Understanding Accretion Disks through Three Dimensional Radiation MHD Simulations
NASA Astrophysics Data System (ADS)
Jiang, Yan-Fei
I study the structures and thermal properties of black hole accretion disks in the radiation pressure dominated regime. Angular momentum transfer in the disk is provided by the turbulence generated by the magneto-rotational instability (MRI), which is calculated self-consistently with a recently developed 3D radiation magneto-hydrodynamics (MHD) code based on Athena. This code, developed by my collaborators and myself, couples both the radiation momentum and energy source terms with the ideal MHD equations by modifying the standard Godunov method to handle the stiff radiation source terms. We solve the two momentum equations of the radiation transfer equations with a variable Eddington tensor (VET), which is calculated with a time independent short characteristic module. This code is well tested and accurate in both optically thin and optically thick regimes. It is also accurate for both radiation pressure and gas pressure dominated flows. With this code, I find that when photon viscosity becomes significant, the ratio between Maxwell stress and Reynolds stress from the MRI turbulence can increase significantly with radiation pressure. The thermal instability of the radiation pressure dominated disk is then studied with vertically stratified shearing box simulations. Unlike the previous results claiming that the radiation pressure dominated disk with MRI turbulence can reach a steady state without showing any unstable behavior, I find that the radiation pressure dominated disks always either collapse or expand until we have to stop the simulations. During the thermal runaway, the heating and cooling rates from the simulations are consistent with the general criterion of thermal instability. However, details of the thermal runaway are different from the predictions of the standard alpha disk model, as many assumptions in that model are not satisfied in the simulations. We also identify the key reasons why previous simulations do not find the instability. The thermal
Realistic radiative MHD simulation of a solar flare
NASA Astrophysics Data System (ADS)
Rempel, Matthias D.; Cheung, Mark; Chintzoglou, Georgios; Chen, Feng; Testa, Paola; Martinez-Sykora, Juan; Sainz Dalda, Alberto; DeRosa, Marc L.; Viktorovna Malanushenko, Anna; Hansteen, Viggo H.; De Pontieu, Bart; Carlsson, Mats; Gudiksen, Boris; McIntosh, Scott W.
2017-08-01
We present a recently developed version of the MURaM radiative MHD code that includes coronal physics in terms of optically thin radiative loss and field aligned heat conduction. The code employs the "Boris correction" (semi-relativistic MHD with a reduced speed of light) and a hyperbolic treatment of heat conduction, which allow for efficient simulations of the photosphere/corona system by avoiding the severe time-step constraints arising from Alfven wave propagation and heat conduction. We demonstrate that this approach can be used even in dynamic phases such as a flare. We consider a setup in which a flare is triggered by flux emergence into a pre-existing bipolar active region. After the coronal energy release, efficient transport of energy along field lines leads to the formation of flare ribbons within seconds. In the flare ribbons we find downflows for temperatures lower than ~5 MK and upflows at higher temperatures. The resulting soft X-ray emission shows a fast rise and slow decay, reaching a peak corresponding to a mid C-class flare. The post reconnection energy release in the corona leads to average particle energies reaching 50 keV (500 MK under the assumption of a thermal plasma). We show that hard X-ray emission from the corona computed under the assumption of thermal bremsstrahlung can produce a power-law spectrum due to the multi-thermal nature of the plasma. The electron energy flux into the flare ribbons (classic heat conduction with free streaming limit) is highly inhomogeneous and reaches peak values of about 3x1011 erg/cm2/s in a small fraction of the ribbons, indicating regions that could potentially produce hard X-ray footpoint sources. We demonstrate that these findings are robust by comparing simulations computed with different values of the saturation heat flux as well as the "reduced speed of light".
Photon Scattering in 3D Radiative MHD Simulations
NASA Astrophysics Data System (ADS)
Hayek, Wolfgang
2009-09-01
Recent results from 3D time-dependent radiative hydrodynamic simulations of stellar atmospheres are presented, which include the effects of coherent scattering in the radiative transfer treatment. Rayleigh scattering and electron scattering are accounted for in the source function, requiring an iterative solution of the transfer equation. Opacities and scattering coefficients are treated in the multigroup opacity approximation. The impact of scattering on the horizontal mean temperature structure is investigated, which is an important diagnostic for model atmospheres, with implications for line formation and stellar abundance measurements. We find that continuum scattering is not important for the atmosphere of a metal-poor Sun with metailicity [Fe/H] = -3.0, similar to the previously investigated photosphere at solar metallicity.
NASA Astrophysics Data System (ADS)
Kress, B. T.; Hudson, M. K.; Looper, M. D.; Lyon, J. G.; Goodrich, C. C.
2008-11-01
Test-particle trajectories are computed in fields from a global MHD magnetospheric model simulation of the 29 October 2003 Storm Commencement to investigate trapping and transport of solar energetic electrons (SEEs) in the magnetosphere during severe storms. SEEs are found to provide a source population for a newly formed belt of electrons in the Earth's inner zone radiation belts, which was observed following the 29 October 2003 storm. Energy and pitch angle distributions of the new belt are compared with results previously obtained [Kress, B.T., Hudson, M.K., Looper, M.D., Albert, J., Lyon, J.G., Goodrich, C.C., 2007. Global MHD test particle simulations of >10 MeV radiation belt electrons during storm sudden commencement. Journal of Geophysical Research 112, A09215, doi:10.1029/2006JA012218], where outer belt electrons were used as a source for the new belt.
Coronal extension of the MURaM radiative MHD code: From quiet sun to flare simulations
NASA Astrophysics Data System (ADS)
Rempel, Matthias D.; Cheung, Mark
2016-05-01
We present a new version of the MURaM radiative MHD code, which includes a treatment of the solar corona in terms of MHD, optically thin radiative loss and field-aligned heat conduction. In order to relax the severe time-step constraints imposed by large Alfven velocities and heat conduction we use a combination of semi-relativistic MHD with reduced speed of light ("Boris correction") and a hyperbolic formulation of heat conduction. We apply the numerical setup to 4 different setups including a mixed polarity quiet sun, an open flux region, an arcade solution and an active region setup and find all cases an amount of coronal heating sufficient to maintain a corona with temperatures from 1 MK (quiet sun) to 2 MK (active region, arcade). In all our setups the Poynting flux is self-consistently created by photospheric and sub-photospheric magneto-convection in the lower part of our simulation domain. Varying the maximum allowed Alfven velocity ("reduced speed of light") leads to only minor changes in the coronal structure as long as the limited Alfven velocity remains larger than the speed of sound and about 1.5-3 times larger than the peak advection velocity. We also found that varying details of the numerical diffusivities that govern the resistive and viscous energy dissipation do not strongly affect the overall coronal heating, but the ratio of resistive and viscous energy dependence is strongly dependent on the effective numerical magnetic Prandtl number. We use our active region setup in order to simulate a flare triggered by the emergence of a twisted flux rope into a pre-existing bipolar active region. Our simulation yields a series of flares, with the strongest one reaching GOES M1 class. The simulation reproduces many observed properties of eruptions such as flare ribbons, post flare loops and a sunquake.
Extension of the MURaM Radiative MHD Code for Coronal Simulations
NASA Astrophysics Data System (ADS)
Rempel, M.
2017-01-01
We present a new version of the MURaM radiative magnetohydrodynamics (MHD) code that allows for simulations spanning from the upper convection zone into the solar corona. We implement the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction, and an equilibrium ionization equation of state. We artificially limit the coronal Alfvén and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantify the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be obtained with values of the reduced speed of light just marginally larger than the maximum sound speed. Overall this leads to a fully explicit code that can compute the time evolution of the solar corona in response to photospheric driving using numerical time steps not much smaller than 0.1 s. Numerical simulations of the coronal response to flux emergence covering a time span of a few days are well within reach using this approach.
NASA Astrophysics Data System (ADS)
Zhang, Haocheng; Li, Hui; Taylor, Gregory B.
2017-08-01
In addition to multiwavelength variability, blazar polarization signatures are highly variable. Optical polarimetry has shown two distinct features: first, in both quiescent and flaring states, blazar polarization degree generally stays around 10% to 30%; second, after major polarization variations, such as polarization angle swings, the polarization degree quickly restores to its initial state. We have performed integrated relativistic magnetohydrodynamic (MHD) + radiation and polarization simulations of the blazar emission region. Our approach evolves the magnetic fields and flows using the first principles, so we can calculate the spatial and temporal dependent polarization signatures and compare them with observations.Our results show that the above two observational trends indicate the blazar flaring region should be strongly magnetized with the magnetic energy density higher than the plasma rest mass energy density. In such an environment, the 3D kink instability may trigger magnetic reconnection to accelerate particles and give rise to flares. In view of future high-energy polarimetry, this integrated MHD+polarization simulation technique will deliver new constraints on jet’s physical conditions and particle acceleration mechanisms.
NASA Astrophysics Data System (ADS)
Chong, Y. K.; Thornhill Giuliani, J. W., Jr.; Apruzese, J. P.; Terry, R. E.; Davis, J.
2001-10-01
The recent development of the computationally efficient tabulated collisional radiative equilibrium (TCRE) radiation transport model(J.W. Thornhill, J.P. Apruzese, J. Davis, R.W. Clark, A.L. Velikovich, J.L. Giuliani, Jr., Y.K. Chong, K.G. Whitney, C. Deeney, C.A. Coverdale and F.L. Cochran, Phys. Plasmas 7, 3480 (2001).) has made possible full multidimensional radiation MHD simulations of hot dense Z-pinch plasmas with a realistic description of the non-LTE ionization dynamics and radiation transport physics. In this study, we focus on the implementation of the TCRE radiation transport model in the Mach2 2D radiation MHD code. An application of the model is made through a full dynamical simulation of an argon gas puff pinch driven by a circuit model of the Z generator. An analysis of the simulation, in particular, the K- and L-shell radiation yields, as well as the spectral and spatial characteristics of the radiation will be presented. In addition, a comparison of this multidimensional transport method will be made with the existing radiative diffusion model.
First 3D radiative transfer with scattering for domain-decomposed MHD simulations
NASA Astrophysics Data System (ADS)
Hayek, W.
2008-12-01
This paper presents an implementation of the Gauss Seidel solver for radiative transfer with scattering in the Oslo Stagger Code. It fully supports MPI parallelism through domain decomposition of the simulation box, enabling fast computation of radiative transfer at a high resolution. Continuum and line opacities are treated with either a multigroup method or opacity sampling. Line scattering probabilities are estimated using the van Regemorter approximation for de-excitation rates of electron collisions. A solar-type test simulation with continuum and line scattering exhibits a steeper temperature gradient due to decreased radiative heating above the optical surface when compared with the strict local thermodynamic equilibrium (LTE) case. The classical van Regemorter approximation may overestimate the importance of line scattering, implying that the true temperature structure will be in between the LTE case and the scattering case considered here. It is demonstrated that continuum scattering is unimportant in the case of the Sun.
NASA Technical Reports Server (NTRS)
Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah
2007-01-01
We have calculated the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer, with flow structures obtained by general relativistic magnetohydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features are found protruding (visually) from the accretion disk surface, which are enhancements of synchrotron emission when the magnetic field is roughly aligned with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and location drifts of the features are responsible for certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
Radiation-MHD Simulations of Plasma-Jet-Driven Magneto-Inertial Fusion Gain Using USim
NASA Astrophysics Data System (ADS)
Stoltz, Peter; Beckwith, Kristian; Kundrapu, Mahdusudhan; Hsu, Scott; Langendorf, Samuel
2016-10-01
One goal of the modeling effort for the PLX- α project is to identify plasma-jet-driven magneto-inertial fusion (PJMIF) configurations with potential net fusion-energy gain. We use USim, which is a tool for modeling high-energy-density plasmas using multi-fluid models coupled to electromagnetics using fully-implicit iterative solvers, combined with finite volume discretizations on unstructured meshes. We include physical viscosity and advanced-EOS modeling capability, and are investigating the effects of different radiation (including flux-limited diffusion) and alpha-transport models. We compare 2D and 1D gain calculations for various liner geometries, parameters, and plasma species, and consider the effects of liner non-uniformities on fusion-gain degradation. Supported by the ARPA-E ALPHA Program.
MHD simulations: Corotating Interaction Regions
NASA Astrophysics Data System (ADS)
Wiengarten, T.; Kleimann, J.; Fichtner, H.; Kühl, P.; Heber, B.; Kissmann, R.
2013-12-01
Corotating Interaction Regions (CIRs) form in the solar wind when parcels of fast-speed wind interact with slow-speed wind due to the rotation of the Sun. The resulting buildup of pressure generates disturbances that, with increasing time (or distance from the Sun), may develop into a so-called forward-reverse shock-pair. During solar-quiet times CIRs can be the dominant force shaping large-scale structures in the heliosphere. Studying CIRs is therefore important because the associated shocks are capable of e.g. accelerating energetic particles or deflecting cosmic rays. The global structure of CIRs can be modeled with an MHD approach that gives the plasma quantities needed to model the transport of particles in the heliosphere (with e.g. stochastic differential equations (SDEs)). Our MHD code CRONOS employs a semi-discrete finite volume scheme with adaptive time-stepping Runge-Kutta integration. The solenoidality of the magnetic field is ensured via constrained transport and the code supports Cartesian, Cylindrical and Spherical coordinates (including coordinate singularities) with the option for non-equidistant grids. The code runs in parallel (MPI) and supports the HDF5 output data format. Here, we show results from 3D-MHD simulations with our code CRONOS for a) analytic boundary conditions where results can be compared to those obtained with a different code and b) boundary conditions derived with the Wang-Sheeley-Arge model from observational data (WSO), which are compared to spacecraft observations. Comparison with Pizzo (1982) for analytic boundary conditions Comparison with STEREO A for Carrington Rotation 2060
MHD Simulations: Corotating Interaction Regions
NASA Astrophysics Data System (ADS)
Wiengarten, T.; Kleimann, J.; Fichtner, H.; Kissmann, R.
2014-09-01
Corotating Interaction Regions (CIRs) form in the solar wind when parcels of fast-speed wind interact with slow-speed wind due to the rotation of the Sun. The resulting buildup of pressure generates disturbances that, with increasing time (or distance from the Sun), may develop into a so-called forward-reverse shock pair. During solar-quiet times CIRs can be the dominant force shaping large-scale structures in the heliosphere. Studying CIRs is therefore important because the associated shocks are capable of e.g. accelerating energetic particles or deflecting cosmic rays. The global structure of CIRs can be modeled with an MHD approach that gives the plasma quantities needed to model the transport of particles in the heliosphere with e.g. stochastic differential equations. Here, we show results from 3D-MHD simulations with our code CRONOS for a) analytic boundary conditions where results can be compared to those obtained with a different code and b) boundary conditions derived with the Wang-Sheeley-Arge model from observational data (WSO), which are compared to spacecraft observations.
Simulation of wave interactions with MHD
Batchelor, Donald B; Abla, G; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.
2008-07-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.
NASA Astrophysics Data System (ADS)
Takahashi, Hiroyuki R.; Ohsuga, Ken
2017-08-01
By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 1010 G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R * (R * = 106 cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ˜-10-11 s s-1, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L Edd/c 2 and ≲10 L Edd, where L Edd is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.
Fuerst, Steven V.; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Wu, Kinwah; /Mullard Space Sci. Lab.
2007-01-05
We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
3D MHD Simulations of Tokamak Disruptions
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Stuber, James
2014-10-01
Two disruption scenarios are modeled numerically by use of the CORSICA 2D equilibrium and NIMROD 3D MHD codes. The work follows the simulations of pressure-driven modes in DIII-D and VDEs in ITER. The aim of the work is to provide starting points for simulation of tokamak disruption mitigation techniques currently in the CDR phase for ITER. Pressure-driven instability growth rates previously observed in simulations of DIIID are verified; Halo and Hiro currents produced during vertical displacements are observed in simulations of ITER with implementation of resistive walls in NIMROD. We discuss plans to exercise new code capabilities and validation.
Inductive ionospheric solver for magnetospheric MHD simulations
NASA Astrophysics Data System (ADS)
Vanhamäki, H.
2011-01-01
We present a new scheme for solving the ionospheric boundary conditions required in magnetospheric MHD simulations. In contrast to the electrostatic ionospheric solvers currently in use, the new solver takes ionospheric induction into account by solving Faraday's law simultaneously with Ohm's law and current continuity. From the viewpoint of an MHD simulation, the new inductive solver is similar to the electrostatic solvers, as the same input data is used (field-aligned current [FAC] and ionospheric conductances) and similar output is produced (ionospheric electric field). The inductive solver is tested using realistic, databased models of an omega-band and westward traveling surge. Although the tests were performed with local models and MHD simulations require a global ionospheric solution, we may nevertheless conclude that the new solution scheme is feasible also in practice. In the test cases the difference between static and electrodynamic solutions is up to ~10 V km-1 in certain locations, or up to 20-40% of the total electric field. This is in agreement with previous estimates. It should also be noted that if FAC is replaced by the ground magnetic field (or ionospheric equivalent current) in the input data set, exactly the same formalism can be used to construct an inductive version of the KRM method originally developed by Kamide et al. (1981).
MHD simulations of supernova driven ISM turbulence
NASA Astrophysics Data System (ADS)
Gressel, Oliver; Ziegler, Udo
The dynamic evolution of the (stratified) turbulent interstellar medium (ISM) is simulated utilizing a three-dimensional MHD model including various physical effects. The computational domain covers a box of 0.5x0.5x2.0 kpc at a resolution of typically 128x128x1024 grid cells. The model includes (constant kinematic) viscosity and magnetic diffusivity. The adiabatic equation of state is supplemented by a parameterized heating- and cooling-function allowing for thermal instability (TI). The update due to heating and cooling is implemented implicitly using a Patankar-type discretization. Turbulence is driven by supernova explosions which are modelled as local injections of thermal energy, smeared over three standard-deviations of a Gaussian support with FWHM of 20pc. Supernova rates are adopted for typical cited values. Within our model we make a distinction between Type I and Type II SNe. Latter are statistically clustered by the (artificial) constraint that the density at the explosion site be above average (with respect to a horizontal slab) - former are spatially uncorrelated. The dual-energy feature of the conservative NIRVANA-code is used to tackle the extreme ratio of kinetic to internal energy that arises from the violent energy input. We stress the importance of using a conservative scheme to properly transfer the injected energy to kinetic motion. The model also includes a differentially rotating background (with shearing boundary conditions in radial direction) as well as vertical stratification. The initial density and pressure profiles are in hydrostatic equilibrium with respect to the equation of state given by the radiative equilibrium. Including z-dependent heating rates this leads to a considerable deviation from usual isothermal initial models. The primary focus of this work is on the galactic dynamo and the generation of large-scale magnetic fields. As a secondary target we are also interested in general properties of the ISM that are of importance
Modeling open boundaries in dissipative MHD simulation
NASA Astrophysics Data System (ADS)
Meier, E. T.; Glasser, A. H.; Lukin, V. S.; Shumlak, U.
2012-04-01
The truncation of large physical domains to concentrate computational resources is necessary or desirable in simulating many natural and man-made plasma phenomena. Three open boundary condition (BC) methods for such domain truncation of dissipative magnetohydrodynamics (MHD) problems are described and compared here. A novel technique, lacuna-based open boundary conditions (LOBC), is presented for applying open BC to dissipative MHD and other hyperbolic and mixed hyperbolic-parabolic systems of partial differential equations. LOBC, based on manipulating Calderon-type near-boundary sources, essentially damp hyperbolic effects in an exterior region attached to the simulation domain and apply BC appropriate for the remaining parabolic effects (if present) at the exterior region boundary. Another technique, approximate Riemann BC (ARBC), is adapted from finite volume and discontinuous Galerkin methods. In ARBC, the value of incoming flux is specified using a local, characteristic-based method. A third commonly-used open BC, zero-normal derivative BC (ZND BC), is presented for comparison. These open BC are tested in several gas dynamics and dissipative MHD problems. LOBC are found to give stable, low-reflection solutions even in the presence of strong parabolic behavior, while ARBC are stable only when hyperbolic behavior is dominant. Pros and cons of the techniques are discussed and put into context within the body of open BC research to date.
2007-09-22
Slocum, J. E. Mazur, M. D. Looper, R. S. Selesnick , and Phys., 12, 417. K. Shiokawa (2005), Geoeffectiveness of shocks in populating the radia- Mazur...A. Leske, G. M.Physical models of the geospace radiation environment, J. Atmos. Sol. Mason, M. 1. Desai, M. D. Looper, i. E. Mazur, R. S. Selesnick
MHD simulation of the Bastille day event
Linker, Jon Torok, Tibor; Downs, Cooper; Lionello, Roberto; Titov, Viacheslav; Caplan, Ronald M.; Mikić, Zoran; Riley, Pete
2016-03-25
We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 10{sup 33} ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similar to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.
MHD simulation of the Bastille day event
NASA Astrophysics Data System (ADS)
Linker, Jon; Torok, Tibor; Downs, Cooper; Lionello, Roberto; Titov, Viacheslav; Caplan, Ronald M.; Mikić, Zoran; Riley, Pete
2016-03-01
We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 1033 ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similar to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.
General Relativistic MHD Simulations of Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.
2005-01-01
We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.
MHD instabilities in accretion mounds - I. 2D axisymmetric simulations
NASA Astrophysics Data System (ADS)
Mukherjee, Dipanjan; Bhattacharya, Dipankar; Mignone, Andrea
2013-04-01
We have performed stability analysis of axisymmetric accretion mounds on neutron stars in high-mass X-ray binaries by 2D magnetohydrodynamic (MHD) simulations with the PLUTO MHD code. We find that the mounds are stable with respect to interchange instabilities, but the addition of excess mass destabilizes the equilibria. Our simulations confirm that accretion mounds are unstable with respect to MHD instabilities beyond a threshold mass. We investigate both filled and hollow mounds and for the latter also compute the expected profile of cyclotron resonance scattering features (CRSF). In comparison to the CRSF from filled mounds reported in our earlier work, hollow mounds display wider and more complex line profiles.
Extended MHD simulation of resonant magnetic perturbations
NASA Astrophysics Data System (ADS)
Strauss, H. R.; Sugiyama, L.; Park, G. Y.; Chang, C. S.; Ku, S.; Joseph, I.
2009-05-01
Resonant magnetic perturbations (RMPs) have been found effective in suppressing edge localized modes (ELMs) in the DIII-D experiment (Evans et al 2006 Phys. Plasmas 13 056121, Moyer et al 2005 Phys. Plasmas 12 056119). Simulations with the M3D initial value code indicate that plasma rotation, due to an MHD toroidal rotation or to two-fluid drifts, has an essential effect on the RMP. When the flow is below a threshold, the RMP field can couple to a resistive mode with a helical structure, different from the usual ELM, that amplifies the non-axisymmetric field. The magnetic field becomes stochastic in the outer part of the plasma, causing density and temperature loss. At higher rotation speed, the resistive mode is stabilized and the applied RMP is screened from the plasma, so that the stochastic magnetic layer is thinner and the temperature remains similar to the initial unperturbed state. The rotational flow effects, along with the remnants of the screened RMP, cause a density loss which extends into the plasma core. The two-fluid model contains intrinsic drift motion and axisymmetric toroidal rotation may not be needed to screen the RMP nor stabilize the resistive mode.
Global MHD simulations of plasmaspheric plumes
NASA Astrophysics Data System (ADS)
Lyon, J.; Ouellette, J.; Merkin, V. G.
2015-12-01
The plasmasphere represents a separate population from the rest of themagnetosphere, generally high density but cold. When the solar windturns strongly southward this plasma is convected toward the daysidemagnetopause and affects the interaction of the solar wind with themagnetosphere. We have used multi-fluid simulations using the LFMglobal MHD code to model this interaction. The plasmasphere isinitialized as a cold (~1eV) hydrogen plasma in a quiet northward IMFstate with a density distribution appropriate for K_p = 1. Thecorotation potential from the ionosphere spins up the plasmasphereinto rough corotation. After a initialization period of hours, asouthward IMF is introduced and the enhanced convection initiates asurge of plasmaspheric density to the dayside. We discuss two aspectsof this interaction, the effects on dayside reconnection and on theKelvin-Helmholtz instability (KHI). We find that the mass loading ofmagnetospheric flux tubes slows local reconnection rates, though notas much as predicted by Borovsky et al. [2013]. We findthat the total reconnection rate is reduced, although not as much aswould be predicted by just the sub-solar reconnection rate. The KHIis somewhat reduced by the plasmaspheric loading of density in the lowlatitude boundary layer. It has been suggested that the presence ofthe plasmasphere may lead to enhanced ULF wave power in the interiorof the magnetosphere from the KHI waves. We find only a minimal effect during northward IMF. For southward IMF, the situation is complicated by the interaction of KHI with non-steady reconnection.
NASA Astrophysics Data System (ADS)
Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B. V.; Hansteen, V. H.; Leenaarts, J.
2010-07-01
Aims: We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes and improved resolution of hydrodynamical structures. We apply the code to simulate the surface granulation in a solar-type star, ignoring magnetic fields, and investigate the importance of coherent scattering for the atmospheric structure. Methods: A scattering term is added to the radiative transfer equation, requiring an iterative computation of the radiation field. We use a short-characteristics-based Gauss-Seidel acceleration scheme to compute radiative flux divergences for the energy equation. The effects of coherent scattering are tested by comparing the temperature stratification of three 3D time-dependent hydrodynamical atmosphere models of a solar-type star: without scattering, with continuum scattering only, and with both continuum and line scattering. Results: We show that continuum scattering does not have a significant impact on the photospheric temperature structure for a star like the Sun. Including scattering in line-blanketing, however, leads to a decrease of temperatures by about 350 K below log10 τ5000 ⪉ -4. The effect is opposite to that of 1D hydrostatic models in radiative equilibrium, where scattering reduces the cooling effect of strong LTE lines in the higher layers of the photosphere. Coherent line scattering also changes the temperature distribution in the high atmosphere, where we observe stronger fluctuations compared to a treatment of lines as true absorbers.
Transport and MHD simulations of intrinsic and pellet induced ELMs
NASA Astrophysics Data System (ADS)
Kim, Ki Min; Na, Yong-Su; Yi, Sumin; Kim, Hyunseok; Kim, Jin Yong
2010-11-01
Verification of ELM mechanism and demonstration of ELM control are important issues in current fusion researches targeting ITER and DEMO. This work investigates the physics and operational characteristics of intrinsic and pellet induced ELMs throughout transport simulations using 1.5 D transport codes (C1.5/ASTRA) and MHD simulations using M3D code. Transport simulations are focused on prediction of the global parameters such as ELM energy loss in the type-I ELMy H-mode discharges with and without pellet pace making to examine an applicability of pellet injection for ELM mitigation in KSTAR and ITER. On the other hand, MHD simulations are conducted to explore the physics of intrinsic and pellet induced ELMs by applying the artificial free energy sources of velocity stream and density perturbations on the marginally stable equilibrium, respectively. Similarities and differences of triggering phenomena between intrinsic and pellet induced ELMs are discussed from the MHD approach.
Classical MHD shocks: theory and numerical simulation
Pogorelov, Nikolai V.
2005-08-01
Recent results are surveyed in the investigation of the behavior of shocks in ideal magnetohydrodynamics (MHD) and corresponding structures in dissipative/resistive plasma flows. In contrast to evolutionary shocks, a solution of the problem of the nonevolutionary shock interaction with small perturbations is either nonunique or does not exist. The peculiarity of non-ideal MHD is in that some nonevolutionary shocks have dissipative structures. Since this structure is always non-plane, it can reveal itself in problems where transverse perturbations do not exist due to symmetries restrictions. We discuss the numerical behavior of nonevolutionary shocks and argue that they necessarily disappear once the problem is solved in a genuinely three-dimensional statement.
MHD simulations on an unstructured mesh
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Longcope, D.W.; Sugiyama, L.E.
1998-12-31
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D.
2-D MHD numerical simulations of EML plasma armatures with ablation
NASA Astrophysics Data System (ADS)
Boynton, G. C.; Huerta, M. A.; Thio, Y. C.
1993-01-01
We use a 2-D) resistive MHD code to simulate an EML plasma armature. The energy equation includes Ohmic heating, radiation heat transport and the ideal gas equation of state, allowing for variable ionization using the Saha equations. We calculate rail ablation taking into account the flow of heat into the interior of the rails. Our simulations show the development of internal convective flows and secondary arcs. We use an explicit Flux Corrected Transport algorithm to advance all quantities in time.
On MHD rotational transport, instabilities and dynamo action in stellar radiation zones
NASA Astrophysics Data System (ADS)
Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.
2009-04-01
Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.
Advances in Simulation of Wave Interaction with Extended MHD Phenomena
Batchelor, Donald B; Abla, Gheni; D'Azevedo, Ed F; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, Joshua; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Foley, S.; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Bonoli, P.; Bramley, Randall B; Breslau, Joshua; Elwasif, Wael R; Foley, S.; Jaeger, Erwin Frederick; Jardin, S. C.; Klasky, Scott A; Kruger, Scott E; Ku, Long-Poe; McCune, Douglas; Ramos, J.; Schissel, David P; Schnack, Dalton D
2009-01-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
NASA Astrophysics Data System (ADS)
Blaes, Omer
Stellar mass black holes in certain types of binary systems accrete matter from their companion stars through rotating, turbulent flows known as accretion disks. These disks are observed by space X-ray missions to have a number of distinct spectral/variability states, the most mysterious one being the very high/steep power law state that generally occurs at very high luminosities. This state is particularly interesting as it exhibits unique quasi-periodic oscillations observed in the X-rays that, if understood, might help us directly measure the properties of the black hole spacetime. Radiation pressure is an important physical process at such high luminosities, and modifies the character of the accretion disk in a number of unique ways. One of the ways that it does this is that it enables turbulent speeds in the disk to exceed thermal speeds of electrons, thereby introducing a completely new radiation process - turbulent Comptonization. This radiation process is promising for explaining the unique spectral characteristics of the very high/steep power law state. We will test this hypothesis by making detailed calculations of the emergent radiation spectrum from numerical simulation data of the turbulence in local patches of the disk at high levels of radiation pressure. These will be the first detailed theoretical calculations of turbulent Comptonization, which should be an important process for modeling NASA data from high luminosity black hole accretion. We hope that this will shed light on the nature of the mysterious very high/steep power law state. The research will form the basis of the PhD thesis of a graduate student, in line with NASA's educational and training objectives.
Magnetic fields in protoplanetary discs: from MHD simulations to ALMA observations
NASA Astrophysics Data System (ADS)
Bertrang, G. H.-M.; Flock, M.; Wolf, S.
2017-01-01
Magnetic fields significantly influence the evolution of protoplanetary discs and the formation of planets, following the predictions of numerous magnetohydrodynamic (MHD) simulations. However, these predictions are yet observationally unconstrained. To validate the predictions on the influence of magnetic fields on protoplanetary discs, we apply 3D radiative transfer simulations of the polarized emission of aligned aspherical dust grains that directly link 3D global non-ideal MHD simulations to Atacama Large Millimeter/submillimeter Array (ALMA) observations. Our simulations show that it is feasible to observe the predicted toroidal large-scale magnetic field structures, not only in the ideal observations but also with high-angular resolution ALMA observations. Our results show further that high-angular resolution observations by ALMA are able to identify vortices embedded in outer magnetized disc regions.
MHD simulations of Earth's bow shock at low Mach numbers: Standoff distances
NASA Astrophysics Data System (ADS)
Cairns, Iver H.; Lyon, J. G.
1995-09-01
Global, three-dimensional, ideal MHD simulations of Earth's bow shock are reported for low Alfven Mach numbers MA and quasi-perpendicular magnetic field orientations. The simulations use a hard, infinitely conducting magnetopause obstacle, with axisymmetric three-dimensional location given by a scaled standard model, to directly address previous gasdynamic (GD) and field-aligned MHD (FA-MHD) work. Tests of the simulated shocks' density jumps X for 1.4<~MA<~10 and the high MA shock location, and reproduction of the GD relation between magnetosheath thickness and X for quasi-gasdynamic MHD runs with MA>>MS, confirm that the MHD code is working correctly. The MHD simulations show the standoff distance as increasing monotonically with decreasing MA. Significantly larger as are found at low MA than predicted by GD and phenomenological MHD models and FA-MHD simulations, as required qualitatively by observations. The GD and FA-MHD predictions err qualitatively, predicting either constant or decreasing as with decreasing MA. This qualitative difference between quasiperpendicular MHD and FA-MHD simulations is direct evidence for as depending on the magnetic field orientation θ. The enhancement factor over the phenomenological MHD predictions at MA~2.4 agrees quantitatively with one observational estimate. A linear relationship is found between the magnetosheath thickness and X, modified both quantitatively and intrinsically by MHD effects from the GD result. The MHD and GD results agree in the high MA limit. An MHD theory is developed for as, restricted to sufficiently perpendicular θ and high sonic Mach numbers MS. It explains the simulation results with excellent accuracy. Observational and further simulation testing of this MHD theory, and of its predicted MA, θ, and MS effects, is desirable.
EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul E-mail: strugarek@astro.umontreal.ca
2015-11-10
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.
MHD instabilities in accretion mounds - II. 3D simulations
NASA Astrophysics Data System (ADS)
Mukherjee, Dipanjan; Bhattacharya, Dipankar; Mignone, Andrea
2013-10-01
We investigate the onset of pressure-driven toroidal-mode instabilities in accretion mounds on neutron stars by 3D magnetohydrodynamic (MHD) simulations using the PLUTO MHD code. Our results confirm that for mounds beyond a threshold mass, instabilities form finger-like channels at the periphery, resulting in mass-loss from the magnetically confined mound. Ring-like mounds with hollow interior show the instabilities at the inner edge as well. We perform the simulations for mounds of different sizes to investigate the effect of the mound mass on the growth rate of the instabilities. We also investigate the effect of such instabilities on observables such as cyclotron resonant scattering features and timing properties of such systems.
Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas
NASA Astrophysics Data System (ADS)
Hamlin, Nathaniel; Seyler, Charles
2016-10-01
We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling laser-plasma interactions in relativistic and nonrelativistic regimes. By formulating the fluid equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of two-fluid phenomena in dense plasmas without the need to resolve the smallest electron length and time scales. For relativistic and nonrelativistic laser-target interactions, we have validated a cycle-averaged absorption (CAA) laser driver model against the direct approach of driving the electromagnetic fields. The CAA model refers to driving the radiation energy and flux rather than the fields, and using hyperbolic radiative transport, coupled to the plasma equations via energy source terms, to model absorption and propagation of the radiation. CAA has the advantage of not requiring adequate grid resolution of each laser wavelength, so that the system can span many wavelengths without requiring prohibitive CPU time. For several laser-target problems, we compare existing MHD results to extended-MHD results generated using PERSEUS with the CAA model, and examine effects arising from Hall physics. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.
High-beta extended MHD simulations of stellarators
NASA Astrophysics Data System (ADS)
Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.; Roberds, N. A.
2016-10-01
The high beta properties of stellarator plasmas are studied using the nonlinear, extended MHD code NIMROD. In this work, we describe recent developments to the semi-implicit operator which allow the code to model 3D plasma evolution with better accuracy and efficiency. The configurations under investigation are an l=2, M=5 torsatron with geometry modeled after the Compact Toroidal Hybrid (CTH) experiment and an l=2, M=10 torsatron capable of having vacuum rotational transform profiles near unity. High-beta plasmas are created using a volumetric heating source and temperature dependent anisotropic thermal conduction and resistivity. To reduce computation expenses, simulations are initialized from stellarator symmetric pseudo-equilibria by turning on symmetry breaking modes at finite beta. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under Grant No. DE-FG02-99ER54546.
Radial Diffusion study of the 1 June 2013 CME event using MHD simulations.
NASA Astrophysics Data System (ADS)
Patel, M.; Hudson, M.; Wiltberger, M. J.; Li, Z.; Boyd, A. J.
2016-12-01
The June 1, 2013 storm was a CME-shock driven geomagnetic storm (Dst = -119 nT) that caused a dropout affecting all radiation belt electron energies measured by the Energetic Particle, Composition and Thermal Plasma Suite (ECT) instrument on Van Allen Probes at higher L-shells following dynamic pressure enhancement in the solar wind. Lower energies (up to about 700 keV) were enhanced by the storm while MeV electrons were depleted throughout the belt. We focus on depletion through radial diffusion caused by the enhanced ULF wave activity due to the CME-shock. This study utilities the Lyon-Fedder-Mobarry (LFM) model, a 3D global magnetospheric simulation code based on the ideal MHD equations, coupled with the Magnetosphere Ionosphere Coupler (MIX) and Rice Convection Model (RCM). The MHD electric and magnetic fields with equations described by Fei et al. [JGR, 2006] are used to calculate radial diffusion coefficients (DLL). These DLL values are input into a radial diffusion code to recreate the dropouts observed by the Van Allen Probes. The importance of understanding the complex role that ULF waves play in radial transport and the effects of CME-driven storms on the relativistic energy electrons in the radiation belts can be accomplished using MHD simulations to obtain diffusion coefficients, initial phase space density and the outer boundary condition from the ECT instrument suite and a radial diffusion model to reproduce observed fluxes which compare favorably with Van Allen Probes ECT measurements.
Spectral Methods in General Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Garrison, David
2012-03-01
In this talk I discuss the use of spectral methods in improving the accuracy of a General Relativistic Magnetohydrodynamic (GRMHD) computer code. I introduce SpecCosmo, a GRMHD code developed as a Cactus arrangement at UHCL, and show simulation results using both Fourier spectral methods and finite differencing. This work demonstrates the use of spectral methods with the FFTW 3.3 Fast Fourier Transform package integrated with the Cactus Framework to perform spectral differencing using MPI.
Resistive MHD simulations in support of SSPX
NASA Astrophysics Data System (ADS)
Hooper, E. B.; Cohen, B. I.; Lodestro, L. L.; Sovinec, C. R.
2006-04-01
The SSPX spheromak has obtained Btor>0.6T, Te=350eV and t(pulse) 3ms. NIMROD simulations are used to interpret results, guide experiments, and explore upgrades. Voltage spikes during formation and sustainment are interpreted as reconnection across an n=1, negative-current layer close to the mean-field x-point. Field lines are chaotic during these events, causing rapid electron energy loss to the walls; Te<50eV in experiment and simulation during strong helicity injection. Sustainment occurs at a high ratio of gun current to bias flux. During slow plasma decay at low gun current, high Te results when magnetic fluctuations are low (<1%). If q crosses low-order rational surfaces, islands form causing reduced energy confinement. Fieldlines can become chaotic (Lyapanov length > 4πR); if they reach walls Te drops to <50eV. Changing Zeff=1 to 2.3 (SSPX value) increases ohmic heating and decreases parallel thermal conduction, affecting spheromak evolution. An experimental upgrade to allow bias field reduction following formation may allow increased efficiency operation.
Relativistic MHD simulations of extragalactic jets
NASA Astrophysics Data System (ADS)
Leismann, T.; Antón, L.; Aloy, M. A.; Müller, E.; Martí, J. M.; Miralles, J. A.; Ibáñez, J. M.
2005-06-01
We have performed a comprehensive parameter study of the morphology and dynamics of axisymmetric, magnetized, relativistic jets by means of numerical simulations. The simulations have been performed with an upgraded version of the GENESIS code which is based on a second-order accurate finite volume method involving an approximate Riemann solver suitable for relativistic ideal magnetohydrodynamic flows, and a method of lines. Starting from pure hydrodynamic models we consider the effect of a magnetic field of increasing strength (up to β ≡ |b|2/2p ≈ 3.3 times the equipartition value) and different topology (purely toroidal or poloidal). We computed several series of models investigating the dependence of the dynamics on the magnetic field in jets of different beam Lorentz factor and adiabatic index. We find that the inclusion of the magnetic field leads to diverse effects which contrary to Newtonian magnetohydrodynamics models do not always scale linearly with the (relative) strength of the magnetic field. The relativistic models show, however, some clear trends. Axisymmetric jets with toroidal magnetic fields produce a cavity which consists of two parts: an inner one surrounding the beam which is compressed by magnetic forces, and an adjacent outer part which is inflated due to the action of the magnetic field. The outer border of the outer part of the cavity is given by the bow-shock where its interaction with the external medium takes place. Toroidal magnetic fields well below equipartition (β = 0.05) combined with a value of the adiabatic index of 4/3 yield extremely smooth jet cavities and stable beams. Prominent nose cones form when jets are confined by toroidal fields and carry a high Poynting flux (σ≡ |b|2/ρ>0.01 and β≥ 1). In contrast, none of our models possessing a poloidal field develops such a nose cone. The size of the nose cone is correlated with the propagation speed of the Mach disc (the smaller the speed the larger is the size). If two
Analysis and gyrokinetic simulation of MHD Alfven wave interactions
NASA Astrophysics Data System (ADS)
Nielson, Kevin Derek
The study of low-frequency turbulence in magnetized plasmas is a difficult problem due to both the enormous range of scales involved and the variety of physics encompassed over this range. Much of the progress that has been made in turbulence theory is based upon a result from incompressible magnetohydrodynamics (MHD), in which energy is only transferred from large scales to small via the collision of Alfven waves propagating oppositely along the mean magnetic field. Improvements in laboratory devices and satellite measurements have demonstrated that, while theories based on this premise are useful over inertial ranges, describing turbulence at scales that approach particle gyroscales requires new theory. In this thesis, we examine the limits of incompressible MHD theory in describing collisions between pairs of Alfven waves. This interaction represents the fundamental unit of plasma turbulence. To study this interaction, we develop an analytic theory describing the nonlinear evolution of interacting Alfven waves and compare this theory to simulations performed using the gyrokinetic code AstroGK. Gyrokinetics captures a much richer set of physics than that described by incompressible MHD, and is well-suited to describing Alfvenic turbulence around the ion gyroscale. We demonstrate that AstroGK is well suited to the study of physical Alfven waves by reproducing laboratory Alfven dispersion data collected using the LAPD. Additionally, we have developed an initialization alogrithm for use with AstroGK that allows exact Alfven eigenmodes to be initialized with user specified amplitudes and phases. We demonstrate that our analytic theory based upon incompressible MHD gives excellent agreement with gyrokinetic simulations for weakly turbulent collisions in the limit that k⊥rho i << 1. In this limit, agreement is observed in the time evolution of nonlinear products, and in the strength of nonlinear interaction with respect to polarization and scale. We also examine the
You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks
NASA Astrophysics Data System (ADS)
Hogg, J. Drew; Reynolds, Christopher S.
2017-01-01
Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.
Comparison of solar photospheric bright points between Sunrise observations and MHD simulations
NASA Astrophysics Data System (ADS)
Riethmüller, T. L.; Solanki, S. K.; Berdyugina, S. V.; Schüssler, M.; Martínez Pillet, V.; Feller, A.; Gandorfer, A.; Hirzberger, J.
2014-08-01
Bright points (BPs) in the solar photosphere are thought to be the radiative signatures (small-scale brightness enhancements) of magnetic elements described by slender flux tubes or sheets located in the darker intergranular lanes in the solar photosphere. They contribute to the ultraviolet (UV) flux variations over the solar cycle and hence may play a role in influencing the Earth's climate. Here we aim to obtain a better insight into their properties by combining high-resolution UV and spectro-polarimetric observations of BPs by the Sunrise Observatory with 3D compressible radiation magnetohydrodynamical (MHD) simulations. To this end, full spectral line syntheses are performed with the MHD data and a careful degradation is applied to take into account all relevant instrumental effects of the observations. In a first step it is demonstrated that the selected MHD simulations reproduce the measured distributions of intensity at multiple wavelengths, line-of-sight velocity, spectral line width, and polarization degree rather well. The simulated line width also displays the correct mean, but a scatter that is too small. In the second step, the properties of observed BPs are compared with synthetic ones. Again, these are found to match relatively well, except that the observations display a tail of large BPs with strong polarization signals (most likely network elements) not found in the simulations, possibly due to the small size of the simulation box. The higher spatial resolution of the simulations has a significant effect, leading to smaller and more numerous BPs. The observation that most BPs are weakly polarized is explained mainly by the spatial degradation, the stray light contamination, and the temperature sensitivity of the Fe i line at 5250.2 Å. Finally, given that the MHD simulations are highly consistent with the observations, we used the simulations to explore the properties of BPs further. The Stokes V asymmetries increase with the distance to the
Magnetic flux ropes in 3-dimensional MHD simulations
NASA Technical Reports Server (NTRS)
Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha
1990-01-01
The interaction of the solar wind and the earth's magnetosphere is presently simulated by a 3D, time-dependent, global MHD method in order to model the magnetopause and magnetotail generation of magnetic flux ropes. It is noted that strongly twisted and localized magnetic flux tubes simular to magnetic flux ropes appear at the subpolar magnetopause when the IMF has a large azimuthal component, as well as a southward component. Plasmoids are generated in the magnetotail after the formation of a near-earth magnetic neutral line; the magnetic field lines have a helical structure that is connected from dawn to dusk.
Magnetic flux ropes in 3-dimensional MHD simulations
NASA Technical Reports Server (NTRS)
Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha
1990-01-01
The interaction of the solar wind and the earth's magnetosphere is presently simulated by a 3D, time-dependent, global MHD method in order to model the magnetopause and magnetotail generation of magnetic flux ropes. It is noted that strongly twisted and localized magnetic flux tubes simular to magnetic flux ropes appear at the subpolar magnetopause when the IMF has a large azimuthal component, as well as a southward component. Plasmoids are generated in the magnetotail after the formation of a near-earth magnetic neutral line; the magnetic field lines have a helical structure that is connected from dawn to dusk.
Kelvin-Helmholtz Unstable Magnetotail Flow Channels: Deceleration and Radiation of MHD Waves
NASA Astrophysics Data System (ADS)
Turkakin, H.; Mann, I. R.; Rankin, R.
2014-12-01
The Kelvin-Helmholtz instability (KHI) of magnetotail flow channels associated with burstybulk flows (BBFs) is investigated. MHD oscillations of the channel in both kink and sausage modes areinvestigated for KHI, and both the primary and secondary KHIs are found that drive MHD waves. Theseinstabilities are likely to be important for flow channel braking where the KHI removes energy from the flow.At flow speeds above the peak growth rate, the MHD modes excited by KHI develop from surface modesinto propagating modes leading to the radiation of MHD waves from the flow channel. The coupling ofBBF-driven shear flow instabilities to MHD waves presented here represents a new paradigm to explain BBFexcitation of tail flapping. Our model can also explain, for the first time, the generation mechanism for theobservations of waves propagating toward both flanks and emitted from BBF channels in the magnetotail.
Magnetotail dynamics: MHD simulations of driven and spontaneous dynamic changes
Birn, J.; Schindler, K.; Hesse, M.
1994-05-01
The dynamic evolution of the magnetotail during growth phase and expansion phase of a substorm is studied through threedimensional time-dependent MHD simulations. To model growth phase effects, an external electric field with an equatorward inflow is applied at the boundaries over a finite time period. This leads to the formation of a thin current sheet with greatly enhanced current density in the near tail, embedded in the wider plasma/current sheet, which becomes diminished in strength. A faster, spontaneous current sheet formation occurs when entropy conservation is released in an isobaric model, while the ideal MHD constraint persists. This may be a suitable model for the late, explosive part of the growth phase. The transition to the substorm expansive phase is modeled by an increase in anomalous resistivity, using either uniform resistivity or a current density dependent resistivity which is turned on when the current density exceeds a certain threshold. In both cases the violation of ideal MHD leads to resistive instability and the formation of a near-Earth neutral line, fast flow, and plasmoid ejection, together with the dipolarization and current reduction in the region further earthward. The spontaneous increase in total region 1 type field-aligned currents associated with the disruptions of the thin current sheets is less significant than that found in earlier simulations of the disruption of a wider current sheet, whereas the driven increase in the region 1 type current is substantial. The results demonstrate that the same dynamic process which appears spontaneous in the behavior of some quantities might be interpreted as entirely driven from the observation of others.
3D MHD Simulations of Stratified Accretion Disks
NASA Astrophysics Data System (ADS)
Stone, James M.; Hawley, John F.; Gammie, Charles
1993-12-01
We investigate the growth and nonlinear saturation of a powerful local shear instability in weakly magnetised accretion disks using three dimensional magnetohydrodynamic (MHD) simulations. To achieve a sufficiently high numerical resolution, we use a local approximation for the disk and carry out the simulations on massively parallel supercomputers. Here we investigate the linear growth and nonlinear saturation of the instability in a vertically stratified, intially isothermal disk. A variety of initial field configurations and strengths are considered. The simulations allow a quantitative analysis of the role of bouyancy as a saturation mechanism, and possible dynamo action in the disk. This work is partially supported by NSF grant PHY-9018251 and NASA grants NAGW-1510 and NAGW-2376. Code development is supported by the NASA HPCC Initiative through grant NAG5-2202. Computations were carried out on the CM200 system of the National Center for Supercomputing Applications.
Global MHD Simulation of Mesoscale Structures at the Magnetospheric Boundary
NASA Technical Reports Server (NTRS)
Berchem, Jean
1998-01-01
The research carried out for this protocol was focused on the study of mesoscales structures at the magnetospheric boundary. We investigated three areas: (1) the structure of the magnetospheric boundary for steady solar wind conditions; (2) the dynamics of the dayside magnetospheric boundary and (3) the dynamics of the distant tail magnetospheric boundary. Our approach was to use high resolution three-dimensional global magnetohydrodynamic (MHD) simulations of the interaction of the solar wind with the Earth's magnetosphere. We first considered simple variations of the interplanetary conditions to obtain generic cases that helped us in establishing the basic cause and effect relationships for steady solar wind conditions. Subsequently, we used actual solar wind plasma and magnetic field parameters measured by an upstream spacecraft as input to the simulations and compared the simulation results with sequences of events observed by another or several other spacecraft located downstream the bow shock. In particular we compared results with observations made when spacecraft crossed the magnetospheric boundary.
Thermodynamic MHD Simulation of the Bastille Day Event
NASA Astrophysics Data System (ADS)
Torok, Tibor; Downs, Cooper; Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Titov, Viacheslav S.; Riley, Pete
2014-05-01
The "Bastille Day" event on July 14, 2000 is one of the most extensively studied solar eruptions. It originated in a complex active region close to disk center and produced an X5.7 flare, a fast halo CME, and an intense geomagnetic storm. We have recently begun to model this challenging event, with the final goal to simulate its whole evolution, from the pre-eruptive state to the CME's arrival at 1 AU. To this end, we first produce a steady-state MHD solution of the background corona that incorporates realistic energy transport ("thermodynamic MHD"), photospheric magnetic field measurements, and the solar wind. In order to model the pre-eruptive magnetic field, we then insert into this solution a stable, elongated flux rope that resides above the highly curved polarity inversion line of the active region. Finally, we produce an eruption by imposing photospheric flows that slowly converge towards the polarity inversion line. In this presentation we describe our method, compare the simulation results with the observations, and discuss the challenges and limitations involved in modeling such complex and powerful eruptions.
Coupled simulation of kinetic pedestal growth and MHD ELM crash
Park, G.; Cummings, J.; Chang, C. S.; Klasky, Scott A; Ku, S.; Podhorszki, Norbert; Pankin, A.; Samtaney, Ravi; Shoshani, A.; Snyder, P.; Strauss, H.; Sugiyama, L.; CPES Team, the
2007-01-01
Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.
Coupled simulation of kinetic pedestal growth and MHD ELM crash
Park, G-Y; Cummings, J.; Chang, C S; Podhorszki, Norbert; Klasky, Scott A; Ku, S.; Pankin, A.; Samtaney, Ravi; Shoshani, A.; Snyder, P.; Sugiyama, L.
2009-01-01
Edge pedestal height and the accompanying ELM crash are critical elements of ITER physics yet to be understood and predicted through high performance computing. An entirely self-consistent first principles simulation is being pursued as a long term research goal, and the plan is planned for completion in time for ITER operation. However, a proof-of-principle work has already been established using a computational tool that employs the best first principles physics available at the present time. A kinetic edge equilibrium code XGC0, which can simulate the neoclassically dominant pedestal growth from neutral ionization (using a phenomenological residual turbulence diffusion motion superposed upon the neoclassical particle motion) is coupled to an extended MHD code M3D, which can perform the nonlinear ELM crash. The stability boundary of the pedestal is checked by an ideal MHD linear peeling-ballooning code, which has been validated against many experimental data sets for the large scale (type I) ELMs onset boundary. The coupling workflow and scientific results to be enabled by it are described.
3-D MHD Simulation of Oscillating Field Current Drive
NASA Astrophysics Data System (ADS)
Ebrahimi, F.; Prager, S. C.; Wright, J. C.
2000-10-01
Oscillating Field Current Drive (OFCD) is a proposed low frequency steady-state current drive technique for the Reversed Field Pinch (RFP). In OFCD toroidal and poloidal oscillating electric fields are applied with 90^circ phase difference to inject magnetic helicity. In the present work, the 3-D nonlinear, resistive MHD code DEBS is used to simulate OFCD in relaxed RFP plasmas. The present simulations are at high Lundquist number S=10^5 and low spect ratio R/a=1.5. The physics issues investigated are the response of background magnetic fluctuations to the oscillating fields, the relative contributions of the tearing mode dynamo and the oscillating fields to the current profile, and the sustainment and control of the steady-state current profile. Initial results with low amplitude oscillating fields show the expected increase in magnetic helicity and current. Results with higher amplitude will also be presented.
The ideal tearing mode: theory and resistive MHD simulations
NASA Astrophysics Data System (ADS)
Del Zanna, L.; Landi, S.; Papini, E.; Pucci, F.; Velli, M.
2016-05-01
Classical MHD reconnection theories, both the stationary Sweet-Parker model and the tearing instability, are known to provide rates which are too slow to explain the observations. However, a recent analysis has shown that there exists a critical threshold on current sheet's thickness, namely a/L ∼ S -1/3, beyond which the tearing modes evolve on fast macroscopic Alfvénic timescales, provided the Lunquist number S is high enough, as invariably found in solar and astrophysical plasmas. Therefore, the classical Sweet-Parker scenario, for which the diffusive region scales as a/L ∼ S -1/2 and thus can be up to ∼ 100 times thinner than the critical value, is likely to be never realized in nature, as the current sheet itself disrupts in the elongation process. We present here two-dimensional, compressible, resistive MHD simulations, with S ranging from 105 to 107, that fully confirm the linear analysis. Moreover, we show that a secondary plasmoid instability always occurs when the same critical scaling is reached on the local, smaller scale, leading to a cascading explosive process, reminiscent of the flaring activity.
MHD simulation of the inner-heliospheric magnetic field
NASA Astrophysics Data System (ADS)
Wiengarten, T.; Kleimann, J.; Fichtner, H.; Cameron, R.; Jiang, J.; Kissmann, R.; Scherer, K.
2013-01-01
Maps of the radial magnetic field at a heliocentric distance of 10 solar radii are used as boundary conditions in the MHD code CRONOS to simulate a three-dimensional inner-heliospheric solar wind emanating from the rotating Sun out to 1 AU. The input data for the magnetic field are the result of solar surface flux transport modeling using observational data of sunspot groups coupled with a current-sheet source surface model. Among several advancements, this allows for higher angular resolution than that of comparable observational data from synoptic magnetograms. The required initial conditions for the other MHD quantities are obtained following an empirical approach using an inverse relation between flux tube expansion and radial solar wind speed. The computations are performed for representative solar minimum and maximum conditions, and the corresponding state of the solar wind up to the Earth's orbit is obtained. After a successful comparison of the latter with observational data, they can be used to drive outer-heliospheric models.
Final Report: "Large-Eddy Simulation of Anisotropic MHD Turbulence"
Zikanov, Oleg
2008-06-23
To acquire better understanding of turbulence in flows of liquid metals and other electrically conducting fluids in the presence of steady magnetic fields and to develop an accurate and physically adequate LES (large-eddy simulation) model for such flows. The scientific objectives formulated in the project proposal have been fully completed. Several new directions were initiated and advanced in the course of work. Particular achievements include a detailed study of transformation of turbulence caused by the imposed magnetic field, development of an LES model that accurately reproduces this transformation, and solution of several fundamental questions of the interaction between the magnetic field and fluid flows. Eight papers have been published in respected peer-reviewed journals, with two more papers currently undergoing review, and one in preparation for submission. A post-doctoral researcher and a graduate student have been trained in the areas of MHD, turbulence research, and computational methods. Close collaboration ties have been established with the MHD research centers in Germany and Belgium.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere
NASA Astrophysics Data System (ADS)
Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.
Claudepierre, S G; Toffoletto, F R; Wiltberger, M
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
3D MHD disruptions simulations of tokamaks plasmas
NASA Astrophysics Data System (ADS)
Paccagnella, Roberto; Strauss, Hank; Breslau, Joshua
2008-11-01
Tokamaks Vertical Displacement Events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model, implemented in the M3D code [1], is completed with the presence of a 2D homogeneous wall with finite resistivity. This allows the study of the relatively slowly growing magneto-hydro-dynamical perturbation, the resistive wall mode (RWM), which is, in this work, the main drive of the disruptions. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given. [1] W. Park, E.V. Belova, G.Y. Fu, X.Z. Tang, H.R. Strauss, L.E. Sugiyama, Phys. Plasmas 6 (1999) 1796.
MHD simulations of coronal dark downflows considering thermal conduction
NASA Astrophysics Data System (ADS)
Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.
2017-10-01
While several scenarios have been proposed to explain supra-arcade downflows (SADs) observed descending through turbulent hot regions, none of them have systematically addressed the consideration of thermal conduction. The SADs are known to be voided cavities. Our model assumes that SADs are triggered by bursty localized reconnection events that produce non-linear waves generating the voided cavity. These subdense cavities are sustained in time because they are hotter than their surrounding medium. Due to the low density and large temperature values of the plasma we expect the thermal conduction to be an important process. Our main aim here is to study if it is possible to generate SADs in the framework of our model considering thermal conduction. We carry on 2D MHD simulations including anisotropic thermal conduction, and find that if the magnetic lines envelope the cavities, they can be isolated from the hot environment and be identified as SADs.
