Sample records for radiative strength function

  1. Determination of the nuclear level densities and radiative strength function for 43 nuclei in the mass interval 28≤A≤200

    NASA Astrophysics Data System (ADS)

    Knezevic, David; Jovancevic, Nikola; Sukhovoj, Anatoly M.; Mitsyna, Ludmila V.; Krmar, Miodrag; Cong, Vu D.; Hambsch, Franz-Josef; Oberstedt, Stephan; Revay, Zsolt; Stieghorst, Christian; Dragic, Aleksandar

    2018-03-01

    The determination of nuclear level densities and radiative strength functions is one of the most important tasks in low-energy nuclear physics. Accurate experimental values of these parameters are critical for the study of the fundamental properties of nuclear structure. The step-like structure in the dependence of the level densities p on the excitation energy of nuclei Eex is observed in the two-step gamma cascade measurements for nuclei in the 28 ≤ A ≤ 200 mass region. This characteristic structure can be explained only if a co-existence of quasi-particles and phonons, as well as their interaction in a nucleus, are taken into account in the process of gamma-decay. Here we present a new improvement to the Dubna practical model for the determination of nuclear level densities and radiative strength functions. The new practical model guarantees a good description of the available intensities of the two step gamma cascades, comparable to the experimental data accuracy.

  2. Technique for Predicting the RF Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, M.; Reddell, J.

    1998-01-01

    This Memorandum presents a simple analytical technique for predicting the RF electric field strength inside an enclosed volume in which radio frequency radiation occurs. The technique was developed to predict the radio frequency (RF) field strength within a launch vehicle's fairing from payloads launched with their telemetry transmitters radiating and to the impact of the radiation on the vehicle and payload. The RF field strength is shown to be a function of the surface materials and surface areas. The method accounts for RF energy losses within exposed surfaces, through RF windows, and within multiple layers of dielectric materials which may cover the surfaces. This Memorandum includes the rigorous derivation of all equations and presents examples and data to support the validity of the technique.

  3. Large-scale deformed QRPA calculations of the gamma-ray strength function based on a Gogny force

    NASA Astrophysics Data System (ADS)

    Martini, M.; Goriely, S.; Hilaire, S.; Péru, S.; Minato, F.

    2016-01-01

    The dipole excitations of nuclei play an important role in nuclear astrophysics processes in connection with the photoabsorption and the radiative neutron capture that take place in stellar environment. We present here the results of a large-scale axially-symmetric deformed QRPA calculation of the γ-ray strength function based on the finite-range Gogny force. The newly determined γ-ray strength is compared with experimental photoabsorption data for spherical as well as deformed nuclei. Predictions of γ-ray strength functions and Maxwellian-averaged neutron capture rates for Sn isotopes are also discussed.

  4. 47 CFR 73.184 - Groundwave field strength graphs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... function of groundwave conductivity and distance from the source of radiation. The groundwave field... Propagation of Radio Waves Over the Surface of the Earth and in the Upper Atmosphere,” Part II, by Mr. K.A... relative values of groundwave field strength over a plane earth as a function of the numerical distance p...

  5. Strength Loss in MA-MOX Green Pellets from Radiation Damage to Binders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul A. Lessing; W.R. Cannon; Gerald W. Egeland

    The fracture strength of green Minor Actinides (MA)-MOX pellets containing 75 wt.% DUO2, 20 wt. % PuO2, 3 wt. % AmO2 and 2 wt. % NpO2 was studied as a function of storage time, after mixing in the binder and before sintering, to test the effect of radiation damage on binders. Fracture strength degraded continuously over the 10 days of the study for all three binders studied: PEG binder (Carbowax 8000), microcrystalline wax (Mobilcer X) and Styrene-acrylic copolymer (Duramax B1022) but the fracture strength of Duramax B1022 degraded the least. For instance, for several hours after mixing Carbowax 8000 withmore » MA MOX, the fracture strength of a pellet was reasonably high and pellets were easily handled without breaking but the pellets were too weak to handle after 10 days. Strength measured using diametral compression test showed strength degradation was more rapid in pellets containing 1.0 wt. % Carbowax PEG 8000 compared to those containing only 0.2 wt. %, suggesting that irradiation not only left the binder less effective but also reduced the pellet strength. In contrast the strength of pellets containing Duramax B1022 degraded very little over the 10 day period. It was suggested that the styrene portion of the Duramax B1022 copolymer provided the radiation resistance.« less

