures and suggestions are discussed here in the hope of obtaining more benefits from shortwave with fewer health risks.

  5. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  6. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency

    NASA Technical Reports Server (NTRS)

    Monje, O.; Bugbee, B.

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  7. Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency.

    PubMed

    Monje, O; Bugbee, B

    1998-01-01

    The effect of elevated [CO2] on wheat (Triticum aestivum L. Veery 10) productivity was examined by analysing radiation capture, canopy quantum yield, canopy carbon use efficiency, harvest index and daily C gain. Canopies were grown at either 330 or 1200 micromoles mol-1 [CO2] in controlled environments, where root and shoot C fluxes were monitored continuously from emergence to harvest. A rapidly circulating hydroponic solution supplied nutrients, water and root zone oxygen. At harvest, dry mass predicted from gas exchange data was 102.8 +/- 4.7% of the observed dry mass in six trials. Neither radiation capture efficiency nor carbon use efficiency were affected by elevated [CO2], but yield increased by 13% due to a sustained increase in canopy quantum yield. CO2 enrichment increased root mass, tiller number and seed mass. Harvest index and chlorophyll concentration were unchanged, but CO2 enrichment increased average life cycle net photosynthesis (13%, P < 0.05) and root respiration (24%, P < 0.05). These data indicate that plant communities adapt to CO2 enrichment through changes in C allocation. Elevated [CO2] increases sink strength in optimal environments, resulting in sustained increases in photosynthetic capacity, canopy quantum yield and daily C gain throughout the life cycle.

  8. Computational investigation of the nitrosation mechanism of piperazine in CO2 capture.

    PubMed

    Yu, Qi; Wang, Pan; Ma, Fangfang; Xie, Hong-Bin; He, Ning; Chen, Jingwen

    2017-11-01

    Quantum chemistry calculations and kinetic modeling were performed to investigate the nitrosation mechanism and kinetics of diamine piperazine (PZ), an alternative solvent for widely used monoethanolamine in postcombustion CO2 capture (PCCC), by two typical nitrosating agents, NO2(-) and N2O3, in the presence of CO2. Various PZ species and nitrosating agents formed by the reactions of PZ, NO2(-), and N2O3 with CO2 were considered. The results indicated that the reactions of PZ species having NH group with N2O3 contribute the most to the formation of nitrosamines in the absorber unit of PCCC and follow a novel three-step nitrosation mechanism, which is initiated by the formation of a charge-transfer complex. The reactions of all PZ species with NO2(-) proceed more slowly than the reactions of PZ species with ONOCO2(-), formed by the reaction of NO2(-) with CO2. Therefore, the reactions of PZ species with ONOCO2(-) contribute more to the formation of nitrosamines in the desorber unit of PCCC. In view of CO2 effect on the nitrosation reaction of PZ, the effect through the reaction of PZ with CO2 shows a completely different tendency for different nitrosating agents. More importantly, CO2 can greatly accelerate the nitrosation reactions of PZ by NO2(-) through the formation of ONOCO2(-) in the reaction of CO2 with NO2(-). This work can help to better understand the nitrosation mechanism of diamines and in the search for efficient methods to prevent the formation of carcinogenic nitrosamines in CO2 capture unit. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Anti-Capture to the Continuum via a Double Collision Mechanism in (e,2e) Collisions

    NASA Astrophysics Data System (ADS)

    Ward, S. J.; Roth, E. G.; Guo, B. N.; Golden, D. E.; Mueller, D. W.

    1997-04-01

    Recently, anti-capture to the continuum occurring via the (Thomas) double collision mechanism has been reported.(D. E. Golden, J. Xu, D. W. Mueller and J. Bernhard, Nucl. Inst. and Meth. in Phys. Res. B 99) 202 (1995).^,(D. E. Golden, Z. Xu, J. Bernhard and D. W. Mueller, J. Phys. B: At. Mol. Opt. Phys. 29) 3741 (1996). The doubly differential cross section was measured in coplanar geometry for electron-impact ionization of argon at a 1000 eV incident energy. The cross section is differential with respect to the solid angle of the ejected electron and scattered electron. The detector (split anode detector) measures the two outgoing electrons at approximately the same angle. Both a sharp dip---the signature of anti-electron capture to the continuum---and the Thomas peak were observed in the cross section. We computed the doubly differential cross section for electron-impact ionization of hydrogen. This was done by including in the Bethe-Born approximation a normalization factor that approximately incorporates electron-electron interactions in the final state. We considered hydrogen both in the ground state and the 2p excited state and were able to reproduce the main features of the measurements.

  10. Mechanisms and feasibility of prey capture in ambush-feeding zooplankton.

    PubMed

    Kiørboe, Thomas; Andersen, Anders; Langlois, Vincent J; Jakobsen, Hans Henrik; Bohr, Tomas

    2009-07-28

    Many marine zooplankters, particularly among copepods, are "ambush feeders" that passively wait for their prey and capture them by fast surprise attacks. This strategy must be very demanding in terms of muscle power and sensing capabilities, but the detailed mechanisms of the attacks are unknown. Using high-speed video we describe how copepods perform spectacular attacks by precision maneuvering during a rapid jump. We show that the flow created by the attacking copepod is so small that the prey is not pushed away, and that the attacks are feasible because of their high velocity (approximately 100 mm x s(-1)) and short duration (few ms), which leaves the prey no time for escape. Simulations and analytical estimates show that the viscous boundary layer that develops around the attacking copepod is thin at the time of prey capture and that the flow around the prey is small and remains potential flow. Although ambush feeding is highly successful as a feeding strategy in the plankton, we argue that power requirements for acceleration and the hydrodynamic constraints restrict the strategy to larger (> 0.25 mm), muscular forms with well-developed prey perception capabilities. The smallest of the examined species is close to this size limit and, in contrast to the larger species, uses its largest possible jump velocity for such attacks. The special requirements to ambush feeders with such attacks may explain why this strategy has evolved to perfection only a few times among planktonic suspension feeders (few copepod families and chaetognaths).

  11. Cerebrovascular Acute Radiation Syndrome : Radiation Neurotoxins, Mechanisms of Toxicity, Neuroimmune Interactions.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Introduction: Cerebrovascular Acute Radiation Syndrome (CvARS) is an extremely severe in-jury of Central Nervous System (CNS) and Peripheral Nervous System (PNS). CvARS can be induced by the high doses of neutron, heavy ions, or gamma radiation. The Syndrome clinical picture depends on a type, timing, and the doses of radiation. Four grades of the CvARS were defined: mild, moderate, severe, and extremely severe. Also, four stages of CvARS were developed: prodromal, latent, manifest, outcome -death. Duration of stages depends on the types, doses, and time of radiation. The CvARS clinical symptoms are: respiratory distress, hypotension, cerebral edema, severe disorder of cerebral blood microcirculation, and acute motor weakness. The radiation toxins, Cerebro-Vascular Radiation Neurotoxins (SvARSn), determine development of the acute radiation syndrome. Mechanism of action of the toxins: Though pathogenesis of radiation injury of CNS remains unknown, our concept describes the Cv ARS as a result of Neurotoxicity and Excitotoxicity, cell death through apoptotic necrosis. Neurotoxicity occurs after the high doses radiation exposure, formation of radiation neuro-toxins, possible bioradicals, or group of specific enzymes. Intracerebral hemorrhage can be a consequence of the damage of endothelial cells caused by radiation and the radiation tox-ins. Disruption of blood-brain barrier (BBB)and blood-cerebrospinal fluid barrier (BCFB)is possibly the most significant effect of microcirculation disorder and metabolic insufficiency. NMDA-receptors excitotoxic injury mediated by cerebral ischemia and cerebral hypoxia. Dam-age of the pyramidal cells in layers 3 and 5 and Purkinje cell layer the cerebral cortex , damage of pyramidal cells in the hippocampus occur as a result of cerebral ischemia and intracerebral bleeding. Methods: Radiation Toxins of CV ARS are defined as glycoproteins with the molec-ular weight of RT toxins ranges from 200-250 kDa and with high enzymatic activity

  12. DNA motion capture reveals the mechanical properties of DNA at the mesoscale.

    PubMed

    Price, Allen C; Pilkiewicz, Kevin R; Graham, Thomas G W; Song, Dan; Eaves, Joel D; Loparo, Joseph J

    2015-05-19

    Single-molecule studies probing the end-to-end extension of long DNAs have established that the mechanical properties of DNA are well described by a wormlike chain force law, a polymer model where persistence length is the only adjustable parameter. We present a DNA motion-capture technique in which DNA molecules are labeled with fluorescent quantum dots at specific sites along the DNA contour and their positions are imaged. Tracking these positions in time allows us to characterize how segments within a long DNA are extended by flow and how fluctuations within the molecule are correlated. Utilizing a linear response theory of small fluctuations, we extract elastic forces for the different, ∼2-μm-long segments along the DNA backbone. We find that the average force-extension behavior of the segments can be well described by a wormlike chain force law with an anomalously small persistence length.

  13. Radiation-Induced Bystander Response: Mechanism and Clinical Implications

    PubMed Central

    Suzuki, Keiji; Yamashita, Shunichi

    2014-01-01

    Significance: Absorption of energy from ionizing radiation (IR) to the genetic material in the cell gives rise to damage to DNA in a dose-dependent manner. There are two types of DNA damage; by a high dose (causing acute or deterministic effects) and by a low dose (related to chronic or stochastic effects), both of which induce different health effects. Among radiation effects, acute cutaneous radiation syndrome results from cell killing as a consequence of high-dose exposure. Recent advances: Recent advances in radiation biology and oncology have demonstrated that bystander effects, which are emerged in cells that have never been exposed, but neighboring irradiated cells, are also involved in radiation effects. Bystander effects are now recognized as an indispensable component of tissue response related to deleterious effects of IR. Critical issues: Evidence has indicated that nonapoptotic premature senescence is commonly observed in various tissues and organs. Senesced cells were found to secrete various proteins, including cytokines, chemokines, and growth factors, most of which are equivalent to those identified as bystander factors. Secreted factors could trigger cell proliferation, angiogenesis, cell migration, inflammatory response, etc., which provide a tissue microenvironment assisting tissue repair and remodeling. Future directions: Understandings of the mechanisms and physiological relevance of radiation-induced bystander effects are quite essential for the beneficial control of wound healing and care. Further studies should extend our knowledge of the mechanisms of bystander effects and mode of cell death in response to IR. PMID:24761341

  14. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms

    PubMed Central

    Shadad, Abobakr K; Sullivan, Frank J; Martin, Joseph D; Egan, Laurence J

    2013-01-01

    Ionising radiation therapy is a common treatment modality for different types of cancer and its use is expected to increase with advances in screening and early detection of cancer. Radiation injury to the gastrointestinal tract is important factor working against better utility of this important therapeutic modality. Cancer survivors can suffer a wide variety of acute and chronic symptoms following radiotherapy, which significantly reduces their quality of life as well as adding an extra burden to the cost of health care. The accurate diagnosis and treatment of intestinal radiation injury often represents a clinical challenge to practicing physicians in both gastroenterology and oncology. Despite the growing recognition of the problem and some advances in understanding the cellular and molecular mechanisms of radiation injury, relatively little is known about the pathophysiology of gastrointestinal radiation injury or any possible susceptibility factors that could aggravate its severity. The aims of this review are to examine the various clinical manifestations of post-radiation gastrointestinal symptoms, to discuss possible patient and treatment factors implicated in normal gastrointestinal tissue radiosensitivity and to outline different mechanisms of intestinal tissue injury. PMID:23345941

  15. Measurement of the radiative neutron capture cross section of Pb206 and its astrophysical implications

    NASA Astrophysics Data System (ADS)

    Domingo-Pardo, C.; Abbondanno, U.; Aerts, G.; Álvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Bečvář, F.; Berthoumieux, E.; Bisterzo, S.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapiço, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, M.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krtička, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P. M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J. L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M. C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2007-10-01

    The (n,γ) cross section of Pb206 has been measured at the CERN n_TOF facility with high resolution in the energy range from 1 eV to 620 keV by using two optimized C6D6 detectors. In the investigated energy interval about 130 resonances could be observed, from which 61 had enough statistics to be reliably analyzed via the R-matrix analysis code SAMMY. Experimental uncertainties were minimized, in particular with respect to (i) angular distribution effects of the prompt capture γ-rays, and to (ii) the TOF-dependent background due to sample-scattered neutrons. Other background components were addressed by background measurements with an enriched Pb208 sample. The effect of the lower energy cutoff in the pulse height spectra of the C6D6 detectors was carefully corrected via Monte Carlo simulations. Compared to previous Pb206 values, the Maxwellian averaged capture cross sections derived from these data are about 20% and 9% lower at thermal energies of 5 keV and 30 keV, respectively. These new results have a direct impact on the s-process abundance of Pb206, which represents an important test for the interpretation of the cosmic clock based on the decay of U238.

  16. [Mechanism of radiobiological effects of low intensity nonionizing electromagnetic radiation].

    PubMed

    Kudriashov, Iu B; Perov, Iu F; Golenitskaia, I A

    1999-01-01

    The results of the research of the biological effects of the non-ionizing electromagnetic radiation were studied from the position of "thermal" and "unthermal" mechanisms. The special attention was spared to analysing the information characterising the high sensitiveness of the human and animals organism to the very-low intensity electromagnetic fields.

  17. Correlation of clinical outcome to the estimated radiation dose from Boron Neutron Capture Therapy (BNCT)

    SciTech Connect

    Chadha, M.; Coderre, J.A.; Chanana, A.D.

    1996-12-31

    A phase I/II trial delivering a single fraction of BNCT using p-Boronophenylalanine-Fructose and epithermal neutrons at the the Brookhaven Medical Research Reactor was initiated in September 1994. The primary endpiont of the study was to evaluate the feasibility and safety of a given BNCT dose. The clinical outcome of the disease was a secondary endpoint of the study. The objective of this paper is to evaluate the correlation of the clinical outcome of patients to the estimated radiation dose from BNCT.

  18. Measurement of Radiative Proton Capture on F18 and Implications for Oxygen-Neon Novae

    NASA Astrophysics Data System (ADS)

    Akers, C.; Laird, A. M.; Fulton, B. R.; Ruiz, C.; Bardayan, D. W.; Buchmann, L.; Christian, G.; Davids, B.; Erikson, L.; Fallis, J.; Hager, U.; Hutcheon, D.; Martin, L.; Murphy, A. St. J.; Nelson, K.; Spyrou, A.; Stanford, C.; Ottewell, D.; Rojas, A.

    2013-06-01

    The rate of the F18(p,γ)Ne19 reaction affects the final abundance of the γ-ray observable radioisotope F18, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, F19. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the F18(p,γ)Ne19 reaction. The strength of the 665 keV resonance (Ex=7.076MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of F18 at any astrophysical energy.

  19. Mechanism Study of Carbon Dioxide Capture from Ambient Air by Hydration Energy Variation

    NASA Astrophysics Data System (ADS)

    Shi, X.; Lackner, K. S.

    2014-12-01

    Hydration of neutral and ionic species on solid interfaces plays an important role in a wide range of natural and engineered processes within energy systems as well as biological and environmental systems. Various chemical reactions are significantly enhanced, both in the rate and the extent of the reaction, because of water molecules present or absent at the interface. A novel technology for carbon dioxide capture, driven by the free energy difference between more or less hydrated states of an anionic exchange resin is studied for a new approach to absorb CO2 from ambient air. For these materials the affinity to CO2 is dramatically lowered as the availability of water is increased. This makes it possible to absorb CO2 from air in a dry environment and release it at two orders of magnitude larger partial pressures in a wet environment. While the absorption process and the thermodynamic properties of air capture via ion exchange resins have been demonstrated, the underlying physical mechanisms remain to be understood. In order to rationally design better sorbent materials, the present work elucidates through molecular dynamics and quantum mechanical modeling the energy changes in the carbonate, bicarbonate and hydroxide ions that are induced by hydration, and how these changes affect sorbent properties. A methodology is developed to determine the free energy change during carbonate ion hydrolysis changes with different numbers of water molecules present. This makes it possible to calculate the equilibrium in the reaction CO3--•nH2O ↔ HCO3- • m1H2O + OH- • m2H2O + (n - 1 - m1 - m2)H2O Molecular dynamics models are used to calculate free energies of hydration for the CO32- ion, the HCO3- ion, and the OH- ion as function of the amount of water that is present. A quantum mechanical model is employed to study the equilibrium of the reaction Na2CO3 + H2O ↔ NaHCO3 + NaOHin a vacuum and at room temperature. The computational analysis of the free energy of

  20. Mechanisms and feasibility of prey capture in ambush-feeding zooplankton

    PubMed Central

    Kiørboe, Thomas; Andersen, Anders; Langlois, Vincent J.; Jakobsen, Hans Henrik; Bohr, Tomas

    2009-01-01

    Many marine zooplankters, particularly among copepods, are “ambush feeders” that passively wait for their prey and capture them by fast surprise attacks. This strategy must be very demanding in terms of muscle power and sensing capabilities, but the detailed mechanisms of the attacks are unknown. Using high-speed video we describe how copepods perform spectacular attacks by precision maneuvering during a rapid jump. We show that the flow created by the attacking copepod is so small that the prey is not pushed away, and that the attacks are feasible because of their high velocity (≈100 mm·s−1) and short duration (few ms), which leaves the prey no time for escape. Simulations and analytical estimates show that the viscous boundary layer that develops around the attacking copepod is thin at the time of prey capture and that the flow around the prey is small and remains potential flow. Although ambush feeding is highly successful as a feeding strategy in the plankton, we argue that power requirements for acceleration and the hydrodynamic constraints restrict the strategy to larger (> 0.25 mm), muscular forms with well-developed prey perception capabilities. The smallest of the examined species is close to this size limit and, in contrast to the larger species, uses its largest possible jump velocity for such attacks. The special requirements to ambush feeders with such attacks may explain why this strategy has evolved to perfection only a few times among planktonic suspension feeders (few copepod families and chaetognaths). PMID:19622725

  1. 'Tagging' along memories in aging: Synaptic tagging and capture mechanisms in the aged hippocampus.

    PubMed

    Shivarama Shetty, Mahesh; Sajikumar, Sreedharan

    2017-05-01

    Aging is accompanied by a general decline in the physiological functions of the body with the deteriorating organ systems. Brain is no exception to this and deficits in cognitive functions are quite common in advanced aging. Though a variety of age-related alterations are observed in the structure and function throughout the brain, certain regions show selective vulnerability. Medial temporal lobe, especially the hippocampus, is one such preferentially vulnerable region and is a crucial structure involved in the learning and long-term memory functions. Hippocampal synaptic plasticity, such as long-term potentiation (LTP) and depression (LTD), are candidate cellular correlates of learning and memory and alterations in these properties have been well documented in aging. A related phenomenon called synaptic tagging and capture (STC) has been proposed as a mechanism for cellular memory consolidation and to account for temporal association of memories. Mounting evidences from behavioral settings suggest that STC could be a physiological phenomenon. In this article, we review the recent data concerning STC and provide a framework for how alterations in STC-related mechanisms could contribute to the age-associated memory impairments. The enormity of impairment in learning and memory functions demands an understanding of age-associated memory deficits at the fundamental level given its impact in the everyday tasks, thereby in the quality of life. Such an understanding is also crucial for designing interventions and preventive measures for successful brain aging. Copyright © 2017 National University of Singapore. Published by Elsevier B.V. All rights reserved.

  2. SUPG and discontinuity-capturing methods for coupled fluid mechanics and electrochemical transport problems

    NASA Astrophysics Data System (ADS)

    Kler, Pablo A.; Dalcin, Lisandro D.; Paz, Rodrigo R.; Tezduyar, Tayfun E.

    2013-02-01

    Electrophoresis is the motion of charged particles relative to the surrounding liquid under the influence of an external electric field. This electrochemical transport process is used in many scientific and technological areas to separate chemical species. Modeling and simulation of electrophoretic transport enables a better understanding of the physicochemical processes developed during the electrophoretic separations and the optimization of various parameters of the electrophoresis devices and their performance. Electrophoretic transport is a multiphysics and multiscale problem. Mass transport, fluid mechanics, electric problems, and their interactions have to be solved in domains with length scales ranging from nanometers to centimeters. We use a finite element method for the computations. Without proper numerical stabilization, computation of coupled fluid mechanics, electrophoretic transport, and electric problems would suffer from spurious oscillations that are related to the high values of the local Péclet and Reynolds numbers and the nonzero divergence of the migration field. To overcome these computational challenges, we propose a stabilized finite element method based on the Streamline-Upwind/Petrov-Galerkin (SUPG) formulation and discontinuity-capturing techniques. To demonstrate the effectiveness of the stabilized formulation, we present test computations with 1D, 2D, and 3D electrophoretic transport problems of technological interest.

  3. Mechanisms of organelle transport and capture along proplatelets during platelet production

    PubMed Central

    Richardson, Jennifer L.; Shivdasani, Ramesh A.; Boers, Chad; Hartwig, John H.; Italiano, Joseph E.

    2005-01-01

    Megakaryocytes generate platelets by remodeling their cytoplasm into long proplatelet extensions, which serve as assembly lines for platelet production. Platelet packaging and release concludes at the tips of each proplatelet. Essential in this process is the distribution of organelles and platelet-specific granules into the nascent platelets. To investigate the mechanism of delivery of organelles into putative platelets, the distribution and dynamics of organelles/granules was monitored. Individual organelles are sent from the cell body to the proplatelets where they move bidirectionally until they are captured at proplatelet ends. Movement occurs at approximately 0.2 μm/min, but pauses and changes in direction are frequent. At any given time, approximately 30% of organelles/granules are in motion. Actin poisons do not diminish organelle motion, and vesicular structures are intimately associated with the microtubules. Therefore, movement appears to involve microtubule-based forces. Bidirectional organelle movement is conveyed by the bipolar organization of microtubules within the proplatelet, as kinesin-coated beads move bidirectionally on the microtubule arrays of permeabilized proplatelets. Movement of organelles along proplatelets involves 2 mechanisms: organelles travel along microtubules, and the linked microtubules move relative to each other. These studies demonstrate that the components that form platelets are delivered to and assembled de novo along proplatelets. PMID:16118320

  4. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that

  5. Radiation-induced fibrosis: mechanisms and implications for therapy

    PubMed Central

    Straub, Jeffrey M.; New, Jacob; Hamilton, Chase D.; Lominska, Chris; Shnayder, Yelizaveta

    2015-01-01

    Purpose Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. Methods A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords “Radiation-Induced Fibrosis,” “Radiotherapy Complications,” “Fibrosis Therapy,” and other closely related terms. Results RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Conclusion Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies. PMID:25910988

  6. Radiation-induced fibrosis: mechanisms and implications for therapy.

    PubMed

    Straub, Jeffrey M; New, Jacob; Hamilton, Chase D; Lominska, Chris; Shnayder, Yelizaveta; Thomas, Sufi M

    2015-11-01

    Radiation-induced fibrosis (RIF) is a long-term side effect of external beam radiation therapy for the treatment of cancer. It results in a multitude of symptoms that significantly impact quality of life. Understanding the mechanisms of RIF-induced changes is essential to developing effective strategies to prevent long-term disability and discomfort following radiation therapy. In this review, we describe the current understanding of the etiology, clinical presentation, pathogenesis, treatment, and directions of future therapy for this condition. A literature review of publications describing mechanisms or treatments of RIF was performed. Specific databases utilized included PubMed and clinicaltrials.gov, using keywords "Radiation-Induced Fibrosis," "Radiotherapy Complications," "Fibrosis Therapy," and other closely related terms. RIF is the result of a misguided wound healing response. In addition to causing direct DNA damage, ionizing radiation generates reactive oxygen and nitrogen species that lead to localized inflammation. This inflammatory process ultimately evolves into a fibrotic one characterized by increased collagen deposition, poor vascularity, and scarring. Tumor growth factor beta serves as the primary mediator in this response along with a host of other cytokines and growth factors. Current therapies have largely been directed toward these molecular targets and their associated signaling pathways. Although RIF is widely prevalent among patients undergoing radiation therapy and significantly impacts quality of life, there is still much to learn about its pathogenesis and mechanisms. Current treatments have stemmed from this understanding, and it is anticipated that further elucidation will be essential for the development of more effective therapies.

  7. Basic mechanisms of radiation effects in the natural space radiation environment

    SciTech Connect

    Schwank, J.R.

    1994-06-01

    Four general topics are covered in respect to the natural space radiation environment: (1) particles trapped by the earth`s magnetic field, (2) cosmic rays, (3) radiation environment inside a spacecraft, (4) laboratory radiation sources. The interaction of radiation with materials is described by ionization effects and displacement effects. Total-dose effects on MOS devices is discussed with respect to: measurement techniques, electron-hole yield, hole transport, oxide traps, interface traps, border traps, device properties, case studies and special concerns for commercial devices. Other device types considered for total-dose effects are SOI devices and nitrided oxide devices. Lastly, single event phenomena are discussed with respect to charge collection mechanisms and hard errors. (GHH)

  8. Radiation mechanisms of pain control in classical trigeminal neuralgia

    PubMed Central

    Gorgulho, Alessandra

    2012-01-01

    Classical trigeminal neuralgia is a chronic pain condition that was clinically recognized centuries ago. Nevertheless, the pathological mechanism(s) involved in the development of classical trigeminal neuralgia is still largely based on the theory of peripheral versus central nervous system origin. Limitations of both hypotheses are discussed. Evidence of radiation effects in the electrical conduction of peripheral nerves is reviewed. Results of experimental studies using modern and current radiosurgery techniques and doses are also brought to discussion in an attempt to elucidate the radiation mechanisms involved in the conduction block of excessive sensory information triggering pain attacks. Clinical features and prognostic factors associated with pain control, recurrence, and facial numbness in patients submitted to surgical procedures for classical trigeminal neuralgia are discussed in the context of the features related to the pathogenesis of this condition. Studies focusing on the electrophysiology properties of partially demyelinated trigeminal nerves submitted to radiosurgery are vital to truly advance our current knowledge in the field. PMID:22826806

  9. Novel Mechanism of Hemin Capture by Hbp2, the Hemoglobin-binding Hemophore from Listeria monocytogenes*

    PubMed Central

    Malmirchegini, G. Reza; Sjodt, Megan; Shnitkind, Sergey; Sawaya, Michael R.; Rosinski, Justin; Newton, Salete M.; Klebba, Phillip E.; Clubb, Robert T.

    2014-01-01

    Iron is an essential nutrient that is required for the growth of the bacterial pathogen Listeria monocytogenes. In cell cultures, this microbe secretes hemin/hemoglobin-binding protein 2 (Hbp2; Lmo2185) protein, which has been proposed to function as a hemophore that scavenges heme from the environment. Based on its primary sequence, Hbp2 contains three NEAr transporter (NEAT) domains of unknown function. Here we show that each of these domains mediates high affinity binding to ferric heme (hemin) and that its N- and C-terminal domains interact with hemoglobin (Hb). The results of hemin transfer experiments are consistent with Hbp2 functioning as an Hb-binding hemophore that delivers hemin to other Hbp2 proteins that are attached to the cell wall. Surprisingly, our work reveals that the central NEAT domain in Hbp2 binds hemin even though its primary sequence lacks a highly conserved YXXXY motif that is used by all other previously characterized NEAT domains to coordinate iron in the hemin molecule. To elucidate the mechanism of hemin binding by Hbp2, we determined crystal structures of its central NEAT domain (Hbp2N2; residues 183–303) in its free and hemin-bound states. The structures reveal an unprecedented mechanism of hemin binding in which Hbp2N2 undergoes a major conformational rearrangement that facilitates metal coordination by a non-canonical tyrosine residue. These studies highlight previously unrecognized plasticity in the hemin binding mechanism of NEAT domains and provide insight into how L. monocytogenes captures heme iron. PMID:25315777

  10. Novel mechanism of hemin capture by Hbp2, the hemoglobin-binding hemophore from Listeria monocytogenes.

    PubMed

    Malmirchegini, G Reza; Sjodt, Megan; Shnitkind, Sergey; Sawaya, Michael R; Rosinski, Justin; Newton, Salete M; Klebba, Phillip E; Clubb, Robert T

    2014-12-12

    Iron is an essential nutrient that is required for the growth of the bacterial pathogen Listeria monocytogenes. In cell cultures, this microbe secretes hemin/hemoglobin-binding protein 2 (Hbp2; Lmo2185) protein, which has been proposed to function as a hemophore that scavenges heme from the environment. Based on its primary sequence, Hbp2 contains three NEAr transporter (NEAT) domains of unknown function. Here we show that each of these domains mediates high affinity binding to ferric heme (hemin) and that its N- and C-terminal domains interact with hemoglobin (Hb). The results of hemin transfer experiments are consistent with Hbp2 functioning as an Hb-binding hemophore that delivers hemin to other Hbp2 proteins that are attached to the cell wall. Surprisingly, our work reveals that the central NEAT domain in Hbp2 binds hemin even though its primary sequence lacks a highly conserved YXXXY motif that is used by all other previously characterized NEAT domains to coordinate iron in the hemin molecule. To elucidate the mechanism of hemin binding by Hbp2, we determined crystal structures of its central NEAT domain (Hbp2(N2); residues 183-303) in its free and hemin-bound states. The structures reveal an unprecedented mechanism of hemin binding in which Hbp2(N2) undergoes a major conformational rearrangement that facilitates metal coordination by a non-canonical tyrosine residue. These studies highlight previously unrecognized plasticity in the hemin binding mechanism of NEAT domains and provide insight into how L. monocytogenes captures heme iron. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Photoneutron cross sections for {sup 96}Zr: A systematic experimental study of photoneutron and radiative neutron capture cross sections for zirconium isotopes

    SciTech Connect

    Utsunomiya, H.; Akimune, H.; Kondo, T.; Itoh, O.; Kamata, M.; Yamagata, T.; Goriely, S.; Harada, H.; Kitatani, F.; Goko, S.; Toyokawa, H.; Yamada, K.; Lui, Y.-W.; Hilaire, S.; Koning, A. J.

    2010-03-15

    Photoneutron cross sections were measured for {sup 96}Zr near neutron threshold with quasimonochromatic laser-Compton-scattering {gamma}-ray beams. A systematic analysis of photoneutron and radiative neutron capture data for zirconium isotopes within the statistical model calculation leads to a unified picture of low-energy {gamma}-ray strengths for zirconium isotopes that is described by the HFB + QRPA model of E1 strength supplemented with an extra {gamma} strength attributed to a giant M1 resonance. Results of the systematic analysis including radiative neutron capture cross sections for radioactive {sup 95}Zr and {sup 93}Zr nuclei are presented.

  12. Effect of radiation on topopah spring tuff mechanical properties

    SciTech Connect

    Berge, P.A.; Blair, S.C.

    1996-11-01

    The effect of radiation on the mechanical properties of Topopah Spring tuff was investigated by performing uniaxial compressive tests on irradiated and control samples of the tuff from the potential repository horizon at Yucca Mountain. Test results are presented, including stress-strain curves and peak strength and Young`s modulus values. These results show that for homogeneous uncracked samples of Topopah Spring tuff, exposure to gamma radiation had no discernible effect on the unconfined partially healed subvertical caracks indicate that exposure may reduce the strength and Young`s modulus significantly. This is attributed to weakening of the cementing materials in the cracks and fractures of the samples that were irradiated. These results are preliminary, and additional studies are warranted to evaluate whether radiation weakens cementing materials in welded tuff.

  13. Hematopoietic Acute Radiation Syndrome (Bone marrow syndrome, Aplastic Anemia): Molecular Mechanisms of Radiation Toxicity.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri

    Key Words: Aplastic Anemia (AA), Pluripotential Stem Cells (PSC) Introduction: Aplastic Anemia (AA) is a disorder of the pluripotential stem cells involve a decrease in the number of cells of myeloid, erythroid and megakaryotic lineage [Segel et al. 2000 ]. The etiology of AA include idiopathic cases and secondary aplastic anemia after exposure to drugs, toxins, chemicals, viral infections, lympho-proliferative diseases, radiation, genetic causes, myelodisplastic syndromes and hypoplastic anemias, thymomas, lymphomas. [Brodskyet al. 2005.,Modan et al. 1975., Szklo et al. 1975]. Hematopoietic Acute Radiation Syndrome (or Bone marrow syndrome, or Radiation-Acquired Aplastic Anemia) is the acute toxic syndrome which usually occurs with a dose of irradiation between 0.7 and 10 Gy (70- 1000 rads), depending on the species irradiated. [Waselenko et al., 2004]. The etiology of bone morrow damage from high-level radiation exposure results depends on the radiosensitivity of certain bone marrow cell lines. [Waselenko et al. 2004] Aplastic anemia after radiation exposure is a clinical syndrome that results from a marked disorder of bone marrow blood cell production. [Waselenko et al. 2004] Radiation hematotoxicity is mediated via genotoxic and other specific toxic mechanisms, leading to aplasia, cell apoptosis or necrosis, initiation via genetic mechanisms of clonal disorders, in cases such as the acute radiation-acquired form of AA. AA results from radiation injury to pluripotential and multipotential stem cells in the bone marrow. The clinical signs displayed in reticulocytopenia, anemia, granulocytopenia, monocytopenia, and thrombocytopenia. The number of marrow CD34+ cells (multipotential hematopoietic progenitors) and their derivative colony-forming unit{granulocyte-macrophage (CFU-GM) and burst forming unit {erythroid (BFU{E) are reduced markedly in patients with AA. [Guinan 2011, Brodski et al. 2005, Beutler et al.,2000] Cells expressing CD34 (CD34+ cell) are normally

  14. Measurement of radiative proton capture on 18F and implications for oxygen-neon novae reexamined

    NASA Astrophysics Data System (ADS)

    Akers, C.; Laird, A. M.; Fulton, B. R.; Ruiz, C.; Bardayan, D. W.; Buchmann, L.; Christian, G.; Davids, B.; Erikson, L.; Fallis, J.; Hager, U.; Hutcheon, D.; Martin, L.; Murphy, A. St. J.; Nelson, K.; Ottewell, D.; Rojas, A.; Spyrou, A.

    2016-12-01

    Background: The rate of the 18F(p ,γ )19Ne reaction affects the final abundance of the radioisotope 18F ejected from novae. This nucleus is important as its abundance is thought to significantly influence the first-stage 511-keV and continuum γ -ray emission in the aftermath of novae. No successful measurement of this reaction existed prior to this work, and the rate used in stellar models had been calculated based on incomplete information from contributing resonances. Purpose: Of the two resonances thought to provide a significant contribution to the astrophysical reaction rate, located at Ec .m .=330 and 665 keV, the former has a radiative width estimated from the assumed analog state in the mirror nucleus, 19F, while the latter resonance does not have an analog state assignment, resulting in an arbitrary radiative width being assumed. As such, a direct measurement was needed to establish what role this resonance plays in the destruction of 18F at nova temperatures. This paper extends and takes the place of a previous Letter which reported the strength of the Ec .m .=665 keV resonance. Method: The DRAGON recoil separator was used to directly measure the strength of the important 665-keV resonance in this reaction, in inverse kinematics, by observing 19Ne reaction products. A radioactive 18F beam was provided by the ISAC facility at TRIUMF. R -matrix calculations were subsequently used to evaluate the significance of the results at astrophysical energies. Results: We report the direct measurement of the 18F(p ,γ )19Ne reaction with the reevaluation of several detector efficiencies and the use of an updated 19Ne level scheme in the reaction rate analysis. The strength of the 665-keV resonance (Ex=7.076 MeV) is found to be an order of magnitude weaker than currently assumed in nova models. An improved analysis of the previously reported data is presented here, resulting in a slightly different value for the resonance strength. These small changes, however, do

  15. Mechanisms of radiation interaction with DNA: Potential implications for radiation protection

    SciTech Connect

    Not Available

    1988-01-01

    The Office of Health and Environmental Research (OHER) of the US Department of Energy conducts a broad multidisciplinary research program which includes basic biophysics, biophysical chemistry, molecular and cellular biology as well as experimental animal studies and opportunistic human studies. This research is directed at understanding how low levels of radiation of various qualities produce the spectrum of biological effects that are seen for such exposures. This workshop was entitled ''Mechanisms of Radiation Interaction with DNA: Potential Implications for Radiation Protection.'' It ws jointly sponsored by the Department of Energy and the Commission of European Communities. The aim of the workshop was to review the base of knowledge in the area of mechanisms of radiation action at the DNA level, and to explore ways in which this information can be applied to the development of scientifically sound concepts and procedures for use in the field of radiation protection. The overview of research provided by this multidisciplinary group will be helpful to the Office in program planning. This report includes a summary of the presentations, extended abstracts, the meeting agenda, research recommendations, and a list of participants. Individual papers are processed separately for the data base.

  16. [Radiation-induced genomic instability: phenomenon, molecular mechanisms, pathogenetic significance].

    PubMed

    Mazurik, V K; Mikhaĭlov, V F

    2001-01-01

    The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.

  17. Mechanisms of Radiation Induced Effects in Carbon Nanotubes

    DTIC Science & Technology

    2016-10-01

    kilogram ( C kg –1 ) rad [absorbed dose] 1 × 10 –2 joule per kilogram (J kg –1 ) [gray (Gy)] rem [equivalent and effective dose] 1 × 10–2 joule per...8725 John J. Kingman Road, MS 6201 Fort Belvoir, VA 22060-6201 T E C H N IC A L R E P O R T DTRA-TR-17-5 Mechanisms of Radiation-Induced...CLASSIFICATION OF: a. REPORT b. ABSTRACT c . THIS PAGE 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 00-10-2016 Final Oct 5, 2010 - Dec 31, 2015 Mechanisms of

  18. SUB-THz RADIATION MECHANISMS IN SOLAR FLARES

    SciTech Connect

    Fleishman, Gregory D.; Kontar, Eduard P.

    2010-02-01

    Observations in the sub-THz range of large solar flares have revealed a mysterious spectral component increasing with frequency and hence distinct from the microwave component commonly accepted to be produced by gyrosynchrotron (GS) emission from accelerated electrons. Evidently, having a distinct sub-THz component requires either a distinct emission mechanism (compared to the GS one), or different properties of electrons and location, or both. We find, however, that the list of possible emission mechanisms is incomplete. This Letter proposes a more complete list of emission mechanisms, capable of producing a sub-THz component, both well known and new in this context, and calculates a representative set of their spectra produced by (1) free-free emission, (2) GS emission, (3) synchrotron emission from relativistic positrons/electrons, (4) diffusive radiation, and (5) Cherenkov emission. We discuss the possible role of the mechanisms in forming the sub-THz emission and emphasize their diagnostics potential for flares.

  19. Four-body calculation of {sup 12}C(α, γ){sup 16}O radiative capture reaction at stellar energies

    SciTech Connect

    Sadeghi, H.; Firoozabadi, M. M.

    2016-01-15

    On the basis of the four-alphamodel, the {sup 12}C(α, γ){sup 16}Oradiative capture process is investigated by using the four-body Faddeev–Yakubovsky equations as well as the two- and three-body electromagnetic currents. The present calculation is an application of our current conservation realistic potentials method for the {sup 12}C(α, γ){sup 16}Oradiative capture process. This work clears the way formore refinedmodels of radiative capture based on two- and three-body realistic potentials and current conservation. The calculation is carried out by considering the {sup 4}He + {sup 12}C (1 + 3) and the {sup 8}Be + {sup 8}Be (2 + 2) subamplitudes, respectively. Radiative capture {sup 12}C(α, γ){sup 16}Oreaction is one of the most important reactions in nuclear astrophysics. For this reaction, the electric dipole transitions between states with the same isospin are forbidden in the first order. Because the state 1{sup +} and 0{sup +} ground state nuclei {sup 16}O have zero isospin, thus the electric dipole radiations are not at the first order between two levels and electric dipole radiation will be the second order and electric dipole radiation is the same order as the electric quadrupole radiation. Therefore, we must consider the effects of both radiations. In comparison with other theoretical methods and available experimental data, good agreement is achieved for the E{sub 1} and E{sub 2} contribution to the cross section and the astrophysical S factor for this process.

  20. A New Top-Down Decadal Constraint on Black Carbon Emissions over Asia - Capturing The Influence of Widespread and Regularly Occurring Fires and Urbanization: Greater Atmospheric Loading and Variability, Larger Impacts on Radiative Forcing at the Surface and in the Atmosphere, and Possible Feedback Mechanisms

    NASA Astrophysics Data System (ADS)

    Cohen, J. B.

    2014-12-01

    A global top-down study of Black Carbon (BC) Emissions has found that sources are considerably higher than present day emissions datasets, with most of this underestimation stemming from the rapidly developing areas of East and Southeast Asia. An additional source in these regions is the frequent and sometimes annual influence of extreme biomass burning events, which emit additional BC and other aerosols into the atmosphere. An additional top-down study has shown that the emissions of BC from these biomass burning events in Southeast Asia contribute an additional 30% increase in the annual average BC emissions, and an additional 110% increase during the highest fire year. One important reason for this underestimation is that many of these source regions do not appear as fires, due to missing MODIS overpasses, intense cloud cover, and low fire temperatures at the wet surface. These new temporally and spatially varying emissions of BC are run in a state-of-the art combined model of aerosol physics, chemistry, and general circulation, including urban scale chemical processing and core/shell aerosol mixture impacts on radiation. The results reveal that this new dataset matches in space, time, and magnitude, an array of observations (remotely sensed, ground, and column) far better than other emission datasets: IPCC SRES, AEROCOM, BOND, and GFED. The modeled mean atmospheric extinction and loading are both much higher and more variable than previous modelling efforts, leading to a larger negative surface radiative forcing. At the same time, atmospheric absorption is enhanced and more variable, leading to intense atmospheric heating, with the average impact from 1.0-1.5 W/m2. This has impacts on the vertical stability in the source areas, and leads to changes in the dynamics such as a shifting of the ITCZ, reducing light precipitation and increasing strong convection. To support this, a bit of measurement-based evidence presented for each of these phenomena.

  1. Electromagnetic Transition from the 4+ to 2+ Resonance in Be8 Measured via the Radiative Capture in He4+He4

    NASA Astrophysics Data System (ADS)

    Datar, V. M.; Chakrabarty, D. R.; Kumar, Suresh; Nanal, V.; Pastore, S.; Wiringa, R. B.; Behera, S. P.; Chatterjee, A.; Jenkins, D.; Lister, C. J.; Mirgule, E. T.; Mitra, A.; Pillay, R. G.; Ramachandran, K.; Roberts, O. J.; Rout, P. C.; Shrivastava, A.; Sugathan, P.

    2013-08-01

    An earlier measurement on the 4+ to 2+ radiative transition in Be8 provided the first electromagnetic signature of its dumbbell-like shape. However, the large uncertainty in the measured cross section does not allow a stringent test of nuclear structure models. This Letter reports a more elaborate and precise measurement for this transition, via the radiative capture in the He4+He4 reaction, improving the accuracy by about a factor of 3. Ab initio calculations of the radiative transition strength with improved three-nucleon forces are also presented. The experimental results are compared with the predictions of the alpha cluster model and ab initio calculations.

  2. Interplay of direct and compound-nucleus mechanisms in neutron capture by light nuclides

    SciTech Connect

    Raman, S.; Kahane, S.; Lynn, J.E.

    1988-01-01

    The authors discuss the direct-capture theory pertaining to primary electric-dipole (E1) transitions following slow-neutron capture. For approximately 20 light nuclides that we have studied, estimates of direct-capture cross sections using optical-model potentials with physically realistic parameters are in reasonable agreement with the data. Minor disagreements that exist are consistent with extrapolations to light nuclides of generally accepted formulations of compound-nucleus capture. In dealing with nuclei soft to vibrations, we have considered the possible effects of coupling of the collective motion with the optical potential in the framework of R-matrix theory. In such cases, we find that the inclusion of inelastic channels results in systematic changes in the calculated cross sections.

  3. DNA protection by ectoine from ionizing radiation: molecular mechanisms.

    PubMed

    Hahn, Marc Benjamin; Meyer, Susann; Schröter, Maria-Astrid; Kunte, Hans-Jörg; Solomun, Tihomir; Sturm, Heinz

    2017-09-27

    Ectoine, a compatible solute and osmolyte, is known to be an effective protectant of biomolecules and whole cells against heating, freezing and extreme salinity. Protection of cells (human keratinocytes) by ectoine against ultraviolet radiation has also been reported by various authors, although the underlying mechanism is not yet understood. We present the first electron irradiation of DNA in a fully aqueous environment in the presence of ectoine and at high salt concentrations. The results demonstrate effective protection of DNA by ectoine against the induction of single-strand breaks by ionizing radiation. The effect is explained by an increase in low-energy electron scattering at the enhanced free-vibrational density of states of water due to ectoine, as well as the use of ectoine as an ˙OH-radical scavenger. This was demonstrated by Raman spectroscopy and electron paramagnetic resonance (EPR).

  4. Evanescent radiation, quantum mechanics and the Casimir effect

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.

    1989-01-01

    An attempt to bridge the gap between classical and quantum mechanics and to explain the Casimir effect is presented. The general nature of chaotic motion is discussed from two points of view: the first uses catastrophe theory and strange attractors to describe the deterministic view of this motion; the underlying framework for chaos in these classical dynamic systems is their extreme sensitivity to initial conditions. The second interpretation refers to randomness associated with probabilistic dynamics, as for Brownian motion. The present approach to understanding evanescent radiation and its relation to the Casimir effect corresponds to the first interpretation, whereas stochastic electrodynamics corresponds to the second viewpoint. The nonlinear behavior of the electromagnetic field is also studied. This well-understood behavior is utilized to examine the motions of two orbiting charges and shows a closeness between the classical behavior and the quantum uncertainty principle. The evanescent radiation is used to help explain the Casimir effect.