Ionization fronts in coupled MHD-gas simulations
NASA Astrophysics Data System (ADS)
Wilson, A. D.; Diver, D. A.
2017-09-01
Partially ionized plasmas are ubiquitous in both nature and the laboratory, and their behaviour is best described by models which take into account the interactions between the neutral and charged species. We present a new non-linear, 3-dimensional, finite difference Gas-MHD Interactions Code designed to solve simultaneously the time evolution of fluid equations of both species in the conservation form as well as collisional interactions between them via appropriate choices of source term; in particular, we present results from this code in simulating Alfvén ionization in a partially ionized plasma. In this fashion, larger changes in the ionization fraction than were addressable in the linear limit are possible. Alfvén ionization is shown to impart plasmas with an inherent resistance to rapid recombination, where the recombination itself is significant enough to drive relative motion between the ionised and neutral species at speeds in excess of the critical velocity.
MHD Simulation of the Inverse Pinch Plasma Discharge
Esaulov, A; Bauer, B; Lindemuth, I; Makhin, V; Presura, R; Ryutov, D
2004-07-01
A wall confined plasma in an inverse pinch configuration holds potential as a plasma target for Magnetized Target Fusion (MTF) as well as the simple geometry to study wall-confined plasma. An experiment is planned to study the inverse pinch configuration using the Nevada Terawatt Facility (NTF) at the University of Nevada, Reno (UNR). The dynamics of the discharge formation have been analyzed using analytic models and numerical methods. Strong heating occurs by thermalization of directed energy when an outward moving current sheet (the inverse pinch effect) collides with the outer wall of the experimental chamber. Two dimensional MHD simulations show Rayleigh-Taylor and Richtmyer-Meshkov -like modes of instability, as expected because of the shock acceleration during plasma formation phase. The instabilities are not disruptive, but give rise to a mild level of turbulence. The conclusion from this work is that an interesting experiment relevant to wall confinement for MTF could be done using existing equipment at UNR.
Tracking Changes in Magnetic Topology in MHD Simulations
NASA Astrophysics Data System (ADS)
Mikic, Z.; Titov, V. S.; Lionello, R.; Torok, T.; Linker, J.; Downs, C.
2016-12-01
The topology of the coronal magnetic field plays a key role in the properties of the corona and the source of the slow solar wind. The concept of slip-back mapping (Titov et al. 2009) has been applied to detect open, closed, and disconnected flux systems formed by reconnection of coronal magnetic fields during a given time interval. In particular, this technique can identify regions where closed magnetic field lines became open (e.g., via interchange reconnection), and conversely, where open field lines became closed. We will describe the application of this technique to the analysis of 3D MHD simulations (including those of coronal jets and the propagation of "blobs" in the solar wind). Research supported by NASA's Living With a Star Program.
MHD simulations with resistive wall and magnetic separatrix
NASA Astrophysics Data System (ADS)
Strauss, H. R.; Pletzer, A.; Park, W.; Jardin, S.; Breslau, J.; Sugiyama, L.
2004-12-01
A number of problems in resistive MHD magnetic fusion simulations describe plasmas with three regions: the core, the halo region, and the resistive boundary. Treating these problems requires maintenance of an adequate resistivity contrast between the core and halo. This can be helped by the presence of a magnetic separatrix, which in any case is required for reasons of realistic modeling. An appropriate mesh generation capability is also needed to include the halo region when a separatrix is present. Finally a resistive wall boundary condition is required, to allow both two dimensional and three dimensional magnetic perturbations to penetrate the wall. Preliminary work is presented on halo current simulations in ITER. The first step is the study of VDE (vertical displacement event) instabilities. The growth rate is consistent with scaling inversely proportional to the resistive wall penetration time. The simulations have resistivity proportional to the -3/2 power of the temperature. Simulations have been done with resistivity contrast between the plasma core and wall of 1000 times, to model the vacuum region between the core and resistive shell. Some 3D simulations are shown of disruptions competing with VDEs. Toroidal peaking factors are up to about 3.
MHD Simulations of the Initiation of Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Fan, Yuhong; Chatterjee, Piyali
Using three-dimensional MHD simulations, we model the quasi-static evolution and the onset of eruption of twisted magnetic flux ropes in the solar corona. We present simulations where the eruption is triggered by either the onset of the torus instability or the helical kink instability of the line-tied coronal flux rope. The simulations show that S (or inverse S) shaped current sheets develop along topological structures identified as Quasi Separatrix Layers (QSLs), during the quasi-static phase before the eruption. Reconnections in the current sheets effectively add twisted flux to the flux rope and thus allow it to rise quasi-statically to the critical height for the onset of the torus instability. We examine the thermal features produced by the current sheet formation and the associated reconnections and found that they can explain some of the observed features in coronal prominence cavities as well as in pre-eruption active regions. We also present simulations of the development of a homologous sequence of CMEs caused by the repeated formation and partial eruption of kink unstable flux ropes as a result of continued flux emergence. It is found that such homologous CMEs tend to be cannibalistic, leading to the formation of more energetic, highly twisted ejecta.
Comparing MHD simulations of RFP plasmas to RELAX experiments
NASA Astrophysics Data System (ADS)
McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sauppe, J. P.; Masamune, S.; Sanpei, A.
2015-11-01
Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, which can be applied to general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we calculate linear stability and simulate the nonlinear evolution of plasmas similar to those in the RELAX RFP experiment, whose relatively modest Lundquist numbers of order 104 make the simulations tractable given present computing resources. The chosen RELAX cases cover a broad range of RFP reversal parameters and have also been previously simulated with the MIPS code (N. Mizuguchi et al., TH/P3-26, IAEA FEC, 2012). Experimental diagnostics that can be used for validation purposes include Thomson scattering for electron temperature, interferometry for electron density, SXR imaging, and external and internal magnetic probes. RELAX's small aspect ratio (~ 2) motivates a comparison study using toroidal and cylindrical geometries in NIMROD. This work is supported by the U.S. DOE and NSF and by the Japan Society for the Promotion of Science.
MHD Simulations of the Plasma Flow in the Magnetic Nozzle
NASA Technical Reports Server (NTRS)
Smith, T. E. R.; Keidar, M.; Sankaran, K.; olzin, K. A.
2013-01-01
The magnetohydrodynamic (MHD) flow of plasma through a magnetic nozzle is simulated by solving the governing equations for the plasma flow in the presence of an static magnetic field representing the applied nozzle. This work will numerically investigate the flow and behavior of the plasma as the inlet plasma conditions and magnetic nozzle field strength are varied. The MHD simulations are useful for addressing issues such as plasma detachment and to can be used to gain insight into the physical processes present in plasma flows found in thrusters that use magnetic nozzles. In the model, the MHD equations for a plasma, with separate temperatures calculated for the electrons and ions, are integrated over a finite cell volume with flux through each face computed for each of the conserved variables (mass, momentum, magnetic flux, energy) [1]. Stokes theorem is used to convert the area integrals over the faces of each cell into line integrals around the boundaries of each face. The state of the plasma is described using models of the ionization level, ratio of specific heats, thermal conductivity, and plasma resistivity. Anisotropies in current conduction due to Hall effect are included, and the system is closed using a real-gas equation of state to describe the relationship between the plasma density, temperature, and pressure.A separate magnetostatic solver is used to calculate the applied magnetic field, which is assumed constant for these calculations. The total magnetic field is obtained through superposition of the solution for the applied magnetic field and the self-consistently computed induced magnetic fields that arise as the flowing plasma reacts to the presence of the applied field. A solution for the applied magnetic field is represented in Fig. 1 (from Ref. [2]), exhibiting the classic converging-diverging field pattern. Previous research was able to demonstrate effects such as back-emf at a super-Alfvenic flow, which significantly alters the shape of the
Driving Coronal MHD Simulations with Flux Evolution Models
NASA Astrophysics Data System (ADS)
Linker, J.; Lionello, R.; Mikic, Z.; Riley, P.; Downs, C.; Arge, C. N.; Henney, C. J.
2013-12-01
The solar corona and solar wind strongly influences space weather at Earth. While coronal mass ejections (CMEs) are the most obvious source of this influence, the structure and dynamics of the ambient solar corona and solar wind also play an important role. Coronal structure leads to the partitioning of the solar wind into fast and slow streams, which are the source of recurrent geomagnetic activity. The geo-effectiveness of CMEs is in part determined by their interaction with the ambient wind, and the connection of the ambient interplanetary magnetic field to CME-related shocks and impulsive solar flares determines where solar energetic particles propagate. MHD simulations of the solar corona based on maps of the solar magnetic field have been demonstrated to describe many aspects of coronal structure. However, these models are typically integrated to steady state, using synoptic or daily-updated magnetic maps to derive the boundary conditions. The Sun's magnetic flux is always evolving, and these changes in the flux affect the structure and dynamics of the corona and heliosphere. In this presentation, we describe an approach to evolutionary models of the corona and so wind, using time-dependent boundary conditions. A key aspect of our approach is the use of the Air Force Data Assimilative Photospheric flux Transport (ADAPT) model to develop time-evolving boundary conditions for the magnetic field. ADAPT incorporates data assimilation techniques into the Worden and Harvey (2000) flux evolution model, making it an especially suitable candidate for providing boundary conditions to MHD models. We describe initial results and compare them with more traditional approaches. Research supported by AFOSR, NASA, and NSF.
Implicit Predictor-Corrector finite difference scheme for the ideal MHD simulations
NASA Astrophysics Data System (ADS)
Tsai, T.; Yu, H.; Lai, S.
2012-12-01
A innovative simulation code for ideal magnetohydrodynamics (MHD) is developed. We present a multiple-dimensional MHD code based on high-order implicit predictor-corrector finite difference scheme (high-order IPCFD scheme). High-order IPCFD scheme adopts high-order predictor-corrector scheme for the time integration and high-order central difference method as the spatial derivative solver. We use Elimination-of-the-Runoff-Errors (ERE) technology to avoid the numerical oscillations and numerical instability in the simulation results. In one-dimensional MHD problem, our simulation results show good agreement with the Brio & Wu MHD shock tube problem. The divergent B constraint remains fully satisfied, that is the divergent B equals to zero throughout the simulation. When solving the two-dimensional (2D) linear wave in MHD plasma, we clearly obtain the group-velocity Friedrichs diagrams of the MHD waves. Here we demonstrate 2D simulation results of rotor problem, Orszag-Tang vortex system, vortex type K-H instability, and kink type K-H instability by using our IPCFD MHD code and discuss the advantage of our simulation code.
MHD Simulation of Plasma Flow through the VASIMR Magnetic Nozzle
NASA Astrophysics Data System (ADS)
Tarditi, A. G.; Shebalin, J. V.
2003-10-01
The VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [1]) concept is currently in the experimental development phase at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. The current experimental effort is mainly focused on the demonstration of the efficient plasma production (light ion helicon source, [2]) and energy boosting (ion cyclotron resonance heating section). Two other critical issues, the plasma detachment process and the collimation of the plasma plume in the magnetic nozzle, are essential for the near term experimental development and are being addressed through an MHD simulation modeling effort with the NIMROD code [3,4]. The model follows the plasma flow up to few meters from the nozzle throat: at that distance the plasma exhaust parameters reach values comparable with the ionospheric plasma background [5]. Results from two-dimensional simulation runs (cylindrical geometry, assuming azimuthal symmetry) aimed in particular at testing the effectiveness of different open-end boundary condition schemes are presented. [1] F. R. Chang-Diaz, Scientific American, p. 90, Nov. 2000 [2] M. D. Carter, et al., Phys. Plasmas 9, 5097-5110, 2002 [3] http://www.nimrodteam.org [4] A. Tarditi et al., 28th Int. Electric Propulsion Conf., IEPC 2003, Toulouse, France, March 2003 [5] A. V. Ilin et al., Proc. 40th AIAA Aerospace Sciences Meeting, Reno, NV, Jan. 2002
Preliminary analysis of the dynamic heliosphere by MHD simulations
Washimi, H.; Zank, G. P.; Tanaka, T.
2006-09-26
A preliminary analysis of the dynamic heliosphere to estimate the termination shock (TS) distance from the sun around the time when Voyager 1 passed the termination shock at December 16, 2004 is performed by using MHD simulations. For input to this simulation, we use the Voyager 2 solar-wind data. We first find a stationary solution of the 3-D outer heliosphere by assigning a set of LISM parameters as our outer boundary conditions and then the dynamical analysis is performed. The model TS crossing is within 6 months of the observed date. The TS is pushed outward every time a high ram-pressure solar wind pulse arrives. After the end of the high ram-pressure wind, the TS shock shrinks inward. When the last Halloween event passed through the TS at DOY 250, 2004, the TS began to shrink inward very quickly and the TS crossed V1. The highest inward speed of the TS is over 400 km/s. The high ram-pressure solar wind transmitted through the TS becomes a high thermal-pressure plasma in the heliosheath, acting to push the TS inward. This suggests that the position of the TS is determined not only by the steady-state pressure balance condition between the solar wind ram-pressure and the LISM pressure, but by the dynamical ram pressure too. The period when the high ram-pressure solar wind arrives at the TS shock seems to correspond to the period of the TS particle event (Stone et al, 2005, Decker et al., 2005). The TS crossing date will be revised in future simulations using a more appropriate set of parameters for the LISM. This will enable us to undertake a detailed comparison of the simulation results with the TS particle events.
NASA Astrophysics Data System (ADS)
Hayat, T.; Rashid, M.; Imtiaz, M.; Alsaedi, A.
2017-03-01
This study is focused on the heat and mass transfer effects in a magnetohydrodynamic (MHD) flow of a viscous nanofluid saturating a porous medium past an exponentially radiating stretching sheet. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. It is noted that stratification affects the local Nusselt and Sherwood numbers.
MHD simulation of RF current drive in MST
NASA Astrophysics Data System (ADS)
Hendries, E. R.; Anderson, J. K.; Diem, S.; Forest, C. B.; Harvey, R. W.; Reusch, J. A.; Seltzman, A. H.; Sovinec, C. R.
2014-02-01
Auxiliary heating and current drive using RF waves such as the electron Bernstein wave (EBW) promises to advance the performance of the reversed field pinch (RFP). In previous computational work [1], a hypothetical edge-localized current drive is shown to suppress the tearing activity which governs the macroscopic transport properties of the RFP. The ideal conditions for tearing stabilization include a reduced toroidal induction, and precise width and radial position of the Gaussian-shaped external current drive. In support of the EBW experiment on the Madison Symmetric Torus, an integrated modeling scheme now incorporates ray tracing and Fokker-Plank predictions of auxiliary current into single fluid MHD. Simulations at low Lundquist number (S ˜ 104) generally agree with the previous work; significantly more burdensome simulations at MST-like Lundquist number (S ˜ 3×106) show unexpected results. The effect on nonlinearly saturated current profile by a particular RF-driven external force decreases in magnitude and widens considerably as the Lundquist number increases toward experimental values. Simulations reproduce the periodic current profile relaxation events observed in experiment (sawteeth) in the absence of current profile control. Reduction of the tearing mode amplitudes is still observable; however, reduction is limited to periods between the large bursts of magnetic activity at each sawtooth. The sawtoothing pattern persists with up to 10 MW of externally applied RF power. Periods with prolonged low tearing amplitude are predicted with a combination of external current drive and a reduced toroidal loop voltage, consistent with previous conclusions. Finally, the resistivity profile is observed to have a strong effect on the optimal externally driven current profile for mode stabilization.
MHD simulation of RF current drive in MST
Hendries, E. R.; Anderson, J. K.; Forest, C. B.; Reusch, J. A.; Seltzman, A. H.; Sovinec, C. R.; Diem, S.; Harvey, R. W.
2014-02-12
Auxiliary heating and current drive using RF waves such as the electron Bernstein wave (EBW) promises to advance the performance of the reversed field pinch (RFP). In previous computational work [1], a hypothetical edge-localized current drive is shown to suppress the tearing activity which governs the macroscopic transport properties of the RFP. The ideal conditions for tearing stabilization include a reduced toroidal induction, and precise width and radial position of the Gaussian-shaped external current drive. In support of the EBW experiment on the Madison Symmetric Torus, an integrated modeling scheme now incorporates ray tracing and Fokker-Plank predictions of auxiliary current into single fluid MHD. Simulations at low Lundquist number (S ∼ 10{sup 4}) generally agree with the previous work; significantly more burdensome simulations at MST-like Lundquist number (S ∼ 3×10{sup 6}) show unexpected results. The effect on nonlinearly saturated current profile by a particular RF-driven external force decreases in magnitude and widens considerably as the Lundquist number increases toward experimental values. Simulations reproduce the periodic current profile relaxation events observed in experiment (sawteeth) in the absence of current profile control. Reduction of the tearing mode amplitudes is still observable; however, reduction is limited to periods between the large bursts of magnetic activity at each sawtooth. The sawtoothing pattern persists with up to 10 MW of externally applied RF power. Periods with prolonged low tearing amplitude are predicted with a combination of external current drive and a reduced toroidal loop voltage, consistent with previous conclusions. Finally, the resistivity profile is observed to have a strong effect on the optimal externally driven current profile for mode stabilization.
NASA Astrophysics Data System (ADS)
Kalteh, M.; Ghorbani, S.; Khademinejad, T.
2016-05-01
An axisymmetric magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a fluid over a slender cylinder are investigated numerically. The effects of viscous dissipation, thermal radiation, and surface transverse curvature are taken into account in the simulations. For this purpose, the governing partial differential equations are transformed to ordinary differential equations by using appropriate similarity transformations. The resultant ordinary differential equations along with appropriate boundary conditions are solved by the fourth-order Runge-Kutta method combined with the shooting technique. The effects of various parameters on the velocity and temperature profiles, local skin friction coefficient, and Nusselt number are analyzed.
Numerical simulation of propagation of the MHD waves in sunspots
NASA Astrophysics Data System (ADS)
Parchevsky, K.; Kosovichev, A.; Khomenko, E.; Olshevsky, V.; Collados, M.
2010-11-01
We present results of numerical 3D simulation of propagation of MHD waves in sunspots. We used two self consistent magnetohydrostatic background models of sunspots. There are two main differences between these models: (i) the topology of the magnetic field and (ii) dependence of the horizontal profile of the sound speed on depth. The model with convex shape of the magnetic field lines near the photosphere has non-zero horizorntal perturbations of the sound speed up to the depth of 7.5 Mm (deep model). In the model with concave shape of the magnetic field lines near the photosphere Δ c/c is close to zero everywhere below 2 Mm (shallow model). Strong Alfven wave is generated at the wave source location in the deep model. This wave is almost unnoticeable in the shallow model. Using filtering technique we separated magnetoacoustic and magnetogravity waves. It is shown, that inside the sunspot magnetoacoustic and magnetogravity waves are not spatially separated unlike the case of the horizontally uniform background model. The sunspot causes anisotropy of the amplitude distribution along the wavefront and changes the shape of the wavefront. The amplitude of the waves is reduced inside the sunspot. This effect is stronger for the magnetogravity waves than for magnetoacoustic waves. The shape of the wavefront of the magnetogravity waves is distorted stronger as well. The deep model causes bigger anisotropy for both mgnetoacoustic and magneto gravity waves than the shallow model.
NASA Astrophysics Data System (ADS)
Gorby, M.; Schwadron, N.; Torok, T.; Downs, C.; Lionello, R.; Linker, J.; Titov, V. S.; Mikic, Z.; Riley, P.; Desai, M. I.; Dayeh, M. A.
2014-12-01
Recent work on the coupling between the Energetic Particle Radiation Environment Module (EPREM, a 3D energetic particle model) and Magnetohydrodynamics Around a Sphere (MAS, an MHD code developed at Predictive Science, Inc.) has demonstrated the efficacy of compression regions around fast coronal mass ejections (CMEs) for particle acceleration low in the corona (˜ 3 - 6 solar radii). These couplings show rapid particle acceleration over a broad longitudinal extent (˜ 80 degrees) resulting from the pile-up of magnetic flux in the compression regions and their subsequent expansion. The challenge for forming large SEP events in such compression-acceleration scenarios is to have enhanced scattering within the acceleration region while also allowing for efficient escape of accelerated particles downstream (away from the Sun) from the compression region. We present here the most recent simulation results including energetic particle and CME plasma profiles, the subsequent flux and dosages at 1AU, and an analysis of the compressional regions as efficient accelerators.
Relativistic MHD simulations of poynting flux-driven jets
Guan, Xiaoyue; Li, Hui; Li, Shengtai
2014-01-20
Relativistic, magnetized jets are observed to propagate to very large distances in many active galactic nuclei (AGNs). We use three-dimensional relativistic MHD simulations to study the propagation of Poynting flux-driven jets in AGNs. These jets are already assumed to be being launched from the vicinity (∼10{sup 3} gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al., and we follow the propagation of these jets to ∼parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When α, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to nonaxisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability being convective and the fact that the jet magnetic fields are rapidly evolving on Alfvénic time scales. We present the detailed jet properties and show that far from the jet launching region, a substantial amount of magnetic energy has been transformed into kinetic energy and thermal energy, producing a jet magnetization number σ < 1. In addition, we have also studied the effects of a gas pressure supported 'disk' surrounding the injection region, and qualitatively similar global jet behaviors were observed. We stress that jet collimation, CDIs, and the subsequent energy transitions are intrinsic features of current-carrying jets.
NASA Technical Reports Server (NTRS)
An, C.-H.
1984-01-01
The role of photospheric line-tying, i.e., solar coronal loop structures, was investigated in terms of the effect on radiative modes and the influence that different radial pressure profiles exert on the effects of line-tying on radiative MHD stability. Energy is assumed dissipated by heat conduction and radiation and zero- and first-order solutions are obtained for the radiative time scales. Line-tying is a magnetic tension in the zero-order MHD mode and produces stability. Heat conduction occurs along bent field lines in first-order MHD modes when plasmas cross the field lines. Irradiated cool-core loops can experience MHD instabilities in the cylinder center, while line-tying can stabilize the plasma in the surrounding hot medium. Line-tying also adds stability to magnetosonic and condensation modes.
NASA Astrophysics Data System (ADS)
Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.
2014-12-01
We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.
HYBRID AND HALL-MHD SIMULATIONS OF COLLISIONLESS RECONNECTION: EFFECTS OF PLASMA PRESSURE TENSOR
L. YIN; D. WINSKE; ET AL
2001-05-01
In this study we performed two-dimensional hybrid (particle ions, massless fluid electrons) and Hall-MHD simulations of collisionless reconnection in a thin current sheet. Both calculations include the full electron pressure tensor (instead of a localized resistivity) in the generalized Ohm's law to initiate reconnection, and in both an initial perturbation to the Harris equilibrium is applied. First, electron dynamics from the two calculations are compared, and we find overall agreement between the two calculations in both the reconnection rate and the global configuration. To address the issue of how kinetic treatment for the ions affects the reconnection dynamics, we compared the fluid-ion dynamics from the Hall-MHD calculation to the particle-ion dynamics obtained from the hybrid simulation. The comparison demonstrates that off-diagonal elements of the ion pressure tensor are important in correctly modeling the ion out-of-plane momentum transport from the X point. It is that these effects can be modeled efficiently using a particle Hall-MHD simulation method in which particle ions used in a predictor/corrector to implement the ion gyro-radius corrections. We also investigate the micro- macro-scale coupling in the magnetotail dynamics by using a new integrated approach in which particle Hall-MHD calculations are embedded inside a MHD simulation. Initial results of the simulation concerning current sheet thinning and reconnection dynamics are discussed.
Global simulations of protoplanetary disks with net magnetic flux. I. Non-ideal MHD case
NASA Astrophysics Data System (ADS)
Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan
2017-04-01
Context. The planet-forming region of protoplanetary disks is cold, dense, and therefore weakly ionized. For this reason, magnetohydrodynamic (MHD) turbulence is thought to be mostly absent, and another mechanism has to be found to explain gas accretion. It has been proposed that magnetized winds, launched from the ionized disk surface, could drive accretion in the presence of a large-scale magnetic field. Aims: The efficiency and the impact of these surface winds on the disk structure is still highly uncertain. We present the first global simulations of a weakly ionized disk that exhibits large-scale magnetized winds. We also study the impact of self-organization, which was previously demonstrated only in non-stratified models. Methods: We perform numerical simulations of stratified disks with the PLUTO code. We compute the ionization fraction dynamically, and account for all three non-ideal MHD effects: ohmic and ambipolar diffusions, and the Hall drift. Simplified heating and cooling due to non-thermal radiation is also taken into account in the disk atmosphere. Results: We find that disks can be accreting or not, depending on the configuration of the large-scale magnetic field. Magnetothermal winds, driven both by magnetic acceleration and heating of the atmosphere, are obtained in the accreting case. In some cases, these winds are asymmetric, ejecting predominantly on one side of the disk. The wind mass loss rate depends primarily on the average ratio of magnetic to thermal pressure in the disk midplane. The non-accreting case is characterized by a meridional circulation, with accretion layers at the disk surface and decretion in the midplane. Finally, we observe self-organization, resulting in axisymmetric rings of density and associated pressure "bumps". The underlying mechanism and its impact on observable structures are discussed.
NASA Astrophysics Data System (ADS)
Nabert, Christian; Othmer, Carsten; Glassmeier, Karl-Heinz
2017-05-01
The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD) simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms) magnetosheath data to estimate Earth's dipole moment.
Resolving the Kinetic Reconnection Length Scale in Global Magnetospheric Simulations with MHD-EPIC
NASA Astrophysics Data System (ADS)
Toth, G.; Chen, Y.; Cassak, P.; Jordanova, V.; Peng, B.; Markidis, S.; Gombosi, T. I.
2016-12-01
We have recently developed a new modeling capability: the Magnetohydrodynamics with Embedded Particle-in-Cell (MHD-EPIC) algorithm with support from Los Alamos SHIELDS and NSF INSPIRE grants. We have implemented MHD-EPIC into the Space Weather Modeling Framework (SWMF) using the implicit Particle-in-Cell (iPIC3D) and the BATS-R-US extended magnetohydrodynamic codes. The MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. Both BATS-R-US and iPIC3D are massively parallel codes. The MHD-EPIC approach allows global magnetosphere simulations with embedded kinetic simulations. For small magnetospheres, like Ganymede or Mercury, we can easily resolve the ion scales around the reconnection sites. Modeling the Earth magnetosphere is very challenging even with our efficient MHD-EPIC model due to the large separation between the global and ion scales. On the other hand the large separation of scales may be exploited: the solution may not be sensitive to the ion inertial length as long as it is small relative to the global scales. The ion inertial length can be varied by changing the ion mass while keeping the MHD mass density, the velocity, and pressure the same for the initial and boundary conditions. Our two-dimensional MHD-EPIC simulations for the dayside reconnection region show in fact, that the overall solution is not sensitive to ion inertial length. The shape, size and frequency of flux transfer events are very similar for a wide range of ion masses. Our results mean that 3D MHD-EPIC simulations for the Earth and other large magnetospheres can be made computationally affordable by artificially increasing the ion mass: the required grid resolution and time step in the PIC model are proportional to the ion inertial length. Changing the ion mass by a factor of 4, for example, speeds up the PIC code by a factor of 256. In fact, this approach allowed us to perform an hour-long 3D MHD-EPIC simulations for the
MHD simulations for investigating interaction processes between a CME and ambient solar wind
NASA Astrophysics Data System (ADS)
An, Junmo; Magara, Tetsuya
2016-05-01
The interaction between coronal mass ejections (CMEs) and ambient solar winds is one of the important issues of space weather because it affects the trajectory of a flying CME, which determines whether the CME hits the Earth and produces geomagnetic disturbances or not. In this study, two-step 3D magnetohydrodynamic (MHD) simulations including a spheromak-type CME and an ambient solar wind are performed to investigate their interaction processes such as deflection and rotation of a CME. We perform the 1st-step MHD simulation using averaged surface magnetic field data to construct a steady state with an ambient solar wind. A spheromak-type CME is then injected through the solar surface, and subsequent evolution is reproduced by performing the 2nd-step MHD simulation. We discuss key parameters that characterize interaction processes between a CME and ambient solar wind.
Radiation detector spectrum simulator
Wolf, M.A.; Crowell, J.M.
1985-04-09
A small battery operated nuclear spectrum simulator having a noise source generates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith to generate several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.
Radiation detector spectrum simulator
Wolf, Michael A.; Crowell, John M.
1987-01-01
A small battery operated nuclear spectrum simulator having a noise source nerates pulses with a Gaussian distribution of amplitudes. A switched dc bias circuit cooperating therewith generates several nominal amplitudes of such pulses and a spectral distribution of pulses that closely simulates the spectrum produced by a radiation source such as Americium 241.
Accuracy of MHD simulations: Effects of simulation initialization in GUMICS-4
NASA Astrophysics Data System (ADS)
Lakka, Antti; Pulkkinen, Tuija; Dimmock, Andrew; Osmane, Adnane; Palmroth, Minna; Honkonen, Ilja
2016-04-01
We conducted a study aimed at revealing how different global magnetohydrodynamic (MHD) simulation initialization methods affect the dynamics in different parts of the Earth's magnetosphere-ionosphere system. While such magnetosphere-ionosphere coupling codes have been used for more than two decades, their testing still requires significant work to identify the optimal numerical representation of the physical processes. We used the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4), the only European global MHD simulation being developed by the Finnish Meteorological Institute. GUMICS-4 was put to a test that included two stages: 1) a 10 day Omni data interval was simulated and the results were validated by comparing both the bow shock and the magnetopause spatial positions predicted by the simulation to actual measurements and 2) the validated 10 day simulation run was used as a reference in a comparison of five 3 + 12 hour (3 hour synthetic initialisation + 12 hour actual simulation) simulation runs. The 12 hour input was not only identical in each simulation case but it also represented a subset of the 10 day input thus enabling quantifying the effects of different synthetic initialisations on the magnetosphere-ionosphere system. The used synthetic initialisation data sets were created using stepwise, linear and sinusoidal functions. Switching the used input from the synthetic to real Omni data was immediate. The results show that the magnetosphere forms in each case within an hour after the switch to real data. However, local dissimilarities are found in the magnetospheric dynamics after formation depending on the used initialisation method. This is evident especially in the inner parts of the lobe.
ON THE ORIGIN OF THE TYPE II SPICULES: DYNAMIC THREE-DIMENSIONAL MHD SIMULATIONS
MartInez-Sykora, Juan; Hansteen, Viggo; Moreno-Insertis, Fernando E-mail: viggo.hansteen@astro.uio.no
2011-07-20
Recent high temporal and spatial resolution observations of the chromosphere have forced the definition of a new type of spicule, 'type II's', that are characterized by rising rapidly, having short lives, and by fading away at the end of their lifetimes. Here, we report on features found in realistic three-dimensional simulations of the outer solar atmosphere that resemble the observed type II spicules. These features evolve naturally from the simulations as a consequence of the magnetohydrodynamical evolution of the model atmosphere. The simulations span from the upper layer of the convection zone to the lower corona and include the emergence of a horizontal magnetic flux. The state-of-art Oslo Staggered Code is used to solve the full MHD equations with non-gray and non-LTE radiative transfer and thermal conduction along the magnetic field lines. We describe in detail the physics involved in a process which we consider a possible candidate for the driver mechanism that produces type II spicules. The modeled spicule is composed of material rapidly ejected from the chromosphere that rises into the corona while being heated. Its source lies in a region with large field gradients and intense electric currents, which lead to a strong Lorentz force that squeezes the chromospheric material, resulting in a vertical pressure gradient that propels the spicule along the magnetic field, as well as Joule heating, which heats the jet material, forcing it to fade.
Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations
NASA Astrophysics Data System (ADS)
Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.
2013-12-01
There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.
Integrated Physics Advances in Simulation of Wave Interactions with Extended MHD Phenomena
Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Fu, GuoYong; Harvey, R. W.; Houlberg, Wayne A; Jaeger, Erwin Frederick; Jardin, S. C.; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; McCune, Douglas; Schissel, D.; Schnack, D.; Wright, J. C.
2007-06-01
The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP).
COSMIC-RAY PITCH-ANGLE SCATTERING IN IMBALANCED MHD TURBULENCE SIMULATIONS
Weidl, Martin S.; Jenko, Frank; Teaca, Bogdan; Schlickeiser, Reinhard
2015-09-20
Pitch-angle scattering rates for cosmic-ray particles in MHD simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfvén waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.
Matsumoto, R.; Tajima, T.; Kaisig, M.; Shibata, K.; Ishido, Y.; Tsuneta, S.; Kawai, G; Kurokawa, H.; Akioka, M.; Acton, L.; Strong, K.; Nitta, N.
1992-01-01
The soft X-ray telescope on the Yohkoh mission enabled us to observe the evolution of emerging flux regions (EFR) in coronal X-rays with high spatial and temportal resolution. Futhermore, we now have enough computing capability to perform three-dimensional MHD simulation of EFRs with sufficient spacial resolution to study details of the flux emergence process. These new tools provide the opportunity to investigate the physics involved in the formation of coronal loops in much more detail. We carried out 3D MHD simulations of emerging magnetic flux regions under various initial conditions; (1) a horizontal magnetic flux sheet, (2) a bundle of horizontal flux tubes, and (3) a flux sheet with sheared magnetic fields. Numerical results show that coronal magnetic loops are formed due to the enhanced bouyancy resulting from gas precipitating along magnetic field lines. The interchange modes help to produce a fine fibrous structure perpendicular to the magnetic field direction in the linear stage, while the undular modes determine the overall loop structure. We observe in 3D simulations that during the ascendance of loops the bundle of flux tubes, or even the flux sheet, developes into dense filaments pinched between magnetic loops. We also find that magnetic field lines are twisted by the vortex motion produced by the horizontal expansion of magnetic loops. Our numerical results may explain the observed signatures such as (1) the spacial relation between soft X-ray loops and H[alpha] arch filaments obtained by coordinated observation between Yohkoh and ground-based observatories (Kawai et al. 1992), (2) the rate of increase in size of soft X-ray loops in EFRs (Ishido et al. 1992), (3) emergence of twisted magnetic loops, and (4) the threshold flux for formation of chromospheric arch filament systems (AFS).
NASA Astrophysics Data System (ADS)
Hirai, K.; Katoh, Y.; Terada, N.; Kawai, S.
2016-12-01
In accretion disks, magneto-rotational instability (MRI; Balbus & Hawley, 1991) makes the disk gas in the magnetic turbulent state and drives efficient mass accretion into a central star. MRI drives turbulence through the evolution of the parasitic instability (PI; Goodman & Xu, 1994), which is related to both Kelvin-Helmholtz (K-H) instability and magnetic reconnection. The wave number vector of PI is strongly affected by both magnetic diffusivity and fluid viscosity (Pessah, 2010). This fact makes MHD simulation of MRI difficult, because we need to employ the numerical diffusivity for treating discontinuities in compressible MHD simulation schemes. Therefore, it is necessary to use an MHD scheme that has both high-order accuracy so as to resolve MRI driven turbulence and small numerical diffusivity enough to treat discontinuities. We have originally developed an MHD code by employing the scheme proposed by Kawai (2013). This scheme focuses on resolving turbulence accurately by using a high-order compact difference scheme (Lele, 1992), and meanwhile, the scheme treats discontinuities by using the localized artificial diffusivity method (Kawai, 2013). Our code also employs the pipeline algorithm (Matsuura & Kato, 2007) for MPI parallelization without diminishing the accuracy of the compact difference scheme. We carry out a 3-dimensional ideal MHD simulation with a net vertical magnetic field in the local shearing box disk model. We use 256x256x128 grids. Simulation results show that the spatially averaged turbulent stress induced by MRI linearly grows until around 2.8 orbital periods, and decreases after the saturation. We confirm the strong enhancement of the K-H mode PI at a timing just before the saturation, identified by the enhancement of its anisotropic wavenumber spectra in the 2-dimensional wavenumber space. The wave number of the maximum growth of PI reproduced in the simulation result is larger than the linear analysis. This discrepancy is explained by
Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, Michael
2014-01-01
Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.
Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump.
Wang, Pei-Jen; Chang, Chia-Yuan; Chang, Ming-Lang
2004-07-30
MHD micro-pumps circumvent the wear and fatigue caused by high pressure-drop across the check valves of mechanical micro-pumps in micro-fluidic systems. Early analyses of the fluid flow for MHD micro-pumps were mostly made possible by the Poiseuille flow theory; however, this conventional laminar approach cannot illustrate the effects of various channel sizes and shapes. This paper, therefore, presents a simplified MHD flow model based upon steady state, incompressible and fully developed laminar flow theory to investigate the characteristics of a MHD pump. Inside the pump, flowing along the channel is the electrically conducting fluid flowing driven by the Lorentz forces in the direction perpendicular to both dc magnetic field and applied electric currents. The Lorentz forces were converted into a hydrostatic pressure gradient in the momentum equations of the MHD channel flow model. The numerical simulations conducted with the explicit finite difference method show that the channel dimensions and the induced Lorentz forces have significant influences on the flow velocity profile. Furthermore, the simulation results agree well with the experimental results published by other researchers.
Radiation in Particle Simulations
More, R; Graziani, F; Glosli, J; Surh, M
2010-11-19
Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of megabars to thousands of gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known. The second method expands the electromagnetic field in normal modes (planewaves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion. The third method is a hybrid molecular dynamics/Monte Carlo (MD/MC) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions. The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc. This approach is inspired by the virial expansion method of equilibrium statistical mechanics. Using a combination of these methods we believe it is possible to do atomic-scale particle simulations of
MHD simulation of mass injection - A mechanism for the formation of active region loops
NASA Technical Reports Server (NTRS)
Cheng, Chung-Chieh; Wu, S. T.
1988-01-01
A two-dimensional nonlinear MHD numerical code is used to simulate the formation and dynamic evolution of active regions loops subjected to mass injections at the footpoints. The UV and X-ray signatures of the plasmas are also calculated. It is found that it is possible to form loops in a low beta plasma that occurs in the solar active regions.
Plasma wave signatures in the magnetotail reconnection region - MHD simulation and ray tracing
NASA Technical Reports Server (NTRS)
Omura, Yoshiharu; Green, James L.
1993-01-01
An MHD simulation was performed to obtain a self-consistent model of magnetic field and plasma density near the X point reconnection region. The MHD model was used to perform extensive ray tracing calculations in order to clarify the propagation characteristics of the plasma waves near the X point reconnection region. The dynamic wave spectra possibly observed by the Geotail spacecraft during a typical cross-tail trajectory are reconstructed. By comparing the extensive ray tracing calculations with the plasma wave data from Geotail, it is possible to perform a kind of 'remote sensing' to identify the location and structure of potential X point reconnection regions.
AMPEL experiments: nitric-oxide concentration measurements in a simulated MHD combustion gas
Dunn, P. F.; Johnson, T. R.; Reed, C. B.
1980-12-01
Results are presented of recent investigations of the effect of secondary combustion on nitric oxide (NO) concentrations in an simulated magnetohydrodynamic (MHD) combustion gas. Forty-one experiments, in which NO concentration measurements were made, were conducted at the Argonne MHD Process Engineering Laboratory (AMPEL). In sixteen of those experiments, secondary air mixed with the primary combustion gas was combusted over two temperature ranges (1500-1800/sup 0/K and 1700-2000/sup 0/K). For all clean-fuel experiments conducted, the measured changes in NO concentration that resulted from secondary combustion were predicted to within 10%, using an Argonne modification of the NASA chemical kinetics code. This predictive code was extended to estimate changes in NO concentrations that would occur during secondary combustion in a larger MHD facility. It is concluded that, in addition to mixing and several other factors, the heat loss from the secondary combustion zone strongly influences the amount of NO formed during secondary combustion.
High fidelity studies of exploding foil initiator bridges, Part 3: ALEGRA MHD simulations
NASA Astrophysics Data System (ADS)
Neal, William; Garasi, Christopher
2017-01-01
Simulations of high voltage detonators, such as Exploding Bridgewire (EBW) and Exploding Foil Initiators (EFI), have historically been simple, often empirical, one-dimensional models capable of predicting parameters such as current, voltage, and in the case of EFIs, flyer velocity. Experimental methods have correspondingly generally been limited to the same parameters. With the advent of complex, first principles magnetohydrodynamic codes such as ALEGRA and ALE-MHD, it is now possible to simulate these components in three dimensions, and predict a much greater range of parameters than before. A significant improvement in experimental capability was therefore required to ensure these simulations could be adequately verified. In this third paper of a three part study, the experimental results presented in part 2 are compared against 3-dimensional MHD simulations. This improved experimental capability, along with advanced simulations, offer an opportunity to gain a greater understanding of the processes behind the functioning of EBW and EFI detonators.
NASA Astrophysics Data System (ADS)
Wiltberger, M. J.; Lyon, J.; Elkington, S. R.; Merkin, V. G.
2013-12-01
Global scale magnetohydrodynamic simulations have been used to successfully study the evolution of the magnetosphere-ionosphere system under a variety of solar wind conditions. Early studies with the Lyon-Fedder-Mobarry (LFM) model show the presence of flow channels in substorm simulations that had characteristics similar to those seen in observations of bursty bulk flows (BBFs) observed by numerous spacecraft, such as AMPTE and Geotail. More recently the THEMIS constellation has provided a unique opportunity to track the evolution of dipolarization fronts (DFs) from the mid-tail into the inner magnetosphere. Additionally, advances in high performance computing capability make it possible to conduct ultra-high resolution global simulations. In this paper we present comparisons between these ultra-high resolution simulations and the observations of THEMIS. The comparisons include a case study for a DF that was well observed on February 27, 2009 and statistical properties of the flow and electromagnetic field signatures seen in observations and MHD simulations with idealized solar wind conditions. In addition to these comparisons we will present results of using test-particle simulations of electrons driven by the simulated fields to study particle energization in regions around DFs.
Heat transfer including radiation and slag particles evolution in MHD channel-I
Im, K H; Ahluwalia, R K
1980-01-01
Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed.
Radiation in Particle Simulations
More, R M; Graziani, F R; Glosli, J; Surh, M
2009-06-15
Hot dense radiative (HDR) plasmas common to Inertial Confinement Fusion (ICF) and stellar interiors have high temperature (a few hundred eV to tens of keV), high density (tens to hundreds of g/cc) and high pressure (hundreds of Megabars to thousands of Gigabars). Typically, such plasmas undergo collisional, radiative, atomic and possibly thermonuclear processes. In order to describe HDR plasmas, computational physicists in ICF and astrophysics use atomic-scale microphysical models implemented in various simulation codes. Experimental validation of the models used to describe HDR plasmas are difficult to perform. Direct Numerical Simulation (DNS) of the many-body interactions of plasmas is a promising approach to model validation but, previous work either relies on the collisionless approximation or ignores radiation. We present four methods that attempt a new numerical simulation technique to address a currently unsolved problem: the extension of molecular dynamics to collisional plasmas including emission and absorption of radiation. The first method applies the Lienard-Weichert solution of Maxwell's equations for a classical particle whose motion is assumed to be known (section 3). The second method expands the electromagnetic field in normal modes (plane-waves in a box with periodic boundary-conditions) and solves the equation for wave amplitudes coupled to the particle motion (section 4). The third method is a hybrid MD/MC (molecular dynamics/Monte Carlo) method which calculates radiation emitted or absorbed by electron-ion pairs during close collisions (section 5). The fourth method is a generalization of the third method to include small clusters of particles emitting radiation during close encounters: one electron simultaneously hitting two ions, two electrons simultaneously hitting one ion, etc.(section 6). This approach is inspired by the Virial expansion method of equilibrium statistical mechanics.
Comparison of empirical magnetic field models and global MHD simulations: The near-tail currents
NASA Technical Reports Server (NTRS)
Pulkkinen, T. I.; Baker, D. N.; Walker, R. J.; Raeder, J.; Ashour-Abdalla, M.
1995-01-01
The tail currents predicted by empirical magnetic field models and global MHD simulations are compared. It is shown that the near-Earth currents obtained from the MHD simulations are much weaker than the currents predicted by the Tsyganenko models, primarily because the ring current is not properly represented in the simulations. On the other hand, in the mid-tail and distant tail the lobe field strength predicted by the simulations is comparable to what is observed at about 50 R(sub E) distance, significantly larger than the very low lobe field values predicted by the Tsyganenko models at that distance. Ways to improve these complementary approaches to model the actual magnetospheric configuration are discussed.
NASA Astrophysics Data System (ADS)
Huang, Z.; Jia, X.; Rubin, M.; Fougere, N.; Gombosi, T. I.; Tenishev, V.; Combi, M. R.; Bieler, A. M.; Toth, G.; Hansen, K. C.; Shou, Y.
2014-12-01
We study the plasma environment of the comet Churyumov-Gerasimenko, which is the target of the Rosetta mission, by performing large scale numerical simulations. Our model is based on BATS-R-US within the Space Weather Modeling Framework that solves the governing multifluid MHD equations, which describe the behavior of the cometary heavy ions, the solar wind protons, and electrons. The model includes various mass loading processes, including ionization, charge exchange, dissociative ion-electron recombination, as well as collisional interactions between different fluids. The neutral background used in our MHD simulations is provided by a kinetic Direct Simulation Monte Carlo (DSMC) model. We will simulate how the cometary plasma environment changes at different heliocentric distances.
Thermodynamic MHD Simulations of Jets in the Solar Corona and Inner Heliosphere
NASA Astrophysics Data System (ADS)
Lionello, R.; Torok, T.; Titov, V. S.; Linker, J.; Mikic, Z.; Leake, J. E.; Linton, M.
2015-12-01
Coronal jets are transient, collimated plasma ejections that occur predominantly in coronal holes and are observed in EUV, soft X-ray, and occasionally in white-light coronagraphs. While these intriguing phenomena have been studied and modeled for more than two decades, the details of their formation mechanism(s) are not yet fully understood, and their potential role for the generation of the fast solar wind remains largely elusive. Here we present 3D MHD simulations of coronal jets which are performed in a large computational domain (up to 20 solar radii) and incorporate the effects of thermal conduction, radiative cooling, empirical coronal heating, and the solar wind. These features allow us to model the plasma properties and energy transfer of coronal jets in a more realistic manner than done so far, and to study the amount of energy and mass transported by these phenomena into the higher corona and inner heliosphere. In order to produce a jet, we consider a simple, purely radial background magnetic field and slowly introduce a magnetic flux rope into the coronal configuration by coupling our model to dynamic flux emergence simulations at the lower boundary of the computational domain. We find two types of jets in our simulations: a very impulsive event reminiscent of so-called blowout jets and a slowly developing, more extended event that produces a long-lasting signature in the corona. We present synthetic satellite images for both types of events and discuss their respective formation mechanisms. Our analysis is supported by a detailed investigation of the magnetic topology for the blowout-type case and of the transport of energy and plasma into the higher corona and inner heliosphere for the long-lasting event.
NASA Astrophysics Data System (ADS)
Takado, W.; Matsumoto, Y.; Watanabe, K. Y.; Tomioka, S.; Oikawa, S.
2017-09-01
We studied the effects of the broken solenoidal condition of a magnetic field in linear magnetohydrodynamics (MHD) simulations based on a real coordinate system for Large Helical Device plasmas. Artificial errors of various orders in this condition were introduced into linear MHD simulations and compared. Spurious Fourier modes were observed to be dominant because of the error in the condition. We suggested a criterion, which is expressed as the condition that the ratio of the error force to the Lorentz force is much smaller than 100%, for estimating an acceptable limit of the solenoidal condition error through the simulation results. The effects of a large error in the condition of the analysis of a specified single-mode instability were investigated in addition. Adding a large error in the condition resulted in certain undesirable modes becoming dominant, whereas the desirable mode did not dominate. Thus, a large error in the condition can be harmful to analysis with a focus on specified modes.
Schmidt, J. M.; Cairns, Iver H.; Hillan, D. S.
2013-08-20
Type II solar radio bursts are the primary radio emissions generated by shocks and they are linked with impending space weather events at Earth. We simulate type II bursts by combining elaborate three-dimensional MHD simulations of realistic coronal mass ejections (CMEs) at the Sun with an analytic kinetic radiation theory developed recently. The modeling includes initialization with solar magnetic and active region fields reconstructed from magnetograms of the Sun, a flux rope of the initial CME dimensioned with STEREO spacecraft observations, and a solar wind driven with averaged empirical data. We demonstrate impressive accuracy in time, frequency, and intensity for the CME and type II burst observed on 2011 February 15. This implies real understanding of the physical processes involved regarding the radio emission excitation by shocks and supports the near-term development of a capability to predict and track these events for space weather prediction.
NASA Astrophysics Data System (ADS)
Ngwira, Chigomezyo M.; Pulkkinen, Antti; Kuznetsova, Maria M.; Glocer, Alex
2014-06-01
There is a growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure. In the last two decades, significant progress has been made toward the first-principles modeling of space weather events, and three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, thereby playing a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for the modern global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events with a Dst footprint comparable to the Carrington superstorm of September 1859 based on the estimate by Tsurutani et. al. (2003). Results are presented for a simulation run with "very extreme" constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated induced geoelectric field on the ground to such extreme driving conditions. The model setup is further tested using input data for an observed space weather event of Halloween storm October 2003 to verify the MHD model consistence and to draw additional guidance for future work. This extreme space weather MHD model setup is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in ground-based conductor systems such as power transmission grids. Therefore, our ultimate goal is to explore the level of geoelectric fields that can be induced from an assumed storm of the reported magnitude, i.e., Dst˜=-1600 nT.
Modeling of substorm development with a kinematic effect by the global MHD simulations
NASA Astrophysics Data System (ADS)
den, Mitsue; Fujita, Shigeru; Tanaka, Takashi; Horiuchi, Ritoku
Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. Recently, Tanaka and Fujita reproduced substorm evoution process by numerical simulation with the global MHD code. In the MHD framework, the dissipation model is used for modeling of the kinetic effects. They found that the normalized reconnection viscosity, one of the dessipation model employed there, gave a large effect for the substorm development though that viscosity was assumed to be a constant parameter. It is well known that magnetric reconnection is controlled by microscopic kinetic mechanism. Horiuchi et al. investigated the roles of microscopic plasma instabilities on the violation of the frozen-in condition by examining the force balance equation based on explicit electromagnetic particle simulation for an ion-scale current sheet, and concluded that the growth of drift kink instability can create anomalous resistivity leading to the excitation of collisionless reconnection. They estimated the effective resistivity based on the particle simulation data. In this paper, we perform substorm simulation by using the global MHD code with this anomalous resistivity obtained in their microscopic approach istead of the emprical resistivity model, and investigate the relationship between the substorm development and the anomalous resistivity model.
SOLAR WIND TURBULENCE FROM MHD TO SUB-ION SCALES: HIGH-RESOLUTION HYBRID SIMULATIONS
Franci, Luca; Verdini, Andrea; Landi, Simone; Matteini, Lorenzo; Hellinger, Petr
2015-05-10
We present results from a high-resolution and large-scale hybrid (fluid electrons and particle-in-cell protons) two-dimensional numerical simulation of decaying turbulence. Two distinct spectral regions (separated by a smooth break at proton scales) develop with clear power-law scaling, each one occupying about a decade in wavenumbers. The simulation results simultaneously exhibit several properties of the observed solar wind fluctuations: spectral indices of the magnetic, kinetic, and residual energy spectra in the magnetohydrodynamic (MHD) inertial range along with a flattening of the electric field spectrum, an increase in magnetic compressibility, and a strong coupling of the cascade with the density and the parallel component of the magnetic fluctuations at sub-proton scales. Our findings support the interpretation that in the solar wind, large-scale MHD fluctuations naturally evolve beyond proton scales into a turbulent regime that is governed by the generalized Ohm’s law.
3D simulations of fluctuation spectra in the hall-MHD plasma.
Shaikh, Dastgeer; Shukla, P K
2009-01-30
Turbulent spectral cascades are investigated by means of fully three-dimensional (3D) simulations of a compressible Hall-magnetohydrodynamic (H-MHD) plasma in order to understand the observed spectral break in the solar wind turbulence spectra in the regime where the characteristic length scales associated with electromagnetic fluctuations are smaller than the ion gyroradius. In this regime, the results of our 3D simulations exhibit that turbulent spectral cascades in the presence of a mean magnetic field follow an omnidirectional anisotropic inertial-range spectrum close to k(-7/3). The latter is associated with the Hall current arising from nonequal electron and ion fluid velocities in our 3D H-MHD plasma model.
Gas Core Reactor Numerical Simulation Using a Coupled MHD-MCNP Model
NASA Technical Reports Server (NTRS)
Kazeminezhad, F.; Anghaie, S.
2008-01-01
Analysis is provided in this report of using two head-on magnetohydrodynamic (MHD) shocks to achieve supercritical nuclear fission in an axially elongated cylinder filled with UF4 gas as an energy source for deep space missions. The motivation for each aspect of the design is explained and supported by theory and numerical simulations. A subsequent report will provide detail on relevant experimental work to validate the concept. Here the focus is on the theory of and simulations for the proposed gas core reactor conceptual design from the onset of shock generations to the supercritical state achieved when the shocks collide. The MHD model is coupled to a standard nuclear code (MCNP) to observe the neutron flux and fission power attributed to the supercritical state brought about by the shock collisions. Throughout the modeling, realistic parameters are used for the initial ambient gaseous state and currents to ensure a resulting supercritical state upon shock collisions.
NASA Astrophysics Data System (ADS)
Carver, Robert L.; Cunningham, Andrew J.; Frank, Adam; Hartigan, Patrick; Coker, Robert; Wilde, B. H.; Foster, John; Rosen, Paula
2010-12-01
Laboratory astrophysics holds great promise not only as a highly effective validation tool for astrophysical magneto-hydrodynamics (MHD) codes but it also presents a unique challenge for these codes. The high-density plasmas found in these experiments are not well modeled by the ideal equations of state (EOS) found in most astrophysical simulation codes. To solve this problem, we replaced the ideal EOS scheme in an existing MHD code, AstroBEAR, with a non-ideal EOS method and validated our implementation with van der Waals shock tube tests. The improved code is also able to model flows that contain more than one material, as required in laboratory experiments. Simulations of jet experiments performed at the OMEGA Laser reproduce the morphology of the jet much better than when the code used a single material and an ideal EOS.
Substorm effects in MHD and test particle simulations of magnetotail dynamics
Birn, J.; Hesse, M.
1998-12-31
Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures.
Radiation asymmetry and MHD activity in gas jet rapid shutdowns on Alcator C-Mod
NASA Astrophysics Data System (ADS)
Olynyk, Geoffrey; Granetz, Robert; Whyte, Dennis; Alcator C-Mod Team
2013-10-01
Radiative rapid shutdown via massive noble gas injection (MGI) is an integral part of the ITER disruption mitigation system (DMS). However, observations have shown that the radiation during MGI rapid shutdowns may be spatially asymmetric, particularly during the initial phase when the plasma's thermal energy is converted to radiation. ITER requires the radiation peaking factor (PF) to be less than approximately 2.0 to 2.5 in this thermal quench (TQ) phase in order to prevent melting of the beryllium wall even in the case of a successful MGI rapid shutdown. We report on observations of rotating MHD modes in single- and multiple-gas-jet rapid shutdowns on Alcator C-Mod, and discuss the role of mode rotation during the TQ in setting the radiation peaking factor. The implications for the ITER DMS are discussed. This work was supported by the United States Department of Energy under Contract No. DE-FC02-99ER54512 and the Natural Sciences and Engineering Research Council of Canada PGS D program.
Thermodynamic MHD Simulation of the 2000 July 14 "Bastille Day" Eruption
NASA Astrophysics Data System (ADS)
Torok, Tibor; Downs, Cooper; Lionello, Roberto; Linker, Jon A.; Titov, Viacheslav S.; Mikic, Zoran; Riley, Pete
2015-04-01
The "Bastille Day" event that occurred on 2000 July 14 is one of the most extensively studied solar eruptions. It originated in a complex active region close to disk center and produced an X5.7 flare, a fast halo CME, and an intense geomagnetic storm. Accurate numerical simulations of such events, in particular the matching of parameters relevant for space weather such as the CME velocity and magnetic orientation, require a realistic model of the large-scale magnetic field and plasma environment into which the eruption propagates and interacts, as well as a modeling of the pre-eruptive configuration and eruption initiation that are as realistic as possible. Here we present an MHD simulation of the Bastille Day event that complies with these requirements. We first produce a steady-state MHD solution of the background corona that incorporates realistic energy transport ("thermodynamic MHD"), photospheric magnetic field measurements, and the solar wind. In order to model the pre-eruptive magnetic field, we then insert a stable, elongated flux rope that resides above the highly curved polarity inversion line of the active region. Finally, we produce the eruption by imposing photospheric flows that slowly converge towards the polarity inversion line. In this presentation we describe our method, compare the simulation results with the observations, and discuss the challenges and limitations involved in modeling such complex and powerful eruptions.
Extended MHD simulations for application to ITER disruption mitigation techniques
NASA Astrophysics Data System (ADS)
Woodruff, Simon; Stuber, James; Schetterer, Sam; ITER Disruption Mitigation Collaboration
2013-10-01
Various disruption scenarios are modeled computationally by use of the CORSICA and NIMROD codes, following the work of Kruger and Strauss with the aim of providing starting-points for investigation of tokamak disruption mitigation techniques. It is found that pressure-driven instabilities previously observed in simulations of DIII-D are verified, and that halo currents from vertical displacements are observed in simulations with implementation of resistive walls for ITER. We discuss implications and plans for simulations of disruption mitigation techniques. We outline validation activities for existing facilities. Work performed for USITER under DE-AC05-00OR22725 subcontract # 4000118643.