  6. Refractive index effects on the oscillator strength and radiative decay rate of 2,3-diazabicyclo[2.2.2]oct-2-ene.

    PubMed

    Mohanty, Jyotirmayee; Nau, Werner M

    2004-01-01

    The photophysical properties of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) were determined in 15 solvents, two supramolecular hosts (cucurbit[7]uril and beta-cyclodextrin) as well as in the gas phase. The oscillator strength and radiative decay rate of DBO as a function of refractive index i.e. polarizability have been analyzed. The oscillator strength increases by a factor of 10 upon going from the gas phase to the most polarizable carbon disulfide, while the corresponding radiative decay rates increase by a factor of 40. There is a good empirical correlation between the oscillator strength of the weakly allowed n,pi* transition of DBO and the reciprocal bulk polarizability, which can be employed to assess the polarizability of unknown microheterogeneous environments. A satisfactory correlation between the radiative decay rate and the square of the refractive index is also found, as previously documented for chromophores with allowed transitions. However, the correlation improves significantly when the oscillator strength is included in the correlation, which demonstrates the importance of this factor in the Strickler-Berg equation for chromophores with forbidden or weakly allowed transitions, for which the oscillator strength may be strongly solvent dependent. The radiative decay rate of DBO in two supramolecular assemblies has been determined, confirming the very low polarizability inside the cucurbituril cavity, in between perfluorohexane and the gas phase. The fluorescence quantum yield of DBO in the gas phase has been remeasured (5.1 +/- 0.5%) and was found to fall one full order of magnitude below a previously reported value.

  7. Evolution of the pygmy dipole resonance in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Bürger, A.; Guttormsen, M.; Görgen, A.; Nyhus, H. T.; Renstrøm, T.; Siem, S.; Tveten, G. M.; Voinov, A.

    2011-04-01

    Nuclear level density and γ-ray strength functions of Sn121,122 below the neutron separation energy are extracted with the Oslo method using the (He3,He3'γ) and (He3,αγ) reactions. The level densities of Sn121,122 display steplike structures, interpreted as signatures of neutron pair breaking. An enhancement in both strength functions, compared to standard models for radiative strength, is observed in our measurements for Eγ≳5.2 MeV. This enhancement is compatible with pygmy resonances centered at ≈8.4(1) and ≈8.6(2) MeV, respectively, and with integrated strengths corresponding to ≈1.8-5+1% of the classical Thomas-Reiche-Kuhn sum rule. Similar resonances were also seen in Sn116-119. Experimental neutron-capture cross reactions are well reproduced by our pygmy resonance predictions, while standard strength models are less successful. The evolution as a function of neutron number of the pygmy resonance in Sn116-122 is described as a clear increase of centroid energy from 8.0(1) to 8.6(2) MeV, but with no observable difference in integrated strengths.

  8. Detection of alpha radiation in a beta radiation field

    DOEpatents

    Mohagheghi, Amir H.; Reese, Robert P.

    2001-01-01

    An apparatus and method for detecting alpha particles in the presence of high activities of beta particles utilizing an alpha spectrometer. The apparatus of the present invention utilizes a magnetic field applied around the sample in an alpha spectrometer to deflect the beta particles from the sample prior to reaching the detector, thus permitting detection of low concentrations of alpha particles. In the method of the invention, the strength of magnetic field required to adequately deflect the beta particles and permit alpha particle detection is given by an algorithm that controls the field strength as a function of sample beta energy and the distance of the sample to the detector.

  9. Level densities and γ-ray strength functions in Sn isotopes

    NASA Astrophysics Data System (ADS)

    Toft, H. K.; Larsen, A. C.; Agvaanluvsan, U.; Bürger, A.; Guttormsen, M.; Mitchell, G. E.; Nyhus, H. T.; Schiller, A.; Siem, S.; Syed, N. U. H.; Voinov, A.