  5. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid–liquid mechanical properties

    PubMed Central

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-01-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid–liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid–liquid materials. PMID:27185930

  6. In-drop capillary spooling of spider capture thread inspires hybrid fibers with mixed solid-liquid mechanical properties

    NASA Astrophysics Data System (ADS)

    Elettro, Hervé; Neukirch, Sébastien; Vollrath, Fritz; Antkowiak, Arnaud

    2016-05-01

    An essential element in the web-trap architecture, the capture silk spun by ecribellate orb spiders consists of glue droplets sitting astride a silk filament. Mechanically this thread presents a mixed solid-liquid behavior unknown to date. Under extension, capture silk behaves as a particularly stretchy solid, owing to its molecular nanosprings, but it totally switches behavior in compression to now become liquid-like: It shrinks with no apparent limit while exerting a constant tension. Here, we unravel the physics underpinning the unique behavior of this ”liquid wire” and demonstrate that its mechanical response originates in the shape-switching of the silk filament induced by buckling within the droplets. Learning from this natural example of geometry and mechanics, we manufactured programmable liquid wires that present previously unidentified pathways for the design of new hybrid solid-liquid materials.

  7. Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance

    PubMed Central

    El-Halfawy, Omar M.; Klett, Javier; Ingram, Rebecca J.; Loutet, Slade A.; Murphy, Michael E. P.; Martín-Santamaría, Sonsoles

    2017-01-01

    ABSTRACT The potential for microbes to overcome antibiotics of different classes before they reach bacterial cells is largely unexplored. Here we show that a soluble bacterial lipocalin produced by Burkholderia cenocepacia upon exposure to sublethal antibiotic concentrations increases resistance to diverse antibiotics in vitro and in vivo. These phenotypes were recapitulated by heterologous expression in B. cenocepacia of lipocalin genes from Pseudomonas aeruginosa, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus. Purified lipocalin bound different classes of bactericidal antibiotics and contributed to bacterial survival in vivo. Experimental and X-ray crystal structure-guided computational studies revealed that lipocalins counteract antibiotic action by capturing antibiotics in the extracellular space. We also demonstrated that fat-soluble vitamins prevent antibiotic capture by binding bacterial lipocalin with higher affinity than antibiotics. Therefore, bacterial lipocalins contribute to antimicrobial resistance by capturing diverse antibiotics in the extracellular space at the site of infection, which can be counteracted by known vitamins. PMID:28292982

  8. Radiative corrections to false vacuum decay in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bezuglov, M. A.; Onishchenko, A. I.

    2017-08-01

    We consider radiative corrections to false vacuum decay within the framework of quantum mechanics for the general potential of the form 1/2 M ϕ2(ϕ -A )(ϕ -B ), where M , A and B are arbitrary parameters. For this type of potential we provide analytical results for Green function in the background of a corresponding bounce solution together with a one loop expression for false vacuum decay rate. Next, we discuss the computations of higher order corrections for false vacuum decay rates and provide numerical expressions for two and three loop contributions.

  9. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  10. Radiation-Induced Leukemia at Doses Relevant to Radiation Therapy: Modeling Mechanisms and Estimating Risks

    NASA Technical Reports Server (NTRS)

    Shuryak, Igor; Sachs, Rainer K.; Hlatky, Lynn; Mark P. Little; Hahnfeldt, Philip; Brenner, David J.

    2006-01-01

    Because many cancer patients are diagnosed earlier and live longer than in the past, second cancers induced by radiation therapy have become a clinically significant issue. An earlier biologically based model that was designed to estimate risks of high-dose radiation induced solid cancers included initiation of stem cells to a premalignant state, inactivation of stem cells at high radiation doses, and proliferation of stem cells during cellular repopulation after inactivation. This earlier model predicted the risks of solid tumors induced by radiation therapy but overestimated the corresponding leukemia risks. Methods: To extend the model to radiation-induced leukemias, we analyzed in addition to cellular initiation, inactivation, and proliferation a repopulation mechanism specific to the hematopoietic system: long-range migration through the blood stream of hematopoietic stem cells (HSCs) from distant locations. Parameters for the model were derived from HSC biologic data in the literature and from leukemia risks among atomic bomb survivors v^ ho were subjected to much lower radiation doses. Results: Proliferating HSCs that migrate from sites distant from the high-dose region include few preleukemic HSCs, thus decreasing the high-dose leukemia risk. The extended model for leukemia provides risk estimates that are consistent with epidemiologic data for leukemia risk associated with radiation therapy over a wide dose range. For example, when applied to an earlier case-control study of 110000 women undergoing radiotherapy for uterine cancer, the model predicted an excess relative risk (ERR) of 1.9 for leukemia among women who received a large inhomogeneous fractionated external beam dose to the bone marrow (mean = 14.9 Gy), consistent with the measured ERR (2.0, 95% confidence interval [CI] = 0.2 to 6.4; from 3.6 cases expected and 11 cases observed). As a corresponding example for brachytherapy, the predicted ERR of 0.80 among women who received an inhomogeneous low

  11. Molecular Mechanisms and Treatment of Radiation-Induced Lung Fibrosis

    PubMed Central

    Ding, Nian-Hua; Li, Jian Jian; Sun, Lun-Quan

    2014-01-01

    Radiation-induced lung fibrosis (RILF) is a severe side effect of radiotherapy in lung cancer patients that presents as a progressive pulmonary injury combined with chronic inflammation and exaggerated organ repair. RILF is a major barrier to improving the cure rate and well-being of lung cancer patients because it limits the radiation dose that is required to effectively kill tumor cells and diminishes normal lung function. Although the exact mechanism is unclear, accumulating evidence suggests that various cells, cytokines and regulatory molecules are involved in the tissue reorganization and immune response modulation that occur in RILF. In this review, we will summarize the general symptoms, diagnostics, and current understanding of the cells and molecular factors that are linked to the signaling networks implicated in RILF. Potential approaches for the treatment of RILF will also be discussed. Elucidating the key molecular mediators that initiate and control the extent of RILF in response to therapeutic radiation may reveal additional targets for RILF treatment to significantly improve the efficacy of radiotherapy for lung cancer patients. PMID:23909719

  12. Degradation mechanisms of cable insulation materials during radiation-thermal ageing in radiation environment

    NASA Astrophysics Data System (ADS)

    Seguchi, Tadao; Tamura, Kiyotoshi; Ohshima, Takeshi; Shimada, Akihiko; Kudoh, Hisaaki

    2011-02-01

    Radiation and thermal degradation of ethylene-propylene rubber (EPR) and crosslinked polyethylene (XLPE) as cable insulation materials were investigated by evaluating tensile properties, gel-fraction, and swelling ratio, as well as by the infrared (FTIR) analysis. The activation energy of thermal oxidative degradation changed over the range 100-120 °C for both EPR and XLPE. This may be attributed to the fact that the content of an antioxidant used as the stabilizer for polymers decreases by evaporation during thermal ageing at high temperatures. The analysis of antioxidant content and oxidative products in XLPE as a model sample showed that a small amount of antioxidant significantly reduced the extent of thermal oxidation, but was not effective for radiation induced oxidation. The changes in mechanical properties were well reflected by the degree of oxidation. A new model of polymer degradation mechanisms was proposed where the degradation does not take place by chain reaction via peroxy radical and hydro-peroxide. The role of the antioxidant in the polymer is the reduction of free radical formation in the initiation step in thermal oxidation, and it could not stop radical reactions for either radiation or thermal oxidation.

  13. TREVO and Capture LP have equal technical success rates in mechanical thrombectomy of proximal and distal anterior circulation occlusions.

    PubMed

    Protto, Sara; Pienimäki, Juha-Pekka; Seppänen, Janne; Matkaselkä, Ira; Ollikainen, Jyrki; Numminen, Heikki; Sillanpää, Niko

    2017-07-01

    Mechanical thrombectomy (MT) is a proven method to treat large vessel occlusions in acute anterior circulation stroke. We compared the technical, imaging, and clinical outcomes of MT performed with either TREVO or Capture LP devices. There were 42 and 43 patients in the TREVO and Capture LP groups, respectively. Baseline variables, technical outcome (Thrombolysis In Cerebral Infarction, TICI), 24 hours imaging outcome, and 3-month clinical outcome (modified Rankin Scale, mRS) were prospectively recorded. The patients were stratified according to clot location, groups compared, and logistic regression models devised to study the effect of device selection on the clinical outcome. The technical success rates were equal in both proximal (internal carotid artery and proximal M1 segment) and distal occlusions (distal M1 and M2 segments). The proportion of TICI 2b or 3 was 96% and 87% with TREVO and 87% and 89% with Capture LP (p=0.25 and p=0.80, respectively). Device selection did not significantly predict good clinical outcome (mRS ≤2) in either proximal or distal occlusions. In multivariate analysis, selecting Capture LP borderline significantly increased the odds of an excellent outcome close to sixfold both in proximal and distal occlusions (OR 6.7, 95% CI 0.82 to 53.7, p=0.08 and OR 5.7, 95% CI 0.88 to 37.8, p=0.07, respectively). TREVO and Capture LP perform equally well in proximal and distal occlusions in the anterior circulation when technical and good clinical outcome are considered. Capture LP may have a small advantage in reaching mRS ≤1 at 3 months. However, this needs to be confirmed in a randomized study. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Boron neutron capture therapy applied to advanced breast cancers: Engineering simulation and feasibility study of the radiation treatment protocol

    NASA Astrophysics Data System (ADS)

    Sztejnberg Goncalves-Carralves, Manuel Leonardo

    This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT

  15. Stable loss of global DNA methylation in the radiation-target tissue-A possible mechanism contributing to radiation carcinogenesis?

    SciTech Connect

    Koturbash, Igor; Pogribny, Igor; Kovalchuk, Olga . E-mail: olga.kovalchuk@uleth.ca

    2005-11-18

    Radiation-induced lymphomagenesis and leukemogenesis are complex processes involving both genetic and epigenetic changes. Although genetic alterations during radiation-induced lymphoma- and leukemogenesis are fairly well studied, the role of epigenetic changes has been largely overlooked. Rodent models are valuable tools for identifying molecular mechanisms of lymphoma and leukemogenesis. A widely used mouse model of radiation-induced thymic lymphoma is characterized by a lengthy 'pre-lymphoma' period. Delineating molecular changes occurring during the pre-lymphoma period is crucial for understanding the mechanisms of radiation-induced leukemia/lymphoma development. In the present study, we investigated the role of radiation-induced DNA methylation changes in the radiation carcinogenesis target organ-thymus, and non-target organ-muscle. This study is the first report on the radiation-induced epigenetic changes in radiation-target murine thymus during the pre-lymphoma period. We have demonstrated that acute and fractionated whole-body irradiation significantly altered DNA methylation pattern in murine thymus leading to a massive loss of global DNA methylation. We have also observed that irradiation led to increased levels of DNA strand breaks 6 h following the initial exposure. The majority of radiation-induced DNA strand breaks were repaired 1 month after exposure. DNA methylation changes, though, were persistent and significant radiation-induced DNA hypomethylation was observed in thymus 1 month after exposure. In sharp contrast to thymus, no significant persistent changes were noted in the non-target muscle tissue. The presence of stable DNA hypomethylation in the radiation-target tissue, even though DNA damage resulting from initial genotoxic radiation insult was repaired, suggests of the importance of epigenetic mechanisms in the development of radiation-related pathologies. The possible role of radiation-induced DNA hypomethylation in radiation-induced genome

  16. Demonstration of three-dimensional deterministic radiation transport theory dose distribution analysis for boron neutron capture therapy.

    PubMed

    Nigg, D W; Randolph, P D; Wheeler, F J

    1991-01-01

    The Monte Carlo stochastic simulation technique has traditionally been the only well-recognized method for computing three-dimensional radiation dose distributions in connection with boron neutron capture therapy (BNCT) research. A deterministic approach to this problem would offer some advantages over the Monte Carlo method. This paper describes an application of a deterministic method to analytically simulate BNCT treatment of a canine head phantom using the epithermal neutron beam at the Brookhaven medical research reactor (BMRR). Calculations were performed with the TORT code from Oak Ridge National Laboratory (ORNL), an implementation of the discrete ordinates, or Sn method. Calculations were from first principles and used no empirical correction factors. The phantom surface was modeled by flat facets of approximately 1 cm2. The phantom interior was homogeneous. Energy-dependent neutron and photon scalar fluxes were calculated on a 32 x 16 x 22 mesh structure with 96 discrete directions in angular phase space. The calculation took 670 min on an Apollo DN10000 workstation. The results were subsequently integrated over energy to obtain full three-dimensional dose distributions. Isodose contours and depth-dose curves were plotted for several separate dose components of interest. Phantom measurements were made by measuring neutron activation (and therefore neutron flux) as a function of depth in copper-gold alloy wires that were inserted through catheters placed in holes drilled in the phantom. Measurements agreed with calculations to within about 15%. The calculations took about an order of magnitude longer than comparable Monte Carlo calculations but provided various conveniences, as well as a useful check.

  17. Sample Canister Capture Mechanism for Mars Sample Return: Functional and environmental test of the elegant breadboard model

    NASA Astrophysics Data System (ADS)

    Carta, R.; Filippetto, D.; Lavagna, M.; Mailland, F.; Falkner, P.; Larranaga, J.

    2015-12-01

    The paper provides recent updates about the ESA study: Sample Canister Capture Mechanism Design and Breadboard developed under the Mars Robotic Exploration Preparation (MREP) program. The study is part of a set of feasibility studies aimed at identifying, analysing and developing technology concepts enabling the future international Mars Sample Return (MSR) mission. The MSR is a challenging mission with the purpose of sending a Lander to Mars, acquire samples from its surface/subsurface and bring them back to Earth for further, more in depth, analyses. In particular, the technology object of the Study is relevant to the Capture Mechanism that, mounted on the Orbiter, is in charge of capturing and securing the Sample Canister, or Orbiting Sample, accommodating the Martian soil samples, previously delivered in Martian orbit by the Mars Ascent Vehicle. An elegant breadboard of such a device was implemented and qualified under an ESA contract primed by OHB-CGS S.p.A. and supported by Politecnico di Milano, Department of Aerospace Science and Technology: in particular, functional tests were conducted at PoliMi-DAST and thermal and mechanical test campaigns occurred at Serms s.r.l. facility. The effectiveness of the breadboard design was demonstrated and the obtained results, together with the design challenges, issues and adopted solutions are critically presented in the paper. The breadboard was also tested on a parabolic flight to raise its Technology Readiness Level to 6; the microgravity experiment design, adopted solutions and results are presented as well in the paper.

  18. Neoplastic cell transformation by high-LET radiation: Molecular mechanisms

    NASA Astrophysics Data System (ADS)

    Chui-Hsu Yang, Tracy; Craise, Laurie M.; Mei, Man-Tong; Tobias, Cornelius A.

    Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step processes, we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 Å may cause cell transformation and that two DNA breaks formed within 20 Å may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At

  19. Neoplastic cell transformation by high-LET radiation: molecular mechanisms.

    PubMed

    Yang, T C; Craise, L M; Mei, M T; Tobias, C A

    1989-01-01

    Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double

  20. Radiative and mechanical AGN feedback in galaxy evolution

    NASA Astrophysics Data System (ADS)

    Choi, Ena

    Accreting black holes are thought to inject energy into surrounding gas reservoirs via jets, outflows and radiation, inhibiting the build-up of massive galaxies and suppressing star formation. Active Galactic Nuclei (AGN) feedback can potentially starve the black hole, giving rise to a relation between the black hole mass and the stellar mass of galaxies. Many previous AGN feedback models, however, do not include all known and observed feedback processes. Since the importance of AGN-driven mass and momentum outflows in limiting the infall onto the black hole has been emphasized, we develop a numerical algorithm of AGN mechanical feedback via broad absorption line winds in a three-dimensional smoothed particle hydrodynamics code, modified with a pressure-entropy formulation, that better allows for contact discontinuities and implements improved fluid mixing. We also include the detailed treatment of radiative heating, radiation pressure, and the Eddington force and propose a unified model of AGN feedback. We investigate feedback effects in simulations of a single disk galaxy, major and minor mergers of galaxies, and the formation of elliptical galaxies in a cosmological context. We show that massive, non-relativistic outflows and X-ray heating are indeed a viable mechanism to regulate the black hole growth. While the thermal feedback model, where all the feedback energy is distributed as thermal heating, produces a factor of ~102-10 3 higher X-ray luminosity than expected for given stellar mass of the galaxy, our model can successfully reproduce both the observed L X-sigma* and MBH-sigma* relations. In our model, the AGN-induced outbursts result in strong galactic outflows with vw~2,000 km/s consistent with observed quasar properties. They also effectively quench star formation making ellipticals red and dead consistent with the observations. Our model shows large fluctuations in both radiant and wind outputs, naturally reproducing the two modes of AGN feedback

  1. Antibiotic Capture by Bacterial Lipocalins Uncovers an Extracellular Mechanism of Intrinsic Antibiotic Resistance.

    PubMed

    El-Halfawy, Omar M; Klett, Javier; Ingram, Rebecca J; Loutet, Slade A; Murphy, Michael E P; Martín-Santamaría, Sonsoles; Valvano, Miguel A

    2017-03-14

    The potential for microbes to overcome antibiotics of different classes before they reach bacterial cells is largely unexplored. Here we show that a soluble bacterial lipocalin produced by Burkholderia cenocepacia upon exposure to sublethal antibiotic concentrations increases resistance to diverse antibiotics in vitro and in vivo These phenotypes were recapitulated by heterologous expression in B. cenocepacia of lipocalin genes from Pseudomonas aeruginosa, Mycobacterium tuberculosis, and methicillin-resistant Staphylococcus aureus Purified lipocalin bound different classes of bactericidal antibiotics and contributed to bacterial survival in vivo Experimental and X-ray crystal structure-guided computational studies revealed that lipocalins counteract antibiotic action by capturing antibiotics in the extracellular space. We also demonstrated that fat-soluble vitamins prevent antibiotic capture by binding bacterial lipocalin with higher affinity than antibiotics. Therefore, bacterial lipocalins contribute to antimicrobial resistance by capturing diverse antibiotics in the extracellular space at the site of infection, which can be counteracted by known vitamins.IMPORTANCE Current research on antibiotic action and resistance focuses on targeting essential functions within bacterial cells. We discovered a previously unrecognized mode of general bacterial antibiotic resistance operating in the extracellular space, which depends on bacterial protein molecules called lipocalins. These molecules are highly conserved in most bacteria and have the ability to capture different classes of antibiotics outside bacterial cells. We also discovered that liposoluble vitamins, such as vitamin E, overcome in vitro and in vivo antibiotic resistance mediated by bacterial lipocalins, providing an unexpected new alternative to combat resistance by using this vitamin or its derivatives as antibiotic adjuvants.

  2. Evidence for field enhanced electron capture by EL2 centers in semi-insulating GaAs and the effect on GaAs radiation detectors

    SciTech Connect

    McGregor, D.S.; Rojeski, R.A.; Knoll, G.F. ); Terry, F.L. Jr.; East, J. ); Eisen, Y. )

    1994-06-15

    The performance of Schottky contact semiconductor radiation detectors fabricated from semi-insulating GaAs is highly sensitive to charged impurities and defects in the material. The observed behavior of semi-insulating GaAs Schottky barrier alpha particle detectors does not match well with models that treat the semi-insulating material as either perfectly intrinsic or as material with deep donors (EL2) of constant capture cross section compensated with shallow acceptors. We propose an explanation for the discrepancy based on enhanced capture of electrons by EL2 centers at high electric fields and the resulting formation of a quasineutral region in the GaAs. Presented is a simple model including field enhanced electron capture which shows good agreement with experimental alpha particle pulse height measurements.

  3. Radiation induced effects on mechanical properties of nanoporous gold foams

    NASA Astrophysics Data System (ADS)

    Caro, M.; Mook, W. M.; Fu, E. G.; Wang, Y. Q.; Sheehan, C.; Martinez, E.; Baldwin, J. K.; Caro, A.

    2014-06-01

    It has recently been shown that due to a high surface-to-volume ratio, nanoporous materials display radiation tolerance. The abundance of surfaces, which are perfect sinks for defects, and the relation between ligament size, defect diffusion, and time combine to define a window of radiation resistance [Fu et al., Appl. Phys. Lett. 101, 191607 (2012)]. Outside this window, the dominant defect created by irradiation in Au nanofoams are stacking fault tetrahedra (SFT). Molecular dynamics computer simulations of nanopillars, taken as the elemental constituent of foams, predict that SFTs act as dislocation sources inducing softening, in contrast to the usual behavior in bulk materials, where defects are obstacles to dislocation motion, producing hardening. In this work we test that prediction and answer the question whether irradiation actually hardens or softens a nanofam. Ne ion irradiations of gold nanofoams were performed at room temperature for a total dose up to 4 dpa, and their mechanical behavior was measured by nanoindentation. We find that hardness increases after irradiation, a result that we analyze in terms of the role of SFTs on the deformation mode of foams.

  4. Sample Canister Capture Mechanism for Mars Sample Return: From Concept to TRL 6 (Including 0-g Environment)

    NASA Astrophysics Data System (ADS)

    Mailland, F.; Piersanti, E.; Bursi, A.; Montemurro, L.; Carta, R.; Filippetto, D.; Lavagna, M.; Debei, S.; Zaccariotto, M.; Bettanini, C.; Larranaga, J.; Falkner, P.

    2015-09-01

    The ESA Study “Sample Canister Capture Mechanism (SCCM) Design and Breadboard” has been conducted under the Mars Robotic Exploration Preparation (MREP) program. The Study is part of a set of feasibility studies aimed at identifying, analysing and developing technology concepts enabling the future international Mars Sample Return (MSR) mission.The activity focuses on the design of a mechanism that shall enable the Orbiter of the Mars Sample Return mission to recover a spherical Orbiting Sample (OS) coming from Mars surface that contains a set of soil samples. The design concept of such mechanism has been then demonstrated performing a set of Functional, Micro-gravity and Environmental tests on an Elegant Breadboard Model implemented during the Study.The paper focuses on design solutions implemented and lesson learnt raised during the mechanism development; starting from the design concept, the validation through the test activities including the parabolic flight, and the future possible improvements.

  5. Effects of Microwave Radiation on Selected Mechanical Properties of Silk

    NASA Astrophysics Data System (ADS)

    Reed, Emily Jane

    Impressive mechanical properties have served to peak interest in silk as an engineering material. In addition, the ease with which silk can be altered through processing has led to its use in various biomaterial applications. As the uses of silk branch into new territory, it is imperative (and inevitable) to discover the boundary conditions beyond which silk no longer performs as expected. These boundary conditions include factors as familiar as temperature and humidity, but may also include other less familiar contributions, such as exposure to different types of radiation. The inherent variations in mechanical properties of silk, as well as its sensitivity to moisture, suggest that in an engineering context silk is best suited for use in composite materials; that way, silk can be shielded from ambient moisture fluctuations, and the surrounding matrix allows efficient load transfer from weaker fibers to stronger ones. One such application is to use silk as a reinforcing fiber in epoxy composites. When used in this way, there are several instances in which exposure to microwave radiation is likely (for example, as a means of speeding epoxy cure rates), the effects of which remain mostly unstudied. It will be the purpose of this dissertation to determine whether selected mechanical properties of B. mori cocoon silk are affected by exposure to microwave radiation, under specified temperature and humidity conditions. Results of our analyses are directly applicable wherever exposure of silk to microwave radiation is possible, including in fiber reinforced epoxy composites (the entire composite may be microwaved to speed epoxy cure time), or when silk is used as a component in the material used to construct the radome of an aircraft (RADAR units use frequencies in the microwave range of the electromagnetic spectrum), or when microwave energy is used to sterilize biomaterials (such as cell scaffolds) made of silk. In general, we find that microwave exposure does not

  6. Deformation mechanism in swollen radiation-grafted polyethylene

    NASA Astrophysics Data System (ADS)

    Ungar, G.; Dlugosz, J.; Ranogajec, F.

    Stress-strain behaviour of anisotropic polyethylene (PE) film radiation-grafted with styrene was studied with the samples immersed in xylene. The glassy polystyrene (PS) phase (1) is softened by swelling. Whereas the tensile modulus of dry graft increases somewhat with increasing PS content, for the swollen graft it decreases sharply. However the yield stress and the elongation at break remain fairly large. For highly grafted films (PS/PE > 1) deformation is almost fully reversible and proceeds without necking up to draw ratios as high as 5:1. With the aid of additional X-ray diffraction and transmission electron microscopy results the deformation mechanism is interpreted in terms of the known morphology of the copolymer.

  7. Direct determination of the doublet and quartet M1 cross sections in p-d radiative capture at near-thermal energies

    NASA Astrophysics Data System (ADS)

    Rice, B. J.; Wulf, E. A.; Canon, R. S.; Kelley, J. H.; Prior, R. M.; Spraker, M.; Tilley, D. R.; Weller, H. R.

    1997-12-01

    Data obtained from studies of the p(d-->,γ)3He and the d(p-->,γ)3He reactions have been used to extract the transition amplitudes corresponding to S=1/2 (doublet) and S=3/2 (quartet) M1 radiative capture. Protons (deuterons) of 40 keV (80 keV) were stopped in D2O (H2O) ice targets. Angular distributions of σ, Ay, T20, Pγ, and iT11 were fit simultaneously in terms of the four possible E1 p-wave capture amplitudes and the two (S=1/2 and 3/2) possible M1 s-wave capture amplitudes. The results obtained at Ecm=23.3 keV indicate that the S=1/2 M1 capture cross section is 13.77 +/- 0.66 nb, while the S=3/2 M1 capture cross section is 6.74 +/- 0.44 nb. These results agree with the predictions of a recent three-body theoretical calculation which includes two-body currents [e.g., meson-exchange currents (MEC's)]. They also agree with the previous experimental determination of the doublet and quartet fusion rates obtained using the Wolfenstein-Gerstein effect to vary the relative population of S=1/2 and 3/2 nuclear spins in the μ-p-d molecule prior to fusion.

  8. Indirect approaches to constraining the best estimate of the astrophysical S-factor for proton radiative capture on nitrogen-14

    NASA Astrophysics Data System (ADS)

    Bertone, Peter Felix

    states in the compound nucleus. Proton elastic scattering data on 15O exist, but nearly all are more than five decades old. In addition, such scattering data have never been included in the analysis of the radiative capture data. Therefore, the results reported here are the new measurements of proton elastic scattering on 15 O, the width of the Ex = 6793-keV sub-threshold level in 15O, the effect of these quantities on the best estimate for the 14N( p, gamma)15O S-factor, and the resulting astrophysical consequences.

  9. A Structure-Based Mechanism for Vesicle Capture by a Multi-Subunit Tethering Complex

    PubMed Central

    Ren, Yi; Yip, Calvin K.; Tripathi, Arati; Huie, David; Jeffrey, Philip D.; Walz, Thomas; Hughson, Frederick M.

    2009-01-01

    Vesicle trafficking requires membrane fusion, mediated by SNARE proteins, and upstream events that probably include “tethering”, an initial long-range attachment between a vesicle and its target organelle. Among the factors proposed to mediate tethering are a set of multisubunit tethering complexes (MTCs). The Dsl1 complex, with only three subunits, is the simplest known MTC, and is essential for the retrograde traffic of COPI-coated vesicles from the Golgi to the ER. To elucidate structural principles underlying MTC function, we have determined the structure of the Dsl1 complex, revealing a tower containing at its base the binding sites for two ER SNAREs and at its tip a flexible lasso for capturing vesicles. The Dsl1 complex binds to individual SNAREs via their N-terminal regulatory domains and also to assembled SNARE complexes; moreover, it is capable of accelerating SNARE complex assembly. Our results suggest that even the simplest MTC may be capable of orchestrating vesicle capture, uncoating, and fusion. PMID:20005805

  10. A Structure-Based Mechanism for Vesicle Capture by the Multisubunit Tethering Complex Dsl1

    SciTech Connect

    Ren, Y.; Yip, C; Tripathi, A; Huie, D; Jeffrey, P; Walz, T; Hughson, F

    2009-01-01

    Vesicle trafficking requires membrane fusion, mediated by SNARE proteins, and upstream events that probably include tethering, an initial long-range attachment between a vesicle and its target organelle. Among the factors proposed to mediate tethering are a set of multisubunit tethering complexes (MTCs). The Dsl1 complex, with only three subunits, is the simplest known MTC and is essential for the retrograde traffic of COPI-coated vesicles from the Golgi to the ER. To elucidate structural principles underlying MTC function, we have determined the structure of the Dsl1 complex, revealing a tower containing at its base the binding sites for two ER SNAREs and at its tip a flexible lasso for capturing vesicles. The Dsl1 complex binds to individual SNAREs via their N-terminal regulatory domains and also to assembled SNARE complexes; moreover, it is capable of accelerating SNARE complex assembly. Our results suggest that even the simplest MTC may be capable of orchestrating vesicle capture, uncoating, and fusion.

  11. Mechanisms of nitrate capture in biochar: Are they related to biochar properties, post-treatment and soil environment?

    NASA Astrophysics Data System (ADS)

    Cimo, Giulia; Haller, Andreas; Spokas, Kurt; Novak, Jeff; Ippolito, Jim; Löhnertz, Otmar; Kammann, Claudia

    2017-04-01

    we found (7)that this captured nitrate was well protected against leaching, (8)that repeated drying-wetting cycles increased nitrate capture, with the amount protected against leaching remaining more or less constant; and (9) that an organic "coating" (or application of the nitrate in an organic solution, here: black tea) increased biochars' capability of nitrate capture. Our results thus underline that the phenomenon of nitrate capture is not purely due to ionic mechanisms but may partly rely on physical interactions and the pore structure of the biochar. Acknowledgement: JC acknowledges funding by the COST action TD1107 (short term scientific mission), CK acknowledges the financial support of DFG grant no. Ka3442/1-1 and of the HMWK Hessia funded OptiChar4EcoVin project. 1-Haider, G., Steffens, D., Müller, C. & Kammann, C. I. Standard extraction methods may underestimate nitrate stocks captured by field aged biochar. J. Environ. Qual. 45, 1196-1204 (2016). 2-Kammann, C. I. et al. Plant growth improvement mediated by nitrate capture in co-composted biochar. Scientific Reports 5, doi: 10.1038/srep11080 (2015). 3-Haider, G., Steffens, D., Moser, G., Müller, C. & Kammann, C. I. Biochar reduced nitrate leaching and improved soil moisture content without yield improvements in a four-year field study. Agri. Ecosys. Environ. 237, 80-94 (2017).

  12. A comparison of radiative capture with decay gamma-ray method in bore hole logging for economic minerals

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.

    1972-01-01

    The recent availability of borehole logging sondes employing a source of neutrons and a Ge(Li) detector opens up the possibility of analyzing either decay or capture gamma rays. The most efficient method for a given element can be predicted by calculating the decay-to-capture count ratio for the most prominent peaks in the respective spectra. From a practical point of view such a calculation must be slanted toward short irradiation and count times at each station in a borehole. A simplified method of computation is shown, and the decay-to-capture count ratio has been calculated and tabulated for the optimum value in the decay mode irrespective of the irradiation time, and also for a ten minute irradiation time. Based on analysis of a single peak in each spectrum, the results indicate the preferred technique and the best decay or capture peak to observe for those elements of economic interest. ?? 1972.

  13. The structure of RNA-free Rho termination factor indicates a dynamic mechanism of transcript capture.

    PubMed

    Canals, Albert; Usón, Isabel; Coll, Miquel

    2010-07-02

    The Rho factor is a ring-shaped ATP-dependent helicase that mediates transcription termination in most prokaryotic cells by disengaging the transcription elongation complex formed by the RNA polymerase, DNA, and the nascent RNA transcript. The crystal structures of key intermediates along the kinetic pathway of RNA binding to Rho unveiled an unprecedented mode of helicase loading and provided a model for the ATP turnover coupled to coordinated strand movement. Here we report the structure of the early RNA-free state of Rho, which had eluded crystallization for many years but now completes the series. The structure allows the characterization of the apo-form Rho from Thermotoga maritima to 2.3 A resolution, reveals an RNA-recruiting site that becomes hidden after occupancy of the adjacent specific primary RNA-binding site, and suggests an enriched model for mRNA capture that is consistent with previous data.

  14. Mechanism of 'GSI oscillations' in electron capture by highly charged hydrogen-like atomic ions

    SciTech Connect

    Krainov, V. P.

    2012-07-15

    We suggest a qualitative explanation of oscillations in electron capture decays of hydrogen-like {sup 140}Pr and {sup 142}Pm ions observed recently in an ion experimental storage ring (ESR) of Gesellschaft fuer Schwerionenforschung (GSI) mbH, Darmstadt, Germany. This explanation is based on the electron multiphoton Rabi oscillations between two Zeeman states of the hyperfine ground level with the total angular momentum F = 1/2. The Zeeman splitting is produced by a constant magnetic field in the ESR. Transitions between these states are produced by the second, sufficiently strong alternating magnetic field that approximates realistic fields in the GSI ESR. The Zeeman splitting amounts to only about 10{sup -5} eV. This allows explaining the observed quantum beats with the period 7 s.

  15. Experimental study of radiative pion capture on /sup 13/C, /sup 20/Ne, /sup 90/Zr, /sup 19/F and /sup 12/C

    SciTech Connect

    Martoff, C.J.

    1980-11-01

    Photon spectra for 50 < E/sub ..gamma../ < 135 MeV have been measured from the radiative capture of stopped negative pions by the nuclides /sup 13/C, /sup 19/F, /sup 20/Ne, and /sup 90/Zr. The e/sup +/e/sup -/ pair spectrometer system used has resolution 850 keV fwhm and photon detection efficiency 5 x 10/sup -6/. The total radiative capture branching ratios measured are /sup 13/C (1.66 +- 0.25)%, /sup 19/F (2.40 +- 0.48)%, /sup 20/Ne (1.60 +- 0.24)%, and /sup 90/Zr (2.1 +- 0.5)%. The partial radiative capture branching ratios to four bound states and two resonances in /sup 20/F, and two bound states and three resonances in /sup 13/B have also been measured. The branching ratio for /sup 13/C(..pi../sup -/,..gamma..)/sup 13/B g.s. is (6.1 +- 1.2) x 10/sup -4/. Comparison of this result with the beta decay rate of /sup 13/B shows that (84 +- 16)% of the pion capture amplitude is accounted for by the Gamow-Teller matrix element. Further analysis suggests that much of the remaining strength is E2. The measured branching ratios to resonant states in /sup 13/C(..pi../sup -/,..gamma..)/sup 13/B are shown to be in agreement with detailed shell model calculations. The total single-particle strength in these transitions is shown to be approximately half as large as that of the T = 3/2 part of the E1 photoresonance (the Giant Dipole Resonance) in /sup 13/C. The branching ratio for /sup 20/Ne(..pi../sup -/,..gamma..)/sup 20/F (T = 1, J/sup ..pi../ = 1/sup +/, E/sub x/ = 1.06 MeV) is 0.91 +- 0.52).10/sup -4/. Comparison with the electroexcitation of the analog giant M1 state in /sup 20/Ne (11.24 MeV) shows that the M1 transition amplitude is less than (46 +- 14)% Gamow-Teller. This result is in agreement with detailed shell model calculations of the M1 transition. The photon spectrum for radiative pion capture from flight (reaction /sup 12/C(..pi../sup +/ T = 44 MeV, ..gamma.. at 90/sup 0/)) has been measured. 13 figures, 12 tables.

  16. An unprecedented nucleic acid capture mechanism for excision of DNA damage

    SciTech Connect

    Rubinson, Emily H.; Prakasha Gowda, A.S.; Spratt, Thomas E.; Gold, Barry; Eichmanbrand, Brandt F.

    2010-11-18

    DNA glycosylases that remove alkylated and deaminated purine nucleobases are essential DNA repair enzymes that protect the genome, and at the same time confound cancer alkylation therapy, by excising cytotoxic N3-methyladenine bases formed by DNA-targeting anticancer compounds. The basis for glycosylase specificity towards N3- and N7-alkylpurines is believed to result from intrinsic instability of the modified bases and not from direct enzyme functional group chemistry. Here we present crystal structures of the recently discovered Bacillus cereus AlkD glycosylase in complex with DNAs containing alkylated, mismatched and abasic nucleotides. Unlike other glycosylases, AlkD captures the extrahelical lesion in a solvent-exposed orientation, providing an illustration for how hydrolysis of N3- and N7-alkylated bases may be facilitated by increased lifetime out of the DNA helix. The structures and supporting biochemical analysis of base flipping and catalysis reveal how the HEAT repeats of AlkD distort the DNA backbone to detect non-Watson-Crick base pairs without duplex intercalation.

  17. An absorption mechanism and polarity-induced viscosity model for CO2 capture using hydroxypyridine-based ionic liquids.

    PubMed

    An, Xiaowei; Du, Xiao; Duan, Donghong; Shi, Lijuan; Hao, Xiaogang; Lu, Houfang; Guan, Guoqing; Peng, Changjun

    2017-01-04

    A series of new hydroxypyridine-based ionic liquids (ILs) are synthesized and applied in CO2 capture through chemical absorption, in which one IL, i.e., tetrabutylphosphonium 2-hydroxypyridine ([P4444][2-Op]), shows a viscosity as low as 193 cP with an absorption capacity as high as 1.20 mol CO2 per mol IL. Because the traditional anion-CO2 absorption mechanism cannot provide an explanation for the influences of cations and temperature on CO2 absorption capacity, herein, a novel cation-participating absorption mechanism based on the proton transfer is proposed to explain the high absorption capacity and the existence of a turning point of absorption capacity with the increase of temperature for the capture of CO2 using [P4444][n-Op] (n = 2, 3, 4) ILs. Also, the relationship between the viscosity of ILs and the linear interaction energy is proposed for the first time, which can guide how to design and synthesize ILs with low viscosity. Quantum chemistry calculations, which are based on the comprehensive analysis of dipole moment, cation-anion interaction energy and surface electrostatic potential, indicate that the different viscosities of hydroxypyridine-based ILs and the changes after CO2 absorption mainly resulted from the different distribution of negative charges in the anion.

  18. Mechanisms of Radiation Toxicity in Transformed and Non-Transformed Cells

    PubMed Central

    Panganiban, Ronald-Allan M.; Snow, Andrew L.; Day, Regina M.

    2013-01-01

    Radiation damage to biological systems is determined by the type of radiation, the total dosage of exposure, the dose rate, and the region of the body exposed. Three modes of cell death—necrosis, apoptosis, and autophagy—as well as accelerated senescence have been demonstrated to occur in vitro and in vivo in response to radiation in cancer cells as well as in normal cells. The basis for cellular selection for each mode depends on various factors including the specific cell type involved, the dose of radiation absorbed by the cell, and whether it is proliferating and/or transformed. Here we review the signaling mechanisms activated by radiation for the induction of toxicity in transformed and normal cells. Understanding the molecular mechanisms of radiation toxicity is critical for the development of radiation countermeasures as well as for the improvement of clinical radiation in cancer treatment. PMID:23912235

  19. Mechanical radiation detection via sub-Brownian lever deflections

    NASA Astrophysics Data System (ADS)

    Hammig, Mark David

    2005-07-01

    A micromechanical lever that deflects in response to the impacts of charged particles is proposed as a means of improving upon the capabilities of existing radiation detection technology. When a particle strikes an object, momentum is transferred to the impacted body. The resulting body motion can be correlated to the energy of the incident particle. The momentum detector offers promise as a highly discriminating, high-resolution tool for ion sensing. Advances required to successfully realize a spectroscopic capability have been completed; specifically, techniques for reproducibly fabricating micromechanical structures have been optimized, and an instrument that measures miniscule deflections has been developed. Even absent substantial refinement efforts, the novel coupled-cavity optical detector can resolve lever motions on the order of 1--10 picometers. A method by which the Brownian motion of the lever can be stilled has been proven which elicits reductions sufficient to measure heavy-ion impact, the deflections from which may be several orders of magnitude below the thermal vibration amplitude. Using active forcing techniques, the Brownian vibration of the microlevers has been reduced from room temperature (288 K) to sub-Kelvin temperatures, for levers vibrating in air. The mechanical factors that limit the noise reduction magnitude are discussed and methods of surmounting those limitations are identified.

  20. An Efficient Low-Velocity Resonant Mechanism for Capture of Planetesimals by a Protoplanet

    NASA Astrophysics Data System (ADS)

    Kortenkamp, S. J.

    2002-09-01

    Models of planet formation [1-3] indicate that growth of protoplanetary embryos may stall when the largest bodies reach about 2-3 Earth-masses (M⊕ ). This is many times smaller than the masses of both Uranus and Neptune and also well below the ~10 M⊕ size nominally required for subsequent accretion of a massive atmosphere in the core-accretion model of giant planet formation [4]. Numerical modeling of the combined effects of solar nebula gas drag and gravitational scattering of planetesimals by a protoplanet on an eccentric orbit reveals an alternative resonant mode of accretion that may allow embryo growth to continue beyond the 2-3 M⊕ limit. A significant fraction of planetesimals scattered onto high eccentricity orbits by the protoplanet become temporarily captured in an unusual 1:1 resonance with the protoplanet, where they orbit both the protoplanet and the sun with the same period [5]. These trapped planetesimals are dynamically similar to the so-called quasi-satellites in the restricted 3-body problem [6,7]. Under the continued influence of solar nebula gas drag the fate of these resonant planetesimals ultimately involves deep close-encounters with the protoplanet with velocities at closest approach just marginally above the protoplanet's escape velocity. In addition to a strong gravitational focusing effect, interaction with even a tenuous circumplanetary nebula could further enhance the efficiency with which the protoplanet accretes these resonant planetesimals. REFERENCES: [1] Lissauer et al., In Neptune and Triton (D.P. Cruikshank, Ed.) U. Arizona Press, Tucson, 37--108, 1995. [2] Levison & Stewart, Icarus 153, 224--228, 2001. [3] Inaba & Wetherill, LPSC 32, abstract #1384, 2001. [4] Pollack et al., Icarus 124, 62--85, 1996. [5] Kortenkamp & Hamilton, Icarus (in preparation). [6] Peterson, Ph.D. dissertation, MIT, 1976. [7] Wiegert et al., AJ 119, 1978--1984, 2000.

  1. Capturing Students' Abstraction While Solving Organic Reaction Mechanism Problems across a Semester

    ERIC Educational Resources Information Center

    Weinrich, M. L.; Sevian, H.

    2017-01-01

    Students often struggle with solving mechanism problems in organic chemistry courses. They frequently focus on surface features, have difficulty attributing meaning to symbols, and do not recognize tasks that are different from the exact tasks practiced. To be more successful, students need to be able to extract salient features, map similarities…

  2. Capturing Students' Abstraction While Solving Organic Reaction Mechanism Problems across a Semester

    ERIC Educational Resources Information Center

    Weinrich, M. L.; Sevian, H.

    2017-01-01

    Students often struggle with solving mechanism problems in organic chemistry courses. They frequently focus on surface features, have difficulty attributing meaning to symbols, and do not recognize tasks that are different from the exact tasks practiced. To be more successful, students need to be able to extract salient features, map similarities…

  3. Mechanisms of CO2 Capture into Monoethanolamine Solution with Different CO2 Loading during the Absorption/Desorption Processes.

    PubMed

    Lv, Bihong; Guo, Bingsong; Zhou, Zuoming; Jing, Guohua

    2015-09-01

    Though the mechanism of MEA-CO2 system has been widely studied, there is few literature on the detailed mechanism of CO2 capture into MEA solution with different CO2 loading during absorption/desorption processes. To get a clear picture of the process mechanism, (13)C nuclear magnetic resonance (NMR) was used to analyze the reaction intermediates under different CO2 loadings and detailed mechanism on CO2 absorption and desorption in MEA was evaluated in this work. The results demonstrated that the CO2 absorption in MEA started with the formation of carbamate according to the zwitterion mechanism, followed by the hydration of CO2 to form HCO3(-)/CO3(2-), and accompanied by the hydrolysis of carbamate. It is interesting to find that the existence of carbamate will be influenced by CO2 loading and that it is rather unstable at high CO2 loading. At low CO2 loading, carbamate is formed fast by the reaction between CO2 and MEA. At high CO2 loading, it is formed by the reaction of CO3(-)/CO3(2-) with MEA, and the formed carbamate can be easily hydrolyzed by H(+). Moreover, CO2 desorption from the CO2-saturated MEA solution was proved to be a reverse process of absorption. Initially, some HCO3(-) were heated to release CO2 and other HCO3(-) were reacted with carbamic acid (MEAH(+)) to form carbamate, and the carbamate was then decomposed to MEA and CO2.

  4. Experimental search for the radiative capture reaction d + d {yields} {sup 4}He + {gamma} from the dd{mu} muonic molecule state J = 1

    SciTech Connect

    Baluev, V. V.; Bogdanova, L. N.; Bom, V. R.; Demin, D. L.; Eijk, C. W. E. van; Filchenkov, V. V.; Grafov, N. N.; Grishechkin, S. K.; Gritsaj, K. I.; Konin, A. D.; Mikhailyukov, K. L.; Rudenko, A. I.; Vinogradov, Yu. I.; Volnykh, V. P.; Yukhimchuk, A. A.; Yukhimchuk, S. A.

    2011-07-15

    A search for the muon-catalyzed fusion reaction d + d {yields} {sup 4}He + {gamma} in the dd{mu} muonic molecule was performed using the experimental installation TRITON with BGO detectors for {gamma}-quanta. A high-pressure target filled with deuterium was exposed to the negative muon beam of the JINR Phasotron to detect {gamma}-quanta with the energy 23.8 MeV. An experimental estimation for the yield of radiative deuteron capture from the dd{mu} state J = 1 was obtained at the level of {eta}{sub {gamma}} {<=} 8 Multiplication-Sign 10{sup -7} per fusion.