Understanding magnetic storms and substorms through data closure with global MHD simulations
NASA Astrophysics Data System (ADS)
Goodrich, C. C.; Lyon, J. G.; Wiltberger, M. J.; Fedder, J. A.; Slinker, S. P.
Magnetic storms and substorms are the most dynamic expressions of the coupling of the solar wind flow into the geospace environment. Since first defined by their ionospheric signatures observed from the ground, their study has been dominated by the immense increase in observations available from the expansion in sophistication and coverage of ground based and satellite sensors. These observations have increased our understanding greatly regarding the conditions, characteristics and signatures of storms and substorms in both the ionosphere and magnetosphere. However, it has proven easier to compile increasingly detailed pictures for both storms and substorms to constrain and validate models than to develop a fundamental understanding of their dynamics from the observations. Despite the expansion of observations, the immense and highly coupled solar wind magnetosphere ionosphere system remains quite sparsely sampled, and will remain so in the foreseeable future. More recently numerical simulation models have developed to the point that global modeling of full geospace system is practical. Global MHD codes, using upstream solar wind observations, can easily model substorm events lasting several hours or storms lasting several days. While the MHD codes can reproduce the global current systems and plasma and magnetic field structure, they can only approximately model the inner magnetosphere and important boundary layers including the bow shock, magnetopause, and magnetotail current sheet. Kinetic codes Vlasov, particle in cell (PIC), or hybrid could in principle accurately model these structures. However, it remains impractical to perform a kinetic simulation on the global scale of geospace with realistic plasma and field parameters. Despite their limitations, global MHD codes are currently the only practical tool for modeling the global geospace system. These limitations of the observations and codes suggest the best strategy now for studying storms and substorm is
Using Two-Ribbon Flare Observations and MHD Simulations to Constrain Flare Properties
NASA Astrophysics Data System (ADS)
Kazachenko, Maria D.; Lynch, Benjamin J.; Welsch, Brian
2016-05-01
Flare ribbons are emission structures that are frequently observed during flares in transition-region and chromospheric radiation. These typically straddle a polarity inversion line (PIL) of the radial magnetic field at the photosphere, and move apart as the flare progresses. The ribbon flux - the amount of unsigned photospheric magnetic flux swept out by flare ribbons - is thought to be related to the amount coronal magnetic reconnection, and hence provides a key diagnostic tool for understanding the physical processes at work in flares and CMEs. Previous measurements of the magnetic flux swept out by flare ribbons required time-consuming co-alignment between magnetograph and intensity data from different instruments, explaining why those studies only analyzed, at most, a few events. The launch of the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA), both aboard the Solar Dynamics Observatory (SDO), presented a rare opportunity to compile a much larger sample of flare-ribbon events than could readily be assembled before. We created a dataset of 363 events of both flare ribbon positions and fluxes, as a function of time, for all C9.-class and greater flares within 45 degrees of disk center observed by SDO from June 2010 till April 2015. For this purpose, we used vector magnetograms (2D magnetic field maps) from HMI and UV images from AIA. A critical problem with using unprocessed AIA data is the existence of spurious intensities in AIA data associated with strong flare emission, most notably "blooming" (spurious smearing of saturated signal into neighboring pixels, often in streaks). To overcome this difficulty, we have developed an algorithmic procedure that effectively excludes artifacts like blooming. We present our database and compare statistical properties of flare ribbons, e.g. evolutions of ribbon reconnection fluxes, reconnection flux rates and vertical currents with the properties from MHD simulations.
MHD Simulations of the Eruption of Coronal Flux Ropes under Coronal Streamers
NASA Astrophysics Data System (ADS)
Fan, Yuhong
2017-07-01
Using three-dimensional magnetohydrodynamic (MHD) simulations, we investigate the eruption of coronal flux ropes underlying coronal streamers and the development of a prominence eruption. We initialize a quasi-steady solution of a coronal helmet streamer, into which we impose at the lower boundary the slow emergence of a part of a twisted magnetic torus. As a result, a quasi-equilibrium flux rope is built up under the streamer. With varying streamer sizes and different lengths and total twists of the flux rope that emerges, we found different scenarios for the evolution from quasi-equilibrium to eruption. In the cases with a broad streamer, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with increasing height until it eventually develops a “hernia-like” ejective eruption. For significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to runaway radiative cooling. Once formed, the prominence-carrying field becomes significantly non-force-free due to the weight of the prominence, despite having low plasma β. As the flux rope erupts, the prominence erupts, showing substantial draining along the legs of the erupting flux rope. The prominence may not show a kinked morphology even though the flux rope becomes kinked. On the other hand, in the case with a narrow streamer, the flux rope with less than one wind of twist can erupt via the onset of the torus instability.
An Improved 3D Radiative-MHD Model of the Convection Zone-to-Corona System
NASA Astrophysics Data System (ADS)
Abbett, William P.; Bercik, D. J.; Kazachenko, M.
2012-05-01
We present the latest results from an improved radiative-MHD model of the convection zone-to-corona system. The numerical methods of the RADMHD model of Abbett & Fisher (2012) have been significantly updated so that the underlying finite volume scheme is (1) no longer dimensionally split along coordinate axes; (2) of much higher order accuracy using a three-dimensional 27-point stencil; and (3) capable of performing much larger scale calculations in both spherical polar coordinates and Cartesian coordinates. We will describe the improvements of the underlying scheme in detail, present a 3D dynamic convection zone-to-corona quiet Sun model using the new formalism, and compare the latest results with previous models.
Heat transfer with thermal radiation on MHD particle-fluid suspension induced by metachronal wave
NASA Astrophysics Data System (ADS)
Bhatti, M. M.; Zeeshan, A.; Ellahi, R.
2017-09-01
In this article, effects of heat transfer on particle-fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the velocity profile, Hartmann number and particle volume fraction oppose the flow.
Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
Guazzotto, L.; Betti, R.
2011-09-15
Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.
3D MHD Simulations of Injector Coupling and Current Drive in HIT-SI
NASA Astrophysics Data System (ADS)
Hansen, Chris; Marklin, George; Jarboe, Thomas
2013-10-01
A new non-linear reduced MHD code has been developed using the PSI-TET framework, which is capable of modeling the full HIT-SI geometry with consistent boundary conditions for the insulator coated flux conserver. The PSI-TET framework provides general mechanics supporting the development of multi-physics simulation using high order finite methods with a tetrahedral spatial discretization. Using these capabilities an implementation of reduced Hall-MHD was developed where temperature and density are assumed to be uniform and constant, reducing the full MHD equations to the momentum and induction equations. A Nedelec vector basis set is used for the magnetic field, which preserves the divergence free property of the induction equation, and a scalar Lagrange basis is used for each component of the velocity. The equation system is advanced using a time centered implicit scheme, which is solved using a multi-grid preconditioned Newton-Krylov method. Results will be presented focusing on internal injector dynamics and coupling to the Spheromak region. Comparison between this code and experimental data as well as existing NIMROD simulations of HIT-SI, which model the injector operation with boundary conditions on an axisymmetric grid, will also be shown. Work supported by DOE.
Two-dimensional magnetohydrodynamic simulations of poloidal flows in tokamaks and MHD pedestal
NASA Astrophysics Data System (ADS)
Guazzotto, L.; Betti, R.
2011-09-01
Poloidal rotation is routinely observed in present-day tokamak experiments, in particular near the plasma edge and in the high-confinement mode of operation. According to the magnetohydrodynamic (MHD) equilibrium theory [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)], radial discontinuities form when the poloidal velocity exceeds the poloidal sound speed (or rather, more correctly, the poloidal magneto-slow speed). Two-dimensional compressible magnetohydrodynamic simulations show that the transonic discontinuities develop on a time scale of a plasma poloidal revolution to form an edge density pedestal and a localized velocity shear layer at the pedestal location. While such an MHD pedestal surrounds the entire core, the outboard side of the pedestal is driven by the transonic discontinuity while the inboard side is caused by a poloidal redistribution of the mass. The MHD simulations use a smooth momentum source to drive the poloidal flow. Soon after the flow exceeds the poloidal sound speed, the density pedestal and the velocity shear layer form and persist into a quasi steady state. These results may be relevant to the L-H transition, the early stages of the pedestal and edge transport barrier formation.
NASA Astrophysics Data System (ADS)
Ahamad, N. Ameer; Ravikumar, S.; Govindaraju, Kalimuthu
2017-07-01
The aim of the present attempt was to investigate an effect of slip and joule heating on MHD peristaltic Newtonian fluid through an asymmetric vertical tapered channel under influence of radiation. The Mathematical modeling is investigated by utilizing long wavelength and low Reynolds number assumptions. The effects of Hartmann number, porosity parameter, volumetric flow rate, radiation parameter, non uniform parameter, shift angle, Prandtl number, Brinkman number, heat source/sink parameter on temperature characteristics are presented graphically and discussed in detail.
FTE Dependence on IMF Orientation and Presence of Hall Physics in Global MHD Simulations
NASA Astrophysics Data System (ADS)
Maynard, K. M.; Germaschewski, K.; Lin, L.; Raeder, J.
2013-12-01
Flux Transfer Events (FTEs) are poleward traveling flux ropes that form in the dayside magnetopause and represent significant coupling of the solar wind to the magnetosphere during times of southward IMF. In the 35 years since their discovery, FTEs have been extensively observed and modeled; however, there is still no consensus on their generation mechanism. Previous modeling efforts have shown that FTE occurrence and size depend on the resistivity model that is used in simulations and the structure of X-lines in the magnetopause. We use Hall OpenGGCM, a global Hall-MHD code, to study the formation and propagation of FTEs in the dayside magnetopause using synthetic solar wind conditions. We examine large scale FTE structure and nearby magnetic separators for a range of IMF clock angles and dipole tilts. In addition, we investigate how FTE formation and recurrence rate depends on the presence of the Hall term in the generalized Ohm's law compared with resistive MHD.
Explosive Turbulent Magnetic Reconnection: A New Approach of MHD-Turbulent Simulation
NASA Astrophysics Data System (ADS)
Hoshino, Masahiro; Yokoi, Nobumitsu; Higashimori, Katsuaki
2013-04-01
Turbulent flows are often observed in association with magnetic reconnection in space and astrophysical plasmas, and it is often hypothesized that the turbulence can contribute to the fast magnetic reconnection through the enhancement of magnetic dissipation. In this presentation, we demonstrate that an explosive turbulent reconnection can happen by using a new turbulent MHD simulation, in which the evolution of the turbulent transport coefficients are self-consistently solved together with the standard MHD equations. In our model, the turbulent electromotive force defined by the correlation of turbulent fluctuations between v and B is added to the Ohm's law. We discuss that the level of turbulent can control the topology of reconnection, namely the transition from the Sweet-Parker reconnection to the Petscheck reconnection occurs when the level of fluctuations becomes of order of the ambient physical quantities, and show that the growth of the turbulent Petscheck reconnection becomes much faster than the conventional one.
Numerical simulation of MHD turbulence in three dimensions
NASA Technical Reports Server (NTRS)
Goldstein, M. L.; Roberts, D. A.; Deane, A.
1997-01-01
The evolution of Alfvenic turbulence in 3D spherical geometry can now be studied. In simulations, a fast stream is sandwiched between two slower streams. The inflow is both supersonic and superAlfvenic. Alfven waves entering the box are convected into the medium and interact nonlinearly with the velocity shear and with any structures (i.e., flux tubes) that might be present. These initial simulations suggest that velocity shear, even in spherical geometry, is able to drive a turbulent cascade which results in approximately Kolmogoroff-like power spectra.
Emergence of MHD structures in a collisionless PIC simulation plasma
NASA Astrophysics Data System (ADS)
Dieckmann, M. E.; Folini, D.; Walder, R.; Romagnani, L.; d'Humieres, E.; Bret, A.; Karlsson, T.; Ynnerman, A.
2017-09-01
The expansion of a dense plasma into a dilute plasma across an initially uniform perpendicular magnetic field is followed with a one-dimensional particle-in-cell simulation over magnetohydrodynamics time scales. The dense plasma expands in the form of a fast rarefaction wave. The accelerated dilute plasma becomes separated from the dense plasma by a tangential discontinuity at its back. A fast magnetosonic shock with the Mach number 1.5 forms at its front. Our simulation demonstrates how wave dispersion widens the shock transition layer into a train of nonlinear fast magnetosonic waves.
3-D MHD disk wind simulations of protostellar jets
NASA Astrophysics Data System (ADS)
Staff, Jan E.; Koning, Nico; Ouyed, Rachid; Tanaka, Kei; Tan, Jonathan C.
2016-01-01
We present the results of large scale, three-dimensional magnetohydrodynamics simulations of disk winds for different initial magnetic field configurations. The jets are followed from the source to distances, which are resolvable by HST and ALMA observations. Our simulations show that jets are heated along their length by many shocks. The mass of the protostar is a free parameter that can be inserted in the post processing of the data, and we apply the simulations to both low mass and high mass protostars. For the latter we also compute the expected diagnostics when the outflow is photoionized by the protostar. We compute the emission lines that are produced, and find excellent agreement with observations. For a one solar mass protostar, we find the jet width to be between 20 and 30 au while the maximum velocities perpendicular to the jet are found to be 100 km s-1. The initially less open magnetic field configuration simulations result in a wider, two-component jet; a cylindrically shaped outer jet surrounding a narrow and much faster, inner jet. For the initially most open magnetic field configuration the kink mode creates a narrow corkscrew-like jet without a clear Keplerian rotation profile and even regions where we observe rotation opposite to the disk (counter-rotating). This is not seen in the less open field configurations.
ALEGRA-MHD Simulations for Magnetization of an Ellipsoidal Inclusion
2017-08-01
the quasi-static approximation the process of evolution of the magnetic fields inside and outside an inclusion. A simple closed-form analytic... evolution of the magnetic fields inside and outside an inclusion and the parameters for which the quasi-static approach provides for self-consistent...in a single element. For the present work, only the transient magnetics module is considered—that is, ALEGRA’s capability to simulate the evolution
Disturbances of three cometary magnetospheres as explained by an MHD simulation
NASA Technical Reports Server (NTRS)
Kozuka, Y.; Saito, T.; Konno, Ichishiro; Oki, T.
1990-01-01
Outstanding disturbances of the plasma tails were observed in 1989 in three comets, Brorsen-Metcalf, Okazaki-Levy-Rudenko, and Aarseth-Brewington. Time variations of the tails were obtained from photographs provided by many astronomers. A 2-D MHD simulation was performed varying the speed and the direction of the solar wind flow. The simulation agreed quite well with the observations. Solar flares were identified as the sources of these disturbances. It was found that the sudden change in direction of the plasma tail axis occurs when the comet crosses a discontinuity surface of the solar wind structure accompanied by solar flares.
3D MHD simulations of planet migration in turbulent stratified disks
NASA Astrophysics Data System (ADS)
Uribe, Ana; Klahr, Hubert; Flock, Mario; Henning, Thomas
2011-11-01
We performed 3D MHD numerical simulations of planet migration in stratified disks using the Godunov code PLUTO (Mignone et al. 2007). The disk is invaded by turbulence generated by the magnetorotational instability (MRI). We study the migration for planets with different mass to primary mass ratio. The migration of the low-mass planet (q=Mp/Ms=10-5) is dominated by random fluctuations in the torque and there is no defined direction of migration on timescales of 100 orbits. The intermediate-mass planet (q=Mp/Ms=10-4) can experience systematic outwards migration that was sustained for the times we were able to simulate.
A three-dimensional MHD simulation of the interaction of the solar wind with Comet Halley
NASA Technical Reports Server (NTRS)
Ogino, Tatsuki; Walker, Raymond J.; Ashour-Abdalla, Maha
1988-01-01
The interaction between the solar wind and cometary plasmas is simulated using a three-dimensional time-dependent MHD simulation model, and the results are compared with the recent satellite observations of Comet Halley. The model, which includes cometary mass loading, reproduces many of the features observed by the Suisei probe and the Giottot, including the weak bow shock, the enhancement of the magnetic field in front of the contact surface, and the plasma temperature increase across the bow shock (while it decreased near the comet).
MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect
NASA Astrophysics Data System (ADS)
Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan
2016-06-01
The steady two-dimensional magnetohydrodynamic (MHD) flow past a permeable stretching/shrinking sheet with radiation effects is investigated. The similarity transformation is introduced to transform the governing partial differential equations into a system of ordinary differential equations before being solved numerically using a shooting method. The results are obtained for the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and the concentration profiles for some values of the governing parameters, namely, suction/injection parameter S, stretching/shrinking parameter λ, magnetic parameter M, radiation parameter R, heat source/sink Q and chemical rate parameter K. For the shrinking case, there exist two solutions for a certain range of parameters, but the solution is unique for the stretching case. The stability analysis verified that the upper branch solution is linearly stable and physically reliable while the lower branch solution is not. For the reliable solution, the skin friction coefficient increases in the present of magnetic field. The heat transfer rate at the surface decreases in the present of radiation.
THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS
Dexter, Jason; Agol, Eric; Fragile, P. Chris; McKinney, Jonathan C.
2010-07-10
Recent high resolution observations of the Galactic center black hole allow for direct comparison with accretion disk simulations. We compare two-temperature synchrotron emission models from three-dimensional, general relativistic magnetohydrodynamic simulations to millimeter observations of Sgr A*. Fits to very long baseline interferometry and spectral index measurements disfavor the monochromatic face-on black hole shadow models from our previous work. Inclination angles {<=}20{sup 0} are ruled out to 3{sigma}. We estimate the inclination and position angles of the black hole, as well as the electron temperature of the accretion flow and the accretion rate, to be i=50{sup o+35o}{sub -15}{sup o}, {xi}=-23{sup o+97o}{sub -22}{sup o}, T{sub e} = (5.4 {+-} 3.0) x 10{sup 10} K, and M-dot =5{sup +15}{sub -2}x10{sup -9} M{sub sun} yr{sup -1}, respectively, with 90% confidence. The black hole shadow is unobscured in all best-fit models, and may be detected by observations on baselines between Chile and California, Arizona, or Mexico at 1.3 mm or .87 mm either through direct sampling of the visibility amplitude or using closure phase information. Millimeter flaring behavior consistent with the observations is present in all viable models and is caused by magnetic turbulence in the inner radii of the accretion flow. The variability at optically thin frequencies is strongly correlated with that in the accretion rate. The simulations provide a universal picture of the 1.3 mm emission region as a small region near the midplane in the inner radii of the accretion flow, which is roughly isothermal and has {nu}/{nu} {sub c} {approx} 1-20, where {nu} {sub c} is the critical frequency for thermal synchrotron emission.
MHD simulations of homologous and cannibalistic coronal mass ejections
NASA Astrophysics Data System (ADS)
Fan, Yuhong; Chatterjee, Piyali
2014-06-01
We present magneto-hydrodynamic simulations of the development of a homologous sequence of coronal mass ejections (CMEs) and demonstrate their so-called cannibalistic behavior. These CMEs originate from the repeated formations and partial eruptions of kink unstable flux ropes as a result of the continued emergence of a twisted flux rope across the lower boundary into a pre-existing coronal potential arcade field. The simulations show that a CME erupting into the open magnetic field created by a preceding CME has a higher speed, and therefore tends to be cannibalistic, catching up and merging with the preceding one into a single fast CME. All the CMEs attained speeds of about 1000 km/s as they exit the domain. The reformation of a twisted flux rope after each CME eruption during the sustained flux emergence can naturally explain the X-ray observations of repeated reformations of sigmoids and “sigmoid-under-cusp” configurations at a low-coronal source of homologous CMEs.
Constrained Transport vs. Divergence Cleanser Options in Astrophysical MHD Simulations
NASA Astrophysics Data System (ADS)
Lindner, Christopher C.; Fragile, P.
2009-01-01
In previous work, we presented results from global numerical simulations of the evolution of black hole accretion disks using the Cosmos++ GRMHD code. In those simulations we solved the magnetic induction equation using an advection-split form, which is known not to satisfy the divergence-free constraint. To minimize the build-up of divergence error, we used a hyperbolic cleanser function that simultaneously damped the error and propagated it off the grid. We have since found that this method produces qualitatively and quantitatively different behavior in high magnetic field regions than results published by other research groups, particularly in the evacuated funnels of black-hole accretion disks where Poynting-flux jets are reported to form. The main difference between our earlier work and that of our competitors is their use of constrained-transport schemes to preserve a divergence-free magnetic field. Therefore, to study these differences directly, we have implemented a constrained transport scheme into Cosmos++. Because Cosmos++ uses a zone-centered, finite-volume method, we can not use the traditional staggered-mesh constrained transport scheme of Evans & Hawley. Instead we must implement a more general scheme; we chose the Flux-CT scheme as described by Toth. Here we present comparisons of results using the divergence-cleanser and constrained transport options in Cosmos++.
NASA Astrophysics Data System (ADS)
Yang, H.; Bhattacharjee, A.; Forbes, T. G.
2008-12-01
It has long been suggested that eruptive phenomena such as coronal mass ejections, prominence eruptions, and large flares might be caused by a loss of equilibrium in a coronal flux rope (Van Tend and Kuperus, 1978). Forbes et al. (1994) developed an analytical two-dimensional model in which eruptions occur due to a catastrophic loss of equilibrium and relaxation to a lower-energy state containing a thin current sheet. Magnetic reconnection then intervenes dynamically, leading to the release of magnetic energy and expulsion of a plasmoid. We have carried out high-Lundquist-number simulations to test the loss-of equilibrium mechanism, and demonstrated that it does indeed occur in the quasi-ideal limit. We have studied the subsequent dynamical evolution of the system in resistive and Hall MHD models for single as well as multiple arcades. The typical parallel electric fields are super-Dreicer, which makes it necessary to include collisionless effects via a generalized Ohm's law. It is shown that the nature of the local dissipation mechanism has a significant effect on the global geometry and dynamics of the magnetic configuration. The presence of Hall currents is shown to alter the length of the current sheet and the jets emerging from the reconnection site, directed towards the chromosphere. Furthermore, Hall MHD effects break certain symmetries of resistive MHD dynamics, and we explore their observational consequences.
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.
2005-01-01
Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.
Analysis and statistics of discontinuities as obtained from 3D simulation of MHD turbulence
Zhang, Lei; He, Jian-Sen Tu, Chuan-Yi; Wang, Xin; Wang, Ling-Hua; Yang, Li-Ping; Marsch, Eckart
2016-03-25
The turbulent solar wind abounds with MHD discontinuities, and such discontinuities are often found in close connection with turbulence intermittency, constituting a possible main contributor to the turbulence dissipation and solar wind heating. Among the discontinuities, tangential (TD) and rotational (RD) ones are two most important types. Recently, the connection between turbulence intermittency and proton thermodynamics has been being intensively investigated. Such connections are founded to be involved with MHD instablilities, but the difference of TDs an RDs in this process has not yet been covered. Herewith we define new methods for identifying TDs and RDs obtained from a three-dimensional MHD simulation with pressure anisotropy. Especially, we define the Total Variance of Increments (TVI) as a new measure of magnetic field changes. Based on the identified cases, we compare their occurrence rates and heating effects. More specifically, we find that the thermal states embedding TDs, compared with their RD counterparts, tend to be more associated with extreme plasma parameters or instabilites. Some other possible applications of TVI-like norms are also herewith discussed.
Simulation of 3-D Nonequilibrium Seeded Air Flow in the NASA-Ames MHD Channel
NASA Technical Reports Server (NTRS)
Gupta, Sumeet; Tannehill, John C.; Mehta, Unmeel B.
2004-01-01
The 3-D nonequilibrium seeded air flow in the NASA-Ames experimental MHD channel has been numerically simulated. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed us ing a 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime: The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very efficient manner. The algorithm has been extended in the present study to account for nonequilibrium seeded air flows. The electrical conductivity of the flow is determined using the program of Park. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the seeded flow. The computed results are in good agreement with the experimental data.
MHD simulations of the eruption of prominence hosting coronal flux ropes
NASA Astrophysics Data System (ADS)
Fan, Yuhong
2017-08-01
We present MHD simulations of the eruption of a prominence hosting coronal flux rope under a coronal streamer, with the thermodynamic treatment including a simple empirical coronal heating, optically thin radiative cooling and the field aligned thermal conduction. We first initialize a quasi-steady solar wind solution with a coronal helmet streamer, using an initial normal flux distribution of a simple bipolar arcade field on the lower boundary. Then into this coronal streamer with an ambient solar wind we impose at the lower boundary the slow emergence of a twisted magnetic torus. As a result a quasi-equilibrium flux rope is built up under the streamer magnetic field. With varying sizes of the streamer and the different length and total twist of the emerged flux rope, we found different scenarios for the evolution from quasi-equilibrium to loss of confinement and eruption. In the case with a broad streamer with slow decline of the overlying field, the flux rope remains well confined until there is sufficient twist such that it first develops the kink instability and evolves through a sequence of kinked, confined states with its apex rises slowly. It eventually develops a “hernia-like” eruption when the kinked apex reaches a certain height and can no-longer be confined. We find that for the long, significantly twisted flux ropes, prominence condensations form in the dips of the twisted field lines due to run-away radiative cooling. Once formed, the prominence carrying field becomes significantly non force-free due to the prominence weight despite being low plasma β. As the flux rope erupts, we also obtain the eruption of the prominence, which shows substantial draining along the legs of the erupting flux rope during the eruption. The prominence may not show a kinked morphology even the flux rope becomes kinked. On the other hand in the case with a narrower streamer, the flux rope with less than 1 wind of twist can erupt via the onset of the torus instability.
Three-dimensional MHD simulation of the Caltech plasma jet experiment: first results
Zhai, Xiang; Bellan, Paul M.; Li, Hui; Li, Shengtai E-mail: pbellan@caltech.edu E-mail: sli@lanl.gov
2014-08-10
Magnetic fields are believed to play an essential role in astrophysical jets with observations suggesting the presence of helical magnetic fields. Here, we present three-dimensional (3D) ideal MHD simulations of the Caltech plasma jet experiment using a magnetic tower scenario as the baseline model. Magnetic fields consist of an initially localized dipole-like poloidal component and a toroidal component that is continuously being injected into the domain. This flux injection mimics the poloidal currents driven by the anode-cathode voltage drop in the experiment. The injected toroidal field stretches the poloidal fields to large distances, while forming a collimated jet along with several other key features. Detailed comparisons between 3D MHD simulations and experimental measurements provide a comprehensive description of the interplay among magnetic force, pressure, and flow effects. In particular, we delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. With suitably chosen parameters that are derived from experiments, the jet in the simulation agrees quantitatively with the experimental jet in terms of magnetic/kinetic/inertial energy, total poloidal current, voltage, jet radius, and jet propagation velocity. Specifically, the jet velocity in the simulation is proportional to the poloidal current divided by the square root of the jet density, in agreement with both the experiment and analytical theory. This work provides a new and quantitative method for relating experiments, numerical simulations, and astrophysical observation, and demonstrates the possibility of using terrestrial laboratory experiments to study astrophysical jets.
Energy storage and dissipation in the magnetotail during substorms. 2. MHD simulations
Steinolfson, R.S. ); Winglee, R.M. )
1993-05-01
The authors present a global MHD simulation of the magnetotail in an effort to study magnetic storm development. They address the question of energy storage in the current sheet in the early phases of storm growth, which previous simulations have not shown. They address this problem by dealing with the variation of the resistivity throughout the magnetosphere. They argue that MHD theory should provide a suitable representation to this problem on a global scale, even if it does not handle all details adequately. For their simulation they use three different forms for the resistivity. First is a uniform and constant resistivity. Second is a resistivity proportional to the current density, which is related to argument that resistivity is driven by wave-particle interactions which should be strongest in regions where the current is the greatest. Thirdly is a model where the resistivity varies with the magnetic field strength, which was suggested by previous results from particle simulations of the same problem. The simulation then gives approximately the same response of the magnetosphere for all three of the models. Each results in the formation and ejection of plasmoids, but the energy stored in the magnetotail, the timing of substorm onset in relation to the appearance of a southward interplanetary magnetic field, and the speed of ejection of the plasmoids formed differ with the resistivity models.
3-D General Relativistic MHD Simulations of Generating Jets
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.
2001-12-01
We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.
3-D General Relativistic MHD Simulations of Generating Jets
NASA Astrophysics Data System (ADS)
Nishikawa, K.-I.; Koide, S.; Shibata, K.; Kudoh, T.; Frank, J.; Sol, H.
1999-05-01
Koide et al have investigated the dynamics of an accretion disk initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state or in hydrostatic equilibrium) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code on a full 3-dimensional system. We will investigate how the third dimension affects the global disk dynamics. 3-D RMHD simulations wil be also performed to investigate the dynamics of a jet with a helical mangetic field in it.
Jet Formation with 3-D General Relativistic MHD Simulations
NASA Astrophysics Data System (ADS)
Richardson, G. A.; Nishikawa, K.-I.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Hughes, J. P.; Fishman, J.
2002-12-01
We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (in a steady-state infalling state) around a non-rotating black hole using 3-D GRMHD with the ``axisymmetry'' along the z-direction. The magnetic field is tightly twisted by the rotation of the accretion disk, and plasmas in the shocked region of the disk are accelerated by the J x B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and the magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.
3-D General Relativistic MHD Simulations of Generating Jets
NASA Astrophysics Data System (ADS)
Nishikawa, Ken-Ichi; Koide, Shinji; Shibata, Kazunari; Kudoh, Takashiro; Sol, Helene; Hughes, John
2002-04-01
We have investigated the dynamics of an accretion disk around Schwarzschild black holes initially threaded by a uniform poloidal magnetic field in a non-rotating corona (either in a steady-state infalling state) around a non-rotating black hole using a 3-D GRMHD with the ``axisymmetry'' along the z-direction. Magnetic field is tightly twisted by the rotation of the disk, and plasmas in the shocked region of the disk are accelerated by J × B force to form bipolar relativistic jets. In order to investigate variabilities of generated relativistic jets and magnetic field structure inside jets, we have performed calculations using the 3-D GRMHD code with a full 3-dimensional system without the axisymmetry. We have investigated how the third dimension affects the global disk dynamics and jet generation. We will perform simulations with various incoming flows from an accompanying star.
Numerical simulation of MHD shock waves in the solar wind
NASA Technical Reports Server (NTRS)
Steinolfson, R. S.; Dryer, M.
1978-01-01
The effects of the interplanetary magnetic field on the propagation speed of shock waves through an ambient solar wind are examined by numerical solutions of the time-dependent nonlinear equations of motion. The magnetic field always increases the velocity of strong shocks. Although the field may temporarily slow down weak shocks inside 1 AU, it eventually also causes weak shocks to travel faster than they would without the magnetic field at larger distances. Consistent with the increase in the shock velocity, the gas pressure ratio across a shock is reduced considerably in the presence of the magnetic field. The numerical method is used to simulate (starting at 0.3 AU) the large deceleration of a shock observed in the lower corona by ground-based radio instrumentation and the more gradual deceleration of the shock in the solar wind observed by the Pioneer 9 and Pioneer 10 spacecraft.
NASA Astrophysics Data System (ADS)
Murata, K. T.; Watari, S.; Kubota, Y.; Fukazawa, K.; Tsubouchi, K.; Fujita, S.; Tanaka, T.; Den, M.; Murayama, Y.
2011-12-01
At NICT (National Institute of Information and Communications Technology) we have been developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment to provide the researchers rich resources for research studies, such as super-computers, large-scale disk area, licensed applications, database and communication devices. The large-scale disk area is rovided via Gfarm, which is one of the distributed file systems. This paper first proposes a distributed data-type and/or data-intensive processing system that are provided via Gfarm as a solution to large-scale data processing in the context of distributed data management and data processing environments in the field of solar-terrestrial physics. The usefulness of a system composed of many file system nodes was examined using large-scale computer simulation data. In the parallel 3D visualization of computer simulation data varying in terms of data processing granularity, optimized load balancing through FIFO scheduling or pipe-line scheduling yielded parallelization efficacy. Using the large-scale data processing system, we have developed a magnetic flux tracing system of global MHD simulations. Under the assumption of magnetic field frozen-in theory of ideal MHD plasma, we trace an element (or elements) of plasma at all steps of global MHD simulation, and visualize magnetic flux (magnetic field lines) penetrating the element(s). Since this system depends on the frozen-in theory, we need to examine when and where this assumption breaks before we apply it for physical data analyses. Figure (a) and Figure (b) show magnetic field lines in the vicinity of the Earth's magnetopause visualized via present system. Both figures show that the magnetic field lines are scattered as they advance downward. In the present talk we discuss the error in the tracings and the restrictions to apply for this technique.
Double Dynamo Signatures in a Global MHD Simulation and Mean-field Dynamos
NASA Astrophysics Data System (ADS)
Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François; Charbonneau, Paul
2016-08-01
The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p-mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field produced by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α 2Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.
Numerical simulation of the radiation environment on Martian surface
NASA Astrophysics Data System (ADS)
Zhao, L.
2015-12-01
The radiation environment on the Martian surface is significantly different from that on earth. Existing observation and studies reveal that the radiation environment on the Martian surface is highly variable regarding to both short- and long-term time scales. For example, its dose rate presents diurnal and seasonal variations associated with atmospheric pressure changes. Moreover, dose rate is also strongly influenced by the modulation from GCR flux. Numerical simulation and theoretical explanations are required to understand the mechanisms behind these features, and to predict the time variation of radiation environment on the Martian surface if aircraft is supposed to land on it in near future. The high energy galactic cosmic rays (GCRs) which are ubiquitous throughout the solar system are highly penetrating and extremely difficult to shield against beyond the Earth's protective atmosphere and magnetosphere. The goal of this article is to evaluate the long term radiation risk on the Martian surface. Therefore, we need to develop a realistic time-dependent GCR model, which will be integrated with Geant4 transport code subsequently to reproduce the observed variation of surface dose rate associated with the changing heliospheric conditions. In general, the propagation of cosmic rays in the interplanetary medium can be described by a Fokker-Planck equation (or Parker equation). In last decade,we witnessed a fast development of GCR transport models within the heliosphere based on accurate gas-dynamic and MHD backgrounds from global models of the heliosphere. The global MHD simulation produces a more realistic pattern of the 3-D heliospheric structure, as well as the interface between the solar system and the surrounding interstellar space. As a consequence, integrating plasma background obtained from global-dependent 3-D MHD simulation and stochastic Parker transport simulation, we expect to produce an accurate global physical-based GCR modulation model. Combined
The Substorm Current Wedge: Further Insights from MHD Simulations
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, M.
2015-01-01
Using a recent magnetohydrodynamic simulation of magnetotail dynamics, we further investigate the buildup and evolution of the substorm current wedge (SCW), resulting from flow bursts generated by near-tail reconnection. Each flow burst generates an individual current wedge, which includes the reduction of cross-tail current and the diversion to region 1 (R1)-type field-aligned currents (earthward on the dawn and tailward on the duskside), connecting the tail with the ionosphere. Multiple flow bursts generate initially multiple SCW patterns, which at later times combine to a wider single SCW pattern. The standard SCWmodel is modified by the addition of several current loops, related to particular magnetic field changes: the increase of Bz in a local equatorial region (dipolarization), the decrease of |Bx| away from the equator (current disruption), and increases in |By| resulting from azimuthally deflected flows. The associated loop currents are found to be of similar magnitude, 0.1-0.3 MA. The combined effect requires the addition of region 2 (R2)-type currents closing in the near tail through dawnward currents but also connecting radially with the R1 currents. The current closure at the inner boundary, taken as a crude proxy of an idealized ionosphere, demonstrates westward currents as postulated in the original SCW picture as well as North-South currents connecting R1- and R2-type currents, which were larger than the westward currents by a factor of almost 2. However, this result should be applied with caution to the ionosphere because of our neglect of finite resistance and Hall effects.
Coupled Kinetic-MHD Simulations of Divertor Heat Load with ELM Perturbations
NASA Astrophysics Data System (ADS)
Cummings, Julian; Chang, C. S.; Park, Gunyoung; Sugiyama, Linda; Pankin, Alexei; Klasky, Scott; Podhorszki, Norbert; Docan, Ciprian; Parashar, Manish
2010-11-01
The effect of Type-I ELM activity on divertor plate heat load is a key component of the DOE OFES Joint Research Target milestones for this year. In this talk, we present simulations of kinetic edge physics, ELM activity, and the associated divertor heat loads in which we couple the discrete guiding-center neoclassical transport code XGC0 with the nonlinear extended MHD code M3D using the End-to-end Framework for Fusion Integrated Simulations, or EFFIS. In these coupled simulations, the kinetic code and the MHD code run concurrently on the same massively parallel platform and periodic data exchanges are performed using a memory-to-memory coupling technology provided by EFFIS. The M3D code models the fast ELM event and sends frequent updates of the magnetic field perturbations and electrostatic potential to XGC0, which in turn tracks particle dynamics under the influence of these perturbations and collects divertor particle and energy flux statistics. We describe here how EFFIS technologies facilitate these coupled simulations and discuss results for DIII-D, NSTX and Alcator C-Mod tokamak discharges.
MHD simulation of solar wind and multiple coronal mass ejections with internal magnetic flux ropes
NASA Astrophysics Data System (ADS)
Shiota, Daiko
2017-08-01
Solar wind and CMEs are the main drivers of various types of space weather disturbance. The profile of IMF Bz is the most important parameter for space weather forecasts because various magnetospheric disturbances are caused by the southward IMF brought on the Earth. Recently, we have developed MHD simulation of the solar wind, including a series of multiple CMEs with internal spheromak-type magnetic fields on the basis of observations of photospheric magnetic fields and coronal images. The MHD simulation is therefore capable of predicting the time profile of the IMF at the Earth, in relation to the passage of a magnetic cloud within a CME. In order to evaluate the current ability of our simulation, we demonstrate a test case: the propagation and interaction process of multiple CMEs associated with the highly complex active region NOAA 10486 in October to November 2003. The results of a simulation successfully reproduced the arrival at the Earth’s position of a large amount of southward magnetic flux, which is capable of causing an intense magnetic storm, and provided an implication of the observed complex time profile of the solar wind parameters at the Earth as a result of the interaction of a few specific CMEs.
Comparing nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments
NASA Astrophysics Data System (ADS)
McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.
2016-10-01
Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, with applications in general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we simulate the nonlinear evolution of RFP plasmas similar to those in the RELAX experiment. The experiment's modest Lundquist numbers S (as low as a few times 104) make closely matching MHD simulations tractable given present computing resources. Its low aspect ratio ( 2) motivates a comparison study using cylindrical and toroidal geometries in NIMROD. We present initial results from nonlinear single-fluid runs at S =104 for both geometries and a range of equilibrium parameters, which preliminarily show that the magnetic fluctuations are roughly similar between the two geometries and between simulation and experiment, though there appear to be some qualitative differences in their temporal evolution. Runs at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.
Thermodynamic MHD Simulation of the July 14, 2000, "Bastille Day" Solar Eruption
NASA Astrophysics Data System (ADS)
Torok, T.; Downs, C.; Lionello, R.; Linker, J.; Mikic, Z.; Titov, V. S.; Riley, P.
2013-12-01
The "Bastille Day" event on July 14, 2000, is one of the most extensively studied solar eruptions. It originated in a strong and complex active region close to disk center and produced an X5.7 flare, a fast halo CME, and an intense geomagnetic storm. We have recently begun to model this challenging event, with the final goal to simulate its whole evolution, from the pre-eruption state up to the CME's arrival at 1 AU. To this end, we first produce a steady-state MHD solution of the background corona that incorporates realistic energy transport ("thermodynamic MHD"), photospheric magnetic field measurements, and the solar wind. In order to model the pre-eruption core magnetic field, we then insert a chain of flux ropes along the polarity inversion line (PIL) of the active region. The ropes merge during the subsequent numerical relaxation to form one stable, elongated flux rope that resides above the highly curved PIL, mimicking the morphology of the observed pre-eruption filaments. Next, we impose photospheric flows that converge toward the PIL and successively expand the magnetic field overlying the flux rope, until equilibrium cannot be longer maintained and the rope erupts and produces a CME. Finally, we couple the coronal simulation with our recently developed heliospheric MHD code to model the propagation of the CME to 1 AU. In this presentation we briefly describe our method, compare the simulation results with the observations, and discuss the challenges and limitations involved in modeling such complex and powerful eruptions.
NASA Astrophysics Data System (ADS)
Den, M.; Horiuchi, R.; Fujita, S.; Tanaka, T.
2011-12-01
Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. Tanaka and Fujita reproduced substorm evolution process by numerical simulation with the global MHD code [1]. In the MHD framework, the dissipation model is introduced for modeling of the kinetic effects. They found that the normalized reconnection viscosity, one of the dissipation model employed there, gave a large effect for the dipolarization, central phenomenon in the substorm development process, though that viscosity was assumed to be a constant parameter. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow [2, 3]. Horiuchi and his collaborators showed that reconnection electric field generated by microscopic physics evolves inside ion meandering scale so as to balance the flux inflow rate at the inflow boundary, which is controlled by macroscopic physics [2]. That is, effective resistivity generated through this process can be expressed by balance equation between micro and macro physics. In this paper, we perform substorm simulation by using the global MHD code developed by Tanaka [3] with this effective resistivity instead of the empirical resistivity model. We obtain the AE indices from simulation data, in which substorm onset can be seen clearly, and investigate the relationship between the substorm development and the effective resistivity model. [1] T. Tanaka, A, Nakamizo, A. Yoshikawa, S. Fujita, H. Shinagawa, H. Shimazu, T. Kikuchi, and K. K. Hashimoto, J. Geophys. Res. 115 (2010) A05220,doi:10.1029/2009JA014676. [2] W. Pei, R. Horiuchi, and T. Sato, Physics of Plasmas,Vol. 8 (2001), pp. 3251-3257. [3] A. Ishizawa, and R. Horiuchi, Phys. Rev. Lett., Vol. 95, 045003 (2005). [4
NASA Astrophysics Data System (ADS)
Wexler, David B.; Hollweg, Joseph V.; Jensen, Elizabeth; Lionello, Roberto; Macneice, Peter J.; Coster, Anthea J.
2017-08-01
Study of coronal MHD wave energetics relies upon accurate representation of plasma particle number densities (ne) and magnetic field strengths. In the lower corona, these parameters are obtained indirectly, and typically presented as empirical equations as a function of heliocentric radial distance (solar offset, SO). The development of coronal global models using synoptic solar surface magnetogram inputs has provided refined characterization of the coronal plasma organization and magnetic field. We present a cross-analysis between a MHD thermodynamic simulation and Faraday rotation (FR) observations over SO 1.63-1.89 solar radii (Rs) near solar minimum. MESSENGER spacecraft radio signals with a line of sight (LOS) passing through the lower corona were recorded in dual polarization using the Green Bank Telescope in November 2009. Polarization position angle changes were obtained from Stokes parameters. The magnetic field vector (B) and ne along the LOS were obtained from a MHD thermodynamic simulation provided by the Community Coordinated Modeling Center. The modeled FR was computed as the integrated product of ne and LOS-aligned B component. The observations over the given SO range yielded an FR change of 7 radians. The simulation reproduced this change when the modeled ne was scaled up by 2.8x, close to values obtained using the Allen-Baumbach equation. No scaling of B from the model was necessary. A refined fit to the observations was obtained when the observationally based total electron content (TEC) curves were introduced. Changes in LOS TEC were determined from radio frequency shifts as the signal passed to successively lower electron concentrations during egress. A good fit to the observations was achieved with an offset of 7e21 m-2 added. Back-calculating ne along the LOS from the TEC curves, we found that the equivalent ne scaling compared to the model output was higher by a factor of 3. The combination of solar surface magnetogram-based MHD coronal
3D MHD VDE and disruptions simulations of tokamaks plasmas including some ITER scenarios
NASA Astrophysics Data System (ADS)
Paccagnella, R.; Strauss, H. R.; Breslau, J.
2009-03-01
Tokamaks vertical displacement events (VDEs) and disruptions simulations in toroidal geometry by means of a single fluid visco-resistive magneto-hydro-dynamic (MHD) model are presented in this paper. The plasma model is completed with the presence of a 2D wall with finite resistivity which allows the study of the relatively slowly growing magnetic perturbation, the resistive wall mode (RWM), which is, in this paper, the main drive of the disruption evolution. Amplitudes and asymmetries of the halo currents pattern at the wall are also calculated and comparisons with tokamak experimental databases and predictions for ITER are given.
Dynamics of heavy impurities in non-linear MHD simulations of sawtoothing tokamak plasmas
NASA Astrophysics Data System (ADS)
Ahn, Jae-H.; Garbet, X.; Lütjens, H.; Guirlet, R.
2016-12-01
The effect of sawteeth on impurity dynamics is studied with the XTOR-2F code. Non-linear full 3D MHD simulations including appropriate fluid equations for impurities in the high collisional regime show that the presence of regular sawtooth crashes affects the impurity behaviour. A spatial non-uniformity of 5 % in post-crash impurity density profiles persists due to 2D structures of impurity density which appear during sawtooth crashes. They are shown to be mainly driven by the \\mathbf{E}× \\mathbf{B} velocity, and are responsible for the sudden impurity transport in the core plasmas.
MHD simulations of three-dimensional resistive reconnection in a cylindrical plasma column
NASA Astrophysics Data System (ADS)
Striani, E.; Mignone, A.; Vaidya, B.; Bodo, G.; Ferrari, A.
2016-11-01
Magnetic reconnection is a plasma phenomenon where a topological rearrangement of magnetic field lines with opposite polarity results in dissipation of magnetic energy into heat, kinetic energy and particle acceleration. Such a phenomenon is considered as an efficient mechanism for energy release in laboratory and astrophysical plasmas. An important question is how to make the process fast enough to account for observed explosive energy releases. The classical model for steady state magnetic reconnection predicts reconnection times scaling as S1/2 (where S is the Lundquist number) and yields time-scales several order of magnitude larger than the observed ones. Earlier two-dimensional MHD simulations showed that for large Lundquist number the reconnection time becomes independent of S (`fast reconnection' regime) due to the presence of the secondary tearing instability that takes place for S ≳ 1 × 104. We report on our 3D MHD simulations of magnetic reconnection in a magnetically confined cylindrical plasma column under either a pressure balanced or a force-free equilibrium and compare the results with 2D simulations of a circular current sheet. We find that the 3D instabilities acting on these configurations result in a fragmentation of the initial current sheet in small filaments, leading to enhanced dissipation rate that becomes independent of the Lundquist number already at S ≃ 1 × 103.
2--D Resistive MHD Simulations of Merging Co-- and Counter--Helicity Spheromaks
NASA Astrophysics Data System (ADS)
Carter, T. A.; Jardin, S. C.
1997-11-01
Studies of the global equilibrium properties of merging spheromaks as well as of the local properties of the reconnection boundary layer in the MHD limit will be presented. The Princeton Tokamak Simulation Code (TSC)(S.C. Jardin, et. al., J. Comp. Phys. 66) (1986) 481, a free--boundary, axisymmetric resistive MHD code, is modified to resolve the two spatial scales of the merging spheromak problem, the equilibrium scale and the boundary layer, and to include convective terms in the coded set of scalar momentum equations. The simulations reported here are performed with parameters T ~ 15 eV, ne ~ 10^14 cm-3, Bz ~ 2 kG. We present comparisons of our simulation results with results from recent analytic(R. Kulsrud, D. Uzdensky, personal communication) and experimental work(M. Yamada, et. al., Phys. Rev. Lett. 78) (1997) 3117 and Y. Ono, et. al., Phys. Rev. Lett. 76 (1996) 3328. In particular we emphasize merging rates for co-- and counter--helicity merging, boundary layer geometry, scaling of merging rate with dimensionless parameters, and formation of spheromak and Field Reversed Configuration (FRC) plasmas as a result of co-- and counter--helicity merging.
Interaction of a Variable Solar Wind with Jupiter's Magnetosphere: A 3D MHD Simulation
NASA Astrophysics Data System (ADS)
Ranquist, D. A.; Bagenal, F.; Delamere, P. A.; Ma, X.
2016-12-01
Jupiter's magnetosphere is the largest obstacle for the solar wind in the solar system. Voyager 2 even detected its presence on its approach to Saturn, 4.3 AU from Jupiter. Also, the time scale for the interplanetary magnetic field (IMF) to change directions is smaller than the time for the solar wind to propagate the entire length of Jupiter's magnetotail. Due to the large spatial extent and long time scales, varied solar wind conditions are expected to interact with Jupiter's magnetosphere simultaneously, which can lead to magnetic reconnection and other plasma phenomena. Using the FLASH 3D magnetohydrodynamics (MHD) code, we have simulated the global interaction between a variable solar wind and Jupiter's magnetosphere. We simulated Jupiter's magnetosphere as a viscous obstacle because of arguments made by Delamere & Bagenal (2010). For the solar wind, we used in situ data from the Ulysses spacecraft taken at 5 AU along the ecliptic plane. Here we present the 3D MHD simulation results with alternating IMF directions for several obstacle viscosities.
NASA Astrophysics Data System (ADS)
Kawasaki, Akira; Kubota, Kenichi; Funaki, Ikkoh; Okuno, Yoshihiro
2016-09-01
Steady-state and self-field magnetoplasmadynamic (MPD) thruster, which utilizes high-intensity direct-current (DC) discharge, is one of the prospective candidates of future high-power electric propulsion devices. In order to accurately assess the thrust performance and the electrode temperature, input electric power and wall heat flux must correctly be evaluated where electrostatic sheaths formed in close proximity of the electrodes affect these quantities. Conventional model simulates only plasma flows occurring in MPD thrusters with the absence of electrostatic sheath consideration. Therefore, this study extends the conventional model to a coupled magnetohydrodynamic (MHD) and thermal model by incorporating the phenomena relevant to the electrostatic sheaths. The sheaths are implemented as boundary condition of the MHD model on the walls. This model simulated the operation of the 100-kW-class thruster at discharge current ranging from 6 to 10 kA with argon propellant. The extended model reproduced the discharge voltages and wall heat load which are consistent with past experimental results. In addition, the simulation results indicated that cathode sheath voltages account for approximately 5-7 V subject to approximately 20 V of discharge voltages applied between the electrodes. This work was supported by JSPS KAKENHI Grant Numbers 26289328 and 15J10821.
Overview of the Simulation of Wave Interactions with MHD Project (SWIM)
NASA Astrophysics Data System (ADS)
Batchelor, Donald
2010-11-01
The SWIM center has the scientific objectives of: improving our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, improving our capability for predicting and optimizing the performance of burning plasmas, developing an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project, addressing mathematics issues related to the multi-scale, coupled physics of RF waves and extended MHD, and optimizing the integrated system on high performance computers. Our Center has now built an end-to-end computational system that allows existing physics codes to be able to function together in a parallel environment and connects them to utility software components and data management systems. We have used this framework to couple together state-of-the-art fusion energy codes to produce a unique and world-class simulation capability. A physicist's overview of the Integrated Plasma Simulator (IPS) will be given and applications described. For example the IPS is being employed to support ITER with operational scenario studies.
NASA Technical Reports Server (NTRS)
Ding, D. Q.; Denton, . E.; Hudson, M. K.; Lysak, R. L.
1995-01-01
The poloidal mode field line resonance in the Earth's dipole magnetic field is investigated using cold plasma ideal MHD simulations in dipole geometry. In order to excite the poloidal mode resonance, we use either an initial or a continuous velocity perturbation to drive the system. The perturbation is localized at magnetic shell L = 7 with plasma flow in the radial direction (electric field component in the azimuthal direction). It is found that with the initial perturbation alone, no polodial mode resonance can be obtained and the initially localized perturbation spreads out across all magnetic L shells. With the continuous perturbation, oscillating near the poloidal resonance frequency, a global-scale poloidal cavity mode can be obtained. For the first time, a localized guided poloidal mode resonance is obtained when a radial component of electric field is added to the initial perturbation such that the curl of the electric field is everywhere perpendicular to the background dipole magnetic field. During the localized poloidal resonance, plasma vortices parallel/antiparallel to the background dipole magnetic field B(sub 0). This circular flow, elongated radially, results in twisting of magnetic field flux tubes, which, in turn, leads to the slowdown of the circular plasma flow and reversal of the plasma vortices. The energy associated with the localized poloidal resonance is conserved as it shifts back and forth between the oscillating plasma vortices and the alternately twisted magnetic flux tubes. In the simulations the eigenfunctions associated with the localized poloidal resonance are grid-scale singular functions. This result indicates that ideal MHD is inadequate to describe the underlying problem and nonideal MHD effects are needed for mode broadening.
Jupiter Magnetotail Interaction with a Variable Solar Wind: A 3D MHD Simulation
NASA Astrophysics Data System (ADS)
Ranquist, D. A.; Bagenal, F.; Delamere, P. A.; Ma, X.
2015-12-01
Jupiter's magnetosphere is the largest object within the heliosphere. Voyager 2 detected its influence at Saturn's orbit, 4.3 AU away. It takes considerable time, therefore, for the solar wind to propagate such lengths down the tail. This propagation time is much greater than typical periods between changes in direction of the interplanetary magnetic field (IMF). We expect these variable magnetic fields to create a jumbled structure in Jupiter's magnetotail, resulting in magnetic reconnection and other magnetic processes. We simulate the global interaction of the solar wind with Jupiter's magnetosphere using a 3D magnetohydrodynamics (MHD) code. Delamere & Bagenal (2010) argue that the interaction is largely viscous, so we simulate the jovian magnetosphere as a region where the momentum equation has an added loss term. We also use in situ data gathered by the Ulysses spacecraft near Jupiter's orbit for solar wind input. Here, we report on the simulated dynamics in Jupiter's tail region.
Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation
NASA Astrophysics Data System (ADS)
Zou, Shasha; Ozturk, Dogacan; Varney, Roger; Reimer, Ashton
2017-04-01
Sudden commencement (SC) induced by solar wind pressure enhancement can produce significant global impact on the coupled magnetosphere-ionosphere (MI) system, and its effects have been studied extensively using ground magnetometers and coherent scatter radars. However, very limited observations have been reported about the effects of SC on the ionospheric plasma. Here we report detailed Poker Flat Incoherent Scatter Radar (PFISR) observations of the ionospheric response to SC during the 17 March 2015 storm. PFISR observed lifting of the F region ionosphere, transient field-aligned ion upflow, prompt but short-lived ion temperature increase, subsequent F region density decrease, and persistent electron temperature increase. A global magnetohydrodynamic (MHD) simulation has been carried out to characterize the SC-induced current, convection, and magnetic perturbations. Simulated magnetic perturbations at Poker Flat show a satisfactory agreement with observations. The simulation provides a global context for linking localized PFISR observations to large-scale dynamic processes in the MI system.
NASA Astrophysics Data System (ADS)
Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md
2017-09-01
In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.
A global MHD simulation of an event with a quasi-steady northward IMF
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Papadopoulos, D.; Lyon, J.; Anderson, B.
2005-12-01
We show results of a global MHD simulation, using the Lyon-Fedder-Mobarry (LFM) model, of an event previously examined using data from Iridium spacecraft observations as well as DMSP and IMAGE FUV data. The event is chosen because of the steady northward IMF sustained over a three-hour period during 16 July 2000. The Iridium observations showed very weak or absent Region 2 currents in the ionosphere, which makes the event favorable for global MHD modeling, despite the fact that it occured on the day after the "Bastille Day" storm, and there was a significant remnant ring current in the magnetosphere as indicated by a relatively high Dst index. Here, we compare the ionospheric field-aligned current and electric potential patterns with those recovered from Iridium observations. Particular attention is paid to a comparative analysis of the Pointing flux and the energy flux of precipitating particles, and the verification of the simulated particle flux against IMAGE FUV observations, that is used to validate the LFM precipitation model during weak driving.
Two-dimensional MHD simulations of tokamak plasmas with poloidal flow
NASA Astrophysics Data System (ADS)
Hu, Bo; Betti, R.
2006-10-01
It has been shown [1] that, according to the ideal MHD equilibrium theory, poloidal flow in a tokamak can give rise to a pedestal structure with the pressure, density and velocity developing sharp discontinuities in their radial profiles. Such a pedestal arises when the poloidal velocity exceeds the poloidal sound speed. Since the poloidal sound speed vanishes at the separatrix, it is conceivable that evena rather slow poloidal flow can become transonic near the plasma edge, thus inducing a pedestal in the hydrodynamic profiles. While equilibrium calculations [1-4] of such a pedestal are well established, only a few two-dimensional time-dependent simulations have been carried out [5]. Here, we show the preliminary results from a two dimensional MHD code that simulates the formation of the pedestal starting from a poloidal velocity profile that becomes supersonic at the plasma edge. This work was supported by US-DOE under Contract DE-FG02-93ER54215. [1] Betti and Freidberg, Phys. Plasmas 7, 2439 (2000). [2] Guazzotto, Betti, Manickam and Kaye, Phys. Plasmas 11, 604 (2004). [3] Guazzotto and Betti, Phys. Plasmas 12, 056107 (2005). [4] Thyagaraja and McClements, Phys. Plasmas 13, 062502 (2006). [5] Gardiner, Betti and Guazzotto, Bull. Am. Phys. Soc. 46, No. 8, 166 (2001).
FLASH MHD simulations of experiments that study shock-generated magnetic fields
NASA Astrophysics Data System (ADS)
Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Graziani, C.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.