    2010-06-01

    The nuclear level densities of Sn118,119 and the γ-ray strength functions of Sn116,118,119 below the neutron separation energy are extracted with the Oslo method using the (He3,αγ) and (He3,He3'γ) reactions. The level-density function of Sn119 displays steplike structures. The microcanonical entropies are deduced from the level densities, and the single neutron entropy of Sn119 is determined to be 1.7 ± 0.2 kB. Results from a combinatorial model support the interpretation that some of the low-energy steps in the level density function are caused by neutron pair breaking. An enhancement in all the γ-ray strength functions of Sn116-119, compared to standard models for radiative strength, is observed for the γ-ray energy region of ≃4-11 MeV. These small resonances all have a centroid energy of 8.0(1) MeV and an integrated strength corresponding to 1.7(9)% of the classical Thomas-Reiche-Kuhn sum rule. The Sn resonances may be due to electric dipole neutron skin oscillations or to an enhancement of the giant magnetic dipole resonance.

  10. Cross section and γ-ray spectra for U238(n,γ) measured with the DANCE detector array at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Kawano, T.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Chyzh, A.; Wu, C. Y.; Baramsai, B.; Mitchell, G. E.; Krtička, M.

    2014-03-01

    Background: Accurate knowledge of the U238(n,γ) cross section is important for developing theoretical nuclear reaction models and for applications. However, capture cross sections are difficult to calculate accurately and often must be measured. Purpose: We seek to confirm previous measurements and test cross-section calculations with an emphasis on the unresolved resonance region from 1 to 500 keV. Method: Cross sections were measured from 10 eV to 500 keV using the DANCE detector array at the LANSCE spallation neutron source. The measurements used a thin target, 48 mg/cm2 of depleted uranium. Gamma cascade spectra were also measured to provide an additional constraint on calculations. The data are compared to cross-section calculations using the code CoH3 and cascade spectra calculations made using the code dicebox. Results: This new cross-section measurement confirms the previous data. The measured gamma-ray spectra suggest the need for additional low-lying dipole strength in the radiative strength function. New Hauser-Feshbach calculations including this strength accurately predict the capture cross section without renormalization. Conclusions: The present cross-section data confirm previous measurements. Including additional low-lying dipole strength in the radiative strength function may lead to more accurate cross-section calculations in nuclei where <Γγ> has not been measured.

  11. Electric and Magnetic Dipole Strength at Low Energy.

    PubMed

    Sieja, K

    2017-08-04

    A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ-ray strength of the ^{44}Sc isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1ℏω  sd-pf-gds model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M1 strength but show quite different behavior for the E1 strength.

  12. Sound source identification and sound radiation modeling in a moving medium using the time-domain equivalent source method.

    PubMed

    Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang

    2015-05-01

    Planar near-field acoustic holography has been successfully extended to reconstruct the sound field in a moving medium, however, the reconstructed field still contains the convection effect that might lead to the wrong identification of sound sources. In order to accurately identify sound sources in a moving medium, a time-domain equivalent source method is developed. In the method, the real source is replaced by a series of time-domain equivalent sources whose strengths are solved iteratively by utilizing the measured pressure and the known convective time-domain Green's function, and time averaging is used to reduce the instability in the iterative solving process. Since these solved equivalent source strengths are independent of the convection effect, they can be used not only to identify sound sources but also to model sound radiations in both moving and static media. Numerical simulations are performed to investigate the influence of noise on the solved equivalent source strengths and the effect of time averaging on reducing the instability, and to demonstrate the advantages of the proposed method on the source identification and sound radiation modeling.

  13. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...

  14. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...

  15. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Measurements required: Field strength of spurious radiation. 2.1053 Section 2.1053 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL... Procedures Certification § 2.1053 Measurements required: Field strength of spurious radiation. (a...

  16. Electric and Magnetic Dipole Strength at Low Energy

    NASA Astrophysics Data System (ADS)

    Sieja, K.