  5. Mechanism for rapid passive-dynamic prey capture in a pitcher plant.

    PubMed

    Bauer, Ulrike; Paulin, Marion; Robert, Daniel; Sutton, Gregory P

    2015-10-27

    Plants use rapid movements to disperse seed, spores, or pollen and catch animal prey. Most rapid-release mechanisms only work once and, if repeatable, regaining the prerelease state is a slow and costly process. We present an encompassing mechanism for a rapid, repeatable, passive-dynamic motion used by a carnivorous pitcher plant to catch prey. Nepenthes gracilis uses the impact of rain drops to catapult insects from the underside of the canopy-like pitcher lid into the fluid-filled trap below. High-speed video and laser vibrometry revealed that the lid acts as a torsional spring system, driven by rain drops. During the initial downstroke, the tip of the lid reached peak velocities similar to fast animal motions and an order of magnitude faster than the snap traps of Venus flytraps and catapulting tentacles of the sundew Drosera glanduligera. In contrast to these active movements, the N. gracilis lid oscillation requires neither mechanical preloading nor metabolic energy, and its repeatability is only limited by the intensity and duration of rainfall. The underside of the lid is coated with friction-reducing wax crystals, making insects more vulnerable to perturbations. We show that the trapping success of N. gracilis relies on the combination of material stiffness adapted for momentum transfer and the antiadhesive properties of the wax crystal surface. The impact-driven oscillation of the N. gracilis lid represents a new kind of rapid plant movement with adaptive function. Our findings establish the existence of a continuum between active and passive trapping mechanisms in carnivorous plants.

  6. Mechanism for rapid passive-dynamic prey capture in a pitcher plant

    PubMed Central

    Bauer, Ulrike; Paulin, Marion; Robert, Daniel; Sutton, Gregory P.

    2015-01-01

    Plants use rapid movements to disperse seed, spores, or pollen and catch animal prey. Most rapid-release mechanisms only work once and, if repeatable, regaining the prerelease state is a slow and costly process. We present an encompassing mechanism for a rapid, repeatable, passive-dynamic motion used by a carnivorous pitcher plant to catch prey. Nepenthes gracilis uses the impact of rain drops to catapult insects from the underside of the canopy-like pitcher lid into the fluid-filled trap below. High-speed video and laser vibrometry revealed that the lid acts as a torsional spring system, driven by rain drops. During the initial downstroke, the tip of the lid reached peak velocities similar to fast animal motions and an order of magnitude faster than the snap traps of Venus flytraps and catapulting tentacles of the sundew Drosera glanduligera. In contrast to these active movements, the N. gracilis lid oscillation requires neither mechanical preloading nor metabolic energy, and its repeatability is only limited by the intensity and duration of rainfall. The underside of the lid is coated with friction-reducing wax crystals, making insects more vulnerable to perturbations. We show that the trapping success of N. gracilis relies on the combination of material stiffness adapted for momentum transfer and the antiadhesive properties of the wax crystal surface. The impact-driven oscillation of the N. gracilis lid represents a new kind of rapid plant movement with adaptive function. Our findings establish the existence of a continuum between active and passive trapping mechanisms in carnivorous plants. PMID:26438874

  7. Nondestructive Methods to Characterize Rock Mechanical Properties at Low-Temperature: Applications for Asteroid Capture Technologies

    NASA Astrophysics Data System (ADS)

    Savage, Kara A.

    Recent government initiatives and commercial activities have targeted asteroids for in situ material characterization, manipulation, and possible resource extraction. Most of these activities and missions have proposed significant robotic components, given the risks and costs associated with manned missions. To successfully execute these robotic activities, detailed mechanical characteristics of the target space bodies must be known prior to contact, in order to appropriately plan and direct the autonomous robotic protocols. Unfortunately, current estimates of asteroid mechanical properties are based on limited direct information, and significant uncertainty remains specifically concerning internal structures, strengths, and elastic properties of asteroids. One proposed method to elucidate this information is through in situ, nondestructive testing of asteroid material immediately after contact, but prior to any manipulation or resource extraction activities. While numerous nondestructive rock characterization techniques have been widely deployed for terrestrial applications, these methods must be adapted to account for unique properties of asteroid material and environmental conditions of space. For example, asteroid surface temperatures may range from -100°C to 30°C due to diurnal cycling, and these low temperatures are especially noteworthy due to their deleterious influence on non-destructive testing. As a result, this thesis investigates the effect of low temperature on the mechanical characteristics and nondestructive technique responses of rock material. Initially, a novel method to produce low temperature rock samples was developed. Dry ice and methanol cooling baths of specific formulations were used to decrease rock to temperatures ranging from -60°C to 0°C. At these temperatures, shale, chalk, and limestone rock samples were exposed to several nondestructive and conventional mechanical tests, including Schmidt hammer, ultrasonic pulse velocity, point

  8. Observation of parity nonconservation in the total cross section and in the cross section for the radiative capture of polarized thermal neutrons in /sup 79,81/Br

    SciTech Connect

    Vesna, V.A.; Kolomenskii, E.A.; Lobashev, V.M.; Pirozhkov, A.N.; Smotritskii, L.M.; Titov, N.A.

    1982-04-20

    Parity (P) nonconservation effects have been measured in the total and radiative cross sections in /sup 79,81/Br: (sigma/sup +//sub tot/-sigma/sup -//sub tot/)/(sigma/sup +//sub tot/+sigma/sup -//sub tot/) = (9.8 +- 1.0) x 10/sup -6/sigma/sub tot/) = 15.5 b and (sigma/sup +//sub ..gamma../-sigma/sup -//sub ..gamma../)/(sigma/sup +//sub ..gamma../+sigma/sup -//sub ..gamma../) = (15.5 +- 1.5) x 10/sup -6/sigma/sub ..gamma../ = 9.8 b, where the +- correspond to opposite neutron helicities. It follows from the results that the P-odd effect in the total cross section is determined by radiative capture, within the experimental error.

  9. Mechanisms of CO2 capture in ionic liquids: a computational perspective.

    PubMed

    Mercy, Maxime; de Leeuw, Nora H; Bell, Robert G

    2016-10-20

    We present computational studies of CO2 sorption in two different classes of ionic liquid. The addition of carbon dioxide to four superbase ionic liquids, [P3333][Benzim], [P3333][124Triz], [P3333][123Triz] and [P3333][Bentriz], was studied using the DFT approach and considering anions alone and individual ion pairs. The addition of CO2 to the anion alone clearly resulted in the formation of a covalently-bound carbamate function with the strength of binding correlated to experimental capacity. In the ion pair however the cation significantly alters the nature of the bonding such that the overall cohesive energy is reduced. Formation of a strong carbamate function occurs at the expense of weakening the interaction between anion and cation. In [N1111][l-ALA], a representative amino acid ionic liquid, evidence was found for a low-energy monomolecular mechanism for carbamate formation, explaining the 1 : 1 molar uptake ratio observed in some amino acid ionic liquids. The mechanism involves proton transfer to the carboxylate group of the aminate anion.

  10. Capturing of the internal mechanics of liquid-granular flows comprised of polydisperse spherical particles

    NASA Astrophysics Data System (ADS)

    Gollin, Devis; Bowman, Elisabeth

    2017-06-01

    This paper presents a series of flume experiments designed to examine the motion and arrest of concentrated granular-fluid flows, with a view to understanding the role of polydispersity in debris flows. A non-intrusive technique is used to investigate the internal behaviour of small scale experimental flows. Three different particle size distributions comprised of polydisperse spherical particles and one with the finer component made of angular particles were analysed. The choice of using spherical shaped particles was made to improve the visualization of the internal mechanics without reducing overmuch the complexity involved in the study of these flows. We examined and compared the internal velocities of the flows and their depositional spreads. While the optical performance of the non-intrusive technique was improved, some of the characteristics commonly seen in these types of granular flows were not observed. Velocity profiles obtained in the body of the flows were similar in shape but with differences in velocity magnitude depending on the amount of fines and the angularity of the particle in one case. Depositional runouts between flows were similar at low inclinations when little internal energy was supplemented to the system or when the viscous effects dominated the mechanics at steeper angles.

  11. Isomeric ratio measurements for the radiative neutron capture 176Lu(n ,γ ) at the LANL DANCE facility

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Morillon, B.; Romain, P.; Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-11-01

    The isomeric ratios for the neutron capture reaction 176Lu(n ,γ ) to the Jπ=5 /2- , 761.7 keV, T1 /2=32.8 ns and the Jπ=15 /2+ , 1356.9 keV, T1 /2=11.1 ns levels of 177Lu have been measured for the first time. The experiment was carried out with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. Measured isomeric ratios are compared with talys calculations using different models for photon strength functions, level densities, and optical potentials. In order to reproduce the experimental γ -ray spectra, a low-energy resonance must be added in the photon strength function used in our Hauser-Feshbach calculations.

  12. The linear accelerator mechanical and radiation isocentre assessment with an electronic portal imaging device (EPID).

    PubMed

    Liu, G; van Doorn, T; Bezak, E

    2004-09-01

    Regular checks on the performance of radiotherapy treatment units are essential and a variety of protocols has been published. These protocols identify that the determination of isocentre must be accurate and unambiguous since both the localization of a radiation field on a patient and positioning aids are referenced to it. An EPID (BIS 710) with a combined light and radiation scintillation detector screen was used to assess mechanical and radiation isocentres for different collimator and gantry angles. Crosshair positions within light field images were determined from fitted Gaussian intensity profiles and then used to calculate the displacement of the mechanical isocentre. For comparison, the position of the crosshair was also recorded on a graph paper. The radiation field centre was first calculated from the set up geometry for given gantry/collimator angles and then compared with measured values to assess the displacement of the radiation isocentre. The radiation isocentre was also checked by locating a marker, positioned on the couch, on the EPID radiation images for different treatment couch angles. The mechanical and radiation isocentres were determined from the EPID light field and radiation images respectively with an accuracy of 0.3 mm using simple PC based programs. The study has demonstrated the feasibility of using the EPID to assess mechanical and radiation isocentres of a linear accelerator in a quick and efficient way with a higher degree of accuracy achieved as compared to more conventional methods, e.g. the star shot.

  13. Engineering the Cyanobacterial Carbon Concentrating Mechanism for Enhanced CO2 Capture and Fixation

    SciTech Connect

    Sandh, Gustaf; Cai, Fei; Shih, Patrick; Kinney, James; Axen, Seth; Salmeen, Annette; Zarzycki, Jan; Sutter, Markus; Kerfeld, Cheryl

    2011-06-02

    In cyanobacteria CO2 fixation is localized in a special proteinaceous organelle, the carboxysome. The CO2 fixation enzymes are encapsulated by a selectively permeable protein shell. By structurally and functionally characterizing subunits of the carboxysome shell and the encapsulated proteins, we hope to understand what regulates the shape, assembly and permeability of the shell, as well as the targeting mechanism and organization of the encapsulated proteins. This knowledge will be used to enhance CO2 fixation in both cyanobacteria and plants through synthetic biology. The same strategy can also serve as a template for the production of modular synthetic bacterial organelles. Our research is conducted using a variety of techniques such as genomic sequencing and analysis, transcriptional regulation, DNA synthesis, synthetic biology, protein crystallization, Small Angle X-ray Scattering (SAXS), protein-protein interaction assays and phenotypic characterization using various types of cellular imaging, e.g. fluorescence microscopy, Transmission Electron Microscopy (TEM), and Soft X-ray Tomography (SXT).

  14. New amines for CO{sub 2} capture. II. oxidative degradation mechanisms

    SciTech Connect

    Lepaumier, H.; Picq, D.; Carrette, P.L.

    2009-10-15

    This study examines oxidative degradation of 12 ethanolamines and ethylenediamines. They were chosen to establish structure-property relationships: the role of replacement of the alcohol function by one second amine function, amine nature, steric hindrance, and cyclic structure were studied. Degradation of aqueous amine solutions was evaluated at 140{sup o}C under air pressure (2 MPa) in stainless steel reactors for 15 days. At the end of the run, most degradation products were identified by gas chromatography (GC)/mass spectrometry (MS); amounts of remaining amine and its degradation products were determined with the quantitative GC method. Main degradation mechanisms are proposed, and some relationships between structure and chemical stability are given.

  15. Understanding of Electrochemical Mechanisms for CO2 Capture and Conversion into Hydrocarbon Fuels in Transition-Metal Carbides (MXenes).

    PubMed

    Li, Neng; Chen, Xingzhu; Ong, Wee-Jun; MacFarlane, Douglas R; Zhao, Xiujian; Cheetham, Anthony K; Sun, Chenghua

    2017-09-13

    Two-dimensional (2D) transition-metal (groups IV, V, VI) carbides (MXenes) with formulas M3C2 have been investigated as CO2 conversion catalysts with well-resolved density functional theory calculations. While MXenes from the group IV to VI series have demonstrated an active behavior for the capture of CO2, the Cr3C2 and Mo3C2 MXenes exhibit the most promising CO2 to CH4 selective conversion capabilities. Our results predicted the formation of OCHO(•) and HOCO(•) radical species in the early hydrogenation steps through spontaneous reactions. This provides atomic level insights into the computer-aided screening for high-performance catalysts and the understanding of electrochemical mechanisms for CO2 reduction to energy-rich hydrocarbon fuels, which is of fundamental significance to elucidate the elementary steps for CO2 fixation.

  16. Chromosome aberrations as biomarkers of radiation exposure: Modelling basic mechanisms

    NASA Astrophysics Data System (ADS)

    Ballarini, F.; Ottolenghi, A.

    The space radiation environment is a mixed field consisting of different particles having different energies, including high charge and energy (HZE) ions. Conventional measurements of absorbed doses may not be sufficient to completely characterise the radiation field and perform reliable estimates of health risks. Biological dosimetry, based on the observation of specific radiation-induced endpoints (typically chromosome aberrations), can be a helpful approach in case of monitored exposure to space radiation or other mixed fields, as well as in case of accidental exposure. Furthermore, various ratios of aberrations (e.g. dicentric chromosomes to centric rings and complex exchanges to simple exchanges) have been suggested as possible fingerprints of radiation quality, although all of them have been subjected to some criticisms. In this context a mechanistic model and a Monte Carlo code for the simulation of chromosome aberration induction were developed. The model, able to provide dose-responses for different aberrations (e.g. dicentrics, rings, fragments, translocations, insertions and other complex exchanges), was further developed to assess the dependence of various ratios of aberrations on radiation quality. The predictions of the model were compared with available data, whose experimental conditions were faithfully reproduced. Particular attention was devoted to the scoring criteria adopted in different laboratories and to possible biases introduced by interphase death and mitotic delay. This latter aspect was investigated by taking into account both metaphase data and data obtained with Premature Chromosome Condensation (PCC).

  17. Sorption Mechanisms for Mercury Capture in Warm Post-Gasification Gas Clean-Up Systems

    SciTech Connect

    Jost Wendt; Sung Jun Lee; Paul Blowers

    2008-09-30

    The research was directed towards a sorbent injection/particle removal process where a sorbent may be injected upstream of the warm gas cleanup system to scavenge Hg and other trace metals, and removed (with the metals) within the warm gas cleanup process. The specific objectives of this project were to understand and quantify, through fundamentally based models, mechanisms of interaction between mercury vapor compounds and novel paper waste derived (kaolinite + calcium based) sorbents (currently marketed under the trade name MinPlus). The portion of the research described first is the experimental portion, in which sorbent effectiveness to scavenge metallic mercury (Hg{sup 0}) at high temperatures (>600 C) is determined as a function of temperature, sorbent loading, gas composition, and other important parameters. Levels of Hg{sup 0} investigated were in an industrially relevant range ({approx} 25 {micro}g/m{sup 3}) although contaminants were contained in synthetic gases and not in actual flue gases. A later section of this report contains the results of the complementary computational results.

  18. Simulated space radiation sensitizes bone but not muscle to the catabolic effects of mechanical unloading.

    PubMed

    Krause, Andrew R; Speacht, Toni L; Zhang, Yue; Lang, Charles H; Donahue, Henry J

    2017-01-01

    Deep space travel exposes astronauts to extended periods of space radiation and mechanical unloading, both of which may induce significant muscle and bone loss. Astronauts are exposed to space radiation from solar particle events (SPE) and background radiation referred to as galactic cosmic radiation (GCR). To explore interactions between skeletal muscle and bone under these conditions, we hypothesized that decreased mechanical load, as in the microgravity of space, would lead to increased susceptibility to space radiation-induced bone and muscle loss. We evaluated changes in bone and muscle of mice exposed to hind limb suspension (HLS) unloading alone or in addition to proton and high (H) atomic number (Z) and energy (E) (HZE) (16O) radiation. Adult male C57Bl/6J mice were randomly assigned to six groups: No radiation ± HLS, 50 cGy proton radiation ± HLS, and 50 cGy proton radiation + 10 cGy 16O radiation ± HLS. Radiation alone did not induce bone or muscle loss, whereas HLS alone resulted in both bone and muscle loss. Absolute trabecular and cortical bone volume fraction (BV/TV) was decreased 24% and 6% in HLS-no radiation vs the normally loaded no-radiation group. Trabecular thickness and mineral density also decreased with HLS. For some outcomes, such as BV/TV, trabecular number and tissue mineral density, additional bone loss was observed in the HLS+proton+HZE radiation group compared to HLS alone. In contrast, whereas HLS alone decreased muscle mass (19% gastrocnemius, 35% quadriceps), protein synthesis, and increased proteasome activity, radiation did not exacerbate these catabolic outcomes. Our results suggest that combining simulated space radiation with HLS results in additional bone loss that may not be experienced by muscle.

  19. Simulated space radiation sensitizes bone but not muscle to the catabolic effects of mechanical unloading

    PubMed Central

    Krause, Andrew R.; Speacht, Toni L.; Zhang, Yue; Lang, Charles H.

    2017-01-01

    Deep space travel exposes astronauts to extended periods of space radiation and mechanical unloading, both of which may induce significant muscle and bone loss. Astronauts are exposed to space radiation from solar particle events (SPE) and background radiation referred to as galactic cosmic radiation (GCR). To explore interactions between skeletal muscle and bone under these conditions, we hypothesized that decreased mechanical load, as in the microgravity of space, would lead to increased susceptibility to space radiation-induced bone and muscle loss. We evaluated changes in bone and muscle of mice exposed to hind limb suspension (HLS) unloading alone or in addition to proton and high (H) atomic number (Z) and energy (E) (HZE) (16O) radiation. Adult male C57Bl/6J mice were randomly assigned to six groups: No radiation ± HLS, 50 cGy proton radiation ± HLS, and 50 cGy proton radiation + 10 cGy 16O radiation ± HLS. Radiation alone did not induce bone or muscle loss, whereas HLS alone resulted in both bone and muscle loss. Absolute trabecular and cortical bone volume fraction (BV/TV) was decreased 24% and 6% in HLS-no radiation vs the normally loaded no-radiation group. Trabecular thickness and mineral density also decreased with HLS. For some outcomes, such as BV/TV, trabecular number and tissue mineral density, additional bone loss was observed in the HLS+proton+HZE radiation group compared to HLS alone. In contrast, whereas HLS alone decreased muscle mass (19% gastrocnemius, 35% quadriceps), protein synthesis, and increased proteasome activity, radiation did not exacerbate these catabolic outcomes. Our results suggest that combining simulated space radiation with HLS results in additional bone loss that may not be experienced by muscle. PMID:28767703

  20. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    NASA Technical Reports Server (NTRS)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  1. Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta

    NASA Technical Reports Server (NTRS)

    Robberecht, R.; Caldwell, M. M.

    1981-01-01

    Plant adaptations ameliorating or repairing the damaging effects of ultraviolet-B (UV-B) radiation on plant tissue were investigated. The degree of phenotype plasticity in UV protective mechanisms and acclimation in relation to the natural solar UV-B radiation flux and in an enhanced UV-B irradiance environment was also examined. Mechanisms by which plants avoid radiation, adaptations altering the path of radiation incident on the leaf, and repair processes were considered. Attenuation of UV-B by tissues, UV-B irradiation into the leaf, and the effects of UV-B on photosynthesis were investigated.

  2. Capturing the Energy Absorbing Mechanisms of Composite Structures under Crash Loading

    NASA Astrophysics Data System (ADS)

    Wade, Bonnie

    As fiber reinforced composite material systems become increasingly utilized in primary aircraft and automotive structures, the need to understand their contribution to the crashworthiness of the structure is of great interest to meet safety certification requirements. The energy absorbing behavior of a composite structure, however, is not easily predicted due to the great complexity of the failure mechanisms that occur within the material. Challenges arise both in the experimental characterization and in the numerical modeling of the material/structure combination. At present, there is no standardized test method to characterize the energy absorbing capability of composite materials to aide crashworthy structural design. In addition, although many commercial finite element analysis codes exist and offer a means to simulate composite failure initiation and propagation, these models are still under development and refinement. As more metallic structures are replaced by composite structures, the need for both experimental guidelines to characterize the energy absorbing capability of a composite structure, as well as guidelines for using numerical tools to simulate composite materials in crash conditions has become a critical matter. This body of research addresses both the experimental characterization of the energy absorption mechanisms occurring in composite materials during crushing, as well as the numerical simulation of composite materials undergoing crushing. In the experimental investigation, the specific energy absorption (SEA) of a composite material system is measured using a variety of test element geometries, such as corrugated plates and tubes. Results from several crush experiments reveal that SEA is not a constant material property for laminated composites, and varies significantly with the geometry of the test specimen used. The variation of SEA measured for a single material system requires that crush test data must be generated for a range of

  3. Radiation fractionation: the search for isoeffect relationships and mechanisms.

    PubMed

    Moulder, John E; Seymour, Colin

    2017-10-02

    Review the historical basis for the use of fractionated radiation in radiation oncology. The history of dose fractionation in radiation oncology is long and tortuous, and the radiobiologist's understanding of why fractionation worked came decades after radiation oncologists had adopted multi-week daily-dose fractionation as 'standard'. Central to the history is the search for 'isoeffective' formulas that would allow different radiation schedules to be compared. Initially, this meant dealing with different lengths of treatment, leading to the 1944 Strandqvist formulation that dominated thinking for decades. Concerns about the number of fractions, not just the total time, led to the 1967 Ellis NSD formulation that held sway through the 1980s. The development of experimental radiotherapy in 1970s (e.g. Fowler's work at the Gray Laboratory, and Fischer's work at Yale) led to biologically-based approaches that culminated with the Biologically Effective Dose (BED) concept. BED is the current dogma for treatment optimization, but it must be used with caution, as there are multiple formulations, and some parameters have debatable values. There is also a controversy about whether BED is biologically-based or a 'curve-fitting' exercise. These latter issues are beyond the scope of this article, but the history of fractionation models suggests that our current concepts are probably wrong, although when used with caution they are clearly useful.

  4. Chromosome aberrations as biomarkers of radiation quality: modelling basic mechanisms

    NASA Astrophysics Data System (ADS)

    Ottolenghi, A.; Ballarini, F.

    Since space radiation consists of a mixed field of different particles having different energies, including HZE ions, conventional measurements of absorbed doses are not sufficient to completely characterise the radiation field and perform reliable estimates of health risks. Biological dosimetry, based on the observation of specific radiation-induced endpoints (typically chromosome aberrations) after exposure, can be a helpful approach in case of monitored exposure to space radiation or other mixed fields, as well as in case of accidental exposure. Although various ratios of aberrations (e.g. dicentrics to centric rings and complex exchanges to simple exchanges) have been suggested as possible biomarkers both in theoretical and in experimental studies, all of them have been subjected to some criticisms. In this context a mechanistic model and a Monte Carlo code for the simulation of chromosome aberrations was developed. The model, able to provide dose-responses for different aberrations (e.g. dicentrics, rings, translocations, insertions and other complex exchanges), was further developed to assess the dependence of various ratios of aberrations on radiation quality. The predictions of the model were compared with available data, whose experimental conditions were faithfully reproduced. Particular attention was devoted to the scoring criteria adopted in different laboratories and to possible biases introduced by interphase death and mitotic delay; this latter aspect was investigated by taking into account both metaphase data and data obtained with PCC (Premature Chromosome Condensation).

  5. Simulating coupled thermal-mechanical interactions in morphing radiators

    NASA Astrophysics Data System (ADS)

    Bertagne, Christopher L.; Sheth, Rubik B.; Hartl, Darren J.; Whitcomb, John D.

    2015-04-01

    Thermal control is an important aspect of every spacecraft. The thermal control system (TCS) must maintain the temperature of all other systems within acceptable limits in spite of changes in environmental conditions or heat loads. Most thermal control systems used in crewed vehicles use a two-fluid-loop architecture in order to achieve the flexibility demanded by the mission. The two-loop architecture provides sufficient performance, but it does so at the cost of additional mass. A recently-proposed radiator concept known as a morphing radiator employs shape memory alloys in order to achieve the performance necessary to use a single-loop TCS architecture. However, modeling the behavior of morphing radiators is challenging due to the presence of a unique and complex thermomechanical coupling. In this work, a partitioned analysis procedure is implemented with existing finite element solvers in order to explore the behavior of a possible shape memory alloy-based morphing radiator in a mission-like thermal environment. The results help confirm the theory of operation and demonstrate the ability of this method to support the design and development of future morphing radiators.

  6. Radiation dose measurements and Monte Carlo calculations for neutron and photon reactions in a human head phantom for accelerator-based boron neutron capture therapy

    NASA Astrophysics Data System (ADS)

    Kim, Don-Soo

    Dose measurements and radiation transport calculations were investigated for the interactions within the human brain of fast neutrons, slow neutrons, thermal neutrons, and photons associated with accelerator-based boron neutron capture therapy (ABNCT). To estimate the overall dose to the human brain, it is necessary to distinguish the doses from the different radiation sources. Using organic scintillators, human head phantom and detector assemblies were designed, constructed, and tested to determine the most appropriate dose estimation system to discriminate dose due to the different radiation sources that will ultimately be incorporated into a human head phantom to be used for dose measurements in ABNCT. Monoenergetic and continuous energy neutrons were generated via the 7Li(p,n)7Be reaction in a metallic lithium target near the reaction threshold using the 5.5 MV Van de Graaff accelerator at the University of Massachusetts Lowell. A human head phantom was built to measure and to distinguish the doses which result from proton recoils induced by fast neutrons, alpha particles and recoil lithium nuclei from the 10B(n,alpha)7Li reaction, and photons generated in the 7Li accelerator target as well as those generated inside the head phantom through various nuclear reactions at the same time during neutron irradiation procedures. The phantom consists of two main parts to estimate dose to tumor and dose to healthy tissue as well: a 3.22 cm3 boron loaded plastic scintillator which simulates a boron containing tumor inside the brain and a 2664 cm3 cylindrical liquid scintillator which represents the surrounding healthy tissue in the head. The Monte Carlo code MCNPX(TM) was used for the simulation of radiation transport due to neutrons and photons and extended to investigate the effects of neutrons and other radiation on the brain at various depths.

  7. Physical and chemical mechanisms in molecular radiation biology

    SciTech Connect

    Glass, W.A.; Varma, M.N.

    1991-01-01

    Through its Radiological and Chemical Physics Program, the Department of Energy (DOE) has been a primary source of funding for research in radiation physics and radiochemistry, supporting a wide range of explorations of the link between physical, chemical and biological events. This book is a series of articles by authors working within this field, most of whom have been central to the DOE-sponsored research. The opening papers focus on radiological physics; the second section covers radiation chemistry in a discussion that extends from the initial energy transfer to the production of intermediate chemical species and DNA damage. The third section explores the link between the physical and chemical events and the production of biological effects. Finally the book closes with a series of papers on molecular radiation biology.

  8. [Mechanism of cytogenetic adaptive response induced by low dose radiation].

    PubMed

    Cai, L; Liu, S

    1990-11-01

    Cytogenetic observation on human lymphocytes indicated that pre-exposure of 10, 50 and 75 mGy X-rays could induced the adaptive response. Experimental results with different temperature treatment showed that the adaptive response induced by low dose radiation could be enhanced by 41 degrees C and 43 degrees C, but inhibited by 4 degrees C in addition the treatment by 41 degrees C for one hour could also cause the adaptive response as did low dose radiation. Results showed that adaptive response induced by low dose radiation (10 or 50 mGy X-rays) could be eliminated by the protein synthesis inhibitor, implying that the adaptive response is related with the metabolism of cells, especially with the production of certain protective proteins.

  9. Malfunction of cardiac devices after radiotherapy without direct exposure to ionizing radiation: mechanisms and experimental data.

    PubMed

    Zecchin, Massimo; Morea, Gaetano; Severgnini, Mara; Sergi, Elisabetta; Baratto Roldan, Anna; Bianco, Elisabetta; Magnani, Silvia; De Luca, Antonio; Zorzin Fantasia, Anna; Salvatore, Luca; Milan, Vittorino; Giannini, Gianrossano; Sinagra, Gianfranco

    2016-02-01

    Malfunctions of cardiac implantable electronical devices (CIED) have been described after high-energy radiation therapy even in the absence of direct exposure to ionizing radiation, due to diffusion of neutrons (n) causing soft errors in inner circuits. The purpose of the study was to analyse the effect of scattered radiation on different types and models of CIED and the possible sources of malfunctions. Fifty-nine explanted CIED were placed on an anthropomorphous phantom of tissue-equivalent material, and a high-energy photon (15 MV) radiotherapy course (total dose = 70 Gy) for prostate treatment was performed. All devices were interrogated before and after radiation. Radiation dose, the electromagnetic field, and neutron fluence at the CIED site were measured. Thirty-four pacemakers (PM) and 25 implantable cardioverter-defibrillators (ICD) were analysed. No malfunctions were detected before radiation. After radiation a software malfunction was evident in 13 (52%) ICD and 6 (18%) PM; no significant electromagnetic field or photon radiations were detected in the thoracic region. Neutron capture was demonstrated by the presence of the (198)Au((197)Au + n) or (192)Ir((191)Ir + n) isotope activation; it was significantly greater in ICD than in PM and non-significantly greater in damaged devices. A greater effect in St Jude PM (2/2 damaged), Boston (9/11), and St Jude ICD (3/6) and in older ICD models was observed; the year of production was not relevant in PM. High-energy radiation can cause different malfunctions on CIED, particularly ICD, even without direct exposure to ionizing radiation due to scattered radiation of neutrons produced by the linear accelerator. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  10. DNA Protection Protein, a Novel Mechanism of Radiation Tolerance: Lessons from Tardigrades

    PubMed Central

    Hashimoto, Takuma; Kunieda, Takekazu

    2017-01-01

    Genomic DNA stores all genetic information and is indispensable for maintenance of normal cellular activity and propagation. Radiation causes severe DNA lesions, including double-strand breaks, and leads to genome instability and even lethality. Regardless of the toxicity of radiation, some organisms exhibit extraordinary tolerance against radiation. These organisms are supposed to possess special mechanisms to mitigate radiation-induced DNA damages. Extensive study using radiotolerant bacteria suggested that effective protection of proteins and enhanced DNA repair system play important roles in tolerability against high-dose radiation. Recent studies using an extremotolerant animal, the tardigrade, provides new evidence that a tardigrade-unique DNA-associating protein, termed Dsup, suppresses the occurrence of DNA breaks by radiation in human-cultured cells. In this review, we provide a brief summary of the current knowledge on extremely radiotolerant animals, and present novel insights from the tardigrade research, which expand our understanding on molecular mechanism of exceptional radio-tolerability. PMID:28617314

  11. The Mechanisms of Radiation-Induced Bystander Effect

    PubMed Central

    Najafi, M; Fardid, R; Hadadi, Gh; Fardid, M

    2014-01-01

    The radiation-induced bystander effect is the phenomenon which non-irradiated cells exhibit effects along with their different levels as a result of signals received from nearby irradiated cells. Responses of non-irradiated cells may include changes in process of translation, gene expression, cell proliferation, apoptosis and cells death. These changes are confirmed by results of some In-Vivo studies. Most well-known important factors affecting radiation-induced bystander effect include free radicals, immune system factors, expression changes of some genes involved in inflammation pathway and epigenetic factors. PMID:25599062

  12. Memory reconsolidation allows the consolidation of a concomitant weak learning through a synaptic tagging and capture mechanism.

    PubMed

    Cassini, Lindsey F; Sierra, Rodrigo O; Haubrich, Josué; Crestani, Ana P; Santana, Fabiana; de Oliveira Alvares, Lucas; Quillfeldt, Jorge A

    2013-10-01

    Motivated by the synaptic tagging and capture (STC) hypothesis, it was recently shown that a weak learning, only able to produce short-term memory (STM), can succeed in establishing long-term memory (LTM) with a concomitant, stronger experience. This is consistent with the capture, by the first-tagged event, of the so-called plasticity-related proteins (PRPs) provided by the second one. Here, we describe how a concomitant session of reactivation/reconsolidation of a stronger, contextual fear conditioning (CFC) memory, allowed LTM to result from a weak spatial object recognition (wSOR) training. Consistent with an STC process, the effect was observed only during a critical time window and was dependent on the CFC reconsolidation-related protein synthesis. Retrieval by itself (without reconsolidation) did not have the same promoting effect. We also found that the inactivation of the NMDA receptor by AP5 prevented wSOR training to receive this support of CFC reconsolidation (supposedly through the production of PRPs), which may be the equivalent of blocking the setting of a learning tag in the dorsal CA1 region for that task. Furthermore, either a Water Maze reconsolidation, or a CFC extinction session, allowed the formation of wSOR-LTM. These results suggest for the first time that a reconsolidation session can promote the consolidation of a concomitant weak learning through a probable STC mechanism. These findings allow new insights concerning the influence of reconsolidation in the acquisition of memories of otherwise unrelated events during daily life situations. Copyright © 2013 Wiley Periodicals, Inc.

  13. Thermal degradation of aqueous 2-aminoethylethanolamine in CO2 capture; identification of degradation products, reaction mechanisms and computational studies.

    PubMed

    Saeed, Idris Mohamed; Lee, Vannajan Sanghiran; Mazari, Shaukat Ali; Si Ali, B; Basirun, Wan Jeffrey; Asghar, Anam; Ghalib, Lubna; Jan, Badrul Mohamed

    2017-01-01

    Amine degradation is the main significant problems in amine-based post-combustion CO2 capture, causes foaming, increase in viscosity, corrosion, fouling as well as environmental issues. Therefore it is very important to develop the most efficient solvent with high thermal and chemical stability. This study investigated thermal degradation of aqueous 30% 2-aminoethylethanolamine (AEEA) using 316 stainless steel cylinders in the presence and absence of CO2 for 4 weeks. The degradation products were identified by gas chromatography mass spectrometry (GC/MS) and liquid chromatography-time-of-flight-mass spectrometry (LC-QTOF/MS). The results showed AEEA is stable in the absence of CO2, while in the presence of CO2 AEEA showed to be very unstable and numbers of degradation products were identified. 1-(2-Hydroxyethyl)-2-imidazolidinone (HEIA) was the most abundance degradation product. A possible mechanism for the thermal degradation of AEEA has been developed to explain the formation of degradation products. In addition, the reaction energy of formation of the most abundance degradation product HEIA was calculated using quantum mechanical calculation.

  14. Triggering star formation by both radiative and mechanical AGN feedback

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Gan, Zhao-Ming; Xie, Fu-Guo

    2013-08-01

    We perform two dimensional hydrodynamic numerical simulations to study the positive active galactic nucleus (AGN) feedback which triggers, rather than suppresses, star formation. Recently, it was shown by Nayakshin et al. and Ishibashi et al. that star formation occurs when the cold interstellar medium (ISM) is squeezed by the impact of mass outflow or radiation pressure, respectively. Mass outflow is ubiquitous in this astrophysical context, and radiation pressure is also important if the AGN is luminous. For the first time in this subject, we incorporate both mass outflow feedback and radiative feedback into our model. Consequently, the ISM is shocked into shells by the AGN feedback, and these shells soon fragment into clumps and filaments because of Rayleigh-Taylor and thermal instabilities. We have two major findings: (1) the star formation rate can indeed be very large in the clumps and filaments. However, the resultant star formation rate density is too large compared with previous works, which is mainly because we ignore the fact that most of the stars that are formed would be disrupted when they move away from the galactic center. (2) Although radiation pressure feedback has a limited effect, when mass outflow feedback is also included, they reinforce each other. Specifically, in the gas-poor case, mass outflow is always the dominant contributor to feedback.

  15. Radiation-induced immune responses: mechanisms and therapeutic perspectives

    PubMed Central

    Jeong, Hoibin; Bok, Seoyeon; Hong, Beom-Ju; Choi, Hyung-Seok

    2016-01-01

    Recent advancement in the radiotherapy technology has allowed conformal delivery of high doses of ionizing radiation precisely to the tumors while sparing large volume of the normal tissues, which have led to better clinical responses. Despite this technological advancement many advanced tumors often recur and they do so within the previously irradiated regions. How could tumors recur after receiving such high ablative doses of radiation? In this review, we outlined how radiation can elicit anti-tumor responses by introducing some of the cytokines that can be induced by ionizing radiation. We then discuss how tumor hypoxia, a major limiting factor responsible for failure of radiotherapy, may also negatively impact the anti-tumor responses. In addition, we highlight how there may be other populations of immune cells including regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSCs), and tumor-associated macrophages (TAMs) that can be recruited to tumors interfering with the anti-tumor immunity. Finally, the impact of irradiation on tumor hypoxia and the immune responses according to different radiotherapy regimen is also delineated. It is indeed an exciting time to see that radiotherapy is being combined with immunotherapy in the clinic and we hope that this review can add an excitement to the field. PMID:27722125

  16. High precision measurement of the radiative capture cross section of 238U at the n_TOF CERN facility

    NASA Astrophysics Data System (ADS)

    Mingrone, F.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Durán, I.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Furman, V.; Göbel, K.; Gómez-Hornillos, M. B.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Heftrich, T.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Kivel, N.; Koehler, P.; Kokkoris, M.; Kroll, J.; Krtička, M.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Lerendegui-Marco, J.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A. J. M.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Wright, T.; Žugec, P.

    2017-09-01

    The importance of improving the accuracy on the capture cross-section of 238U has been addressed by the Nuclear Energy Agency, since its uncertainty significantly affects the uncertainties of key design parameters for both fast and thermal nuclear reactors. Within the 7th framework programme ANDES of the European Commission three different measurements have been carried out with the aim of providing the 238U(n,γ) cross-section with an accuracy which varies from 1 to 5%, depending on the energy range. Hereby the final results of the measurement performed at the n_TOF CERN facility in a wide energy range from 1 eV to 700 keV will be presented.

  17. Mechanisms of direct detonation initiation via thermal explosion of radiatively heated gas-particles layer

    NASA Astrophysics Data System (ADS)

    Efremov, V. P.; Ivanov, M. F.; Kiverin, A. D.; Yakovenko, I. S.

    Conceptual approach of detonation wave direct initiation by external radiative heating of microparticles locally suspended in flammable gaseous mixture is proposed. Combustion waves and detonation initiation mechanisms in the congestion regions of microparticles heated by radiation are studied numerically. Necessary criteria on geometrical scales of gas-particles layer and spatial uniformity of particles distribution for successful detonation initiation are formulated.

  18. Failure of fluid-saturated granular materials: a unified approach to capture diffuse and localized instability mechanisms

    NASA Astrophysics Data System (ADS)

    Mihalache, Constance; Buscarnera, Giuseppe

    2013-04-01

    Granular materials are susceptible to a wide variety of failure and deformation mechanisms, especially because of their interaction with the pore fluids and the surrounding environment. An adequate modeling of their mechanical response is therefore essential for understanding a number of geological processes, such as the onset of rapid landslides, hillslope denudation and sediment transport, or even the mechanics of fault gauges. Depending on the type of material, the groundwater conditions and the surrounding kinematic constraints, both diffuse and localized mechanisms are possible, and these may occur under either drained or undrained conditions. In the geomechanics literature, failure modes are usually explained and modeled with the tools of continuum mechanics, such as the mathematical theory of plasticity. Due to the complexity of granular material behavior, however, most classical models for frictional strength are unable to capture the variety of instability mechanisms observed for such class of geomaterials (e.g., liquefaction, shear banding, etc.). Sophisticated strain-hardening plasticity models are therefore required for numerical modeling purposes, thus making the evaluation of critical failure conditions less straightforward than in perfect plasticity theories. Here we propose a mathematical strategy that can be adapted to any elastoplastic model and allows the onset of failure in elastoplastic geomaterials to be expressed in a more general manner. More specifically, our theory expresses the failure conditions as a function of local kinematics and solid-fluid interactions. The stability criterion used in this study is based on the so-called stability modulus, a scalar index of failure that was formulated by linking the physical concept controllability to the mathematical notion of plastic admissibility upon an incremental loading path [Buscarnera et al, 2011]. In this contribution, different loading constraints are considered, accounting for the

  19. Damage Avoidance and DNA Repair Mechanisms of Extremophiles to Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Robinson, C. K.; Diruggiero, J.

    2010-04-01

    The results presented here support the idea that the radiation resistance of the halophilic archaeon Halobacterium salinarum is the product of mechanisms for cellular protection and detoxification and for the repair of oxidative damage to cellular macromolecules.

  20. Gogny-Hartree-Fock-Bogolyubov plus quasiparticle random-phase approximation predictions of the M 1 strength function and its impact on radiative neutron capture cross section

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Hilaire, S.; Péru, S.; Martini, M.; Deloncle, I.; Lechaftois, F.

    2016-10-01

    Valuable theoretical predictions of nuclear dipole excitations in the whole chart are of great interest for different nuclear applications, including in particular nuclear astrophysics. Here we extend our large-scale calculations of the E 1 γ -ray strength function, obtained in the framework of the axially- symmetric-deformed quasiparticle random phase approximation (QRPA) based on the finite-range D1M Gogny force, to the calculation of the M 1 strength function. We compare our QRPA prediction of the M 1 strength with available experimental data and show that a relatively good agreement is obtained provided the strength is shifted globally by about 2 MeV and increased by an empirical factor of 2. Predictions of the M 1 strength function for spherical and deformed nuclei within the valley of β stability as well as in the neutron-rich region are discussed. Its impact on the radiative neutron capture cross section is also analyzed.

  1. Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction 209Bi + 70Zn

    NASA Astrophysics Data System (ADS)

    Takatoshi Ichikawa,; Akira Iwamoto,

    2010-07-01

    We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction 70Zn + 209Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction 70Zn + 209Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4% and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. 73 (2004) 2593].

  2. Radiative neutron capture by {sup 2}H, {sup 7}Li, {sup 14}C, and {sup 14}N nuclei at astrophysical energies

    SciTech Connect

    Dubovichenko, S. B.

    2013-07-15

    The possibility of describing experimental data on the total cross sections for the n{sup 2}H, n{sup 7}Li, n{sup 14}C, and n{sup 14}N radiative-capture processes within the potential cluster model involving forbidden states and their classification according to Young's tableaux is considered. It is shown that this model and the methods used here to construct potentials make it possible to describe correctly the behavior of the experimental cross sections at energies between 5 to 10 meV (5 Multiplication-Sign 10{sup -3}-10 Multiplication-Sign 10{sup -3} eV) and 1 to 15MeV.

  3. Photonuclear and radiative-capture reaction rates for nuclear astrophysics and transmutation: 92-100Mo, 88Sr, 90Zr, and 139La

    NASA Astrophysics Data System (ADS)

    Beard, M.; Frauendorf, S.; Kämpfer, B.; Schwengner, R.; Wiescher, M.

    2012-06-01

    Experimental photoabsorption cross sections for the nuclei 92,94,96,98,100Mo, 88Sr, 90Zr, and 139La are used as an input for calculations of (γ,n), (γ,p), and (γ,α), as well as (n,γ), (p,γ), and (α,γ) cross sections and reaction rates at energies and temperatures relevant for nucleosynthesis network models and transmutation projects. The calculations are performed with the statistical-model code talys. The results are compared with those obtained by using different analytic standard parametrizations of γ-ray strength functions implemented in talys and with an energy-damped double-Lorentzian model. The radiative capture reaction cross sections are enhanced by the pygmy resonances in 88Sr, 90Zr, and 139La.

  4. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  5. Neoplastic cell transformation by high-LET radiation - Molecular mechanisms

    NASA Technical Reports Server (NTRS)

    Yang, Tracy Chui-Hsu; Craise, Laurie M.; Tobias, Cornelius A.; Mei, Man-Tong

    1989-01-01

    Quantitative data were collected on dose-response curves of cultured mouse-embryo cells (C3H10T1/2) irradiated with heavy ions of various charges and energies. Results suggests that two breaks formed on DNA within 80 A may cause cell transformation and that two DNA breaks formed within 20 A may be lethal. From results of experiments with restriction enzymes which produce DNA damages at specific sites, it was found that DNA double strand breaks are important primary lesions for radiogenic cell transformation and that blunt-ended double-strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship for high-LET radiation is similar to that for HGPRT locus mutation, chromosomal deletion, and cell transformation, indicating that common lesions may be involved in these radiation effects.

  6. Mechanically resolving noncovalent bonds using acoustic radiation force.

    PubMed

    De Silva, Lashan; Yao, Li; Xu, Shoujun

    2014-09-25

    The resolution of molecular bonds and subsequent selective control of their binding are of great significance in chemistry and biology. We have developed a method based on the use of acoustic radiation force to precisely dissociate noncovalent molecular bonds. The acoustic radiation force is produced by extremely low-power ultrasound waves and is mediated by magnetic particles. We successfully distinguished the binding of antibodies of different subclasses and the binding of DNA duplexes with a single-base-pair difference. In contrast to most ultrasound applications in chemistry, the sonication probe is noninvasive and requires a sample volume of only a few microliters. Our method is thus viable for noninvasive and accurate control of molecular bonds that are widely encountered in biochemistry.