2015-12-01
We summarize recent additions and improvements to the high energy density physics capabilities in FLASH, highlighting new non-ideal magneto-hydrodynamic (MHD) capabilities. We then describe 3D Cartesian and 2D cylindrical FLASH MHD simulations that have helped to design and analyze experiments conducted at the Vulcan laser facility. In these experiments, a laser illuminates a carbon rod target placed in a gas-filled chamber. A magnetic field diagnostic (called a Bdot) employing three very small induction coils is used to measure all three components of the magnetic field at a chosen point in space. The simulations have revealed that many fascinating physical processes occur in the experiments. These include megagauss magnetic fields generated by the interaction of the laser with the target via the Biermann battery mechanism, which are advected outward by the vaporized target material but decrease in strength due to expansion and resistivity; magnetic fields generated by an outward expanding shock via the Biermann battery mechanism; and a breakout shock that overtakes the first wave, the contact discontinuity between the target material and the gas, and then the initial expanding shock. Finally, we discuss the validation and predictive science we have done for this experiment with FLASH.
Alignment of Velocity and Magnetic Fluctuations in Simulations of Anisotropic MHD Turbulence
NASA Astrophysics Data System (ADS)
Ng, C. S.; Bhattacharjee, A.
2007-11-01
There has been recent theoretical interest in the effect of the alignment of velocity and magnetic fluctuations in three-dimensional (3D) MHD turbulence with a large-scale magnetic field [Boldyrev 2005, 2006]. This theory predicts that the angle θ between the velocity and magnetic fluctuation vectors has a scaling of θ&1/4circ;, where λ is the spatial scale of the fluctuations. There have also been simulations on 3D forced MHD turbulence that supports this prediction [Mason et al. 2006, 2007]. The scaling has also been tested against observations of solar wind turbulence [Podesta et al. 2007]. We report here simulation results based on decaying 2D turbulence. The scaling of θ&1/4circ; and Iroshnikov-Kraichnan scaling has also been observed within a range of time interval and spatial scales, despite the fact that Boldyrev's theory was developed for fully 3D turbulence in the presence of a strong external field. As the external field is reduced in magnitude and becomes comparable to the magnitude of magnetic fluctuations or lower, the scale-dependent alignment is weakened. Implications for observations of solar wind turbulence will be discussed.
Chatterjee, Dipankar; Amiroudine, Sakir
2011-02-01
A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.
Study of reconnection events through Global MHD simulation and observational data
NASA Astrophysics Data System (ADS)
Cardoso, F. R.; Gonzalez, W. D.; Sibeck, D. G.; Kuznetsova, M. M.; Alves, M. V.
2011-12-01
Magnetic reconnection is the dominant mechanism for solar wind energy and momentum transfer to the magnetosphere. It can be a continuous or a transient process. Time-varying reconnection produces flux transfer events (FTEs) which can be identified by bipolar signatures in the component of the magnetic field normal to the magnetopause, deflections in the component tangential, and variations in the magnetic field magnitude. Some events exhibit the mixed magnetospheric and magnetosheath plasma populations expected for reconnection. Global magnetohydrodynamics (MHD) simulations are important tools to understand the relevant magnetic reconnection mechanisms. We have identified magnetic reconnection events, especially FTEs, in global MHD simulations and observations. We study their spatial and temporal characteristics as a function of solar wind parameters, in particular the interplanetary magnetic field orientation. We determine the origin of FTEs as well as the properties that describe them such as their dimension, extent and motion as a function of time. In particular, we track the motion of FTEs in an attempt to determine their point of origin, their destination, and how fast they move.
Modeling the 17 March 2015 CME-shock driven storm using MHD-test particle simulations
NASA Astrophysics Data System (ADS)
Hudson, M. K.; Kress, B. T.; Li, Z.; Wiltberger, M. J.; Wygant, J. R.
2015-12-01
Both a prompt injection up to MeV energies and an abrupt decrease in the outer boundary of trapped electrons coincided with inward motion of the magnetopause for the 17 March 2015 CME-shock driven storm, the strongest storm (Dst = - 223 nT) of the Van Allen Probes era and last decade. Modeling injection similar to the 8-9 October 2013 storm, much weaker in Dst response (Dst = - 58 nT), and dropout of flux at higher L values includes both trapped and plasmasheet source populations in MHD test particle simulations driven by ARTEMIS data for both storms. The energy dependence of promptly injected electrons is more readily apparent for the 15 March 2015 storm than the 8-9 October 2013, since the Van Allen Probes spacecraft B was on the nightside pre-midnight vs. dayside during shock arrival for the more recent storm. Multifluid Lyon-Fedder-Mobarry simulation including O+ outflow has been implemented improving agreement with GOES magnetometer measurements at geosynchronous orbit over the LFM-RCM and stand-alone LFM-MIX model. Electric field diagnostics from the EFW instrument that were not available for storms immediately following launch have improved our understanding of the complex role that ULF waves play in radial transport during such events. The importance of prompt injections from the tail associated with substorm intervals is captured by the MHD-test particle model reproducing flux at GOES and comparing favorably with Van Allen Probes ECT measurements.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2011-01-01
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.
Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D
Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...
2015-09-04
In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less
Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D
Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; Garofalo, Andrea M.; Solomon, Wayne M.; Snyder, Philip B.; Hoelzl, M.; Zeng, L.
2015-09-04
In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wall boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.
NASA Astrophysics Data System (ADS)
Ju, Wenhua; Stone, James M.; Zhu, Zhaohuan
2016-06-01
We present results from the first global 3D MHD simulations of accretion disks in cataclysmic variable (CV) systems in order to investigate the relative importance of angular momentum transport via turbulence driven by the magnetorotational instability (MRI) compared with that driven by spiral shock waves. Remarkably, we find that even with vigorous MRI turbulence, spiral shocks are an important component of the overall angular momentum budget, at least when temperatures in the disk are high (so that Mach numbers are low). In order to understand the excitation, propagation, and damping of spiral density waves in our simulations more carefully, we perform a series of 2D global hydrodynamical simulations with various equation of states, both with and without mass inflow via the Lagrangian point (L1). Compared with previous similar studies, we find the following new results. (1) The linear wave dispersion relation fits the pitch angles of spiral density waves very well. (2) We demonstrate explicitly that mass accretion is driven by the deposition of negative angular momentum carried by the waves when they dissipate in shocks. (3) Using Reynolds stress scaled by gas pressure to represent the effective angular momentum transport rate {α }{eff} is not accurate when mass accretion is driven by non-axisymmetric shocks. (4) Using the mass accretion rate measured in our simulations to directly measure α defined in standard thin-disk theory, we find 0.02≲ {α }{eff}≲ 0.05 for CV disks, consistent with observed values in quiescent states of dwarf novae. In this regime, the disk may be too cool and neutral for the MRI to operate and spiral shocks are a possible accretion mechanism. However, we caution that our simulations use unrealistically low Mach numbers in this regime and, therefore, future models with more realistic thermodynamics and non-ideal MHD are warranted.
Shen, Bingyu; Zheng, Liancun Chen, Shengting
2015-10-15
This paper presents an investigation for magnetohydrodynamic (MHD) viscoelastic fluid boundary layer flow and radiation heat transfer over an unsteady stretching sheet in presence of heat source. Time dependent fractional derivative is first introduced in formulating the boundary layer equations. Numerical solutions are obtained by using the finite difference scheme and L1-algorithm approximation. Results indicate that the proposed model describes a basic delaying times framework for viscoelastic flow and radiation heat transfer. The effects of involved parameters on velocity and temperature fields are shown graphically and analyzed in detail.
NASA Astrophysics Data System (ADS)
LE CHAT, G.; Kasper, J. C.; Cohen, O.; Spangler, S.
2013-05-01
Faraday rotation observations of natural radio sources allow remote diagnostics of the density and magnetic field of the solar corona. We use linear polarization observations made with the NRAO Very Large Array at frequencies of 1465 and 1665 MHz of 33 polarized radio sources occulted by the solar corona within 5 to 14 solar radii. The measurements were made during May 1997 (Mancuso and Spangler, 2000), March 2005 and april 2005 (Ingleby et al., 2005), corresponding to Carrington rotation number 1922, 1923, 2027 and 2028. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona using the BATS-R-US model. The simulations are driven by magnetogram data taken at the same time as the observed data. We present the agreement between the model and the Faraday rotation measurements, and we discuss the contraints imposed on models of the quiet corona and CMEs by these observations.
Kim, Tae K.; Pogorelov, Nikolai V.; Borovikov, Sergey N.; Clover, John M.; Jackson, Bernard V.; Yu, Hsiu-Shan
2012-11-20
Numerical modeling of the heliosphere is a critical component of space weather forecasting. The accuracy of heliospheric models can be improved by using realistic boundary conditions and confirming the results with in situ spacecraft measurements. To accurately reproduce the solar wind (SW) plasma flow near Earth, we need realistic, time-dependent boundary conditions at a fixed distance from the Sun. We may prepare such boundary conditions using SW speed and density determined from interplanetary scintillation (IPS) observations, magnetic field derived from photospheric magnetograms, and temperature estimated from its correlation with SW speed. In conclusion, we present here the time-dependent MHD simulation results obtained by using the 2011 IPS data from the Solar-Terrestrial Environment Laboratory as time-varying inner boundary conditions and compare the simulated data at Earth with OMNI data (spacecraft-interspersed, near-Earth solar wind data).
The role of condensation and heat conduction in the formation of prominences - An MHD simulation
NASA Technical Reports Server (NTRS)
Wu, S. T.; Bao, J. J.; An, C. H.; Tandberg-Hanssen, E.
1990-01-01
The effects of condensation and thermal conduction on the formation of Kippenhahn-Schlueter (K-S) type prominences in quiet regions (QP) due to symmetric mass injection are investigated. To implement this investigation a self-consistent, two-dimensional, nonplanar, time-dependent MHD simulation model is developed. In the model, various values of the injection velocity, density, and magnetic field strength are used to determine the most favorable conditions for the QP formation. Based on these simulation results, it is found that the formation of a K-S type field configuration should be considered as a dynamic process which needs both condensation amd mass injection to supply enough mass to maintain such a configuration to complete the quiescent prominence formation process.
Proposal of a brand-new gyrokinetic algorithm for global MHD simulation
NASA Astrophysics Data System (ADS)
Naitou, Hiroshi; Kobayashi, Kenichi; Hashimoto, Hiroki; Andachi, Takehisa; Lee, Wei-Li; Tokuda, Shinji; Yagi, Masatoshi
2009-11-01
A new algorithm for the gyrokinetic PIC code is proposed. The basic equations are energy conserving and composed of (1) the gyrokinetic Vlasov (GKV) equation, (2) the Vortex equation, and (3) the generalized Ohm's law along the magnetic field. Equation (2) is used to advance electrostatic potential in time. Equation (3) is used to advance longitudinal component of vector potential in time as well as estimating longitudinal induced electric field to accelerate charged particles. The particle information is used to estimate pressure terms in equation (3). The idea was obtained in the process of reviewing the split-weight-scheme formalism. This algorithm was incorporated in the Gpic-MHD code. Preliminary results for the m=1/n=1 internal kink mode simulation in the cylindrical geometry indicate good energy conservation, quite low noise due to particle discreteness, and applicability to larger spatial scale and higher beta regimes. The advantage of new Gpic-MHD is that the lower order moments of the GKV equation are estimated by the moment equation while the particle information is used to evaluate the second order moment.
On Europa's magnetospheric interaction: A MHD simulation of the E4 flyby
NASA Astrophysics Data System (ADS)
Kabin, K.; Combi, M. R.; Gombosi, T. I.; Nagy, A. F.; DeZeeuw, D. L.; Powell, K. G.
1999-09-01
The global three-dimensional interaction of Europa with the Jovian magnetosphere is modeled by using a complete set of ideal magnetohydrodynamic (MHD) equations. The model accounts for exospheric mass loading, ion-neutral charge exchange, recombination, and a possible intrinsic dipole magnetic field of Europa. The single-fluid MHD equations are solved by using a modern, finite volume, higher-order, Godunov-type method on an adaptively refined unstructured grid, which allows detailed modeling of the region near Europa while still resolving both the upstream region and the satellite's wake. The magnetic field and plasma density measured during Galileo's E4 flyby of December 19, 1996, are reproduced reasonably well in the simulation. We find the agreement between the data and our model particularly convincing if we assume that the plasma velocity during the E4 flyby deviated from the nominal corotation direction by approximately 20°. Evidence from the Galileo energetic particle detector also supports this assumption. In this case, we can fit the data using a dipole with orientation close to that of an induced dipole arising from the interaction of a hypothetical conducting subsurface layer on Europa with the periodically changing magnetic field of Jupiter. However, the magnitude of the dipole in our model is somewhat smaller (70%) than that suggested by Khurana et al. [1998]. The total mass loading and ion-neutral charge exchange rates are consistent with the estimates of Europa's atmosphere and ionosphere.
On Europa's Magnetospheric Interaction: A MHD Simulation of the E4 Flyby
NASA Technical Reports Server (NTRS)
Kabin, K.; Combi, M. R.; Gombosi, T. I.; Nagy, A. F.; DeZeeuw, D. L.; Powell, K. G.
1999-01-01
The global three-dimensional interaction of Europa with the Jovian magnetosphere is modeled by using a complete set of ideal magnetohydrodynamic (MHD) equations. The model accounts for exospheric mass loading, ion-neutral charge exchange, recombination, and a possible intrinsic dipole magnetic field of Europa. The single-fluid MHD equations are solved by using a modem, finite volume, higher-order, Godunov-type method on an adoptively refined unstructured grid, which allows detailed modeling of the region near Europa while still resolving both the upstream region and the satellite's wake. The magnetic field and plasma density measured during Galileo's EGA flyby of December 19, 1996, are reproduced reasonably well in the simulation. We find the agreement between the data and our model particularly convincing if we assume that the plasma velocity during the EGA flyby deviated from the nominal corotation direction by approximately 20 deg. Evidence from the Galileo energetic particle detector also supports this assumption. In this case, we can fit the data using a dipole with orientation close to that of an induced dipole arising from the interaction of a hypothetical conducting subsurface layer on Europa with the periodically changing magnetic field of Jupiter. However, the magnitude of the dipole in our model is somewhat smaller (70%) than that suggested by Khurana et al. The total mass loading and ion-neutral charge exchange rates are consistent with the estimates of Europa's atmosphere and ionosphere.
Two-Species, 3D, MHD Simulation of Europa's Interaction with Jupiter's Magnetosphere
NASA Technical Reports Server (NTRS)
Liu, Yifan; Nagy, Andrew F.; Kabin, Konstantin; Combi, Michael R.; DeZeeuw, Darren L.; Gombosi, Tamas I.; Powell, Kenneth G.
2000-01-01
The interaction of Europa with the Jovian a magnetosphere has been studied by using a two species in ideal magnetohydrodynamic (MHD) numerical model. This model considers the upstream plasma in the Jovian magnetosphere and the molecular oxygen ions in the ionosphere of Europa, separately. We present results a from simulation studies, which take into account impact ionization, recombination, and the effect of a possible induced dipole magnetic field of Europa. The total mass loading of the magnetospheric flow and the ionization frequency used in the model are consistent with the estimates of Europa's ionosphere and atmosphere. The multi-species MHD equations are solved by using a finite volume, high-order, Godunov-type method on an adoptively refined unstructured grid, which allows a detailed modeling of the region near Europa's surface, while still resolving both the upstream region and the satellite's wake. We have paid special attention to the wake of Europa, in order to be able to make comparisons with the Galileo's E4 flyby observations, as well as other model calculations. The calculated escape flux of a O2+ down the tail was found to be about 5.6 x 10(exp 25) s(sup -1).
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2011-10-01
The dynamics of structures of magnetic field, current density, and plasma flow generated during multi-pulsed coaxial helicity injection in spherical torus is investigated by 3-D nonlinear MHD simulations. During the driven phase, the flux and current amplifications occur due to the merging and magnetic reconnection between the preexisting plasma in the confinement region and the ejected plasma from the gun region involving the n = 1 helical kink distortion of the central open flux column (COFC). Interestingly, the diamagnetic poloidal flow which tends toward the gun region is then observed due to the steep pressure gradients of the COFC generated by ohmic heating through an injection current winding around the inboard field lines, resulting in the formation of the strong poloidal flow shear at the interface between the COFC and the core region. This result is consistent with the flow shear observed in the HIST. During the decay phase, the configuration approaches the axisymmetric MHD equilibrium state without flow because of the dissipation of magnetic fluctuation energy to increase the closed flux surfaces, suggesting the generation of ordered magnetic field structure. The parallel current density λ concentrated in the COFC then diffuses to the core region so as to reduce the gradient in λ, relaxing in the direction of the Taylor state.
Relativistic Modeling Capabilities in PERSEUS Extended MHD Simulation Code for HED Plasmas
NASA Astrophysics Data System (ADS)
Hamlin, Nathaniel; Seyler, Charles
2014-10-01
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as hybrid X-pinches and laser-plasma interactions. A major challenge of a relativistic fluid implementation is the recovery of primitive variables (density, velocity, pressure) from conserved quantities at each time step of a simulation. This recovery, which reduces to straightforward algebra in non-relativistic simulations, becomes more complicated when the equations are made relativistic, and has thus far been a major impediment to two-fluid simulations of relativistic HED plasmas. By suitable formulation of the relativistic generalized Ohm's law as an evolution equation, we have reduced the central part of the primitive variable recovery problem to a straightforward algebraic computation, which enables efficient and accurate relativistic two-fluid simulations. Our code recovers expected non-relativistic results and reveals new physics in the relativistic regime. Work supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative Agreement DE-NA0001836.
Hybrid simulations of the interaction of hot gyrokinetic particles with MHD waves
Belova, E.V.; Denton, R.E.; Hudson, M.K.; Chan, A.A.
1996-12-31
A self-consistent study of the interaction of energetic ions with low-frequency MHD waves is performed using hybrid MHD-gyrokinetic particle simulations. In particular, the excitation of magnetospheric hydromagnetic waves by magnetic drift-bounce resonance with energetic ring current ions is investigated. In the model, energetic ions are treated as gyrokinetic particles using fully electromagnetic gyro-center equations, while the cold background plasma is treated as a fluid. The particles are coupled to the fluid equations through their current which appear in the bulk plasma momentum equation: where {rho}{sub b}, V{sub b} and p{sub b} are bulk plasma density, velocity and pressure, n{sub h} and j{sub h} axe hot ion density and current density. Other equations for the bulk plasma axe that of the MHD equations including E = - V{sub b} x B/c. It is assumed that n{sub h} {much_lt} n{sub b}. Spatial gyroaveraging in the gyro-center equations of motion as well as transformation to physical space axe performed by using four or eight point gyroangle distribution, in order to include the finite Larmor radius effects. In test runs, good conservation of the total energy was obtained and the finite Larmor radius effects were well reproduced for k{sub {perpendicular}}{rho}{sub h} {approximately} 1. Since magnetic drift-bounce resonant instability is driven by radial pressure gradients and requires resonance between azimuthal ion drift motion and bounce motion along magnetic field line, 3-D simulations are necessary for its investigation. The use of a multiple spatial scale expansion method enables to separate the equilibrium spatial scale lengths from those of the perturbations. In this case the zero-order ion pressure and magnetic field gradients become input parameters for the 2-D simulation. The 2-D numerical model with fixed background inhomogeneity was developed and it is used to study the drift-bounce resonant instability in 2-D box geometry.
Application of a 3D, Adaptive, Parallel, MHD Code to Supernova Remnant Simulations
NASA Astrophysics Data System (ADS)
Kominsky, P.; Drake, R. P.; Powell, K. G.
2001-05-01
We at Michigan have a computational model, BATS-R-US, which incorporates several modern features that make it suitable for calculations of supernova remnant evolution. In particular, it is a three-dimensional MHD model, using a method called the Multiscale Adaptive Upwind Scheme for MagnetoHydroDynamics (MAUS-MHD). It incorporates a data structure that allows for adaptive refinement of the mesh, even in massively parallel calculations. Its advanced Godunov method, a solution-adaptive, upwind, high-resolution scheme, incorporates a new, flux-based approach to the Riemann solver with improved numerical properties. This code has been successfully applied to several problems, including the simulation of comets and of planetary magnetospheres, in the 3D context of the Heliosphere. The code was developed under a NASA computational grand challenge grant to run very rapidly on parallel platforms. It is also now being used to study time-dependent systems such as the transport of particles and energy from solar coronal mass ejections to the Earth. We are in the process of modifying this code so that it can accommodate the very strong shocks present in supernova remnants. Our test case simulates the explosion of a star of 1.4 solar masses with an energy of 1 foe, in a uniform background medium. We have performed runs of 250,000 to 1 million cells on 8 nodes of an Origin 2000. These relatively coarse grids do not allow fine details of instabilities to become visible. Nevertheless, the macroscopic evolution of the shock is simulated well, with the forward and reverse shocks visible in velocity profiles. We will show our work to date. This work was supported by NASA through its GSRP program.
Plasmoid dynamics in 3D resistive MHD simulations of magnetic reconnection
NASA Astrophysics Data System (ADS)
Samtaney, R.; Loureiro, N. F.; Uzdensky, D. A.; Schekochihin, A. A.
2012-04-01
Magnetic reconnection is a well known plasma process believed to lie at the heart of a variety of phenomena such as sub-storms in the Earth's magnetosphere, solar/stellar and accretion-disk flares, sawteeth activity in fusion devices, etc. During reconnection, the global magnetic field topology changes rapidly, leading to the violent release of magnetic energy. Over the past few years, the basic understanding of this fundamental process has undergone profound changes. The validity of the most basic, and widely accepted, reconnection paradigm - the famous Sweet-Parker (SP) model, which predicts that, in MHD, reconnection is extremely slow, its rate scaling as S-1/2, where S is the Lundquist number of the system - has been called into question as it was analytically demonstrated that, for S ≫ 1, SP-like current sheets are violently unstable to the formation of a large number of secondary islands, or plasmoids. Subsequent numerical simulations in 2D have confirmed the validity of the linear theory, and shown that plasmoids quickly grow to become wider than the thickness of the original SP current sheet, thus effectively changing the underlying reconnection geometry. Ensuing numerical work has revealed that the process of plasmoid formation, coalescence and ejection from the sheet drastically modifies the steady state picture assumed by Sweet and Parker, and leads to the unexpected result that MHD reconnection is independent of S. In this talk, we review these recent developments and present results from three-dimensional simulations of high-Lundquist number reconnection in the presence of a guide field. A parametric study varying the strength of the guide field is presented. Plasmoid flux and width distribution functions are quantified and compared with corresponding two dimensional simulations.
Lagrangian MHD Particle-in-Cell simulations of coronal interplanetary shocks driven by observations
NASA Astrophysics Data System (ADS)
Lapenta, Giovanni; Bacchini, Fabio; Bemporad, Alessandro; Susino, Roberto; Olshevskyi, Vyacheslav
2016-04-01
In this work, we compare the spatial distribution of the plasma parameters along the June 11, 1999 CME-driven shock front with the results obtained from a CME-like event simulated with the FLIPMHD3D code, based on the FLIP-MHD Particle-in-Cell (PiC) method. The observational data are retrieved from the combination of white-light (WL) coronagraphic data (for the upstream values) and the application of the Rankine-Hugoniot (RH) equations (for the downstream values). The comparison shows a higher compression ratio X and Alfvénic Mach number MA at the shock nose, and a stronger magnetic field deflection d towards the flanks, in agreement with observations. Then, we compare the spatial distribution of MA with the profiles obtained from the solutions of the shock adiabatic equation relating MA, X, and the angle between the upstream magnetic field and the shock front normal for the special cases of parallel and perpendicular shock, and with a semi-empirical expression for a generically oblique shock. The semi-empirical curve approximates the actual values of MA very well, if the effects of a non-negligible shock thickness and plasma-to magnetic pressure ratio are taken into account throughout the computation. Moreover, the simulated shock turns out to be supercritical at the nose and sub-critical at the flanks. Finally, we develop a new 1D Lagrangian ideal MHD method based on the GrAALE code, to simulate the ion-electron temperature decoupling due to the shock transit. Two models are used, a simple solar wind model and a variable-gamma model. Both produce results in agreement with observations, the second one being capable of introducing the physics responsible for the additional electron heating due to secondary effects (collisions, Alfvén waves, etc.). Work supported by the European Commission under the SWIFF project (swiff.eu)
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2010-01-01
Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.
NASA Technical Reports Server (NTRS)
Kuznetsova, M. M.; Sibeck, D. G.; Hesse, M.; Wang, Y.; Rastaetter, L.; Toth, G.; Ridley, A.
2009-01-01
We use the global magnetohydrodynamic (MHD) code BATS-R-US to model multipoint observations of Flux Transfer Event (FTE) signatures. Simulations with high spatial and temporal resolution predict that cavities of weak magnetic field strength protruding into the magnetosphere trail FTEs. These predictions are consistent with recently reported multi-point Cluster observations of traveling magnetopause erosion regions (TMERs).
Dayside Proton Aurora: Comparisons between Global MHD Simulations and Image Observations
NASA Technical Reports Server (NTRS)
Berchem, J.; Fuselier, S. A.; Petrinec, S.; Frey, H. U.; Burch, J. L.
2003-01-01
The IMAGE mission provides a unique opportunity to evaluate the accuracy of current global models of the solar wind interaction with the Earth's magnetosphere. In particular, images of proton auroras from the Far Ultraviolet Instrument (FUV) onboard the IMAGE spacecraft are well suited to support investigations of the response of the Earth's magnetosphere to interplanetary disturbances. Accordingly, we have modeled two events that occurred on June 8 and July 28, 2000, using plasma and magnetic field parameters measured upstream of the bow shock as input to three-dimensional magnetohydrodynamic (MHD) simulations. This paper begins with a discussion of images of proton auroras from the FUV SI-12 instrument in comparison with the simulation results. The comparison showed a very good agreement between intensifications in the auroral emissions measured by FUV SI-12 and the enhancement of plasma flows into the dayside ionosphere predicted by the global simulations. Subsequently, the IMAGE observations are analyzed in the context of the dayside magnetosphere's topological changes in magnetic field and plasma flows inferred from the simulation results. Finding include that the global dynamics of the auroral proton precipitation patterns observed by IMAGE are consistent with magnetic field reconnection occurring as a continuous process while the iMF changes in direction and the solar wind dynamic pressure varies. The global simulations also indicate that some of the transient patterns observed by IMAGE are consistent with sporadic reconnection processes. Global merging patterns found in the simulations agree with the antiparallel merging model. though locally component merging might broaden the merging region, especially in the region where shocked solar wind discontinuities first reach the magnetopause. Finally, the simulations predict the accretion of plasma near the bow shock in the regions threaded by newly open field lines on which plasma flows into the dayside
NASA Astrophysics Data System (ADS)
Kaminou, Yasuhiro; Guo, Xuehan; Inomoto, Michiaki; Ono, Yasushi; Horiuchi, Ritoku
2017-03-01
Hall effects on counter-helicity spheromak merging were investigated by two-dimensional MHD and Hall-MHD simulations of merging two axisymmetric toroidal flux tubes. In Hall-MHD cases, the structure of the reconnection current sheet and reconnection outflow are modified from the MHD case due to the Hall effect. We compared two cases (called "case-O" and "case-I") of counter-helicity merging, which are distinguished by the polarity of toroidal magnetic fluxes. Radial motion of the reconnection X-point is controlled by poloidal electron flow accompanying the toroidal flux of the merging two spheromaks, and this creates a large difference in the current sheet and flow structure between the two cases of the Hall-MHD regime. The radial shift of the reconnection X-point depending on the polarity of toroidal magnetic flux of the spheromaks breaks the symmetry between the two cases. It was also found that there widely exists separation of ion and electron flow which are affected by the modification of the current sheet structure due to the radial shift of the X-point in the downstream side of the merging, and its spatial scale of the distribution of the Hall electric field is larger than the ion skin depth.
Behavior of fast earthward flow near the braking region: Hall MHD simulation
NASA Astrophysics Data System (ADS)
Lu, Xingqiang; Ma, Zhiwei; Guo, Wei
2016-10-01
Behavior of the fast earthward flow near the braking region in the magnetotail during a substorm is investigated using the Hall MHD simulation. The results indicate that the high-speed earthward plasma flow is associated with fast reconnection in the middle tail. The fast flow is mainly confined in the range -1.5RE < z < 1.5RE . In the region of -15RE < x < -9RE , due to intermittent magnetic reconnection, the earthward flow exhibits a fluctuating property, i.e., the flow is localized in space and is bursty in time. The pile-up of the magnetic flux and plasma in the near-Earth region leads to formation of the fast-flow braking region or dipolarization front. After colliding into the fast-flow braking region, a part of the Earth flow bounces back, and leads to an intermittent tailward flow in the near-Earth magnetotail.
The magnetic topology of the plasmoid flux rope in a MHD simulation of magnetotail reconnection
Birn, J.; Hesse, M.
1989-01-01
On the basis of a three-dimensional MHD simulation we discuss the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration including a net dawn-dusk magnetic field component B/sub yN/. As a consequence of b/sub yN/ /ne/ 0 the plasmid gets a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmid flux rope remain connected with the Earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of ad-hoc plasmid models. 10 refs., 8 figs.
The magnetic topology of the plasmoid flux rope in a MHD-simulation of magnetotail reconnection
NASA Astrophysics Data System (ADS)
Birn, J.; Hesse, M.
On the basis of a 3D MHD simulation, the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration (including a net dawn-dusk magnetic field component B sub y N is discussed. As a consequence of B sub y N not equalling 0, the plasmoid assumes a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage, topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of an ad hoc plasmoid model.
The magnetic topology of the plasmoid flux rope in a MHD-simulation of magnetotail reconnection
NASA Astrophysics Data System (ADS)
Birn, J.; Hesse, M.
On the basis of a three-dimensional MHD simulation we discuss the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration including a net dawn-dusk magnetic field component ByN. As a consequence of ByN ≠ 0 the plasmoid assumes a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the Earth, while at later times a gradually increasing amount of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of an ad-hoc plasmoid model.
The magnetic topology of the plasmoid flux rope in a MHD simulation of magnetotail reconnection
NASA Astrophysics Data System (ADS)
Birn, J.; Hesse, M.
On the basis of a three-dimensional MHD simulation we discuss the magnetic topology of a plasmoid that forms by a localized reconnection process in a magnetotail configuration including a net dawn-dusk magnetic field component B sub yN. As a consequence of B sub yN ne 0 the plasmoid gets a helical flux rope structure rather than an isolated island or bubble structure. Initially all field lines of the plasmoid flux rope remain connected with the Earth, while at later times a gradually increasing number of flux tubes becomes separated, connecting to either the distant boundary or to the flank boundaries. In this stage topologically different flux tubes become tangled and wrapped around each other, consistent with predictions on the basis of ad hoc plasmoid models.
NASA Astrophysics Data System (ADS)
Fruehauff, D.; Glassmeier, K. H.
2016-12-01
The Earth's dynamic magnetotail is frequently populated by transient phenomena propagating earthward in the vicinity of the neutral sheet. Of these, Bursty Bulk Flows (BBFs) are often accompanied by Dipolarization Fronts (DFs), named by their large-amplitude Bz magnetic field increase. While believed to stem from spatially localized reconnection regions further downtail, they significantly contribute to mass and flux transfer and cross-tail current disruption, specifically in the active magnetotail. Yet, although a large amount of observations has already been gathered by Cluster, THEMIS and MMS missions, a full and quantitative understanding has not been reached so far. Several elements, such as the nature of the Bz dip, the internal current system of the DF, or braking mechanisms lack complete description. Using MHD simulations this study focuses on understanding key properties in the propagation of Dipolarization Fronts through a simplified magnetotail model. Central aspects are compared to previous results and latest observations from THEMIS.
3D MHD SIMULATION OF FLARE SUPRA-ARCADE DOWNFLOWS IN A TURBULENT CURRENT SHEET MEDIUM
Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M.
2015-07-01
Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin–Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there may be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.
Missing upper kHz QPO in MHD simulations of oscillating cusp-filling tori
NASA Astrophysics Data System (ADS)
Kluzniak, Wlodek; Parthasarathy, Varadarajan; Čemeljić, Miljenko
2017-08-01
We performed axisymmetric, grid-based, ideal magnetohydrodynamic (MHD) simulations of oscillating cusp-filling tori orbiting a non-rotating neutron star. A pseudo-Newtonian potential was used to construct the constant angular momentum tori in equilibrium. The inner edge of the torus is terminated by a "cusp" in the effective potential. The initial motion of the model tori was perturbed with uniform sub-sonic vertical and diagonal velocity fields. As the configuration evolved in time, we measured the mass accretion rate on the neutron star surface and obtained the power spectrum. The prominent mode of oscillation in the cusp torus is the radial epicyclic mode. It would appear that vertical oscillations are suppressed by the presence of the cusp. From our analysis it follows that the mass accretion rate carries a modulation imprint of the oscillating torus, and hence so does the boundary layer luminosity.
Kim, Tae K.; Pogorelov, Nikolai V.; Borovikov, Sergey N.; ...
2012-11-20
Numerical modeling of the heliosphere is a critical component of space weather forecasting. The accuracy of heliospheric models can be improved by using realistic boundary conditions and confirming the results with in situ spacecraft measurements. To accurately reproduce the solar wind (SW) plasma flow near Earth, we need realistic, time-dependent boundary conditions at a fixed distance from the Sun. We may prepare such boundary conditions using SW speed and density determined from interplanetary scintillation (IPS) observations, magnetic field derived from photospheric magnetograms, and temperature estimated from its correlation with SW speed. In conclusion, we present here the time-dependent MHD simulationmore » results obtained by using the 2011 IPS data from the Solar-Terrestrial Environment Laboratory as time-varying inner boundary conditions and compare the simulated data at Earth with OMNI data (spacecraft-interspersed, near-Earth solar wind data).« less
Interpreting Small-Scale Structure from High Resolution Global MHD Simulations
NASA Astrophysics Data System (ADS)
Mikic, Zoran; Titov, V. S.; Linker, J. A.; Lionello, R.; Riley, P.; Antiochos, S.
2010-05-01
High resolution 3D MHD simulations of the solar corona are beginning to reveal how small-scale structures in the magnetic field interact with the global structure of the corona and solar wind. In particular, it has become evident that the detailed characteristics of coronal holes, especially their equatorial extensions, may be related to the source of the slow solar wind. Using structural analysis based on the squashing factor Q (Titov et al. 2002, 2008; Titov 2007) we show how small-scale structure in the magnetic field is related to the structure of the streamer belt. These results have led to a new interpretation of the source of the slow solar wind. Research supported by NASA's Heliospheric Theory and Living With a Star Programs, and NSF/CISM.
First Radiation Magnetohydrodynamic Global Simulations Of Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Flock, M.; Fromang, S.; González, M.; Commerçon, B.
2013-07-01
We present the turbulent and thermal evolution of a magnetized protoplanetary disks using full global 3D radiative MHD simulations including frequency dependent irradiation by the star. We perform classical 2D radiative viscous disk simulations to compare with the full model. The temperature evolution differs significantly between the two models, mainly due to the non uniform heating in case of the magneto rotational instability (MRI). In the full 3D model, the midplane temperature is flat and determined by the disk infrared surface temperature. The classical viscous models show the expected peak at the midplane due to the assumption of constant accretion stress. During the development of our method we focused on serial and parallel performance. As a result our method present high computational efficiency and we reach parallel scaling up to 70% using 1024 cpu's.
Simulated 2050 aviation radiative forcing
NASA Astrophysics Data System (ADS)
Chen, C. C.; Gettelman, A.
2015-12-01
The radiative forcing from aviation is investigated by using a comprehensive general circulation model in the present (2006) and the future (2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing can increase by a factor of 7, and thus does not scale linearly with fuel emission mass. Simulations indicate negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds that increasesby a factor of 4 in 2050. As a result, the net 2050 aviation radiative forcing is a cooling. Aviation sulfates emitted at cruise altitude canbe transported down to the lowest troposphere, increasing the aerosolconcentration, thus increasing the cloud drop number concentration and persistenceof low-level clouds. Aviation black carbon aerosols produce a negligible forcing.
NASA Astrophysics Data System (ADS)
Vlahos, Loukas; Archontis, Vasilis; Isliker, Heinz
We consider 3D nonlinear MHD simulations of an emerging flux tube, from the convection zone into the corona, focusing on the coronal part of the simulations. We first analyze the statistical nature and spatial structure of the electric field, calculating histograms and making use of iso-contour visualizations. Then test-particle simulations are performed for electrons, in order to study heating and acceleration phenomena, as well as to determine HXR emission. This study is done by comparatively exploring quiet, turbulent explosive, and mildly explosive phases of the MHD simulations. Also, the importance of collisional and relativistic effects is assessed, and the role of the integration time is investigated. Particular aim of this project is to verify the quasi- linear assumptions made in standard transport models, and to identify possible transport effects that cannot be captured with the latter. In order to determine the relation of our results to Fermi acceleration and Fokker-Planck modeling, we determine the standard transport coefficients. After all, we find that the electric field of the MHD simulations must be downscaled in order to prevent an un-physically high degree of acceleration, and the value chosen for the scale factor strongly affects the results. In different MHD time-instances we find heating to take place, and acceleration that depends on the level of MHD turbulence. Also, acceleration appears to be a transient phenomenon, there is a kind of saturation effect, and the parallel dynamics clearly dominate the energetics. The HXR spectra are not yet really compatible with observations, we have though to further explore the scaling of the electric field and the integration times used.
Radiation-MHD models of elephant trunks and globules in HII regions
NASA Astrophysics Data System (ADS)
Mackey, Jonathan; Lim, Andrew J.
2011-01-01
We study the formation and evolution of pillars of dense gas, known as elephant trunks, at the boundaries of HII regions, formed by shadowing of ionising radiation by dense clumps. The effects of magnetic fields on this process are investigated using 3D radiation-magnetohydrodynamics simulations. For a simulation in which an initially uniform magnetic field of strength \\vert B\\vert≃50 μG is oriented perpendicular to the radiation propagation direction, the field is swept into alignment with the pillar during its dynamical evolution, in agreement with observations of the ``Pillars of Creation'' in M16, and of some cometary globules. This effect is significantly enhanced when the simulation is re-run with a weaker field of ≃18 μG. A stronger field with \\vert B\\vert≃ 160 μG is sufficient to prevent this evolution completely, also significantly affecting the photoionisation process. Using a larger simulation domain it is seen that the pillar formation models studied in Mackey & Lim (2010) ultimately evolve to cometary structures in the absence of dense gas further from the star.
Global evolution of Birkeland currents on 10 min timescales: MHD simulations and observations
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Anderson, B. J.; Lyon, J. G.; Korth, H.; Wiltberger, M.; Motoba, T.
2013-08-01
In this paper we compare time-dependent global ionospheric field-aligned current (FAC) patterns on 10 min timescales inferred from the Active Magnetosphere and Polar Electrodynamics Response Experiment (AMPERE) with the high-resolution Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. The improved LFM model yields temporally varying FAC patterns with a fine structure on the sub-100 km scale. The goal of the study is to explore the responses of observed and simulated FAC patterns and underlying magnetic perturbations to a succession of rapid transitions in the solar wind and Interplanetary Magnetic Field (IMF) parameters. To drive the simulations, we use the upstream Wind and Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft measurements recorded on 3 August 2010. For the time interval of interest (˜40 min following the impact of an interplanetary shock), the IMF is characterized by a BZ rotation from southward to northward direction under negative BY conditions. Through this case study analysis, it is found that the simulations have generally reproduced the salient characteristics of both the morphology and dynamics of the AMPERE FAC patterns. Due to the high resolution of the global model, the peak current densities are found to significantly (by a factor of 2-4) exceed those obtained from AMPERE. As a further quantitative analysis, the low-altitude magnetic perturbations measured by Iridium spacecraft and used to derive the AMPERE 2-D FAC patterns are also compared with the magnetic field variations calculated from the simulations. It is found that outside of localized regions of peak current densities, which mainly occur on the dayside and can fall between the Iridium tracks, the simulated magnetic perturbations closely follow the Iridium measurements. This demonstrates, in particular, that there is no systematic bias in the simulations to overestimate the magnetic perturbations and corresponding FAC
An MHD simulation of plasmoid instability in the dayside ionosphere of an unmagnetized planet
NASA Astrophysics Data System (ADS)
Hitoshi, S.; Terada, N.; Kasaba, Y.
2015-12-01
A numerical simulation of magnetic reconnection in the dayside ionosphere of an unmagnetized planet and a comparison of the size distribution of flux ropes obtained from simulation with that from observation will be reported. Flux ropes have been frequently observed in the dayside ionospheres of Venus and Mars[Russell and Elphic, 1979; Cloutier et al.,1999] and their radius has been found to be between 6 to 12 km near the subsolar location of Venus[Russell et al., 1990]. Dreher et al. [1995] suggested using an MHD simulation that reconnection caused by an IMF rotation can generate flux ropes at the Venus ionopause. However, Dreher et al. [1995] examined only the linear stage of reconnection, so the nonlinear stage that takes into consideration the vertical convection of the reconnection site along the intrinsic convection in the Venus ionosphere has yet to be investigated. In this study, using a 2-D multi-species MHD simulation, the spatiotemporal evolution of reconnection in the ionosphere of Venus is examined. The size distribution of flux ropes is also examined and the validity of the generation mechanism of flux ropes is discussed by comparing the rope size distribution with the observed one. In the ionosphere of Venus, our simulation result shows that plasmoid instability [Loureiro et al., 2007] occurs in a Sweet-Parker (SP) current sheet above the altitude where Lundquist number exceeds 106, and consequently many plasmoids are generated. In the nonlinear stage, secondary reconnections occur in the current sheets, which exist between adjacent pairs of plasmoids, and thus smaller flux ropes are created. It has been suggested that the smaller side of the size distribution increases as a result of hierarchical reconnections in the SP current sheet [Shibata et al., 2001]. The observational size distribution [Vignes et al., 2003] shows that the population of small flux ropes is larger than that of large ones and it is consistent with the simulation result. Through
2012-02-28
with MHD acceleration of the airstream for thrust enhancement and control. The range of alternative MHD-augmented propulsion configurations that...electrical power can be applied to accelerate the air slug, generating thrust (Figure 1b). The procedure can then be repeated at each cycle. (a...bypass channel takes place. Another alternative configuration by which MHD can be used to augment thrust generated by a PDRE is one in which energy
Relativistic radiation damping for simulation
NASA Astrophysics Data System (ADS)
Chotia, Amodsen
2005-10-01
The aim of this work is to implement radiation braking into a simulation code. Radiation physics of accelerated charges is not new. It dates from the end of the 19th century, from Maxwell theory and Larmor, Poynting, Thomson, Poincare, Lorentz, Von Laue, Abraham, Schott, Planck, Landau, Einstein, Dirac, Wheeler et Feynmann (and many others). The result reaches out from the length of life of exited levels of atoms, antennas, and lays out through specific production of radiation by bremsstrahlung in particles accelerators but also spatial and stellar astrophysics. In this work we start from Landau Lifchitz equation to express the quadrivector acceleration in term of the fields. Using a result from Pomeranchouck we deduce the energy lost by radiation. We do an instantaneous colinear projection of the velocity vector in order to substract the loss of kinetic energy due to radiation. The equation of motion is then solved based on Boris algorithm. The code is tested on few examples.
Simulations of ELMs in realistic tokamak geometry with the nonlinear MHD code JOREK
NASA Astrophysics Data System (ADS)
Krebs, Isabel; Hoelzl, Matthias; Jardin, Stephen; Lackner, Karl; Guenter, Sibylle; Max-Planck/Princeton CenterPlasma Physics Collaboration
2013-10-01
Edge-localized modes (ELMs) are relaxation-oscillation instabilities which occur at the edge of high confinement (H-mode) plasmas, ejecting particles and energy. The suitability of H-mode as operational regime for future fusion devices depends crucially on the occurrence and detailed dynamics of ELMs. We simulate ELMs in realistic ASDEX Upgrade geometry including the scrape-off layer using the nonlinear MHD code JOREK. Emphasis is put on including many toroidal Fourier harmonics in the simulations in order to study nonlinear interaction between these. Several experimental observations, such as a toroidal and poloidal localization of the perturbation and a drive of Fourier components with low toroidal mode numbers, are reproduced by the simulations. A simple model describing the three-wave interaction by quadratic terms in the equations is used to explain and interpret the nonlinear evolution of the toroidal Fourier spectrum in the simulations. It is investigated how sheared toroidal plasma rotation influences the nonlinear coupling between the toroidal Fourier harmonics. A benchmark of the two-fluid versions of JOREK and M3D-C1 is in progress.
MHD simulations of boundary layer formation along the dayside Venus ionopause due to mass loading
NASA Technical Reports Server (NTRS)
Mcgary, J. E.; Pontius, D. H., Jr.
1994-01-01
A two-dimensional magnetohydrodynamic (MHD) simulation of mass-loaded solar wind flow around the dayside of Venus is presented. For conditions appropriate to a low-altitude ionopause the simulations show that mass loading from the pickup of oxygen ions produces a boundary layer of finite thickness along the ionopause. Within this layer the temperatures exhibit strong gradients normal to and away from the ionopause. Furthermore, there is a shear in the bulk flow velocity across the boundary layer, such that the (predominantly tangential) flow decreases in speed as the ionopause is approached and remains small along the ionopause, consistent with Pioneer Venus observations. The total mass density increases significantly as the flow approaches the ionopause, where the contribution of O(+) to the total number density is a few percent. Numerical simulations are carried out for various mass addition rates and demonstrate that the boundary layer develops when oxygen ion production exceeds approximately 2 x 10(exp 5)/cu m/s. For the upstream solar wind parameters and mass loading rates chosen for these simulations, the results are consistent with observations made on the dayside of Venus for average ionopause conditions near 300 km.
Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge
NASA Astrophysics Data System (ADS)
Rashad, A. M.
2017-01-01
This article is concerned with the problem of magnetohydrodynamic (MHD) mixed convection flow of Cobalt-kerosene ferrofluid adjacent a non-isothermal wedge under the influence of thermal radiation and partial slip. Such type of problems are posed by electric generators and biomedical enforcement. The governing equations are solved using the Thomas algorithm with finite-difference type and solutions for a wide range of magnet parameter are presented. It is found that local Nusselt number manifests a considerable diminishing for magnetic parameter and magnifies intensively in case of slip factor, thermal radiation and surface temperature parameters. Further, the skin friction coefficient visualizes a sufficient enhancement for the parameters thermal radiation, surface temperature and magnetic field, but a huge reduction is recorded by promoting the slip factor.
The Framework MHD Simulations of Active Region Evolution Driven by Sequences of Vector Magnetograms
NASA Astrophysics Data System (ADS)
Fisher, G. H.; Solar MURI Team
2003-05-01
Space weather is driven by magnetic changes on the Sun -- and a physics-based modeling system with predictive capability must incorporate time-dependent solar magnetic field measurements with self-consistent driving velocities for the erupting solar plasma. The UC Berkeley MURI team is modeling active region AR-8210, which produced several Coronal Mass Ejections (CMEs) around 1 May 1998, and for which we have extensive vector magnetic field measurements. We also plan to perform similar models of AR 8038, which produced a flare and CME on May 12, 1997. The May 1 1998 data is being reduced and analyzed by Dr. Stephane Regnier at Montana State University. He then generates a nonlinear force-free field model of the coronal magnetic field to be used as initial conditions for time-dependent MHD models that are being run by Dr. William Abbett at UC Berkeley. In order to perform the MHD simulations, it is necessary to find a velocity field which is physically consistent with the observed changes in the vector field measured at the photosphere. Dr. Dana Longcope has derived a new mathematical framework to find all 3 components of the velocity field; Dr. Brian Welsch is testing this technique, as well as other methods, such as local correlation tracking. Ms. Loraine Lundquist is investigating energy balance models of the corona in active regions, with particular application to the state of AR 8210 on May 1st. She has developed a false coronal emission map of 8210 that compares favorably to Yohkoh SXT observations taken on the same day.
Data-driven MHD simulation of a solar eruption observed in NOAA Active Region 12158
NASA Astrophysics Data System (ADS)
Lee, Hwanhee; Magara, Tetsuya; Kang, Jihye
2017-08-01
We present a data-driven magnetohydrodynamic (MHD) simulation of a solar eruption where the dynamics of a background solar wind is incorporated. The background solar wind exists in the real solar atmosphere, which continuously transports magnetized plasma toward the interplanetary space. This suggests that it may play a role in producing a solar eruption. We perform a simulation for NOAA AR 12158 accompanied with X1.6-class flare and CME on 2014 September 10. We construct a magnetohydrostatic state used as the initial state of data-driven simulation, which is composed of a nonlinear force-free field (NLFFF) derived from observation data of photospheric vector magnetic field and a hydrostatic atmosphere with prescribed distributions of temperature and gravity. We then reduce the gas pressure well above the solar surface to drive a solar wind. As a result, a magnetic field gradually evolves during an early phase, and eventually eruption is observed. To figure out what causes the transition from gradual evolution to eruption, we analyze the temporal development of force distribution and geometrical shape of magnetic field lines. The result suggests that the curvature and the scale height of a coronal magnetic field play an important role in determining its dynamic state.
Non-linear MHD Simulation of ELMs including Pellet Triggered ones for KSTAR tokamak
NASA Astrophysics Data System (ADS)
Han, Hyunsun; Park, G.; Strauss, H.; Kim, J. Y.
2011-10-01
Three-dimensional non-linear MHD simulations have been conducted to investigate the qualitative characteristics of ELM(Edge Localized Mode)s including pellet induced ones using the M3D code. A linearized velocity perturbation of initial equilibrium is employed to trigger the ELM instability for the simulation of natural ELM, while a density blob, which represents the ionized pellet ablation and is located within the edge pedestal, is adopted in an adiabatic condition for that of pellet induced one. The initial equilibrium is constructed based on a H-mode plasma of KSTAR(Korea Superconducting Tokamak Advanced Research) device. It is found that characteristics of natural ELM simulation are in qualitative agreement with the experimental observations including that density perturbation is much larger than temperature one during ELM instability. Regarding the pellet induced ELM, it is observed that the locally increased pressure due to the fast parallel heat conduction compared to the spread of density perturbation triggers the peeling-ballooning instability resulting in ELM-like relaxation. Detailed results will be presented in the discussion of underlying mechanism and application to KSTAR tokamak.
Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model
NASA Technical Reports Server (NTRS)
Frank, Adam; Jones, T. W.; Ryu, Dongsu
1995-01-01
Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.
NASA Technical Reports Server (NTRS)
Kabin, K.; Hansen, K. C.; Gombosi, T. I.; Combi, M. R.; Linde, T. J.; DeZeeuw, D. L.; Groth, C. P. T.; Powell, K. G.; Nagy, A. F.
2000-01-01
Magnetohydrodynamics (MHD) provides an approximate description of a great variety of processes in space physics. Accurate numerical solutions of the MHD equations are still a challenge, but in the past decade a number of robust methods have appeared. Once these techniques made the direct solution of MHD equations feasible, a number of global three-dimensional models were designed and applied to many space physics objects. The range of these objects is truly astonishing, including active galactic nuclei, the heliosphere, the solar corona, and the solar wind interaction with planets, satellites, and comets. Outside the realm of space physics, MHD theory has been applied to such diverse problems as laboratory plasmas and electromagnetic casting of liquid metals. In this paper we present a broad spectrum of models of different phenomena in space science developed in the recent years at the University of Michigan. Although the physical systems addressed by these models are different, they all use the MHD equations as a unifying basis.
Polar cap potential saturation during the Bastille Day storm event using global MHD simulation
NASA Astrophysics Data System (ADS)
Kubota, Y.; Nagatsuma, T.; Den, M.; Tanaka, T.; Fujita, S.
2017-04-01
We investigated the temporal variations and saturation of the cross polar cap potential (CPCP) in the Bastille Day storm event (15 July 2000) by global magnetohydrodynamics (MHD) simulation. The CPCP is considered to depend on the electric field and dynamic pressure of the solar wind as well as on the ionospheric conductivity. Previous studies considered only the ionospheric conductivity due to solar extreme ultraviolet (EUV) variations. In this paper, we dealt with the changes in the CPCP attributable to auroral conductivity variations caused by pressure enhancement in the inner magnetosphere owing to energy injection from the magnetosphere because the energy injection is considerably enhanced in a severe magnetic storm event. Our simulation reveals that the auroral conductivity enhancement is significant for the CPCP variation in a severe magnetic storm event. The numerical results concerning the Bastille Day event show that the ionospheric conductivity averaged over the auroral oval is enhanced up to 18 mho in the case of Bz of less than -59 nT. On the other hand, the average conductivity without the auroral effect is almost 6 mho throughout the entire period. Resultantly, the saturated CPCP is about 240 kV in the former and 704 kV in the latter when Bz is -59 nT. This result indicates that the CPCP variations could be correctly reproduced when the time variation of auroral conductivity caused by pressure enhancement due to the energy injection from the magnetosphere is correctly considered in a severe magnetic storm event.
The Biermann Battery In Cosmological Mhd Simulations Of Population III Star Formation
Xu, Hao; O' Shea, Brian W; Li, Hui; Li, Shengtai; Norman, Michael L; Collins, David C
2008-01-01
We report the results of the first self-consistent three-dimensional adaptive mesh refinement magnetohydrodynamical simulations of Population III star formation including the Biermann battery effect. We find that the Population III stellar cores formed including this effect are both qualitatively and quantitatively similar to those from hydrodynamics-only (non-MHD) cosmological simulations. We observe peak magnetic fields of {approx_equal} 10{sup -9} G in the center of our star-forming halo at z {approx_equal} 17.55 at a baryon density of n{sub B} {approx} 10{sup 10} cm{sup -3}. The magnetic fields created by the Biermann battery effect are predominantly formed early in the evolution of the primordial halo at low density and large spatial scales, and then grow through compression and by shear flows. The fields seen in this calculation are never large enough to be dynamically important (with {beta} {ge} 10{sup 15} at all times before the termination of our calculation), and should be considered the minimum possible fields in existence during Population III star formation. The lack of magnetic support lends credibility to assumptions made in previous calculations regarding the lack of importance of magnetic fields in Population III star formation. In addition, these magnetic fields may be seed fields for the stellar dynamo or the magnetorotational instability at higher densities and smaller spatial scales.
3D Multifluid MHD simulation for Uranus and Neptune: the seasonal variations of their magnetosphere
NASA Astrophysics Data System (ADS)
Cao, X.; Paty, C. S.
2015-12-01
The interaction between Uranus' intrinsic magnetic field and the solar wind is quite different from the magnetospheric interactions of other planets. Uranus' large obliquity, coupled with the fact that its dipole moment is off-centered and highly tilted relative to the rotation axis, leads to unique and seasonally dependent interaction geometries with the solar wind. We present results from adapting a multifluid MHD simulation to examine these seasonally dependent geometries in terms of the global magnetospheric structure, magnetopause and bow shock location, and magnetotail configuration. The Voyager 2 spacecraft encountered Uranus near solstice, and was able to observe the magnetic field structure and plasma characteristics of a twisted magnetotail [Behannon et al., 1987]. We use such magnetometer and plasma observations as a basis for benchmarking our simulations for the solstice scenario. Auroral observations made by the Hubble Space Telescope during equinox [Lamy et al.,2012] give some indication of the magnetospheric interaction with the solar wind. We also demonstrate the structural difference of the magnetosphere between solstice and equinox seasons. The magnetosphere at equinox is quite distinct due to the orientation and rotation of the magnetic axis relative to the solar wind direction.
Investigating Magnetic Activity in the Galactic Centre by Global MHD Simulation
NASA Astrophysics Data System (ADS)
Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Machida, Mami; Matsumoto, Ryoji; Kakiuchi, Kensuke
2017-01-01
By performing a global magnetohydrodynamical (MHD) simulation for the Milky Way with an axisymmetric gravitational potential, we propose that spatially dependent amplification of magnetic fields possibly explains the observed noncircular motion of the gas in the Galactic centre (GC) region. The radial distribution of the rotation frequency in the bulge region is not monotonic in general. The amplification of the magnetic field is enhanced in regions with stronger differential rotation, because magnetorotational instability and field-line stretching are more effective. The strength of the amplified magnetic field reaches >~ 0.5 mG, and radial flows of the gas are excited by the inhomogeneous transport of angular momentum through turbulent magnetic field that is amplified in a spatially dependent manner. As a result, the simulated position-velocity diagram exhibits a time-dependent asymmetric parallelogram-shape owing to the intermittency of the magnetic turbulence; the present model provides a viable alternative to the bar-potential-driven model for the parallelogram shape of the central molecular zone. In addition, Parker instability (magnetic buoyancy) creates vertical magnetic structure, which would correspond to observed molecular loops, and frequently excited vertical flows. Furthermore, the time-averaged net gas flow is directed outward, whereas the flows are highly time dependent, which would contribute to the outflow from the bulge.
Simulating the Heliosphere with Kinetic Hydrogen and Dynamic MHD Source Terms
Heerikhuisen, Jacob; Pogorelov, Nikolai; Zank, Gary
2013-04-01
The interaction between the ionized plasma of the solar wind (SW) emanating from the sun and the partially ionized plasma of the local interstellar medium (LISM) creates the heliosphere. The heliospheric interface is characterized by the tangential discontinuity known as the heliopause that separates the SW and LISM plasmas, and a termination shock on the SW side along with a possible bow shock on the LISM side. Neutral Hydrogen of interstellar origin plays a critical role in shaping the heliospheric interface, since it freely traverses the heliopause. Charge-exchange between H-atoms and plasma protons couples the ions and neutrals, but the mean free paths are large, resulting in non-equilibrated energetic ion and neutral components. In our model, source terms for the MHD equations are generated using a kinetic approach for hydrogen, and the key computational challenge is to resolve these sources with sufficient statistics. For steady-state simulations, statistics can accumulate over arbitrarily long time intervals. In this paper we discuss an approach for improving the statistics in time-dependent calculations, and present results from simulations of the heliosphere where the SW conditions at the inner boundary of the computation vary according to an idealized solar cycle.
Simulating the Heliosphere with Kinetic Hydrogen and Dynamic MHD Source Terms
Heerikhuisen, Jacob; Pogorelov, Nikolai; Zank, Gary
2013-04-01
The interaction between the ionized plasma of the solar wind (SW) emanating from the sun and the partially ionized plasma of the local interstellar medium (LISM) creates the heliosphere. The heliospheric interface is characterized by the tangential discontinuity known as the heliopause that separates the SW and LISM plasmas, and a termination shock on the SW side along with a possible bow shock on the LISM side. Neutral Hydrogen of interstellar origin plays a critical role in shaping the heliospheric interface, since it freely traverses the heliopause. Charge-exchange between H-atoms and plasma protons couples the ions and neutrals, but themore » mean free paths are large, resulting in non-equilibrated energetic ion and neutral components. In our model, source terms for the MHD equations are generated using a kinetic approach for hydrogen, and the key computational challenge is to resolve these sources with sufficient statistics. For steady-state simulations, statistics can accumulate over arbitrarily long time intervals. In this paper we discuss an approach for improving the statistics in time-dependent calculations, and present results from simulations of the heliosphere where the SW conditions at the inner boundary of the computation vary according to an idealized solar cycle.« less
A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation
NASA Astrophysics Data System (ADS)
Lu, J.; Liu, Z. Q.
2016-12-01
The numerical results from a physics-based global magnetohydrodynamic (MHD) model are used to examine the effect of the interplanetary magnetic field (IMF), solar wind dynamic pressure, and dipole tilt angle on the size and shape of the magnetopause. The subsolar magnetopause is identified using the plasma velocity and density, the cusps are identified using the thermal pressure, and the whole shape of the magnetopause is determined with the three-dimensional streamlines traced through the simulation domain. The magnetopause surface obtained from the simulations is fitted with a three-dimensional surface function controlled by ten configuration parameters, which provide a description of the subsolar magnetopause, the cusp geometry, the flaring angle, the azimuthal asymmetry, the north-south asymmetry, and the twisting angle of the magnetopause. Effects of the IMF, solar wind dynamic pressure, and dipole tilt angle on the configuration parameters are analyzed and fitted by relatively simple functions. It is found that the solar wind dynamic pressure mainly affects the magnetopause size; the IMF mainly controls the magnetopause flaring angle, azimuthal asymmetry, and twisting angle; and the dipole tilt angle mainly affects the magnetopause north-south asymmetry and the cusp geometry. The model is validated by comparing with available empirical models and observational results, and it is demonstrated that the new model can describe the magnetopause for typical solar wind conditions.
Attempts to Simulate Anisotropies of Solar Wind Fluctuations Using MHD with a Turning Magnetic Field
NASA Technical Reports Server (NTRS)
Ghosh, Sanjoy; Roberts, D. Aaron
2010-01-01
We examine a "two-component" model of the solar wind to see if any of the observed anisotropies of the fields can be explained in light of the need for various quantities, such as the magnetic minimum variance direction, to turn along with the Parker spiral. Previous results used a 3-D MHD spectral code to show that neither Q2D nor slab-wave components will turn their wave vectors in a turning Parker-like field, and that nonlinear interactions between the components are required to reproduce observations. In these new simulations we use higher resolution in both decaying and driven cases, and with and without a turning background field, to see what, if any, conditions lead to variance anisotropies similar to observations. We focus especially on the middle spectral range, and not the energy-containing scales, of the simulation for comparison with the solar wind. Preliminary results have shown that it is very difficult to produce the required variances with a turbulent cascade.
NASA Astrophysics Data System (ADS)
Kim, Tae K.; Pogorelov, Nikolai V.; Borovikov, Sergey N.; Clover, John M.; Jackson, Bernard V.; Yu, Hsiu-Shan
2012-11-01
Numerical modeling of the heliosphere is a critical component of space weather forecasting. The accuracy of heliospheric models can be improved by using realistic boundary conditions and confirming the results with in situ spacecraft measurements. To accurately reproduce the solar wind (SW) plasma flow near Earth, we need realistic, time-dependent boundary conditions at a fixed distance from the Sun. We may prepare such boundary conditions using SW speed and density determined from interplanetary scintillation (IPS) observations, magnetic field derived from photospheric magnetograms, and temperature estimated from its correlation with SW speed. Here, we present the time-dependent MHD simulation results obtained by using the 2011 IPS data from the Solar-Terrestrial Environment Laboratory as time-varying inner boundary conditions and compare the simulated data at Earth with OMNI data (spacecraft-interspersed, near-Earth solar wind data). At the request of the author, the PDF of the published article was replaced with a new file containing color figures. The scientific content is not affected by this change.
A three-dimensional high Mach number asymmetric magnetopause model from global MHD simulation
NASA Astrophysics Data System (ADS)
Liu, Z.-Q.; Lu, J. Y.; Wang, C.; Kabin, K.; Zhao, J. S.; Wang, M.; Han, J. P.; Wang, J. Y.; Zhao, M. X.
2015-07-01
The numerical results from a physics-based global magnetohydrodynamic (MHD) model are used to examine the effect of the interplanetary magnetic field (IMF), solar wind dynamic pressure, and dipole tilt angle on the size and shape of the magnetopause. The subsolar magnetopause is identified using the plasma velocity and density, the cusps are identified using the thermal pressure, and the whole shape of the magnetopause is determined with the three-dimensional streamlines traced through the simulation domain. The magnetopause surface obtained from the simulations is fitted with a three-dimensional surface function controlled by ten configuration parameters, which provide a description of the subsolar magnetopause, the cusp geometry, the flaring angle, the azimuthal asymmetry, the north-south asymmetry, and the twisting angle of the magnetopause. Effects of the IMF, solar wind dynamic pressure, and dipole tilt angle on the configuration parameters are analyzed and fitted by relatively simple functions. It is found that the solar wind dynamic pressure mainly affects the magnetopause size; the IMF mainly controls the magnetopause flaring angle, azimuthal asymmetry, and twisting angle; and the dipole tilt angle mainly affects the magnetopause north-south asymmetry and the cusp geometry. The model is validated by comparing with available empirical models and observational results, and it is demonstrated that the new model can describe the magnetopause for typical solar wind conditions.
MHD simulations of magnetized laser-plasma interaction for laboratory astrophysics
NASA Astrophysics Data System (ADS)
Khiar, Benjamin; Ciardi, Andrea; Vinci, Tommaso; Revet, Guilhem; Fuchs, Julien; Higginson, Drew
2015-11-01
Laser-driven plasmas coupled with externally applied strong, steady-state, magnetic fields have applications that range from ICF to astrophysical studies of jet collimation, accretion shock dynamics in young stars and streaming instabilities in space plasmas. We have recently included the modelling of laser energy deposition in our three-dimensional, resistive two-temperature MHD code GORGON. The model assumes linear inverse-bremsstrahlung absorption and the laser propagation is done in the geometrical optics approximation. We present full scale numerical simulations of actual experiments performed on the ELFIE installation at LULI, including plasma generated from single and multiple laser plasmas embedded in a magnetic field of strength up to 20 T, and experiments and astrophysical simulations that have shown the viability of poloidal magnetic fields to directly result in the collimation of outflows and the formation of jets in astrophysical accreting systems, such as in young stellar objects. The authors acknowledge the support from the Ile-de-France DIM ACAV, from the LABEX Plas@par and from the ANR grant SILAMPA.
Extended MHD simulations of Rayleigh-Taylor instability with real frequency in a 2D slab
NASA Astrophysics Data System (ADS)
Goto, Ryosuke; Miura, Hideaki; Ito, Atsushi; Sato, Masahiko; Hatori, Tomoharu
2014-10-01
Small scale effects such as the Finite Larmor Radius (FLR) effect and the Hall term can change the linear and non-linear growth of the high wave number unstable modes of the pressure driven instability considerably. Here we consider a simple Rayleigh-Taylor (R-T) instability in a 2D slab, and study the effect of the Hall term and the FLR effect to the R-T instability by means of numerical simulations of the Braginskii-type extended MHD equations. As we have reported earlier, the linear growth rates of the high wave number modes are highly reduced when the Hall term and the FLR effect are added simultaneously. However, there appears little real frequency in the previous work. Since the diamagnetic drift associated with the real frequency is considered to affect the growth of the linear and nonlinear evolutions, we provide a new equilibrium in which appearance of the real frequency is expected and carry out numerical simulations. Influences of the real frequency on the growth rates as well as on the nonlinear mixing width for some combinations of the Hall and the FLR parameters are going to be presented.
NASA Astrophysics Data System (ADS)
Abo-Dahab, S. M.; Mohamed, R. A.
2013-11-01
An analytical study of the problem of unsteady free convection with thermal radiation and heat generation on MHD micropolar fluid flow through a porous medium bounded by a semi-infinite vertical plate in a slip-flow regime has been presented. The Rosseland diffusion approximation is used to describe the radiation heat flux in the energy equation. The homogeneous chemical reaction of first order is accounted for in the mass diffusion equation. A uniform magnetic field acts perpendicular on the porous surface absorbing micropolar fluid with a suction velocity varying with time. A perturbation technique is applied to obtain the expressions for the velocity, microrotation, temperature, and concentration distributions. Expressions for the skin-friction, Nusselt number, and Sherwood number are also obtained. The results are discussed graphically for different values of the parameters entered into the equations of the problem.
NASA Astrophysics Data System (ADS)
Sharma, Kalpna; Gupta, Sumit
2017-06-01
This paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number Ec, Magnetic parameter M, Brownian motion parameter Nb, Thermophoresis parameter Nt, Lewis parameter Le and Radiation parameter Rd on the velocity, temperature and concentration profiles along with the Nusselt number and skin friction coefficient are discussed graphically and in tabular form in details. The present results are also compared with existing limiting solutions.
NASA Astrophysics Data System (ADS)
Bing, Kho Yap; Hussanan, Abid; Mohamed, Muhammad Khairul Anuar; Sarif, Norhafizah Mohd; Ismail, Zulkhibri; Salleh, Mohd Zuki
2017-04-01
In this paper, the boundary layer magnetohydrodynamics (MHD) flow of Williamson nanofluids over a stretching sheet with Newtonian heating in the presence of thermal radiation effect is analyzed. Using a similarity transformation, the governing equations are reduced to a set of nonlinear ordinary differential equations (ODEs). These equations are solved numerically using a shooting method. The effects of Williamson parameter, magnetic parameter, radiation parameter, Prandtl number, Lewis number, Schmidt number, heat capacities ratio, thermophoretic diffusivity and conjugate parameter on velocity, temperature and concentration fields are shown graphically and discussed. It is found that the rate of heat transfer is higher for Williamson nanofluids compared to the classical viscous fluid. Also, the comparisons with existing results are provided in the literature.
2D Radiation MHD K-shell Modeling of Single Wire Array Stainless Steel Experiments on the Z Machine
Thornhill, J. W.; Giuliani, J. L.; Apruzese, J. P.; Chong, Y. K.; Davis, J.; Dasgupta, A.; Whitney, K. G.; Clark, R. W.; Jones, B.; Coverdale, C. A.; Ampleford, D. J.; Cuneo, M. E.; Deeney, C.
2009-01-21
Many physical effects can produce unstable plasma behavior that affect K-shell emission from arrays. Such effects include: asymmetry in the initial density profile, asymmetry in power flow, thermal conduction at the boundaries, and non-uniform wire ablation. Here we consider how asymmetry in the radiation field also contributes to the generation of multidimensional plasma behavior that affects K-shell power and yield. To model this radiation asymmetry, we have incorporated into the MACH2 r-z MHD code a self-consistent calculation of the non-LTE population kinetics based on radiation transport using multi-dimensional ray tracing. Such methodology is necessary for modeling the enhanced radiative cooling that occurs at the anode and cathode ends of the pinch during the run-in phase of the implosion. This enhanced radiative cooling is due to reduced optical depth at these locations producing an asymmetric flow of radiative energy that leads to substantial disruption of large initial diameter (>5 cm) pinches and drives 1D into 2D fluid (i.e., Rayleigh-Taylor like) flows. The impact of this 2D behavior on K-shell power and yield is investigated by comparing 1D and 2D model results with data obtained from a series of single wire array stainless steel experiments performed on the Z generator.
Formation and Eruption of an Active Region Sigmoid: NLFFF Modeling and MHD Simulation
NASA Astrophysics Data System (ADS)
Jiang, C.; Wu, S.; Feng, X.; Hu, Q.
2013-12-01
We present a magnetic analysis of the formation and eruption of an active region sigmoid in AR 11283 from 2011 September 4 to 6, which is jointly based on observations, static nonlinear force-free field (NLFFF) extrapolation and dynamic MHD simulation. A time sequence of NLFFF model's outputs are used to reproduce the evolution of the magnetic field of the region over three days leading to a X-class flare near the end of 2011 September 6. In the first day, a new bipolar emerges into the negative polarity of a pre-existing mature bipolar, forming a magnetic topology with a coronal null on the magnetic separatrix surface between the two flux system, while the field is still near potential at the end of the day. After then photospheric shearing and twisting build up non-potentiality in the embedded core region, with a flux rope (FR) formed there above the polarity inversion line by tether-cutting reconnection between the strongly sheared field lines. Within this duration, the core field has gained a magnetic free energy of ˜ 1032 erg. In this core a sigmoid is observed distinctly at 22:00 UT on September 6, closely before its eruption at 22:12 UT. Comparison of the SDO/AIA observations with coronal magnetic field suggests that the sigmoid is formed by emission due to enhanced current sheet along the BPSS (bald-patch separatrix surface, in which the field lines graze the line-tied photosphere at the neutral line) that separates the FR from the ambient flux. Quantitative inspection of the pre-eruption field on 22:00 UT suggests a mechanism for the eruption: tether cutting at the null triggers a torus instability of the FR--overlying field system. This pre-eruption NLFFF is then input into a time-dependent MHD model to simulate the fast magnetic evolution during eruption, which successfully reproduces the observations. The highly asymmetric magnetic environment along with the lateral location of the null leads to a strongly inclined non-radial direction of the eruption
NUMERICAL SIMULATION OF PROPAGATION AND SCATTERING OF THE MHD WAVES IN SUNSPOTS
NASA Astrophysics Data System (ADS)
Parchevsky, K.; Kosovichev, A. G.; Khomenko, E.; Collados, M.
2009-12-01
We present comparison of numerical simulation results of MHD wave propagation in two different magnitostatic models of sunspots refferred to as "deep" and "shallow" models. The "deep" model has convex shape of magnetic field lines near the photosphere and non-zero horizorntal perturbations of the sound speed up to the bottom of the model (7.5 Mm). The "shallow" model has concave shape of the magnetic field lines near the photosphere and horizontally uniform sound speed below 2 Mm. Common feature of MHD waves behaviour in these two models is that for weak magnetic field (less than 1kG at the photosphere) waves reduce their amplitude when they reach the center of the sunspot and restore the amplitude when pass the center. For the "deep" model this effect is bigger than for the "shallow" model. The wave amplitude inside sunspots depends on the strength of the magnetic field. For the "shallow" model with photospheric magnetic field of 2.2 kG the wave amplitude inside the sunspot becomes bigger than outside (opposite to the weak magnetic field). The wave amplitude depends on the distance of the source from the sunspot center. For the "shallow" model and source distance of 9 Mm from the sunspot center the wave amplitude at some moment (when the wavefront passes the sunspot center) becomes bigger inside the sunspot than outside. For the source distance of 12 Mm the wave amplitude remains smaller inside the sunspot than outside for all moments of time. Using filtering technique we separated magnetoacoustic and magnetogravity waves. Simulations show that the sunspot changes the shape of the wave front and amplitude of the f-modes significantly stronger than the p-modes. It is shown, that inside the sunspot magnetoacoustic and magnetogravity waves are not spatially separated unlike the case of the horizontally uniform background model. Strong Alfven wave is generated at the wave source location in the "deep" model. This wave exists in the "shallow" model as well, but with
Numerical Simulation of Propagation and Transformation of the MHD Waves in Sunspots
NASA Astrophysics Data System (ADS)
Parchevsky, Konstantin; Zhao, J.; Kosovichev, A.
2010-05-01
Direct numerical simulation of propagation of MHD waves in stratified medium in regions with non-uniform magnetic field is very important for understanding of scattering and transformation of waves by sunspots. We present numerical simulations of wave propagation through the sunspot in 3D. We compare results propagation in two different magnitostatic models of sunspots refferred to as "deep" and "shallow" models. The "deep" model has convex shape of magnetic field lines near the photosphere and non-zero horizorntal perturbations of the sound speed up to the bottom of the model. The "shallow" model has concave shape of the magnetic field lines near the photosphere and horizontally uniform sound speed below 2 Mm. Waves reduce their amplitude when they reach the center of the sunspot and estore the amplitude when pass the center. For the "deep" model this effect is bigger than for the "shallow" model. The wave amplitude depends on the distance of the source from the sunspot center. For the "shallow" model and source distance of 9 Mm from the sunspot center the wave amplitude at some moment (when the wavefront passes the sunspot center) becomes bigger inside the sunspot than outside. For the source distance of 12 Mm the wave amplitude remains smaller inside the sunspot than outside for all moments of time. Using filtering technique we separated magnetoacoustic and magnetogravity waves. Simulations show that the sunspot changes the shape of the wave front and amplitude of the f-modes significantly stronger than the p-modes. It is shown, that inside the sunspot magnetoacoustic and magnetogravity waves are not spatially separated unlike the case of the horizontally uniform background model. We compared simulation results with the wave signals (Green's functions) extracted from the SOHO/MDI data for AR9787.
NASA Astrophysics Data System (ADS)
Reuter, K.; Jenko, F.; Forest, C. B.; Bayliss, R. A.
2008-08-01
A parallel implementation of a nonlinear pseudo-spectral MHD code for the simulation of turbulent dynamos in spherical geometry is reported. It employs a dual domain decomposition technique in both real and spectral space. It is shown that this method shows nearly ideal scaling going up to 128 CPUs on Beowulf-type clusters with fast interconnect. Furthermore, the potential of exploiting single precision arithmetic on standard x86 processors is examined. It is pointed out that the MHD code thereby achieves a maximum speedup of 1.7, whereas the validity of the computations is still granted. The combination of both measures will allow for the direct numerical simulation of highly turbulent cases ( 1500
Matsuda, K.; Terada, N.; Katoh, Y.; Misawa, H.
2011-08-15
There has been a great concern about the origin of the parallel electric field in the frame of fluid equations in the auroral acceleration region. This paper proposes a new method to simulate magnetohydrodynamic (MHD) equations that include the electron convection term and shows its efficiency with simulation results in one dimension. We apply a third-order semi-discrete central scheme to investigate the characteristics of the electron convection term including its nonlinearity. At a steady state discontinuity, the sum of the ion and electron convection terms balances with the ion pressure gradient. We find that the electron convection term works like the gradient of the negative pressure and reduces the ion sound speed or amplifies the sound mode when parallel current flows. The electron convection term enables us to describe a situation in which a parallel electric field and parallel electron acceleration coexist, which is impossible for ideal or resistive MHD.
Simulations of radiative astrophysical jets
NASA Astrophysics Data System (ADS)
Estabrook, Kent; Remington, Bruce; Farley, Dave; Glendinning, Gail; Suter, L. J.; Harte, J. H.; Zimmerman, G. B.; London, R. A.; Stone, James M.; Wood-Vasey, Michael; Drake, R. Paul
1998-11-01
Astrophysical jets are poorly understood, but we know that radiation is usually important. Using the LLNL Nova laser facility, we can accelerate jets to velocities of order 10^7cm/sec with either direct laser illumination or radiation drive in either hemispheres or cones. We present 2-D LASNEX simulations of such experiments with medium and high z materials with and without radiation loses[1]. Related papers by Bruce Remington, Dave Farley, James Stone, Gail Glendinning, Paul Drake and Jave Kane are at this meeting. [1] J.M.Stone, J.J.Xu, P.E.Hardee, Astrophysical J. 483,136(1997). Auspices U.S.D.O.E. by LLNL Contract W-7405-ENG-48
Proceedings of the workshop on nonlinear MHD and extended MHD
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
Cooperative Radiation Effects Simulation Program.
1980-12-16
G . Doran, W. G . Johnston, G . L . Kulcinski , I...Microstructure and Properties of Metals, ASTM STP 611, pp. 284-297, November 1976. 46 -- IM 108. L . G . Kirchner, F. A. Smidt, Jr., G . L . Kulcinski , J. A...AD-A093 743 NAVAL RESEARCH LAB WASHINGTON DC F/ G 18/6 COOPERATIVE RADIATION EFFECTS SIMULATION PROGRAM. (U) DEC 80 L A BEACH. F A SNIOT
NASA Technical Reports Server (NTRS)
Dryer, M.; Smith, Z. K.; Coates, A. J.; Johnstone, A. D.
1991-01-01
Large disturbances in the interplanetary medium were observed by several spacecraft during a period of enhanced solar activity in early February 1986. The locations of six solar flares and the spacecraft considered here encompassed more than 100 deg of heliolongitude. These flares during the minimum of cycle 21 set the stage for an extensive multispacecraft comparison performed with a two-dimensional, MHD numerical experiment. The plasma instruments on the Giotto spacecraft, on its way to encounter Comet Halley in March 1986, made measurements of the solar wind for up to 8 hours/day during February. Solar wind measurements from the Johnstone Plasma Analyzer experiment on Giotto are compared with the MHD simulation of the interplanetary medium throughout these events. Using plasma data obtained by the IMP-8 satellite in addition, it appears that an extended period of high solar wind speed is required as well as the simulated flares to represent the interplanetary medium in this case. The plasma and magnetometer data from Vega-1 is compared with the MHD simulation. This comparison tends to support an interpretation that the major solar wind changes at both Giotto and Vega-1 on February 8, 1986 were due to a shock from a W 05 deg solar flare on February 6, 1986 (06:25 UT). The numerical experiment is considered, qualitatively, to resemble the observations at the former spacecraft, but it has less success at the latter one.
Forced Magnetic Reconnection at an X-point: Particle-In-Cell and Ten-Moment Extended MHD Simulations
NASA Astrophysics Data System (ADS)
Wang, L.; Bessho, N.; Bhattacharjee, A.; Germaschewski, K.; Hakim, A.
2013-12-01
We will present comparative numerical studies of current sheet formation and forced magnetic reconnection at an X-point, beginning from a potential field. The problem will be simulated by the fully kinetic Particle Simulation Code (PSC) [1] and an extended ten-moment MHD code Gkeyll [2] that retains important kinetic physics, particularly, electron inertia and full electron/ion pressure tensors. Our goals are to investigate the similarities and differences between the two models, and to seek suitable parameterization of kinetic effects in the fluid models. The simulation domain is restrained in 2-D and is closed by conducting wall boundaries. The reconnection is forced by in-plane flows imposed on two opposite boundaries, where the forcing flows converge at the two boundary centers, and are slow compared to the characteristic Alfvén speed. We will compare results on the time-dependence of the reconnecting electric field (suitably normalized), as well as the structure of current sheets from PSC, Gkeyll, and an MHD code, varying ion-to-electron mass ratio and domain size. This study is carried out under the auspices of a Focus Topic in the NASA Living With a Star Targeted Research and Technology Program. [1] Fox, W., A. Bhattacharjee, and K. Germaschewski. "Magnetic reconnection in high-energy-density laser-produced plasmas." Physics of Plasmas 19 (2012): 056309. [2] Hakim, Ammar H. "Extended MHD modelling with the ten-moment equations." Journal of Fusion Energy 27.1-2 (2008): 36-43.
Analysis of Voyager Observed High-Energy Electron Fluxes in the Heliosheath Using MHD Simulations
NASA Technical Reports Server (NTRS)
Washimi, Haruichi; Webber, W. R.; Zank, Gary P.; Hu, Qiang; Florinski, Vladimir; Adams, James; Kubo, Yuki
2011-01-01
The Voyager spacecraft (V1 and V2) observed electrons of 6-14 MeV in the heliosheath which showed several incidences of flux variation relative to a background of gradually increasing flux with distance from the Sun. The increasing flux of background electrons is thought to result from inward radial diffusion. We compare the temporal electron flux variation with dynamical phenomena in the heliosheath that are obtained from our MHD simulations. Because our simulation is based on V2 observed plasma data before V2 crossed the termination shock, this analysis is effective up to late 2008, i.e., about a year after the V2-crossing, during which disturbances, driven prior to the crossing time, survived in the heliosheath. Several electron flux variations correspond to times directly associated with interplanetary shock events. One noteworthy example corresponds to various times associated with the March 2006 interplanetary shock, these being the collision with the termination shock, the passage past the V1 spacecraft, and the collision with the region near the heliopause, as identified by W.R. Webber et al. for proton/helium of 7-200 MeV. Our simulations indicate that all other electron flux variations, except one, correspond well to the times when a shock-driven magneto-sonic pulse and its reflection in the heliosheath either passed across V1/V2, or collided with the termination shock or with the plasma sheet near the heliopause. This result suggests that variation in the electron flux should be due to either direct or indirect effects of magnetosonic pulses in the heliosheath driven by interplanetary shocks
MHD turbulence model for global simulations of the solar wind and SEP acceleration
Sokolov, Igor V.; Roussev, Ilia I.
2008-08-25
The aim of the present work is to unify the various transport equations for turbulent waves that are used in different areas of space physics. We mostly focus on the magnetohydrodynamic (MHD) turbulence, in particular the Alfvenic turbulence.
Two-Dimensional MHD Simulations of Tokamak Plasmas with Poloidal Flow
NASA Astrophysics Data System (ADS)
Guazzotto, L.; Betti, R.
2002-11-01
A two- dimensional MHD code has been developed to simulate the temporal evolution of Tokamak plasmas with an imposed poloidal flow. The code is fully compressible and can resolve the shock structures arising when the poloidal velocity is of the order of the poloidal sound speed (V_θ ˜ Cs B_θ/B) near the plasma edge, where the plasma is cold and the sound speed is low. The poloidal flow is assigned as an initial condition with a velocity profile ranging from subsonic to supersonic near the edge. It is found that a continuous band of shocks is formed near the edge. Such shocks travel poloidally, leaving behind a pedestal structure similar to the one predicted in Ref. 1 [R. Betti and J. P. Freidberg, Phys. Plasmas 7, 2439 (2000)]. Here, the pedestal is defined as a sharp discontinuity in the pressure, temperature, and density profiles. The pedestal height is modulated in the poloidal angle; it is maximum on the outboard side (θ = 0) and minimum on the inboard (θ = π). Furthermore, both poloidal and toroidal flows develop a shear layer at the location of the pedestal. The large velocity shear (both poloidal and toroidal) occurring in the pedestal region is likely to suppress turbulent eddies and reduce anomalous transport. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC03-92SF19460.
NASA Astrophysics Data System (ADS)
Hale, J. M.; Paty, C. S.
2014-12-01
Charon's mass, orbital parameters, and distinct surface composition relative to Pluto suggest that it plays a significant role in Pluto's dynamic interaction with the solar wind. Its high mass ( ~ 10% of total system mass ) and close orbit ( < 20 Pluto Radii ) are thought to result in regionally enhanced atmospheric escape from Pluto as well as ionospheric deformation. Additionally, there are multiple mechanisms through which Charon could possess a tenuous atmosphere—and therefore ionosphere. Firstly, spectral observations of short-lived hydrated ammonia on Charon's surface could be caused by semi-regular cryovolcanism, which would also source a water group atmosphere (Cook et al., 2007). Secondly, recent work indicates that Charon could have a nightside parasitic atmosphere that is captured from material escaping from Pluto (Tucker et al., 2014). Either possibility would result in Charon presenting a sizable obstacle to the incoming solar wind. This work studies Charon's effects on the Pluto-solar wind interaction using a 3-dimensional multifluid MHD model which has been modified to include a second body within the system. This second body (Charon) represents not only an additional gravitational perturbation to the system, but can also provide a local and distinct plasma source, a sink for plasma sourced from Pluto or the solar wind, and cause an obstruction and perturbation to the solar wind. Specifically, we investigate the possibility of enhanced ionospheric loss from Pluto due to Charon's gravitational attraction, as well as the overall dynamics of a two-body system interacting with the solar wind in which each body has an ionosphere and periodically passes through the bow shock of the other body. The former objective is made possible by tracking the flux of plasma sourced from Pluto. The latter objective is accomplished by performing simulations in which Charon is upstream of Pluto as well as simulations in which Charon is placed downstream, within Pluto
NASA Astrophysics Data System (ADS)
Merkin, V. G.; Lyon, J.; Claudepierre, S. G.
2013-12-01
The Kelvin-Helmholtz Instability (KHI) has long been suggested to operate on the magnetospheric boundary, where the magnetosheath plasma streams past the magnetosphere. The instability is thought to be responsible for inducing various wave populations in the magnetosphere and for mass, momentum and energy transport across the magnetospheric boundary. Waves attributed to the KHI have been observed at the Earth's magnetosphere flanks as well as at Saturn and Mercury during spacecraft crossings, and remotely at boundaries of Coronal Mass Ejections (CMEs). Recent high-resolution global 3D magnetohydrodynamic (MHD) simulations of the magnetosphere confirm the existence of pronounced perturbations of the magnetospheric boundary, which are thought to be due to KHI. Such global simulations had been challenging in the past because of the need to encompass the entire magnetosphere, while sufficiently resolving the boundary layer. Here we present results of such a high-resolution simulation of the magnetosphere, using the Lyon-Fedder-Mobarry (LFM) model, under steady northward Interplanetary Magnetic Field (IMF) conditions. We find the magnetospheric boundary to be globally unstable, including the high-latitude boundary layer (meridional plane), where magnetic tension is apparently not sufficient to stabilize the growth of oscillations. Roughly beyond the terminator, global modes, coupled into the surface modes, become apparent, so that the entire body of the magnetosphere is engaged in an oscillatory motion. The wave vector of the surface oscillations has a component perpendicular to the background flow and tangential to the shear layer (in the equatorial plane, k_z component of the wave vector), which is consistent with the generation of field-aligned currents that flow on closed field lines between the inner portion of the boundary layer and the ionosphere. We calculate the distribution of wave power in the equatorial plane and find it consistent with the existence of a
Ramzan, Muhammad; Bilal, Muhammad
2015-01-01
The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile.
Ramzan, Muhammad; Bilal, Muhammad
2015-01-01
The aim of present paper is to study the series solution of time dependent MHD second grade incompressible nanofluid towards a stretching sheet. The effects of mixed convection and thermal radiation are also taken into account. Because of nanofluid model, effects Brownian motion and thermophoresis are encountered. The resulting nonlinear momentum, heat and concentration equations are simplified using appropriate transformations. Series solutions have been obtained for velocity, temperature and nanoparticle fraction profiles using Homotopy Analysis Method (HAM). Convergence of the acquired solution is discussed critically. Behavior of velocity, temperature and concentration profiles on the prominent parameters is depicted and argued graphically. It is observed that temperature and concentration profiles show similar behavior for thermophoresis parameter Νt but opposite tendency is noted in case of Brownian motion parameter Νb. It is further analyzed that suction parameter S and Hartman number Μ depict decreasing behavior on velocity profile. PMID:25962063
NASA Astrophysics Data System (ADS)
Sivakumar, N.; Durga Prasad, P.; Raju, C. S. K.; Varma, S. V. K.; Shehzad, S. A.
The simultaneous interaction of viscous dissipative and thermal radiation in MHD two dimensional flows of ferro-liquid over a nonlinear moving surface is analyzed here. The slip on velocity and convective boundary condition on temperature are imposed on stretching surface. We used water as conventional base liquid which have magnetite (Fe3O4) and alumina (Al2O3) as nanoparticles. The governing mathematical expressions are converted into non-dimensional form via nonlinear type similarity variables. The resulting mathematical model is numerically solved with the help of MATLAB solver bvp4c. The roles of non-dimensional constraints on velocity and temperature are elaborated through plots. The numerical data of skin-friction coefficient and Nusselt number is presented and visualized. The validity of computed results is analyzed through comparative benchmark.
NASA Astrophysics Data System (ADS)
Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.
2017-06-01
Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.
Smoothed MHD equations for numerical simulations of ideal quasi-neutral gas dynamic flows
NASA Astrophysics Data System (ADS)
Popov, Mikhail V.; Elizarova, Tatiana G.
2015-11-01
We introduce a mathematical model and related numerical method for numerical modeling of ideal magnetohydrodynamic (MHD) gas flows as an extension of previously known quasi-gasdynamic (QGD) equations. This approach is based on smoothing, or averaging of the original MHD equation system over a small time interval that leads to a new equation system, named quasi-MHD, or QMHD system. The QMHD equations are closely related to the original MHD system except for additional strongly non-linear dissipative τ-terms with a small parameter τ as a factor. The τ-terms depend on the solution itself and decrease in regions with the small space gradients of the solution. In this sense the QMHD system could be regarded as an approach with adaptive artificial dissipation. The QMHD is a generalization of regularized (or quasi-) gas dynamic equation system suggested in last three decades. In the QMHD numerical method the evolution of all physical variables is presented in a non-split divergence form. Divergence-free evolution of the magnetic field provides by using a constrained transport method based on Faraday's law of induction. Accuracy and convergence of the QMHD method is verified on a wide set of standard MHD tests including the 3D Orszag-Tang vortex flow.
Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation
NASA Astrophysics Data System (ADS)
Bromberg, Omer; Tchekhovskoy, Alexander
2016-02-01
Relativistic jets are associated with extreme astrophysical phenomena, like the core collapse of massive stars in gamma-ray bursts (GRBs) and the accretion on to supermassive black holes in active galactic nuclei. It is generally accepted that these jets are powered electromagnetically, by the magnetized rotation of a central compact object (black hole or neutron star). However, how the jets produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic, Poynting-flux-dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetized central object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a global, external kink mode that grows on long time-scales. It bodily twists the jet, reducing its propagation velocity. We show analytically that in flat density profiles, like the ones associated with galactic cores, the external mode grows and may stall the jet. In the steep profiles of stellar envelopes the external kink weakens as the jet propagates outward. (ii) a local, internal kink mode that grows over short time-scales and causes small-angle magnetic reconnection and conversion of about half of the jet electromagnetic energy flux into heat. We suggest that internal kink instability is the main dissipation mechanism responsible for powering GRB prompt emission.
Esquivel, A.; Lazarian, A.; Benjamin, R.A.; Cho, J.; Leitner, S.N.
2005-09-28
Turbulent mixing layers have been proposed to explain observations of line ratios of highly ionized elements in the interstellar medium. We present preliminary results of numerical simulations of turbulent mixing layers in a magnetized medium. We developed a MHD code with radiative cooling. The magnetic field is expected to be a controlling factor by suppressing instabilities that lead to the turbulent mixing. Our results suggest that the difference in turbulent mixing in the unmagnetized case as compared to the case of a weak magnetic field, {beta} = Pgas/Pmag {approx} 10, is insignificant. With a more thorough exploration of parameter space, this work will provide more reliable diagnostics of turbulent mixing layers than those available today.
Self-organisation in protoplanetary discs. Global, non-stratified Hall-MHD simulations
NASA Astrophysics Data System (ADS)
Béthune, William; Lesur, Geoffroy; Ferreira, Jonathan
2016-05-01
Context. Recent observations have revealed organised structures in protoplanetary discs, such as axisymmetric rings or horseshoe concentrations, evocative of large-scale vortices. These structures are often interpreted as the result of planet-disc interactions. However, these discs are also known to be unstable to the magneto-rotational instability (MRI) which is believed to be one of the dominant angular momentum transport mechanism in these objects. It is therefore natural to ask whether the MRI itself could produce these structures without invoking planets. Aims: The nonlinear evolution of the MRI is strongly affected by the low ionisation fraction in protoplanetary discs. The Hall effect in particular, which is dominant in dense and weakly ionised parts of these objects, has been shown to spontaneously drive self-organising flows in local, shearing box simulations. Here, we investigate the behaviour of global MRI-unstable disc models dominated by the Hall effect and characterise their dynamics. Methods: We validated our implementation of the Hall effect into the PLUTO code with predictions from a spectral method in cylindrical geometry. We then performed 3D unstratified Hall-MHD simulations of Keplerian discs for a broad range of Hall, Ohmic, and ambipolar Elsasser numbers. Results: We confirm the transition from a turbulent to an organised state as the intensity of the Hall effect is increased. We observe the formation of zonal flows, their number depending on the available magnetic flux and on the intensity of the Hall effect. For intermediate Hall intensity, the flow self-organises into long-lived magnetised vortices. Neither the addition of a toroidal field nor Ohmic or ambipolar diffusion change this picture drastically in the range of parameters we have explored. Conclusions: Self-organisation by the Hall effect is a robust phenomenon in global non-stratified simulations. It is able to quench turbulent transport and spontaneously produce axisymmetric
NASA Astrophysics Data System (ADS)
Ku, H. C.; Sibeck, D. G.; Wing, S.
2001-12-01
An accurate knowledge of the magnetosheath is essential for studies of the bow shock, magnetopause, and solar input into the magnetosphere. Gasdynamic models may not give sufficient accuracy whereas the cost/time constraints preclude running the 3-D MHD global simulations for numerous solar wind conditions. A 3-D magnetosheath MHD model is needed and presented as a viable alternative. The inner boundary of the model is the magnetopause, which has been previously determined from the pressure balance and exhibits a small indentation near the cusp regions. The initial position of the bow shock is taken from a gasdynamic model and subsequently adjusted when the magnetic field is included. The results of the gasdynamic and MHD models are compared with the following input parameters: the heat capacity ration γ = 2, the solar wind sonic Mach number, M∞ = 7, 9.81 (solar wind velocity v = 400 ; km ; s-1), temperature T = 105, 1.96 x 105 K, n = 10 ; cm-3, Bx = 10 \\cos θ \\cos φ ; nT, By = 10 \\cos θ sin φ ; nT, and Bz = 10 sin θ ; nT. There is a pronounced dawn-dusk asymmetry for both Mack numbers, and the presence of a strongly southward interplanetary magnetic field results in an equatorial belt of depressed depletion layer densities and plasma pressures between the cusp. The missing pressure is supplied by an equatorial band of enhanced magnetic field strengths. Near the subsolar point MHD densities fall to values 60% and 45 % of those in the gasdynamic models for M∞ = 9.81 and 7, resepctively. However, the standoff distance of bow shock increases significantly with stronger southward field component for low Mack numbers. By contrast, a standing shock wave attached to the the cusp becomes particularly noticeable for a strong dawn-dusk IMF orientation and high Mach numbers (M∞ = 9.81).
Malapaka, Shiva Kumar; Mueller, Wolf-Christian
2013-09-01
Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of the observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.
MHD simulations of DC helicity injection for current drive in tokamaks
Sovinec, C.R.; Prager, S.C.
1994-12-01
MHD computations of DC helicity injection in tokamak-like configurations show current drive with no ``loop voltage`` in a resistive, pressureless plasma. The self-consistently generated current profiles are unstable to resistive modes that partially relax the profile through the MHD dynamo mechanism. The current driven by the fluctuations leads to closed contours of average poloidal flux. However, the 1% fluctuation level is large enough to produce a region of stochastic magnetic field. A limited Lundquist number (S) scan from 2.5 {times} 10{sup 3} to 4 {times} 10{sup 4} indicates that both the fluctuation level and relaxation increase with S.
NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE
Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit E-mail: mats.carlsson@astro.uio.no
2016-02-01
The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.
Non-equilibrium Helium Ionization in an MHD Simulation of the Solar Atmosphere
NASA Astrophysics Data System (ADS)
Golding, Thomas Peter; Leenaarts, Jorrit; Carlsson, Mats
2016-02-01
The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11-18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed.
3D Multifluid MHD Simulations at Uranus and Neptune: Seasonal Variations of Their Magnetospheres
NASA Astrophysics Data System (ADS)
Cao, X.; Paty, C. S.
2016-12-01
The interaction between Uranus' and Neptune's intrinsic magnetic field and the solar wind is quite different from the magnetospheric interactions of other planets. Uranus' and Neptune's large obliquity, coupled with the fact that their dipole moments are off-centered and highly tilted relative to the rotation axis, leads to unique and seasonally dependent interaction geometries with the solar wind. We present results from adapting and generalizing a multifluid MHD simulation to examine these seasonally dependent geometries in terms of the global magnetospheric structures, magnetopauses and bow shock locations, and magnetotail configurations. The multifluid formulation enables us to track multiple ion species from sources such as the solar wind and ionosphere. The Voyager 2 spacecraft encountered Uranus near solstice, and was able to observe the magnetic field structure and plasma characteristics of a twisted magnetotail [Behannon et al., 1987]. Auroral observations made by the Hubble Space Telescope (HST) during equinox [Lamy et al.,2012] also give some indication of the magnetospheric interaction with the solar wind. We use these Voyager 2 and HST observations as a basis for benchmarking our simulations for the solstice scenario. We have previously explored Uranus' magnetosphere during solstice conditions and found a "switch-like" magnetosphere varying the field morphology between between open and closed during rotation [Cao and Paty, 2014, 2015]. In investigating Uranus' magnetosphere during equinox, we found similarities with the solstice case such as the "switch-like" magnetosphere, and propose this mechanism could apply to other ice giant planets (including exoplanets). We then applied the model to investigate Neptune's magnetosphere during both solstice and equinox seasons. We confirmed similar "switch-like" magnetospheric structures to that of Uranus (as recently reported in Mejnertsen et al., 2016), however, the different solar wind conditions and intrinsic
NASA Astrophysics Data System (ADS)
Palmroth, M.; Janhunen, P.; Pulkkinen, T. I.; Aksnes, A.; Lu, G.; Østgaard, N.; Watermann, J.; Reeves, G. D.; Germany, G. A.
2005-09-01
We investigate the Northern Hemisphere Joule heating from several observational and computational sources with the purpose of calibrating a previously identified functional dependence between solar wind parameters and ionospheric total energy consumption computed from a global magnetohydrodynamic (MHD) simulation (Grand Unified Magnetosphere Ionosphere Coupling Simulation, GUMICS-4). In this paper, the calibration focuses on determining the amount and temporal characteristics of Northern Hemisphere Joule heating. Joule heating during a substorm is estimated from global observations, including electric fields provided by Super Dual Auroral Network (SuperDARN) and Pedersen conductances given by the ultraviolet (UV) and X-ray imagers on board the Polar satellite. Furthermore, Joule heating is assessed from several activity index proxies, large statistical surveys, assimilative data methods (AMIE), and the global MHD simulation GUMICS-4. We show that the temporal and spatial variation of the Joule heating computed from the GUMICS-4 simulation is consistent with observational and statistical methods. However, the different observational methods do not give a consistent estimate for the magnitude of the global Joule heating. We suggest that multiplying the GUMICS-4 total Joule heating by a factor of 10 approximates the observed Joule heating reasonably well. The lesser amount of Joule heating in GUMICS-4 is essentially caused by weaker Region 2 currents and polar cap potentials. We also show by theoretical arguments that multiplying independent measurements of averaged electric fields and Pedersen conductances yields an overestimation of Joule heating. Keywords. Ionosphere (Auroral ionosphere; Modeling and forecasting; Electric fields and currents)
Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model
NASA Astrophysics Data System (ADS)
Baraka, Suleiman
2016-06-01
In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.
2006-09-01
tested is a model to simulate the hypersonic intake configuration. The corresponding photo is presented in Fig. 49. 75 i I I I I I I Figure 49. The third... hypersonic air stream within the propulsion system inlet. The extra benefit of this proposed Project is the experimental facility to be used for experimental...plasma aerodynamics, and in particular, MHD control of external and internal flows. The MHD control of the external hypersonic flow over the simplest
Test Particle Simulation of Acceleration in Cascading Current Sheet Obtained with 2.5D AMR MHD
NASA Astrophysics Data System (ADS)
Liu, Siming; Büchner, Jörg; Gan, Weiqun; Bárta, Miroslav; Zhou, Xiaowei
2016-07-01
With electro-magnetic field configuration derived from 2.5D AMR MHD simulations, we calculate the orbit of test charged particles with the guiding center approximation and study the particle acceleration by the induction and resistive electric fields. The induction field can lead to gradual acceleration via the drift of the particle guiding center in magnetic field curvature or gradient.The resistive electric field can lead to run away acceleration with particle energy changing drastically in regions with anomalous resistivity. We will discuss the implication of these results on the study of particle acceleration in turbulent reconnection current sheets.
2014-01-01
The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274
NASA Technical Reports Server (NTRS)
Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.; Dawson, J. M.
1985-01-01
A three-dimensional MHD simulation code is used to model the magnetospheric configuration when the IMF has both a northward B(z) component and a B(y) component in the east-west direction. Projections of the plasma pressure, the field-aligned velocity, the field-aligned vorticity, and the field-aligned current along the magnetic field lines into the northern ionosphere are shown and discussed. Cross-sectional patterns of these parameters are shown. The results demonstrate that the B(y) component of the IMF strongly influences the plasma sheet configuration and the magnetospheric convection pattern.
Khan, Md Shakhaoath; Karim, Ifsana; Islam, Md Sirajul; Wahiduzzaman, Mohammad
2014-01-01
The present study analyzed numerically magneto-hydrodynamics (MHD) laminar boundary layer flow past a wedge with the influence of thermal radiation, heat generation and chemical reaction. This model used for the momentum, temperature and concentration fields. The principal governing equations is based on the velocity uw (x) in a nanofluid and with a parallel free stream velocity ue (x) and surface temperature and concentration. Similarity transformations are used to transform the governing nonlinear boundary layer equations for momentum, thermal energy and concentration to a system of nonlinear ordinary coupled differential equations with fitting boundary conditions. The transmuted model is shown to be controlled by a number of thermo-physical parameters, viz. the magnetic parameter, thermal convective parameter, mass convective parameter, radiation-conduction parameter, heat generation parameter, Prandtl number, Lewis number, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter and pressure gradient parameter. Numerical elucidations are obtained with the legendary Nactsheim-Swigert shooting technique together with Runge-Kutta six order iteration schemes. Comparisons with previously published work are accomplished and proven an excellent agreement.
NASA Astrophysics Data System (ADS)
Khan, Md Shakhaoath; Karim, Ifsana; Islam, Md Sirajul; Wahiduzzaman, Mohammad
2014-07-01
The present study analyzed numerically magneto-hydrodynamics (MHD) laminar boundary layer flow past a wedge with the influence of thermal radiation, heat generation and chemical reaction. This model used for the momentum, temperature and concentration fields. The principal governing equations is based on the velocity u w (x) in a nanofluid and with a parallel free stream velocity u e (x) and surface temperature and concentration. Similarity transformations are used to transform the governing nonlinear boundary layer equations for momentum, thermal energy and concentration to a system of nonlinear ordinary coupled differential equations with fitting boundary conditions. The transmuted model is shown to be controlled by a number of thermo-physical parameters, viz. the magnetic parameter, thermal convective parameter, mass convective parameter, radiation-conduction parameter, heat generation parameter, Prandtl number, Lewis number, Brownian motion parameter, thermophoresis parameter, chemical reaction parameter and pressure gradient parameter. Numerical elucidations are obtained with the legendary Nactsheim-Swigert shooting technique together with Runge-Kutta six order iteration schemes. Comparisons with previously published work are accomplished and proven an excellent agreement.
NASA Astrophysics Data System (ADS)
Hayashi, K.; Hmi Team
2010-12-01
We will report results of the MHD simulation of the solar corona and solar wind using the HMI magnetic field data, especially focusing on a simulated eruption of a coronal streamer that reasonably corresponds to a large-scale coronal eruption event observed on August 1, 2010. The pre-event coronal situation is prepared through the time-relaxation MHD simulation using the synoptic map data of the solar surface magnetic field for a period of the Carrington Rotation 2098. Then, the global magnetic field evolutions from CR 2098 to 2099 are introduced in the simulation by means of a boundary model we recently developed, which enable to trace the sub-Alfvenic MHD responses of the corona numerically. The simulated coronal features include the formation of the two twisted coronal magnetic field structures along the magnetically inversion lines at the lowermost corona (coinciding the two observed filaments at west-north part of the solar disk) and the large-scale outward motions and decay of the closed-field streamer above the two twisted-field regions. Our MHD simulation model did not include the triggering event directly, and our simulations were done in somewhat low resolution in space. However, the reasonable success in reproducing coronal features relating a specific event in a well-known manner (using the synoptic map format data and the MHD simulation model) shows that the new dataset from HMI will be useful for the models, such as the MHD and the potential field models, as the previous dataset by SOHO/MDI.
X-Ray Spectra from MHD Simulations of Accreting Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy D.; Noble, Scott C.; Krolik, Julian H.
2011-01-01
We present new global calculations of X-ray spectra from fully relativistic magneto-hydrodynamic (MHO) simulations of black hole (BH) accretion disks. With a self consistent radiative transfer code including Compton scattering and returning radiation, we can reproduce the predominant spectral features seen in decades of X-ray observations of stellar-mass BHs: a broad thermal peak around 1 keV, power-law continuum up to >100 keV, and a relativistically broadened iron fluorescent line. By varying the mass accretion rate, different spectral states naturally emerge: thermal-dominant, steep power-law, and low/hard. In addition to the spectral features, we briefly discuss applications to X-ray timing and polarization.
Forced Magnetic Reconnection at an X-point: Particle-In-Cell and Ten-Moment Extended MHD Simulations
NASA Astrophysics Data System (ADS)
Wang, Liang; Bessho, Naoki; Bhattacharjee, Amitava; Germaschewski, Kai; Hakim, Ammar
2013-10-01
We will present comparative numerical studies of current sheet formation and forced magnetic reconnection at an X-point, beginning from a potential field. The problem will be simulated by the fully kinetic Particle Simulation Code (PSC) and an extended ten-moment MHD code Gkeyll that retains important kinetic physics, particularly, electron inertia and full electron/ion pressure tensors. Our goals are to investigate the similarities and differences between the two models, and to seek suitable parameterization of kinetic effects in the fluid models. The simulation domain is restrained in 2-D and is closed by conducting wall boundaries. The reconnection is forced by in-plane flows imposed on two opposite boundaries, where the forcing flows converge at the two boundary centers, and are slow compared to the characteristic Alfvén speed. We will compare results on the time-dependence of the reconnecting electric field (suitably normalized), as well as the structure of current sheets from PSC, Gkeyll, and an MHD code, varying ion-to-electron mass ratio and domain size. This study is carried out under the auspices of a Focus Topic in the NASA Living With a Star Targeted Research and Technology Program.
NASA Astrophysics Data System (ADS)
Beck, C.; Fabbian, D.; Rezaei, R.; Puschmann, K. G.
2017-06-01
Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry-Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.
Cyclic thermal signature in a global MHD simulation of solar convection
NASA Astrophysics Data System (ADS)
Cossette, J.; Charbonneau, P.; Smolarkiewicz, P. K.
2013-12-01
Space-based observations have clearly established that total solar irradiance (TSI) varies on time scales from minutes to days and months as well as on the longer time scale of the 11-year solar cycle. The most conspicuous of these variations is arguably the slight increase of TSI (0.1%) at solar maxima relative to solar minima. Models that include contributions from surface solar magnetism alone (i.e. sunspots, faculae and magnetic network) have been very successful at reproducing the observed TSI fluctuations on time scales shorter than a year, but leave some doubts as to the origin of the longer decadal fluctuations. In particular, one school of thought argues that surface magnetism alone can explain the entire TSI variance; see (Lean & al. 1998, ApJ, 492, 390), whereas; the other emphasizes on taking into account the effect of a global modulation of solar thermal structure by magnetic activity; see (Li & al. 2003, ApJ, 591, 1267). Observationally, the potential for the occurrence of magnetically-modulated global structural changes is supported by a positive correlation between p-mode oscillation frequencies and the TSI cycle as well as by recent evidence for a long-term trend in the TSI record that is not seen in indicators of surface magnetism; see (Bhatnagar & al. 1999, ApJ, 521, 885; Fröhlich 2013, Space Sci Rev,176, 237). Additionally, 1D structural solar models have demonstrated that the inclusion of a magnetically-modulated turbulent mechanism could explain the observed p-mode oscillation frequency changes with great accuracy. However, these models relied upon an ad-hoc parametrization of the alleged process and therefore obtaining a complete physical picture of the modulating mechanism requires solving the equations governing the self-consistent evolution of the solar plasma. Here we present a global magnetohydrodynamical (MHD) simulation of solar convection extending over more than a millennium that produces large-scale solar-like axisymmetric magnetic
3-D MHD disk wind simulations of jets and outflows from high-mass protostars
NASA Astrophysics Data System (ADS)
Staff, Jan E.; Tanaka, Kei; Tan, Jonathan C.; Zhang, Yichen; Liu, Mengyao
2017-01-01
We present the results of a series of nested, large scale, three-dimensional magnetohydrodynamics simulations of disk winds with a Blandford-Payne like magnetic field configuration, resolving scales from the stellar surface to beyond the core. The goal is to understand the structure of massive protostellar cores at various stages of their formation as the protostellar mass grows from a massive core. At each stage of a given protostellar mass, first, we study how jets and winds develop from the inner accretion disk to ~100 AU scales. We use the results from these simulations to dictate the inner boundary condition of a set of simulation extending to the core boundary at ~10,000 AU of an initially 60 solar mass core. We run separate simulations where the protostellar mass is 1, 2, 4, 8, 12, 16, and 24 Msun, and we are working on making a small grid of models in the context of the Turbulent Core Model with three different core masses and three different core surface densities. The wind is blown into the simulation box with properties derived from the previous jet simulations. We examine the opening angle of the outflow cavity and thus the star formation efficiency from the core due to outflow feedback. We find that the opening angle increases as the protostellar mass grows, but it is always less than 10 degrees, which is surprisingly small compared with previous analytic models. This is caused by the core which confines the outflow. Finally, we use our simulation results as input to a radiative transfer calculation, to compare with observations made by the SOMA survey.
Numerical simulation of flare energy build-up and release via Joule dissipation. [solar MHD model
NASA Technical Reports Server (NTRS)
Wu, S. T.; Bao, J. J.; Wang, J. F.
1986-01-01
A new numerical MHD model is developed to study the evolution of an active region due to photospheric converging motion, which leads to magnetic-energy buildup in the form of electric current. Because this new MHD model has incorporated finite conductivity, the energy conversion occurs from magnetic mode to thermal mode through Joule dissipation. In order to test the causality relationship between the occurrence of flare and photospheric motion, a multiple-pole configuration with neutral point is used. Using these results it is found that in addition to the converging motion, the initial magnetic-field configuration and the redistribution of the magnetic flux at photospheric level enhance the possibility for the development of a flare.
A Three-Dimensional MHD Simulation of the Solar Wind for a Tilted-Dipole Magnetic Field on the Sun
NASA Technical Reports Server (NTRS)
Goldstein, Melvyn L.
2007-01-01
Using a three-dimensional MHD model, we simulate the global steady-state structure of the solar corona and solar wind for a dipole magnetic field on the Sun inclined by 30 degrees to the solar rotation axis. This represents the solar conditions typical for a declining phase of solar cycle. The computations can extend from the coronal base out to 100-AU and at large heliospheric distances includes the effects of interstellar neutral hydrogen and their interaction with solar wind protons. The simulations can model the formation of corotating interaction regions and the heliospheric current sheet. The simulations are also capable of describing very strong rarefaction regions that include embedded sub-Alfvenic regions that form on the trailing edge of a fast flows.
Estimating solar radiation for plant simulation models
NASA Technical Reports Server (NTRS)
Hodges, T.; French, V.; Leduc, S.
1985-01-01
Five algorithms producing daily solar radiation surrogates using daily temperatures and rainfall were evaluated using measured solar radiation data for seven U.S. locations. The algorithms were compared both in terms of accuracy of daily solar radiation estimates and terms of response when used in a plant growth simulation model (CERES-wheat). Requirements for accuracy of solar radiation for plant growth simulation models are discussed. One algorithm is recommended as being best suited for use in these models when neither measured nor satellite estimated solar radiation values are available.
NASA Astrophysics Data System (ADS)
Hayashi, K.
2016-12-01
Magnetic field plays a major role in various phenomena in the solar corona, such as flares and coronal mass ejections. To characterize these phenomena and quantify their intensity and scale, physical quantities such as current, energy density and current helicity are important. In this presentation, we analyze the magnetic quantities, as well as plasma quantities such as kinetic helicity and ram pressures, derived from our MHD simulations for the solar corona and solar wind. Our MHD simulation can introduce time-evolving radial component of magnetic field as one of boundary conditions, which allows us to analyze coronal evolutions in time. The analysis indicates the magnetic helicity and kinetic helicity behave in a weak anti-correlation manner in the sub/trans-Alfvenic corona. The helicity quantities driven by the series of solar-surface Br data propagate outward quickly in the solar corona and slowly in the stagnant coronal streamers, finally reaching the super-Alfvenic solar wind regime. Enhancements of helicity quantities are found localized. These analysis help enhance descriptions on the dynamics of the coronal global-scale events.
NASA Technical Reports Server (NTRS)
Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.
1998-01-01
Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.
NASA Astrophysics Data System (ADS)
Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Ferraro, N.
2016-10-01
We use the finite element 3D MHD code M3D-C1 to study large-scale instabilities in the center of tokamak plasmas. It has been shown that in 3D MHD simulations of plasmas with a flat central q 1 , an ideal interchange instability can develop that keeps the current density from peaking despite central heating. The instability yields a (m = 1 , n = 1) perturbation of the core plasma, i.a. a helical flow that flattens the central current density by (1) flattening the temperature profile and (2) combining with the perturbed magnetic field to generate a negative loop voltage through a dynamo effect. This might explain the ``flux-pumping'' effect observed in hybrid discharges. We study in which parameter range the two effects are strong enough to prevent sawtoothing. We describe a new regime of quasi-stationary oscillating states and analyze cases in between the stationary and the cycling regime in which the sawtooth behaviour is modified by the current flattening mechanisms. To connect to experimental observations, we have set up simulations starting with a scenario comparable to the current ramp-up phase.