  7. Mechanisms of Retinal Damage from Chronic Laser Radiation.

    DTIC Science & Technology

    1981-07-01

    Laser Radiation Final Report T. Lawwill, M.D. and R.S. Crockett, Ph.D. July 1981 - Supported by U.S. Army Medical Research and Development Command Fort...Army Medical Research and Development Command July 1981 Fort Detrick, Frederick, MD 21701 ATTN: SGRD-RMS 13. NUMBEROFPAGES "- _158 14. MONITORING AGENCY...professor. ANIMAL USE STATEMENT In conducting the research described in this report, the investigator adhered to the "Guide for Laboratory Animal

  8. Effects of high energy radiation on the mechanical properties of epoxy graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Gilbert, R. D.; Fornes, R. E.; Memory, J. D.

    1983-01-01

    The effects of high energy radiation on mechanical properties and on the molecular and structural properties of graphite fiber reinforced composites are assessed so that durability in space applications can be predicted. A listing of composite systems irradiated along with the maximum radiation dose applied and type of mechanical tests performed is shown. These samples were exposed to 1/2 MeV electrons.

  9. Effects of high energy radiation on the mechanical properties of epoxy-graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1985-01-01

    In an effort to elucidate the changes in molecular structural and mechanical properties of epoxy/graphite fiber composites upon exposure to ionizing radiation in a simulated space environment, spectroscopic and surface properties of tetraglycidyl-4,4'-diamino diphenyl methane (TGDDM) red with diamino diphenyl sulfone (DDS) and T-300 graphite fiber were investigated following exposure to ionizing radiation. Cobalt-60 gamma radiation and 1/2 MeV electrons were used as radiation sources. The system was studied using electron spin resonance (ESR) spectroscopy, infrared absorption spectroscopy, contact angle measurements, and electron spectroscopy for chemical analysis.

  10. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research

    SciTech Connect

    Tsoutsou, Pelagia G.; Koukourakis, Michael I. . E-mail: targ@her.forthnet.gr

    2006-12-01

    Radiation pneumonitis and subsequent radiation pulmonary fibrosis are the two main dose-limiting factors when irradiating the thorax that can have severe implications for patients' quality of life. In this article, the current concepts about the pathogenetic mechanisms underlying radiation pneumonitis and fibrosis are presented. The clinical course of fibrosis, a postulated acute inflammatory stage, and a late fibrotic and irreversible stage are discussed. The interplay of cells and the wide variety of molecules orchestrating the immunologic response to radiation, their interactions with specific receptors, and the cascade of events they trigger are elucidated. Finally, the implications of this knowledge with respect to the therapeutic interventions are critically presented.

  11. Evolutionary mechanism of the defects in the fluoride-containing phosphate based glasses induced by gamma radiation

    NASA Astrophysics Data System (ADS)

    Wang, Pengfei; He, Quanlong; Lu, Min; Li, Weinan; Peng, Bo

    2016-01-01

    In the laser driven inertial confinement fusion (ICF) experimental target chamber, like the 3ω (351 nm) laser irradiation, the irradiation of gamma ray and X-rays, will also cause the formation and increase of various defects in the investigated series of fluoride-containing phosphate based glasses that have potential use in novel high performance color separation optics. The induced defects contribute to the increase of absorption in the UV region, which will make the UV performance of these laser glasses deteriorated. Some of the induced defects can be bleached to some extent through the subsequent thermal treatment process, resulting from the release and capture of the electrons in conduction band. Through the gamma radiation and post-heat treatment experiments, a general model of the evolutionary mechanism of the defects in these fluoride-containing phosphate based glasses was proposed.

  12. Gamow shell model description of radiative capture reactions 6Li(p, γ)7Be and 6Li(n, γ)7Li

    NASA Astrophysics Data System (ADS)

    Dong, G. X.; Michel, N.; Fossez, K.; Płoszajczak, M.; Jaganathen, Y.; Betan, R. M. Id

    2017-04-01

    Background. According to standard stellar evolution, lithium abundance is believed to be a useful indicator of the stellar age. However, many evolved stars like red giants show huge fluctuations around expected theoretical abundances that are not yet fully understood. The better knowledge of nuclear reactions that contribute to the creation and destruction of lithium can help to solve this puzzle. Purpose. In this work we apply the Gamow shell model formulated in the coupled-channel representation to investigate the mirror radiative capture reactions 6Li(p, γ)7Be and 6Li(n, γ)7Li. Method. The cross-sections are calculated using a translationally invariant Hamiltonian with the finite-range interaction which is adjusted to reproduce spectra, binding energies and one-nucleon separation energies in 6–7Li, 7Be. The reaction channels are built by coupling the wave functions of ground state {1}1+ and excited states {3}1+, {0}1+, {2}1+ of 6Li with the projectile wave function in different partial waves. Results. We include all relevant E1, M1, and E2 transitions from the initial continuum states to the final bound states J=3/{2}1- and J=1/{2}- of 7Li and 7Be. Our microscopic astrophysical factor for the 6Li(p, γ)7Be reaction follows the average trend of the experimental value as a function of the center of mass energy. For {}6{Li}(n,γ ){}7{Li}, the calculated cross section agrees well with the data from the direct measurement of this reaction at stellar energies. Conclusion. We demonstrate that the s-wave radiative capture of proton (neutron) to the first excited state {J}π =1/{2}1+ of 7Be (7Li) is crucial and increases the total astrophysical S-factor by about 40%.

  13. The effect of nutrients shortage on plant's efficiency to capture solar radiations under semi-arid environments.

    PubMed

    Hammad, Hafiz Mohkum; Abbas, Farhat; Ahmad, Ashfaq; Fahad, Shah; Laghari, Khalifa Qasim; Alharby, Hesham; Farhad, Wajid

    2016-10-01

    Radiation use efficiency (RUE) is considered critical for calculation of crop yield. The crop productivity can be improved by increasing the interception of solar radiation and maintaining higher RUE for plants. Irrigation water and nitrogen (N) supply are the main limiting factors for RUE in maize (Zea mays L.) across the semi-arid environments. Field experiments were conducted during two consecutive growing seasons (2009-2010) to optimize RUE in relation to N application timings and rates with varying irrigation water management practices. In experiment 1, three N application timings were made, while in experiment 2, three possible water management practices were used. In both experiments, five N rates (100, 150, 200, 250, and 300 kg N ha(-1)) were applied to evaluate the effects of irrigation water and N on cumulative photosynthetic active radiation (PARi), dry matter RUE (RUEDM), and grain yield RUE (RUEGY). The results demonstrated that cumulative PARi and RUEs were not constant during the plant growth under varying the nutrients. The water and N significantly influenced cumulative PARi and RUEs during the both growing seasons. In experiment 1, the maximum cumulative PARi was observed by application of 250 kg N ha(-1) in three splits (1/3 N at V2, 1/3 N at V16, and 1/3 N at R1 stage), and the highest RUEDM was achieved by the application of 300 kg N ha(-1). However, the highest RUEGY was observed by application of 250 kg N ha(-1). In experiment 2, the maximum cumulative PARi was attained at normal irrigation regime with 250 kg N ha(-1), while the highest RUEDM and RUEGY were recorded at normal irrigation regime with the application of 300 kg N ha(-1). The regression analysis showed significant and positive correlation of RUEGY with grain yield. Therefore, optimum water and N doses are important for attaining higher RUE, which may enhance maize grain yield semi-arid environment; this may be considered in formulating good agricultural practices

  14. Ultrafast Dynamics Show That the Theophylline and 3-Methylxanthine Aptamers Employ a Conformational Capture Mechanism for Binding Their Ligands

    PubMed Central

    Lee, Sang Won; Zhao, Liang; Pardi, Arthur; Xia, Tianbing

    2010-01-01

    RNAs often exhibit a high degree of conformational dynamics and heterogeneity, leading to a rugged energy landscape. However, the roles of conformational heterogeneity and rapid dynamics in molecular recognition or RNA function have not been extensively elucidated. Ultrafast time-resolved fluorescence spectroscopic experiments were used here to probe picosecond dynamics of the theophylline-binding RNA aptamer. These studies showed that multiple conformations are populated in the free RNA indicating that this aptamer employs a conformational capture mechanism for ligand binding. The base on residue 27 in an internal loop exists in at least three conformational states in the free RNA, including binding competent and incompetent states that have distinct fluorescence decay signatures indicating different base stacking interactions. Picosecond dynamics were also detected by anisotropy experiments, where these motions indicate additional dynamics for base 27. The picosecond data show that theophylline binding shifts the equilibrium for conformations of base 27 from primarily stacked in the free RNA to mostly unstacked in the RNA-theophylline complex, as observed in the previous NMR structure. In contrast, base 10 in a second internal loop is mostly pre-organized in the free RNA, consistent with it being stacked between G11 and G25, as is observed in the bound state. Picosecond dynamics were also measured on a modified aptamer that binds with higher affinity to 3-methylxanthine than theophylline. The modified aptamer shows less heterogeneity in the aptamer-3-methylxanthine complex than what is observed in the theophylline aptamer-theophylline complex. PMID:20214401

  15. Non-Targeted Effects Induced by Ionizing Radiation: Mechanisms and Potential Impact on Radiation Induced Health Effects

    SciTech Connect

    Morgan, William F.; Sowa, Marianne B.

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (> 1Gy), at low doses (< 100mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  16. Non-targeted effects induced by ionizing radiation: mechanisms and potential impact on radiation induced health effects.

    PubMed

    Morgan, William F; Sowa, Marianne B

    2015-01-01

    Not-targeted effects represent a paradigm shift from the "DNA centric" view that ionizing radiation only elicits biological effects and subsequent health consequences as a result of an energy deposition event in the cell nucleus. While this is likely true at higher radiation doses (>1 Gy), at low doses (<100 mGy) non-targeted effects associated with radiation exposure might play a significant role. Here definitions of non-targeted effects are presented, the potential mechanisms for the communication of signals and signaling networks from irradiated cells/tissues are proposed, and the various effects of this intra- and intercellular signaling are described. We conclude with speculation on how these observations might lead to and impact long-term human health outcomes.

  17. A New Mechanism for Mass Accretion Under Radiation Pressure in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2010-05-01

    During the formation of a massive star, strong radiation pressure from the central star acts on the dust sublimation front and tends to halt the accretion flow. To overcome this strong radiation pressure, it has been considered that a strong ram pressure produced by a high-mass accretion rate of 10-3 M sun yr-1 or more is needed. We reinvestigated the necessary condition to overcome the radiation pressure and found a new mechanism for overcoming it. Accumulated mass in a stagnant flow near the dust sublimation front helps the mass accretion by its weight. This mechanism relaxes the condition for the massive star formation. We call this mechanism the "OMOSHI effect," where OMOSHI is an acronym for "One Mechanism for Overcoming Stellar High radiation pressure by weIght." Additionally, in Japanese, OMOSHI is a noun meaning a weight that is put on something to prevent it from moving. We investigate the generation of the OMOSHI effect using local one-dimensional radiation hydrodynamics simulations. The radiation pressure and the gravitational force are connected through the gas pressure, and to sum up, the radiation pressure is balanced or overcome by the gravitational force. We also discuss the global structure and temporal variation of the accretion flow.

  18. Mechanism of low-level microwave radiation effect on nervous system.

    PubMed

    Hinrikus, Hiie; Bachmann, Maie; Karai, Denis; Lass, Jaanus

    2017-01-01

    The aim of this study is to explain the mechanism of the effect of low-level modulated microwave radiation on brain bioelectrical oscillations. The proposed model of excitation by low-level microwave radiation bases on the influence of water polarization on hydrogen bonding forces between water molecules, caused by this the enhancement of diffusion and consequences on neurotransmitters transit time and neuron resting potential. Modulated microwave radiation causes periodic alteration of the neurophysiologic parameters and parametric excitation of brain bioelectric oscillations. The experiments to detect logical outcome of the mechanism on physiological level were carried out on 15 human volunteers. The 450-MHz microwave radiation modulated at 7, 40 and 1000 Hz frequencies was applied at the field power density of 0.16 mW/cm(2). A relative change in the EEG power with and without radiation during 10 cycles was used as a quantitative measure. Experimental data demonstrated that modulated at 40 Hz microwave radiation enhanced EEG power in EEG alpha and beta frequency bands. No significant alterations were detected at 7 and 1000 Hz modulation frequencies. These results are in good agreement with the theory of parametric excitation of the brain bioelectric oscillations caused by the periodic alteration of neurophysiologic parameters and support the proposed mechanism. The proposed theoretical framework has been shown to predict the results of experimental study. The suggested mechanism, free of the restrictions related to field strength or time constant, is the first one providing explanation of low-level microwave radiation effects.

  19. A NEW MECHANISM FOR MASS ACCRETION UNDER RADIATION PRESSURE IN MASSIVE STAR FORMATION

    SciTech Connect

    Tanaka, Kei E. I.; Nakamoto, Taishi

    2010-05-01

    During the formation of a massive star, strong radiation pressure from the central star acts on the dust sublimation front and tends to halt the accretion flow. To overcome this strong radiation pressure, it has been considered that a strong ram pressure produced by a high-mass accretion rate of 10{sup -3} M{sub sun} yr{sup -1} or more is needed. We reinvestigated the necessary condition to overcome the radiation pressure and found a new mechanism for overcoming it. Accumulated mass in a stagnant flow near the dust sublimation front helps the mass accretion by its weight. This mechanism relaxes the condition for the massive star formation. We call this mechanism the 'OMOSHI effect', where OMOSHI is an acronym for 'One Mechanism for Overcoming Stellar High radiation pressure by weIght'. Additionally, in Japanese, OMOSHI is a noun meaning a weight that is put on something to prevent it from moving. We investigate the generation of the OMOSHI effect using local one-dimensional radiation hydrodynamics simulations. The radiation pressure and the gravitational force are connected through the gas pressure, and to sum up, the radiation pressure is balanced or overcome by the gravitational force. We also discuss the global structure and temporal variation of the accretion flow.

  20. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2016-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion spacecraft. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build-time instead of at design-time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal non-recurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current

  1. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2015-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR and D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR and D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR and D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a threedimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR and D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe

  2. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2015-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR and D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR and D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR and D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a threedimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR and D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe

  3. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    NASA Technical Reports Server (NTRS)

    Hinkel, Heather; Cryan, Scott; Zipay, John; Strube, Matthew

    2015-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion crew vehicle. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a threedimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build time instead of at design time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal nonrecurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current

  4. Low dose radiation effects on the brain - from mechanisms and behavioral outcomes to mitigation strategies.

    PubMed

    Kovalchuk, Anna; Kolb, Bryan

    2017-07-03

    Based on the most recent estimates by the Canadian Cancer Society, 2 in 5 Canadians will develop cancer in their lifetimes. More than half of all cancer patients receive some type of radiation therapy, and all patients undergo radiation-based diagnostics. While radiation is one of the most important diagnostic and treatments modalities, high-dose cranial radiation therapy causes numerous central nervous system side-effects, including declines in cognitive function, memory, and attention. While the mechanisms of these effects have been studies, they still need to be further elucidated. On the other hand, the effects of low dose radiation as well as indirect radiation bystander effects on the brain remain elusive. We pioneered analysis of the molecular and cellular effects of low dose direct, bystander and scatter radiation on the brain. Using a rat model, we showed that low dose radiation exposures cause molecular and cellular changes in the brain and impacts animal behavior. Here we reflect upon our recent findings and current state of knowledge in the field, and suggest novel radiation effect biomarkers and means of prevention. We propose strategies and interventions to prevent and mitigate radiation effects on the brain.

  5. L-Boronophenylalanine-Mediated Boron Neutron Capture Therapy for Malignant Glioma Progressing After External Beam Radiation Therapy: A Phase I Study

    SciTech Connect

    Kankaanranta, Leena; Seppaelae, Tiina; Koivunoro, Hanna; Vaelimaeki, Petteri; Beule, Annette; Collan, Juhani; Kortesniemi, Mika; Uusi-Simola, Jouni; Kotiluoto, Petri; Auterinen, Iiro; Seren, Tom; Paetau, Anders; Saarilahti, Kauko; Savolainen, Sauli; Joensuu, Heikki

    2011-06-01

    Purpose: To investigate the safety of boronophenylalanine-mediated boron neutron capture therapy (BNCT) in the treatment of malignant gliomas that progress after surgery and conventional external beam radiation therapy. Methods and Materials: Adult patients who had histologically confirmed malignant glioma that had progressed after surgery and external beam radiotherapy were eligible for this Phase I study, provided that >6 months had elapsed from the last date of radiation therapy. The first 10 patients received a fixed dose, 290 mg/kg, of L-boronophenylalanine-fructose (L-BPA-F) as a 2-hour infusion before neutron irradiation, and the remaining patients were treated with escalating doses of L-BPA-F, either 350 mg/kg, 400 mg/kg, or 450 mg/kg, using 3 patients on each dose level. Adverse effects were assessed using National Cancer Institute Common Toxicity Criteria version 2.0. Results: Twenty-two patients entered the study. Twenty subjects had glioblastoma, and 2 patients had anaplastic astrocytoma, and the median cumulative dose of prior external beam radiotherapy was 59.4 Gy. The maximally tolerated L-BPA-F dose was reached at the 450 mg/kg level, where 4 of 6 patients treated had a grade 3 adverse event. Patients who were given >290 mg/kg of L-BPA-F received a higher estimated average planning target volume dose than those who received 290 mg/kg (median, 36 vs. 31 Gy [W, i.e., a weighted dose]; p = 0.018). The median survival time following BNCT was 7 months. Conclusions: BNCT administered with an L-BPA-F dose of up to 400 mg/kg as a 2-hour infusion is feasible in the treatment of malignant gliomas that recur after conventional radiation therapy.

  6. In vivo evidence for an endothelium-dependent mechanism in radiation-induced normal tissue injury

    PubMed Central

    Rannou, Emilie; François, Agnès; Toullec, Aurore; Guipaud, Olivier; Buard, Valérie; Tarlet, Georges; Mintet, Elodie; Jaillet, Cyprien; Iruela-Arispe, Maria Luisa; Benderitter, Marc; Sabourin, Jean-Christophe; Milliat, Fabien

    2015-01-01

    The pathophysiological mechanism involved in side effects of radiation therapy, and especially the role of the endothelium remains unclear. Previous results showed that plasminogen activator inhibitor-type 1 (PAI-1) contributes to radiation-induced intestinal injury and suggested that this role could be driven by an endothelium-dependent mechanism. We investigated whether endothelial-specific PAI-1 deletion could affect radiation-induced intestinal injury. We created a mouse model with a specific deletion of PAI-1 in the endothelium (PAI-1KOendo) by a Cre-LoxP system. In a model of radiation enteropathy, survival and intestinal radiation injury were followed as well as intestinal gene transcriptional profile and inflammatory cells intestinal infiltration. Irradiated PAI-1KOendo mice exhibited increased survival, reduced acute enteritis severity and attenuated late fibrosis compared with irradiated PAI-1flx/flx mice. Double E-cadherin/TUNEL labeling confirmed a reduced epithelial cell apoptosis in irradiated PAI-1KOendo. High-throughput gene expression combined with bioinformatic analyses revealed a putative involvement of macrophages. We observed a decrease in CD68+cells in irradiated intestinal tissues from PAI-1KOendo mice as well as modifications associated with M1/M2 polarization. This work shows that PAI-1 plays a role in radiation-induced intestinal injury by an endothelium-dependent mechanism and demonstrates in vivo that the endothelium is directly involved in the progression of radiation-induced enteritis. PMID:26510580

  7. STUDIES ON THE MECHANISM OF ACTION OF IONIZING RADIATIONS

    PubMed Central

    Barron, E. S. Guzman; Flood, Veronica

    1950-01-01

    Thiol compounds, such as glutathione, 2,3-dimercaptopropanol (BAL), propane-1,3-dithiol, and N-phenylaminopropanedithiol, were readily oxidized by x-rays, beta rays, and gamma rays. The ionic yield for this oxidation was about the same, 3 at pH 7, on irradiation with x-rays and with beta rays; it was 23 per cent less on irradiation with gamma rays. The ionic yield varied with the hydrogen ion concentration, increasing as the pH value increased. There was no reduction of oxidized glutathione on irradiation with dosages of x-rays and gamma rays which produced oxidation of the reduced compound. In the absence of oxygen, the oxidation of thiols by ionizing radiations was only 33 per cent of that obtained in the presence of dissolved oxygen. When the thiol solutions were irradiated in the presence of dissolved oxygen, catalase protected them from oxidation by 17 to 27 per cent. PMID:15402707

  8. Precise model of Hawking radiation from the tunnelling mechanism

    NASA Astrophysics Data System (ADS)

    Corda, Christian

    2015-10-01

    We recently improved the famous result of Parikh and Wilczek, who found a probability of emission of Hawking radiation that is compatible with a non-strictly thermal spectrum, showing that such a probability of emission is really associated with two non-strictly thermal distributions for bosons and fermions. Here, we finalize the model by finding the correct value of the pre-factor of the Parikh and Wilczek probability of emission. In fact, that expression has a ˜ sign instead of the equality. In general, in this kind of leading order tunneling calculation, the exponent indeed arises from the classical action, and the pre-factor is an order of Planck constant correction. But in the case of emissions of Hawking quanta, the variation of the Bekenstein-Hawking entropy is of the order of 1 for an emitted particle with energy of the order of the Hawking temperature. As a consequence, the exponent in the Parikh and Wilczek probability of emission is of the order of unity and one asks, what is the real significance of that scaling if the pre-factor is unknown? Here we solve the problem assuming the unitarity of the black hole (BH) quantum evaporation and considering the natural correspondence between Hawking radiation and quasi-normal modes (QNMs) of excited BHs, in a ‘Bohr-like model’ that we recently discussed in a series of papers. In those papers, QNMs are interpreted as natural BH quantum levels (the ‘electron states’ in the ‘Bohr-like model’). Here we find the intriguing result that, although in general it is well approximated by 1, the pre-factor of the Parikh and Wilczek probability of emission depends on the BH quantum level n. We also write down an elegant expression of the probability of emission in terms of the BH quantum levels.

  9. Study on electromagnetic radiation and mechanical characteristics of coal during an SHPB test

    NASA Astrophysics Data System (ADS)

    Chengwu, Li; Qifei, Wang; Pingyang, Lyu

    2016-06-01

    Dynamic loads provided by a Split Hopkinson pressure bar are applied in the impact failure experiment on coal with an impact velocity of 4.174-17.652 m s-1. The mechanical property characteristics of coal and an electromagnetic radiation signal can be detected and measured during the experiment. The variation of coal stress, strain, incident energy, dissipated energy and other mechanical parameters are analyzed by the unidimensional stress wave theory. It suggests that with an increase of the impact velocity, the mechanical parameters and electromagnetic radiation increased significantly and the dissipated energy of the coal sample has a high discrete growing trend during the failure process of coal impact. Combined with the received energy of the electromagnetic radiation signal, the relationship between these mechanical parameters and electromagnetic radiation during the failure process of coal burst could be analyzed by the grey correlation model. The results show that the descending order of the gray correlation degree between the mechanical characteristics and electromagnetic radiation energy are impact velocity, maximum stress, the average stress, incident energy, the average strain, maximum strain, the average strain rate and dissipation energy. Due to the correlation degree, the impact velocity and incident energy are relatively large, and the main factor affecting the electromagnetic radiation energy of coal is the energy magnitude. While the relationship between extreme stress and the radiation energy change trend is closed, the stress state of coal has a greater impact on electromagnetic radiation than the strain and destruction which can deepen the research of the coal-rock dynamic disaster electromagnetic monitoring technique.

  10. Quantum-mechanical treatment of an electron undergoing synchrotron radiation.

    NASA Technical Reports Server (NTRS)

    White, D.

    1972-01-01

    The problem of an electron moving perpendicular to an intense magnetic field is approached from the framework of quantum mechanics. A numerical solution to the related rate equations describing the probabilities of occupation of the electron's energy states is put forth along with the expected errors involved. The quantum-mechanical approach is found to predict a significant amount of energy broadening with time for an initially monoenergetic electron beam entering a region of an intense magnetic field as long as the product of initial energy and magnetic field is of order 50 MG BeV or larger.

  11. Nonradiative coherent carrier captures and defect reaction at deep-level defects via phonon-kick mechanism

    SciTech Connect

    Wakita, Masaki; Suzuki, Kei; Shinozuka, Yuzo

    2014-02-21

    We simulated the time evolution of electron-lattice coupling mode, and a series of nonradiative carrier captures by a deep-level defect in a semiconductor. For lattice relaxation energy of the order of the band gap, a series of coherent (athermal) electron and hole captures by a defect is possible for high carrier densities, which results in an inflation in the induced lattice vibration, which in turn enhances a defect reaction.

  12. OMOSHI Effect: A New Mechanism for Mass Accretion under the Radiation Pressure in Massive Star Formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kei; Nakamoto, Taishi

    2009-08-01

    In a massive-star formation process, a high-mass accretion rate is considered to be needed to overcome the strong radiation pressure at the dust sublimation front. We examined the accretion structure near the dust sublimation front and found a new mechanism to overcome this radiation pressure. The weight of the accumulated mass in a stagnant flow near the dust sublimation front helps with the mass accretion. We call this mechanism the ``OMOSHI effect,'' where OMOSHI is an acronym for ``One Mechanism for Overcoming Stellar High radiation pressure by weight.'' OMOSHI is also a Japanese noun meaning a weight that is put on something to prevent it from moving. This mechanism relaxes the condition for the massive star formation.

  13. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    SciTech Connect

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  14. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOEpatents

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  15. Radiation Toxicity in the Central Nervous System: Mechanisms and Strategies for Injury Reduction.

    PubMed

    Smart, DeeDee

    2017-10-01

    The potential for radiation-induced toxicities in the brain produces significant anxiety, both among patients receiving radiation therapy and those radiation oncologists providing treatment. These concerns often play a significant role in the medical decision-making process for most patients with diseases in which radiotherapy may be a treatment consideration. Although the precise mechanisms of neurotoxicity and neurodegeneration after ionizing radiation exposure continue to be poorly understood from a biological perspective, there is an increasing body of scientific and clinical literature that is producing a better understanding of how radiation causes brain injury; factors that determine whether toxicities occur; and potential preventative, treatment, and mitigation strategies for patients at high risk or with symptoms of injury. This review will focus primarily on injuries and biological processes described in mature brain. Published by Elsevier Inc.

  16. Near infrared radiation damage mechanism in the lens

    NASA Astrophysics Data System (ADS)

    Söderberg, Per G.; Talebizadeh, Nooshin; Galichanin, Konstantin; Kronschläger, Martin; Schulmeister, Karl; Yu, Zhaohua

    2015-03-01

    The current data strongly indicates that there is no photochemical effect of in vivo exposure to 1090 nm near IRR radiation within the pupil. Four groups of 20 Sprague-Dawley rats were unilaterally exposed in vivo to 96 W·cm-2 centered inside the pupil for 10, 18, 33 and 60 min, respectively depending on group belonging. This resulted in radiant exposure doses of 57, 103, 198 and 344 kJ·cm-2. Temperature evolution at the limbus during the exposure and difference of intensity of forward light scattering between the exposed and the contralateral not exposed eye was measured at 1 week after exposure. The temperature at the limbus was found to increase exponentially towards an asymptote with an asymptote temperature of around 7 °C and a time constant (1/k) of around 15 s. No increase of light scattering was found despite that the cumulated radiant exposure dose was [80;250] times the threshold for photochemically induced cataract suggested by previous empirical data. It is concluded that at 1090 nm near IRR there is no photochemical effect.

  17. Correlation of Radiation Dosage With Mechanical Properties of Thin Films

    NASA Technical Reports Server (NTRS)

    Newton, R. L.

    2003-01-01

    The objective of this investigation was to examine the relationship between irradiation level (proton dose), microstructure, and stress levels in chemical vapor deposited diamond and polysilicon film using crosssectioned specimens. However, the emphasis was placed on the diamond specimen because diamond holds much promise for use in advanced technologies. The use of protons allows not only the study of the charged particle that may cause the most microstructural damage in Earth-orbit microelectromechanical systems (MEMS) devices, but also allows the study of relatively deeply buried damage inside the diamond material. Using protons allows these studies without having to resort to megaelectronvolt implant energies that may create extensive damage due to the high energy that is needed for the implantation process. Since 1 MEMS devices operating in space will not have an opportunity to reverse radiation damage via annealing, only nonannealed specimens were investigated. The following three high spatial resolution techniques were used to examine these relationships: (I) Scanning electron microscopy, (2) micro-Raman spectroscopy, and (3) micro x-ray diffraction.

  18. Mechanism of Hydrophilicity by Radiation-Induced Surface Activation

    NASA Astrophysics Data System (ADS)

    Honjo, Yoshio; Furuya, Masahiro; Takamasa, Tomoji; Okamoto, Koji

    When a metal oxide is irradiated by gamma rays, the irradiated surface becomes hydrophilic. This surface phenomenon is called as radiation-induced surface activation (RISA) hydrophilicity. In order to investigate gamma ray-induced and photoinduced hydrophilicity, the contact angles of water droplets on a titanium dioxide surface were measured in terms of irradiation intensity and time for gamma rays of cobalt-60 and for ultraviolet rays. Reciprocals of the contact angles increased in proportion to the irradiation time before the contact angles reached its super-hydrophilic state. The irradiation time dependency is equal to each other qualitatively. In addition, an effect of ambient gas was investigated. In pure argon gas, the contact angle remains the same against the irradiation time. This clearly indicates that certain humidity is required in ambient gas to take place of RISA hydrophilicity. A single crystal titanium dioxide (100) surface was analyzed by X-ray photoelectron spectrometry (XPS). After irradiation with gamma rays, a peak was found in the O1s spectrum, which indicates the adsorption of dissociative water to a surface 5-fold coordinate titanium site, and the formation of a surface hydroxyl group. We conclude that the RISA hydrophilicity is caused by chemisorption of the hydroxyl group on the surface.

  19. Boron neutron capture therapy: a guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord.

    PubMed

    Morris, G M; Coderre, J A; Whitehouse, E M; Micca, P; Hopewell, J W

    1994-03-30

    Before the commencement of new boron neutron capture therapy (BNCT) clinical trials in Europe and North America, detailed information on normal tissue tolerance is required. In this study, the pathologic effects of BNCT on the central nervous system (CNS) have been investigated using a rat spinal cord model. The neutron capture agent used was 10B enriched sodium mercaptoundecahydro-closododecaborate (BSH), at a dosage of 100 mg/kg body weight. Rats were irradiated on the thermal beam at the Brookhaven Medical Research Reactor. The large spine of vertebra T2 was used as the lower marker of the irradiation field. Rats were irradiated with thermal neutrons alone to a maximum physical absorbed dose of 11.4 Gy, or with thermal neutrons in combination with BSH, to maximum absorbed physical doses of 5.7 Gy to the CNS parenchyma and 33.7 Gy to the blood in the vasculature of the spinal cord. An additional group of rats was irradiated with 250 kVp X rays to a single dose of 35 Gy. Spinal cord pathology was examined between 5 and 12 months after irradiation. The physical dose of radiation delivered to the CNS parenchyma, using thermal neutron irradiation in the presence of BSH, was a factor of two to three lower than that delivered to the vascular endothelium, and could not account for the level of damage observed in the parenchyma. The histopathological observations of the present study support the hypothesis that the blood vessels, and the endothelial cells in particular, are the critical target population responsible for the lesions seen in the spinal cord after BNCT type irradiation and by inference, after more conventional irradiation modalities such as photons or fast neutrons.

  20. Boron neutron capture therapy: A guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord

    SciTech Connect

    Morris, G.M.; Whitehouse, E.M.; Hopewell, J.W. ); Coderre, J.A.; Micca, P. )

    1994-03-30

    Before the commencement of new boron neutron capture therapy (BNCT) clinical trials in Europe and North America, detailed information on normal tissue tolerance is required. In this study, the pathologic effects of BNCT on the central nervous system (CNS) have been investigated using a rat spinal cord model. The neutron capture agent used was [sup 10]B-enriched sodium mercaptoundecahydro-closo-dodecaborate (BSH), at a dosage of 100 mg/kg body weight. Rats were irradiated on the thermal beam at the Brookhaven Medical Research Reactor. The large spine of vertebra T[sub 2] was used as the lower marker of the irradiation field. Rats were irradiated with thermal neutrons alone to a maximum physical absorbed dose of 11.4 Gy, or with thermal neutrons in combination with BSH, to maximum absorbed physical doses of 5.7 Gy to the CNS parenchyma and 33.7 Gy to the blood in the vasculature of the spinal cord. An additional group of rats was irradiated with 250 kVp X-rays to a single dose of 35 Gy. Spinal cord pathology was examined between 5 and 12 months after irradiation. The physical dose of radiation delivered to the CNS parenchyma, using thermal neutron irradiation in the presence of BSH, was a factor of two to three lower than that delivered to the vascular endothelium, and could not account for the level of damage observed in the parenchyma. The histopathological observations of the present study support the hypothesis that the blood vessels, and the endothelial cells in particular, are the critical target population responsible for the lesions seen in the spinal cord after BNCT type irradiation and by inference, after more conventional irradiation modalities such as photons or fast neutrons. 30 refs., 6 figs., 1 tab.

  1. Whole Brain Radiation-Induced Cognitive Impairment: Pathophysiological Mechanisms and Therapeutic Targets

    PubMed Central

    Lee, Yong Woo; Cho, Hyung Joon; Lee, Won Hee; Sonntag, William E.

    2012-01-01

    Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy. PMID:24009822

  2. Whole brain radiation-induced cognitive impairment: pathophysiological mechanisms and therapeutic targets.

    PubMed

    Lee, Yong Woo; Cho, Hyung Joon; Lee, Won Hee; Sonntag, William E

    2012-07-01

    Radiation therapy, the most commonly used for the treatment of brain tumors, has been shown to be of major significance in tu-mor control and survival rate of brain tumor patients. About 200,000 patients with brain tumor are treated with either partial large field or whole brain radiation every year in the United States. The use of radiation therapy for treatment of brain tumors, however, may lead to devastating functional deficits in brain several months to years after treatment. In particular, whole brain radiation therapy results in a significant reduction in learning and memory in brain tumor patients as long-term consequences of treatment. Although a number of in vitro and in vivo studies have demonstrated the pathogenesis of radiation-mediated brain injury, the cel-lular and molecular mechanisms by which radiation induces damage to normal tissue in brain remain largely unknown. Therefore, this review focuses on the pathophysiological mechanisms of whole brain radiation-induced cognitive impairment and the iden-tification of novel therapeutic targets. Specifically, we review the current knowledge about the effects of whole brain radiation on pro-oxidative and pro-inflammatory pathways, matrix metalloproteinases (MMPs)/tissue inhibitors of metalloproteinases (TIMPs) system and extracellular matrix (ECM), and physiological angiogenesis in brain. These studies may provide a foundation for defin-ing a new cellular and molecular basis related to the etiology of cognitive impairment that occurs among patients in response to whole brain radiation therapy. It may also lead to new opportunities for therapeutic interventions for brain tumor patients who are undergoing whole brain radiation therapy.

  3. A mechanical model for giant radiating dike swarms

    NASA Astrophysics Data System (ADS)

    Minakov, Alexander; Yarushina, Viktoriya; Faleide, Jan Inge

    2016-04-01

    The Large Igneous Provinces (LIP) is believed to form as results of plume-lithosphere interaction. A recognizable diagnostic feature of the LIP is a swarm of dikes (100 - 1000 km -long) radiating from a single or several focal regions. The models for formation of these dike swarms are mainly based on Venusian analogues (associated with coronae structures) since on Earth these paleo-structures are presumably less likely to preserve due to erosion and later tectonics. The existing explanation for the geometry of dikes (in horizontal plane) is based on assumption that in a far-field shear stress the dikes are normal to the least principal stress. A small overpressure related to the lithospheric magma reservoir is also assumed. However, this type of models implies several limitations: 1) the dike emplacement is considered as a purely elastic process, 2) all dikes are assumed to intrude simultaneously (no interaction with neighboring dikes). On the other hand, recent geophysical observations suggest that the dikes that apparently belong to the same magmatic event can intersect and can be affected by each other and local crustal heterogeneity. In this study, we attribute the geometry of dikes to irreversible plastic deformation including the path-dependence. We use finite-element elastoplastic simulations to predict the fracture pattern related to the plume-lithosphere interaction. The rheology is governed by a non-associated Mohr-Coulomb plastic flow law. The accuracy of the numerical results is benchmarked versus 2D plane strain analytical solutions for combined shear and internal pressure loads. We apply our model to the case of the High Arctic LIP. Here, the location of the dike intrusions is based on the interpretation of magnetic anomalies supported by geological and seismic data in the Barents Sea together with timing constraints using U-Pb isotopic ages. The developed model provides a framework for future high-resolution structural and geochronological studies to

  4. Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode

    NASA Astrophysics Data System (ADS)

    Ji, Zengchao; Chen, Shixiu; Gao, Shen

    2017-01-01

    When we were studying the vacuum switch, we found that the vacuum diode can radiate a broadband microwave. The vacuum diode is comprised of a cathode with a trigger device and planar anode, there is not a metallic bellows waveguide structure in this device, so the radiation mechanism of the vacuum diode is different from the plasma filled microwave device. It is hard to completely imitate the theory of the plasma filled microwave device. This paper analyzes the breakdown process of the vacuum diode, establishes the mathematical model of the radiating microwave from the vacuum diode. Based on the analysis of the dispersion relation in the form of a refractive index, the electromagnetic waves generated in the vacuum diode will resonate. The included angle between the direction of the electromagnetic radiation and the initial motion direction of electron beam is 45 degrees. The paper isolates the electrostatic effect from the beam-plasma interaction when the electromagnetic radiation occurs. According to above analyses, the dispersion relations of radiation are obtained by solving the wave equation. The dispersion curves are also obtained based on the theoretical dispersion relations. The theoretical dispersion curves are consistent with the actual measurement time-frequency maps of the radiation. Theoretical deduction and experiments indicate that the reason for microwave radiating from the vacuum diode can be well explained by the interaction of the electron beam and magnetized plasma. Supported by National Nature Science Foundation of China (No. 11075123), the Young Scientists Fund of Nature Science Foundation of China (No. 51207171).

  5. Mechanism analysis of radiation generated by the beam-plasma interaction in a vacuum diode

    NASA Astrophysics Data System (ADS)

    Zengchao, Ji; Shixiu, Chen; Shen, Gao

    2017-01-01

    When we were studying the vacuum switch, we found that the vacuum diode can radiate a broadband microwave. The vacuum diode is comprised of a cathode with a trigger device and planar anode, there is not a metallic bellows waveguide structure in this device, so the radiation mechanism of the vacuum diode is different from the plasma filled microwave device. It is hard to completely imitate the theory of the plasma filled microwave device. This paper analyzes the breakdown process of the vacuum diode, establishes the mathematical model of the radiating microwave from the vacuum diode. Based on the analysis of the dispersion relation in the form of a refractive index, the electromagnetic waves generated in the vacuum diode will resonate. The included angle between the direction of the electromagnetic radiation and the initial motion direction of electron beam is 45 degrees. The paper isolates the electrostatic effect from the beam-plasma interaction when the electromagnetic radiation occurs. According to above analyses, the dispersion relations of radiation are obtained by solving the wave equation. The dispersion curves are also obtained based on the theoretical dispersion relations. The theoretical dispersion curves are consistent with the actual measurement time-frequency maps of the radiation. Theoretical deduction and experiments indicate that the reason for microwave radiating from the vacuum diode can be well explained by the interaction of the electron beam and magnetized plasma. Supported by National Nature Science Foundation of China (No. 11075123), the Young Scientists Fund of Nature Science Foundation of China (No. 51207171).

  6. Improved Mechanical Properties and Ozone Resistance of Radiation Cured SBR

    DTIC Science & Technology

    1991-08-01

    in an electrophilic attack, a carbonium in (I) or a complex (TT) can be 6 the first intermediate : o4-/ >0 02C C Cr) (It) This was first proposed by...the formation of five-membered cyclic intermediates (I&II) 0-0 \\ \\ \\c II and he concluded that (I) decomposes into a carbonyl and biradical: 0.0 0 0...0 [--_ - -C. O=C / \\ / This scission reaction produces a ketone as ori( ui its products. 7 Another well known mechanism is the one proposed by Criegee

  7. Development of posture-specific computational phantoms using motion capture technology and application to radiation dose-reconstruction for the 1999 Tokai-Mura nuclear criticality accident

    NASA Astrophysics Data System (ADS)

    Vazquez, Justin A.; Caracappa, Peter F.; Xu, X. George

    2014-09-01

    The majority of existing computational phantoms are designed to represent workers in typical standing anatomical postures with fixed arm and leg positions. However, workers found in accident-related scenarios often assume varied postures. This paper describes the development and application of two phantoms with adjusted postures specified by data acquired from a motion capture system to simulate unique human postures found in a 1999 criticality accident that took place at a JCO facility in Tokai-Mura, Japan. In the course of this accident, two workers were fatally exposed to extremely high levels of radiation. Implementation of the emergent techniques discussed produced more accurate and more detailed dose estimates for the two workers than were reported in previous studies. A total-body dose of 6.43 and 26.38 Gy was estimated for the two workers, who assumed a crouching and a standing posture, respectively. Additionally, organ-specific dose estimates were determined, including a 7.93 Gy dose to the thyroid and 6.11 Gy dose to the stomach for the crouching worker and a 41.71 Gy dose to the liver and a 37.26 Gy dose to the stomach for the standing worker. Implications for the medical prognosis of the workers are discussed, and the results of this study were found to correlate better with the patient outcome than previous estimates, suggesting potential future applications of such methods for improved epidemiological studies involving next-generation computational phantom tools.

  8. Radiation-thermal degradation of PE and PVC: Mechanism of synergism and dose rate effects

    NASA Astrophysics Data System (ADS)

    Clough, Roger L.; Gillen, Kenneth T.

    Polyethylene insulation and polyvinyl chloride jacketing materials that had been in use in a nuclear application were recently found to be substantially deteriorated. The damage had occurred under conditions where both the total estimated dose (about 2.5 Mrad) and the operating temperatures (about 43°C average) seemed relatively moderate. These results prompted us to initiate a program to study polyvinyl chloride and polyethylene degradation under conditions of combined γ-radiation and elevated temperature environments. A number of interesting aging effects were observed, including 1) a striking synergism between radiation and temperature and 2) strong dose-rate dependent effects which occur over a wide range of dose rates. The aging effects are explained in terms of a chain branching degradation mechanism involving thermally induced breakdown of peroxides which are formed in reactions initiated by the radiation. Evidence for this mechanism is derived from infrared spectra, from sequential radiation-elevated temperature experiments including experiments under inert atmosphere, from activation energy estimates and from a new technique involving treatment of intact samples with PH 3 for chemical reduction of peroxides. The results of our studies raise significant doubts about the utility of earlier compilations which purportedly serve as radiation life expectancy guides by indicating "tolerable radiation doses" for a variety of polymers.

  9. Low-radiation environment affects the development of protection mechanisms in V79 cells.

    PubMed

    Fratini, E; Carbone, C; Capece, D; Esposito, G; Simone, G; Tabocchini, M A; Tomasi, M; Belli, M; Satta, L

    2015-05-01

    Very little is known about the influence of environmental radiation on living matter. In principle, important information can be acquired by analysing possible differences between parallel biological systems, one in a reference-radiation environment (RRE) and the other in a low-radiation environment (LRE). We took advantage of the unique opportunity represented by the cell culture facilities at the Gran Sasso National Laboratories of the Istituto Nazionale di Fisica Nucleare, where environment dose rate reduction factors in the underground (LRE), with respect to the external laboratory (RRE), are as follows: 10(3) for neutrons, 10(7) for directly ionizing cosmic rays and 10 for total γ-rays. Chinese hamster V79 cells were cultured for 10 months in both RRE and LRE. At the end of this period, all the cultures were kept in RRE for another 6 months. Changes in the activities of antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; glutathione peroxidase, GPX) and spontaneous mutation frequency at the hypoxanthine-guanine phosphoribosyl transferase (hprt) locus were investigated. The results obtained suggest that environmental radiation might act as a trigger of defence mechanisms in V79 cells, specifically those in reference conditions, showing a higher degree of defence against endogenous damage as compared to cells grown in a very low-radiation environment. Our findings corroborate the hypothesis that environmental radiation contributes to the development of defence mechanisms in today living organisms/systems.

  10. Mechanisms for radiation damage in DNA. Progress report, June 1, 1993--May 31, 1994

    SciTech Connect

    Sevilla, M.D.

    1993-12-01

    In this project the author has proposed several mechanisms for radiation damage to DNA and its constituents, and has detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. In this years work he has completed several experiments on the role of hydration water on DNA radiation damage, continued the investigation of the localization of the initial charges and their reactions on DNA, investigated protonation reactions in DNA base anions, and employed ab initio molecular orbital theory to gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics evolved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this years work to a consideration of ionization energies of various components of the DNA deoxyribose backbone and resulting neutral sugar radicals. This information has aided the formation of new radiation models for the effect of radiation on DNA. During this fiscal year four articles have been published, four are in press, one is submitted and several more are in preparation. Four papers have been presented at scientific meetings. This years effort will include another review article on the {open_quotes}Electron Spin Resonance of Radiation Damage to DNA{close_quotes}.