Simulation of within-canopy radiation exchange
USDA-ARS?s Scientific Manuscript database
Radiation exchange at the surface plays a critical role in the surface energy balance, plant microclimate, and plant growth. The ability to simulate the surface energy balance and the microclimate within the plant canopy is contingent upon simulation of the surface radiation exchange. A validation a...
NASA Astrophysics Data System (ADS)
Huang, Z.; Toth, G.; Gombosi, T. I.; Jia, X.; Rubin, M.; Hansen, K. C.; Fougere, N.; Bieler, A. M.; Shou, Y.; Altwegg, K.; Combi, M. R.; Tenishev, V.
2015-12-01
The neutral and plasma environment is critical in understanding the interaction of comet Churyumov-Gerasimenko (CG), the target of the Rosetta mission, and the solar wind. To serve this need and support the Rosetta mission, we develop a 3-D four fluid model, which is based on BATS-R-US within the SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photo and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulate the near nucleus plasma and neutral gas environment near perihelion with a realistic shape model of CG and compare our simulation results with Rosetta observations.
NASA Astrophysics Data System (ADS)
Yokoyama, Takaaki; Oi, Yoshiaki; Toriumi, Shin
2017-08-01
Active regions holding a delta-sunspot are known to produce the largest class of solar flares. How, where, and when such large flares occur above a delta-sunspot are still under debate. For studying this, 3D MHD simulations of the emergence of a subsurface flux tube at two locations in a simulation box modeling the convection zone to the corona were conducted. We found that a flux rope is formed as a consequence of magnetic reconnection of two bipolar loops and sunspot rotation caused by the twist of the subsurface flux tube. Moreover, the flux rope stops ascending when the initial background is not magnetized, whereas it rises up to the upper boundary when a reconnection favorably oriented pre-existing field is introduced to the initial background.
Modeling solar wind mass-loading in the vicinity of the Sun using 3-D MHD simulations
NASA Astrophysics Data System (ADS)
Rasca, A. P.; Horányi, M.; Oran, R.; Holst, B.
2014-01-01
Collisionless shocks due to mass-loading were first discussed to describe the solar wind flow around a cometary atmosphere, showing its choking effects on the flow. Recent observations have led to an increased interest in mass-loading occurring in the solar corona due to both sungrazing comets and collisional debris production by sunward migrating interplanetary dust particles. The 1-D simulations with a hydrodynamic model have illustrated the impact on the solar wind from abrupt mass-loading in the coronal region. Full 3-D magnetohydrodynamic (MHD) simulations using a solar corona model based on the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme code provide a more realistic coronal environment for modeling specific events applicable to modeling the mass-loaded coronal wind. A specific application is introduced modeling the mass-loading effects from a sungrazing comet.
NASA Astrophysics Data System (ADS)
Janhunen, P.
2008-04-01
We review different types of recent plasma simulations carried out at FMI/Space. Global MHD simulations (GUMICS-4) are used to simulate Earth's magnetosphere. Recent studies have addressed transpolar arcs, energetics at both magnetospheric and ionospheric levels and quantitative characterization of reconnection in the magnetotail and on the magnetopause. Hybrid simulations (HYB) are used to simulate the plasma environments of weakly magnetized planets (Mercury, Venus, Mars) and moons (Earth's Moon and Titan). In these planetary systems, finite ion Larmor radius effects are often important and produce pronounced asymmetries which are also apparent in new observational data from MarsExpress, VenusExpress and Cassini. Also Monte Carlo type models of complex interactions with neutrals fit naturally in the hybrid simulation framework where ions are particles and electrons are a charge-neutralizing fluid. Lastly, fully kinetic electrostatic simulations with realistic mass ratio are used to model the interaction between the solar wind and a charged, tethered spacecraft, to study a recently discovered Electric Sail effect which may provide a breakthrough in deep-space propulsion for small probes.
NASA Astrophysics Data System (ADS)
Hamid, Rohana Abdul; Nazar, Roslinda
2017-08-01
In this paper, the problem of magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a nanofluid with the influences of the chemical reaction and thermal radiation over an exponentially shrinking sheet is studied numerically. The model used for the nanofluid is called the Buongiorno model which incorporates the effects of the Brownian motion and thermophoresis. The governing dimensionless ordinary differential equations are solved using the bvp4c method. The effects of the magnetic field parameter, thermal radiation parameter and chemical reaction parameter on the velocity, temperature and concentration profiles of the nanofluid over an exponentially permeable shrinking sheet are discussed and presented through graphs and tables.
Experimental Study and Simulation of W7-AS Transient MHD Modes
Pokol, G.; Papp, G.; Por, G.; Zoletnik, S.; Weller, A.
2008-03-19
Transient MHD modes present in pure ECRH W7-AS plasmas have been shown to be in correlation with transient transport events (ELM-like modes). Here the spatial structure of the individual transients is analyzed using short-time Fourier transform and continuous analytical wavelet transform based techniques. Processing of Mirnov coil data partly confirms the properties derived from earlier, simpler analyses. Theoretical explanation of the properties of these modes (spatial structure and rapid damping) is attempted by models based involving drift-Alfven turbulence or shear Alfven waves.
NASA Technical Reports Server (NTRS)
Walker, Raymond J.; Ogino, Tatsuki
1988-01-01
A time-dependent three-dimensional MHD model was used to investigate the magnetospheric configuration as a function of the interplanetary magnetic field direction when it was in the y-z plane in geocentric solar magnetospheric coordinates. The model results show large global convection cells, tail lobe cells, high-latitude polarcap cells, and low latitude cells. The field-aligned currents generated in the model magnetosphere and the model convection system are compared with observations from low-altitude polar orbiting satellites.
Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited
NASA Astrophysics Data System (ADS)
Pop, Ioan; Ishak, Anuar; Aman, Fazlina
2011-10-01
This paper considers the effects of radiation on the flow near the two-dimensional stagnation point of a stretching sheet immersed in a viscous and incompressible electrically conducting fluid in the presence of an applied constant magnetic field. The external velocity and the stretching velocity of the sheet are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by the Keller-box method. The features of the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The results indicate that the heat transfer rate at the surface decreases in the presence of radiation.
The Cool Surge Following Flux Emergence in a Radiation-MHD Experiment
NASA Astrophysics Data System (ADS)
Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J.
2016-05-01
Cool and dense ejections, typically Hα surges, often appear alongside EUV or X-ray coronal jets as a result of the emergence of magnetized plasma from the solar interior. Idealized numerical experiments explain those ejections as being indirectly associated with the magnetic reconnection taking place between the emerging and preexisting systems. However, those experiments miss basic elements that can importantly affect the surge phenomenon. In this paper we study the cool surges using a realistic treatment of the radiation transfer and material plasma properties. To that end, the Bifrost code is used, which has advanced modules for the equation of state of the plasma, photospheric and chromospheric radiation transfer, heat conduction, and optically thin radiative cooling. We carry out a 2.5D experiment of the emergence of magnetized plasma through (meso) granular convection cells and the low atmosphere to the corona. Through detailed Lagrange tracing we study the formation and evolution of the cool ejection and, in particular, the role of the entropy sources; this allows us to discern families of evolutionary patterns for the plasma elements. In the launch phase, many elements suffer accelerations well in excess of gravity; when nearing the apex of their individual trajectories, instead, the plasma elements follow quasi-parabolic trajectories with accelerations close to {g}⊙ . We show how the formation of the cool ejection is mediated by a wedge-like structure composed of two shocks, one of which leads to the detachment of the surge from the original emerged plasma dome.
A New MHD-assisted Stokes Inversion Technique
NASA Astrophysics Data System (ADS)
Riethmüller, T. L.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-03-01
We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno-Rachkovsky equations for the polarized radiative transfer numerically and fit the Stokes profiles iteratively, the new technique provides the full set of atmospheric parameters. This gives us the ability to start an MHD simulation that takes the inversion result as an initial condition. After a relaxation process of half an hour solar time we obtain physically consistent MHD data sets with a target similar to the observation. The new MHD simulation is used to repeat the method in a second iteration, which further improves the match between observation and simulation, resulting in a factor of 2.2 lower mean {χ }2 value. One advantage of the new technique is that it provides the physical parameters on a geometrical height scale. It constitutes a first step toward inversions that give results consistent with the MHD equations.
NASA Astrophysics Data System (ADS)
Jia, X.; Slavin, J. A.; Poh, G.; Toth, G.; Gombosi, T. I.
2016-12-01
It has long been suggested that two processes, i.e., erosion of the dayside magnetosphere due to strong magnetopause reconnection and the shielding effect of the induction currents at the planetary core, compete against each other in governing the structure of Mercury's magnetosphere. We have combined analysis of MESSENGER data during extreme solar wind conditions with global MHD simulations to assess the relative importance of the two processes. Following the study of Slavin et al. (2014), we have analyzed an additional set of MESSENGER magnetopause crossings to determine the dependence of the magnetopause standoff distance on solar wind parameters. We have also employed the global MHD model of Jia et al. (2015) that electromagnetically couples Mercury's interior to the surrounding space environment to simulate the response of the system to solar wind forcing for a wide range of solar wind and IMF conditions. We find that while the magnetopause standoff distance decreases with increasing solar wind pressure, just as expected, its dependence on the external pressure follows closely a power-law relationship with an index of -1/6, rather than a steeper power-law falling-off expected for the case with only induction present. Our results suggest that for the external conditions examined, induction and magnetopause reconnection appear to play equally important roles in determining the global configuration of Mercury's magnetosphere, consistent with the finding obtained by Slavin et al. (2014). We also find that the magnetospheric current systems produce magnetic perturbations that are spatially non-uniform in nature, resulting in induced magnetic field at the core that contains significant power in both the dipole and high order moments. Based on the simulation results, we determine how the induced field varies with the solar wind conditions, and provide quantitative constraints on the ability of Mercury's core to shield the planetary surface from direct solar wind
NASA Astrophysics Data System (ADS)
Afzal, Khadeeja; Aziz, Asim
In this paper, the unsteady magnetohydrodynamic (MHD) boundary layer slip flow and heat transfer of nanofluid in a solar collector, modeled mathematically as a nonlinear stretching sheet is investigated numerically. The variable thermal conductivity is assumed as a function of temperature and the wall-slip conditions are utilized at the boundary. The similarity transformation technique is used to reduce the governing boundary value problem to a system of nonlinear ordinary differential equations (ODEs) and then solved numerically. The numerical values obtained for the velocity and temperature depend on nanofluid volume concentration parameter, unsteadiness parameter, suction/injection parameter, thermal conductivity parameter, slip parameters, MHD parameter and thermal radiation parameter. The effects of various parameters on the flow and heat transfer characteristics are presented and discussed through graphs and tables.
NASA Astrophysics Data System (ADS)
Kloster, Dylan; Jang-Condell, Hannah; Kasper, David
2016-01-01
New high resolution images of protoplanetary disks from facilities like ALMA are revealing complex disk structures, possibly due to interactions between the disk and newly forming planets within that disk. Analysis of what the structures in these images reveal about the evolution of protoplanetary disks requires detailed models of disk/planet interaction combined with radiative transfer techniques to calculate observable signatures of these disks. We model this disk-planet interaction as hydrodynamic and magnetohydrodynamic numerical simulations using the PLUTO code. We then apply a modified version of the radiative transfer code PaRTY (Parallel Radiative Transfer in YSOs) to these HD/MHD simulations to calculate the observed intensity of these disks via thermal emission and scattering from the host star. Using a wide variety of stellar properties, disk structures, and planet masses, our goal is to produce a robust set of models that will be essential in analyzing the images taken with this new generation of telescopes.
Impurity mixing and radiation asymmetry in massive gas injection simulations of DIII-D
Izzo, V. A.
2013-05-15
Simulations of neon massive gas injection into DIII-D are performed with the 3D MHD code NIMROD. The poloidal and toroidal distribution of the impurity source is varied. This report will focus on the effects of the source variation on impurity mixing and radiated power asymmetry. Even toroidally symmetric impurity injection is found to produce asymmetric radiated power due to asymmetric convective heat flux produced by the 1/1 mode. When the gas source is toroidally localized, the phase relationship between the mode and the source location is important, affecting both radiation peaking and impurity mixing. Under certain circumstances, a single, localized gas jet could produce better radiation symmetry during the disruption thermal quench than evenly distributed impurities.
Effect of melting on an MHD micropolar fluid flow toward a shrinking sheet with thermal radiation
NASA Astrophysics Data System (ADS)
Das, K.; Sarkar, A.
2016-07-01
The effect of melting on a steady boundary layer stagnation-point flow and heat transfer of an electrically conducting micropolar fluid toward a horizontal shrinking sheet in the presence of a uniform transverse magnetic field and thermal radiation is studied. A similarity transformation technique is adopted to obtain self-similar ordinary differential equations, which are solved numerically. The present results are found to be in good agreement with previously published data. Numerical results for the dimensionless velocity and temperature profiles, as well as for the skin friction and the rate of heat transfer are obtained.
NASA Astrophysics Data System (ADS)
Winters, Andrew R.; Derigs, Dominik; Gassner, Gregor J.; Walch, Stefanie
2017-03-01
We describe a unique averaging procedure to design an entropy stable dissipation operator for the ideal magnetohydrodynamic (MHD) and compressible Euler equations. Often in the derivation of an entropy conservative numerical flux function much care is taken in the design and averaging of the entropy conservative numerical flux. We demonstrate in this work that if the discrete dissipation operator is not carefully chosen as well it can have deleterious effects on the numerical approximation. This is particularly true for very strong shocks or high Mach number flows present, for example, in astrophysical simulations. We present the underlying technique of how to construct a unique averaging technique for the discrete dissipation operator. We also demonstrate numerically the increased robustness of the approximation.
Hall-MHD simulations of the Kelvin-Helmholtz instability at the solar wind/magnetosphere interface
NASA Astrophysics Data System (ADS)
Leroy, M. H. J.; Keppens, R.
2016-12-01
The process feeding the development of the boundary layer at the interface between the solar wind (SW) and the magnetosphere (MS) during northward interplanetary magnetic field is still not fully understood, though the Kelvin-Helmholtz instability (KHI) being the major actor is in good agreement with the observations so far. In this work, we study different configurations than can occur in the KHI scenario in a three-dimensional (3D) Hall-MHD setting, where the double mid-latitude reconnection (DMLR) process exposed by Faganello, Califano et al. is triggered by the equatorial roll-ups. Their previous work is extended here with a larger simulation box and the addition of a density contrast. The influence of the parameters on the growth rate of the KHI and thus the efficiency of the DMLR is assessed. The effect of the Hall term on the physical processes is also investigated.
An MHD simulation of the interaction of the solar wind with the outflowing plasma from a comet
NASA Technical Reports Server (NTRS)
Ogino, T.; Walker, R. J.; Ashour-Abdalla, M.
1986-01-01
The interaction between the solar wind and the outflowing plasmas from a comet has been studied by using a two-dimensional time-dependent magnetohydrodynamic (MHD) simulation. The model reproduced several features of the comet-solar wind interaction predicted by earlier theories and observed on the recent cometary probes. These include the formation of the contact surface and the cometary magnetotail. For a constant interplanetary magnetic field (IMF) the cometary plasma captures field lines which drape over the comet to form an antiparallel magnetic field configuration in the tail and a thin plasma sheet. Eventually, tail magnetic reconnection begins to occur at several points. When the IMF orientation is reversed dayside magnetic reconnection occurs at the subsolar point and a large disturbance propagation down the tail.
NASA Astrophysics Data System (ADS)
Levrier, F.; Levrier; Neveu, J.
The Planck satellite (Planck 2015 Results I) has mapped the polarized microwave sky (from 30 GHz to 353 GHz) with unprecedented sensitivity and angular resolution. This wealth of data yields the first complete map of polarized thermal emission from dust in our own Galaxy (Planck Intermediate Results XIX),, shedding new light on the formation of dense cold structures within which new stars and planetary systems are born, under the combined effects of gravity, turbulence and magnetic fields. We present a statistical analysis of this polarized emission from nearby molecular clouds, with an emphasis on the evolution of the maximum polarization fraction observed as a function of column density, and on the anti-correlation between the polarization fraction and the local dispersion of polarization angles. To interpret this data, numerical simulations of anisotropic MHD turbulence (Fromang, Hennebelle, & Teyssier 2006, Hennebelle et al. 2008) underline the essential role played by the topology of the interstellar magnetic field, in particular its large-scale component (Planck Intermediate Results XX). Indeed, the polarization of dust thermal emission at the scales observed by Planck is essentially related to the geometry of the magnetic field. Polarization fractions anti-correlate with column densities, which may be due to a succession of variously polarized structures on the line of sight. They also anti-correlate with the local dispersion of polarization angles. These features are well reproduced by MHD simulations of the diffuse ISM, with comparable correlation coefficients. As an extension to this work published in Planck Intermediate Results XX, the statistical properties of the random component of the interstellar magnetic field are explored using a toy model of the turbulent magnetized ISM based on fractional Brownian motion (fBm) fields. A least-squares analysis to retrieve the statistical properties of the interstellar magnetic field from Planck observations is
NASA Astrophysics Data System (ADS)
Levrier, F.; Aff001; Neveu, J.
The Planck satellite has mapped the polarized microwave sky (from 30 GHz to 353 GHz) with unprecedented sensitivity and angular resolution. This wealth of data yields the first complete map of polarized thermal emission from dust in our own Galaxy, shedding new light on the formation of dense cold structures within which new stars and planetary systems are born, under the combined effects of gravity, turbulence and magnetic fields. We present a statistical analysis of this polarized emission from nearby molecular clouds, with an emphasis on the evolution of the maximum polarization fraction observed as a function of column density, and on the anti-correlation between the polarization fraction and the local dispersion of polarization angles. To interpret this data, numerical simulations of anisotropic MHD turbulence underline the essential role played by the topology of the interstellar magnetic field, in particular its large-scale component. Indeed, the polarization of dust thermal emission at the scales observed by Planck is essentially related to the geometry of the magnetic field. Polarization fractions anti-correlate with column densities, which may be due to a succession of variously polarized structures on the line of sight. They also anti-correlate with the local dispersion of polarization angles. These features are well reproduced by MHD simulations of the diffuse ISM, with comparable correlation coefficients. As an extension to this work published in Planck Intermediate Results XX (A&A, 576, 105, 2015), the statistical properties of the random component of the interstellar magnetic field are explored using a toy model of the turbulent magnetized ISM based on fractional Brownian motion (fBm) fields. A least-squares analysis to retrieve the statistical properties of the interstellar magnetic field from Planck observations is pursued. Application of this method on the toy model shows good promise, and we are currently working towards its application on Planck
NASA Astrophysics Data System (ADS)
Muthucumaraswamy, R.; Sivakumar, P.
2016-02-01
The problem of MHD free convection flow with a parabolic starting motion of an infinite isothermal vertical plate in the presence of thermal radiation and chemical reaction has been examined in detail in this paper. The fluid considered here is a gray, absorbing emitting radiation but a non-scattering medium. The dimensionless governing coupled linear partial differential equations are solved using the Laplace transform technique. A parametric study is performed to illustrate the influence of the radiation parameter, magnetic parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number and time on the velocity, temperature, concentration. The results are discussed graphically and qualitatively. The numerical results reveal that the radiation induces a rise in both the velocity and temperature, and a decrease in the concentration. The model finds applications in solar energy collection systems, geophysics and astrophysics, aerospace and also in the design of high temperature chemical process systems.
2D-simulation of stationary MHD flows in the ducts of rectangular cross-section
NASA Astrophysics Data System (ADS)
Khalzov, Ivan; Ilgisonis, Victor
2005-10-01
The numerical code for a calculation of 2D stationary MHD flows of incompressible conducting viscous fluids (liquid metals) in straight and circular ducts of rectangular cross-section is developed. The flows are driven by the electrical current perpendicular both to the duct axis and to the external magnetic field. The code generalizes the well-known iterative Gauss-Seidel method for the case of systems of elliptic equations. The algorithm developed allows us to carry out the calculations of stationary flows in a wide range of Hartmann (Ha=110^3) and Reynolds (Re=110^6) numbers. The numerical results are presented for the experimental device, which is under construction in Russia.
Interpretation of solar irradiance monitor measurements through analysis of 3D MHD simulations
Criscuoli, S.; Uitenbroek, H.
2014-06-20
Measurements from the Spectral Irradiance Monitor (SIM) on board the Solar Radiation and Climate Experiment mission indicate that solar spectral irradiance at visible and IR wavelengths varies in counter phase with the solar activity cycle. The sign of these variations is not reproduced by most of the irradiance reconstruction techniques based on variations of surface magnetism employed so far, and it is not yet clear whether SIM calibration procedures need to be improved or if instead new physical mechanisms must be invoked to explain such variations. We employ three-dimensional magnetohydrodynamic simulations of the solar photosphere to investigate the dependence of solar radiance in SIM visible and IR spectral ranges on variations of the filling factor of surface magnetic fields. We find that the contribution of magnetic features to solar radiance is strongly dependent on the location on the disk of the features, which are negative close to disk center and positive toward the limb. If features are homogeneously distributed over a region around the equator (activity belt), then their contribution to irradiance is positive with respect to the contribution of HD snapshots, but decreases with the increase of their magnetic flux for average magnetic flux larger than 50 G in at least two of the visible and IR spectral bands monitored by SIM. Under the assumption that the 50 G snapshots are representative of quiet-Sun regions, we thus find that the Spectral Irradiance can be in counter-phase with the solar magnetic activity cycle.
X-Ray Spectra from MHD Simulations of Accreting Black Holes
NASA Technical Reports Server (NTRS)
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.
2012-01-01
We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.
NASA Astrophysics Data System (ADS)
Ukhorskiy, Aleksandr; Sorathia, Kareem; Merkin, Viacheslav
2016-10-01
The Earth's magnetopause is a sharp boundary separating the geomagnetic field from interplanetary field and plasma. During increased solar wind driving and geomagnetic activity, energetic particles produced inside the magnetosphere can gain access to the magnetopause and be permanently lost from the system by crossing the boundary into the region of open interplanetary magnetic field lines. The efficiency of the loss process is controlled by the details of particle interaction with the magnetopause boundary. Characterizing this interaction is important for understanding storm-time variability of magnetospheric energetic particle populations including ring current and radiation belts. The magnetopause structure can be very dynamic due, in particular, to the Kelvin-Helmholtz instability (KHI) produced by the velocity shear at the magnetospheric boundary. The goal of this study is to investigate the role of KHI in energetic particle loss through the magnetopause. For the analysis we use large-scale test-particle simulations in the electromagnetic fields computed with a global magnetospheric MHD model with resolution sufficiently high to resolve KHI. We compute the spatial distributions and rates of the magnetopause losses of energetic electrons, hydrogen and oxygen ions, and discuss our results in the context of recent measurements of magnetopause losses from the Magnetospheric Multiscale (MMS) mission.
Space radiator simulation system analysis
NASA Technical Reports Server (NTRS)
Black, W. Z.; Wulff, W.
1972-01-01
A transient heat transfer analysis was carried out on a space radiator heat rejection system exposed to an arbitrarily prescribed combination of aerodynamic heating, solar, albedo, and planetary radiation. A rigorous analysis was carried out for the radiation panel and tubes lying in one plane and an approximate analysis was used to extend the rigorous analysis to the case of a curved panel. The analysis permits the consideration of both gaseous and liquid coolant fluids, including liquid metals, under prescribed, time dependent inlet conditions. The analysis provided a method for predicting: (1) transient and steady-state, two dimensional temperature profiles, (2) local and total heat rejection rates, (3) coolant flow pressure in the flow channel, and (4) total system weight and protection layer thickness.
NASA Astrophysics Data System (ADS)
Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai
2015-06-01
We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.
Deng, Wei; Zhang, Bing; Li, Hui; Li, Shengtai E-mail: zhang@physics.unlv.edu E-mail: sli@lanl.gov
2015-06-01
We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.
NASA Astrophysics Data System (ADS)
Kubota, Y.; Nagatsuma, T.; Den, M.; Tanaka, T.; Fujita, S.
2015-12-01
We are developing a real-time numerical simulator for the solar-wind-magnetosphere-ionosphere coupling system using next generation magnetosphere-ionosphere coupling global MHD simulation called REPPU (REProduce Plasma Universe) code. The feature of simulation has an advanced robustness to strong solar wind case because a triangular grid is used, which is able to calculate in the uniform accuracy over the whole region. Therefore we can simulate extreme event such as the Bastille day storm. The resolution is 7682 grids in the horizontal direction and 240 grids in the radial direction. The inner boundary of the simulation box is set at 2.6 Re. We investigate the reproduction of the magnetosphere-ionosphere coupling simulation in strong solar wind case. Therefore we compared the simulation results with the observation of the Bastille day storm event (2000/7/15), in which the solar wind velocity is above 1000 km/s and the value of Bz reached -60 nT. Especially, we focus the cross polar cap potential (CPCP) saturation and time variation because the CPCP represents the value of magnetospheric - ionospheric convection strength via region 1 current. The CPCP depends on solar wind electric field, dynamic pressure and ionospheric conductivity [Siscoe et al., 2002; Kivelson et al., 2008]. The model of Kivelson et al. [2008] shows a good reproduction to the CPCP variation. However their study assumes that the ionospheric conductivity is constant. The conductivity in our simulation of the Bastille day event is varied by the auroral activity. In this lecture, we discuss the effect of both the auroral conductance and solar EUV-driven conductance to CPCP saturation.
Radiated fields from an electromagnetic pulse simulator
NASA Astrophysics Data System (ADS)
Pelletier, M.; Delisle, G. Y.; Kashyap, S.
Simulators of electromagnetic pulses allow generation within a limited time of very high-intensity fields such as those produced in a nuclear explosion. These fields can be radiated out of the test zone at a lower but nevertheless significant level; if the intensity of these fields is sufficiently high, damage to humans and electronic equipment can result. An evaluation of the potential danger of these simulator emissions requires knowledge of the amplitude, duration, and the energy of the radiated impulses. A technique is presented for calculating the fields radiated by a parallel-plane electromagnetic pulse simulator. The same method can also be applied to a rhombic type simulator. Sample numerical results are presented along with the calculations of the energy and power density and a discussion of the formation of the field in the frequency domain.
NASA Astrophysics Data System (ADS)
Raju, S. Suresh Kumar; Narahari, Marneni; Pendyala, Rajashekhar
2016-11-01
In the present study, a numerical analysis is made for unsteady magnetohydrodynamic (MHD) natural convective boundary-layer flow past an impulsively started semi-infinite vertical plate with variable surface temperature and mass flux in the presence of thermal radiation and chemical reaction. The Crank-Nicolson implicit finite difference technique is implemented to solve the system of governing equations. Numerical results are obtained for different values of system parameters and analyzed through graphs. The velocity profiles of the present study have been compared with the available results for the limiting case and a good agreement is found between the results.
Deng, Wei
2015-07-21
The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σ_{b,f} is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σ_{b,i} - σ_{b,f} provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.
Thermodynamic MHD Modeling of Coronal Mass Ejections
NASA Astrophysics Data System (ADS)
Linker, Jon A.; Lionello, R.; Mikic, Z.; Riley, P.; Titov, V.
2007-05-01
Coronal mass ejections (CMEs) disrupt the large-scale coronal magnetic field and propel plasma and magnetic flux outward into interplanetary space. The most energetic CMEs typically originate from active regions on the Sun. Accurately modeling active regions while also capturing the entire corona requires MHD models that include energy transport (radiative losses,anisotropic thermal conduction, and coronal heating) in the transition region and solar corona. We refer to this as the thermodynamic MHD model. The more accurate representation of energy flow in the thermodynamic MHD model allows us to to compute simulated EUV and X-ray emission as would be observed from spacecraft such as SOHO, STEREO, and Hinode. With this approach, theorists no longer get to argue what emission they think their favorite model's magnetic field evolution implies; we can actually go compute the emission and compare with observations. As an example, we show a simulation of the May 12, 1997 CME, and compare the simulated emission with observations from the actual event of dimming regions, postflare loops, and reformation of loops near the northern polar coronal hole. Work supported by NASA, NSF and the Center for Integrated Space Weather Modeling (an NSF Science and Technology Center).
2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches
Hammer, J.H.; Eddleman, J.L.; Springer, P.T.
1995-11-06
Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.
Localized reconnection in the magnetotail driven by lobe flow channels: Global MHD simulation
NASA Astrophysics Data System (ADS)
Nishimura, Y.; Lyons, L. R.
2016-02-01
Recent ionospheric measurements suggest polar cap flow channels often trigger nightside auroral brightening. However, measurements were limited to the ionosphere, and it was not understood if such flow channels can exist in the lobe and can trigger magnetotail reconnection in a localized cross-tail extent. We examined if localized flow channels can form self-consistently in a global MHD regime, and if so, how such flow channels originate and relate to localized magnetotail reconnection. We show that lobe convection became nonuniform with azimuthally narrow flow channels (enhanced dawn-dusk electric fields) of ~3 RE cross-tail width. The flow channels propagated from the dayside toward the plasma sheet as an interplanetary magnetic field (IMF) discontinuity swept tailward. The plasma sheet around the lobe flow channels became thinner with a similar cross-tail extent and then localized reconnection occurred. These results suggest that localized flow channels can propagate tailward across the lobe and drive localized magnetotail reconnection, that the cross-tail width of reconnection and resulting plasma sheet flow channels and dipolarization fronts are related to the width of inflow from the lobe, and that IMF discontinuities drive lobe flow channels.
Comparison of helioseismic cut-off frequency formulations by the means of MHD simulation results
NASA Astrophysics Data System (ADS)
Bourdin, Philippe-A.; Thaler, Irina; Roth, Markus
2017-04-01
The discussion of helioseismic wave phenomena requires a self-consistent description of the plasma pressure. Magnetically active regions on the Sun are observed to have distinct wave phenomena as compared to quiet regions. With better helioseismologic diagnostics near active regions one may also better understand not only the chromospheric energy budget, but also halo formation and running penumbral waves. The line formation height (with respect to the beta=1 level) and the magnetic field inclination near the solar surface are in the same time difficult to measure and important to correctly interpret observations. With the help of a large-scale 3D magneto-hydrodynamic (MHD) model, that features an active region as bottom boundary and has shown good agreement to various observations, we may compute values for theoretically derived formulations of cut-off frequencies from the model plasma parameters. Our results show strongly varying vertical atmospheric profiles and we give estimates of their influence on the expected cut-off frequencies.
Particle simulation algorithms with short-range forces in MHD and fluid flow
Cable, S.; Tajima, T.; Umegaki, K.
1992-07-01
Attempts are made to develop numerical algorithms for handling fluid flows involving liquids and liquid-gas mixtures. In these types of systems, the short-range intermolecular interactions are important enough to significantly alter behavior predicted on the basis of standard fluid mechanics and magnetohydrodynamics alone. We have constructed a particle-in-cell (PIC) code for the purpose of studying the effects of these interactions. Of the algorithms considered, the one which has been successfully implemented is based on a MHD particle code developed by Brunel et al. In the version presented here, short range forces are included in particle motion by, first, calculating the forces between individual particles and then, to prevent aliasing, interpolating these forces to the computational grid points, then interpolating the forces back to the particles. The code has been used to model a simple two-fluid Rayleigh-Taylor instability. Limitations to the accuracy of the code exist at short wavelengths, where the effects of the short-range forces would be expected to be most pronounced.
The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: MHD Simulations
NASA Technical Reports Server (NTRS)
Lionello, Roberto; Riley, Pete; Linker, Jon A.; Mikic, Zoran
2004-01-01
Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang et al., which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang et al.. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.
Coherent Synchrotron Radiation: Theory and Simulations.
Novokhatski, Alexander; /SLAC
2012-03-29
The physics of coherent synchrotron radiation (CSR) emitted by ultra-relativistic electron bunches, known since the last century, has become increasingly important with the development of high peak current free electron lasers and shorter bunch lengths in storage rings. Coherent radiation can be described as a low frequency part of the familiar synchrotron radiation in bending magnets. As this part is independent of the electron energy, the fields of different electrons of a short bunch can be in phase and the total power of the radiation will be quadratic with the number of electrons. Naturally the frequency spectrum of the longitudinal electron distribution in a bunch is of the same importance as the overall electron bunch length. The interest in the utilization of high power radiation from the terahertz and far infrared region in the field of chemical, physical and biological processes has led synchrotron radiation facilities to pay more attention to the production of coherent radiation. Several laboratories have proposed the construction of a facility wholly dedicated to terahertz production using the coherent radiation in bending magnets initiated by the longitudinal instabilities in the ring. Existing synchrotron radiation facilities also consider such a possibility among their future plans. There is a beautiful introduction to CSR in the 'ICFA Beam Dynamics Newsletter' N 35 (Editor C. Biscari). In this paper we recall the basic properties of CSR from the theory and what new effects, we can get from the precise simulations of the coherent radiation using numerical solutions of Maxwell's equations. In particular, transverse variation of the particle energy loss in a bunch, discovered in these simulations, explains the slice emittance growth in bending magnets of the bunch compressors and transverse de-coherence in undulators. CSR may play same the role as the effect of quantum fluctuations of synchrotron radiation in damping rings. It can limit the minimum
NASA Astrophysics Data System (ADS)
Park, K.; Ogino, T.; Lee, D.; Walker, R. J.; Kim, K.
2013-12-01
One of the significant problems in magnetospheric physics concerns the nature and properties of the processes which occur at the magnetopause boundary; in particular how energy, momentum, and plasma the magnetosphere receives from the solar wind. Basic processes are magnetic reconnection [Dungey, 1961] and viscouslike interaction, such as Kelvin-Helmholtz instability [Dungey 1955, Miura, 1984] and pressure-pulse driven [Sibeck et al. 1989]. In generally, magnetic reconnection occurs efficiently when the IMF is southward and the rate is largest where the magnetosheath magnetic field is antiparallel to the geomagnetic field. [Sonnerup, 1974; Crooker, 1979; Luhmann et al., 1984; Park et al., 2006, 2009]. The Kelvin-Helmholtz instability is driven by the velocity shear at the boundary, which occur frequently when the IMF is northward. Also variation of the magnetic field and the plasma properties is reported to be quasi-periodic with 2-3min [Otto and Fairfield, 2000] and period of vortex train with 3 to 4 minutes by global MHD simulation [Ogino, 2011]. The pressure-pulse is driven by the solar wind. And the observations of the magnetospheric magnetic field response show quasi-periodic with a period of 8 minutes [Sibeck et al., 1989; Kivelson and Chen, 1995]. There have been few studies of the vortices in the magnetospheric boundary under southward IMF condition. However it is not easy to find the generation mechanism and characteristic for vortices in complicated 3-dimensional space. Thus we have performed global MHD simulation for the steady solar wind and southward IMF conditions. From the simulation results, we find that the vortex occurs at R= 11.7Re (IMF Bz = -2 nT) and R= 10.2Re (IMF Bz = -10 nT) in the dayside magnetopause boundary. Also the vortex rotates counterclockwise in duskside magnetopause (clockwise in dawnside) and propagates tailward. Across the vortex, magnetic field and plasma properties clearly show quasi-periodic fluctuations with a period of 8
Propagation of Uncertainties in Radiation Belt Simulations
NASA Astrophysics Data System (ADS)
Camporeale, E.; Shprits, Y. Y.; Chandorkar, M.; Drozdov, A.; Wing, S.
2016-12-01
We present the first study of the uncertainties associated with radiation belt simulations, performed in the standard quasi-linear diffusionframework. In particular, we estimate how uncertainties of some input parameters propagate through the nonlinear simulation, producing a distribution of outputs that can be quite broad. Here, we restrict our focus on two-dimensional simulations (in energy and pitch angle space) and to parallel chorus waves only, and we study as stochastic input parameters the geomagnetic index Kp (that characterize the time dependency of an idealized storm), the latitudinal extent of waves, and the average electron density. We employ a collocation method, thus performing an ensemble of simulations. The results of this work point to the necessity of shifting to a probabilistic interpretation of radiation belt simulation results, and suggest as an important research goal a less uncertain estimation of the electron density in the belts.
Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai
2015-05-29
We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.
Deng, Wei; Li, Hui; Zhang, Bing; ...
2015-05-29
We perform 3D relativistic ideal MHD simulations to study the collisions between high-σ (Poynting- ux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting- ux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvenic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in themore » relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. In conclusion, our results give support to the proposed astrophysical models that invoke signi cant magnetic energy dissipation in Poynting- ux-dominated jets, such as the internal collision-induced magnetic reconnection and turbulence (ICMART) model for GRBs, and reconnection triggered mini-jets model for AGNs.« less
NASA Technical Reports Server (NTRS)
Riley, Pete; Linker, J. A.; Mikic, Z.; Odstrcil, D.; Zurbuchen, T. H.; Lario, D.; Lepping, R. P.
2003-01-01
In late February 1999 the ACE spacecraft observed a coronal mass ejection (CME) at 1 AU, in the ecliptic plane. Thirteen days later, Ulysses observed a CME at 5 AU and 22"s. We present a detailed analysis of the plasma, magnetic field, and composition signatures of these two events. On the basis of this comparison alone, it is not clear that the two spacecraft observed the same solar event. However, using a generic MHD simulation of a fast CME initiated at the Sun by magnetic flux cancellation and propagated out into the solar wind, together with additional evidence, we argue that indeed the same CME was observed by both spacecraft. Although force-free models appear to fit the observed events well, our simulation results suggest that the ejecta underwent significant distortion during its passage through the solar wind, indicating that care should be taken when interpreting the results of force-he models. Comparison of composition measurements at the two spacecraft suggests that significant spatial inhomogeneities can exist within a single CME.
NASA Technical Reports Server (NTRS)
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete
2006-01-01
Solar energetic particles, which are believed to originate from corotating interacting regions (CIRS) at low heliographic latitude, were observed by the Ulysses spacecraft even as it passed over the Sun's poles. One interpretation of this result is that high-latitude field lines intercepted by Ulysses connect to low-latitude CIRs at much larger heliocentric distances. The Fisk model explains the latitudinal excursion of magnetic field lines in the solar corona and heliosphere as the inevitable consequence of the interaction of a tilted dipole in a differentially rotating photosphere with rigidly rotating coronal holes. We use a time-dependent three-dimensional magnetohydrodynamic (MHD) algorithm to follow the evolution of a simple model of the solar corona in response to the differential rotation of the photospheric magnetic flux. We examine the changes of the coronal-hole boundaries, the redistribution of the line-of-sight magnetic field, and the precession of field lines in the corona. Our results confirm the basic idea of the Fisk model, that differential rotation leads to changes in the heliographic latitude of magnetic field lines. However, the latitudinal excursion of magnetic field lines in this simple "tilted dipole" model is too small to explain the Ulysses observations. Although coronal holes in our model rotate more rigidly than do photospheric features (in general agreement with observations), they do not rotate strictly rigidly as assumed by Fisk. This basic difference between our model and Fisk's will be explored in the future by considering more realistic magnetic flux distributions, as observed during Ulysses polar excursions.
NASA Technical Reports Server (NTRS)
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran; Riley, Pete
2006-01-01
Solar energetic particles, which are believed to originate from corotating interacting regions (CIRS) at low heliographic latitude, were observed by the Ulysses spacecraft even as it passed over the Sun's poles. One interpretation of this result is that high-latitude field lines intercepted by Ulysses connect to low-latitude CIRs at much larger heliocentric distances. The Fisk model explains the latitudinal excursion of magnetic field lines in the solar corona and heliosphere as the inevitable consequence of the interaction of a tilted dipole in a differentially rotating photosphere with rigidly rotating coronal holes. We use a time-dependent three-dimensional magnetohydrodynamic (MHD) algorithm to follow the evolution of a simple model of the solar corona in response to the differential rotation of the photospheric magnetic flux. We examine the changes of the coronal-hole boundaries, the redistribution of the line-of-sight magnetic field, and the precession of field lines in the corona. Our results confirm the basic idea of the Fisk model, that differential rotation leads to changes in the heliographic latitude of magnetic field lines. However, the latitudinal excursion of magnetic field lines in this simple "tilted dipole" model is too small to explain the Ulysses observations. Although coronal holes in our model rotate more rigidly than do photospheric features (in general agreement with observations), they do not rotate strictly rigidly as assumed by Fisk. This basic difference between our model and Fisk's will be explored in the future by considering more realistic magnetic flux distributions, as observed during Ulysses polar excursions.
Magnetohydrodynamics (MHD) program evaluation
Not Available
1983-05-01
Conclusions and Recommendations: (1) Progress has been made in performance testing of virtually every critical MHD component and subsystem, except for seed regeneration. (2) No insurmountable technical barriers have been identified; however, the component tests have for the most part been of short duration and, in most instances, were conducted under simulated coal-fired conditions. Long duration, coal-fired integrated tests of the MHD power train and of the HRSR subsystem are required to demonstrate system operability and durability. (3) It would appear most appropriate that the first series of complete power train and HRSR tests be conducted at the 50 MW/sub t/ level. The major objectives of these tests should be to verify predicted performance and to show system operability and durability for a period of at least 2000 hours. (4) Assuming successful 50 MW/sub t/ duration tests, a 150 MW/sub t/ completely integrated (topping and bottoming cycles) utility demonstration test is then suggested (3:1 scale-up). (5) The final development step would involve the fabrication of a commercial size plant at a power level of 500 MW/sub t/ or greater. (6) The ultimate adoption of MHD as a means for electric power generation will not be solely determined by its technical performance; the economic climate and projections at the time the technology is mature will strongly influence utility decisions. (7) Estimated capital costs of early commercial MHD plants seem to range from 10% to 30% greater than those for PCF plants with scrubbers. However, because of the higher inherent efficiency of MHD relative to PCF plants (50% vs 35%), the cost of electric power (COE) from an MHD system can nevertheless be competitive for an appropriately broad range of economic scenarios. (8) Finally, it is recognized that a major investment will be necessary to bring the technology to a state of commercial readiness.
Cosmological N -body simulations including radiation perturbations
NASA Astrophysics Data System (ADS)
Brandbyge, Jacob; Rampf, Cornelius; Tram, Thomas; Leclercq, Florent; Fidler, Christian; Hannestad, Steen
2017-03-01
Cosmological N-body simulations are the standard tools to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects such as the coupling between matter and radiation (≡ photons and neutrinos). In this Letter, we investigate novel hybrid simulations that incorporate interactions between radiation and matter to the leading order in General Relativity, whilst evolving the matter dynamics in full non-linearity according to Newtonian theory. Our hybrid simulations come with a relativistic space-time and make it possible to investigate structure formation in a unified framework. In this work, we focus on simulations initialized at z = 99 and show that the extracted matter power spectrum receives up to 3 per cent corrections on very large scales through radiation. Our numerical findings compare favourably with linear analytical results from Fidler et al., from which we deduce that there cannot be any significant non-linear mode-coupling induced through linear radiation corrections.
NASA Technical Reports Server (NTRS)
Denton, R.; Sonnerup, B. U. O.; Swisdak, M.; Birn, J.; Drake, J. F.; Heese, M.
2012-01-01
When analyzing data from an array of spacecraft (such as Cluster or MMS) crossing a site of magnetic reconnection, it is desirable to be able to accurately determine the orientation of the reconnection site. If the reconnection is quasi-two dimensional, there are three key directions, the direction of maximum inhomogeneity (the direction across the reconnection site), the direction of the reconnecting component of the magnetic field, and the direction of rough invariance (the "out of plane" direction). Using simulated spacecraft observations of magnetic reconnection in the geomagnetic tail, we extend our previous tests of the direction-finding method developed by Shi et al. (2005) and the method to determine the structure velocity relative to the spacecraft Vstr. These methods require data from four proximate spacecraft. We add artificial noise and calibration errors to the simulation fields, and then use the perturbed gradient of the magnetic field B and perturbed time derivative dB/dt, as described by Denton et al. (2010). Three new simulations are examined: a weakly three-dimensional, i.e., quasi-two-dimensional, MHD simulation without a guide field, a quasi-two-dimensional MHD simulation with a guide field, and a two-dimensional full dynamics kinetic simulation with inherent noise so that the apparent minimum gradient was not exactly zero, even without added artificial errors. We also examined variations of the spacecraft trajectory for the kinetic simulation. The accuracy of the directions found varied depending on the simulation and spacecraft trajectory, but all the directions could be found within about 10 for all cases. Various aspects of the method were examined, including how to choose averaging intervals and the best intervals for determining the directions and velocity. For the kinetic simulation, we also investigated in detail how the errors in the inferred gradient directions from the unmodified Shi et al. method (using the unperturbed gradient
Simulation of Radiation Belt Precipitation During the March 17, 2013 Storm
NASA Astrophysics Data System (ADS)
Brito, T. V.; Hudson, M. K.; Paral, J.
2014-12-01
Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the mHZ frequency range. Several balloon missions measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the BARREL campaign, have observed this modulation at ULF wave frequencies (Clilverd et al., 2007; Millan et al., 2011). However, ULF waves in the magnetosphere, commonly associated with oscillations in solar wind dynamic pressure on the dayside and with Kelvin-Helmhotz instabilities in the flanks, are seldom directly linked to increases in electron precipitation since their oscillation periods are much larger than the gyroperiod and the bounce period of radiation belt electrons. It has been conjectured that ULF oscillations in the magnetosphere may modulate EMIC wave growth rates. EMIC waves, in turn, have long been associated with energetic electron precipitation, since they can cause pitch angle scattering of these particles, thus lowering their mirror points (Miyoshi et al., 2008; Carson et al., 2013). This would explain the ULF modulation of MeV electrons seen by the balloon instruments. However, test particle simulations show that another hypothesis is possible (Brito et al., 2012). 3D simulations of radiation belt electrons were performed to investigate the effect of ULF waves on precipitation. The simulations track the behavior of energetic electrons near the loss cone, using guiding center techniques, coupled with an MHD simulation of the magnetosphere, using the LFM code, during a CME-shock event on March 17, 2013. Results indicate that ULF modulation of precipitation occurs even without the presence of VLF-type waves, which are not resolved in the MHD simulation.
NASA Astrophysics Data System (ADS)
Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed
Mathematical analysis of magnetohydrodynamic (MHD) three-dimensional nonlinear convective flow of Maxwell nanofluid towards a stretching surface is made in this article. Characteristics of heat transfer are examined under thermal radiation, heat generation/absorption and prescribed heat flux condition. Nanofluid model includes Brownian motion and thermophoresis. Dimensional nonlinear expressions of momentum, energy and concentration are converted into dimensionless systems by invoking suitable similarity variables. A well-known homotopic technique is implemented for dimensionless expressions. Impact of different quantities on velocities, temperature and concentration are scrutinized graphically and discussed in detail. The expressions of Nusselt and Sherwood numbers are calculated and addressed comprehensively. It is also seen that thermal radiation parameter enhances the temperature field and heat transfer rate.
NASA Technical Reports Server (NTRS)
Schmidt, J. M.; Cairns, Iver H.; Xie, Hong; St. Cyr, O. C.; Gopalswamy, N.
2016-01-01
Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.
NASA Technical Reports Server (NTRS)
Schmidt, J. M.; Cairns, Iver H.; Xie, Hong; St. Cyr, O. C.; Gopalswamy, N.
2016-01-01
Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.
Online Simulation of Radiation Track Structure Project
NASA Technical Reports Server (NTRS)
Plante, Ianik
2015-01-01
Space radiation comprises protons, helium and high charged and energy (HZE) particles. High-energy particles are a concern for human space flight, because they are no known options for shielding astronauts from them. When these ions interact with matter, they damage molecules and create radiolytic species. The pattern of energy deposition and positions of the radiolytic species, called radiation track structure, is highly dependent on the charge and energy of the ion. The radiolytic species damage biological molecules, which may lead to several long-term health effects such as cancer. Because of the importance of heavy ions, the radiation community is very interested in the interaction of HZE particles with DNA, notably with regards to the track structure. A desktop program named RITRACKS was developed to simulate radiation track structure. The goal of this project is to create a web interface to allow registered internal users to use RITRACKS remotely.
Space radiator simulation manual for computer code
NASA Technical Reports Server (NTRS)
Black, W. Z.; Wulff, W.
1972-01-01
A computer program that simulates the performance of a space radiator is presented. The program basically consists of a rigorous analysis which analyzes a symmetrical fin panel and an approximate analysis that predicts system characteristics for cases of non-symmetrical operation. The rigorous analysis accounts for both transient and steady state performance including aerodynamic and radiant heating of the radiator system. The approximate analysis considers only steady state operation with no aerodynamic heating. A description of the radiator system and instructions to the user for program operation is included. The input required for the execution of all program options is described. Several examples of program output are contained in this section. Sample output includes the radiator performance during ascent, reentry and orbit.
NASA Astrophysics Data System (ADS)
Marx, Alain; Lütjens, Hinrich
2017-03-01
A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.
NASA Astrophysics Data System (ADS)
Dolag, Klaus; Beck, Alexander M.; Arth, Alexander
Using the MHD version of Gadget3 (Stasyszyn, Dolag & Beck 2013) and a model for the seeding of magnetic fields by supernovae (SN), we performed simulations of the evolution of the magnetic fields in galaxy clusters and study their effects on the heat transport within the intra cluster medium (ICM). This mechanism - where SN explosions during the assembly of galaxies provide magnetic seed fields - has been shown to reproduce the magnetic field in Milky Way-like galactic halos (Beck et al. 2013). The build up of the magnetic field at redshifts before z = 5 and the accordingly predicted rotation measure evolution are also in good agreement with current observations. Such magnetic fields present at high redshift are then transported out of the forming protogalaxies into the large-scale structure and pollute the ICM (in a similar fashion to metals transport). Here, complex velocity patterns, driven by the formation process of cosmic structures are further amplifying and distributing the magnetic fields. In galaxy clusters, the magnetic fields therefore get amplified to the observed μG level and produce the observed amplitude of rotation measures of several hundreds of rad/m2. We also demonstrate that heat conduction in such turbulent fields on average is equivalent to a suppression factor around 1/20th of the classical Spitzer value and in contrast to classical, isotropic heat transport leads to temperature structures within the ICM compatible with observations (Arth et al. 2014).
Wu, Chin-Chun Plunkett, Simon; Liou, Kan; Wu, S. T.; Dryer, Murray
2016-03-25
We study an unusual solar energetic particle (SEP) event that was associated with the coronal mass ejection (CME) on March 15, 2013. Enhancements of the SEP fluxes were first detected by the ACE spacecraft at 14:00 UT, ∼7 hours after the onset of the CME (07:00 UT), and the SEP’s peak intensities were recorded ∼36 hours after the onset of the CME. Our recent study showed that the CME-driven shock Mach number, based on a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation, is well correlated with the time-intensity of 10-30 MeV and 30-80 MeV protons. Here we focus on the radial dependence (r{sup −α}) of {sup 4}He (3.43-41.2 MeV/n) and O (7.30-89.8 MeV/n) energetic particles from ACE/SIS. It is found that the scaling factor (α) ranges between 2 and 4 for most of the energy channels. We also found that the correlation coefficients tend to increase with SEP energies.
NASA Astrophysics Data System (ADS)
Westerhof, E.; de Blank, H. J.; Pratt, J.
2016-03-01
Two dimensional reduced MHD simulations of neoclassical tearing mode growth and suppression by ECCD are performed. The perturbation of the bootstrap current density and the EC drive current density perturbation are assumed to be functions of the perturbed flux surfaces. In the case of ECCD, this implies that the applied power is flux surface averaged to obtain the EC driven current density distribution. The results are consistent with predictions from the generalized Rutherford equation using common expressions for Δ \\text{bs}\\prime and Δ \\text{ECCD}\\prime . These expressions are commonly perceived to describe only the effect on the tearing mode growth of the helical component of the respective current perturbation acting through the modification of Ohm’s law. Our results show that they describe in addition the effect of the poloidally averaged current density perturbation which acts through modification of the tearing mode stability index. Except for modulated ECCD, the largest contribution to the mode growth comes from this poloidally averaged current density perturbation.
NASA Astrophysics Data System (ADS)
Lin, Liwei; Ng, Chung-Sang; Bhattacharjee, Amitava
2011-10-01
We present a comprehensive re-programming of a 3D reduced MHD code for hardware acceleration using graphics processing units (GPUs) with Nvidia CUDA. The code (pseudo-spectral semi-implicit) is tailored for the study of a 3D model of coronal heating [Arxiv:1106.0515]. We discuss our general porting strategy and report code performance and detailed code tracing on GPU accelerated supercomputers (NCSA/Forge, NICS/Keeneland). At 20482 × 256 , the highest resolution tested, the chip-to-chip speedup is 18 × comparing Xeon Nehalem QC and Nvidia Fermi. Scaling well up to 256 GPUs, the code effectively gives a speedup of 46 × compared with our original code on a conventional CPU cluster. A test case is presented in which magnetic island coalescence is studied in 3D line-tied geometry, where very large Lundquist numbers are used to induce magnetic flux-tube sloshing. Results are compared with existing 2D simulations and the advantages of the GPU implementation are emphasized. This work is supported by NASA: NNX08BA71G, NNX06AC19G, DOE: DE-FG02-07ER54832, NSF: AGS-096247, and NSF TeraGrid grants at NCSA (TG-PHY100057) and NICS (UT-NTNL0092).
NASA Astrophysics Data System (ADS)
Lii, Patrick; Romanova, M.; Lovelace, R.
2011-05-01
We use axisymmetric magnetohydrodynamics (MHD) to investigate the launching and collimation of jets emerging from the disk-magnetosphere boundary of accreting magnetized stars. Our analysis shows that the emergence of a collimated jet is a two-step process: first, the matter is accelerated along field lines extending up from the disk by the magnetic pressure force. Then, the matter is collimated by the toroidal magnetic field in the stellar corona. The jet emerges from the disk-magnetosphere boundary and is weakly matter dominated. The matter in the jet crosses the Alfven and fast magnetosonic surfaces a few stellar radii above the disk. Even far from the disk, the magnetic force continues to accelerate and collimate the jet. We observe a matter ejection-to-accretion ratio of 0.25 in steady state. A high accretion rate can generate the strong magnetic pressure which drives the matter from the disk and as such, these simulations may apply to EXor and FUOR class stars which undergo episodes of enhanced accretion. In general, the models can be applied to many types of magnetized stars--white dwarfs, neutron stars, and brown dwarfs--which exhibit periods of enhanced accretion.
KULL Simulations of OMEGA Radiation Flow Experiments
NASA Astrophysics Data System (ADS)
Kallman, J.; MacLaren, S.; Baker, K.; Amala, P.; Lewis, K.; Zika, M.
2012-10-01
The problem of radiation flow in a right circular cylinder is of interest for the verification and validation of radiation codes, which utilize several mechanisms for determining radiation transport (diffusion, discrete ordinates, and Monte Carlo). This flow is analogous to free molecular flow in a similar geometry.footnotetextE. Garelis and T.E. Wainwright. Phys. Fluids. 16, 4 (1973) A series of experiments were conducted on the OMEGA laser in cases with a low-density heated cylindrical wall. The experiments consisted of a 1.6 mm diameter gold hohlraum containing an on-axis 700 μm diameter SiO2 cylinder contained in an 80 μm thick carbon foam tube. Five shots panning three test cases were used: the nominal geometry described above (heated wall), the carbon tube replaced with solid gold, and a gold cap placed on the laser end of the cylinder assembly to block axial radiation flow. Simulations of each experimental target type were run with the KULL radiation code, and were used to compare the different radiation transport packages in KULL by employing synthetic diagnostics to match the experimental DANTE cavity radiation temperature time history and soft x-ray images taken by a streak camera imaging the far end of the hohlraum.
G4Beamline Program for Radiation Simulations
Beard, Kevin; J. Roberts, Thomas; Degtiarenko, Pavel
2008-07-01
G4beamline, a program that is an interface to the Geant4 toolkit that we have developed to simulate accelerator beamlines, is being extended with a graphical user interface to quickly and efficiently model experimental equipment and its shielding in experimental halls. The program is flexible, user friendly, and requires no programming by users, so that even complex systems can be simulated quickly. This improved user interface is of much wider application than just the shielding simulations that are the focus of this project. As an initial application, G4beamline is being extended to provide the simulations that are needed to determine the radiation sources for the proposed experiments at Jefferson Laboratory so that shielding issues can be evaluated. Since the program already has the capabilities needed to simulate the transport of all known particles, including scattering, attenuation, interactions, and decays, the extension involves implementing a user-friendly graphical user inter
Radiation simulations of the CMS detector
NASA Astrophysics Data System (ADS)
Stoddard, Graham J.
This thesis presents results of recent radiation simulations for the Compact Muon Solenoid detector at the Large Hadron Collider at CERN performed using the Monte Carlo simulation package FLUKA. High statistics simulations with a fine granularity in the detector were carried out using the Condor batch system at the Fermilab LHC Physics Center. In addition, an existing web tool for accessing and displaying simulation data was upgraded. The FLUKA data and previously generated MARS Monte Carlo data can be plotted using 1-D or 2-D plotting functionalities along R and Z, the transverse distance from the beamline and the distance along the beamline, respectively. Comparisons between the data sets have been carried out; the effect of particle transport thresholds in both packages was explored, comparisons with zero magnetic field in the CMS solenoid and full field are made, a model of non-ionizing energy losses is examined, and sensitive areas of interest within the simulation are identified.
MHD SIMULATIONS OF ACTIVE GALACTIC NUCLEUS JETS IN A DYNAMIC GALAXY CLUSTER MEDIUM
Mendygral, P. J.; Jones, T. W.; Dolag, K.
2012-05-10
We present a pair of three-dimensional magnetohydrodynamical simulations of intermittent jets from a central active galactic nucleus (AGN) in a galaxy cluster extracted from a high-resolution cosmological simulation. The selected cluster was chosen as an apparently relatively relaxed system, not having undergone a major merger in almost 7 Gyr. Despite this characterization and history, the intracluster medium (ICM) contains quite active 'weather'. We explore the effects of this ICM weather on the morphological evolution of the AGN jets and lobes. The orientation of the jets is different in the two simulations so that they probe different aspects of the ICM structure and dynamics. We find that even for this cluster, which can be characterized as relaxed by an observational standard, the large-scale, bulk ICM motions can significantly distort the jets and lobes. Synthetic X-ray observations of the simulations show that the jets produce complex cavity systems, while synthetic radio observations reveal bending of the jets and lobes similar to wide-angle tail radio sources. The jets are cycled on and off with a 26 Myr period using a 50% duty cycle. This leads to morphological features similar to those in 'double-double' radio galaxies. While the jet and ICM magnetic fields are generally too weak in the simulations to play a major role in the dynamics, Maxwell stresses can still become locally significant.
NASA Astrophysics Data System (ADS)
Ju, Wenhua; Stone, James M.; Zhu, Zhaohuan
2017-05-01
We perform global three-dimensional MHD simulations of unstratified accretion disks in cataclysmic variables (CVs). By including mass inflow via an accretion stream, we are able to evolve the disk to a steady state. We investigate the relative importance of spiral shocks and the magnetorotational instability (MRI) in driving angular momentum transport and how each depend on the geometry and strength of the seed magnetic field and the Mach number of the disk (where Mach number is the ratio of the azimuthal velocity and the sound speed of gas). We use a locally isothermal equation of state and adopt temperature profiles that are consistent with CV disk observations. Our results indicate that the relative importance of spiral shocks and MRI in driving angular momentum transport is controlled by the gas Mach number and the seed magnetic field strength. MRI and spiral shocks provide comparable efficiency of angular momentum transport when the disk Mach number is around 10 and the seed magnetic field has plasma β =400 (where β is the ratio of gas pressure and magnetic pressure). The MRI dominates whenever the seed field strength, or the disk Mach number, is increased. Among all of our simulations, the effective viscosity parameter {α }{eff}˜ 0.016{--}0.1 after MRI saturates and the disk reaches steady state. Larger values of {α }{eff} are favored when the seed magnetic field has vertical components or the flow has stronger magnetization (1/β ). Our models all indicate that the role of MRI in driving angular momentum transport thus mass accretion in CV disks is indispensable, especially in cool disks with weak spiral shocks.
3D MHD Simulations of accreting neutron stars: evidence of QPO emission from the surface
Bachetti, Matteo; Burderi, Luciano; Romanova, Marina M.; Kulkarni, Akshay; Salvo, Tiziana di
2010-07-15
3D Magnetohydrodynamic simulations show that when matter accretes onto neutron stars, in particular if the misalignment angle is small, it does not constantly fall at a fixed spot. Instead, the location at which matter reaches the star moves. These moving hot spots can be produced both during stable accretion, where matter falls near the magnetic poles of the star, and unstable accretion, characterized by the presence of several tongues of matter which fall on the star near the equator, due to Rayleigh-Taylor instabilities. Precise modeling with Monte Carlo simulations shows that those movements could be observed as high frequency Quasi Periodic Oscillations. We performed a number of new simulation runs with a much wider set of parameters, focusing on neutron stars with a small misalignment angle. In most cases we observe oscillations whose frequency is correlated with the mass accretion rate M. Moreover, in some cases double QPOs appear, each of them showing the same correlation with M.
Simulations of high current wire array Z-pinches using a parallel 3D resistive MHD
NASA Astrophysics Data System (ADS)
Chittenden, J. P.; Jennings, C. A.; Ciardi, A.
2006-10-01
We present calculations of the implosion and stagnation phases of wire array Z-pinches at Sandia National Laboratory which model the full 3D plasma volume. Modelling the full volume in 3D is found to be necessary in order to accommodate all possible mechanisms for broadening the width of the imploding plasma and for modelling all modes of instability in the stagnated pinch. The width of the imploding plasma is shown to arise from the evolution of the uncorrelated modulations present on each wire in the array early in time into a globally correlated 3D instability structure. The 3D nature of the collision of two nested arrays is highlighted and the implications for radiation pulse shaping are discussed. The addition of a simple circuit model to model the Z generator allows the pinch energetics during stagnation to be treated more accurately and provides another point of comparison to experimental data. The implications of these results for improved X-ray production are discussed both for the keV range and for soft X-ray radiation sources used in inertial confinement fusion research. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.
Coronal Mass Ejections and Dimmings: A Comparative Study using MHD Simulations and SDO Observations
NASA Astrophysics Data System (ADS)
Jin, Meng; Cheung, Mark; DeRosa, Marc L.; Nitta, Nariaki; Schrijver, Karel
2017-08-01
Solar coronal dimmings have been observed extensively in the past two decades. Due to their close association with coronal mass ejections (CMEs), there is a critical need to improve our understanding of the physical processes that cause dimmings and determine their relationship with CMEs. In this study, we investigate coronal dimmings by combining simulation and observational efforts. By utilizing a data-driven global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we simulate coronal dimmings resulting from different CME energetics and flux rope configurations. We synthesize the emissions of different EUV spectral bands/lines and compare with SDO/AIA and EVE observations. A detailed analysis of simulation and observation data suggests that the “core” dimming is mainly caused by the mass loss from the CME, while the “remote” dimming could have a different origin (e.g., plasma heating). Moreover, the interaction between the erupting flux rope with different orientations and the global solar corona could significantly influence the coronal dimming patterns. Using metrics such as dimming depth, dimming slope, and recovery time, we investigate the relationship between dimmings and CME properties (e.g., CME mass, CME speed) in the simulation. Our result suggests that coronal dimmings encode important information about CMEs. We also discuss how our knowledge about solar coronal dimmings could be extended to the study of stellar CMEs.
Numerical simulation of MHD for electromagnetic edge dam in continuous casting.
Chang, F. C.
1999-03-30
A computer model was developed to predict eddy currents and fluid flows in molten steel. The model was verified by comparing predictions with experimental results of liquid-metal containment and fluid flow in electromagnetic (EM) edge dams (EMDs) designed at Inland Steel for twin-roll casting. The model can optimize the EMD design so it is suitable for application, and minimize expensive, time-consuming full-scale testing. Numerical simulation was performed by coupling a three-dimensional (3-D) finite-element EM code (ELEKTRA) and a 3-D finite-difference fluids code (CaPS-EM) to solve heat transfer, fluid flow, and turbulence transport in a casting process that involves EM fields. ELEKTRA is able to predict the eddy-current distribution and the electromagnetic forces in complex geometries. CaPS-EM is capable of modeling fluid flows with free surfaces. Results of the numerical simulation compared measurements obtained from a static test.
CYCLIC THERMAL SIGNATURE IN A GLOBAL MHD SIMULATION OF SOLAR CONVECTION
Cossette, Jean-Francois; Charbonneau, Paul; Smolarkiewicz, Piotr K.
2013-11-10
Global magnetohydrodynamical simulations of the solar convection zone have recently achieved cyclic large-scale axisymmetric magnetic fields undergoing polarity reversals on a decadal time scale. In this Letter, we show that these simulations also display a thermal convective luminosity that varies in-phase with the magnetic cycle, and trace this modulation to deep-seated magnetically mediated changes in convective flow patterns. Within the context of the ongoing debate on the physical origin of the observed 11 yr variations in total solar irradiance, such a signature supports the thesis according to which all, or part, of the variations on decadal time scales and longer could be attributed to a global modulation of the Sun's internal thermal structure by magnetic activity.
Experiments and Simulations of Exploding Aluminum Wires: Validation of ALEGRA-MHD
2010-09-01
28 vi Figure B-1. EOS surfaces p(,T) from SESAME and ANEOS data in ALEGRA repository. ....42 Figure C-1...from unity. Semi-empirical, SESAME EOS tables with the Lee-More-Desjarlais (LMD) EC (24) models were used in the simulations. The plates were...thermodynamic state of the material via the conductivity. We also chose to use the SESAME 3700 EOS table for Al in these parameter sensitivity studies since it
Light Curves from an MHD Simulation of a Black Hole Accretion Disk
NASA Astrophysics Data System (ADS)
Schnittman, Jeremy D.; Krolik, Julian H.; Hawley, John F.
2006-11-01
We use a relativistic ray-tracing code to calculate the light curves observed from a global, general relativistic, magnetohydrodynamic simulation of an accretion flow onto a Schwarzschild black hole. We apply three basic emission models to sample different properties of the time-dependent accretion disk. With one of these models, which assumes thermal blackbody emission and free-free absorption, we can predict qualitative features of the high-frequency power spectrum from stellar-mass black holes in the ``thermal dominant'' state. The simulated power spectrum is characterized by a power law of index Γ~3 and total rms fractional variance of <~2% above 10 Hz. For each emission model, we find that the variability amplitude should increase with increasing inclination angle. On the basis of a newly developed formalism for quantifying the significance of quasi-periodic oscillations (QPOs) in simulation data, we find that these simulations are able to identify any such features with (rms/mean) amplitudes >~1% near the orbital frequency at the innermost stable orbit. Initial results indicate the existence of transient QPO peaks with frequency ratios of nearly 2:3 at a 99.9% confidence limit, but they are not generic features, because at any given time they are seen only from certain observer directions. In addition, we present detailed analysis of the azimuthal structure of the accretion disk and the evolution of density perturbations in the inner disk. These ``hot-spot'' structures appear to be roughly self-similar over a range of disk radii, with a single characteristic size δφ=25deg and δr/r=0.3, and typical lifetimes Tl~0.3Torb.
NASA Astrophysics Data System (ADS)
Rajendar, A.; Paty, C. S.; Arridge, C. S.; Jackman, C. M.; Smith, H. T.
2013-12-01
Saturn's magnetosphere is driven externally, by the solar wind, and internally, by the planet's strong magnetic field, rapid rotation rate, and the addition of new plasma created from Saturn's neutral cloud. Externally, the alignment of the rotational and magnetic dipole axes, combined with Saturn's substantial inclination to its plane of orbit result in substantial curvature of the plasma sheet during solstice. Internally, new water group ions are produced in the inner regions of the magnetosphere from photoionization and electron-impact ionization of the water vapor and OH cloud sourced from Enceladus and other icy bodies in Saturn's planetary system. In addition to this, charge-exchange collisions between the relatively fast-moving water group ions and the slower neutrals results in a net loss of momentum from the plasma. In order to study these phenomena, we have made significant modifications to the Saturn multifluid model. This model has been previously used to investigate the external triggering of plasmoids and the interchange process using a fixed internal source rate. In order to improve the fidelity of the model, we have incorporated a physical source of mass- and momentum-loading by including an empirical representation of Saturn's neutral cloud and modifying the multifluid MHD equations to include mass- and momentum-loading terms. Collision cross-sections between ions, electrons, and neutrals are calculated as functions of closure velocity and energy at each grid point and time step, enabling us to simulate the spatially and temporally varying plasma-neutral interactions. In addition to this, by altering the angle of incidence of the solar wind relative to Saturn's rotational axis and applying a realistic latitudinally- and seasonally-varying ionospheric conductivity, we are also able to study seasonal effects on Saturn's magnetosphere. We use the updated multifluid simulation to investigate the dynamics of Saturn's magnetosphere, focusing specifically
Evolution of cosmic filaments and of their galaxy population from MHD cosmological simulations
NASA Astrophysics Data System (ADS)
Gheller, C.; Vazza, F.; Brüggen, M.; Alpaslan, M.; Holwerda, B. W.; Hopkins, A. M.; Liske, J.
2016-10-01
Despite containing about a half of the total matter in the Universe, at most wavelengths the filamentary structure of the cosmic web is difficult to observe. In this work, we use large unigrid cosmological simulations to investigate how the geometrical, thermodynamical and magnetic properties of cosmological filaments vary with mass and redshift (z ≤ 1). We find that the average temperature, length, volume and magnetic field of filaments scales well with their total mass. This reflects the role of self-gravity in shaping their properties and enables statistical predictions of their observational properties based on their mass. We also focus on the properties of the simulated population of galaxy-sized haloes within filaments, and compare their properties to the results obtained from the spectroscopic GAMA survey. Simulated and observed filaments with the same length are found to contain an equal number of galaxies, with very similar distribution of masses. The total number of galaxies within each filament and the total/average stellar mass in galaxies can now be used to predict also the large-scale properties of the gas in the host filaments across tens or hundreds of Mpc in scale. These results are the first steps towards the future use of galaxy catalogues in order to select the best targets for observations of the warm-hot intergalactic medium.
Analysis of Helicities and Hall and MHD Dynamo Effects in Two-Fluid Reversed-Field Pinch Simulations
NASA Astrophysics Data System (ADS)
Sauppe, Joshua; Sovinec, Carl
2015-11-01
Relaxation in the RFP is studied numerically with extended-MHD modeling that includes the Hall term and ion gyroviscous stress. Previous results show significant coupling between magnetic relaxation and parallel flow evolution [King PoP 19, 055905]. Computations presented here display quasi-periodic relaxation events with current relaxation through MHD and Hall dynamo drives. The MHD dynamo always relaxes currents while the Hall dynamo may add or subtract from it, but the total dynamo drive is similar to single-fluid MHD computations. Changes in plasma momentum are due to viscous coupling to the wall and fluctuation-induced Maxwell stresses transport momentum radially inward when two-fluid effects are included. The magnetic helicity and hybrid helicity, a two-fluid extension of magnetic helicity that includes cross and kinetic helicity [Turner, 1986], are well-conserved relative to magnetic energy at each event. The cross helicity is well-conserved in single-fluid MHD but is significantly affected by both two-fluid effects and ion gyroviscosity. The plasma parallel current evolves towards the predicted flat profile; however, the plasma flow does not. Work supported through NSF grant PHY-0821899 and DOE grant DE-FG02-06ER54850.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Shashikumar, N. S.; Shehzad, S. A.
2017-10-01
Present study addresses the Marangoni transport of dissipating SWCNT and MWCNT nanofluids under the influence of magnetic force and radiation. A novel exponential space dependent heat source is considered. The flow is generated due to a disk with surface tension created by thermal gradient. The partial differential equations system governing the flow of carbon-water nanoliquids and heat transfer through Marangoni convection is established. Subsequent system is reduced to nonlinear ordinary boundary value problem via generalized Karman transformations. Numerical solutions are developed of the arising nonlinear problem via Runge-Kutta based shooting approach. Impacts of embedded parameters are focused on Nusselt number, velocity and heat transport distributions through graphical illustrations. Our simulations figured out that the heat transfer rate increased via Marangoni convection; however it is decayed by applied magnetic force. The temperature of SWCNT-H2O nanoliquid dominates MWCNT-H2O nanoliquid.
NASA Astrophysics Data System (ADS)
Kandasamy, R.; Muhaimin, I.; Puvi Arasu, P.; Loganathan, P.
2011-05-01
An analytical technique, namely, the homotopy analysis method, is applied to analyze the effect of chemical reaction and thermophoresis particle deposition on the MHD mixed convective heat and mass transfer for a Hiemenz flow over a porous wedge in the presence of heat radiation. The fluid is assumed to be viscous and incompressible. Analytical and numerical calculations are carried out for different values of dimensionless parameters, and an analysis of the results obtained shows that the flow field is influenced appreciably by the buoyancy ratio as well as by the thermal diffusion and suction/injection parameters. The effects of these parameters on the process characteristics are investigated methodically, and typical results are illustrated. An explicit, totally analytical, and uniformly valid solution is derived which agrees well with numerical results.
Mondal, Sabyasachi; Haroun, Nageeb A. H.; Sibanda, Precious
2015-01-01
In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an unsteady and electrically conducting incompressible viscous fluid in with temperature dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear velocity. The magnetic field is imposed normally to the sheet. The model equations that describe this fluid flow are solved by using the spectral relaxation method. Here, heat transfer processes are discussed for two different types of wall heating; (a) a prescribed surface temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the various parameters affect the fluid flow, heat transfer and the temperature field with the aid of different graphical presentations and tabulated results. PMID:26414006
NASA Astrophysics Data System (ADS)
Shah, S.; Hussain, S.; Sagheer, M.
2016-08-01
Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number's impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity and temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.
Mondal, Sabyasachi; Haroun, Nageeb A H; Sibanda, Precious
2015-01-01
In this paper, the magnetohydrodynamic (MHD) axisymmetric stagnation-point flow of an unsteady and electrically conducting incompressible viscous fluid in with temperature dependent thermal conductivity, thermal radiation and Navier slip is investigated. The flow is due to a shrinking surface that is shrunk axisymmetrically in its own plane with a linear velocity. The magnetic field is imposed normally to the sheet. The model equations that describe this fluid flow are solved by using the spectral relaxation method. Here, heat transfer processes are discussed for two different types of wall heating; (a) a prescribed surface temperature and (b) a prescribed surface heat flux. We discuss and evaluate how the various parameters affect the fluid flow, heat transfer and the temperature field with the aid of different graphical presentations and tabulated results.
Shah, S. Hussain, S.; Sagheer, M.
2016-08-15
Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity and temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.
NASA Astrophysics Data System (ADS)
Abdel-Wahed, Mohamed; Akl, Mohamed
2016-09-01
Analysis of the MHD Nanofluid boundary layer flow over a rotating disk with a constant velocity in the presence of hall current and non-linear thermal radiation has been covered in this work. The variation of viscosity and thermal conductivity of the fluid due to temperature and nanoparticles concentration and size is considered. The problem described by a system of P.D.E that converted to a system of ordinary differential equations by the similarity transformation technique, the obtained system solved analytically using Optimal Homotopy Asymptotic Method (OHAM) with association of mathematica program. The velocity profiles and temperature profiles of the boundary layer over the disk are plotted and investigated in details. Moreover, the surface shear stress, rate of heat transfer explained in details.
Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation
NASA Astrophysics Data System (ADS)
Jia, Xianzhe; Hansen, Kenneth C.; Gombosi, Tamas I.; Kivelson, Margaret G.; Tóth, Gabor; DeZeeuw, Darren L.; Ridley, Aaron J.
2012-05-01
We investigate the solar wind interaction with Saturn's magnetosphere by using a global magnetohydrodynamic simulation driven by an idealized time-varying solar wind input that includes features of Corotating Interaction Regions typically seen at Saturn. Our model results indicate that the compressibility of Saturn's magnetosphere is intermediate between the Earth's and Jupiter's, and the magnetopause location appears insensitive to the orientation of the interplanetary magnetic field. The modeled dependences of both the magnetopause and bow shock locations on the solar wind dynamic pressure agree reasonably well with those of data-based empirical models. Our model shows that the centrifugal acceleration of mass-loaded flux tubes leads to reconnection on closed field lines forming plasmoids, an intrinsic process (“Vasyliūnas-cycle”) in Saturn's magnetosphere taking place independent of the external conditions. In addition, another type of reconnection process involving open flux tubes (“Dungey-cycle”) is also seen in our simulation when the external condition is favorable for dayside reconnection. Under such circumstances, plasmoid formation in the tail involves reconnection between open field lines in the lobes, producing stronger global impacts on the magnetosphere and ionosphere compared to that imposed by the Vasyliūnas-cycle directly. Our model also shows that large-scale tail reconnection may be induced by compressions driven by interplanetary shocks. In our simulation, large-scale tail reconnection and plasmoid formation take place in a quasi-periodic manner but the recurrence rate tends to be higher as the dynamic pressure becomes higher. While large-scale plasmoid release clearly is an important process in controlling the magnetospheric dynamics, it appears insufficient to account for all the losses of plasma added by the magnetospheric sources. We find that a large fraction of the planetary plasma is lost through the magnetotail near the flanks
NASA Astrophysics Data System (ADS)
Yao, Y.; Ebihara, Y.; Tanaka, T.
2014-12-01
Sudden enhancement of the plasma pressure in the near-Earth plasma sheet is one of the common manifestations of the substorms, and is thought to play an important role in relevant disturbances in the magnetosphere and ionosphere. On 1 March 2008 four of the THEMIS (Time History of Events and Macroscale Interactions during Substorms) probes observed the sudden enhancement of the plasma pressure around 15:40 UT. The four probes were almost aligned along the Sun-Earth line, which was suitable for investigating spatial-temporal evolution of the near-Earth plasma sheet around the substorm onset. The four probes were located off the equatorial plane, according to a magnetic field model. The plasma pressure suddenly increased at the inner most probe first (at ~7.2 Re), followed by the outer probes (at ~7.5, ~8.3, and ~10.4 Re), that could be seen as a tailward propagation (or retreat) of high-pressure region (HPR). After comparing with results of a global magnetohydrodynamics (MHD) simulation, we found that only the tailward propagation of the HPR could be seen at off-equator. Near the equatorial plane, the HPR propagates earthward from the magnetotail region, then it retreats tailward. In the course of the tailward propagation, the HPR also propagates away from the equatorial plane. As a consequence, the inner most probe observed the pressure enhancement first, followed by the outer probes. The propagation of the HPR in the ZGSM direction is understood to be a combination of the convergence of the plasma flow (the divergence of bulk velocity along the ZGSM axis), and the pressure gradient force.
NASA Astrophysics Data System (ADS)
Wang, C. P.; Xing, X.
2015-12-01
The magnetotail configuration is strongly controlled by the IMF orientation, but the solar wind-magnetosphere coupling and the resulting plasma and magnetic field structures in the mi-tail, particularly under northward IMF, are not well understood. In this study, we present ARTEMIS observations of the mid-tail magnetosphere (X ~ -60 RE) during a prolonged northward IMF period (> 48 hr, starting from ~22 UT on Feb 12 2014). The two ARTEMIS probes (separated by ~3 RE) were on the duskside plasma sheet (|B| < ~6 nT for most of the time) moving from Y ~22 to 2 RE. ARTEMIS observed the low latitude boundary layer (LLBL) extending from the flank inward to Y ~5 RE with hot (a few keV) plasma sheet ions mixed with cold (several hundreds of eV) tailward-moving plasma. The appearance of the cold plasma is more quasi-periodic (a few minutes) near the flank, suggesting a likely association between the LLBL formation and Kelvin-Helmholtz/surface waves. The magnetic field strength fluctuates substantially and can go down to as small as < 1 nT, suggesting fluctuations in the current sheet thickness that might result from current sheet flapping motion. To evaluate these likely physical processes, we are currently determining the temporal changes of the plasma and magnetic field spatial structures using the two probe measurements and comparing these observations with results from different global MHD simulation runs conducted at NASA Community Coordinated Modeling Center, including LFM, Open GGCM, and BATS-R-US.
NASA Astrophysics Data System (ADS)
DeGrave, Kyle; Braun, Douglas; Birch, Aaron; Crouch, Ashley D.; Javornik, Brenda; Rempel, Matthias D.
2016-05-01
We test and validate newly-developed, empirically-derived sensitivity kernels for use in helioseismic analysis. These kernels are based on the Born approximation and derived from applying direct measurements to artificial realizations of incoming and scattered wavefields. These kernels are employed in a series of forward and inverse modeling of flows from the near-surface layers of two publicly available magnetohydrodynamic (MURaM-based) solar simulations - a quiet-Sun simulation, and one containing a sunspot. Forward travel times computed using the kernels generally compare favorably in non-magnetic regions. One finding of note is the presence of flow-like artifacts in the sunspot measurements which appear when the spot umbra or penumbra falls within the measurement pupils. Inversions for the horizontal flow components are able to reproduce the large-scale supergranule-sized flows in the upper 3Mm of both domains, but are compromised by noise at greater depths. In spite of the magnetic artifact, the moat flow surrounding the spot is at least qualitatively recovered. This work is supported by the NASA Heliophysics Division through NNH12CF68C, NNH12CF23C, and NNX16AG88G, and by the NSF Solar-Terrestrial Program through grant AGS-1127327.
21 CFR 892.5840 - Radiation therapy simulation system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...
21 CFR 892.5840 - Radiation therapy simulation system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...
21 CFR 892.5840 - Radiation therapy simulation system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...
21 CFR 892.5840 - Radiation therapy simulation system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...
21 CFR 892.5840 - Radiation therapy simulation system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiation therapy simulation system. 892.5840... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5840 Radiation therapy simulation system. (a) Identification. A radiation therapy simulation system is a fluoroscopic or radiographic...
NASA Astrophysics Data System (ADS)
Tarditi, Alfonso G.; Shebalin, John V.
2002-11-01
A simulation study with the NIMROD code [1] is being carried on to investigate the efficiency of the thrust generation process and the properties of the plasma detachment in a magnetic nozzle. In the simulation, hot plasma is injected in the magnetic nozzle, modeled as a 2D, axi-symmetric domain. NIMROD has two-fluid, 3D capabilities but the present runs are being conducted within the MHD, 2D approximation. As the plasma travels through the magnetic field, part of its thermal energy is converted into longitudinal kinetic energy, along the axis of the nozzle. The plasma eventually detaches from the magnetic field at a certain distance from the nozzle throat where the kinetic energy becomes larger than the magnetic energy. Preliminary NIMROD 2D runs have been benchmarked with a particle trajectory code showing satisfactory results [2]. Further testing is here reported with the emphasis on the analysis of the diffusion rate across the field lines and of the overall nozzle efficiency. These simulation runs are specifically designed for obtaining comparisons with laboratory measurements of the VASIMR experiment, by looking at the evolution of the radial plasma density and temperature profiles in the nozzle. VASIMR (Variable Specific Impulse Magnetoplasma Rocket, [3]) is an advanced space propulsion concept currently under experimental development at the Advanced Space Propulsion Laboratory, NASA Johnson Space Center. A plasma (typically ionized Hydrogen or Helium) is generated by a RF (Helicon) discharge and heated by an Ion Cyclotron Resonance Heating antenna. The heated plasma is then guided into a magnetic nozzle to convert the thermal plasma energy into effective thrust. The VASIMR system has no electrodes and a solenoidal magnetic field produced by an asymmetric mirror configuration ensures magnetic insulation of the plasma from the material surfaces. By powering the plasma source and the heating antenna at different levels it is possible to vary smoothly of the
Looking for evidence of magnetosheath current as suggested by LFM global MHD simulations
NASA Astrophysics Data System (ADS)
Cockrell, Sophia; Whittlesey, Phyllis; Mitchell, Elizabeth; Lopez, Ramon
2009-04-01
The ability to predict the effects of the solar wind on the near-Earth space environment is receiving attention due to the increased use of satellites for business, consumers, and the military. Determining if there is a current in the magnetosheath is part of a larger project to predict these effects. Solar magnetic field lines drape themselves along the magnetosheath, a subsonic region outside the boundary of the Earth's magnetic field. Using data from two satellites, Geotail and Interball, in the magnetosheath during geomagnetic storm times, we look for unexpected reverses in the magnetic field direction, known as reverse draping, which indicate a current flowing in the magnetosheath. Simulations done by our group suggest that during periods of strongly southward interplanetary magnetic field we might expect reverse draping. We will be presenting case studies indicating when reverse draping is occurring in the magnetosheath.
"Bursty" Reconnection Following Solar Eruptions: MHD Simulations and Comparison with Observations
NASA Technical Reports Server (NTRS)
Riley, Pete; Lionello, Roberto; Mikic, zoran; Linker, Jon; Clark, Eric; Lin, Jun; Ko, Yuan-Kuen
2007-01-01
Posteruptive arcades are frequently seen in the aftermath of coronal mass ejections (CMEs). The formation of these loops at successively higher altitudes, coupled with the classic "two-ribbon" flare seen in H-alpha, are interpreted as reconnection of the coronal magnetic field that has been dragged outward by the CME. White-light observations of "rays," which have been interpreted as being coincident with the current sheet at the reconnection site underneath the erupting CME, also provide evidence for its occurrence. "Blobs" occasionally seen within these rays suggest an even richer level of structure. In this report, we present numerical simulations that reproduce both the observed rays and the formation and evolution of the blobs. We compare their properties with SOHO/LASCO observations of similar structures, and relate their formation to standard theories of reconnection,
NASA Technical Reports Server (NTRS)
Fairfield, Donald H.; Otto, A.
1999-01-01
On March 24, 1995 the Geotail spacecraft observed large fluctuations of the magnetic field and plasma properties in the Low Latitude Boundary Layer (LLBL) about 15 R(sub E) tailward of the dusk meridian. Although the magnetospheric and the magnetosheath field were strongly northward, the B(sub z) component showed strong short duration fluctuations in which B(sub z) could even reach negative values. We have used two-dimensional magnetohydrodynamic simulations with magnetospheric and magnetosheath input parameters specifically chosen for this. Geotail event to identify the processes which cause the observed boundary properties. It is shown that these fluctuations can be explained by the Kelvin-Helmholtz instability if the k vector of the instability has a component along the magnetic field direction. The simulation results show many of the characteristic properties of the Geotail observations. In particular, the quasi-periodic strong fluctuations are well explained by satellite crossings through the Kelvin-Helmholtz vortices. It is illustrated how the interior structure of the Kelvin-Helmholtz vortices leads to the rapid fluctuations in the Geotail observations. Our results suggest an average Kelvin-Helmholtz wavelength of about 5 R(sub E) with a vortex size of close to 2 R(sub E) for an average repetition time of 2.5 minutes. The growth time for these waves implies a source region of about 10 to 16 R(sub E) upstream from the location of the Geotail spacecraft (i.e., near the dusk meridian). The results also indicate a considerable mass transport of magnetosheath material into the magnetosphere by magnetic reconnection in the Kelvin-Helmholtz vortices.
NASA Astrophysics Data System (ADS)
Danilovic, S.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; Riethmüller, T. L.; van Noort, M.; Blanco Rodríguez, J.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-03-01
Ellerman Bombs are signatures of magnetic reconnection, which is an important physical process in the solar atmosphere. How and where they occur is a subject of debate. In this paper, we analyze Sunrise/IMaX data, along with 3D MHD simulations that aim to reproduce the exact scenario proposed for the formation of these features. Although the observed event seems to be more dynamic and violent than the simulated one, simulations clearly confirm the basic scenario for the production of EBs. The simulations also reveal the full complexity of the underlying process. The simulated observations show that the Fe i 525.02 nm line gives no information on the height where reconnection takes place. It can only give clues about the heating in the aftermath of the reconnection. However, the information on the magnetic field vector and velocity at this spatial resolution is extremely valuable because it shows what numerical models miss and how they can be improved.
MHD Simulations of Coronal Supra-arcade Downflows Including Anisotropic Thermal Conduction
NASA Astrophysics Data System (ADS)
Zurbriggen, E.; Costa, A.; Esquivel, A.; Schneiter, M.; Cécere, M.
2016-11-01
Coronal supra-arcade downflows (SADs) are observed as dark trails descending toward hot turbulent-fan-shaped regions. Due to the large temperature values and gradients in these fan regions, the thermal conduction (TC) should be very efficient. While several models have been proposed to explain the triggering and the evolution of SADs, none of these scenarios address a systematic consideration of TC. Thus, we accomplish this task numerically simulating the evolution of SADs within this framework. That is, SADs are conceived as voided (subdense) cavities formed by nonlinear waves triggered by downflowing bursty localized reconnection events in a perturbed hot fan. We generate a properly turbulent fan, obtained by a stirring force that permits control of the energy and vorticity input in the medium where SADs develop. We include anisotropic TC and consider plasma properties consistent with observations. Our aim is to study whether it is possible to prevent SADs from vanishing by thermal diffusion. We find that this will be the case, depending on the turbulence parameters, in particular if the magnetic field lines are able to envelope the voided cavities, thermally isolating them from the hot environment. Velocity shear perturbations that are able to generate instabilities of the Kelvin-Helmholtz type help to produce magnetic islands, extending the lifetime of SADs.
NASA Astrophysics Data System (ADS)
Ali, M. M.; Alim, M. A.; Maleque, M. A.; Ahmed, Syed Sabbir
2017-06-01
A numerical study has been carried out to analyze the flow and heat transfer characteristics due to the effects of magnetohydrodynamic free convection flow in a differentially heated enclosure having a hot tilted square block. The vertical and horizontal walls of the cavity are non-uniformly heated while the walls of the tilted block are uniformly heated. The basic partial differential equations of the physical problem are solved numerically using finite element technique along with Galerkin's weighted residual simulation. Calculations have been performed for different values of buoyancy parameter (102 ≤ Ra ≤ 105) and magnetic field parameter (0 ≤ Ha ≤ 60) and obtained results are illustrated in terms of streamlines, isotherms, average Nusselt number and average temperature. The results show that the flow pattern and temperature distributions affected noticeably for the effect of aforementioned parameters. In addition, an increase in average Nusselt number is found for the whole range of Rayleigh number and average temperature decreased for increasing Rayleigh number. Comparison between the obtained results and the previously published results on the basis of special case is a good agreement.
Rare event simulation in radiation transport
Kollman, Craig
1993-10-01
This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved, even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiple by the likelihood ratio between the true and simulated probabilities so as to keep the estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive ``learning`` algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give with probability one, a sequence of estimates converging exponentially fast to the true solution.
KULL Simulations of OMEGA Radiation Flow Experiments
NASA Astrophysics Data System (ADS)
Kallman, J.; MacLaren, S.; Baker, K.; Brunner, T.; Lewis, K.; Zika, M.
2013-10-01
The problem of radiation flow in a right circular cylinder is of interest for the verification and validation of radiation codes since the flow is analytically analogous to diffusive free molecular flow in a similar geometry. Experiments were conducted on the OMEGA laser utilizing a low-density heated-cylindrical-wall target. The targets consisted of a 1.6 mm diameter gold hohlraum containing an on-axis 700 μm diameter SiO2 cylinder inside an 80 μm thick Ta2O5 aerogel tube. The FY13 targets also feature ``light-pipe'' diagnostics to measure the progression of the radiation front inside the foam. Simulations were run with the KULL multi-physics code, employing a new laser ray-tracing package. Comparisons of synthetic diagnostics derived from code results to x-ray measurements of drive temperature and heat front propagation provide a methodology to constrain simulation models. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Testing the Accuracy of Data-driven MHD Simulations of Active Region Evolution
NASA Astrophysics Data System (ADS)
Leake, James E.; Linton, Mark G.; Schuck, Peter W.
2017-04-01
Models for the evolution of the solar coronal magnetic field are vital for understanding solar activity, yet the best measurements of the magnetic field lie at the photosphere, necessitating the development of coronal models which are “data-driven” at the photosphere. We present an investigation to determine the feasibility and accuracy of such methods. Our validation framework uses a simulation of active region (AR) formation, modeling the emergence of magnetic flux from the convection zone to the corona, as a ground-truth data set, to supply both the photospheric information and to perform the validation of the data-driven method. We focus our investigation on how the accuracy of the data-driven model depends on the temporal frequency of the driving data. The Helioseismic and Magnetic Imager on NASA’s Solar Dynamics Observatory produces full-disk vector magnetic field measurements at a 12-minute cadence. Using our framework we show that ARs that emerge over 25 hr can be modeled by the data-driving method with only ∼1% error in the free magnetic energy, assuming the photospheric information is specified every 12 minutes. However, for rapidly evolving features, under-sampling of the dynamics at this cadence leads to a strobe effect, generating large electric currents and incorrect coronal morphology and energies. We derive a sampling condition for the driving cadence based on the evolution of these small-scale features, and show that higher-cadence driving can lead to acceptable errors. Future work will investigate the source of errors associated with deriving plasma variables from the photospheric magnetograms as well as other sources of errors, such as reduced resolution, instrument bias, and noise.
IRIS observations and MHD simulations of explosive events in the transition region of the Sun
NASA Astrophysics Data System (ADS)
Guo, Lijia; Innes, Davina; Huang, Yi-Min; Bhattacharjee, Amitava
2016-05-01
Small-scale explosive events on the Sun are thought to be related to magnetic reconnection. While Petschek reconnection has been considered as a reconnection mechanism for explosive events on the Sun for quite a long time, the fragmentation of a current sheet in the high-Lundquist-number regime caused by the plasmoid instability has recently been proposed as a possible mechanism for fast reconnection. The actual reconnection sites are too small to be resolved with images but these reconnection mechanisms, Petschek and the plasmoid instability, have very different density and velocity structures and so can be distinguished by high-resolution line profiles observations. We use high-resolution sit-and-stare spectral observations of the Si IV line, obtained by the IRIS spectrometer, to identify sites of reconnection, and follow the development of line profiles. The aim is to obtain a survey of typical line profiles produced by small-scale reconnection events in the transition region and compare them with synthetic line profiles from numerical simulations of a reconnecting current sheet to determine whether reconnection occurs via the plasmoid instabilty or the Petschek mechanism. Direct comparison between IRIS observations and numerical results suggests that the observed Si IV profiles can be reproduced with a fragmented current layer subject to plasmoid instability but not by bi-directional jets that characterise the Petschek mechanism. This result suggests that if these small-scale events are reconnection sites, then fast reconnection proceeds via the plasmoid instability, rather than the Petschek mechanism during small-scale reconnection on the Sun.
NASA Astrophysics Data System (ADS)
Wu, C.; Chang, T.
2010-12-01
A new method in describing the multifractal characteristics of intermittent events was introduced by Cheng and Wu [Chang T. and Wu C.C., Physical Rev, E77, 045401(R), 2008]. The procedure provides a natural connection between the rank-ordered spectrum and the idea of one-parameter scaling for monofractals. This technique has been demonstrated using results obtained from a 2D MHD simulation. It has also been successfully applied to in-situ solar wind observations [Chang T., Wu, C.C. and Podesta, J., AIP Conf Proc. 1039, 75, 2008], and the broadband electric field oscillations from the auroral zone [Tam, S.W.Y. et al., Physical Rev, E81, 036414, 2010]. We take the next step in this procedure. By using the ROMA spectra and the scaled probability distribution functions (PDFs), raw PDFs can be calculated, which can be compared directly with PDFs from observations or simulation results. In addition to 2D MHD simulation results and in-situ solar wind observation, we show clearly using the ROMA analysis the multifractal character of the 3D fluid simulation data obtained from the JHU turbulence database cluster at http://turbulence.pha.jhu.edu. In particular, we show the scaling of the non-symmetrical PDF for the parallel-velocity fluctuations of this 3D fluid data.
Martinez-Sykora, Juan; De Pontieu, Bart; Hansteen, Viggo
2012-07-10
The bulk of the solar chromosphere is weakly ionized and interactions between ionized particles and neutral particles likely have significant consequences for the thermodynamics of the chromospheric plasma. We investigate the importance of introducing neutral particles into the MHD equations using numerical 2.5D radiative MHD simulations obtained with the Bifrost code. The models span the solar atmosphere from the upper layers of the convection zone to the low corona, and solve the full MHD equations with non-gray and non-LTE radiative transfer, and thermal conduction along the magnetic field. The effects of partial ionization are implemented using the generalized Ohm's law, i.e., we consider the effects of the Hall term and ambipolar diffusion in the induction equation. The approximations required in going from three fluids to the generalized Ohm's law are tested in our simulations. The Ohmic diffusion, Hall term, and ambipolar diffusion show strong variations in the chromosphere. These strong variations of the various magnetic diffusivities are absent or significantly underestimated when, as has been common for these types of studies, using the semi-empirical VAL-C model as a basis for estimates. In addition, we find that differences in estimating the magnitude of ambipolar diffusion arise depending on which method is used to calculate the ion-neutral collision frequency. These differences cause uncertainties in the different magnetic diffusivity terms. In the chromosphere, we find that the ambipolar diffusion is of the same order of magnitude or even larger than the numerical diffusion used to stabilize our code. As a consequence, ambipolar diffusion produces a strong impact on the modeled atmosphere. Perhaps more importantly, it suggests that at least in the chromospheric domain, self-consistent simulations of the solar atmosphere driven by magnetoconvection can accurately describe the impact of the dominant form of resistivity, i.e., ambipolar diffusion. This
Radiation Magnetohydrodynamic Simulations of Protostellar Core Formation
NASA Astrophysics Data System (ADS)
Tomida, K.
2013-04-01
We perform 3D nested-grid radiation magnetohydrodynamic (RMHD) simulations of protostellar collapse from molecular cloud cores to protostellar cores with and without Ohmic dissipation of magnetic fields. We describe formation of circumstellar disks and multi-component outflows with our new code involving improved treatment of radiation transfer and thermodynamics. In the ideal RMHD models, the evolution of the protostellar core is very similar to that in the spherically symmetric non-rotating model because magnetic fields transport angular momentum very efficiently. However, if the resistivity is present, angular momentum transport is considerably suppressed due to loss of magnetic flux, and a rotationally-supported circumstellar disk is rapidly built up in the vicinity of the protostellar core. Magnetic fields are amplified by rotation and a fast well-collimated bipolar outflow is launched from the protostellar core via magnetic pressure gradient force.
NASA Astrophysics Data System (ADS)
Dorelli, J.; Buzulukova, N.; Gershman, D. J.; Rager, A. C.; Glocer, A.; Avanov, L. A.; Giles, B. L.; Paterson, W. R.; Pollock, C.; Strangeway, R. J.; Khotyaintsev, Y. V.; Russell, C. T.; Ergun, R.; Torbert, R. B.; Burch, J. L.
2016-12-01
Global magnetohydrodynamics (MHD) simulations predict that dayside magnetopause reconnection occurs at thin extended Sweet-Parker current sheets that form at large-scale magnetic separators (three-dimensional X-lines). Kinetic simulations of reconnection, on the other hand, show that the current sheets have much smaller aspect ratios than those predicted by resistive MHD, and this is thought to be the basic reason that fast reconnection is possible even in the limit of zero resistivity and large system size. The question of how current sheet aspect ratio scales with system size has been difficult to answer due to the limitation on simulation system size imposed by finite computational resources. The Magnetospheric Multiscale (MMS) missio, on the other hand, can address this question since it routinely observes the subsolar magnetopause on kinetic scales for a variety of Interplanetary Magnetic Field (IMF) orientations. In this presentation, we show MMS observations for two magentopause crossings: 1) the 2015-10-16 southward IMF crossing published by Burch et al., [Science, 352, 2015]; 2) a northward IMF crossing on 2015-11-25. In both events, sub-ion scale current sheets were observed close to the locations where MHD predicts that Sweet-Parker current sheets should be observed but far from the predicted magnetic separator locations. A possible explanation for this discrepancy is that sub-ion scale current sheets associated with magnetic reconnection extend very large distances (on the order of the magnetopause "system size") away from the topological X line. Implications for the interpretation of plasma signatures of reconnection diffusion regions (e.g., the violation of frozen-flux and deviations from gyrotropy for the electrons) are discussed.
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Snyder, P. B.; Chang, C. S.
2017-06-01
The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] is used in carrying out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. Simulations with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. However, the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new
NASA Technical Reports Server (NTRS)
Montgomery, David
1988-01-01
Three areas of study in MHD turbulence are considered. These are the turbulent relaxation of the toroidal Z pinch, density fluctuations in MHD fluids, and MHD cellular automata. A Boolean computer game that updates a cellular representation in parallel and that has macroscopic averages converging to solutions of the two-dimensional MHD equations is discussed.
Tomida, Kengo; Okuzumi, Satoshi; Machida, Masahiro N. E-mail: okuzumi@geo.titech.ac.jp
2015-03-10
The transport of angular momentum by magnetic fields is a crucial physical process in the formation and evolution of stars and disks. Because the ionization degree in star-forming clouds is extremely low, nonideal magnetohydrodynamic (MHD) effects such as ambipolar diffusion and ohmic dissipation work strongly during protostellar collapse. These effects have significant impacts in the early phase of star formation as they redistribute magnetic flux and suppress angular momentum transport by magnetic fields. We perform three-dimensional nested-grid radiation magnetohydrodynamic simulations including ohmic dissipation and ambipolar diffusion. Without these effects, magnetic fields transport angular momentum so efficiently that no rotationally supported disk is formed even after the second collapse. Ohmic dissipation works only in a relatively high density region within the first core and suppresses angular momentum transport, enabling formation of a very small rotationally supported disk after the second collapse. With both ohmic dissipation and ambipolar diffusion, these effects work effectively in almost the entire region within the first core and significant magnetic flux loss occurs. As a result, a rotationally supported disk is formed even before a protostellar core forms. The size of the disk is still small, about 5 AU at the end of the first core phase, but this disk will grow later as gas accretion continues. Thus, the nonideal MHD effects can resolve the so-called magnetic braking catastrophe while keeping the disk size small in the early phase, which is implied from recent interferometric observations.
Research on fast rise time EMP radiating-wave simulator
NASA Astrophysics Data System (ADS)
Fan, Lisi; Liu, Haitao; Wang, Yun
2013-03-01
This paper presents an antenna of High altitude electromagnetic pulse (HEMP) radiating-wave simulator which expands the testing zone larger than the traditional transmission line simulator. The numerical results show that traverse electramagnetic (TEM) antenna can be used to radiate HEMP simulation radiating wave, but in low frequency band the emissive capability is poor. The experiment proves the numerical model is valid. The results of this paper show that TEM antenna can be used to HEMP radiating-wave simulator, and can prove the low frequency radiation capability through resistance loaded method.
NASA Astrophysics Data System (ADS)
Hoelzl, M.; Huijsmans, G. T. A.; Merkel, P.; Atanasiu, C.; Lackner, K.; Nardon, E.; Aleynikova, K.; Liu, F.; Strumberger, E.; McAdams, R.; Chapman, I.; Fil, A.
2014-11-01
The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.
NASA Astrophysics Data System (ADS)
Domrin, V. I.; Kropotkin, A. P.
2007-06-01
The process of equilibrium disruption in the system with a current sheet (CS) under the conditions of small magnetic field component normal to CS, which is induced by an external disturbance, has been theoretically studied within the scope of MHD. In the geomagnetotail, this disturbance can be caused by a tearing instability developing in the more distant tail section, or by a ballooning instability in the tail nearest section, or by a rapid reconfiguration at the magnetopause during the disturbance passage in the solar wind. Locally, in a limited CS section, a longitudinal momentum balance is rapidly (on the Alfvén time scale) upset when a fast MHD disturbance, the form of which depends on the presence of CS, passes along the tail. The nonequilibrium temperature, which subsequently evolves through splitting of CS into several current structures, originates on a substantially larger (due to the smallness of the normal field component) time scale. Such a reconfiguration SPONTANEOUSLY develops after the initial equilibrium upset under the action of an external (weak) disturbance. During an analysis within the scope of MHD, this reconfiguration can be described as the well-known process with two pairs of nonlinear waves propagating in both directions from the central sheet plane at constant velocities: these are fast rarefaction waves and the following slow “switching-off” shocks. However, the kinetic theory reveals substantially different relaxation channels. These channels are studied in the second and third work sections, where the kinetic numerical simulation of the problem is presented and the results of this simulation are analyzed.
A unified radiative magnetohydrodynamics code for lightning-like discharge simulations
Chen, Qiang Chen, Bin Xiong, Run; Cai, Zhaoyang; Chen, P. F.
2014-03-15
A two-dimensional Eulerian finite difference code is developed for solving the non-ideal magnetohydrodynamic (MHD) equations including the effects of self-consistent magnetic field, thermal conduction, resistivity, gravity, and radiation transfer, which when combined with specified pulse current models and plasma equations of state, can be used as a unified lightning return stroke solver. The differential equations are written in the covariant form in the cylindrical geometry and kept in the conservative form which enables some high-accuracy shock capturing schemes to be equipped in the lightning channel configuration naturally. In this code, the 5-order weighted essentially non-oscillatory scheme combined with Lax-Friedrichs flux splitting method is introduced for computing the convection terms of the MHD equations. The 3-order total variation diminishing Runge-Kutta integral operator is also equipped to keep the time-space accuracy of consistency. The numerical algorithms for non-ideal terms, e.g., artificial viscosity, resistivity, and thermal conduction, are introduced in the code via operator splitting method. This code assumes the radiation is in local thermodynamic equilibrium with plasma components and the flux limited diffusion algorithm with grey opacities is implemented for computing the radiation transfer. The transport coefficients and equation of state in this code are obtained from detailed particle population distribution calculation, which makes the numerical model is self-consistent. This code is systematically validated via the Sedov blast solutions and then used for lightning return stroke simulations with the peak current being 20 kA, 30 kA, and 40 kA, respectively. The results show that this numerical model consistent with observations and previous numerical results. The population distribution evolution and energy conservation problems are also discussed.
Qureshi, M Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M
2016-12-01
Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.
NASA Astrophysics Data System (ADS)
Qureshi, M. Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M.
2016-10-01
Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.
NASA Astrophysics Data System (ADS)
Garg, B. P.; Singh, K. D.; Bansal, A. K.
2015-02-01
An analysis of an oscillatory magnetohydrodynamic (MHD) convective flow of a second order (viscoelastic), incompressible, and electrically conducting fluid through a porous medium bounded by two infinite vertical parallel porous plates is presented. The two porous plates with slip-flow condition and the no-slip condition are subjected respectively to a constant injection and suction velocity. The pressure gradient in the channel varies periodically with time. A magnetic field of uniform strength is applied in the direction perpendicular to the planes of the plates. The induced magnetic field is neglected due to the assumption of a small magnetic Reynolds number. The temperature of the plate with no-slip condition is non-uniform and oscillates periodically with time and the temperature difference of the two plates is assumed high enough to induce heat radiation. The entire system rotates in unison about the axis perpendicular to the planes of the plates. Adopting complex variable notations, a closed form solution of the problem is obtained. The analytical results are evaluated numerically and then presented graphically to discuss in detail the effects of different parameters of the problem. The velocity, temperature and the skin-friction in terms of its amplitude and phase angle have been shown graphically to observe the effects of the viscoelastic parameter γ, rotation parameter Ω, suction parameter λ , Grashof number Gr, Hartmann number M, the pressure A, Prandtl number Pr, radiation parameter N and the frequency of oscillation ω .
Rare Event Simulation in Radiation Transport
NASA Astrophysics Data System (ADS)
Kollman, Craig
This dissertation studies methods for estimating extremely small probabilities by Monte Carlo simulation. Problems in radiation transport typically involve estimating very rare events or the expected value of a random variable which is with overwhelming probability equal to zero. These problems often have high dimensional state spaces and irregular geometries so that analytic solutions are not possible. Monte Carlo simulation must be used to estimate the radiation dosage being transported to a particular location. If the area is well shielded the probability of any one particular particle getting through is very small. Because of the large number of particles involved, even a tiny fraction penetrating the shield may represent an unacceptable level of radiation. It therefore becomes critical to be able to accurately estimate this extremely small probability. Importance sampling is a well known technique for improving the efficiency of rare event calculations. Here, a new set of probabilities is used in the simulation runs. The results are multiplied by the likelihood ratio between the true and simulated probabilities so as to keep our estimator unbiased. The variance of the resulting estimator is very sensitive to which new set of transition probabilities are chosen. It is shown that a zero variance estimator does exist, but that its computation requires exact knowledge of the solution. A simple random walk with an associated killing model for the scatter of neutrons is introduced. Large deviation results for optimal importance sampling in random walks are extended to the case where killing is present. An adaptive "learning" algorithm for implementing importance sampling is given for more general Markov chain models of neutron scatter. For finite state spaces this algorithm is shown to give, with probability one, a sequence of estimates converging exponentially fast to the true solution. In the final chapter, an attempt to generalize this algorithm to a continuous
NASA Astrophysics Data System (ADS)
Hayashi, K.; Tokumaru, M.; Fujiki, K.; Kojima, M.
2011-10-01
We report our recent efforts to reproduce numerically three-dimensional time-dependent structures of the solar wind in the heliosphere responding to the time-varying boundary data on the inner boundary sphere at the heliocentric distance of 50 radii. The computation region is extended up to 10050 solar radii (approximately 47AU). A boundary model we recently developed is used to include the time-varying observation-based data map in the inner heliosphere including the radial component of the magnetic field. One merit of using the time-varying boundary conditions in the MHD simulation is that we will be able to determine better the MHD variables of the solar wind at the time and position of interest, especially in the distant regions from the Sun. The boundary data used here were derived from the IPS (interplanetary scintillation) at Nagoya University of Japan that can yield the solar wind speed at both high and low heliographic latitudes, and the solar-surface magnetic field data, such as those by SOHO/MDI and WSO. In this article, we will show the comparisons of our simulation results with the in-situ measurements made by space probes, such as the nearby-Earth measurement dataset (OMNIweb data), Ulysses, and Voyager 1 and 2 (COHOweb database), in 1991.
NASA Astrophysics Data System (ADS)
Aziz, T.; Wan, M.; Osman, K.; Rodgers, D. J.; Servidio, S.; Mitchell, T.; Matthaeus, W. H.
2010-12-01
It has previously been noted, first in hydrodynamics, and later in both 2D and 3D MHD, that the nonlinear terms that drive turbulence have a strong tendency to be suppressed as indicated the presence, and presumably dynamical origin, of certain distinctive correlations. These have been seen to emerge rapidly and in spatial patches, in spectral method simulations of turbulence. Included in this class of suppressing correlations are those that tend to produce Alfvenic, Beltrami and force-free states. This rapid process of suppression may help explain why these types of correlation are so frequently encountered in naturally occurring turbulence systems. Here we show recent evidence of suppression and distinctive correlations in intervals of solar wind data and in MHD simulations, where Alfvenic patches are observed, and in experimental data from the University of Delaware Penning trap, in which ExB drift turbulence has been observed in a pure electron plasma. The latter is a novel experimental observation of suppression due to the presence of coherent vortices and may be relevant to ionospheric plasmas. Connections of patchy correlations to cellularization and intermittency of turbulence will be discussed. This research supported in part by NSF SHINE and Solar Terrestrial programs (ATM-0752135,ATM-0539995) and by the NASA Heliophysics Theory program and MMS Theory and Modeling (NNX08AI47G,NNX08AT76G)
NASA Astrophysics Data System (ADS)
Bruntz, Robert Jeffrey
2012-01-01
The solar wind interacts with Earth's magnetosphere largely through magnetic reconnection and a "viscous-like" interaction that is not fully understood. The ionospheric cross-polar cap potential (phi PC) component due to reconnection (phiR) is typically much larger than the viscous component (phiV) and very dynamic, making detailed studies of the viscous potential difficult. We used the Lyon-Fedder-Mobarry (LFM) magnetohydrodynamic (MHD) simulation to study the viscous potential by running LFM for a variety of solar wind density and velocity values and ionospheric Pedersen conductance (SigmaP) values, but no solar wind magnetic field, so that phiPC was entirely due to the viscous interaction. We found that phiV increased with solar wind density, scaling as n0.439 (n in cm -3), and phiV increased with solar wind velocity, scaling as V1.33 (V in km s -1); these results were combined to create a formula for phi V in LFM, using a SigmaP value that produces realistic potentials: phiV = (0.00431)n0.439 V1.33 (in kV), which matches simulation results very well. phiV also varied inversely with SigmaP, as predicted by previous theory. The form of this formula is similar to results from the Newell et al. [2008] empirical study, which tested a list of viscous coupling functions and found that n 1/2V2 worked best (but did not create a formula to predict potentials, so actual viscous potential values could not be compared). The Bruntz et al. formula was also compared to LFM results from a run with real solar wind input, from the Whole Heliosphere Interval (WHI), which lasted from 20 March to 16 April 2008. LFM was first run with the full solar wind from the WHI, then with the same solar wind but zero interplanetary magnetic field (IMF), which meant that phiPC = phiV for that run. These runs were performed with the empirical ionospheric solver, using the average F10.7 flux value from the WHI as input. This empirical ionosphere is known to produce potentials that are higher than
Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M
2004-03-23
Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.
Radiation Chemistry of Simulated (99)Mo Product
Carson, S.D.; Garcia, M.J.; McDonald, M.J.; Simpson, R.L.; Tallant, D.R.
1998-11-06
PharrnaceuticaI houses that produce {sup 99}Tc/{sup 99}Tc generators have on occasion received {sup 99}Mo that contained a black precipitate. Addition of sodium hypochlorite to product bottles prior to shipment prevents precipitate formation, indicating the precipitate is a reduced form of Mo. The radiation effects of the dose from {sup 99}Mo on the product and product bottle have been determined by irradiating simulated {sup 99}Mo product solutions with the {sup 60}Co source at Sandia National Laboratories' Gamma Irradiation Facility (GE). The GIF experiment successfully generated a black precipitate in amounts sufficient for isolation and analysis by infrared and Rrunan spectroscopy. Changes in the pH of the basic {sup 99}Mo product solution during irradiation were monitored by titration. ResuIts of these analyses and the nature of the process that generates the precipitate, a mixture of molybdenum oxides that forms in plastic bottles, but not in glass containers, are discussed.
ERIC Educational Resources Information Center
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
ERIC Educational Resources Information Center
Kantrowitz, Arthur; Rosa, Richard J.
1975-01-01
Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)
Shiraki, Daisuke; Commaux, Nicolas; Baylor, Larry R.; ...