  11. Mechanical properties of radiation-sterilised human Bone-Tendon-Bone grafts preserved by different methods.

    PubMed

    Kamiński, A; Gut, G; Marowska, J; Lada-Kozłowska, M; Biwejnis, W; Zasacka, M

    2009-08-01

    Patellar tendon auto- and allo-grafts are commonly used in orthopedic surgery for reconstruction of the anterior cruciate ligaments (ACL). Autografts are mainly used for primary reconstruction, while allografts are useful for revision surgery. To avoid the risk of infectious disease transmission allografts should be radiation-sterilised. As radiation-sterilisation supposedly decreases the mechanical strength of tendon it is important to establish methods of allograft preservation and sterilisation assuring the best quality of grafts and their safety at the same time. Therefore, the purpose of this study was to compare the tensile strength of human patellar tendon (cut out as for ACL reconstruction), preserved by various methods (deep fresh freezing, glycerolisation, lyophilisation) and subsequently radiation-sterilised with doses of 0, 25, 50 or 100 kGy. Bone-Tendon-Bone grafts (BTB) were prepared from cadaveric human patella tendons with both patellar and tibial attachments. BTB grafts were preserved by deep freezing, glycerolisation or lyophilisation and were subsequently radiation-sterilised with doses of 0 (control), 25, 50 or 100 kGy. All samples were subjected to mechanical failure tensile tests with the use of Instron system in order to estimate their mechanical properties. All lyophilised grafts were rehydrated before performing of those tests. Obtained mechanical tests results of examined grafts suggest that deep-frozen irradiated grafts retain their initial mechanical properties to an extent which does not exclude their clinical application.

  12. Understanding the mechanisms of radiation belt dropouts observed by Van Allen Probes

    DOE PAGES

    Xiang, Zheng; Tu, Weichao; Li, Xinlin; ...

    2017-08-30

    To achieve a better understanding of the dominant loss mechanisms for the rapid dropouts of radiation belt electrons, three distinct radiation belt dropout events observed by Van Allen Probes are comprehensively investigated. For each event, observations of the pitch angle distribution of electron fluxes and electromagnetic ion cyclotron (EMIC) waves are analyzed to determine the effects of atmospheric precipitation loss due to pitch angle scattering induced by EMIC waves. Last closed drift shells (LCDS) and magnetopause standoff position are obtained to evaluate the effects of magnetopause shadowing loss. Evolution of electron phase space density (PSD) versus L* profiles and themore » μ and K (first and second adiabatic invariants) dependence of the electron PSD drops are calculated to further analyze the dominant loss mechanisms at different L*. Here, our findings suggest that these radiation belt dropouts can be classified into distinct classes in terms of dominant loss mechanisms: magnetopause shadowing dominant, EMIC wave scattering dominant, and combination of both mechanisms. Different from previous understanding, our results show that magnetopause shadowing can deplete electrons at L* < 4, while EMIC waves can efficiently scatter electrons at L* > 4. Compared to the magnetopause standoff position, it is more reliable to use LCDS to evaluate the impact of magnetopause shadowing. Finally, the evolution of electron PSD versus L* profile and the μ, K dependence of electron PSD drops can provide critical and credible clues regarding the mechanisms responsible for electron losses at different L* over the outer radiation belt.« less

  13. Late radiation-induced heart disease after radiotherapy. Clinical importance, radiobiological mechanisms and strategies of prevention.

    PubMed

    Andratschke, Nicolaus; Maurer, Jean; Molls, Michael; Trott, Klaus-Rüdiger

    2011-08-01

    The clinical importance of radiation-induced heart disease, in particular in post-operative radiotherapy of breast cancer patients, has been recognised only recently. There is general agreement, that a co-ordinated research effort would be needed to explore all the potential strategies of how to reduce the late risk of radiation-induced heart disease in radiotherapy. This approach would be based, on one hand, on a comprehensive understanding of the radiobiological mechanisms of radiation-induced heart disease after radiotherapy which would require large-scale long-term animal experiments with high precision local heart irradiation. On the other hand - in close co-operation with mechanistic in vivo research studies - clinical studies in patients need to determine the influence of dose distribution in the heart on the risk of radiation-induced heart disease. The aim of these clinical studies would be to identify the critical structures within the organ which need to be spared and their radiation sensitivity as well as a potential volume and dose effect. The results of the mechanistic studies might also provide concepts of how to modify the gradual progression of radiation damage in the heart by drugs or biological molecules. The results of the studies in patients would need to also incorporate detailed dosimetric and imaging studies in order to develop early indicators of impending radiation-induced heart disease which would be a pre-condition to develop sound criteria for treatment plan optimisation. Copyright © 2010. Published by Elsevier Ireland Ltd.

  14. Radiation-induced genomic instability: Are epigenetic mechanisms the missing link?

    SciTech Connect

    Aypar, Umut; Morgan, William F.; Baulch, Janet E.

    2011-02-01

    Purpose: This review examines the evidence for the hypothesis that epigenetics are involved in the initiation and perpetuation of radiation-induced genomic instability (RIGI). Conclusion: In addition to the extensively studied targeted effects of radiation, it is now apparent that non-targeted delayed effects such as RIGI are also important post-irradiation outcomes. In RIGI, unirradiated progeny cells display phenotypic changes at delayed times after radiation of the parental cell. RIGI is thought to be important in the process of carcinogenesis, however, the mechanism by which this occurs remains to be elucidated. In the genomically unstable clones developed by Morgan and colleagues, radiation-induced mutations, double-strand breaks, or changes in mRNA levels alone could not account for the initiation or perpetuation of RIGI. Since changes in the DNA sequence could not fully explain the mechanism of RIGI, inherited epigenetic changes may be involved. Epigenetics are known to play an important role in many cellular processes and epigenetic aberrations can lead to carcinogenesis. Recent studies in the field of radiation biology suggest that the changes in methylation patterns may be involved in RIGI. Together these clues have led us to hypothesize that epigenetics may be the missing link in understanding the mechanism behind RIGI.

  15. Radiation health consequences for astronauts: mechanisms, monitoring and prevention

    NASA Astrophysics Data System (ADS)

    Neyfakh, E.

    During space flights crews are exposed chronically to uneven irradiation of enhanced bioefficiency following with significant elevation for chromosomal aberrations as minimum. To protect in space rationally monitoring and preventing of health radiogenic individual primary consequences for astronauts are of high importance. Majority of Chernobyl-touched population has some common etiologic radiogenic mechanisms and radioloads with astronauts ones during long-term missions and former is able to be used well as the close ground-level model. Primary radiogenic deviations. Two radiogenic pathologies as lipoperoxic ( LP ) stress with coupled deficits for essential bioantioxidants ( BAO ) were typical for chronic low-dose Chernobyl-touched contingents. When BAO expenditure had led to their subnormal levels, radiogenic free radical chain -b ranched LP processes occurred in vivo hyperbolically. Catabolites and their free radicals of the abnormal LP cascade are known to be toxic, mutagenic / carcinogenic and teratogenic factors as such, as they are for retinol and tocopherol deficiencies. Both coupled pathogenic factors interrelated synergistically. Simultaneous dysbalances for LP and / or BAO systems were evaluated as the cause and markers for metabolic disregulations. Human LP stress was proved to be the most radiosensible known marker to mo nitor least invasively of blood microsamples in a ground lab via the developed PC Program. But for capsule conditions the best approach is assumed to be LP monitoring via skin ultraweak green-blue chemiluminescence ( CL ) caused by recombination of peroxyl radicals. CL from surfaces of organs was embedded first ( E. Neyfakh, 1964 - 71 ) to reflect their internal LP velocities in vivo and it is the non-invasive on-line simple method of the highest sensitivity, supplying with data transmissible to the ground directly. Related deviations. a) Radiogenic hypermutagenesis: LP catabolites and their free radicals are responsible for direct DNA

  16. Radiation dose dependent change in physiochemical, mechanical and barrier properties of guar gum based films.

    PubMed

    Saurabh, Chaturbhuj K; Gupta, Sumit; Bahadur, Jitendra; Mazumder, S; Variyar, Prasad S; Sharma, Arun

    2013-11-06

    Mechanical and water vapor barrier properties of biodegradable films prepared from radiation processed guar gum were investigated. Films prepared from GG irradiated up to 500 Gy demonstrated significantly higher tensile strength as compared to non-irradiated control films. This improvement in tensile strength observed was demonstrated to be due to the ordering of polymer structures as confirmed by small angle X-ray scattering analysis. Exposure to doses higher than 500 Gy, however, resulted in a dose dependent decrease in tensile strength. A dose dependent decrease in puncture strength with no significant differences in the percent elongation was also observed at all the doses studied. Water vapor barrier properties of films improved up to 15% due to radiation processing. Radiation processing at lower doses for improving mechanical and barrier properties of guar based packaging films is demonstrated here for the first time.

  17. Effects of high energy radiation on the mechanical properties of epoxy/graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1986-01-01

    The epoxy resin system formed by tetraglycidyl 4,4'-diamino diphenyl methane (TGDDM) and 4,4'-diamino diphenyl sulfone (DDS) was characterized by dynamic mechanical analysis and differential scanning calorimetry. Dynamic mechanical properties of graphite fiber epoxy composite specimens formulated with two different adhesive systems (NARMCO 5208, NARMCO 5209) were determined. The specimens were exposed to varying dose levels of ionizing radiation (0.5 MeV electrons) with a maximum absorbed dose of 10,000 Mrads. Following irradiation, property measurements were made to assess the influence of radiation on the epoxy and composite specimens. The results established that ionizing radiation has a limited effect on the properties of epoxy and composite specimens.

  18. Adaptation of the Black Yeast Wangiella dermatitidis to Ionizing Radiation: Molecular and Cellular Mechanisms

    PubMed Central

    Robertson, Kelly L.; Mostaghim, Anahita; Cuomo, Christina A.; Soto, Carissa M.; Lebedev, Nikolai; Bailey, Robert F.; Wang, Zheng

    2012-01-01

    Observations of enhanced growth of melanized fungi under low-dose ionizing radiation in the laboratory and in the damaged Chernobyl nuclear reactor suggest they have adapted the ability to survive or even benefit from exposure to ionizing radiation. However, the cellular and molecular mechanism of fungal responses to such radiation remains poorly understood. Using the black yeast Wangiella dermatitidis as a model, we confirmed that ionizing radiation enhanced cell growth by increasing cell division and cell size. Using RNA-seq technology, we compared the transcriptomic profiles of the wild type and the melanin-deficient wdpks1 mutant under irradiation and non-irradiation conditions. It was found that more than 3000 genes were differentially expressed when these two strains were constantly exposed to a low dose of ionizing radiation and that half were regulated at least two fold in either direction. Functional analysis indicated that many genes for amino acid and carbohydrate metabolism and cell cycle progression were down-regulated and that a number of antioxidant genes and genes affecting membrane fluidity were up-regulated in both irradiated strains. However, the expression of ribosomal biogenesis genes was significantly up-regulated in the irradiated wild-type strain but not in the irradiated wdpks1 mutant, implying that melanin might help to contribute radiation energy for protein translation. Furthermore, we demonstrated that long-term exposure to low doses of radiation significantly increased survivability of both the wild-type and the wdpks1 mutant, which was correlated with reduced levels of reactive oxygen species (ROS), increased production of carotenoid and induced expression of genes encoding translesion DNA synthesis. Our results represent the first functional genomic study of how melanized fungal cells respond to low dose ionizing radiation and provide clues for the identification of biological processes, molecular pathways and individual genes

  19. Effects of radiation on the visual appearance and mechanical properties of mouse skin.

    PubMed

    Burlin, T E; Challoner, A V; Hutton, W C; Magnus, I A; Ranu, H S; Spittle, M

    1977-02-01

    A study of the long term effects of radiation on the visual appearance and mechanical properties of mouse skin is presented. The effects associated with the hair follicle (greying and alopecia) increase monotonically with exposure. Other effects (load, extension and stress at rupture and scarring of the skin) all show a reversal at the highest exposures. The skin thickness changes little with exposure, while the skin stiffness exhibits a shoulder on the response curve. Possible mechanisms underlying these effects are discussed.

  20. Miniature probe for mechanical properties of vascular lesions using acoustic radiation force optical coherence elastography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Qu, Yueqiao; Ma, Teng; He, Youmin; Yu, Mingyue; Li, Rui; Zhu, Jiang; Dai, Cuixia; Piao, Zhonglie; Shung, K. Kirk; Zhou, Qifa; Chen, Zhongping

    2016-03-01

    Changes in tissue biomechanical properties often signify the onset and progression of diseases, such as in determining the vulnerability of atherosclerotic plaques. Acoustic radiation force optical coherence elastography (ARF-OCE) has been used in the detection of tissue elasticity to obtain high-resolution elasticity maps. We have developed a probe-based ARF-OCE technology that utilizes a miniature 10 MHz ring ultrasonic transducer for excitation and Doppler optical coherence tomography (OCT) for detection. The transducer has a small hole in the center for the OCT light to propagate through. This allows for a confocal stress field and light detection within a small region for high sensitivity and localized excitation. This device is a front-facing probe that is only 3.5 mm in diameter and it is the smallest ARF-OCE catheter to the best of our knowledge. We have tested the feasibility of the probe by measuring the point displacement of an agarose tissue-mimicking phantom using different ARF excitation voltages. Small displacement values ranging from 30 nm to 90 nm have been detected and are shown to be directly proportional to the excitation voltage as expected. We are currently working on obtaining 2D images using a scanning mechanism. We will be testing to capture 2D elastograms of phantoms to further verify feasibility, and eventually characterize the mechanical properties of cardiovascular tissue. With its high portability and sensitivity, this novel technology can be applied to the diagnosis and characterization of vulnerable atherosclerotic plaques.

  1. Synergistic capture mechanisms for alkali and sulphur species from combustion. Quarterly report No. 10, December 1992--February 1993

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Wu, Baochun

    1993-07-26

    A number of sorbents with alumina-silicate base and sulfur capturing active sites have been developed for simultaneous removal of alkali metal compounds and sulfur dioxide. Current report will focus on bauxite sorbents, which includes experiments on sulfur dioxide absorption, alkali capturing and alkali/sulfur absorption simultaneously by bauxite-based sorbents. The alkali compound used here is sodium chloride. Experiments show an effective adsorption of sulfur or alkali separately, and the combined adsorption of alkali/sulfur. Atomic absorption analysis of reaction products shows that there is a much higher sodium content in the combined reaction products than that of the single reaction of alkali absorption by bauxite. Further X-ray diffraction analysis shows that there is sodium sulfate in the final products of simultaneous reaction, which indicates the formation and then condensation of sodium sulfate in the reaction system.

  2. Synergistic capture mechanisms for alkali and sulphur species for combustion. Quarterly report No. 7, March--May 1992

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1992-12-31

    Table 5 shows a total sodium capture of 97 % for no chlorine case and 75 % for excess chlorine case. Similar results are shown for the water insoluble capture; 78 % for the no chlorine case against 48 % capture for excess chlorine case. Figure 15 shows comparative plate by plate mass loadings for Sample 244 and sample 303, while Figure 11 shows the partition of fraction oxides in the same impacters. Fraction mass distribution of the sampled kaolinite is shown in Figure 12, with a corresponding fraction mass distribution of water soluble sodium oxide is shown in Figure 13. The fraction oxide mass distribution of the 22% water soluble sodium from the no chlorine case (Figure 18), shows similar distribution to the kaolinite fraction mass distribution (Figure 12). This suggests that the water soluble sodium oxide in the absence of chlorine was probably capillary condensed or it was reacted sodium oxide that is water soluble. Surface condensation is unlikely as there would have been a shift to the smaller size range. This argument had been shown by Neville et al (1985) that condensation on its own would result in the bulk of the mass being found in the submicron size range. The fraction oxide mass distribution of the 52% water soluble sodium oxide, from the excess chlorine correlate weakly with the kaolinite fraction mass distribution, instead, there is a clear shift towards the fume size range of the after filter and stage 8. This indicates that the water soluble sodium oxide, from excess chlorine case, was predominantly uncaptured sodium. Presence of chlorine in this case reduced sodium capture by 30%.

  3. Mechanism of a reversible CO2 capture monitored by the layered perovskite Li2SrTa2O7.

    PubMed

    Galven, Cyrille; Fourquet, Jean-Louis; Suard, Emmanuelle; Crosnier-Lopez, Marie-Pierre; Le Berre, Françoise

    2010-05-07

    We demonstrate for the first time, a new CO(2) capture ability monitored by a Ruddelsden-Popper compound. Under a humid CO(2) atmosphere, Li(2)SrTa(2)O(7) is transformed into LiHSrTa(2)O(7) releasing lithium hydroxide which combined with the atmospheric CO(2) leads to Li(2)CO(3). The presence of carbonate is confirmed by IR, thermal analysis coupled with mass spectroscopy and diffraction experiments (X-ray and neutron). The structural study of LiHSrTa(2)O(7) performed with X-ray and neutron diffraction data showed that the structure differs from that of LiHSrTa(2)O(7) obtained by ionic exchange from Li(2)SrTa(2)O(7) by the Li(+)/H(+) repartition in the interlayer spacing. In the case of the LiHSrTa(2)O(7) studied in this paper, the Li(+) and H(+) ions are ordered, while in the other form, each cation is unequally distributed on 2 sites. By heating, Li(2)SrTa(2)O(7) is recovered showing that the CO(2) capture is reversible and the cyclability of the CO(2) capture has been tested during six cycles.

  4. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change.

    PubMed

    Ballaré, C L; Caldwell, M M; Flint, S D; Robinson, S A; Bornman, J F

    2011-02-01

    Ultraviolet radiation (UV) is a minor fraction of the solar spectrum reaching the ground surface. In this assessment we summarize the results of previous work on the effects of the UV-B component (280-315 nm) on terrestrial ecosystems, and draw attention to important knowledge gaps in our understanding of the interactive effects of UV radiation and climate change. We highlight the following points: (i) The effects of UV-B on the growth of terrestrial plants are relatively small and, because the Montreal Protocol has been successful in limiting ozone depletion, the reduction in plant growth caused by increased UV-B radiation in areas affected by ozone decline since 1980 is unlikely to have exceeded 6%. (ii) Solar UV-B radiation has large direct and indirect (plant-mediated) effects on canopy arthropods and microorganisms. Therefore, trophic interactions (herbivory, decomposition) in terrestrial ecosystems appear to be sensitive to variations in UV-B irradiance. (iii) Future variations in UV radiation resulting from changes in climate and land-use may have more important consequences on terrestrial ecosystems than the changes in UV caused by ozone depletion. This is because the resulting changes in UV radiation may affect a greater range of ecosystems, and will not be restricted solely to the UV-B component. (iv) Several ecosystem processes that are not particularly sensitive to UV-B radiation can be strongly affected by UV-A (315-400 nm) radiation. One example is the physical degradation of plant litter. Increased photodegradation (in response to reduced cloudiness or canopy cover) will lead to increased carbon release to the atmosphere via direct and indirect mechanisms.

  5. Observation of strong radiation pressure forces from squeezed light on a mechanical oscillator

    NASA Astrophysics Data System (ADS)

    Clark, Jeremy B.; Lecocq, Florent; Simmonds, Raymond W.; Aumentado, José; Teufel, John D.

    2016-07-01

    In quantum-enhanced sensing, non-classical states are used to improve the sensitivity of a measurement. Squeezed light, in particular, has proved a useful resource in enhanced mechanical displacement sensing, although the fundamental limit to this enhancement due to the Heisenberg uncertainty principle has not been encountered experimentally. Here we use a microwave cavity optomechanical system to observe the squeezing-dependent radiation pressure noise that necessarily accompanies any quantum enhancement of the measurement precision and ultimately limits the measurement noise performance. By increasing the measurement strength so that radiation pressure forces dominate the thermal motion of the mechanical oscillator, we exploit the optomechanical interaction to implement an efficient quantum nondemolition measurement of the squeezed light. Thus, our results show how the mechanical oscillator improves the measurement of non-classical light, just as non-classical light enhances the measurement of the motion.

  6. Study on the mechanical property of polyimide film in space radiation environments

    NASA Astrophysics Data System (ADS)

    Shen, Zicai; Mu, Yongqiang; Ding, Yigang; Liu, Yuming; Zhao, Chunqing

    2016-01-01

    Polyimide films are widely used in spacecraft, but their mechanical properties would degrade in space environments, such as electron, proton, near ultraviolet or far ultraviolet, etc. The mechanical property and mechanism of polyimide film in electron, proton, near ultraviolet and far ultraviolet was studied by Φ800 combined space radiation test facility of Beijing Institute of Space Environment Engineering (BISSE. Rupture elongation of Kapton film decrease with the increase of the tensile deformation rate. The tensile strength and the rupture elongation of Kapton film decrease with the increase of electron and proton radiation, while tensile strength and the rupture elongation of Kapton film decrease firstly and then increase with near ultraviolet and far ultraviolet.

  7. Mechanical and radiation isocenter coincidence: an experience in linear accelerator alignment.

    PubMed

    Woo, M K; O'Brien, P; Gillies, B; Etheridge, R

    1992-01-01

    As part of the commissioning procedure of a linear accelerator at our cancer center, the defining laser lines were aligned with the optical and radiation isocenter of the linac. When a mechanical checkout jig was set up at the same point, a discrepancy of 4 mm resulted when the gantry was moved from 0 degrees to 180 degrees. Extensive measurements, some with custom-designed devices, confirmed the observations and provided an explanation. Even though the mechanical isocenter is within the specified tolerance of 1-mm radius, the clinically observable discrepancy of 4-mm results from the noncoincidence of the mechanical and radiation isocenters. The clinical significance of the final setup is discussed and future commissioning procedures are recommended.

  8. A mechanism for the production of light and dark contrasts in radiatively controlled lines.

    NASA Technical Reports Server (NTRS)

    Gebbie, K. B.; Steinitz, R.

    1973-01-01

    It is shown that light and dark contrasts observed in the radiation of strong lines may arise from lateral differences in the local value of the scattering term alone, independently of the local values of temperature and pressure. Mechanisms for the production of such differences are suggested, and regions are pointed out in which they occur as 'features.' From numerical examples presented, it is seen that the effect of such features on the emergent radiation field is determined by their position with respect to the shape of the source function.

  9. Mechanisms of interaction of laser radiation with ocular tissues: implications for human exposure limits

    NASA Astrophysics Data System (ADS)

    Sliney, D. H.

    1981-12-01

    Many investigations of laser injury to the eye have been carried out over the past 15 years in order to set standards for safe exposure of the human eye to laser radiation. A review of this extensive body of mainly experimental data suggests that there are at least three dominant mechanisms of injury which are well accepted. However, other effects cannot be ruled out. In particular, several results suggest that the time evolution of injury and repair processes as well as the physical aspects of the interaction of biological tissue with optical radiation must be considered.

  10. About mechanisms of radiation-induced effect of nanostructurization of near-surface volumes of metals

    NASA Astrophysics Data System (ADS)

    Ivchenko, V. A.

    2017-01-01

    Mechanisms of the radiation-induced development of nanostructures in subsurface metal regions have been analyzed based on field-ion microscopy data. It is concluded that the modification of near-surface metal regions on a nanometer scale as a result of the interaction with Ar+ ion beams proceeds by several mechanisms. In particular, for a fluence of F = 1016 ion/cm2 (at an ion energy of E = 30 keV), the main contribution is due to the ion channeling. A tenfold increase in the ion fluence leads to prevailing deformation mechanism in nanostructure formation in the subsurface metal regions.

  11. Temperature assisted radiative and non-radiative recombination mechanisms in sillimanite (Al2SiO5) mineral

    NASA Astrophysics Data System (ADS)

    Kalita, J. M.; Wary, G.

    2017-03-01

    Temperature assisted luminescence in sillimanite (Al2SiO5) mineral was studied using thermoluminescence (TL). TL characteristics were studied in un-annealed and different annealed samples. Analysis showed that in the un-annealed sample, there was four electron trapping sites at depths 0.56, 0.87, 1.08, 1.32 eV and a hole trapping site at depth 3.63 eV from the conduction band acting as a recombination center. Further analysis on the annealed samples showed that the 0.56 eV trapping site was a pressure induced surface trap and it disappeared after annealing. However, the other trapping and recombination sites were found to be stable under thermal treatment. Due to this trap distribution, three partially overlapping glow peaks were observed. The glow peaks were found to be affected by thermal quenching. The thermal quenching parameters were evaluated from the composite glow curves by using Computerized Resolved Peak (CRP) technique. The activation energies for thermal quenching (W) estimated from the three peaks were found to be 0.69 ± 0.05, 0.92 ± 0.06 and 1.15 ± 0.03 eV respectively and the pre-exponential factors (C) were 1.12 × 108, 2.65 × 1010 and 9.23 × 1011 respectively. Based on the analysis, a band model was proposed and the whole radiative and non-radiative recombination mechanisms were discussed.

  12. Radiative electron capture to the continuum and the short-wavelength limit of electron-nucleus bremsstrahlung in 90A MeV U88 + ((1s2)(2s2))+N2 Collisions.

    PubMed

    Nofal, M; Hagmann, S; Stöhlker, Th; Jakubassa-Amundsen, D H; Kozhuharov, Ch; Wang, X; Gumberidze, A; Spillmann, U; Reuschl, R; Hess, S; Trotsenko, S; Banas, D; Bosch, F; Liesen, D; Moshammer, R; Ullrich, J; Dörner, R; Steck, M; Nolden, F; Beller, P; Rothard, H; Beckert, K; Franczak, B

    2007-10-19

    We have measured the continuum momentum distribution for radiative electron capture to the continuum (RECC) cusp electrons in 90A MeV U88+ + N2-->U88+ + N2 +* + ecusp(0 degrees ) + hnu (RECC) collisions. We demonstrate that x rays coincident with RECC cusp electrons originate from the short-wavelength limit of the electron-nucleus bremsstrahlung and explain the asymmetric cusp shape by comparison with theory within the relativistic impulse approximation.

  13. On the mechanism of radiation-induced polymerization of vinyl monomers in ionic liquid

    NASA Astrophysics Data System (ADS)

    Liu, Yaodong; Wu, Guozhong

    2005-06-01

    An attempt was made to investigate the mechanism controlling the radiation-induced polymerization of vinyl monomers in room temperature ionic liquids. For that purpose, copolymerization of styrene (St) and methyl methacrylate (MMA) was initiated by 60Co gamma radiation in a moisture-stable ionic liquid, [choline chloride][ZnCl 2], and its mixture with THF (4:1 v/v). By analyzing the product composition with FTIR for a series of poly(St-co-MMA) samples, it was found that the mole fraction of St in the copolymer is linearly proportional to the mole fraction of St in the feed. Therefore, radiation polymerization in ionic liquid and its mixture with organic solvent is suggested to be a radical propagating process.

  14. UV radiation effect towards mechanical properties of Natural Fibre Reinforced Composite material: A Review

    NASA Astrophysics Data System (ADS)

    Mahzan, Shahruddin; Fitri, Muhamad; Zaleha, M.

    2017-01-01

    The use of natural fibres as reinforcement material have become common in human applications. Many of them are used in composite materials especially in the polymer matrix composites. The use of natural fibres as reinforcement also provide alternative solution of usage instead of being a waste materials. In some applications, these natural reinforced polymer composites were used as the outer layer, making them exposed to ultra violet exposure, hence prone to UV radiation. This paper reviews the effect of UV radiation towards the mechanical properties of natural fibre reinforced polymer matrix composite material. The effect of chemical treatment towards the natural fibre is also investigated. One of the important features that was critically explored was the degradation of the composite materials. The influence of UV radiation on the degradation rate involve several parameters such as wavelength, intensity and exposure time. This review highlights the influence of these parameters in order to provide better solution for polymer matrix composite’s development.

  15. Adsorption mechanism of graphene-like ZnO monolayer towards CO2 molecules: enhanced CO2 capture

    NASA Astrophysics Data System (ADS)

    Rao, G. S.; Hussain, T.; Islam, M. S.; Sagynbaeva, M.; Gupta, D.; Panigrahi, P.; Ahuja, R.

    2016-01-01

    This work aims to efficiently capture CO2 on two-dimensional (2D) nanostructures for effective cleaning of our atmosphere and purification of exhausts coming from fuel engines. Here, we have performed extensive first principles calculations based on density functional theory (DFT) to investigate the interaction of CO2 on a recently synthesized ZnO monolayer (ZnO-ML) in its pure, defected and functionalized form. A series of rigorous calculations yielded the most preferential binding configurations of the CO2 gas molecule on a ZnO-ML. It is observed that the substitution of one oxygen atom with boron, carbon and nitrogen on the ZnO monolayer resulted into enhanced CO2 adsorption. Our calculations show an enriched adsorption of CO2 on the ZnO-ML when substituting with foreign atoms like B, C and N. The improved adsorption energy of CO2 on ZnO suggests the ZnO-ML could be a promising candidate for future CO2 capture.

  16. Anisotropic mechanical properties of zircon and the effect of radiation damage

    SciTech Connect

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.

    2016-06-02

    Our study provides new insights into the relationship between radiation-dose-dependent structural damage, due to natural U and Th impurities, and the anisotropic mechanical properties (Poisson s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. 1991) and synthetic samples, covering a dose range of zero up to 6.8 x 1018 -decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by zkan (1976), revealed a general radiation-induced decrease in stiffness (~ 54 %) and hardness (~ 48 %) and an increase of the Poisson s ratio (~ 54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Rios et al. 2000a; Farnan and Salje 2001; Zhang and Salje 2001). This agreement, revealed by the different methods, indicates a huge influence of structural and even local phenomena on the macroscopic mechanical properties.

  17. Anisotropic mechanical properties of zircon and the effect of radiation damage

    DOE PAGES

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; ...

    2016-06-02

    Our study provides new insights into the relationship between radiation-dose-dependent structural damage, due to natural U and Th impurities, and the anisotropic mechanical properties (Poisson s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. 1991) and synthetic samples, covering a dose range of zero up to 6.8 x 1018 -decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by zkan (1976), revealed a general radiation-induced decrease in stiffness (~ 54 %) and hardness (~ 48 %) and an increase ofmore » the Poisson s ratio (~ 54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Rios et al. 2000a; Farnan and Salje 2001; Zhang and Salje 2001). This agreement, revealed by the different methods, indicates a huge influence of structural and even local phenomena on the macroscopic mechanical properties.« less

  18. Anisotropic mechanical properties of zircon and the effect of radiation damage

    SciTech Connect

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.

    2016-06-02

    Our study provides new insights into the relationship between radiation-dose-dependent structural damage, due to natural U and Th impurities, and the anisotropic mechanical properties (Poisson s ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. 1991) and synthetic samples, covering a dose range of zero up to 6.8 x 1018 -decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by zkan (1976), revealed a general radiation-induced decrease in stiffness (~ 54 %) and hardness (~ 48 %) and an increase of the Poisson s ratio (~ 54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Rios et al. 2000a; Farnan and Salje 2001; Zhang and Salje 2001). This agreement, revealed by the different methods, indicates a huge influence of structural and even local phenomena on the macroscopic mechanical properties.

  19. Anisotropic mechanical properties of zircon and the effect of radiation damage

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Bismayer, Ulrich; Boatner, Lynn A.; Isaacson, Scott G.; Ewing, Rodney C.

    2016-10-01

    This study provides new insights into the relationship between radiation-dose-dependent structural damage due to natural U and Th impurities and the anisotropic mechanical properties (Poisson's ratio, elastic modulus and hardness) of zircon. Natural zircon samples from Sri Lanka (see Muarakami et al. in Am Mineral 76:1510-1532, 1991) and synthetic samples, covering a dose range of zero up to 6.8 × 1018 α-decays/g, have been studied by nanoindentation. Measurements along the [100] crystallographic direction and calculations, based on elastic stiffness constants determined by Özkan (J Appl Phys 47:4772-4779, 1976), revealed a general radiation-induced decrease in stiffness (~54 %) and hardness (~48 %) and an increase in the Poisson's ratio (~54 %) with increasing dose. Additional indentations on selected samples along the [001] allowed one to follow the amorphization process to the point that the mechanical properties are isotropic. This work shows that the radiation-dose-dependent changes of the mechanical properties of zircon can be directly correlated with the amorphous fraction as determined by previous investigations with local and global probes (Ríos et al. in J Phys Condens Matter 12:2401-2412, 2000a; Farnan and Salje in J Appl Phys 89:2084-2090, 2001; Zhang and Salje in J Phys Condens Matter 13:3057-3071, 2001). The excellent agreement, revealed by the different methods, indicates a large influence of structural and even local phenomena on the macroscopic mechanical properties. Therefore, this study indicates the importance of acquiring better knowledge about the mechanical long-term stability of radiation-damaged materials.

  20. Orbital electron capture by the nucleus

    NASA Technical Reports Server (NTRS)

    Bambynek, W.; Behrens, H.; Chen, M. H.; Crasemann, B.; Fitzpatrick, M. L.; Ledingham, K. W. D.; Genz, H.; Mutterer, M.; Intemann, R. L.

    1976-01-01

    The theory of nuclear electron capture is reviewed in the light of current understanding of weak interactions. Experimental methods and results regarding capture probabilities, capture ratios, and EC/Beta(+) ratios are summarized. Radiative electron capture is discussed, including both theory and experiment. Atomic wave function overlap and electron exchange effects are covered, as are atomic transitions that accompany nuclear electron capture. Tables are provided to assist the reader in determining quantities of interest for specific cases.

  1. The mechanisms of protection of antioxidants on Nostoc sphaeroides against UV-B radiation

    NASA Astrophysics Data System (ADS)

    Wang, G. H.

    UV radiation is one of space harmful factor for earth organisms in space exploration In the present work we studied on the role of antioxidant system in Nostoc sphaeroides K u tz Cyanobacteria and the effects of exogenous antioxidant molecules on its photosynthetic rate under UV-B radiation It was found that UV-B radiation decreased the photosynthetic activity of cyanobacterium but promoted the activity of antioxidant system to protect photosystem II PSII and exogenous antioxidant sodium nitroprusside SNP N-acetylcysteine NAC had an obvious protection on PSII activity under UV-B radiation The activity of SOD Superoxide Dismutase EC 1 15 1 1 CAT Catalase EC 1 11 1 6 POD Peroxidase EC 1 11 1 7 and content of MDA and ASC were improved by 0 5mM and 1mM SNP but 0 1mM SNP decreased the activity of antioxide system Exogenous NAC addition decreased the activity of SOD POD CAT and the content MDA and ASC but exogenous NAC addition increased the content of GSH The results suggested that exogenous SNP and NAC may protect algae by different mechanisms in which SNP maybe play double roles as sources of reactive free radicals or ROS scavengers in formation of algae s protection of PSII under UV-B radiation while NAC does function as antioxidant reagent or precursor of glutathione which could protect PSII directly from UV-B radiation Keyword antioxidant system exogenous or endogenous antioxidant Nostoc sphaeroides photosynthesis UV-B radiation

  2. Degradation Mechanisms and Mechanical Property Variation of Epdm Rubbers for Automotive Radiator Hosess

    NASA Astrophysics Data System (ADS)

    Kwak, Eung-Bum; Choi, Nak-Sam

    The degradation behaviors of EPDM (ethylene-propylene diene monomer) rubbers used for automotive radiator hoses subjected to thermo-oxidative and electrochemical stresses were studied. As a result of the thermo-oxidative aging tests, the IRHD (international rubber hardness degrees) hardness of the rubber specimens increased, while their elongation at break decreased much. A slight increase in crosslink density indicated that changes in the properties were caused by the concentration of carbonyl groups in the skin layer. For the electrochemical degradation (ECD), the weight of rubber specimens increased whereas their elongation and hardness much decreased because water solution penetrated into the skin part. There was little change in crosslink density. Formation of many chain scissions and thus microvoid networks in the skin layer induced the swelling behavior leading to a linear reduction of hardness versus the weight increase.

  3. DIM (3,3′-diindolylmethane) confers protection against ionizing radiation by a unique mechanism

    PubMed Central

    Fan, Saijun; Meng, Qinghui; Xu, Jiaying; Jiao, Yang; Zhao, Lin; Zhang, Xiaodong; Sarkar, Fazlul H.; Brown, Milton L.; Dritschilo, Anatoly; Rosen, Eliot M.

    2013-01-01

    DIM (3,3′-diindolylmethane), a small molecule compound, is a proposed cancer preventive agent that can be safely administered to humans in repeated doses. We report that administration of DIM in a multidose schedule protected rodents against lethal doses of total body irradiation up to 13 Gy, whether DIM dosing was initiated before or up to 24 h after radiation. Physiologic submicromolar concentrations of DIM protected cultured cells against radiation by a unique mechanism: DIM caused rapid activation of ataxia-telangiectasia mutated (ATM), a nuclear kinase that regulates responses to DNA damage (DDR) and oxidative stress. Subsequently, multiple ATM substrates were phosphorylated, suggesting that DIM induces an ATM-dependent DDR-like response, and DIM enhanced radiation-induced ATM signaling and NF-κB activation. DIM also caused activation of ATM in rodent tissues. Activation of ATM by DIM may be due, in part, to inhibition of protein phosphatase 2A, an upstream regulator of ATM. In contrast, DIM did not protect human breast cancer xenograft tumors against radiation under the conditions tested. In tumors, ATM was constitutively phosphorylated and was not further stimulated by radiation and/or DIM. Our findings suggest that DIM is a potent radioprotector and mitigator that functions by stimulating an ATM-driven DDR-like response and NF-κB survival signaling. PMID:24127581

  4. DIM (3,3'-diindolylmethane) confers protection against ionizing radiation by a unique mechanism.

    PubMed

    Fan, Saijun; Meng, Qinghui; Xu, Jiaying; Jiao, Yang; Zhao, Lin; Zhang, Xiaodong; Sarkar, Fazlul H; Brown, Milton L; Dritschilo, Anatoly; Rosen, Eliot M

    2013-11-12

    DIM (3,3'-diindolylmethane), a small molecule compound, is a proposed cancer preventive agent that can be safely administered to humans in repeated doses. We report that administration of DIM in a multidose schedule protected rodents against lethal doses of total body irradiation up to 13 Gy, whether DIM dosing was initiated before or up to 24 h after radiation. Physiologic submicromolar concentrations of DIM protected cultured cells against radiation by a unique mechanism: DIM caused rapid activation of ataxia-telangiectasia mutated (ATM), a nuclear kinase that regulates responses to DNA damage (DDR) and oxidative stress. Subsequently, multiple ATM substrates were phosphorylated, suggesting that DIM induces an ATM-dependent DDR-like response, and DIM enhanced radiation-induced ATM signaling and NF-κB activation. DIM also caused activation of ATM in rodent tissues. Activation of ATM by DIM may be due, in part, to inhibition of protein phosphatase 2A, an upstream regulator of ATM. In contrast, DIM did not protect human breast cancer xenograft tumors against radiation under the conditions tested. In tumors, ATM was constitutively phosphorylated and was not further stimulated by radiation and/or DIM. Our findings suggest that DIM is a potent radioprotector and mitigator that functions by stimulating an ATM-driven DDR-like response and NF-κB survival signaling.

  5. Mechanisms for radiation damage in DNA. Progress report, June 1, 1994--May 31, 1995

    SciTech Connect

    Sevilla, M.D.

    1994-11-01

    In this project we have proposed several mechanisms for radiation damage to DNA and its constituents, and have detailed a series of experiments utilizing electron spin resonance spectroscopy, HPLC, GC-mass spectroscopy and ab initio molecular orbital calculations to test the proposed mechanisms. The results from these various techniques have resulted in an understanding of consequences of radiation damage to DNA from the early ionization event to the production of non-radical lesions (discussed in detail in Comprehensive Report). In this year`s work we have found the hydroxyl radical in DNA`s hydration layer. This is an important result which impacts the hole transfer hypothesis and the understanding of the direct vs. indirect effect in DNA. Further we have found the first ESR evidence for sugar radicals as a result of direct radiation damage to DNA nucleotides in an aqueous environment. This is significant as it impacts the biological endpoint of radiation damage to DNA and suggests future work in DNA. Work with DNA-polypeptides show clear evidence for electron transfer to DNA from the polypeptide which we believe is a radioprotective mechanism. Our work with ab initio molecular orbital theory has gain insight into the initial events of radiation damage to DNA. Ab initio calculations have provided an understanding of the energetics involved in anion and cation formation, ion radical transfer in DNA as well as proton transfer with DNA base pair radical ions. This has been extended in this year`s work to new, more accurate values for the electron affinities of the DNA bases, understanding of the relative stability of all possible sugar radicals formed by hydrogen abstraction on the deoxyribose group, hydration effects on, thiol radioprotectors, and an ongoing study of radical intermediates formed from initial DNA ion radicals. During this fiscal year five articles have been published, three are in press, two are submitted and several more are in preparation.

  6. ASSESSING RADIATION PRESSURE AS A FEEDBACK MECHANISM IN STAR-FORMING GALAXIES

    SciTech Connect

    Andrews, Brett H.; Thompson, Todd A.

    2011-02-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L{sub IR}-L'{sub CO} correlation, and the L{sub IR}-L'{sub HCN} correlation. In particular, the linear L{sub IR}-L'{sub HCN} correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of 'intermittency' in normal spirals-the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H{sub 2} and HCN-to-H{sub 2} conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  7. Synergistic capture mechanisms for alkali and sulphur species for combustion. Quarterly report No. 9, September--November 1992

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1992-12-31

    The reaction of a porous particle with a gaseous species in a confined flow environment, is a fairly complex process whose complete analysis needs consideration of a large number of physical and chemical rate processes. It involves mass transport of gaseous reactants and products in the surrounding gas phase, mass transport in the interior of the porous particle, reaction on the internal and external surfaces of the particle and effects of structural changes that the particle undergoes as reaction proceeds. The problem of solving a classical diffusion reaction equation is further complicated with the difficulty in the choice of boundary conditions at the outer particle radius. Unlike the case of fixed bed reactors where the outer gas phase bulk concentration assumes a steady profile, and hence constant relative to the particle, in a continuous flow process described by our reactor, the particles `see` a gas phase alkali concentration and bulk phase temperature that changes as the particle moves down the flowfield. The model of capture presented here consist of a series of first order ordinary differential equations of the initial value type. As was stated earlier, an eularian approach is adopted in this section. The capture equation is first formulated as a species conservation equation in the fluid phase. Auxiliary equations of particle number density, temperature profile, and the ideal gas law are then combined with conservation equation to solve for the alkali gas phase concentration profile along the axial length of the combustor. Assumptions that were discussed in earlier, also apply here. Unless otherwise stated, all symbols here are as have been used throughout the body of the text.

  8. Structure of an ‘open’ clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport

    PubMed Central

    Laponogov, Ivan; Veselkov, Dennis A.; Crevel, Isabelle M.-T.; Pan, Xiao-Su; Fisher, L. Mark; Sanderson, Mark R.

    2013-01-01

    Type II topoisomerases regulate DNA supercoiling and chromosome segregation. They act as ATP-operated clamps that capture a DNA duplex and pass it through a transient DNA break in a second DNA segment via the sequential opening and closure of ATPase-, G-DNA- and C-gates. Here, we present the first ‘open clamp’ structures of a 3-gate topoisomerase II-DNA complex, the seminal complex engaged in DNA recognition and capture. A high-resolution structure was solved for a (full-length ParE-ParC55)2 dimer of Streptococcus pneumoniae topoisomerase IV bound to two DNA molecules: a closed DNA gate in a B-A-B form double-helical conformation and a second B-form duplex associated with closed C-gate helices at a novel site neighbouring the catalytically important β-pinwheel DNA-binding domain. The protein N gate is present in an ‘arms-wide-open’ state with the undimerized N-terminal ParE ATPase domains connected to TOPRIM domains via a flexible joint and folded back allowing ready access both for gate and transported DNA segments and cleavage-stabilizing antibacterial drugs. The structure shows the molecular conformations of all three gates at 3.7 Å, the highest resolution achieved for the full complex to date, and illuminates the mechanism of DNA capture and transport by a type II topoisomerase. PMID:23965305

  9. Mechanical properties of cables exposed to simultaneous thermal and radiation aging

    SciTech Connect

    Jacobus, M.J. ); Fuehrer, G.F. )

    1990-01-01

    Sandia National Laboratories is conducting long-term aging research on representative samples of nuclear power plant Class 1E cables. The objectives of this program are to determine the suitability of these cables for extended life (beyond the 40-year design basis) and to assess various cable condition monitoring (CM) techniques for predicting remaining cable life. This paper provides the results of mechanical measurements that were performed on cable specimens cross-linked polyethylene neoprene jackets: chlorinated polyethylene jackets, fiberglass braid jackets, and chlorosulfonated polyethylene jackets aged at relatively mild, simultaneous thermal and radiation exposure conditions for periods of up to nine months. After aging, some of the aged samples, as well as some unaged samples, were exposed to accident gamma radiation at ambient temperature. The mechanical measurements discussed in this paper include tensile strength, ultimate elongation, and compressive modulus. 10 refs., 22 figs., 2 tabs.

  10. Space radiation effects on the thermo-mechanical behavior of graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Milkovich, Scott M.; Herakovich, Carl T.; Sykes, George F.

    1986-01-01

    This investigation of composite material properties utilized T300/934 graphite-epoxy that was subjected to 1.0 MeV electron radiation for a total dose of 1.0 x 10 to the 10th rads at a rate of 5.0 x 10 to the 7th rads/hour, simulating a worst-case exposure equivalent to 30 years in space. Mechanical testing was performed on 4-ply unidirectional laminates over the temperature range of -250 F (116 K) to +250 F (394 K). In-plane elastic tensile and shear properties as well as strength were obtained. The results show that electron radiation degrades the epoxy matrix and produces products that volatilize at the temperatures considered. These degradation products plasticize the epoxy at elevated temperatures and embrittle it at low temperatures, thereby altering the mechanical properties of the composite.

  11. Data integration reveals key homeostatic mechanisms following low dose radiation exposure

    SciTech Connect

    Tilton, Susan C.; Matzke, Melissa M.; Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J.; Morgan, William F.; Waters, Katrina M.