2015-06-26
Measurements from the DIII-D tokamak show that toroidal radiation asymmetries during fast shutdown by massive gas injection (MGI) are largely driven by n = 1 magnetohydrodynamic modes during the thermal quench. The phenomenology of these modes, which are driven unstable by pro le changes as the thermal energy is quenched, is described based on detailed magnetic measurements. Here, the toroidal evolution of the dominantly n = 1 perturbation is understood to be a function of three parameters: the location of the MGI port, pre-MGI plasma rotation, and n = 1 error elds. Here, the resulting level of radiation asymmetry inmore » these DIII-D plasmas is modest, with a toroidal peaking factor (TPF) of 1:2 ± 0:1 for the total thermal quench energy and 1:4 ± 0:3 for the peak radiated power, both of which are below the estimated limit for ITER (TPF ≈ 2).« less
Shiraki, Daisuke; Commaux, Nicolas; Baylor, Larry R.; Eidietis, Nicholas W.; Hollmann, Eric M.; Izzo, Valerie A.; Moyer, Richard A.; Paz-Soldan, Carlos
2015-06-26
Measurements from the DIII-D tokamak show that toroidal radiation asymmetries during fast shutdown by massive gas injection (MGI) are largely driven by n = 1 magnetohydrodynamic modes during the thermal quench. The phenomenology of these modes, which are driven unstable by pro le changes as the thermal energy is quenched, is described based on detailed magnetic measurements. Here, the toroidal evolution of the dominantly n = 1 perturbation is understood to be a function of three parameters: the location of the MGI port, pre-MGI plasma rotation, and n = 1 error elds. Here, the resulting level of radiation asymmetry in these DIII-D plasmas is modest, with a toroidal peaking factor (TPF) of 1:2 ± 0:1 for the total thermal quench energy and 1:4 ± 0:3 for the peak radiated power, both of which are below the estimated limit for ITER (TPF ≈ 2).
Simulation of Fault Arc Based on Different Radiation Models in a Closed Tank
NASA Astrophysics Data System (ADS)
Li, Mei; Zhang, Junpeng; Hu, Yang; Zhang, Hantian; Wu, Yifei
2016-05-01
This paper focuses on the simulation of a fault arc in a closed tank based on the magneto-hydrodynamic (MHD) method, in which a comparative study of three radiation models, including net emission coefficients (NEC), semi-empirical model based on NEC as well as the P1 model, is developed. The pressure rise calculated by the three radiation models are compared to the measured results. Particularly when the semi-empirical model is used, the effect of different boundary temperatures of the re-absorption layer in the semi-empirical model on pressure rise is concentrated on. The results show that the re-absorption effect in the low-temperature region affects radiation transfer of fault arcs evidently, and thus the internal pressure rise. Compared with the NEC model, P1 and the semi-empirical model with 0.7<α<0.83 are more suitable to calculate the pressure rise of the fault arc, where is an adjusted parameter involving the boundary temperature of the re-absorption region in the semi-empirical model. supported by National Key Basic Research Program of China (973 Program) (No. 2015CB251002), National Natural Science Foundation of China (Nos. 51221005, 51177124), the Fundamental Research Funds for the Central Universities, the Program for New Century Excellent Talents in University and Shaanxi Province Natural Science Foundation of China (No. 2013JM-7010)
NASA Astrophysics Data System (ADS)
Ratkiewicz, R.; Barnes, A.; Molvik, G. A.; Spreiter, J. R.; Stahara, S. S.; Vinokur, M.; Venkateswaran, S.
1998-07-01
The aim of this paper is to present the effects of varying magnitude and orientation of the local interstellar magnetic field on the heliospheric boundary region (the region between the termination shock and the bow shock containing the heliopause). Other effects such as interstellar neutrals, cosmic rays and the asymmetry of the solar wind caused by its heliolatitude dependence are disregarded. We calculate the shape and structure of the heliospheric boundary region for different interstellar Alfvenic Mach numbers and various inclination angles between Very Local InterStellar Medium (VLISM) velocity and magnetic field vectors using a fully three-dimensional MHD computational analysis. The new results show the asymmetry of this region for inclination angles 0(deg) < alpha < 90(deg) and are in agreement with the Newtonian approximation theory (Fahr et al. 1986, 1988) concerning trends in the heliopause orientation and location. Unlike the NA model which only qualitatively indicates the effects of the VLISM magnetic field on the heliospheric boundary region the present 3D MHD calculations reveal fully the nature of these effects by capturing all discontinuities including the termination shock, heliopause and bow shock. The numerical scheme employed in this study is fully implicit and conservative, using a Roe-type Riemann solver in a generalized coordinate system.
NASA Astrophysics Data System (ADS)
Simard, Corinne; Charbonneau, Paul; Dubé, Caroline
2016-10-01
We perform a mean-field analysis of the EULAG-MHD millenium simulation of global magnetohydrodynamical convection presented in Passos and Charbonneau (2014). The turbulent electromotive force (emf) operating in the simulation is assumed to be linearly related to the cyclic axisymmetric mean magnetic field and its first spatial derivatives. At every grid point in the simulation's meridional plane, this assumed relationship involves 27 independent tensorial coefficients. Expanding on Racine et al. (2011), we extract these coefficients from the simulation data through a least-squares minimization procedure based on singular value decomposition. The reconstructed α -tensor shows good agreement with that obtained by Racine et al. (2011), who did not include derivatives of the mean-field in their fit, as well as with the α -tensor extracted by Augustson et al. (2015) from a distinct ASH MHD simulation. The isotropic part of the turbulent magnetic diffusivity tensor β is positive definite and reaches values of 5.0 ×107 m2 s-1 in the middle of the convecting fluid layers. The spatial variations of both αϕϕ and βϕϕ component are well reproduced by expressions obtained under the Second Order Correlation Approximation, with a good matching of amplitude requiring a turbulent correlation time about five times smaller than the estimated turnover time of the small-scale turbulent flow. By segmenting the simulation data into epochs of magnetic cycle minima and maxima, we also measure α - and β -quenching. We find the magnetic quenching of the α -effect to be driven primarily by a reduction of the small-scale flow's kinetic helicity, with variations of the current helicity playing a lesser role in most locations in the simulation domain. Our measurements of turbulent diffusivity quenching are restricted to the βϕϕ component, but indicate a weaker quenching, by a factor of ≃ 1.36, than of the α -effect, which in our simulation drops by a factor of three between
Barnes, P.R.; Tesche, F.M.; McConnell, B.W.; Vance, E.F.
1993-09-01
A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic-electromagnetic pulse (MHD-EMP). MHD-EMP is similar to solar geomagnetic storms in its global and low frequency (less than 1 Hz) nature except that it can be more intense with a shorter duration. It will induce quasi-dc currents in long lines. The MHD-EMP induced currents may cause large voltage fluctuations and severe harmonic distortion in commercial electric power systems. Several MHD-EMP coupling models for predicting the induced current on a wide variety of conducting structures are described, various simulation concepts are summarized, and the results from several MHD-EMP tests are presented. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building, and the commercial power harmonics and voltage swings must be addressed. It is found that facilities can be protected against MHD-EMP by using methods which are consistent with standard engineering practices. MHD-EMP Interaction Analysis, Power Line Model, MHD-EMP Protection Guidelines, Transformer Test.
Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies
NASA Astrophysics Data System (ADS)
Rosdahl, Joakim; Schaye, Joop; Teyssier, Romain; Agertz, Oscar
2015-07-01
Radiation feedback is typically implemented using subgrid recipes in hydrodynamical simulations of galaxies. Very little work has so far been performed using radiation-hydrodynamics (RHD), and there is no consensus on the importance of radiation feedback in galaxy evolution. We present RHD simulations of isolated galaxy discs of different masses with a resolution of 18 pc. Besides accounting for supernova feedback, our simulations are the first galaxy-scale simulations to include RHD treatments of photoionization heating and radiation pressure, from both direct optical/UV radiation and multiscattered, re-processed infrared (IR) radiation. Photoheating smooths and thickens the discs and suppresses star formation about as much as the inclusion of (`thermal dump') supernova feedback does. These effects decrease with galaxy mass and are mainly due to the prevention of the formation of dense clouds, as opposed to their destruction. Radiation pressure, whether from direct or IR radiation, has little effect, but for the IR radiation we show that its impact is limited by our inability to resolve the high optical depths for which multiscattering becomes important. While artificially boosting the IR optical depths does reduce the star formation, it does so by smoothing the gas rather than by generating stronger outflows. We conclude that although higher resolution simulations, and potentially also different supernova implementations, are needed for confirmation, our findings suggest that radiation feedback is more gentle and less effective than is often assumed in subgrid prescriptions.
Investigations of Planet Formation with Combined Hydrodynamics and Radiative Transfer
NASA Astrophysics Data System (ADS)
Jang-Condell, Hannah; Kloster, D.
2014-01-01
Our aim is to investigate how the dynamics of protoplanetary disks are affected by environmental factors such as the presence of a planetary-mass object orbiting at the midplane and the radiation produced by the disk's host star. To accomplish this task we utilize the finite-volume numerical code PLUTO (Mignone, et al. 2007) to compute the evolution of the disk as a magnetohydrodynamics (MHD) simulation in 3D spherical coordinates, combined with a radiative transfer code (Jang-Condell 2008). At each iteration of the PLUTO simulation we will apply the radiative transfer code to the disk profile to model both processes simultaneously. The combined MHD and radiative transfer simulation will provide us with a much more accurate description of protoplanetary disk evolution than either isolated disk MHD or static disk radiative transfer models could individually.
Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; ...
2017-06-08
The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new
NASA Astrophysics Data System (ADS)
Guerreiro, Nuno; Haberreiter, Margit; Hansteen, Viggo; Schmutz, Werner
2016-04-01
Aiming at better understanding the mechanism(s) responsible for the coronal heating and the ubiquitous redshifts observed in the lower transition region we focus on analyzing the properties of small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We present results for the lifetime, energy and spectral signatures of the SSHEs. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other interments on board solar orbiter.
NASA Astrophysics Data System (ADS)
Haberreiter, M.; Guerreiro, N.; Hansteen, V. H.; Schmutz, W. K.
2015-12-01
The physical mechanism that heats the solar corona is one of the still open science questions in solar physics. One of the proposed mechanism for coronal heating are nanoflares. To investigate their role in coronal heating we study the properties of the small-scale heating events in the solar atmosphere using 3D MHD simulations. We present a method to identify and track these heating events in time which allows us to study their life time, energy, and spectral signatures. These spectal signatures will be compared with available spectrosopic observations obtained with IRIS and SUMER. Ultimately, these results will be important for the coordinated scientific exploitation of SPICE and EUI along with other instruments onboard Solar Orbiter to address the coronal heating problem.
NASA Astrophysics Data System (ADS)
Guerreiro, Nuno; Haberreiter, Margit; Schmutz, Werner; Hansteen, Viggo
2016-07-01
Aiming at better understanding the mechanism(s) responsible for the coronal heating we focus on analyzing the properties of the magnetically generated small-scale heating events (SSHEs) in the solar atmosphere. We present a comprehensive method to detect and follow SSHEs over time in 3D-MHD simulations of the solar atmosphere. Applying the method we are able to better understand the properties of the SSHEs and how the plasma in their vicinity respond to them. We study the lifetime, energy and spectral signatures and show that the energy flux dissipated by them is enough to heat the corona. Ultimately, these results will be important for the coordinated scientific exploration of SPICE and EUI along with other instruments on board solar orbiter.
NASA Astrophysics Data System (ADS)
Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan
2017-04-01
Partial ionization effects related to electron-neutral and ion-neutral interactions play an important role in the weakly ionized solar chromosphere, where the number density of neutrals vastly exceeds the number density of protons. The interactions between the magnetized plasma and the neutral particles can significantly change the resistivity of the plasma and lead to additional heating. Such multi-species interactions cannot be described within the simple MHD single fluid models and the non-equilibrium partial ionization effects cannot be properly captured even when generalized MHD models including Ambipolar diffusion terms are taken into account. A more detailed approach to describe these processes in the solar chromosphere is to use multi-fluid numerical simulations where the neutrals and the plasma species are described as separate fluids, coupled through the chemical reactions, additional currents, friction and resistivity terms. In this study we have elaborate on our previous results and perform 2D two-fluid simulations with an electron-proton fluid and a separate neutral fluid using an improved model where the density and temperature dependence of the plasma viscosities and heat conduction for the neutrals is assumed. Previously we have investigated the chromospheric propagation of fast and slow waves generated by a fixed photospheric foot-point velocity driver. In this study we have varied the velocity driver's frequency and location. We have also distinguished between the types of drivers which excite pure slow/Alfvén waves or a mixture of slow and fast waves. Finally, we have studied the non-uniform heating caused by the waves.
Galactic cosmic ray simulation at the NASA Space Radiation Laboratory.
Norbury, John W; Schimmerling, Walter; Slaba, Tony C; Azzam, Edouard I; Badavi, Francis F; Baiocco, Giorgio; Benton, Eric; Bindi, Veronica; Blakely, Eleanor A; Blattnig, Steve R; Boothman, David A; Borak, Thomas B; Britten, Richard A; Curtis, Stan; Dingfelder, Michael; Durante, Marco; Dynan, William S; Eisch, Amelia J; Robin Elgart, S; Goodhead, Dudley T; Guida, Peter M; Heilbronn, Lawrence H; Hellweg, Christine E; Huff, Janice L; Kronenberg, Amy; La Tessa, Chiara; Lowenstein, Derek I; Miller, Jack; Morita, Takashi; Narici, Livio; Nelson, Gregory A; Norman, Ryan B; Ottolenghi, Andrea; Patel, Zarana S; Reitz, Guenther; Rusek, Adam; Schreurs, Ann-Sofie; Scott-Carnell, Lisa A; Semones, Edward; Shay, Jerry W; Shurshakov, Vyacheslav A; Sihver, Lembit; Simonsen, Lisa C; Story, Michael D; Turker, Mitchell S; Uchihori, Yukio; Williams, Jacqueline; Zeitlin, Cary J
2016-02-01
Most accelerator-based space radiation experiments have been performed with single ion beams at fixed energies. However, the space radiation environment consists of a wide variety of ion species with a continuous range of energies. Due to recent developments in beam switching technology implemented at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL), it is now possible to rapidly switch ion species and energies, allowing for the possibility to more realistically simulate the actual radiation environment found in space. The present paper discusses a variety of issues related to implementation of galactic cosmic ray (GCR) simulation at NSRL, especially for experiments in radiobiology. Advantages and disadvantages of different approaches to developing a GCR simulator are presented. In addition, issues common to both GCR simulation and single beam experiments are compared to issues unique to GCR simulation studies. A set of conclusions is presented as well as a discussion of the technical implementation of GCR simulation. Published by Elsevier Ltd.
Supersonic MHD generator system
Rahman, M.A.
1983-11-29
An improved MHD electrical power generating system of the type having a MHD topping cycle and a steam generating bottoming cycle is disclosed. The system typically includes a combustion system, a conventional MHD generator and a first diffuser radiant boiler. The improvement comprises a first supersonic MHD generator and ramjet engine configuration operatively connected in series with each other and with the conventional MHD generator. The first supersonic MHD generator and ramjet engine configuration increase the power output and improve the operating efficiency of the electrical generating system. A diffuser system is also disclosed which is in fluid communication with the supersonic MHD generator and the ramjet engine for collecting bypass plasma gas to be used for heating a second radiant boiler adapted for powering a steam turbine generator.
NASA Astrophysics Data System (ADS)
Naramgari, Sandeep; Sulochana, C.
2016-01-01
In this study, we analyzed the heat and mass transfer in thermophoretic radiative hydromagnetic nanofluid flow over an exponentially stretching porous sheet embedded in porous medium with internal heat generation/absorption, viscous dissipation and suction/injection effects. The governing partial differential equations of the flow are converted into nonlinear coupled ordinary differential equations by using similarity transformation. Runge-Kutta-based shooting technique is employed to yield the numerical solutions for the model. The effect of non-dimensional parameters on velocity, temperature and concentration profiles are discussed and presented through graphs. The physical quantities of interest local skin friction coefficient, Nusselt and Sherwood numbers are calculated and presented through tables.
Chen, Yang
2012-03-07
At Colorado University-Boulder the primary task is to extend our gyrokinetic Particle-in-Cell simulation of tokamak micro-turbulence and transport to the area of energetic particle physics. We have implemented a gyrokinetic ion/massless fluid electron hybrid model in the global {delta} f-PIC code GEM, and benchmarked the code with analytic results on the thermal ion radiative damping rate of Toroidal Alfven Eigenmodes (TAE) and with mode frequency and spatial structure from eigenmode analysis. We also performed nonlinear simulations of both a single-n mode (n is the toroidal mode number) and multiple-n modes, and in the case of single-n, benchmarked the code on the saturation amplitude vs. particle collision rate with analytical theory. Most simulations use the f method for both ions species, but we have explored the full-f method for energetic particles in cases where the burst amplitude of the excited instabilities is large as to cause significant re-distribution or loss of the energetic particles. We used the hybrid model to study the stability of high-n TAEs in ITER. Our simulations show that the most unstable modes in ITER lie in the rage of 10 < n < 20. Thermal ion pressure effect and alpha particles non-perturbative effect are important in determining the mode radial location and stability threshold. The thermal ion Landau damping rate and radiative damping rate from the simulations are compared with analytical estimates. The thermal ion Landau damping is the dominant damping mechanism. Plasma elongation has a strong stabilizing effect on the alpha driven TAEs. The central alpha particle pressure threshold for the most unstable n=15 mode is about {beta}{sub {alpha}}(0) = 0.7% for the fully shaped ITER equilibrium. We also carried nonlinear simulations of the most unstable n = 15 mode and found that the saturation amplitude for the nominal ITER discharge is too low to cause large redistribution or loss of alpha particles. To include kinetic electron effects
The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D
Izzo, V. A.
2017-02-27
Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less
NASA Astrophysics Data System (ADS)
Misra, J. C.; Sinha, A.
2013-05-01
In this paper, a theoretical analysis is presented for magnetohydrodynamic flow of blood in a capillary, its lumen being porous and wall permeable. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. Thermal radiation, velocity slip and thermal slip conditions are taken into account. In order to study the flow field as well as the temperature field, the problem is formulated as a boundary value problem consisting of a system of nonlinear coupled partial differential equations. The problem is analysed by using similarity transformation and boundary layer approximation. Solution of the problem is achieved by developing a suitable numerical method and using high speed computers. Computational results for the variation in velocity, temperature, skin-friction co-efficient and Nusselt number are presented in graphical/tabular form. Effects of different parameters are adequately discussed. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries.
Simulating synchrotron radiation in accelerators including diffuse and specular reflections
NASA Astrophysics Data System (ADS)
Dugan, G.; Sagan, D.
2017-02-01
An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall where the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program's use.
Collisional-Radiative Modeling In Flow Simulations
2008-09-08
based on Millikan -White’s formula including Park’s correction (52). For the vibrational-vibrational energy exchange, different formulations have been...modelling radiative transfer in atmospheric air mixture plasmas. Journal of Quantitative Spectroscopy and Radiative Transfer, 73:91–110. [59] Roberts , T. P
NASA Astrophysics Data System (ADS)
Jia, Xianzhe; Slavin, James A.; Gombosi, Tamas I.; Daldorff, Lars K. S.; Toth, Gabor; Holst, Bart
2015-06-01
Mercury's comparatively weak intrinsic magnetic field and its close proximity to the Sun lead to a magnetosphere that undergoes more direct space-weathering interactions than other planets. A unique aspect of Mercury's interaction system arises from the large ratio of the scale of the planet to the scale of the magnetosphere and the presence of a large-size core composed of highly conducting material. Consequently, there is strong feedback between the planetary interior and the magnetosphere, especially under conditions of strong external forcing. Understanding the coupled solar wind-magnetosphere-interior interaction at Mercury requires not only analysis of observations but also a modeling framework that is both comprehensive and inclusive. We have developed a new global MHD model for Mercury in which the planetary interior is modeled as layers of different electrical conductivities that electromagnetically couple to the surrounding plasma environment. This new modeling capability allows us to characterize the dynamical response of Mercury to time-varying external conditions in a self-consistent manner. Comparison of our model results with observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft shows that the model provides a reasonably good representation of the global magnetosphere. To demonstrate the capability to model induction effects, we have performed idealized simulations in which Mercury's magnetosphere is impacted by a solar wind pressure enhancement. Our results show that due to the induction effect, Mercury's core exerts strong global influences on the way Mercury responds to changes in the external environment, including modifying the global magnetospheric structure and affecting the extent to which the solar wind directly impacts the surface. The global MHD model presented here represents a crucial step toward establishing a modeling framework that enables self-consistent characterization of Mercury
Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295
NASA Astrophysics Data System (ADS)
Abd Elazem, Nader Y.; Ebaid, Abdelhalim
2017-07-01
In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.
NASA Astrophysics Data System (ADS)
Ullah, Imran; Khan, Ilyas; Shafie, Sharidan
2016-11-01
In the present work, the effects of chemical reaction on hydromagnetic natural convection flow of Casson nanofluid induced due to nonlinearly stretching sheet immersed in a porous medium under the influence of thermal radiation and convective boundary condition are performed numerically. Moreover, the effects of velocity slip at stretching sheet wall are also examined in this study. The highly nonlinear-coupled governing equations are converted to nonlinear ordinary differential equations via similarity transformations. The transformed governing equations are then solved numerically using the Keller box method and graphical results for velocity, temperature, and nanoparticle concentration as well as wall shear stress, heat, and mass transfer rate are achieved through MATLAB software. Numerical results for the wall shear stress and heat transfer rate are presented in tabular form and compared with previously published work. Comparison reveals that the results are in good agreement. Findings of this work demonstrate that Casson fluids are better to control the temperature and nanoparticle concentration as compared to Newtonian fluid when the sheet is stretched in a nonlinear way. Also, the presence of suspended nanoparticles effectively promotes the heat transfer mechanism in the base fluid.
Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md
2013-01-01
A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.
Ullah, Imran; Khan, Ilyas; Shafie, Sharidan
2016-12-01
In the present work, the effects of chemical reaction on hydromagnetic natural convection flow of Casson nanofluid induced due to nonlinearly stretching sheet immersed in a porous medium under the influence of thermal radiation and convective boundary condition are performed numerically. Moreover, the effects of velocity slip at stretching sheet wall are also examined in this study. The highly nonlinear-coupled governing equations are converted to nonlinear ordinary differential equations via similarity transformations. The transformed governing equations are then solved numerically using the Keller box method and graphical results for velocity, temperature, and nanoparticle concentration as well as wall shear stress, heat, and mass transfer rate are achieved through MATLAB software. Numerical results for the wall shear stress and heat transfer rate are presented in tabular form and compared with previously published work. Comparison reveals that the results are in good agreement. Findings of this work demonstrate that Casson fluids are better to control the temperature and nanoparticle concentration as compared to Newtonian fluid when the sheet is stretched in a nonlinear way. Also, the presence of suspended nanoparticles effectively promotes the heat transfer mechanism in the base fluid.
Computer simulation of radiation damage in gallium arsenide
NASA Technical Reports Server (NTRS)
Stith, John J.; Davenport, James C.; Copeland, Randolph L.
1989-01-01
A version of the binary-collision simulation code MARLOWE was used to study the spatial characteristics of radiation damage in proton and electron irradiated gallium arsenide. Comparisons made with the experimental results proved to be encouraging.
Simulation of Merger of Two Black Holes and Gravitational Radiation
This movie shows a simulation of the merger of two black holes and the resulting emission of gravitational radiation. The colored fields represent a component of the curvature of space-time. The ou...
Lessons Learned from Radiative Transfer Simulations of the Venus Atmosphere
NASA Astrophysics Data System (ADS)
Arney, G. N.; Meadows, V. S.; Lincowski, A.
2017-05-01
We discuss the challenges of modeling the spectrum of the venusian lower atmosphere, which can be used for retrievals of lower atmosphere gas abundances. We also discuss applications of radiative transfer simulations to exo-Venuses.
CORHEL MHD Modeling in Support of Solar Dynamics Observatory
NASA Astrophysics Data System (ADS)
Linker, Jon A.; Riley, P.; Mikic, Z.; Lionello, R.; Titov, V.; Wijaya, J.
2010-05-01
CORHEL - for Corona-Heliosphere - is a coupled set of models and tools for quantitatively modeling the ambient solar corona and solar wind in various approximations. The coronal MHD code MAS in CORHEL has been used to produce routine polytropic solutions for all of the Carrington rotations during the STEREO mission (available at www.predsci.com). The MAS code can also be used to produce solutions that include energy transport (radiative losses, anisotropic thermal conduction, and coronal heating) in the transition region and solar corona. This more accurate representation of energy flow allows us to compute simulated EUV and X-ray emission and compare directly with observations. We refer to this as the thermodynamic MHD model. In this paper, we describe the production of thermodynamic MHD solutions as part of CORHEL. When sufficiently calibrated data are available, the solutions will use magnetic maps derived from HMI magnetograms. These solutions will be made routinely available in support of the Solar Dynamics Observatory (SDO) mission, and will allow comparison with emission observations from AIA when emission kernels become available. Work supported by the LWS Strategic Capabilities Program (NASA, NSF, and AFOSR), CISM (NSF), HTP (NASA) and the HMI team.
NASA Astrophysics Data System (ADS)
Lebedev, E. F.; Ostashev, V. E.; Fortov, V. E.
2004-11-01
Explosive driven MHD generators (EMHD) occupy an intermediate position between destroyed Explosive Flux Compression Generators and solid-propellant- pulsed MHD generators. Studies revealed the negative consequences of destroying a plasma liner through Rayleigh-Taylor instability. The real efficiency of conversion of condensed HE charge chemical energy reaches ~10% if the magnetic field in a MHD channel is approximately 8-10 T. Accommodation of 20-30 linear MHD channels into a toroidal magnet seems to be optimal for EMHD generator design. This device may operate repeatedly with a frequency of up to 6.5×103pps.
Galactic Cosmic Ray Simulator at the NASA Space Radiation Laboratory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam
2015-01-01
The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment is to attempt to reproduce the unmodified, external GCR spectrum at a ground based accelerator. A possibly better approach would use the modified, shielded tissue spectrum, to select accelerator beams impinging on biological targets. NASA plans for implementation of a GCR simulator at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory will be discussed.
On the propagation of uncertainties in radiation belt simulations
NASA Astrophysics Data System (ADS)
Camporeale, Enrico; Shprits, Yuri; Chandorkar, Mandar; Drozdov, Alexander; Wing, Simon
2016-11-01
We present the first study of the uncertainties associated with radiation belt simulations, performed in the standard quasi-linear diffusion framework. In particular, we estimate how uncertainties of some input parameters propagate through the nonlinear simulation, producing a distribution of outputs that can be quite broad. Here we restrict our focus on two-dimensional simulations (in energy and pitch angle space) of parallel-propagating chorus waves only, and we study as stochastic input parameters the geomagnetic index Kp (that characterizes the time dependency of an idealized storm), the latitudinal extent of waves, and the average electron density. We employ a collocation method, thus performing an ensemble of simulations. The results of this work point to the necessity of shifting to a probabilistic interpretation of radiation belt simulation results and suggest that an accurate specification of a time-dependent density model is crucial for modeling the radiation environment.
NASA Astrophysics Data System (ADS)
Huang, Zhenguang; Tóth, Gábor; Gombosi, Tamas I.; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael R.; Bieler, Andre; Hansen, Kenneth C.; Shou, Yinsi; Altwegg, Kathrin
2016-05-01
The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. To serve this need and support the Rosetta mission, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multifluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. This model incorporates different mass loading processes, including photoionization and electron impact ionization, charge exchange, dissociative ion-electron recombination, and collisional interactions between different fluids. We simulated the plasma and neutral gas environment near perihelion in three different cases: an idealized comet with a spherical body and uniform neutral gas outflow, an idealized comet with a spherical body and illumination-driven neutral gas outflow, and comet CG with a realistic shape model and illumination-driven neutral gas outflow. We compared the results of the three cases and showed that the simulations with illumination-driven neutral gas outflow have magnetic reconnection, a magnetic pileup region and nucleus directed plasma flow inside the nightside reconnection region, which have not been reported in the literature.
Tanaka, T.
1995-07-01
Mechanisms that generate the field-aligned current (FAC) systems in the magnetosphere-ionosphere coupling scheme by virtue of the solar wind-magnetosphere interaction are investigated with a three-dimensional magnetohydrodynamic (MHD) simulation. As a simulation scheme, the finite volume total variation diminishing (TVD) scheme on an unstructured grid system is employed for precise calculations of the ionospheric region. In the ionosphere, the divergence of the Pederson and Hall currents is matched with FAC, mainly assuming uniform conductivity. The present calculation reproduces the traditional region 1 and 2 currents in the polar ionosphere, for both the northward and southward interplanetary magnetic fields (IMFs). The calculated magnitude of the region 1 current becomes large on the dayside, in agreement with observational results. For the northward IMF, NBZ currents that dominate the entire polar cap are obtained, with a maximum on the dayside. This current is totally absent in the southward IMF result. Corresponding to the FACs, the northward IMF results in multicell convection in the polar ionosphere, and the southward IMF results in two-cell convection. On the evening side, the calculated region 1 currents flow almost along the field lines away from the Earth toward the magnetospheric low-latitude boundary layer (LLBL), then flow up the magnetopause across the field lines to high latitudes.
NASA Technical Reports Server (NTRS)
Ogino, T.
1986-01-01
The time-dependent interaction of the solar wind with the earth's magnetosphere is simulated using a three-dimensional MHD model. The bow shock, magnetopause, magnetotail, and plasma sheet of the magnetosphere and Birkeland field-aligned currents that are dependent on the polarity of the z component of the IMF are produced. Twin convection cells and a dawn to dusk electric potential of 30-100 kV are detected at the equator in the magnetosphere. Four types of field-aligned currents are observed: region 1, region 2, dayside magnetopause currents in the dayside cusp region, and the dayside cusp currents for southward IMF. Region 1 and 2 field-aligned currents generated for all IMF conditions are 0.6-1.0 x 10 to the 6th A and 0.15-0.61 x 10 to the 6th A, respectively. The relationship between region 1 currents and field-aligned vorticity, and region 2 currents and pressure gradients are studied. The simulated data are compared with a theoretical analysis of the field-aligned currents and good correlation is observed.
NASA Astrophysics Data System (ADS)
Chu, F.; Hudson, M.; Kress, B.
2008-12-01
The physics-based Lyon-Fedder-Mobarry (LFM) code simulates Earth's magnetospheric topology and dynamics by solving the equations of ideal MHD using input solar wind parameters at the upstream boundary. Comparison with electron phase space density evolution during storms using a radial diffusion code, as well as spacecraft measurements where available, will tell us when diffusion is insufficiently accurate for radiation belt simulation, for example, during CME-shock injection events like March 24, 1991, which occurred on MeV electron drift time scales of minutes (Li et al., 1993). The 2004 July and 2004 November storms, comparable in depth of penetration into the slot region to the Halloween 2003 storm, have been modeled with both approaches. The November 8, 2004 storm was preceded by a Storm Sudden Commencement produced by a CME-shock followed by minimum Dst = -373 nT, while the July 23 to July 28 storm interval had milder consecutive drops in Dst, corresponding to multiple CME shocks and southward IMF Bz turnings. We have run the November and July storms with LFM using ACE data as upstream input, running the July storm with lower temporal resolution over a longer time interval. The November storm was different because the SCC shock was unusually intense, therefore the possibility of drift time scale acceleration by the associated magnetosonic impulse produced by the shock exists, as in March 1991 and also Halloween 2003 events (Kress et al., 2007). It can then take a short time (minutes) for electrons to be transported to low L shell while conserving their first invariant, resulting in a peak in energy and phase space density in the slot region. Radial diffusion suffices for some storm periods like the July 2004 sequence of three storms, while the guiding center test particle simulation in MHD fields is necessary to describe prompt injections which occur faster than diffusive time scales, for which November 2004 is a likely candidate. Earlier examples have been
MHD Turbulence and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Laser method for simulating the transient radiation effects of semiconductor
NASA Astrophysics Data System (ADS)
Li, Mo; Sun, Peng; Tang, Ge; Wang, Xiaofeng; Wang, Jianwei; Zhang, Jian
2017-05-01
In this paper, we demonstrate the laser simulation adequacy both by theoretical analysis and experiments. We first explain the basic theory and physical mechanisms of laser simulation of transient radiation effect of semiconductor. Based on a simplified semiconductor structure, we describe the reflection, optical absorption and transmission of laser beam. Considering two cases of single-photon absorption when laser intensity is relatively low and two-photon absorption with higher laser intensity, we derive the laser simulation equivalent dose rate model. Then with 2 types of BJT transistors, laser simulation experiments and gamma ray radiation experiments are conducted. We found good linear relationship between laser simulation and gammy ray which depict the reliability of laser simulation.
SKIRT: Hybrid parallelization of radiative transfer simulations
NASA Astrophysics Data System (ADS)
Verstocken, S.; Van De Putte, D.; Camps, P.; Baes, M.
2017-07-01
We describe the design, implementation and performance of the new hybrid parallelization scheme in our Monte Carlo radiative transfer code SKIRT, which has been used extensively for modelling the continuum radiation of dusty astrophysical systems including late-type galaxies and dusty tori. The hybrid scheme combines distributed memory parallelization, using the standard Message Passing Interface (MPI) to communicate between processes, and shared memory parallelization, providing multiple execution threads within each process to avoid duplication of data structures. The synchronization between multiple threads is accomplished through atomic operations without high-level locking (also called lock-free programming). This improves the scaling behaviour of the code and substantially simplifies the implementation of the hybrid scheme. The result is an extremely flexible solution that adjusts to the number of available nodes, processors and memory, and consequently performs well on a wide variety of computing architectures.
NASA Astrophysics Data System (ADS)
Huang, Zhenguang; Toth, Gabor; Gombosi, Tamas; Jia, Xianzhe; Rubin, Martin; Fougere, Nicolas; Tenishev, Valeriy; Combi, Michael; Bieler, Andre; Hansen, Kenneth; Shou, Yinsi; Altwegg, Kathrin
2016-04-01
The neutral and plasma environment is critical in understanding the interaction of the solar wind and comet 67P/Churyumov-Gerasimenko (CG), the target of the European Space Agency's Rosetta mission. In this study, we have developed a 3-D four-fluid model, which is based on BATS-R-US (Block-Adaptive Tree Solarwind Roe-type Upwind Scheme) within SWMF (Space Weather Modeling Framework) that solves the governing multi-fluid MHD equations and the Euler equations for the neutral gas fluid. These equations describe the behavior and interactions of the cometary heavy ions, the solar wind protons, the electrons, and the neutrals. We simulated the plasma and neutral gas environment of comet CG with SHAP5 model near perihelion and we showed that the plasma environment in the inner coma region have some new features: magnetic reconnection in the tail region, a magnetic pile-up region on the nightside, and nucleus directed plasma flow inside the nightside reconnection region.
NASA Astrophysics Data System (ADS)
Daum, P.; Wild, J. A.; Penz, T.; Woodfield, E. E.; RèMe, H.; Fazakerley, A. N.; Daly, P. W.; Lester, M.
2008-07-01
A global magnetohydrodynamic numerical simulation is used to study the large-scale structure and formation location of flux transfer events (FTEs) in synergy with in situ spacecraft and ground-based observations. During the main period of interest on the 14 February 2001 from 0930 to 1100 UT the Cluster spacecraft were approaching the Northern Hemisphere high-latitude magnetopause in the postnoon sector on an outbound trajectory. Throughout this period the magnetic field, electron, and ion sensors on board Cluster observed characteristic signatures of FTEs. A few minutes delayed to these observations the Super Dual Auroral Radar Network (SuperDARN) system indicated flow disturbances in the conjugate ionospheres. These "two-point" observations on the ground and in space were closely correlated and were caused by ongoing unsteady reconnection in the vicinity of the spacecraft. The three-dimensional structures and dynamics of the observed FTEs and the associated reconnection sites are studied by using the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme (BATS-R-US) MHD code in combination with a simple open flux tube motion model (Cooling). Using these two models the spatial and temporal evolution of the FTEs is estimated. The models fill the gaps left by measurements and allow a "point-to-point" mapping between the instruments in order to investigate the global structure of the phenomenon. The modeled results presented are in good correlation with previous theoretical and observational studies addressing individual features of FTEs.
Hatami, M; Hatami, J; Ganji, D D
2014-02-01
In this paper, heat transfer and flow analysis for a non-Newtonian third grade nanofluid flow in porous medium of a hollow vessel in presence of magnetic field are simulated analytically and numerically. Blood is considered as the base third grade non-Newtonian fluid and gold (Au) as nanoparticles are added to it. The viscosity of nanofluid is considered a function of temperature as Vogel's model. Least Square Method (LSM), Galerkin method (GM) and fourth-order Runge-Kutta numerical method (NUM) are used to solve the present problem. The influences of the some physical parameters such as Brownian motion and thermophoresis parameters on non-dimensional velocity and temperature profiles are considered. The results show that increasing the thermophoresis parameter (N(t)) caused an increase in temperature values in whole domain and an increase in nanoparticles concentration just near the inner wall of vessel. Furthermore by increasing the MHD parameter, velocity profiles decreased due to magnetic field effect. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sarp Yalim, Mehmet; Pogorelov, Nikolai; Liu, Yang
2017-05-01
We have developed a data-driven magnetohydrodynamic (MHD) model of the global solar corona which uses characteristically-consistent boundary conditions (BCs) at the inner boundary. Our global solar corona model can be driven by different observational data including Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) synoptic vector magnetograms together with the horizontal velocity data in the photosphere obtained by the time-distance helioseismology method, and the line-of-sight (LOS) magnetogram data obtained by HMI, Solar and Heliospheric Observatory/Michelson Doppler Imager (SOHO/MDI), National Solar Observatory/Global Oscillation Network Group (NSO/GONG) and Wilcox Solar Observatory (WSO). We implemented our model in the Multi-Scale Fluid-Kinetic Simulation Suite (MS-FLUKSS) - a suite of adaptive mesh refinement (AMR) codes built upon the Chombo AMR framework developed at the Lawrence Berkeley National Laboratory. We present an overview of our model, characteristic BCs, and two results we obtained using our model: A benchmark test of relaxation of a dipole field using characteristic BCs, and relaxation of an initial PFSS field driven by HMI LOS magnetogram data, and horizontal velocity data obtained by the time-distance helioseismology method using a set of non-characteristic BCs.
Flux canceling in three-dimensional radiative magnetohydrodynamic simulations
NASA Astrophysics Data System (ADS)
Thaler, Irina; Spruit, H. C.
2017-05-01
We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.
Dipole Alignment in Rotating MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Advancements in Afterbody Radiative Heating Simulations for Earth Entry
NASA Technical Reports Server (NTRS)
Johnston, Christopher O.; Panesi, Marco; Brandis, Aaron M.
2016-01-01
Four advancements to the simulation of backshell radiative heating for Earth entry are presented. The first of these is the development of a flow field model that treats electronic levels of the dominant backshell radiator, N, as individual species. This is shown to allow improvements in the modeling of electron-ion recombination and two-temperature modeling, which are shown to increase backshell radiative heating by 10 to 40%. By computing the electronic state populations of N within the flow field solver, instead of through the quasi-steady state approximation in the radiation code, the coupling of radiative transition rates to the species continuity equations for the levels of N, including the impact of non-local absorption, becomes feasible. Implementation of this additional level of coupling between the flow field and radiation codes represents the second advancement presented in this work, which is shown to increase the backshell radiation by another 10 to 50%. The impact of radiative transition rates due to non-local absorption indicates the importance of accurate radiation transport in the relatively complex flow geometry of the backshell. This motivates the third advancement, which is the development of a ray-tracing radiation transport approach to compute the radiative transition rates and divergence of the radiative flux at every point for coupling to the flow field, therefore allowing the accuracy of the commonly applied tangent-slab approximation to be assessed for radiative source terms. For the sphere considered at lunar-return conditions, the tangent-slab approximation is shown to provide a sufficient level of accuracy for the radiative source terms, even for backshell cases. This is in contrast to the agreement between the two approaches for computing the radiative flux to the surface, which differ by up to 40%. The final advancement presented is the development of a nonequilibrium model for NO radiation, which provides significant backshell
Radiation myelopathy of cervical spinal cord simulating intramedullary neoplasm
Fogelholm, R.; Haltia, M.; Andersson, L. C.
1974-01-01
Radiation myelopathy is a well-known complication of irradiation therapy of neoplasms in the vicinity of the spinal cord. Most earlier authors have stressed the association of a normal myelogram and normal CSF protein level with this condition. One case of radiation myelopathy with a myelogram simulating intramedullary neoplasm and with extremely high CSF protein concentration is presented. Six months after myelography necropsy revealed severe atrophy of the previously thickened lower cervical spinal cord. The pathogenetic mechanisms are discussed. Images PMID:4443812
Grackle: Chemistry and radiative cooling library for astrophysical simulations
NASA Astrophysics Data System (ADS)
Smith, Britton D.; Bryan, Greg L.; Glover, Simon C. O.; Goldbaum, Nathan J.; Turk, Matthew J.; Regan, John; Wise, John H.; Schive, Hsi-Yu; Abel, Tom; Emerick, Andrew; O'Shea, Brian W.; Anninos, Peter; Hummels, Cameron B.; Khochfar, Sadegh
2016-12-01
The chemistry and radiative cooling library Grackle provides options for primordial chemistry and cooling, photo-heating and photo-ionization from UV backgrounds, and support for user-provided arrays of volumetric and specific heating rates for astrophysical simulations and models. The library provides functions to update chemistry species; solve radiative cooling and update internal energy; and calculate cooling time, temperature, pressure, and ratio of specific heats (gamma), and has interfaces for C, C++, Fortran, and Python codes.
Absorbed radiation by various tissues during simulated endodontic radiography
Torabinejad, M.; Danforth, R.; Andrews, K.; Chan, C.
1989-06-01
The amount of absorbed radiation by various organs was determined by placing lithium fluoride thermoluminescent chip dosimeters at selected anatomical sites in and on a human-like X-ray phantom and exposing them to radiation at 70- and 90-kV X-ray peaks during simulated endodontic radiography. The mean exposure dose was determined for each anatomical site. The results show that endodontic X-ray doses received by patients are low when compared with other radiographic procedures.
Simulating Nonequilibrium Radiation via Orthogonal Polynomial Refinement
2015-01-07
resolution orthogonal polynomial refinement technique for this multi-disciplinary science. Through the computational mathematics basic research, a...thus the phenomenon must be modeled [1-4]. In addition, the chemical species concentrations and its associated thermodynamic states of an inhomogeneous... thermodynamic state and compositions of the flow medium. The required optical parameters for the nonequilibrium phenomena simulation need to be determined
Simulation of free-electron lasers seeded with broadband radiation
Bajlekov, Svetoslav; Fawley, William; Schroeder, Carl; Bartolini, Riccardo; Hooker, Simon
2011-03-10
The longitudinal coherence of free-electron laser (FEL) radiation can be enhanced by seeding the FEL with high harmonics of an optical laser pulse. The radiation produced by high-harmonic generation (HHG), however, has a fast-varying temporal profile that can violate the slowly varying envelope approximation and limited frequency window that is employed in conventional free-electron laser simulation codes. Here we investigate the implications of violating this approximation on the accuracy of simulations. On the basis of both analytical considerations and 1D numerical studies, it is concluded that, for most realistic scenarios, conventional FEL codes are capable of accurately simulating the FEL process even when the seed radiation violates the slowly varying envelope approximation. We additionally discuss the significance of filtering the harmonic content of broadband HHG seeds.
MHD control in burning plasmas MHD control in burning plasmas
NASA Astrophysics Data System (ADS)
Donné, Tony; Liang, Yunfeng
2012-07-01
in the field of burn control is to find the proper balance between desired and detrimental effects of the various MHD modes and to develop the methods and tools for active feedback control of MHD modes in burning plasmas. Therefore, it is necessary to understand the dynamics of the system, in this case the mutual interactions between the fast alpha particles and the MHD instabilities. Since burning plasmas do not yet exist, the relevant experimental work until ITER comes into full operation needs to be largely based on alpha-particle simulation experiments in which the alpha particles are accelerated to high energies by means of special heating techniques. The precise conditions of a burning plasma can be only partly mimicked in present tokamaks. Hence, also a detailed computational modelling effort is needed, in order to understand the impact of findings in present machines for those of the future. In 2011 two dedicated workshops were devoted to MHD control. Firstly, there was a workshop on Control of Burning Plasmas that took place from 21-25 March 2011 at the Lorentz Centre in Leiden, The Netherlands. Secondly, the 480th Wilhelm and Else Heraeus Seminar that took place from 16-18 June in Bad Honnef, Germany was devoted to Active Control of Instabilities in Hot Plasmas. This special issue presents a collection of papers that have been presented at the two workshops, along with a few papers that are the result of an open call to contribute to this special issue.
Implict Monte Carlo Radiation Transport Simulations of Four Test Problems
Gentile, N
2007-08-01
Radiation transport codes, like almost all codes, are difficult to develop and debug. It is helpful to have small, easy to run test problems with known answers to use in development and debugging. It is also prudent to re-run test problems periodically during development to ensure that previous code capabilities have not been lost. We describe four radiation transport test problems with analytic or approximate analytic answers. These test problems are suitable for use in debugging and testing radiation transport codes. We also give results of simulations of these test problems performed with an Implicit Monte Carlo photonics code.
Simulating synchrotron radiation in accelerators including diffuse and specular reflections
Dugan, G.; Sagan, D.
2017-02-24
An accurate calculation of the synchrotron radiation flux within the vacuum chamber of an accelerator is needed for a number of applications. These include simulations of electron cloud effects and the design of radiation masking systems. To properly simulate the synchrotron radiation, it is important to include the scattering of the radiation at the vacuum chamber walls. To this end, a program called synrad3d has been developed which simulates the production and propagation of synchrotron radiation using a collection of photons. Photons generated by a charged particle beam are tracked from birth until they strike the vacuum chamber wall wheremore » the photon is either absorbed or scattered. Both specular and diffuse scattering is simulated. If a photon is scattered, it is further tracked through multiple encounters with the wall until it is finally absorbed. This paper describes the synrad3d program, with a focus on the details of its scattering model, and presents some examples of the program’s use.« less
Time-dependent radiation dose simulations during interplanetary space flights
NASA Astrophysics Data System (ADS)
Dobynde, Mikhail; Shprits, Yuri; Drozdov, Alexander; Hoffman, Jeffrey; Li, Ju
2016-07-01
Space radiation is one of the main concerns in planning long-term interplanetary human space missions. There are two main types of hazardous radiation - Solar Energetic Particles (SEP) and Galactic Cosmic Rays (GCR). Their intensities and evolution depend on the solar activity. GCR activity is most enhanced during solar minimum, while the most intense SEPs usually occur during the solar maximum. SEPs are better shielded with thick shields, while GCR dose is less behind think shields. Time and thickness dependences of the intensity of these two components encourage looking for a time window of flight, when radiation intensity and dose of SEP and GCR would be minimized. In this study we combine state-of-the-art space environment models with GEANT4 simulations to determine the optimal shielding, geometry of the spacecraft, and launch time with respect to the phase of the solar cycle. The radiation environment was described by the time-dependent GCR model, and the SEP spectra that were measured during the period from 1990 to 2010. We included gamma rays, electrons, neutrons and 27 fully ionized elements from hydrogen to nickel. We calculated the astronaut's radiation doses during interplanetary flights using the Monte-Carlo code that accounts for the primary and the secondary radiation. We also performed sensitivity simulations for the assumed spacecraft size and thickness to find an optimal shielding. In conclusion, we present the dependences of the radiation dose as a function of launch date from 1990 to 2010, for flight durations of up to 3 years.
Computer simulation radiation damages in condensed matters
NASA Astrophysics Data System (ADS)
Kupchishin, A. I.; Kupchishin, A. A.; Voronova, N. A.; Kirdyashkin, V. I.; Gyngazov, V. A.
2016-02-01
As part of the cascade-probability method were calculated the energy spectra of primary knocked-out atoms and the concentration of radiation-induced defects in a number of metals irradiated by electrons. As follows from the formulas, the number of Frenkel pairs at a given depth depends on three variables having certain physical meaning: firstly, Cd (Ea h) is proportional to the average energy of the considered depth of the PKA (if it is higher, than the greater number of atoms it will displace); secondly is inversely proportional to the path length λ2 for the formation of the PKA (if λ1 is higher than is the smaller the probability of interaction) and thirdly is inversely proportional to Ed. In this case calculations are in satisfactory agreement with the experimental data (for example, copper and aluminum).
Galactic Cosmic Ray Simulation at the NASA Space Radiation Laboratory
NASA Technical Reports Server (NTRS)
Norbury, John W.; Slaba, Tony C.; Rusek, Adam
2015-01-01
The external Galactic Cosmic Ray (GCR) spectrum is significantly modified when it passes through spacecraft shielding and astronauts. One approach for simulating the GCR space radiation environment at ground based accelerators would use the modified spectrum, rather than the external spectrum, in the accelerator beams impinging on biological targets. Two recent workshops have studied such GCR simulation. The first workshop was held at NASA Langley Research Center in October 2014. The second workshop was held at the NASA Space Radiation Investigators' workshop in Galveston, Texas in January 2015. The results of these workshops will be discussed in this paper.
In-situ MHD energy conversion for fusion. [R
Campbell, R.B.; Logan, B.G.; Hoffman, M.A.
1986-06-01
An advanced concept, in-situ MHD conversion, is described for converting fusion energy to electricity. Considerable cost savings can be realized because of the conversion of thermal energy to electricity achieved in the blanket by means of magnetohydrodynamic (MHD) generators. The external disk generator, also described, is another application of the MHD idea, which may have certain advantages over the in-situ scheme for advanced-fuel tokamaks. The feature that makes these schemes fusion-specific is the novel use of the electro-magnetic radiation naturally emitted by the plasma. The synchrotron radiation can be used either to heat the nonequilibrium MHD plasma, or possibly improve its stability. A Rankine cycle with cesium-seeded mercury as a working fluid is used in either case. Performance predictions by a quasi-one-dimensional model are presented. An experiment to determine the effect of microwave radiation on channel performance is planned.
Abla, G
2012-11-09
The Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM) project is dedicated to conduct research on integrated multi-physics simulations. The Integrated Plasma Simulator (IPS) is a framework that was created by the SWIM team. It provides an integration infrastructure for loosely coupled component-based simulations by facilitating services for code execution coordination, computational resource management, data management, and inter-component communication. The IPS framework features improving resource utilization, implementing application-level fault tolerance, and support of the concurrent multi-tasking execution model. The General Atomics (GA) team worked closely with other team members on this contract, and conducted research in the areas of computational code monitoring, meta-data management, interactive visualization, and user interfaces. The original website to monitor SWIM activity was developed in the beginning of the project. Due to the amended requirements, the software was redesigned and a revision of the website was deployed into production in April of 2010. Throughout the duration of this project, the SWIM Monitoring Portal (http://swim.gat.com:8080/) has been a critical production tool for supporting the project's physics goals.
NASA Astrophysics Data System (ADS)
Abe, Makito; Umemura, Masayuki; Hasegawa, Kenji
2016-12-01
We explore the possibility of the formation of globular clusters (GCs) under ultraviolet (UV) background radiation. One-dimensional spherical symmetric radiation hydrodynamics (RHD) simulations by Hasegawa et al. have demonstrated that the collapse of low-mass (106-7 M⊙) gas clouds exposed to intense UV radiation can lead to the formation of compact star clusters like GCs if gas clouds contract with supersonic infall velocities. However, three-dimensional effects, such as the anisotropy of background radiation and the inhomogeneity in gas clouds, have not been studied so far. In this paper, we perform three-dimensional RHD simulations in a semicosmological context, and reconsider the formation of compact star clusters in strong UV radiation fields. As a result, we find that although anisotropic radiation fields bring an elongated shadow of neutral gas, almost spherical compact star clusters can be procreated from a `supersonic infall' cloud, since photodissociating radiation suppresses the formation of hydrogen molecules in the shadowed regions and the regions are compressed by UV heated ambient gas. The properties of resultant star clusters match those of GCs. On the other hand, in weak UV radiation fields, dark-matter-dominated star clusters with low stellar density form due to the self-shielding effect as well as the positive feedback by ionizing photons. Thus, we conclude that the `supersonic infall' under a strong UV background is a potential mechanism to form GCs.
MHD-to-PIC transition for modeling of conduction and opening in a plasma opening switch
NASA Astrophysics Data System (ADS)
Schumer, J. W.
2001-06-01
The plasma opening switch (POS) is a critical element of some inductive-energy-storage pulsed-power generators. Detailed understanding of plasma redistribution and thinning during the POS conduction phase can be gained through magnetohydrodynamic fluid (MHD) simulations. As space-charge separation and kinetic effects become important late in the conduction phase (beginning of the opening phase), MHD methods become invalid and particle-in-cell (PIC) methods should be used. In this article, the applicability of MHD techniques is extended into PIC-like regimes by including non-ideal MHD phenomena such as the Hall effect and resistivity. The feasibility of the PIC technique is likewise extended into high-density, low-temperature MHD-like regimes by using a novel numerical cooling algorithm. At an appropriate time, an MHD-to-PIC transition must be accomplished in order to accurately simulate the POS opening phase. The mechanics for converting MHD (MACH2) output into PIC (MAGIC2d) input are introduced, as are the transition criteria determining when to perform this conversion. To establish these transition criteria, side-by-side MHD and PIC simulations are presented and compared. These separate simulations are then complemented by a proof-of-principle MHD-to-PIC transition, thereby demonstrating this MHD-to-PIC technique as a potentially viable tool for the simulation of POS plasmas. Practical limitations of the MHD-to-PIC transition method and applicability of the transition criteria to hybrid fluid-kinetic simulations are discussed.
nIFTy galaxy cluster simulations - II. Radiative models
NASA Astrophysics Data System (ADS)
Sembolini, Federico; Elahi, Pascal Jahan; Pearce, Frazer R.; Power, Chris; Knebe, Alexander; Kay, Scott T.; Cui, Weiguang; Yepes, Gustavo; Beck, Alexander M.; Borgani, Stefano; Cunnama, Daniel; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Newton, Richard D. A.; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Schaye, Joop; Teyssier, Romain
2016-07-01
We have simulated the formation of a massive galaxy cluster (M_{200}^crit = 1.1 × 1015 h-1 M⊙) in a Λ cold dark matter universe using 10 different codes (RAMSES, 2 incarnations of AREPO and 7 of GADGET), modelling hydrodynamics with full radiative subgrid physics. These codes include smoothed-particle hydrodynamics (SPH), spanning traditional and advanced SPH schemes, adaptive mesh and moving mesh codes. Our goal is to study the consistency between simulated clusters modelled with different radiative physical implementations - such as cooling, star formation and thermal active galactic nucleus (AGN) feedback. We compare images of the cluster at z = 0, global properties such as mass, and radial profiles of various dynamical and thermodynamical quantities. We find that, with respect to non-radiative simulations, dark matter is more centrally concentrated, the extent not simply depending on the presence/absence of AGN feedback. The scatter in global quantities is substantially higher than for non-radiative runs. Intriguingly, adding radiative physics seems to have washed away the marked code-based differences present in the entropy profile seen for non-radiative simulations in Sembolini et al.: radiative physics + classic SPH can produce entropy cores, at least in the case of non cool-core clusters. Furthermore, the inclusion/absence of AGN feedback is not the dividing line -as in the case of describing the stellar content - for whether a code produces an unrealistic temperature inversion and a falling central entropy profile. However, AGN feedback does strongly affect the overall stellar distribution, limiting the effect of overcooling and reducing sensibly the stellar fraction.
Simulating Space Radiation-Induced Breast Tumor Incidence Using Automata.
Heuskin, A C; Osseiran, A I; Tang, J; Costes, S V
2016-07-01
Estimating cancer risk from space radiation has been an ongoing challenge for decades primarily because most of the reported epidemiological data on radiation-induced risks are derived from studies of atomic bomb survivors who were exposed to an acute dose of gamma rays instead of chronic high-LET cosmic radiation. In this study, we introduce a formalism using cellular automata to model the long-term effects of ionizing radiation in human breast for different radiation qualities. We first validated and tuned parameters for an automata-based two-stage clonal expansion model simulating the age dependence of spontaneous breast cancer incidence in an unexposed U.S. We then tested the impact of radiation perturbation in the model by modifying parameters to reflect both targeted and nontargeted radiation effects. Targeted effects (TE) reflect the immediate impact of radiation on a cell's DNA with classic end points being gene mutations and cell death. They are well known and are directly derived from experimental data. In contrast, nontargeted effects (NTE) are persistent and affect both damaged and undamaged cells, are nonlinear with dose and are not well characterized in the literature. In this study, we introduced TE in our model and compared predictions against epidemiologic data of the atomic bomb survivor cohort. TE alone are not sufficient for inducing enough cancer. NTE independent of dose and lasting ∼100 days postirradiation need to be added to accurately predict dose dependence of breast cancer induced by gamma rays. Finally, by integrating experimental relative biological effectiveness (RBE) for TE and keeping NTE (i.e., radiation-induced genomic instability) constant with dose and LET, the model predicts that RBE for breast cancer induced by cosmic radiation would be maximum at 220 keV/μm. This approach lays the groundwork for further investigation into the impact of chronic low-dose exposure, inter-individual variation and more complex space radiation
Hybrid Parallelization of Adaptive MHD-Kinetic Module in Multi-Scale Fluid-Kinetic Simulation Suite
Borovikov, Sergey; Heerikhuisen, Jacob; Pogorelov, Nikolai
2013-04-01
The Multi-Scale Fluid-Kinetic Simulation Suite has a computational tool set for solving partially ionized flows. In this paper we focus on recent developments of the kinetic module which solves the Boltzmann equation using the Monte-Carlo method. The module has been recently redesigned to utilize intra-node hybrid parallelization. We describe in detail the redesign process, implementation issues, and modifications made to the code. Finally, we conduct a performance analysis.
Global MHD Simulation of the Coronal Mass Ejection on 2011 March 7: from Chromosphere to 1 AU
NASA Astrophysics Data System (ADS)
Jin, M.; Manchester, W.; van der Holst, B.; Oran, R.; Sokolov, I.; Toth, G.; Vourlidas, A.; Liu, Y.; Sun, X.; Gombosi, T. I.
2013-12-01
In this study, we present m