    2015-05-15

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time — with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24–72 h). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress was measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 was experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation. - Highlights: • Low dose ionizing radiation altered homeostasis in 3D skin tissue model. • Global gene/protein/metabolite data integrated using complementary statistical approaches • Time and location-specific change in matrix regulation

  12. The mechanism of the effect of a plasma layer with negative permittivity on the antenna radiation field

    SciTech Connect

    Wang, Chunsheng Liu, Hui; Jiang, Binhao; Li, Xueai

    2015-06-15

    A model of a plasma–antenna system is developed to study the mechanism of the effect of the plasma layer on antenna radiation. Results show a plasma layer with negative permittivity is inductive, and thus affects the phase difference between electric and magnetic fields. In the near field of antenna radiation, a plasma layer with proper parameters can compensate the capacitivity of the vacuum and enhance the radiation power. In the far field of antenna radiation, the plasma layer with negative permittivity increases the inductivity of the vacuum and reduces the radiation power.

  13. Towards understanding magnetic field generation in relativistic shocks with GRB afterglow observations and the GRB radiation mechanism with photospheric simulations and the X-ray flare radiation mechanism

    NASA Astrophysics Data System (ADS)

    Santana, Rodolfo

    2015-12-01

    In this thesis, we present three projects on open questions in the Gammaray Burst (GRB) field. In the first project, we used X-ray and optical observations to determine the amount of amplification of the ISM magnetic field needed to explain the GRB afterglow observations. We determined that mild amplification is required, at a level stronger than shock-compression but weaker than predicted by the Weibel mechanism. In the second project, we present a Monte Carlo code we wrote from scratch to perform realistic simulations of the photospheric process, one of the mechanisms considered to explain the GRB gamma-ray emission. We determined that photospheric emission can explain the GRB gamma-ray spectrum above the peak-energy if the photons are taken to have a temperature much smaller than the electron temperature and if the interactions between photons and electrons take place at a large optical depth. In the third project, we used multi-wavelength observations to constrain the X-ray flare radiation mechanism. We determined that synchrotron from a Poynting jet and the Photospheric process are the best candidates to explain the X-ray flare observations.

  14. Analysis of the selected mechanical parameters of coating of filters protecting against hazardous infrared radiation.

    PubMed

    Gralewicz, Grzegorz; Owczarek, Grzegorz; Kubrak, Janusz

    2017-03-01

    This article presents a comparison of the test results of selected mechanical parameters (hardness, Young's modulus, critical force for delamination) for protective filters intended for eye protection against harmful infrared radiation. Filters with reflective metallic films were studied, as well as interference filters developed at the Central Institute for Labour Protection - National Research Institute (CIOP-PIB). The test results of the selected mechanical parameters were compared with the test results, conducted in accordance with a standardised method, of simulating filter surface destruction that occurs during use.

  15. Impact of radiation exposure on mechanical and superconducting properties of Bi-2212 superconductor ceramics

    NASA Astrophysics Data System (ADS)

    Rahman, A. A.; Hamid, N. A.; Asbullah, M. S. N.

    2013-06-01

    In the last few years, rapid improvements have been made to improve the quality of high-temperature superconductors. Amongst the high temperature superconductors, the Bi-based (BSCCO) consists of interest for various applications. Bi2Sr2CaCu2O8 (Bi-2212) have been used to make superconducting tapes and wires. Unlike conventional compound superconductors, the critical current, Ic of oxide superconducting tapes in the elastic strain is generally almost constant and degrades suddenly when it is subject to mechanical force by a strain beyond the limit. In this research, the Bi-2212 samples were prepared by solid state reaction method. Precursors oxide powders were pressed to pallets under hydrostatic pressure around 7 tons or 70 000 psi and then sintered at temperature of 850°C for 24 hours. The effect of radiation before and after irradiation on mechanical and superconducting properties of the samples was studied. Irradiation was carried out with a beam of 3 MeV, current of 10 mA and radiation dose of 100 and 200 KGray. The x-ray diffraction analysis is used to verify Bi-2212 phase. The samples were also characterized through electrical properties by using the four-point probe method. The microstructure of the samples was studied by using the scanning electron microscopy (SEM), and compression test was also conducted using the stress-strain relationship. The phase structure and electrical properties of the samples degrade slightly with irradiation exposure. Nevertheless the microstructure showed that when initial electron radiation dose was increased up to 100 kGray, the grain growth, texture and core density improved slightly but the grain growth, size and core density begin to deteriorate after the electron radiation dose is increased to 200 kGray. This may be due to the formation of larger size defects within the microstructure of the Bi-2212 phase as the radiation dose increases.

  16. Mechanisms of the outer radiation belt electron flux variation during magnetic storms

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Obara, T.; Koshiishi, H.; Koga, K.; Matsumoto, H.; Goka, T.

    2003-12-01

    We have investigated variations of the energetic electron flux (> 0.4 MeV) and the magnetic field in the outer radiation belt obtained from the Standard DOse Monitor (SDOM) and the MAgnetoMeter (MAM) of the Space Environment Data Acquisition equipment (SEDA) onboard Tsubasa (Mission Demonstration Test Satellite (MDS)-1). Since Tsubasa operates in geostationary transfer orbit (GTO) with an orbital period of 10 hours and an inclination of 28.5 degrees, it has provided a rare opportunity for directly observing near-equatorial radiation belt plasma particles and the magnetic field during magnetic storms. The decreases of the energetic electron flux during the main phase of the magnetic storms, and the subsequent recoveries and enhancements during the recovery phase in the outer radiation belt are linked respectively to typical variations of the magnetic field. At the moment that the outer radiation belt flux sharply drops during the main phase of the 17 April 2002 magnetic storm, the butterfly distribution is observed at L=5 and the magnetic equator where the magnitude of magnetic field is much smaller than the IGRF model. Calculating the drift motions of the energetic electrons in the Tyganenko 2001 magnetospheric magnetic field model, shows that the drift-shell splitting mechanism could generate the butterfly distribution due to loss of the near-equatorially mirroring electrons through dayside magnetopause boundary. We evaluate roles and contributions of the other possible mechanisms to explain the flux decreases. We discuss the three-dimensional field configuration in the magnetopause to compare with the low earth orbital observation of the outer radiation belt flux.

  17. Thermal and Mechanical Performance of a Carbon/Carbon Composite Spacecraft Radiator

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan; Benner, Steve; Butler, Dan; Silk, Eric

    1999-01-01

    Carbon-carbon composite materials offer greater thermal efficiency, stiffness to weight ratio, tailorability, and dimensional stability than aluminum. These lightweight thermal materials could significantly reduce the overall costs associated with satellite thermal control and weight. However, the high cost and long lead-time for carbon-carbon manufacture have limited their widespread usage. Consequently, an informal partnership between government and industrial personnel called the Carbon-Carbon Spacecraft Radiator Partnership (CSRP) was created to foster carbon-carbon composite use for thermally and structurally demanding space radiator applications. The first CSRP flight opportunity is on the New Millennium Program (NMP) Earth Orbiter-1 (EO-1) spacecraft, scheduled for launch in late 1999. For EO-1, the CSRP designed and fabricated a Carbon-Carbon Radiator (CCR) with carbon-carbon facesheets and aluminum honeycomb core, which will also serve as a structural shear panel. While carbon-carbon is an ideal thermal candidate for spacecraft radiators, in practice there are technical challenges that may compromise performance. In this work, the thermal and mechanical performance of the EO-1 CCR is assessed by analysis and testing. Both then-nal and mechanical analyses were conducted to predict the radiator response to anticipated launch and on-orbit loads. The thermal model developed was based on thermal balance test conditions. The thermal analysis was performed using SINDA version 4.0. Structural finite element modeling and analysis were performed using SDRC/1-DEAS and UAI/NASTRAN, respectively. In addition, the CCR was subjected to flight qualification thermal/vacuum and vibration tests. The panel meets or exceeds the requirements for space flight and demonstrates promise for future satellite missions.

  18. Action spectrum and mechanisms of UV radiation-induced injury in lupus erythematosus

    SciTech Connect

    Kochevar, I.E.

    1985-07-01

    Photosensitivity associated with lupus erythematosus (LE) is well established. The photobiologic basis for this abnormal response to ultraviolet radiation, however, has not been determined. This paper summarizes the criteria for elucidating possible photobiologic mechanisms and reviews the literature relevant to the mechanism of photosensitivity in LE. In patients with LE, photosensitivity to wavelengths shorter than 320 nm has been demonstrated; wavelengths longer than 320 nm have not been adequately evaluated. DNA is a possible chromophore for photosensitivity below 320 nm. UV irradiation of skin produces thymine photodimers in DNA. UV-irradiated DNA is more antigenic than native DNA and the antigenicity of UV-irradiated DNA has been proposed, but not proven, to be involved in the development of clinical lesions. UV irradiation of mice previously injected with anti-UV-DNA antibodies produces Ig deposition and complement fixation that appears to be similar to the changes seen in lupus lesions. Antibodies to UV-irradiated DNA occur in the serum of LE patients although a correlation between antibody titers and photosensitivity was not observed. Defective repair of UV-induced DNA damage does not appear to be a mechanism for the photosensitivity in LE. Other mechanisms must also be considered. The chromophore for photosensitivity induced by wavelengths longer than 320 nm has not been investigated in vivo. In vitro studies indicate that 360-400 nm radiation activates a photosensitizing compound in the lymphocytes and serum of LE patients and causes chromosomal aberrations and cell death. The mechanism appears to involve superoxide anion.

  19. Mechanisms for radiation damage in DNA. Final report, June 1, 1986--August 31, 1996

    SciTech Connect

    Sevilla, M.D.

    1996-08-01

    Over the last 10 years significant advances have been made impacting the understanding of radiation damage to DNA. The principal objective of this work was the elucidation of the fundamental mechanisms of radiation damage to DNA through the direct and indirect effects. Recently the work concentrated on the direct effect of radiation damage on DNA. The objective was to elucidate the ultimate radiation chemical damage to DNA arising from the direct effect. In this effort the focus was on the application of three techniques. ESR spectroscopic measurement of initial radicals formed in DNA and its hydration layer at low temperatures. Ab initio molecular orbital calculations were employed to give highly accurate theoretical predictions of early events such as electron and hole localization sites which serve to test and to clarify the experimental observations. HPLC and GC-mass spectroscopic assays of DNA base products formation provide the ultimate chemical outcome of the initial radiation events. The bridge between the early ion radical species and the non-radical products is made in ESR studies which follow the chemistry of the early species as they react with water and or other DNA bases. The use of these techniques has resulted in a new and fundamental understanding of the radiation damage to DNA on a molecular scale. From this work, a working model for DNA damage from the initial ionization event to the eventual formation of molecular base damage products and strand breaks has been formulated. Results over the past several years which have led to the formulation of this model are described.

  20. Simulated Space Radiation and Weightlessness: Vascular-Bone Coupling Mechanisms to Preserve Skeletal Health

    NASA Technical Reports Server (NTRS)

    Alwood, J. S.; Limoli, C. L.; Delp, M. D.; Castillo, A. B.; Globus, R. K.

    2012-01-01

    Weightlessness causes a cephalad fluid shift and reduction in mechanical stimulation, adversely affecting both cortical and trabecular bone tissue in astronauts. In rodent models of weightlessness, the onset of bone loss correlates with reduced skeletal perfusion, reduced and rarified vasculature and lessened vasodilation, which resembles blood-bone symbiotic events that can occur with fracture repair and aging. These are especially serious risks for long term, exploration class missions when astronauts will face the challenge of increased exposure to space radiation and abrupt transitions between different gravity environments upon arrival and return. Previously, we found using the mouse hindlimb unloading model and exposure to heavy ion radiation, both disuse and irradiation cause an acute bone loss that was associated with a reduced capacity to produce bone-forming osteoblasts from the bone marrow. Together, these findings led us to hypothesize that exposure to space radiation exacerbates weightlessness-induced bone loss and impairs recovery upon return, and that treatment with anti-oxidants may mitigate these effects. The specific aims of this recently awarded grant are to: AIM 1 Determine the functional and structural consequences of prolonged weightlessness and space radiation (simulated spaceflight) for bone and skeletal vasculature in the context of bone cell function and oxidative stress. AIM 2 Determine the extent to which an anti-oxidant protects against weightlessness and space radiation-induced bone loss and vascular dysfunction. AIM 3 Determine how space radiation influences later skeletal and vasculature recovery from prolonged weightlessness and the potential of anti-oxidants to preserve adaptive remodeling.

  1. Bouvardin is a Radiation Modulator with a Novel Mechanism of Action

    PubMed Central

    Stickel, Stefanie A.; Gomes, Nathan P.; Frederick, Barbara; Raben, David; Su, Tin Tin

    2015-01-01

    Protein synthesis is essential for growth, proliferation and survival of cells. Translation factors are overexpressed in many cancers and in preclinical models, their experimental inhibition has been shown to inhibit cancer growth. Differential regulation of translation also occurs upon exposure to cancer-relevant stressors such as hypoxia and ionizing radiation. The failure to regulate translation has been shown to interfere with recovery after genotoxic stress. These findings suggest that modulation of translation, alone or in conjunction with genotoxins, may be therapeutic in oncology. Yet, only two drugs that directly inhibit translation are FDA-approved for oncology therapies used today. We have previously identified the protein synthesis inhibitor, bouvardin in a screen for small molecule enhancers of ionizing radiation in Drosophila melanogaster. Bouvardin was independently identified in a screen for selective inhibitors of engineered human breast cancer stem cells. Here we report the effect of bouvardin treatment in preclinical models of head and neck cancer (HNC) and glioma, two cancer types for which radiation therapy is the most common treatment. Our data show that bouvardin treatment blocked translation elongation on human ribosomes and suggest that it did so by blocking the dissociation of elongation factor 2 from the ribosome. Bouvardin and radiation enhanced the induction of clonogenic death in HNC and glioma cells, although by different mechanisms. Bouvardin treatment enhanced the radiation-induced antitumor effects in HNC tumor xenografts in mice. These data suggest that inhibition of translation elongation, particularly in combination with radiation treatment, may be a promising treatment option for cancer. PMID:26414509

  2. Radiation

    NASA Image and Video Library

    Outside the protective cocoon of Earth's atmosphere, the universe is full of harmful radiation. Astronauts who live and work in space are exposed not only to ultraviolet rays but also to space radi...

  3. Insights into the mechanism of the capture of CO2 by K2CO3 sorbent: a DFT study.

    PubMed

    Liu, Hongyan; Qin, Qiaoyun; Zhang, Riguang; Ling, Lixia; Wang, Baojun

    2017-09-13

    The adsorption and reactions of CO2 and H2O on both monoclinic and hexagonal crystal K2CO3 were investigated using the density functional theory (DFT) approach. The calculated adsorption energies showed that adsorption of H2O molecules was clearly substantially stronger on the K2CO3 surface than the adsorption of CO2, except on the (001)-1 surface of hexagonal K2CO3, where CO2 is competitively adsorbed with H2O. Carbonation reactions easily occur on pure K2CO3 and involve two parallel paths: one is where adsorbed H2O reacts with molecular CO2 in gas to form the bicarbonate, while the other is where H2O dissociates into OH and H before bicarbonate formation, and then OH reacts with gaseous CO2 to form a bicarbonate. Our results indicate that adding a support or promoter or using a special technique to expose more (001)-1 surfaces in hexagonal K2CO3 may improve the conversion of CO2 to the bicarbonate, which provides a theoretical direction for the experimental preparation of the K2CO3 sorbent to capture CO2.

  4. Comment on "Structure effects in the 15N(n ,γ )16N radiative capture reaction from the Coulomb dissociation of 16N"

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2016-05-01

    In their recent study Neelam, Shubhchintak, and Chatterjee have claimed that "it would certainly be useful to perform a Coulomb dissociation experiment to find the low-energy capture cross section for the reaction" 15N(n ,γ )16N. However, it is obvious that a Coulomb dissociation experiment cannot constrain this capture cross section because the dominating branchings of the capture reaction lead to excited states in 16N, which do not contribute in a Coulomb dissociation experiment. An estimate of the total 15N(n ,γ )16N cross section from Coulomb dissociation of 16N requires a precise knowledge of the γ -ray branchings in the capture reaction. Surprisingly, the calculation of Neelam, Shubhchintak, and Chatterjee predicts a strongly energy-dependent ground-state branching of the order of 0.05% to 0.6% at energies between 100 and 500 keV, which is almost 2 orders of magnitude below calculations in the direct capture model. Additionally, this calculation of Neelam, Shubhchintak, and Chatterjee deviates significantly from the expected energy dependence for p -wave capture.

  5. Mechanisms of Enhanced Cell Killing at Low Doses: Implications for Radiation Risk

    SciTech Connect

    Dr. Peter J. Johnston; Dr. George D. Wilson

    2003-10-15

    We have shown that cell lethality actually measured after exposure to low-doses of low-LET radiation, is markedly enhanced relative to the cell lethality previously expected by extrapolation of the high-dose cell-killing response. Net cancer risk is a balance between cell transformation and cell kill and such enhanced lethality may more than compensate for transformation at low radiation doses over a least the first 10 cGy of low-LET exposure. This would lead to a non-linear, threshold, dose-risk relationship. Therefore our data imply the possibility that the adverse effects of small radiation doses (<10 cGy) could be overestimated in specific cases. It is now important to research the mechanisms underlying the phenomenon of low-dose hypersensitivity to cell killing, in order to determine whether this can be generalized to safely allow an increase in radiation exposure limits. This would have major cost-reduction implications for the whole EM program.

  6. Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics

    PubMed Central

    Hwang, Jae Youn; Kang, Bong Jin; Lee, Changyang; Kim, Hyung Ham; Park, Jinhyoung; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    We demonstrate a novel non-contact method: acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), capable of probing cell mechanics. A 30 MHz lithium niobate ultrasound transducer is utilized for both detection of phatoacoustic signals and generation of acoustic radiation force. To track cell membrane displacements by acoustic radiation force, functionalized single-walled carbon nanotubes are attached to cell membrane. Using the developed microscopy evaluated with agar phantoms, the mechanics of highly- and weakly-metastatic breast cancer cells are quantified. These results clearly show that the PA-ARFI microscopy may serve as a novel tool to probe mechanics of single breast cancer cells. PMID:25657870

  7. Mechanisms underlying cellular responses of cells from haemopoietic tissue to low dose/low LET radiation

    SciTech Connect

    Munira A Kadhim

    2010-03-05

    To accurately define the risks associated with human exposure to relevant environmental doses of low LET ionizing radiation, it is necessary to completely understand the biological effects at very low doses (i.e., less than 0.1 Gy), including the lowest possible dose, that of a single electron track traversal. At such low doses, a range of studies have shown responses in biological systems which are not related to the direct interaction of radiation tracks with DNA. The role of these “non-targeted” responses in critical tissues is poorly understood and little is known regarding the underlying mechanisms. Although critical for dosimetry and risk assessment, the role of individual genetic susceptibility in radiation risk is not satisfactorily defined at present. The aim of the proposed grant is to critically evaluate radiation-induced genomic instability and bystander responses in key stem cell populations from haemopoietic tissue. Using stem cells from two mouse strains (CBA/H and C57BL/6J) known to differ in their susceptibility to radiation effects, we plan to carefully dissect the role of genetic predisposition on two non-targeted radiation responses in these models; the bystander effect and genomic instability, which we believe are closely related. We will specifically focus on the effects of low doses of low LET radiation, down to doses approaching a single electron traversal. Using conventional X-ray and γ-ray sources, novel dish separation and targeted irradiation approaches, we will be able to assess the role of genetic variation under various bystander conditions at doses down to a few electron tracks. Irradiations will be carried out using facilities in routine operation for bystander targeted studies. Mechanistic studies of instability and the bystander response in different cell lineages will focus initially on the role of cytokines which have been shown to be involved in bystander signaling and the initiation of instability. These studies also aim

  8. Synergistic capture mechanisms for alkali and sulphur species from combustion. Quarterly report No. 11, March 1993--May 1993

    SciTech Connect

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Wu, Baochun

    1993-07-26

    Sulfur dioxide is one of the major pollutant from coal combustion application and gasification. The capture of sulfur from flue gas with lime has been investigated and proven to be effective. Previous work concluded that the overall conversion of lime is limited by the micro-structure of the particles and reaction temperature. Due to the larger specific volume of product of calcium sulfate than that of the raw sorbent of calcium carbonate, which may cause pore blockage at the pore mouth and increase the diffusion resistance of sulfur dioxide through the product layer, but this pore plugging will not apply to the particle less than 0.01 cm in diameter. The reaction temperature, which determined the chemical reaction kinetics, between 800{degrees}C to 850{degrees}C, is recommended to be the best chemical reaction temperature for sulfur removal by lime. The alkali vapor removal has been the subject of many studies due to the possible application of coal combustion and hot flue gas turbine combined cycle which requires alkali concentration in the flue gas phase of sub parts per billion (ppB) level. But this process will increase the coal utilization efficiency dramatically. Some clay materials such as kaolinite and alumina-silica mixture like bauxite are found to be a very good sorbent for the adsorption of alkali vapor. The main objective of this research is to develop sorbents with alumina-silica base for both as a carrier to calcium and sorbents to alkali. A number of sorbents, with bauxite based and calcium active sites, have been developed and tested in a series of experiments. The experimental results of adsorption of sulfur dioxide, alkali and combined adsorption of sulfur/alkali have been given in the previous report.

  9. Transient thermal and mechanical response of water subject to ionizing radiation.

    PubMed

    Apfel, R E; Sun, Y Y; Nath, R

    1992-08-01

    The ultrafast transient (10(-14) to 10(-12)S) thermal and mechanical response of water subject to ionizing radiations of different linear energy transfers has been investigated in order to understand the initial events which lead to cell mutation and lethality. Based on computational fluid dynamics, the production of a "thermal spike" around the trajectory of a charged particle and subsequent diffusion of deposited heart are calculated for particles with linear energy transfer (LET) of 4, 40, and 400 keV/microns. A radiation damage region (that is, the so-called "thermal core") is identified, and the transient behavior of the thermal core is studied. The local and transient environment has a dimension of nanometers, a scale which is of critical interest in understanding mechanisms of radiation damage in cells. The radius of the thermal core, Dd, at temperatures (or internal energy density) of up to 1,000 K, is observed to increase with LET, L, as Dd (in nanometers) = C4.L (in keV/microns)0.6, where, for example, C4 = 0.50 for T = 800 degrees C.

  10. Surrogate reactions for neutron capture with radioactive ion beams

    NASA Astrophysics Data System (ADS)

    Cizewski, Jolie A.

    2012-10-01

    Neutron capture reactions are responsible for most of the elements heavier than iron, through either the slow or rapid processes of nucleosynthesis. The r process in particular proceeds through very short-lived nuclei on which neutron capture reaction measurements will never be possible. Knowledge of neutron capture cross sections on short-lived nuclei is also important for applications such as nuclear energy, nuclear forensics, and stockpile stewardship science. When the level density at the neutron separation energy is relatively low, for example near closed neutron shells, direct neutron capture often dominates and direct neutron transfer reactions can provide the spectroscopic information needed to calculate the direct capture. However, when the level density is higher, a compound nucleus is formed and statistical mechanisms dominate the decay. While the formation of the compound nucleus can be calculated with optical models, modeling of the decay is less robust. Because of the importance of neutron capture on nuclei away from stability, there have been efforts to validate surrogate reactions for neutron capture that exploit the availability of beams of radioactive nuclei that interact with light targets where reaction products are measured in coincidence with gamma radiation. This talk would summarize efforts to validate a surrogate for neutron capture and the techniques being developed to measure these reactions with beams of radioactive ions.

  11. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice

    PubMed Central

    Govey, Peter M.; Zhang, Yue; Donahue, Henry J.

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone’s capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure. PMID:27936104

  12. Mechanical Loading Attenuates Radiation-Induced Bone Loss in Bone Marrow Transplanted Mice.

    PubMed

    Govey, Peter M; Zhang, Yue; Donahue, Henry J

    2016-01-01

    Exposure of bone to ionizing radiation, as occurs during radiotherapy for some localized malignancies and blood or bone marrow cancers, as well as during space travel, incites dose-dependent bone morbidity and increased fracture risk. Rapid trabecular and endosteal bone loss reflects acutely increased osteoclastic resorption as well as decreased bone formation due to depletion of osteoprogenitors. Because of this dysregulation of bone turnover, bone's capacity to respond to a mechanical loading stimulus in the aftermath of irradiation is unknown. We employed a mouse model of total body irradiation and bone marrow transplantation simulating treatment of hematologic cancers, hypothesizing that compression loading would attenuate bone loss. Furthermore, we hypothesized that loading would upregulate donor cell presence in loaded tibias due to increased engraftment and proliferation. We lethally irradiated 16 female C57Bl/6J mice at age 16 wks with 10.75 Gy, then IV-injected 20 million GFP(+) total bone marrow cells. That same day, we initiated 3 wks compression loading (1200 cycles 5x/wk, 10 N) in the right tibia of 10 of these mice while 6 mice were irradiated, non-mechanically-loaded controls. As anticipated, before-and-after microCT scans demonstrated loss of trabecular bone (-48.2% Tb.BV/TV) and cortical thickness (-8.3%) at 3 wks following irradiation. However, loaded bones lost 31% less Tb.BV/TV and 8% less cortical thickness (both p<0.001). Loaded bones also had significant increases in trabecular thickness and tissue mineral densities from baseline. Mechanical loading did not affect donor cell engraftment. Importantly, these results demonstrate that both cortical and trabecular bone exposed to high-dose therapeutic radiation remain capable of an anabolic response to mechanical loading. These findings inform our management of bone health in cases of radiation exposure.

  13. Effects of high energy radiation on the mechanical properties of epoxy/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Memory, J. D.

    1981-01-01

    Studies on the effects of high energy radiation on graphite fiber reinforced composites are summarized. Studies of T300/5208 and C6000/PMR15 composites, T300 fibers and the resin system MY720/DDS (tetraglycidyl-4,4'-diaminodiphenyl methane cured with diaminodiphenyl sulfone) are included. Radiation dose levels up to 8000 Mrads were obtained with no deleterious effects on the breaking stress or modulus. The effects on the structure and morphology were investigated using mechanical tests, electron spin resonance, X-ray diffraction, and electron spectroscopy for chemical analysis (ESCA or X-ray photoelectron spectroscopy). Details of the experiments and results are given. Studies of the fracture surfaces of irradiated samples were studied with scanning electron microscopy; current results indicate no differences in the morphology of irradiated and control samples.

  14. Quantum mechanical theory of collisional ionization in the presence of intense laser radiation

    NASA Technical Reports Server (NTRS)

    Bellum, J. C.; George, T. F.

    1978-01-01

    The paper presents a quantum mechanical formalism for treating ionizing collisions occurring in the presence of an intense laser field. Both the intense laser radiation and the internal electronic continuum states associated with the emitted electrons are rigorously taken into account by combining discretization techniques with expansions in terms of electronic-field representations for the quasi-molecule-plus-photon system. The procedure leads to a coupled-channel description of the heavy-particle dynamics which involves effective electronic-field potential surfaces and continua. It is suggested that laser-influenced ionizing collisions can be studied to verify the effects of intense laser radiation on inelastic collisional processes. Calculation procedures for electronic transition dipole matrix elements between discrete and continuum electronic states are outlined.

  15. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Hsieh; Jacobson, Ted; Edwards, Mark; Clark, Charles W.

    2017-08-01

    We model a sonic black-hole analog in a quasi-one-dimensional Bose-Einstein condensate, using a Gross-Pitaevskii equation matching the configuration of a recent experiment by Steinhauer [Nat. Phys. 10, 864 (2014), 10.1038/nphys3104]. The model agrees well with important features of the experimental observations, demonstrating their hydrodynamic nature. We find that a zero-frequency bow wave is generated at the inner (white-hole) horizon, which grows in proportion to the square of the background condensate density. The relative motion of the black- and white-hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. The mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. Mean field behavior similar to that in the experiment can thus be fully explained without the presence of self-amplifying Hawking radiation.

  16. Mechanisms of radiation-induced viscous flow: role of point defects.

    PubMed

    Mayr, S G; Ashkenazy, Y; Albe, K; Averback, R S

    2003-02-07

    Mechanisms of radiation-induced flow in amorphous solids have been investigated using molecular dynamics computer simulations. It is shown for a model glass system, CuTi, that the radiation-induced flow is independent of recoil energy between 100 eV and 10 keV when compared on the basis of defect production and that there is a threshold energy for flow of approximately 10 eV. Injection of interstitial- and vacancylike defects induces the same amount of flow as the recoil events, indicating that point-defect-like entities mediate the flow process, even at 10 K. Comparisons of these results with experiments and thermal spike models are made.

  17. Mechanisms of Radiation-Induced Viscous Flow: Role of Point Defects

    NASA Astrophysics Data System (ADS)

    Mayr, S. G.; Ashkenazy, Y.; Albe, K.; Averback, R. S.

    2003-02-01

    Mechanisms of radiation-induced flow in amorphous solids have been investigated using molecular dynamics computer simulations. It is shown for a model glass system, CuTi, that the radiation-induced flow is independent of recoil energy between 100eV and 10keV when compared on the basis of defect production and that there is a threshold energy for flow of ≈10 eV. Injection of interstitial- and vacancylike defects induces the same amount of flow as the recoil events, indicating that point-defect-like entities mediate the flow process, even at 10K. Comparisons of these results with experiments and thermal spike models are made.

  18. Thermal analysis evaluation of mechanical properties changes promoted by gamma radiation on surgical polymeric textiles

    NASA Astrophysics Data System (ADS)

    Ferreira, L. M.; Casimiro, M. H.; Oliveira, C.; Cabeço Silva, M. E.; Marques Abreu, M. J.; Coelho, A.

    2002-05-01

    The large number of surgical operations with post-operative infection problems and the appearing of new infectious diseases, contribute to the development of new materials in order to answer the needs of health care services. This development must take into account the modifications promoted by sterilisation methods in materials, namely by gamma radiation. The differential scanning calorimetry (DSC) and thermogravimetry (TGA) techniques show that a nonwoven and a laminate textiles maintain a good molecular cohesion, do not showing high levels of degradation, for gamma radiation dose values lower than 100 kGy in nonwoven and 200 kGy in laminate materials. The tensile strength and the elongation decrease slowly for the nonwoven textile and decrease faster for the laminate textile for 25 and 80 kGy absorbed dose. This paper shows that the DSC and TGA techniques can be helpful for the prevision of mechanical changes occurred in the materials as a consequence of the gamma irradiation.

  19. Microwave absorption by magnetite: a possible mechanism for coupling nonthermal levels of radiation to biological systems.

    PubMed

    Kirschvink, J L

    1996-01-01

    The presence of trace amounts of biogenic magnetite (Fe3O4) in animal and human tissues and the observation that ferromagnetic particles are ubiquitous in laboratory materials (including tissue culture media) provide a physical mechanism through which microwave radiation might produce or appear to produce biological effects. Magnetite is an excellent absorber of microwave radiation at frequencies between 0.5 and 10.0 GHz through the process of ferromagnetic resonance, where the magnetic vector of the incident field causes precession of Bohr magnetons around the internal demagnetizing field of the crystal. Energy absorbed by this process is first transduced into acoustic vibrations at the microwave carrier frequency within the crystal lattice via the magnetoacoustic effect; then, the energy should be dissipated in cellular structures in close proximity to the magnetite crystals. Several possible methods for testing this hypothesis experimentally are discussed. Studies of microwave dosimetry at the cellular level should consider effects of biogenic magnetite.

  20. Multiwavelength Study of Fermi-LAT blazars Variability and Radiation Production Mechanisms

    NASA Astrophysics Data System (ADS)

    Britto, R. J.; Bottacini, E.; Böttcher, M.; Buckley, D. A. H.; Buson, S.; Lott, B.; Marais, J. P.; Meintjes, P. J.; Razzaque, S.; van Soelen, B.

    2016-12-01

    Quasars constitute a subclass of radio-loud active galactic nuclei that release a tremendous amount of non-thermal radiation through a pair of twin jets. When one of these jets is aligned close to the direction of the Earth, the object is then called a blazar. A consistent monitoring of these sources can help to unveil physical mechanisms at the origin of the radiation production that spreads throughout the whole electromagnetic spectrum, from radio waves to γ rays. The goal of this paper is to report some current works being undertaken in term of both spectral studies and time domain analyses of bright blazars which are observed with the Fermi Gamma-Ray Space Telescope and by South Africa-based optical telescopes. In particular, we present our recent and current studies on blazars 3C 454.3 and NVSS J141922-083830 respectively.

  1. On the mechanism of radiation-induced emesis: The role of serotonin

    SciTech Connect

    Scarantino, C.W.; Ornitz, R.D.; Hoffman, L.G.

    1994-11-15

    The aim of this study was to determine the mechanism of action of radiation-induced emesis by determining the incidence of radiation-induced emesis following hemibody irradiation; the effects of specific antiemetics especially ondansetron, a 5-hydroxytryptamine receptor antagonist, and to determine the relationship between radiation-induced emesis and serotonin (5-hydroxytryptamine) through its active metabolite, 5-hydroxyindoleacetic acid (5-HIAA). Forty-one patients received 53 hemibody treatments of 5-8 Gy following intravenous hydration. The patients were divided into three groups according to prehemibody irradiation treatment: Group A: no pretreatment antiemetics, 30 patients; Group B: nonondansetron antiemetics (metoclopramide, dexamethasone, prochlorperazine), ten patients; and Group C: ondansetron, 13 patient. The incidence of radiation-induced emesis was determined prehemibody irradiation or baseline and at 1 h posthemibody irradiation in 38 patients and the results expressed as the percent change in 5-HIAA (ng/ug creatinine). The incidence of radiation-induced emesis was 82% (14/17) following upper/mid hemibody irradiation and 15% (2/11) following lower hemibody irradiation in Group A; 50% (3/6) and 25% (1/4) following upper/mid and lower hemibody irradiation respectively, in Group B/; and 0% (p/13) after upper/mid hemibody irradiation in Group C. The incidence of emesis was significantly different (p<0.001) between the patients of Group A and C who received upper/mid hemibody irradiation. The percent change in 5-HIAA excretion following upper/mid hemibody irradiation were greatest in Group A and smallest in Group C (p<0.002). The degree of change following lower hemibody irradiation (15% incidence of emesis) in Group A was lower than upper/mid hemibody irradiation of the same group. 17 refs., 3 figs., 2 tabs.

  2. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration

    NASA Astrophysics Data System (ADS)

    Wan, Y.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wu, Y. P.; Hua, J. F.; Lu, W.; Gu, Y. Q.; Silva, L. O.; Joshi, C.; Mori, W. B.

    2016-12-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this Letter, a theoretical model and supporting two-dimensional (2D) particle-in-cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasistatic ions, a mechanism similar to the oscillating two stream instability in the inertial confinement fusion research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse breakup of the target.

  3. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration.

    PubMed

    Wan, Y; Pai, C-H; Zhang, C J; Li, F; Wu, Y P; Hua, J F; Lu, W; Gu, Y Q; Silva, L O; Joshi, C; Mori, W B

    2016-12-02

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this Letter, a theoretical model and supporting two-dimensional (2D) particle-in-cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasistatic ions, a mechanism similar to the oscillating two stream instability in the inertial confinement fusion research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse breakup of the target.

  4. Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin

    NASA Astrophysics Data System (ADS)

    LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB

    2015-10-01

    Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450-500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation.

  5. Conjugate In-situ and Incoherent Scatter Radar Observations of Radiation Belt Loss Mechanisms.

    NASA Astrophysics Data System (ADS)

    Kaeppler, S. R.; Jaynes, A. N.; Sanchez, E. R.; Nicolls, M. J.; Varney, R. H.; Marshall, R. A.

    2015-12-01

    We present results from conjugate observations between the Radiation Belt Storms Probe (RBSP) and the Poker Flat Incoherent Scatter Radar (PFISR) of energetic radiation belt precipitation. A key objective of the RBSP mission is to understand loss mechanisms of energetic particles from the radiation belt. The relative contribution from plasma waves (e.g., EMIC, hiss, chorus, and etc.) that pitch angle scatter particles into the loss cone remains an open scientific question. Rigorous experimental validation of these mechanisms is difficult to achieve because nearly simultaneous conjugate observations of in-situ pitch angle scattering and precipitation into the atmosphere are required. One ground-based signature of energetic precipitation is enhanced ionization and electron density at D-region altitudes. Incoherent scatter radar is a powerful remote sensing technique that is sensitive to electron density enhancements. By measuring the altitude profiles of ionization we infer the flux of particles precipitating into the atmosphere. PFISR observations show frequent occurrence of D-region ionization during both quiet-time and storm-time conditions. We present results from two events when the foot-points of the RBSP satellite were within 500 km of PFISR: a quiet-time event on January 13, 2015, and a storm-time event on April 16, 2015. PFISR observations of the D-region ionization signatures are presented, along with simultaneous conjugate RBSP observations of the magnetic field, electric field, and electron flux. Plasma waves are identified using the electric and magnetic field data, and evaluated as possible pitch angle scattering mechanisms. A direct comparison between the measured fluxes and loss cone fluxes predicted by theoretical wave-particle diffusion rates into the loss cone is used to test the validity of particle loss mechanisms predicted by the different theories. Preliminary results are presented of PFISR inversions of the D-region ionization to quantify the

  6. A new approach to quantify the mechanical and radiation isocentres of radiotherapy treatment machine gantries

    NASA Astrophysics Data System (ADS)

    Skworcow, Piotr; Mills, John A.; Haas, Olivier C. L.; Burnham, Keith J.

    2007-12-01

    In this paper a new method is proposed to quantify and reduce the radiation beam position uncertainty due to the radiotherapy treatment machine gantry deflection. A new tool has been designed and manufactured to provide the means to measure the alignment of the collimator axis and of the beam central axis in space, using the NDI Polaris optical tracking system and Gafchromic® films. The tool can be mounted onto the accessory tray of the linacs from different manufacturers. The approach has been demonstrated with measurements of the mechanical isocentre being performed on ten linacs from three major manufacturers at four clinical sites. Measurements of the radiation isocentre were performed on a single linac. The collimator axis trajectory is modelled using a vector-end effector in order to provide more information than standard mechanical assessment methods. The method uses a mathematical optimization technique to calculate the position of the mechanical isocentre and the 'size' of the collimator axes intersection locus. Deviations of the collimator axes from the isocentre are expressed in terms of systematic and random error. The effects of measurement uncertainties are evaluated both via simulations and experimentally. The use of optical tracking and optimization techniques combined with an operator-induced measurement error compensation algorithm leads to a faster measurement of the mechanical isocentre (20 min for 24 angles) and eliminates operator-induced uncertainties. The uncertainty of the measurement of the mechanical isocentre was between 40 µm and 70 µm in terms of standard deviation. For some of the linacs assessed, the mechanical isocentre obtained using a standard approach with an adjustable pointer was displaced by over 1 mm from that found with the proposed method. The radii of the collimator axes intersection locus found with the proposed method were between 0.4 mm and 0.72 mm for the linacs assessed. Film measurement revealed a misalignment of

  7. Mechanisms of interaction of radiation with matter. Progress report, July 1, 1991--August 31, 1992

    SciTech Connect

    Geacintov, N.E.; Pope, M.

    1992-08-31

    This project is concerned with studies of biological activity-structure relationships in which the mechanisms of interaction of ionizing radiation and benzopyrene (PB) compounds with DNA are being investigated and compared. Emphasis is focused on effects of DNA conformation on its mechanisms of interaction with ionizing radiation, on the influence of structure and stereochemistry of BP metabolites on mechanisms of DNA damage, and on influence of DNA conformation on interactions between BP metabolites and DNA molecules, and the structures of the complexes and adducts which are formed. One basic theme of this project is the use of photoexcited states of BP and nucleic acids as probes of these interactions. In part I of this report, recent progress on elucidating the structures of selected BP-oligonucleotide model adducts by high resolution NMR and gel electrophoresis techniques is summarized. It is shown that the stereochemical properties of benzo[a]pyrene diol epoxide-DNA adducts play a crucial role in determining their interactions with certain exonucleases. These results provide useful models for deriving a better understanding of differences biological activities of BP compounds and the relationships between mutagenicities and the structure properties of BP-DNA adducts. In Part II of this report, a new time-resolved method based on picosecond laser pulse techniques for elucidating the electronic levels involved in electron photoemission and electron transfer in BP and nucleic acid solids is described.

  8. Effects of Ionizing Radiation on Biological Molecules—Mechanisms of Damage and Emerging Methods of Detection

    PubMed Central

    Reisz, Julie A.; Bansal, Nidhi; Qian, Jiang; Zhao, Weiling

    2014-01-01

    Abstract Significance: The detrimental effects of ionizing radiation (IR) involve a highly orchestrated series of events that are amplified by endogenous signaling and culminating in oxidative damage to DNA, lipids, proteins, and many metabolites. Despite the global impact of IR, the molecular mechanisms underlying tissue damage reveal that many biomolecules are chemoselectively modified by IR. Recent Advances: The development of high-throughput “omics” technologies for mapping DNA and protein modifications have revolutionized the study of IR effects on biological systems. Studies in cells, tissues, and biological fluids are used to identify molecular features or biomarkers of IR exposure and response and the molecular mechanisms that regulate their expression or synthesis. Critical Issues: In this review, chemical mechanisms are described for IR-induced modifications of biomolecules along with methods for their detection. Included with the detection methods are crucial experimental considerations and caveats for their use. Additional factors critical to the cellular response to radiation, including alterations in protein expression, metabolomics, and epigenetic factors, are also discussed. Future Directions: Throughout the review, the synergy of combined “omics” technologies such as genomics and epigenomics, proteomics, and metabolomics is highlighted. These are anticipated to lead to new hypotheses to understand IR effects on biological systems and improve IR-based therapies. Antioxid. Redox Signal. 21: 260–292. PMID:24382094

  9. Identifying Loss Mechanisms Responsible for the Rapid Depletion of Outer Radiation Belt Electron Flux

    NASA Astrophysics Data System (ADS)

    Green, J. C.; Onsager, T. G.; O'Brien, T.; Fraser, B. J.

    2004-12-01

    Since the discovery of earth's radiation belts researchers have sought to explain and predict the changing relativistic electron flux levels in the outer belt. This goal has proved a perplexing challenge because, surprisingly, flux levels do not always rise as energy input from the solar wind increases during active periods such as geomagnetic storms [Reeves et al., 2003;O'Brien et al., 2001]. The erratic response of the radiation belt electrons to geomagnetic activity suggests that flux levels are set by a teetering struggle between acceleration and loss. Thus, to predict flux variations, both processes must be understood. Some acceleration mechanisms have been proposed and tested resulting in incremental progress, but still little is known about how relativistic electrons are removed from the magnetosphere. We investigate how relativistic electrons are lost from the outer radiation belt using a superposed epoch analysis of electron flux decrease events identified in multi-satellite data [Onsager et al., 2002; Green et al., 2004]. More specifically, we test three mechanisms proposed to explain the flux reductions: adiabatic motion in response to a changing magnetic field topology, drift out the magnetopause boundary, and scattering into the atmosphere. The superposed study shows that the magnetic field becomes temporarily stretched at dusk suggesting that adiabatic electron motion might contribute to the initial flux reduction; however, the electron flux does not recover when the magnetic field recovers, indicating that true loss from the magnetosphere occurs. Magnetopause encounters should similarly affect both high energy protons and electrons; however, no concurrent reduction of proton flux is observed implying that this mechanism is not active. Low altitude observations show increased electron flux in the loss cone suggesting that scattering to the atmosphere is the cause the flux depletions. We investigate possible causes of the increased scattering including

  10. Data Integration Reveals Key Homeostatic Mechanisms Following Low Dose Radiation Exposure

    SciTech Connect

    Tilton, Susan C.; Matzke, Melissa M.; Sowa, Marianne B.; Stenoien, David L.; Weber, Thomas J.; Morgan, William F.; Waters, Katrina M.

    2015-05-01

    The goal of this study was to define pathways regulated by low dose radiation to understand how biological systems respond to subtle perturbations in their environment and prioritize pathways for human health assessment. Using an in vitro 3-D human full thickness skin model, we have examined the temporal response of dermal and epidermal layers to 10 cGy X-ray using transcriptomic, proteomic, phosphoproteomic and metabolomic platforms. Bioinformatics analysis of each dataset independently revealed potential signaling mechanisms affected by low dose radiation, and integrating data shed additional insight into the mechanisms regulating low dose responses in human tissue. We examined direct interactions among datasets (top down approach) and defined several hubs as significant regulators, including transcription factors (YY1, MYC and CREB1), kinases (CDK2, PLK1) and a protease (MMP2). These data indicate a shift in response across time - with an increase in DNA repair, tissue remodeling and repression of cell proliferation acutely (24 – 72 hr). Pathway-based integration (bottom up approach) identified common molecular and pathway responses to low dose radiation, including oxidative stress, nitric oxide signaling and transcriptional regulation through the SP1 factor that would not have been identified by the individual data sets. Significant regulation of key downstream metabolites of nitrative stress were measured within these pathways. Among the features identified in our study, the regulation of MMP2 and SP1 were experimentally validated. Our results demonstrate the advantage of data integration to broadly define the pathways and networks that represent the mechanisms by which complex biological systems respond to perturbation.

  11. Ab initio study of CO2 capture mechanisms in aqueous monoethanolamine: reaction pathways for the direct interconversion of carbamate and bicarbonate.

    PubMed

    Matsuzaki, Yoichi; Yamada, Hidetaka; Chowdhury, Firoz A; Higashii, Takayuki; Onoda, Masami

    2013-09-26

    Ab initio molecular orbital calculations combined with the polarizable continuum model (PCM) formalism have been carried out for a comprehensive understanding of the mechanism of carbon dioxide (CO2) absorption by aqueous amine solutions. CO2 is captured by amines to generate carbamates and bicarbonate. We have examined the direct interconversion pathways of these two species (collectively represented by a reversible hydrolysis of carbamate) with the prototypical amine, monoethanolamine (MEA). We evaluate both a concerted and a stepwise mechanism for the neutral hydrolysis of MEA carbamate. Large activation energies (ca. 36 kcal/mol) and lack of increase in catalytic efficiency with the inclusion of additional water molecules are predicted in both the mechanisms. We also examined the mechanism of alkaline hydrolysis of MEA carbamate at high concentrations of amine (high pH). The addition of OH(-) ion to carbamate anion was theoretically not allowed due to the reduction in the nucleophilicity of the former as a result of microsolvation. We propose an alternative pathway for hydrolysis: a proton transfer from protonated MEA to carbamate to generate the carbamic acid that initially undergoes a nucleophilic addition of OH(-) and subsequent low-barrier reactions leading to the formation of bicarbonate and free MEA. On the basis of the calculated activation energies, this pathway would be the most efficient route for the direct interconversion of carbamate and bicarbonate without the intermediacy of the free CO2, while the actual contributions will be dependent on the concentrations of protonated MEA and OH(-) ions.

  12. Simulated Space Radiation: Murine Skeletal Responses During Recovery and with Mechanical Stimulation

    NASA Technical Reports Server (NTRS)

    Shirazi-Fard, Yasaman; Zaragoza, Josergio; Schreurs, Ann-Sofie; Truong, Tiffany; Tahimic, Candice; Alwood, Joshua S.; Castillo, Alesha B.; Globus, R. K.

    2016-01-01

    Simulated space radiation at doses similar to those of solar particle events or a round-trip sojourn to Mars (1-2Gy) may cause skeletal tissue degradation and deplete stem/progenitor cell pools throughout the body. We hypothesized that simulated space radiation (SSR) causes late, time-dependent deficits in bone structure and bone cell function reflected by changes in gene expression in response to anabolic stimuli. We used a unique sequential dual ion exposure (proton and iron) for SSR to investigate time-dependence of responses in gene expression, cell function, and microarchitecture with respect to radiation and an anabolic stimulus of axial loading (AL). Male 16-wk C57BL6/J mice (n=120 total) were exposed to 0Gy (Sham, n=10), 56Fe (2Gy, positive control dose, n=10), or sequential ions for SSR (1Gy 1H/56Fe/1H, n=10) by total body irradiation (IR), and the tissues were harvested 2 or 6 mo. later. Further, to assess the response to anabolic stimuli, we subjected additional Sham-AL (n=15) and SSR-AL (n=15) groups to rest-inserted tibial axial loading (AL) starting at 1 and 5 months post-IR (-9N, 60 cycles/day, 3 days/wk, 4 wks). Exposure to 56Fe caused a significant reduction in cancellous bone volume fraction (BV/TV) compared to Sham (-34%) and SSR (-20%) in the proximal tibia metaphysis at 2-months post-IR; however BV/TV for SSR group was not different than Sham. Both 56Fe and SSR caused significant reduction in trabecular number (Tb.N) compared to Sham (-33% and -16%, respectively). Further, Tb.N for 56Fe (2Gy) was significantly lower than SSR (-21%). Ex vivo culture of marrow cells to assess growth and differentiation of osteoblast lineage cells 6 months post-IR showed that both 56Fe and SSR exposures significantly impaired colony formation compared to Sham (-66% and -54%, respectively), as well as nodule mineralization (-90% and -51%, respectively). Two-way analysis of variance showed that both mechanical loading and radiation reduced BV/TV, mechanical loading

  13. Simulated Space Radiation: Murine Skeletal Responses During Recovery and with Mechanical Stimulation

    NASA Technical Reports Server (NTRS)

    Shirazi-Fard, Yasaman; Zaragoza, Josergio; Schreurs, Ann-Sofie; Truong, Tiffany; Tahimic, Candice; Alwood, Joshua S.; Globus, R. K.

    2016-01-01

    Simulated space radiation at doses similar to those of solar particle events or a round-trip sojourn to Mars (1-2Gy) may cause skeletal tissue degradation and deplete stem/progenitor cell pools throughout the body. We hypothesized that simulated space radiation (SSR) causes late, time-dependent deficits in bone structure and bone cell function reflected by changes in gene expression in response to anabolic stimuli. We used a unique sequential dual ion exposure (proton and iron) for SSR to investigate time-dependence of responses in gene expression, cell function, and microarchitecture with respect to radiation and an anabolic stimulus of axial loading (AL). Male 16-wk C57BL6/J mice (n=120 total) were exposed to 0Gy (Sham, n=10), 56Fe (2Gy, positive control dose, n=10), or sequential ions for SSR (1Gy 1H/56Fe/1H, n=10) by total body irradiation (IR), and the tissues were harvested 2 or 6 mo. later. Further, to assess the response to anabolic stimuli, we subjected additional Sham-AL (n=15) and SSR-AL (n=15) groups to rest-inserted tibial axial loading (AL) starting at 1 and 5 months post-IR (-9N, 60 cycles/day, 3 days/wk, 4 wks). Exposure to 56Fe caused a significant reduction in cancellous bone volume fraction (BV/TV) compared to Sham (-34%) and SSR (-20%) in the proximal tibia metaphysis at 2-months post-IR; however BV/TV for SSR group was not different than Sham. Both 56Fe and SSR caused significant reduction in trabecular number (Tb.N) compared to Sham (-33% and -16%, respectively). Further, Tb.N for 56Fe (2Gy) was significantly lower than SSR (-21%). Ex vivo culture of marrow cells to assess growth and differentiation of osteoblast lineage cells 6 months post-IR showed that both 56Fe and SSR exposures significantly impaired colony formation compared to Sham (-66% and -54%, respectively), as well as nodule mineralization (-90% and -51%, respectively). Two-way analysis of variance showed that both mechanical loading and radiation reduced BV/TV, mechanical loading

  14. Radiative seesaw-type mechanism of fermion masses and non-trivial quark mixing

    NASA Astrophysics Data System (ADS)

    Arbeláez, Carolina; Hernández, A. E. Cárcamo; Kovalenko, Sergey; Schmidt, Ivan

    2017-06-01

    We propose a predictive inert two-Higgs doublet model, where the standard model (SM) symmetry is extended by S3⊗ Z2⊗ Z_{12} and the field content is enlarged by extra scalar fields, charged exotic fermions and two heavy right-handed Majorana neutrinos. The charged exotic fermions generate a non-trivial quark mixing and provide one-loop-level masses for the first- and second-generation charged fermions. The masses of the light active neutrinos are generated from a one-loop-level radiative seesaw mechanism. Our model successfully explains the observed SM fermion mass and mixing pattern.

  15. Avenue to understanding the mechanism of radiation effects. extended serial sacrifice experimental methodology

    SciTech Connect

    Neyman, J.

    1980-01-01

    The visualized avenue towards understanding the mechanism of the effects of radiation on the health of animals used in the experiments is, primarily, through willing interested cooperation between experimenting biologists, on the one hand, and equally willing and interested mathematical statisticians on the other. A review of the developments over two recent decades leads the author to the following conclusions relating to experimental designs; (1) the design of survival experiments with serial sacrifices as proposed by Arther C. Upton is basic, but (2) This design needs an extension. The building of this extension depends very much on the inventiveness of experimenting biologists.

  16. Medical radiation exposure and human carcinogenesis-genetic and epigenetic mechanisms.

    PubMed

    Dincer, Yildiz; Sezgin, Zeynep

    2014-09-01

    Ionizing radiation (IR) is a potential carcinogen. Evidence for the carcinogenic effect of IR radiation has been shown after long-term animal investigations and observations on survivors of the atom bombs in Hiroshima and Nagasaki. However, IR has been widely used in a controlled manner in the medical imaging for diagnosis and monitoring of various diseases and also in cancer therapy. The collective radiation dose from medical imagings has increased six times in the last two decades, and grow continuously day to day. A large number of evidence has revealed the increased cancer risk in the people who had frequently exposed to x-rays, especially in childhood. It has also been shown that secondary malignancy may develop within the five years in cancer survivors who have received radiotherapy, because of IR-mediated damage to healthy cells. In this article, we review the current knowledge about the role of medical x-ray exposure in cancer development in humans, and recently recognized epigenetic mechanisms in IR-induced carcinogenesis.

  17. A promising new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    NASA Astrophysics Data System (ADS)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-11-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit for the coincidence time resolution of around 100 ps. On the other hand, modulation mechanisms of the optical properties of a material exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to for the first time study whether ionizing radiation can produce modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5× {{10}-6} is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the detected event rate and average photon energy of the radiation source.

  18. Ultraviolet-B radiation and plant competition: experimental approaches and underlying mechanisms.

    PubMed

    Furness, Nancy H; Jolliffe, Peter A; Upadhyaya, Mahesh K

    2005-01-01

    Under realistic stratospheric ozone depletion scenarios, ultraviolet-B radiation (280-320 nm) (UV-B) influences plant morphology and plant competitive interactions. Influence of UV-B on plant competition can be studied using a variety of experimental and analytical approaches including inverse yield-density models and allometric, neighborhood or size-structure analyses that provide links between plant and ecosystem responses. These approaches differ in their abilities to extract information regarding competitive interactions and their morphological underpinnings. Only a limited number of studies have been carried out to investigate UV-B effects on plant competition, and most of these have used the replacement series approach, which has received much criticism. Nonetheless, results to date indicate that slight differences in UV-B-induced morphological responses of species grown within associations can alter canopy structure thereby influencing photosynthetically active radiation (PAR) interception and relative competitive ability. Because the response of individuals of the same species is expected to be uniform, UV-B may influence intraspecific competition less than interspecific competition. Before we can make clear generalizations and predictions concerning the effects of this radiation on plant competition, an understanding is crucial of the mechanisms underlying UV-B-induced shifts in competitive interactions by assessing competition over time.

  19. Cavitation erosion mechanism of titanium alloy radiation rods in aluminum melt.

    PubMed

    Dong, Fang; Li, Xiaoqian; Zhang, Lihua; Ma, Liyong; Li, Ruiqing

    2016-07-01

    Ultrasound radiation rods play a key role in introducing ultrasonic to the grain refinement of large-size cast aluminum ingots (with diameter over 800 mm), but the severe cavitation corrosion of radiation rods limit the wide application of ultrasonic in the metallurgy field. In this paper, the cavitation erosion of Ti alloy radiation rod (TARR) in the semi-continuous direct-chill casting of 7050 Al alloy was investigated using a 20 kHz ultrasonic vibrator. The macro/micro characterization of Ti alloy was performed using an optical digital microscopy and a scanning electron microscopy, respectively. The results indicated that the cavitation erosion and the chemical reaction play different roles throughout different corrosion periods. Meanwhile, the relationship between mass-loss and time during cavitation erosion was measured and analyzed. According to the rate of mass-loss to time, the whole cavitation erosion process was divided into four individual periods and the mechanism in each period was studied accordingly. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Mechanism of Radiation Damage Reduction in Equiatomic Multicomponent Single Phase Alloys

    DOE PAGES

    Granberg, F.; Nordlund, K.; Ullah, Mohammad W.; ...

    2016-04-01

    Recently a new class of metal alloys, of single-phase multicomponent composition at roughly equal atomic concentrations (“equiatomic”), have been shown to exhibit promising mechanical, magnetic, and corrosion resistance properties, in particular, at high temperatures. These features make them potential candidates for components of next-generation nuclear reactors and other high-radiation environments that will involve high temperatures combined with corrosive environments and extreme radiation exposure. In spite of a wide range of recent studies of many important properties of these alloys, their radiation tolerance at high doses remains unexplored. In this work, a combination of experimental and modeling efforts reveals a substantialmore » reduction of damage accumulation under prolonged irradiation in single-phase NiFe and NiCoCr alloys compared to elemental Ni. This effect is explained by reduced dislocation mobility, which leads to slower growth of large dislocation structures. Finally and moreover, there is no observable phase separation, ordering, or amorphization, pointing to a high phase stability of this class of alloys.« less

  1. Mechanical and thermomechanical properties of radiation modified poly(ethylene-octene)/Ni-Zn ferrite nanocomposites

    NASA Astrophysics Data System (ADS)

    Reinholds, I.; Kalkis, V.; Zicans, J.; Merijs Meri, R.; Bockovs, I.; Grigalovica, A.; Muizzemnieks, G.

    2013-12-01

    Poly(ethylene-1-octene) copolymer (POE) composites filled with nickel-zinc ferrite nanoparticles have been modified by exposure to an electron beam at doses up to 500 kGy. The influence of radiation dose and ferrite content on mechanical properties has been investigated. Thermomechanical properties - thermorelaxation stresses formed in thermal heating and thermo residual stresses resulting in the process of full setting and cooling of materials have been investigated for radiation cross-linked oriented (extended up to 100%) composite samples. Increase of concentration of ferrite particles and increase of radiation dose affects a notable increase of elastic modulus and reduces the deformability in comparison to entire elastomer. Improvement of thermomechanical properties especially at low irradiation doses (100-150 kGy) have been detected for composites with increase of ferrite filler content up to 5 wt. %. It was found that gel content of POE increased up to 85% for pristine POE material with increase of irradiation dose up to 500 kGy due to the formation of cross-linked structure, increase of filler concentration up to 5 wt. % affect reduction in gel fraction due to uniform dispersion in amorphous (ethylene and substituted with hexyl branches) POE phases.

  2. A new mechanism of ionizing radiation detection for positron emission tomography: modulation of optical properties

    NASA Astrophysics Data System (ADS)

    Tao, Li; Daghighian, Henry M.; Levin, Craig S.

    2016-10-01

    Using conventional scintillation detection, the fundamental limit in positron emission tomography (PET) annihilation photon pair coincidence time resolution is strongly dependent on the inherent temporal variances generated during the scintillation process, yielding an intrinsic physical limit of around 100 ps. On the other hand, modulation mechanisms of a material's optical properties as exploited in the optical telecommunications industry can be orders of magnitude faster. In this paper we borrow from the concept of optics pump-probe measurement to study whether ionizing radiation can also produce fast modulations of optical properties, which can be utilized as a novel method for radiation detection. We show that a refractive index modulation of approximately 5x10-6 is induced by interactions in a cadmium telluride (CdTe) crystal from a 511 keV photon source. Furthermore, using additional radionuclide sources, we show that the amplitude of the optical modulation signal varies linearly with both the radiation source flux rate and average photon energy.

  3. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata.

    PubMed

    Brunet, Christophe; Chandrasekaran, Raghu; Barra, Lucia; Giovagnetti, Vasco; Corato, Federico; Ruban, Alexander V

    2014-01-01

    Phytoplankton, such as diatoms, experience great variations of photon flux density (PFD) and light spectrum along the marine water column. Diatoms have developed some rapidly-regulated photoprotective mechanisms, such as the xanthophyll cycle activation (XC) and the non-photochemical chlorophyll fluorescence quenching (NPQ), to protect themselves from photooxidative damages caused by excess PFD. In this study, we investigate the role of blue fluence rate in combination with red radiation in shaping photoacclimative and protective responses in the coastal diatom Pseudo-nitzschia multistriata. This diatom was acclimated to four spectral light conditions (blue, red, blue-red, blue-red-green), each of them provided with low and high PFD. Our results reveal that the increase in the XC pool size and the amplitude of NPQ is determined by the blue fluence rate experienced by cells, while cells require sensing red radiation to allow the development of these processes. Variations in the light spectrum and in the blue versus red radiation modulate either the photoprotective capacity, such as the activation of the diadinoxanthin-diatoxanthin xanthophyll cycle, the diadinoxanthin de-epoxidation rate and the capacity of non-photochemical quenching, or the pigment composition of this diatom. We propose that spectral composition of light has a key role on the ability of diatoms to finely balance light harvesting and photoprotective capacity.

  4. Cygnus Capture

    NASA Image and Video Library

    2016-03-26

    ISS047e021823 (03/26/2016) --- The Orbital ATK Cygnus cargo ship is seen on final approach to the International Space Station. The vehicle was captured at 6:51 a.m. EDT March 26 using the space station's Canadarm2 robotic arm by Expedition 47 Commander Tim Kopra. The unmanned cargo craft was then bolted to the Earth-facing port on the Unity module at 10:52 a.m. Orbital ATK’s fifth cargo delivery flight under its Commercial Resupply Services contract delivered over 7,700 pounds of cargo and included equipment to support some 250 experiments during Expeditions 47 and 48.

  5. A possible mechanism for the capture of microparticles by the earth and other planets of the solar system. [planetary gravitation effects on cosmic dust particles

    NASA Technical Reports Server (NTRS)

    Dibenedetto, F.

    1973-01-01

    By application of Lyttleton's theory for the formation of comets, it is shown that a possible mechanism for the origin and formation of a concentration of cosmic particles around the earth and the other planets of the solar system exists. In the vicinity of the neutral point, where the velocity of colliding particles is not greater than 6 km/s, it is found that if the solid particles after collision must remain in a solid state, there can be no possibility of accretion for Mercury, Mars, and the Moon, where the maximum value of the distance of the center of the planet to the asymptotic trajectory is less than the radius of the planet. On the other hand, the capture radii of microparticles in solid form varies from a minimum of 2.95 planetary radii for Venus and 3.47 for the Earth, to about 986 for Jupiter.

  6. Mechanical properties and radiation tolerance of ultrafine grained and nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Sun, Cheng

    Austenitic stainless steels are commonly used in nuclear reactors and have been considered as potential structural materials in fusion reactors due to their excellent corrosion resistance, good creep and fatigue resistance at elevated temperatures, but their relatively low yield strength and poor radiation tolerance hinder their applications in high dose radiation environments. High angle grain boundaries have long been postulated as sinks for radiation-induced defects, such as bubbles, voids, and dislocation loops. Here we provide experimental evidence that high angle grain boundaries can effectively remove radiation-induced defects. The equal channel angular pressing (ECAP) technique was used to produce ultrafine grained Fe-Cr-Ni alloy. Mechanical properties of the alloy were studied at elevated temperature by tensile tests and in situ neutron scattering measurements. Enhanced dynamic recovery process at elevated temperature due to dislocation climb lowers the strain hardening rate and ductility of ultrafine grained Fe-Cr-Ni alloy. Thermal stability of the ultrafine grained Fe-Cr-Ni alloy was examined by ex situ annealing and in situ heating within a transmission electron microscope. Abnormal grain growth at 827 K (600°C) is attributed to deformation-induced martensite, located at the triple junctions of grains. Helium ion irradiation studies on Fe-Cr-Ni alloy show that the density of He bubbles, dislocation loops, as well as irradiation hardening are reduced by grain refinement. In addition, we provide direct evidence, via in situ Kr ion irradiation within a transmission electron microscope, that high angle grain boundaries in nanocrystalline Ni can effectively absorb irradiation-induced dislocation loops and segments. The density and size of dislocation loops in irradiated nanocrystalline Ni were merely half of those in irradiated coarse grained Ni. The results imply that irradiation tolerance in bulk metals can be effectively enhanced by microstructure

  7. Defense Mechanisms and Utilization in Cancer Patients Undergoing Radiation Therapy: A Pilot Study.

    PubMed

    Porcerelli, John H; Cramer, Phebe; Porcerelli, Daniel J; Arterbery, V Elayne

    2017-06-01

    A group of 49 patients who had been diagnosed with cancer during the preceding year and who were receiving radiation therapy were assessed for their use of defense mechanisms, as well as for their level of psychological distress. In addition, their utilization of medical services was determined. It was predicted that the use of services that were under the patients' control-namely, requesting extra outpatient visits and making trips to the emergency department-would be related to the patients' use of defense mechanisms, whereas a treatment option not under the patients' control-overnight hospitalization based on physicians' assessment of condition-would not be related to defense use. The findings confirmed the hypotheses. Outpatient visits were strongly predicted by defense use, whereas hospitalization was determined by psychological distress. However, emergency department visits were determined by both defense use and psychological distress. In addition, an interaction between defense and distress was found to predict hospitalization.

  8. Impaired swallowing mechanics of post radiation therapy head and neck cancer patients: A retrospective videofluoroscopic study.

    PubMed

    Pearson, William G; Davidoff, Alisa A; Smith, Zachary M; Adams, Dorothy E; Langmore, Susan E

    2016-02-28

    To determine swallowing outcomes and hyolaryngeal mechanics associated with post radiation therapy head and neck cancer (rtHNC) patients using videofluoroscopic swallow studies. In this retrospective cohort study, videofluoroscopic images of rtHNC patients (n = 21) were compared with age and gender matched controls (n = 21). Penetration-aspiration of the bolus and bolus residue were measured as swallowing outcome variables. Timing and displacement measurements of the anterior and posterior muscular slings elevating the hyolaryngeal complex were acquired. Coordinate data of anatomical landmarks mapping the action of the anterior muscles (suprahyoid muscles) and posterior muscles (long pharyngeal muscles) were used to calculate the distance measurements, and slice numbers were used to calculate time intervals. Canonical variate analysis with post-hoc discriminant function analysis was performed on coordinate data to determine multivariate mechanics of swallowing associated with treatment. Pharyngeal constriction ratio (PCR) was also measured to determine if weak pharyngeal constriction is associated with post radiation therapy. The rtHNC group was characterized by poor swallowing outcomes compared to the control group in regards to: Penetration-aspiration scale (P < 0.0001), normalized residue ratio scale (NRRS) for the valleculae (P = 0.002) and NRRS for the piriform sinuses (P = 0.003). Timing and distance measurements of the anterior muscular sling were not significantly different in the two groups, whereas for the PMS time of displacement was abbreviated (P = 0.002) and distance of excursion was reduced (P = 0.02) in the rtHNC group. A canonical variate analysis shows a significant reduction in pharyngeal mechanics in the rtHNC group (P < 0.0001). The PCR was significantly higher in the test group than the control group (P = 0.0001) indicating reduced efficiency in pharyngeal clearance. Using videofluoroscopy, this study shows rtHNC patients have worse swallowing

  9. Molecular Mechanisms of Ultraviolet Radiation-Induced DNA Damage and Repair

    PubMed Central

    Rastogi, Rajesh P.; Richa; Kumar, Ashok; Tyagi, Madhu B.; Sinha, Rajeshwar P.

    2010-01-01

    DNA is one of the prime molecules, and its stability is of utmost importance for proper functioning and existence of all living systems. Genotoxic chemicals and radiations exert adverse effects on genome stability. Ultraviolet radiation (UVR) (mainly UV-B: 280–315 nm) is one of the powerful agents that can alter the normal state of life by inducing a variety of mutagenic and cytotoxic DNA lesions such as cyclobutane-pyrimidine dimers (CPDs), 6-4 photoproducts (6-4PPs), and their Dewar valence isomers as well as DNA strand breaks by interfering the genome integrity. To counteract these lesions, organisms have developed a number of highly conserved repair mechanisms such as photoreactivation, base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). Additionally, double-strand break repair (by homologous recombination and nonhomologous end joining), SOS response, cell-cycle checkpoints, and programmed cell death (apoptosis) are also operative in various organisms with the expense of specific gene products. This review deals with UV-induced alterations in DNA and its maintenance by various repair mechanisms. PMID:21209706

  10. Whole Brain Radiation-Induced Vascular Cognitive Impairment: Mechanisms and Implications

    PubMed Central

    Warrington, Junie P.; Ashpole, Nicole; Csiszar, Anna; Lee, Yong Woo; Ungvari, Zoltan; Sonntag, William E.

    2013-01-01

    Mild cognitive impairment is a well-documented consequence of whole brain radiation therapy (WBRT) that affects 40-50% of long-term brain tumor survivors. The exact mechanisms for the decline in cognitive function post-WBRT remain elusive and no treatment or preventative measures are available for use in the clinic. Here, we review recent findings indicating how changes in the neurovascular unit may contribute to the impairments of learning and memory. In addition to affecting neuronal development, WBRT induces profound capillary rarefaction within the hippocampus-a region of the brain important for learning and memory. Therapeutic strategies such as hypoxia, which restore the capillary density, result in the rescue of cognitive function. In addition to decreasing vascular density, WBRT impairs vasculogenesis and/or angiogenesis, which may also contribute to radiation-induced cognitive decline. Further studies aimed at uncovering the specific mechanisms underlying these WBRT-induced changes in the cerebrovasculature are essential for developing therapies to mitigate the deleterious effects of WBRT on cognitive function. PMID:24107797

  11. Effect of penetrating ionising radiation on the mechanical properties of pericardium

    NASA Astrophysics Data System (ADS)

    Daar, Eman; Woods, E.; Keddie, J. L.; Nisbet, A.; Bradley, D. A.

    2010-07-01

    The pericardium is an anistropic composite material made up of collagen and elastin fibres embedded in an amorphous matrix mainly composed of proteoglycan and hyaluronan. The collagen fibres are arranged in layers, with different directions of alignment in each layer, giving rise to interesting mechanical properties of pericardium, including the ability to undergo large deformation during performance of regular physiological functions. The present study aims to investigate the effect of penetrating photon ionising radiation on bovine pericardium tissue, being part of a study of the effect of cardiac doses received in breast radiotherapy and the possibility that this can give rise to cardiovascular complications. Irradiation doses in the range 5-80 Gy were used. To characterise the various mechanical properties [elastic modulus, stress relaxation, ultimate tensile strength (UTS) and fracture] a uniaxial tensile test method was applied. The preliminary results reflect the wide inter-sample variations that are expected in dealing with tissues, with only a weak indication of increase in the UTS of the pericardium tissue with increase in radiation dose. Such an effect has also been observed by others, with reduction in UTS at doses of 80 Gy.

  12. Mechanism of stimulated Hawking radiation in a laboratory Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Jacobson, Ted; Wang, Yi-Hsieh; Edwards, Mark; Clark, Charles W.

    2017-01-01

    Analog black/white hole pairs have been achieved in recent experiment by J. Steinhauer, using an elongated Bose-Einstein condensate. He reported observations of self-amplifying Hawking radiation, via a lasing mechanism operating between the black and white hole horizons. Through the simulations using the 1D Gross-Pitaevskii equation, we find that the experimental observations should be attributed not to the black hole laser effect, but rather to a growing zero-frequency bow wave, generated at the white-hole horizon. The relative motion of the black and white hole horizons produces a Doppler shift of the bow wave at the black hole, where it stimulates the emission of monochromatic Hawking radiation. This mechanism is confirmed using temporal and spatial windowed Fourier spectra of the condensate. We also find that shot-to-shot atom number variations, of the type normally realized in ultracold-atom experiments, and quantum fluctuations of condensates, as computed in the Bogoliubov-De Gennes approximation, give density-density correlations consistent with those reported in the experiments. In particular, atom number variations can produce a spurious correlation signal.

  13. Repair of radiation-induced damage to the cell division mechanism of Escherichia coli.

    PubMed

    Adler, H I; Fisher, W D; Hardigree, A A; Stapleton, G E

    1966-02-01

    Adler, Howard I. (Oak Ridge National Laboratory, Oak Ridge, Tenn.), William D. Fisher, Alice A. Hardigree, and George E. Stapleton. Repair of radiation-induced damage to the cell division mechanism of Escherichia coli. J. Bacteriol. 91:737-742. 1966.-Microscopic observations of irradiated populations of filamentous Escherichia coli cells indicated that filaments can be induced to divide by a substance donated by neighboring cells. We have made this observation the basis for a quantitative technique in which filaments are incubated in the presence of nongrowing donor cells. The presence of "donor" organisms promotes division and subsequent colony formation in filaments. "Donor" bacteria do not affect nonfilamentous cells. An extract of "donor" cells retains the division-promoting activity. The extract has been partially fractionated, and consists of a heat-stable and a heat-labile component. The heat-stable component is inactive in promoting cell division, but enhances the activity of the heat-labile component. The division-promoting system is discussed as a radiation repair mechanism and as a normal component of the cell division system in E. coli.

  14. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spatial-temporal distribution of a mechanical load resulting from interaction of laser radiation with a barrier (analytic model)

    NASA Astrophysics Data System (ADS)

    Fedyushin, B. T.

    1992-01-01

    The concepts developed earlier are used to propose a simple analytic model describing the spatial-temporal distribution of a mechanical load (pressure, impulse) resulting from interaction of laser radiation with a planar barrier surrounded by air. The correctness of the model is supported by a comparison with experimental results.

  15. WORKSHOP REPORT: MOLECULAR & CELLULAR BIOLOGY OF MODERATE DOSE (1-10 GY) RADIATION & POTENTIAL MECHANISMS OF RADIATION PROTECTION

    EPA Science Inventory

    EXECUTIVE SUMMARY

    Normal tissue response and injury after exposure to ionizing radiation are of great importance to patients with cancer, populations potentially subjected to military, accidental or intentional exposure including bioterrorism, and workers in the nuclear po...

  16. WORKSHOP REPORT: MOLECULAR & CELLULAR BIOLOGY OF MODERATE DOSE (1-10 GY) RADIATION & POTENTIAL MECHANISMS OF RADIATION PROTECTION

    EPA Science Inventory

    EXECUTIVE SUMMARY

    Normal tissue response and injury after exposure to ionizing radiation are of great importance to patients with cancer, populations potentially subjected to military, accidental or intentional exposure including bioterrorism, and workers in the nuclear po...

  17. Studies on High Energy Radiation Mechanisms and Gamma-Ray Burst Prompt Emissions

    NASA Astrophysics Data System (ADS)

    Zhang, B.

    2014-07-01

    Gamma-Ray Bursts (GRBs) are the most violent high-energy explosion in the universe. They are randomly happened, pulse-like phenomena with short durations. Since its discovery in 1960's by Vela satellite, GRBs have become a hot topic for astrophysical research. In 1997 the BeppoSAX satellite discovered afterglows of GRBs, and then helped to measure GRB redshifts. Thus it was found that GRBs are the events occurred at cosmological distances. Now it is widely accepted that the long bursts with durations longer than 2 s are from the collapsing massive stars, while the short bursts with durations less than 2 s are results of the merging compact binaries. By studying GRBs, the physical processes in ultrarelativistic and very high energy conditions can be investigated, and the researches on other fields, including constraining the cosmological models, can also get helped. The goal of this thesis is to present some discussions on possible radiation mechanisms and prompt light curves of GRBs. Since radiation mechanisms and prompt emissions are related to GRB central engines directly, studying these topics can help us to get a better understanding of some properties of the central engine. In Chapter 1, we review the discovery and observations of GRBs, presenting major achievements from major GRB-monitoring satellites including Compton Gamma-ray Observatory, BeppoSAX satellite, Swift satellite, as well as the latest Fermi Gamma-ray Space Telescope. The multi-wavelength properties of prompt emission as well as afterglows of GRBs are also summarized in Chapter 1. In Chapter 2 the current GRB standard model is presented. According to standard model, a fireball is ejected by the central engine. The internal shock is produced by collisions between various shells with different velocities inside the fireball. The directional kinetic energy of the fireball is then converted to internal energy, and finally the non-thermal radiation (the prompt emission) is produced by internal shocks

  18. AKM capture device

    NASA Technical Reports Server (NTRS)

    Harwell, William D.

    1987-01-01

    In an effort to recover the Westar and Palapa satellites and the considerable investment each represented, NASA and Hughes undertook the Satellite Retrieval Mission. The mechanism used to capture each of the errant satellites was the AKM (Apogee Kick Motor) Capture Device (ACD), also referred to as the Stinger. The ACD had three interface requirements: interface with the Manned Maneuvering Unit (MMU) for transportation to and stabilization of the spacecrafts; interface with each satellite for retrieval; and finally, interface with the Shuttle's Remote Manipulator System (RMS or robot arm) for satellite transport back to the Orbiter's payload bay. The majority of the design requirements were associated with the capture and release of the satellites. In addition to these unique requirements, the general EVA, RMS grapple, and RMS manipulation requirements applied. These requirements included thermal, glare, snag, RMS runaway and crewman safety considerations.

  19. Mechanism of Action for Anti-Radiation Vaccine in Reducing the Biological Impact of High-Dose Irradiation

    NASA Technical Reports Server (NTRS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2006-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. We partially analyzed the biochemical characteristics of the SRDs. The SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  20. Mechanism of Action for Anti-radiation Vaccine in Reducing the Biological Impact of High-dose Gamma Irradiation

    NASA Technical Reports Server (NTRS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    2007-01-01

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then collected and circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naive animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which the mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  1. Mechanism of action for anti-radiation vaccine in reducing the biological impact of high-dose gamma irradiation

    NASA Astrophysics Data System (ADS)

    Maliev, Vladislav; Popov, Dmitri; Jones, Jeffrey A.; Casey, Rachael C.

    Ionizing radiation is a major health risk of long-term space travel, the biological consequences of which include genetic and oxidative damage. In this study, we propose an original mechanism by which high doses of ionizing radiation induce acute toxicity. We identified biological components that appear in the lymphatic vessels shortly after high-dose gamma irradiation. These radiation-induced toxins, which we have named specific radiation determinants (SRD), were generated in the irradiated tissues and then circulated throughout the body via the lymph circulation and bloodstream. Depending on the type of SRD elicited, different syndromes of acute radiation sickness (ARS) were expressed. The SRDs were developed into a vaccine used to confer active immunity against acute radiation toxicity in immunologically naïve animals. Animals that were pretreated with SRDs exhibited resistance to lethal doses of gamma radiation, as measured by increased survival times and survival rates. In comparison, untreated animals that were exposed to similar large doses of gamma radiation developed acute radiation sickness and died within days. This phenomenon was observed in a number of mammalian species. Initial analysis of the biochemical characteristics indicated that the SRDs were large molecular weight (200-250 kDa) molecules that were comprised of a mixture of protein, lipid, carbohydrate, and mineral. Further analysis is required to further identify the SRD molecules and the biological mechanism by which they mediate the toxicity associated with acute radiation sickness. By doing so, we may develop an effective specific immunoprophylaxis as a countermeasure against the acute effects of ionizing radiation.

  2. Time-Varying Multifractal Characteristics and Formation Mechanism of Loaded Coal Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Hu, Shaobin; Wang, Enyuan; Li, Zhonghui; Shen, Rongxi; Liu, Jie

    2014-09-01

    Dynamic collapses of deeply mined coal rocks are severe threats to miners. To predict the collapses more accurately using electromagnetic radiation (EMR), we investigate the time-varying multifractal characteristics and formation mechanism of EMR induced by underground coal mining. A series of uniaxial compression and multi-stage loading experiments with coal samples of different mechanical properties were carried out. The EMR signals during their damage evolution were monitored in real-time; the inherent law of EMR time series was analyzed by fractal theory. The results show that the time-varying multifractal characteristics of EMR are determined by damage evolutions process, the dissipated energy caused by damage evolutions such as crack propagation, fractal sliding and shearing can be regard as the fingerprint of various EMR micro-mechanics. Based on the Irreversible thermodynamics and damage mechanics, we introduced the damage internal variable, constructed the dissipative potential function and established the coupled model of the EMR and the dissipative energy, which revealed the nature of dynamic nonlinear characteristics of EMR. Dynamic multifractal spectrum is the objective response of EMR signals, thus it can be used to evaluate the coal deformation and fracture process.

  3. Structure and function of bone marrow hemopoiesis: mechanisms of response to ionizing radiation exposure.

    PubMed

    Fliedner, T M; Graessle, D; Paulsen, C; Reimers, K

    2002-08-01

    It is the purpose of this presentation to review the unique structure and function of bone marrow anchored hematopoiesis in their significance for its response mechanisms to an exposure to ionizing radiation. The ultimate objective of bone marrow hematopoiesis is to maintain in the peripheral blood a constant level of the different blood cell types (erythrocytes, granulocytes, platelets, lymphocytes, etc.). All of them have their particular turnover kinetics (such as granulocytes 120 x 10(9)/d, erythrocytes 200 x 10(9)/d or thrombocytes 150 x 10(9)/d), are semi-autonomous in their steady state regulatory mechanisms and dependent on a life-long supply of mature cells from a stem cell pool with unlimited replicative and pluripotent differentiative potential. The present knowledge of hematopoietic cellular renewal is the result of years of basic experimental and clinical studies using radionuclides in various metabolic forms including (59)Fe, (32)P (DF (32)P), (51)Cr, (131)I, (60)Co, (3)H ((3)HTdR) and (14)C ((14)CTdR). To understand the physiology but in particular the radiation-pathophysiology, it is essential to recognize in detail the infrastructure of the bone marrow as a distinct unit. Indispensable for a life-long cell production is the capsule of the marrow - the bone cortex -, the arterial supply of blood connected to the sinusoidal microvascular architecture with its sinusoids contorti and recti as well as the central (cell collecting) sinusoids. It is further of importance to recognize the significance of nerval regulation of blood flow, characterized by myelinated and unmyelinated nerve fibers. The type of unique lining cells of the sinusoids is the prerequisite for the cell traffic between the hemopoietic parenchyma and the blood. This in turn cannot be achieved without an alternative opening and closing of the sinusoidal segments which - in turn - requires a rigid long capsule to assure an - in toto - constant volume of each bone marrow unit. If a bone

  4. Biomechanics and hydrodynamics of prey capture in the Chinese giant salamander reveal a high-performance jaw-powered suction feeding mechanism

    PubMed Central

    Heiss, Egon; Natchev, Nikolay; Gumpenberger, Michaela; Weissenbacher, Anton; Van Wassenbergh, Sam

    2013-01-01

    During the evolutionary transition from fish to tetrapods, a shift from uni- to bidirectional suction feeding systems followed a reduction in the gill apparatus. Such a shift can still be observed during metamorphosis of salamanders, although many adult salamanders retain their aquatic lifestyle and feed by high-performance suction. Unfortunately, little is known about the interplay between jaws and hyobranchial motions to generate bidirectional suction flows. Here, we study the cranial morphology, as well as kinematic and hydrodynamic aspects related to prey capture in the Chinese giant salamander (Andrias davidianus). Compared with fish and previously studied amphibians, A. davidianus uses an alternative suction mechanism that mainly relies on accelerating water by separating the ‘plates’ formed by the long and broad upper and lower jaw surfaces. Computational fluid dynamics simulations, based on three-dimensional morphology and kinematical data from high-speed videos, indicate that the viscerocranial elements mainly serve to accommodate the water that was given a sufficient anterior-to-posterior impulse beforehand by powerful jaw separation. We hypothesize that this modified way of generating suction is primitive for salamanders, and that this behaviour could have played an important role in the evolution of terrestrial life in vertebrates by releasing mechanical constraints on the hyobranchial system. PMID:23466557

  5. Resource capture by single leaves

    SciTech Connect

    Long, S.P.

    1992-05-01

    Leaves show a variety of strategies for maximizing CO{sub 2} and light capture. These are more meaningfully explained if they are considered in the context of maximizing capture relative to the utilization of water, nutrients and carbohydrates reserves. There is considerable variation between crops in their efficiency of CO{sub 2} and light capture at the leaf level. Understanding of these mechanisms indicate some ways in which efficiency of resource capture could be level cannot be meaningfully considered without simultaneous understanding of implications at the canopy level. 36 refs., 5 figs., 1 tab.

  6. Kinetics and Mechanism of Lipid Mesophase Structural Changes Induced by Pressure and X-Radiation Damage

    NASA Astrophysics Data System (ADS)

    Cheng, Anchi

    1995-01-01

    The kinetics and mechanism of structural changes occurring in phase transformations in liquid crystalline phases of hydrated lipids were studied using synchrotron -based time-resolved x-ray diffraction. Pressure-induced phase transitions. An experimental arrangement for studying hydrated lipid phase transitions under pressures up to 1800 bar and at temperatures up to 90^circC was developed. It was capable of performing both transient (pressure-jump) and stationary (pressure oscillation) relaxation kinetic measurements. The observables included x-ray diffraction and in-sample pressure and temperature. The setup was evaluated and used for studying the chain order/disorder transition in the lamellar phases of hydrated lipids. The lamellar gel (L_{beta '})-to-lamellar liquid crystalline (L_alpha) transition in hydrated 1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine was studied by constructing its pressure-temperature phase diagram in the range of 1 to 1200 bar and 65 to 90 ^ circC and using large amplitude (400 to 1300 bars) pressure-jumps. The phase diagram provided the phase boundary locations as well as the equilibrium thermomechanical properties of the material. The P-jumps showed that the limiting transit time of the L_{beta '}-to-L_alpha transition was ca. 1 s, while that of the reverse transition was <=q50 ms. Also observed was that the lipid responded rapidly to the P-jump in the L_{beta'} phase up to the rate-determining L_{ beta'}-to-Lalpha transition. Analysis of the structure response spectra for the main transition of hydrated 1,2-dimyristoyl-sn-glycero -3-phosphocholine and monoelaidin shows that the transition mechanism is consistent with the Avrami-Kolmogorov model with an effective growth dimensionality of ca. 1. A layer -by-layer transition mechanism was proposed. Results of the thermal response have been evaluated. X-Radiation damage induced structural and phase changes. The use of intense synchrotron x-radiation is limited by sample radiation

  7. Differences in fundamental reaction mechanisms between high and low-LET in recent advancements and applications of ionizing radiation

    NASA Astrophysics Data System (ADS)

    Farahani, Mahnaz; Clochard, Marie-Claude; Gifford, Ian; Barkatt, Aaron; Al-Sheikhly, Mohamad

    2014-12-01

    Differences among the mechanisms of energy deposition by high-linear energy transfer (LET) radiation, consisting of neutrons, protons, alpha particles, and heavy ions on one hand, and low-LET radiation, exemplified by electron beam and gamma radiation on the other, are utilized in the selection of types of radiation used for specific applications. Thus, high-LET radiation is used for modification of carbon nanotubes, ion track grafting, and the synthesis of membranes and nanowires, as well as for characterization of materials by means of neutron scattering. Recent applications of low-LET irradiation include minimization of radiolytic degradation upon sterilization of ultra-high molecular weight polyethylene (UHMWPE), radiolytic synthesis of nanogels for drug delivery systems, grafting of polymers in the synthesis of adsorbents for uranium from seawater, and reductive remediation of PCBs.1

  8. Radiation mechanisms and physical properties of the γ-ray narrow-line Seyfert 1 galaxies

    NASA Astrophysics Data System (ADS)

    Yang, Jianping; Zhou, Bing

    2015-12-01

    We investigate the physical properties and radiation mechanisms of 11 states of five narrow-line Seyfert 1 (NLS1) galaxies detected by the Large Area Telescope on board Fermi through modeling the quasi-simultaneous multi-band observations. We obtain the best-fitting model parameters and their uncertainties for each state with the χ2-minimization procedure and discuss their implications on the characteristics of jet. Similar to blazars, their spectral energy distributions (SEDs) have a two-humped structure and their non-thermal emission can be modelled with the single-zone synchrotron + inverse Compton (IC) model. For all states, the GeV γ-rays may be contributed by the external Compton (EC) emission components. The observations of Fermi are mostly located at the declining stage of the EC humps. Text < 0.5 eV in all cases (Text is the characteristic temperature of external soft photons), suggesting that their radiation zones may be usually located outside of the broad line region (BLR) and the soft photons of Compton scattering mainly come from the dust torus. Compared with the bright Fermi blazars studied by Ghisellini et al. (2014, Nature, 515, 376), the Pjet (the power of the jets) of NLS1 galaxies detected by Fermi is similar to that of the flat spectrum radio quasars (FSRQs) but a little larger than that of the BL Lac objects (BL Lacs). However, a comparison of Pr (the powers of radiations) with the FSRQs and BL Lac objects shows that NLS1 galaxies' Pr has values comparable to BL Lac objects but lower than FSRQs in spite of having similar Pjet values and the same energy carrier (the cold protons) as the FSRQs. Observations indicate that γ-NLS1 galaxies might have lower η (efficiency of gravitational energy release) values than GeV blazars.

  9. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome.

    PubMed

    Gorbunov, Nikolai V; Sharma, Pushpa

    2015-02-27

    The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR)] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS). The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF) leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS). Onset of MOF in hARS can be presented as "two-hit phenomenon" where the "first hit" is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the "second hit" derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous, radioresistant mesenchymal

  10. Protracted Oxidative Alterations in the Mechanism of Hematopoietic Acute Radiation Syndrome

    PubMed Central

    Gorbunov, Nikolai V.; Sharma, Pushpa

    2015-01-01

    The biological effects of high-dose total body ionizing irradiation [(thereafter, irradiation (IR)] are attributed to primary oxidative breakage of biomolecule targets, mitotic, apoptotic and necrotic cell death in the dose-limiting tissues, clastogenic and epigenetic effects, and cascades of functional and reactive responses leading to radiation sickness defined as the acute radiation syndrome (ARS). The range of remaining and protracted injuries at any given radiation dose as well as the dynamics of post-IR alterations is tissue-specific. Therefore, functional integrity of the homeostatic tissue barriers may decline gradually within weeks in the post-IR period culminating with sepsis and failure of organs and systems. Multiple organ failure (MOF) leading to moribundity is a common sequela of the hemotapoietic form of ARS (hARS). Onset of MOF in hARS can be presented as “two-hit phenomenon” where the “first hit” is the underlying consequences of the IR-induced radiolysis in cells and biofluids, non-septic inflammation, metabolic up-regulation of pro-oxidative metabolic reactions, suppression of the radiosensitive hematopoietic and lymphoid tissues and the damage to gut mucosa and vascular endothelium. While the “second hit” derives from bacterial translocation and spread of the bacterial pathogens and inflammagens through the vascular system leading to septic inflammatory, metabolic responses and a cascade of redox pro-oxidative and adaptive reactions. This sequence of events can create a ground for development of prolonged metabolic, inflammatory, oxidative, nitrative, and carbonyl, electrophilic stress in crucial tissues and thus exacerbate the hARS outcomes. With this perspective, the redox mechanisms, which can mediate the IR-induced protracted oxidative post-translational modification of proteins, oxidation of lipids and carbohydrates and their countermeasures in hARS are subjects of the current review. Potential role of ubiquitous, radioresistant

  11. Fundamental Processes of Coupled Radiation Damage and Mechanical Behavior in Nuclear Fuel Materials for High Temperature Reactors

    SciTech Connect

    Phillpot, Simon; Tulenko, James

    2011-09-08

    The objective of this work has been to elucidate the relationship among microstructure, radiation damage and mechanical properties for nuclear fuel materials. As representative nuclear materials, we have taken an hcp metal (Mg as a generic metal, and Ti alloys for fast reactors) and UO2 (representing fuel). The degradation of the thermo-mechanical behavior of nuclear fuels under irradiation, both the fissionable material itself and its cladding, is a longstanding issue of critical importance to the nuclear industry. There are experimental indications that nanocrystalline metals and ceramics may be more resistant to radiation damage than their coarse-grained counterparts. The objective of this project look at the effect of microstructure on radiation damage and mechanical behavior in these materials. The approach to be taken was state-of-the-art, large-scale atomic-level simulation. This systematic simulation program of the effects of irradiation on the structure and mechanical properties of polycrystalline Ti and UO2 identified radiation damage mechanisms. Moreover, it will provided important insights into behavior that can be expected in nanocrystalline microstructures and, by extension, nanocomposites. The fundamental insights from this work can be expected to help in the design microstructures that are less susceptible to radiation damage and thermomechanical degradation.

  12. Spectral analysis of time-integrated Konus-Wind GRBs: Implication on radiative mechanisms

    NASA Astrophysics Data System (ADS)

    Fouka, M.; Ouichaoui, S.

    2011-04-01

    We have analysed a sample of 328 time-integrated GRB prompt emission spectra taken via the Konus instrument on board the US GGS-Wind spacecraft between 2002 and 2004 using a couple of two-components models, Cut-off Power Law (CPL) + Power Law (PL) and blackbody (BB) + PL. The spectra show clear deviation from the Band function. The PL term is interpreted as the low energy tail of a nonthermal emission mechanism. The distributions of corresponding index β give values β < -2/3 consistent with synchrotron and synchrotron self-Compton mechanisms. The distribution of low energy index α associated with the CPL term shows clear discordance with synchrotron models for 31.4% of the analysed GRBs with values exceeding that for the line of death, α = -2/3. Then, a set of nonthermal radiation mechanisms producing harder slopes, i.e., α > -2/3, are presented and discussed. For the remaining majority (68.6%) of GRBs with CPL index α < -2/3, we show that optically thin synchrotron produced by a power law electron distribution of type, N(γ) ˜ γ-p, γ1 < γ < γ2, for finite energy range (γ2 ≠ ∞) is a likely emission mechanism with α ˜-(p + 1)/2 in the frequency range ν1 ≪ ν ≪ ν2 (where ν2 = η2ν1 with η = γ2/γ1), such that for p > 1/3, one gets α < -2/3. We also show that corresponding spectra in terms of Fν and νFν functions are peaked around frequency ν2 instead of ν1, respectively for p < 1 and p < 3. Besides, thermal emission is examined taking a single Planck function for fitting the low energy range. It can be interpreted as an early emission from the GRB fireball photosphere with observed mean temperature, kT‧ ˜ 16.8 keV. Furthermore, we have performed a statistical comparison between the CPL + PL and BB + PL models finding comparable χ2-values for an important fraction of GRBs, which makes it difficult to distinguish which model and specific radiation mechanism (possible thermal or nonthermal γ-ray emissions) are best suitable for

  13. Mechanisms of Low Dose Radiation-induced T helper Cell Function

    SciTech Connect

    Gridley, Daila S.

    2008-10-31

    Exposure to radiation above levels normally encountered on Earth can occur during wartime, accidents such as those at Three Mile Island and Chernobyl, and detonation of “dirty bombs” by terrorists. Relatively high levels of radiation exposure can also occur in certain occupations (low-level waste sites, nuclear power plants, nuclear medicine facilities, airline industry, and space agencies). Depression or dysfunction of the highly radiosensitive cells of the immune system can lead to serious consequences, including increased risk for infections, cancer, hypersensitivity reactions, poor wound healing, and other pathologies. The focus of this research was on the T helper (Th) subset of lymphocytes that secrete cytokines (proteins), and thus control many actions and interactions of other cell types that make up what is collectively known as the immune system. The Department of Energy (DOE) Low Dose Radiation Program is concerned with mechanisms altered by exposure to high energy photons (x- and gamma-rays), protons and electrons. This study compared, for the first time, the low-dose effects of two of these radiation forms, photons and protons, on the response of Th cells, as well as other cell types with which they communicate. The research provided insights regarding gene expression patterns and capacity to secrete potent immunostimulatory and immunosuppressive cytokines, some of which are implicated in pathophysiological processes. Furthermore, the photon versus proton comparison was important not only to healthy individuals who may be exposed, but also to patients undergoing radiotherapy, since many medical centers in the United States, as well as worldwide, are now building proton accelerators. The overall hypothesis of this study was that whole-body exposure to low-dose photons (gamma-rays) will alter CD4+ Th cell function. We further proposed that exposure to low-dose proton radiation will induce a different pattern of gene and functional changes compared to

  14. Mechanism of the radiation-induced transformations of fluoroform in solid noble gas matrixes

    NASA Astrophysics Data System (ADS)

    Sosulin, Ilya S.; Shiryaeva, Ekaterina S.; Feldman, Vladimir I.

    2017-09-01

    The X-ray induced transformations in the CHF3/Ng systems (Ng=Ne, Ar, Kr or Xe) at 6 K were studied by FTIR spectroscopy. The radiation-induced decomposition of CHF3 was found to be rather inefficient in solid xenon with low ionization energy, which suggests primary significance of the positive hole transfer from matrix to the fluoroform molecule. CF3•, :CF2, CHF2• and CF4 were identified as the products of low-temperature radiolysis in all the noble gas matrixes. In addition, the anionic complex HF ⋯ CF2- was detected in Ne and Ar matrixes. The radiolysis also resulted in formation of noble gas compounds (HArF in argon, HKrF in krypton, and XeF2 in xenon). While XeF2 and HArF were essentially formed directly after irradiation (presumably due to reactions of 'hot' fluorine atoms), HKrF mainly resulted from annealing of irradiated samples below 20 K due to thermally induced mobility of trapped fluorine atoms. In both krypton and xenon matrixes, the thermally induced reactions of F atoms occur at lower temperatures than those of H atoms, while the opposite situation is observed in argon. The mechanisms of the radiation-induced processes and their implications are discussed.

  15. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury.

    PubMed

    Slezak, Jan; Kura, Branislav; Babal, Pavel; Barancik, Miroslav; Ferko, Miroslav; Frimmel, Karel; Kalocayova, Barbora; Kukreja, Rakesh C; Lazou, Antigone; Mezesova, Lucia; Okruhlicova, Ludmila; Ravingerova, Tanya; Singal, Pawan K; Szeiffova Bacova, Barbara; Viczenczova, Csilla; Vrbjar, Norbert; Tribulova, Narcis

    2017-10-01

    Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors. Inflammation, endothelial cell dysfunction, thrombogenesis, organ dysfunction, and ultimate failing of the heart occur as a pathological entity - "radiation-induced heart disease" (RIHD) that is major source of morbidity and mortality. The purpose of this review is to bring insights into the basic mechanisms of RIHD that may lead to the identification of targets for intervention in the radiotherapy side effect. Studies of authors also provide knowledge about how to select targeted drugs or biological molecules to modify the progression of radiation damage in the heart. New prospective studies are needed to validate that assessed factors and changes are useful as early markers of cardiac damage.

  16. Effect of radiation on disinfection and mechanical properties of Korean traditional paper, Hanji

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Chung, Yong Jae; Kang, Dai Ill; Lee, Kyu Shik; Lee, Ju-Woon

    2012-08-01

    Fumigants, including methyl bromide and ethylene oxide, are generally used for the preservation of the Korean cultural heritage, especially paper products like letters and books. However, the use of fumigants is banned because of their harmful effects on humans and the environment. Gamma irradiation is being considered as an alternative for the sterilization of insects and fungi in organic products. Therefore, the purpose of this study was to investigate the sterilization effects of radiation and its effect on the mechanical properties of the Korean traditional paper—Hanji. Treatment doses of 9 kGy and 8 kGy of gamma irradiation inactivated 5 log units of Aspergillus niger and Bacillus cereus spores inoculated on Hanji, respectively. The gamma irradiations up to an absorbed dose of 50 kGy resulted in no significant changes in the tensile strength, bursting strength, and appearance of Hanji. These results confirmed that radiation treatment disinfects the Korean traditional paper efficiently without changing its properties and that this treatment could be used to prevent the damage of Korean ancient archives by molds and fungi.

  17. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    SciTech Connect

    Babich, L. P. Bochkov, E. I.; Kutsyk, I. M.

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  18. [Inhibitory effect of microwave radiation on proliferation of human pancreatic cancer JF305 cells and its mechanism].

    PubMed

    Zhu, Wenhe; Zhang, Wei; Li, Yan; Xu, Junjie; Luo, Jun; Jiang, Yanxia; Lu, Xiaojing; Lü, Shijie

    2013-11-01

    To investigate on the proliferation effect of different intensities 2450 MHz microwave radiation on human pancreatic cancer JF305 cells and its possible mechanism. JF305 cells were radiated by intensity of 2.5, 5.0, 10.0, 15.0 and 20.0 mW/cm2 microwave for 20 min. The proliferation capacity of JF305 was measured by MTT assays, Annexin V-FITC and PI staining was used for detecting cell apoptosis. The activity of Caspase-3 was examined. The expressions of Caspase-3 and HSP 70 protein after the cell treatment with microwave were detected by Western blotting. After microwave radiation, the proliferation inhibition rates of JF305 cells were significantly higher compared with control group. Annexin V-FITC and PI staining result showed that microwave radiation could induce cell apoptosis. Caspase-3 increased after radiated by microwave, compared with control group (P < 0.05). Results of Western blotting showed that the expression of Caspase-3 and HSP 70 protein increased significantly in different dosage radiation group. Microwave radiation can inhibit the proliferation of JF305 cells, the possible mechanism may be related with inducing cell apoptosis by changing of stress level.

  19. The apoptotic effect and the plausible mechanism of microwave radiation on rat myocardial cells.

    PubMed

    Zhu, Wenhe; Cui, Yan; Feng, Xianmin; Li, Yan; Zhang, Wei; Xu, Junjie; Wang, Huiyan; Lv, Shijie

    2016-08-01

    Microwaves may exert adverse biological effects on the cardiovascular system at the integrated system and cellular levels. However, the mechanism underlying such effects remains poorly understood. Here, we report a previously uncharacterized mechanism through which microwaves damage myocardial cells. Rats were treated with 2450 MHz microwave radiation at 50, 100, 150, or 200 mW/cm(2) for 6 min. Microwave treatment significantly enhanced the levels of various enzymes in serum. In addition, it increased the malondialdehyde content while decreasing the levels of antioxidative stress enzymes, activities of enzyme complexes I-IV, and ATP in myocardial tissues. Notably, irradiated myocardial cells exhibited structural damage and underwent apoptosis. Furthermore, Western blot analysis revealed significant changes in expression levels of proteins involved in oxidative stress regulation and apoptotic signaling pathways, indicating that microwave irradiation could induce myocardial cell apoptosis by interfering with oxidative stress and cardiac energy metabolism. Our findings provide useful insights into the mechanism of microwave-induced damage to the cardiovascular system.

  20. Integrated Radiation Transport and Thermo-Mechanics Simulation of a PWR Assembly

    SciTech Connect

    Clarno, Kevin T; Hamilton, Steven P; Philip, Bobby; Sampath, Rahul S; Allu, Srikanth; Berrill, Mark A; Barai, Pallab; Banfield, James E

    2012-01-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step towards incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source terms, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. AMPFuel was used to model an entire 17 x 17 Pressurized Water Reactor (PWR) fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins, the 25 guide tubes, top and bottom structural regions, and the upper and lower (neutron) reflector regions. The final full-assembly calculation was executed on Jaguar (Cray XT5) at the Oak Ridge Leadership Computing Facility using 40,000 cores in under 10 hours to model over 162 billion degrees of freedom for 10 loading steps.

  1. In Vivo NMR Metabolic Profiling of Fabrea salina Reveals Sequential Defense Mechanisms against Ultraviolet Radiation

    PubMed Central

    Marangoni, Roberto; Paris, Debora; Melck, Dominique; Fulgentini, Lorenzo; Colombetti, Giuliano; Motta, Andrea

    2011-01-01

    Fabrea salina is a hypersaline ciliate that is known to be among the strongest ultraviolet (UV)-resistant microorganisms; however, the molecular mechanisms of this resistance are almost unknown. By means of in vivo NMR spectroscopy, we determined the metabolic profile of living F. salina cells exposed to visible light and to polychromatic UV-B + UV-A + Vis radiation for several different exposure times. We used unsupervised pattern-recognition analysis to compare these profiles and discovered some metabolites whose concentration changed specifically upon UV exposure and in a dose-dependent manner. This variation was interpreted in terms of a two-phase cell reaction involving at least two different pathways: an early response consisting of degradation processes, followed by a late response activating osmoprotection mechanisms. The first step alters the concentration of formate, acetate, and saturated fatty-acid metabolites, whereas the osmoprotection modifies the activity of betaine moieties and other functionally related metabolites. In the latter pathway, alanine, proline, and sugars suggest a possible incipient protein synthesis as defense and/or degeneration mechanisms. We conclude that NMR spectroscopy on in vivo cells is an optimal approach for investigating the effect of UV-induced stress on the whole metabolome of F. salina because it minimizes the invasiveness of the measurement. PMID:21190674

  2. In vivo NMR metabolic profiling of Fabrea salina reveals sequential defense mechanisms against ultraviolet radiation.

    PubMed

    Marangoni, Roberto; Paris, Debora; Melck, Dominique; Fulgentini, Lorenzo; Colombetti, Giuliano; Motta, Andrea

    2011-01-05

    Fabrea salina is a hypersaline ciliate that is known to be among the strongest ultraviolet (UV)-resistant microorganisms; however, the molecular mechanisms of this resistance are almost unknown. By means of in vivo NMR spectroscopy, we determined the metabolic profile of living F. salina cells exposed to visible light and to polychromatic UV-B + UV-A + Vis radiation for several different exposure times. We used unsupervised pattern-recognition analysis to compare these profiles and discovered some metabolites whose concentration changed specifically upon UV exposure and in a dose-dependent manner. This variation was interpreted in terms of a two-phase cell reaction involving at least two different pathways: an early response consisting of degradation processes, followed by a late response activating osmoprotection mechanisms. The first step alters the concentration of formate, acetate, and saturated fatty-acid metabolites, whereas the osmoprotection modifies the activity of betaine moieties and other functionally related metabolites. In the latter pathway, alanine, proline, and sugars suggest a possible incipient protein synthesis as defense and/or degeneration mechanisms. We conclude that NMR spectroscopy on in vivo cells is an optimal approach for investigating the effect of UV-induced stress on the whole metabolome of F. salina because it minimizes the invasiveness of the measurement. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  3. Photodegradation of naproxen in water under simulated solar radiation: mechanism, kinetics, and toxicity variation.

    PubMed

    Ma, Dujuan; Liu, Guoguang; Lv, Wenying; Yao, Kun; Zhang, Xiangdan; Xiao, Huahua

    2014-01-01

    The main objective of this study was to investigate the degradation mechanism, the reaction kinetics, and the evolution of toxicity of naproxen in waters under simulated solar radiation. These criteria were investigated by conducting quenching experiments with reactive oxygen species (ROS), oxygen concentration experiments, and toxicity evaluations with Vibrio fischeri bacteria. The results indicated that the degradation of naproxen proceeds via pseudo first-order kinetics in all cases and that photodegradation included degradation by direct photolysis and by self-sensitization via ROS; the contribution rates of self-sensitized photodegradation were 1.4%, 65.8%, and 31.7% via ·OH, (1)O₂ and O₂(•-), respectively. Furthermore, the oxygen concentration experiments indicated that dissolved oxygen inhibited the direct photodegradation of naproxen, and the higher the oxygen content, the more pronounced the inhibitory effect. The toxicity evaluation illustrated that some of the intermediate products formed were more toxic than naproxen.

  4. Dislocation-Radiation Obstacle Interactions: Developing Improved Mechanical Property Constitutive Models

    SciTech Connect

    B.D. WIrth; Ian M. Robertson

    2007-11-29

    Radiation damage to structural and cladding materials, including austenitic stainless steels, ferritic steels, and zirconium alloys, in nuclear reactor environments results in significant mechanical property degradation, including yield strength increases, severe ductility losses and flow localization, which impacts reliability and performance. Generation IV and advanced fuel cycle concepts under consideration will require the development of advanced structural materials, which will operate in increasingly hostile environments. The development of predictive models is required to assess the performance and response of materials in extreme Gen IV reactor operating conditions (temperature, stress, and pressure), to decrease the time to rapidly assess the properties of new materials and insert them into technological applications (Gen IV and Advanced Fuel Cycle Operations).

  5. Molecular action mechanisms of solar infrared radiation and heat on human skin.

    PubMed

    Akhalaya, M Ya; Maksimov, G V; Rubin, A B; Lademann, J; Darvin, M E

    2014-07-01

    The generation of ROS underlies all solar infrared-affected therapeutic and pathological cutaneous effects. The signaling pathway NF-kB is responsible for the induced therapeutic effects, while the AP-1 for the pathological effects. The different signaling pathways of infrared-induced ROS and infrared-induced heat shock ROS were shown to act independently multiplying the influence on each other by increasing the doses of irradiation and/or increasing the temperature. The molecular action mechanisms of solar infrared radiation and heat on human skin are summarized and discussed in detail in the present paper. The critical doses are determined. Protection strategies against infrared-induced skin damage are proposed.

  6. Mechanism for generation of 2-3 kHz radiation in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Macek, W. M.

    1995-01-01

    The question of how low-frequency non-thermal radio emissions at the boundary of the heliosphere might be generated is considered. The mechanism consists of two steps. First, the beam of energetic electrons generates a high level of electrostatic Langmuir plasma waves. Second, electromagnetic radiation results from the non-linear interaction between Langmuir waves. Intensity of radio emissions at 2 to 3 kHz detected by the Voyager plasma wave instrument in the outer heliosphere can be explained provided that the electron beams generating Langmuir waves exist also in the postshock plasma due to secondary shocks in the compressed solar wind beyond the termination shock. Modification of the heliospheric shocks by the cosmic ray pressure is also taken into account. The field strengths of Langmuir waves required to generate the second harmonic emissions are of 50 to 100 microvolts per meter. These waves may be observed in situ by Voyager 1 and 2 in the near future.

  7. Molecular mechanisms involved in adaptive responses to radiation, UV light, and heat.

    PubMed

    Takahashi, Akihisa; Ohnishi, Takeo

    2009-09-01

    Viable organisms recognize and respond to environmental changes or stresses. When these environmental changes and their responses by organisms are extreme, they can limit viability. However, organisms can adapt to these different stresses by utilizing different possible responses via signal transduction pathways when the stress is not lethal. In particular, prior mild stresses can provide some aid to prepare organisms for subsequent more severe stresses. These adjustments or adaptations for future stresses have been called adaptive responses. These responses are present in bacteria, plants and animals. The following review covers recent research which can help describe or postulate possible mechanisms which may be active in producing adaptive responses to radiation, ultraviolet light, and heat.

  8. Staphylococcus aureus SdrE captures complement factor H's C-terminus via a novel 'close, dock, lock and latch' mechanism for complement evasion.

    PubMed

    Zhang, Yingjie; Wu, Minhao; Hang, Tianrong; Wang, Chengliang; Yang, Ye; Pan, Weimin; Zang, Jianye; Zhang, Min; Zhang, Xuan

    2017-05-04

    Complement factor H (CFH) is a soluble complement regulatory protein essential for the down-regulation of the alternative pathway on interaction with specific markers on the host cell surface. It recognizes the complement component 3b (C3b) and 3d (C3d) fragments in addition to self cell markers (i.e. glycosaminoglycans, sialic acid) to distinguish host cells that deserve protection from pathogens that should be eliminated. The Staphylococcus aureus surface protein serine-aspartate repeat protein E (SdrE) was previously reported to bind human CFH as an immune-evasion tactic. However, the molecular mechanism underlying SdrE-CFH-mediated immune evasion remains unknown. In the present study, we identified a novel region at CFH's C-terminus (CFH(1206-1226)), which binds SdrE N2 and N3 domains (SdrEN2N3) with high affinity, and determined the crystal structures of apo-SdrEN2N3 and the SdrEN2N3-CFH(1206-1226) complex. Comparison of the structure of the CFH-SdrE complex with other CFH structures reveals that CFH's C-terminal tail flips from the main body to insert into the ligand-binding groove of SdrE. In addition, SdrEN2N3 adopts a 'close' state in the absence of CFH, which undergoes a large conformational change on CFH binding, suggesting a novel 'close, dock, lock and latch' (CDLL) mechanism for SdrE to recognize its ligand. Our findings imply that SdrE functions as a 'clamp' to capture CFH's C-terminal tail via a unique CDLL mechanism and sequesters CFH on the surface of S. aureus for complement evasion. © 2017 The Author(s).

  9. Carbon Capture and Geologic Storage

    NASA Astrophysics Data System (ADS)

    Myer, Larry R.

    2008-09-01

    This paper will briefly discuss carbon capture and storage options, mechanisms and costs. Risks from geologic storage risks will be addressed and the need for monitoring. Some current field studies will be described.

  10. Differentiating Loss Mechanisms of Outer Radiation Belt Relativistic Electrons from Multi- point Satellite Observations

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Reiner, F. H.; Geoffrey, R. D.; Cayton, T.; Christensen, R.

    2008-12-01

    The harsh environment of relativistic electrons (E>.511MeV) has an obvious impact on space weather. Therefore understanding the physical processes controlling relativistic electron dynamics-;acceleration, loss and transport-in the Earth's outer radiation belt is the prerequisite for development of space weather forecast models. Compared to recent progress on understanding acceleration and transport processes, loss processes are much less understood and characterized. Although several loss mechanisms have been proposed (e.g., the precipitation caused by wave-particle interactions and the outward diffusion associated with magnetopause shadowing), it is still unclear which of those has the dominant role and where and when. Analyzing in-situ observations, especially long-term and/or simultaneous observations from satellite observations, is a powerful approach to differentiate the above competitive loss mechanisms. Here we will perform case and statistical studies of electron observations from two groups of satellites: One includes GPS, LANL GEO, Polar, and SCATHA that measure the trapped electron population at different L-shells from high altitude; the other is SAMPEX and NOAA POES that measure near-loss-cone electrons from low altitude at several local times. First we will develop an empirical model that describes the precipitation as functions of electron energy, longitude, latitude, L-shell, local time, season, geomagnetic activity level, and solar-cycle phase. Then by comparing the decay rate of trapped electrons observed near the equatorial plane to the precipitation rates observed at low altitude, we can quantitatively determine the role of precipitation on the loss of relativistic electrons, especially for the portion of radiation belt with L>4, during the main phase of storms.

  11. Radiation and mechanical unloading effects on mouse vertebral bone: Ground-based models of the spaceflight environment

    NASA Astrophysics Data System (ADS)

    Alwood, Joshua Stewart

    Astronauts on long-duration space missions experience increased ionizing radiation background levels and occasional acute doses of ionizing radiation from solar particle events, in addition to biological challenges introduced by weightlessness. Previous research indicates that cancer radiotherapy damages bone marrow cell populations and reduces mechanical strength of bone. However, the cumulative doses in radiotherapy are an order of magnitude or greater than dose predictions for long-duration space missions. Further detriments to the skeletal system are the disuse and mechanical unloading experienced during weightlessness, which causes osteopenia in weight-bearing cancellous bone (a sponge-like bony network of rods, plates and voids) and cortical bone (dense, compact bone). Studies of radiation exposure utilizing spaceflight-relevant types and doses, and in combination with mechanical unloading, have received little attention. Motivated by the future human exploration of the solar system, the effects of acute and increased background radiation on astronaut skeletal health are important areas of study in order to prevent osteopenic deterioration and, ultimately, skeletal fracture. This dissertation addresses how spaceflight-relevant radiation affects bone microarchitecture and mechanical properties in the cancellous-rich vertebrae and compares results to that of mechanical unloading. In addition, a period of re-ambulation is used to test whether animals recover skeletal tissue after irradiation. Whether radiation exposure displays synergism with mechanical unloading is further investigated. Finite element structural and statistical analyses are used to investigate how changes in architecture affect mechanical stress within the vertebra and to interpret the mechanical testing results. In this dissertation, ground-based models provide evidence that ionizing radiation, both highly energetic gamma-rays and charged iron ions, resulted in a persistent loss of cancellous

  12. Americium(III) capture using phosphonic acid-functionalized silicas with different mesoporous morphologies: adsorption behavior study and mechanism investigation by EXAFS/XPS.

    PubMed

    Zhang, Wen; He, Xihong; Ye, Gang; Yi, Rong; Chen, Jing

    2014-06-17

    Efficient capture of highly toxic radionuclides with long half-lives such as Americium-241 is crucial to prevent radionuclides from diffusing into the biosphere. To reach this purpose, three different types of mesoporous silicas functionalized with phosphonic acid ligands (SBA-POH, MCM-POH, and BPMO-POH) were synthesized via a facile procedure. The structure, surface chemistry, and micromorphology of the materials were fully characterized by (31)P/(13)C/(29)Si MAS NMR, XPS, and XRD analysis. Efficient adsorption of Am(III) was realized with a fast rate to reach equilibrium (within 10 min). Influences including structural parameters and functionalization degree on the adsorption behavior were investigated. Slope analysis of the equilibrium data suggested that the coordination with Am(III) involved the exchange of three protons. Moreover, extended X-ray absorption fine structure (EXAFS) analysis, in combination with XPS survey, was employed for an in-depth probe into the binding mechanism by using Eu(III) as a simulant due to its similar coordination behavior and benign property. The results showed three phosphonic acid ligands were coordinated to Eu(III) in bidentate fashion, and Eu(P(O)O)3(H2O) species were formed with the Eu-O coordination number of 7. These phosphonic acid-functionalized mesoporous silicas should be promising for the treatment of Am-containing radioactive liquid waste.

  13. Probing the 12C - 12C and 12C - 16O Molecular States by Radiative Capture Reactions:. Present Status and Future

    NASA Astrophysics Data System (ADS)

    Lebhertz, D.; Courtin, S.; Haas, F.; Jenkins, D. G.; Ciemala, M.; Goasduff, A.; Hutcheon, D. A.; Labiche, M.; Michalon, A.; Roberts, O.; Salsac, M.-D.; Stezowski, O.

    Complete γ-decay in the 12C(12C,γ)24Mg and 12C(16O,γ)28Si reactions has been measured at energies close to the Coulomb Barrier using the DRAGON spectrometer and its associated BGO γ-array at the TRIUMF facility. The experimental data show an important feeding of doorway states around 10-11 MeV in both reactions. Comparisons with simulations allow to extract the full capture cross section and the main spin involved in the process. Different models are confronted to the results : completely statistical, semi-statistical with an unique entrance spin and cluster. The resolution of the BGO enables to eliminate a fully statistical scenario but is not enough to disentangle the two remaining scenarii. It is shown that the future PARIS array composed of the recently developed LaBr3 scintillators will have capabilities to distinguish between these two scenarii.

  14. Problems of the Kinetics and Mechanism of Radiation-Chemical Reactions. (Second All-Union Conference on Radiation Chemistry)

    DTIC Science & Technology

    1961-09-22

    solutions considerable attention was directed to an analysis of the biradical model which was developed by Dienes and Kennedy (1958) Basically, the...the H and OH radical needs a more precise re-statement. - 4 - Large difficulties, as noted albo in a nait by V. V. Voyevodskiy, have arisen in the...oxygen- saturated aqueous solution of potassium oxalate in the presence of a zinc oxide suspension. The radiation-chem- ical consumption-- G (K 2 C2 0 4

  15. Capturing Callisto

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) captured these two images of Jupiter's outermost large moon, Callisto, as the spacecraft flew past Jupiter in late February. New Horizons' closest approach distance to Jupiter was 2.3 million kilometers (1.4 million miles), not far outside Callisto's orbit, which has a radius of 1.9 million kilometers (1.2 million miles). However, Callisto happened to be on the opposite side of Jupiter during the spacecraft's pass through the Jupiter system, so these images, taken from 4.7 million kilometers (3.0 million miles) and 4.2 million kilometers (2.6 million miles) away, are the closest of Callisto that New Horizons obtained.

    Callisto's ancient, crater-scarred surface makes it very different from its three more active sibling satellites, Io, Europa and Ganymede. Callisto, 4,800 kilometers (3000 miles) in diameter, displays no large-scale geological features other than impact craters, and every bright spot in these images is a crater. The largest impact feature on Callisto, the huge basin Valhalla, is visible as a bright patch at the 10 o'clock position. The craters are bright because they have excavated material relatively rich in water ice from beneath the dark, dusty material that coats most of the surface.

    The two images show essentially the same side of Callisto -- the side that faces Jupiter -- under different illumination conditions. The images accompanied scans of Callisto's infrared spectrum with New Horizons' Linear Etalon Imaging Spectral Array (LEISA). The New Horizons science team designed these scans to study how the infrared spectrum of Callisto's water ice changes as lighting and viewing conditions change, and as the ice cools through Callisto's late afternoon. The infrared spectrum of water ice depends slightly on its temperature, and a goal of New Horizons when it reaches the Pluto system (in 2015) is to use the water ice features in the spectrum of Pluto's moon Charon, and

  16. Capturing Callisto

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The New Horizons Long Range Reconnaissance Imager (LORRI) captured these two images of Jupiter's outermost large moon, Callisto, as the spacecraft flew past Jupiter in late February. New Horizons' closest approach distance to Jupiter was 2.3 million kilometers (1.4 million miles), not far outside Callisto's orbit, which has a radius of 1.9 million kilometers (1.2 million miles). However, Callisto happened to be on the opposite side of Jupiter during the spacecraft's pass through the Jupiter system, so these images, taken from 4.7 million kilometers (3.0 million miles) and 4.2 million kilometers (2.6 million miles) away, are the closest of Callisto that New Horizons obtained.

    Callisto's ancient, crater-scarred surface makes it very different from its three more active sibling satellites, Io, Europa and Ganymede. Callisto, 4,800 kilometers (3000 miles) in diameter, displays no large-scale geological features other than impact craters, and every bright spot in these images is a crater. The largest impact feature on Callisto, the huge basin Valhalla, is visible as a bright patch at the 10 o'clock position. The craters are bright because they have excavated material relatively rich in water ice from beneath the dark, dusty material that coats most of the surface.

    The two images show essentially the same side of Callisto -- the side that faces Jupiter -- under different illumination conditions. The images accompanied scans of Callisto's infrared spectrum with New Horizons' Linear Etalon Imaging Spectral Array (LEISA). The New Horizons science team designed these scans to study how the infrared spectrum of Callisto's water ice changes as lighting and viewing conditions change, and as the ice cools through Callisto's late afternoon. The infrared spectrum of water ice depends slightly on its temperature, and a goal of New Horizons when it reaches the Pluto system (in 2015) is to use the water ice features in the spectrum of Pluto's moon Charon, and

  17. Acoustic Radiation Force Impulse Imaging of Mechanical Stiffness Propagation in Myocardial Tissue

    PubMed Central

    Hsu, Stephen J.; Byram, Brett C.; Bouchard, Richard R.; Dumont, Douglas M.; Wolf, Patrick D.; Trahey, Gregg E.

    2012-01-01

    Acoustic radiation force impulse (ARFI) imaging has been shown to be capable of imaging local myocardial stiffness changes throughout the cardiac cycle. Expanding on these results, the authors present experiments using cardiac ARFI imaging to visualize and quantify the propagation of mechanical stiffness during ventricular systole. In vivo ARFI images of the left ventricular free wall of two exposed canine hearts were acquired. Images were formed while the heart was externally paced by one of two electrodes positioned on the epicardial surface and either side of the imaging plane. Two-line M-mode ARFI images were acquired at a sampling frequency of 120 Hz while the heart was paced from an external stimulating electrode. Two-dimensional ARFI images were also acquired, and an average propagation velocity across the lateral field of view was calculated. Directions and speeds of myocardial stiffness propagation were measured and compared with the propagations derived from the local electrocardiogram (ECG), strain, and tissue velocity measurements estimated during systole. In all ARFI images, the direction of myocardial stiffness propagation was seen to be away from the stimulating electrode and occurred with similar velocity magnitudes in either direction. When compared with the local epicardial ECG, the mechanical stiffness waves were observed to travel in the same direction as the propagating electrical wave and with similar propagation velocities. In a comparison between ARFI, strain, and tissue velocity imaging, the three methods also yielded similar propagation velocities. PMID:22972912

  18. Dissecting the Molecular Mechanism of Ionizing Radiation-Induced Tissue Damage in the Feather Follicle

    PubMed Central

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage. PMID:24586618

  19. Dissecting the molecular mechanism of ionizing radiation-induced tissue damage in the feather follicle.

    PubMed

    Chen, Xi; Liao, Chunyan; Chu, Qiqi; Zhou, Guixuan; Lin, Xiang; Li, Xiaobo; Lu, Haijie; Xu, Benhua; Yue, Zhicao

    2014-01-01

    Ionizing radiation (IR) is a common therapeutic agent in cancer therapy. It damages normal tissue and causes side effects including dermatitis and mucositis. Here we use the feather follicle as a model to investigate the mechanism of IR-induced tissue damage, because any perturbation of feather growth will be clearly recorded in its regular yet complex morphology. We find that IR induces defects in feather formation in a dose-dependent manner. No abnormality was observed at 5 Gy. A transient, reversible perturbation of feather growth was induced at 10 Gy, leading to defects in the feather structure. This perturbation became irreversible at 20 Gy. Molecular and cellular analysis revealed P53 activation, DNA damage and repair, cell cycle arrest and apoptosis in the pathobiology. IR also induces patterning defects in feather formation, with disrupted branching morphogenesis. This perturbation is mediated by cytokine production and Stat1 activation, as manipulation of cytokine levels or ectopic Stat1 over-expression also led to irregular feather branching. Furthermore, AG-490, a chemical inhibitor of Stat1 signaling, can partially rescue IR-induced tissue damage. Our results suggest that the feather follicle could serve as a useful model to address the in vivo impact of the many mechanisms of IR-induced tissue damage.

  20. Investigation of the Mechanism of Electron Capture and Electron Transfer Dissociation of Peptides with a Covalently Attached Free Radical Hydrogen Atom Scavenger.

    PubMed

    Sohn, Chang Ho; Yin, Sheng; Peng, Ivory; Loo, Joseph A; Beauchamp, J L

    2015-11-15

    The mechanisms of electron capture and electron transfer dissociation (ECD and ETD) are investigated by covalently attaching a free-radical hydrogen atom scavenger to a peptide. The 2,2,6,6-tetramethylpiperidin-l-oxyl (TEMPO) radical was chosen as the scavenger due to its high hydrogen atom affinity (ca. 280 kJ/mol) and low electron affinity (ca. 0.45 ev), and was derivatized to the model peptide, FQX(TEMPO)EEQQQTEDELQDK. The X(TEMPO) residue represents a cysteinyl residue derivatized with an acetamido-TEMPO group. The acetamide group without TEMPO was also examined as a control. The gas phase proton affinity (882 kJ/mol) of TEMPO is similar to backbone amide carbonyls (889 kJ/mol), minimizing perturbation to internal solvation and sites of protonation of the derivatized peptides. Collision induced dissociation (CID) of the TEMPO tagged peptide dication generated stable odd-electron b and y type ions without indication of any TEMPO radical induced fragmentation initiated by hydrogen abstraction. The type and abundance of fragment ions observed in the CID spectra of the TEMPO and acetamide tagged peptides are very similar. However, ECD of the TEMPO labeled peptide dication yielded no backbone cleavage. We propose that a labile hydrogen atom in the charge reduced radical ions is scavenged by the TEMPO radical moiety, resulting in inhibition of N-Cα backbone cleavage processes. Supplemental activation after electron attachment (ETcaD) and CID of the charge-reduced precursor ion generated by electron transfer of the TEMPO tagged peptide dication produced a series of b + H (b(H)) and y + H (y(H)) ions along with some c ions having suppressed intensities, consistent with stable O-H bond formation at the TEMPO group. In summary, the results indicate that ECD and ETD backbone cleavage processes are inhibited by scavenging of a labile hydrogen atom by the localized TEMPO radical moiety. This observation supports the conjecture that ECD and ETD processes involve long

  1. Loss and source mechanisms of Jupiter's radiation belts near the inner boundary of trapping regions

    NASA Astrophysics Data System (ADS)

    Santos-Costa, Daniel; Bolton, Scott J.; Becker, Heidi N.; Clark, George; Kollmann, Peter; Paranicas, Chris; Mauk, Barry; Joergensen, John L.; Adriani, Alberto; Thorne, Richard M.; Bagenal, Fran; Janssen, Mike A.; Levin, Steve M.; Oyafuso, Fabiano A.; Williamson, Ross; Adumitroaie, Virgil; Ingersoll, Andrew P.; Kurth, Bill; Connerney, John E. P.

    2017-04-01

    We have merged a set of physics-based and empirical models to investigate the energy and spatial distributions of Jupiter's electron and proton populations in the inner and middle magnetospheric regions. Beyond the main source of plasma (> 5 Rj) where interchange instability is believed to drive the radial transport of charged particles, the method originally developed by Divine and Garrett [J. Geophys. Res., 88, 6889-6903, 1983] has been adapted. Closer to the planet where field fluctuations control the radial transport, a diffusion theory approach is used. Our results for the equatorial and mid-latitude regions are compared with Pioneer and Galileo Probe measurements. Data collected along Juno's polar orbit allow us to examine the features of Jupiter's radiation environment near the inner boundary of trapping regions. Significant discrepancies between Juno (JEDI keV energy particles and high energy radiation environment measurements made by Juno's SRU and ASC star cameras and the JIRAM infrared imager) and Galileo Probe data sets and models are observed close to the planet. Our simulations of Juno MWR observations of Jupiter's electron-belt emission confirm the limitation of our model to realistically depict the energy and spatial distributions of the ultra-energetic electrons. In this paper, we present our modeling approach, the data sets and resulting data-model comparisons for Juno's first science orbits. We describe our effort to improve our models of electron and proton belts. To gain a physical understanding of the dissimilarities with observations, we revisit the magnetic environment and the mechanisms of loss and source in our models.

  2. The effects of ionizing radiation and dexamethasone on the blood-brain-barrier (BBB) and blood-tumor-barrier (BTB): Implications for boron neutron capture therapy (BNCT) of brain tumors

    SciTech Connect

    Dorn, R.V. III; Spickard, J.H.; Griebenow, M.L.

    1988-01-01

    Currently envisioned techniques for Boron Neutron Capture Therapy (BNCT) of brain tumors rely on the increased permeability of the blood-brain-barrier (BBB) (more specifically, the blood-tumor-barrier (BTB)) which occurs around the malignant tumor. As a result of this increased permeability, higher boron concentrations (Na/sub 2/B/sub 12/H/sub 11/SH) should be obtainable in the tumor than in the surrounding normal brain. The effects on the BBB and BTB by the ionizing component of this radiation and by the steroid dexamethasone (almost universally used in the clinical management of these patients) must be considered in the formulation of this treatment technique. 32 refs., 5 tabs.

  3. A comparison of the efficacy of mechanical, chemical, and microwave radiation methods in disinfecting complete dentures.

    PubMed

    Mojarad, Niloofar; Khalili, Zahra; Aalaei, Shima

    2017-01-01

    Poor denture hygiene can be a potential source of pathogens. The aim of this study was to compare the efficacy of microwave radiation with that of chemical and mechanical techniques in disinfecting complete dentures contaminated with Staphylococcus aureus and Pseudomonas aeruginosa. Seventy-two sterilized mandibular dentures were separately contaminated with S. aureus (n = 32) and P. aeruginosa (n = 32) and then incubated at 37°C for 48 h. The contaminated dentures were disinfected as follows: chemical disinfection with Corega tablets; chemical disinfection with 2% glutaraldehyde; mechanical disinfection by brushing the denture; and physical disinfection by 650-W microwaves irradiation for 3 min with six samples in each subgroup. Six dentures served as negative control group, and six contaminated dentures with no disinfection served as the positive control group. 10(-3)-10(-6) dilutions were cultured in the nutrient agar, and the colonies were counted after incubation at 37°C for 48 h. To evaluate the lasting time of disinfection, the containers with nutrient agar and dentures were stored for 7 days at 37°C to evaluate turbidity. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-test (α = 0.05). There was no evidence of bacterial growth in 48 h and turbidity after 7 days of incubation of dentures disinfected by microwaves, glutaraldehyde, and Corega tablets, which was statistically significant compared to the positive controls (P < 0.001). In mechanically disinfected dentures (brushing), bacterial growth was detected after 48 h which was statistically significant compared to the positive controls (P < 0.001) and turbidity was seen in all the nutrient agar plates. Microwave iradiation, 2% glutaraldehyde, and Corega tablets disinfected complete dentures contaminated with S. aureus and P. aeruginosa which lasted for a long and a short terms.

  4. A comparison of the efficacy of mechanical, chemical, and microwave radiation methods in disinfecting complete dentures

    PubMed Central

    Mojarad, Niloofar; Khalili, Zahra; Aalaei, Shima

    2017-01-01

    Background: Poor denture hygiene can be a potential source of pathogens. The aim of this study was to compare the efficacy of microwave radiation with that of chemical and mechanical techniques in disinfecting complete dentures contaminated with Staphylococcus aureus and Pseudomonas aeruginosa. Materials and Methods: Seventy-two sterilized mandibular dentures were separately contaminated with S. aureus (n = 32) and P. aeruginosa (n = 32) and then incubated at 37°C for 48 h. The contaminated dentures were disinfected as follows: chemical disinfection with Corega tablets; chemical disinfection with 2% glutaraldehyde; mechanical disinfection by brushing the denture; and physical disinfection by 650-W microwaves irradiation for 3 min with six samples in each subgroup. Six dentures served as negative control group, and six contaminated dentures with no disinfection served as the positive control group. 10-3–10-6 dilutions were cultured in the nutrient agar, and the colonies were counted after incubation at 37°C for 48 h. To evaluate the lasting time of disinfection, the containers with nutrient agar and dentures were stored for 7 days at 37°C to evaluate turbidity. Data were analyzed using Kruskal–Wallis and Mann–Whitney U-test (α = 0.05). Results: There was no evidence of bacterial growth in 48 h and turbidity after 7 days of incubation of dentures disinfected by microwaves, glutaraldehyde, and Corega tablets, which was statistically significant compared to the positive controls (P < 0.001). In mechanically disinfected dentures (brushing), bacterial growth was detected after 48 h which was statistically significant compared to the positive controls (P < 0.001) and turbidity was seen in all the nutrient agar plates. Conclusion: Microwave iradiation, 2% glutaraldehyde, and Corega tablets disinfected complete dentures contaminated with S. aureus and P. aeruginosa which lasted for a long and a short terms. PMID:28584537

  5. Combination Regimens of Radiation Therapy and Therapeutic Cancer Vaccines: Mechanisms and Opportunities

    PubMed Central

    Garnett-Benson, Charlie; Hodge, James W.; Gameiro, Sofia R.

    2014-01-01

    Radiation therapy is widely used with curative or palliative intent in the clinical management of multiple cancers. Although mainly aimed at direct tumor cell killing, mounting evidence suggests that radiation can alter the tumor to become an immunostimulatory milieu. Data suggest that the immunogenic effects of radiation can be exploited to promote synergistic antitumor effects in combination with immunotherapeutic agents. Here we review concepts associated with the immunogenic consequences of radiation therapy, and highlight how preclinical findings are translating into clinical benefit for patients receiving combination regimens of radiation therapy and therapeutic cancer vaccines. PMID:25481266

  6. Enzymological mechanism for the regulation of lanthanum chloride on flavonoid synthesis of soybean seedlings under enhanced ultraviolet-B radiation.

    PubMed

    Fan, Caixia; Hu, Huiqing; Wang, Lihong; Zhou, Qing; Huang, Xiaohua

    2014-01-01

    In order to probe into the enzymological mechanism for the regulation of lanthanum chloride (LaCl3) on flavonoid synthesis in plants under enhanced ultraviolet-B (UV-B) radiation, the effects of LaCl₃ (20 and 60 mg l(-1)) on the content of flavonoids as well as the activities of phenylalanine ammonia-lyase (PAL), cinnamate-4-hydroxylase (C4H), 4-coumarate : coenzyme A ligase (4CL), and chalcone synthase (CHS) in soybean seedlings under enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) were investigated. Enhanced UV-B radiation (2.6 and 6.2 kJ m(-2) day(-1)) caused the increase in the content of flavonoids as well as the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of 20 mg l(-1) LaCl₃ also efficiently increased these indices, which promoted the flavonoid synthesis and provided protective effects for resisting enhanced UV-B radiation. On the contrary, the treatment of 60 mg l(-1) LaCl₃ decreased the content of flavonoids as well as the activities of C4H, 4CL, and CHS in soybean seedlings except increasing the activity of PAL, which were not beneficial to the flavonoid synthesis and provided negative effects for resisting enhanced UV-B radiation. In conclusion, enhanced UV-B radiation caused the increase in the flavonoid synthesis by promoting the activities of PAL, C4H, 4CL, and CHS in soybean seedlings. The treatment of LaCl₃ could change flavonoid synthesis in soybean seedlings under enhanced UV-B radiation by regulating the activities of PAL, C4H, 4CL, and CHS, which is an enzymological mechanism for the regulation of LaCl₃ on flavonoid synthesis in plants under enhanced UV-B r