    2017-08-01

    A low-energy enhancement of radiative strength functions was deduced from recent experiments in several mass regions of nuclei, which is believed to impact considerably the calculated neutron capture rates. In this Letter we investigate the behavior of the low-energy γ -ray strength of the Sc 44 isotope, for the first time taking into account both electric and magnetic dipole contributions obtained coherently in the same theoretical approach. The calculations are performed using the large-scale shell-model framework in a full 1 ℏω s d -p f -g d s model space. Our results corroborate previous theoretical findings for the low-energy enhancement of the M 1 strength but show quite different behavior for the E 1 strength.

  17. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength

    NASA Astrophysics Data System (ADS)

    Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.

    2018-04-01

    The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and  ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at  ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.

  18. Accurate Calculation of Oscillator Strengths for CI II Lines Using Non-orthogonal Wavefunctions

    NASA Technical Reports Server (NTRS)

    Tayal, S. S.

    2004-01-01

    Non-orthogonal orbitals technique in the multiconfiguration Hartree-Fock approach is used to calculate oscillator strengths and transition probabilities for allowed and intercombination lines in Cl II. The relativistic corrections are included through the Breit-Pauli Hamiltonian. The Cl II wave functions show strong term dependence. The non-orthogonal orbitals are used to describe the term dependence of radial functions. Large sets of spectroscopic and correlation functions are chosen to describe adequately strong interactions in the 3s(sup 2)3p(sup 3)nl (sup 3)Po, (sup 1)Po and (sup 3)Do Rydberg series and to properly account for the important correlation and relaxation effects. The length and velocity forms of oscillator strength show good agreement for most transitions. The calculated radiative lifetime for the 3s3p(sup 5) (sup 3)Po state is in good agreement with experiment.

  19. Particle acceleration magnetic field generation, and emission in Relativistic pair jets

    NASA Technical Reports Server (NTRS)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Kouveliotou, C.; Fishman, G. J.

    2005-01-01

    Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) are responsible for particle acceleration in relativistic pair jets. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic pair jet propagating through a pair plasma. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. Simulation results show that this instability generates and amplifies highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter' I radiation from deflected electrons can have different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. The growth rate of the Weibel instability and the resulting particle acceleration depend on the magnetic field strength and orientation, and on the initial particle distribution function. In this presentation we explore some of the dependencies of the Weibel instability and resulting particle acceleration on the magnetic field strength and orientation, and the particle distribution function.

  20. Examination of the low-energy enhancement of the γ -ray strength function of Fe 56

    DOE PAGES

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.; ...

    2018-02-22

    A model-independent technique was used to determine the γ-ray strength function (γSF) of 56Fe down to γ-ray energies less than 1 MeV for the first time with GRETINA using the (p,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γSF built on 2 + and 4 + final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. In conclusion, the polarization results show a small bias towards magnetic character in the region of the enhancement.

  1. Examination of the low-energy enhancement of the γ -ray strength function of 56Fe

    NASA Astrophysics Data System (ADS)

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.; Bernstein, L. A.; Crawford, H. L.; Campbell, C. M.; Clark, R. M.; Cromaz, M.; Fallon, P.; Lee, I. Y.; Salathe, M.; Wiens, A.; Ayangeakaa, A. D.; Bleuel, D. L.; Bottoni, S.; Carpenter, M. P.; Davids, H. M.; Elson, J.; Görgen, A.; Guttormsen, M.; Janssens, R. V. F.; Kinnison, J. E.; Kirsch, L.; Larsen, A. C.; Lauritsen, T.; Reviol, W.; Sarantites, D. G.; Siem, S.; Voinov, A. V.; Zhu, S.

    2018-02-01

    A model-independent technique was used to determine the γ -ray strength function (γ SF ) of 56Fe down to γ -ray energies less than 1 MeV for the first time with GRETINA using the (p ,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γ SF built on 2+ and 4+ final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. The polarization results show a small bias towards magnetic character in the region of the enhancement.

  2. Examination of the low-energy enhancement of the γ -ray strength function of Fe 56

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, M. D.; Macchiavelli, A. O.; Wiedeking, M.

    A model-independent technique was used to determine the γ-ray strength function (γSF) of 56Fe down to γ-ray energies less than 1 MeV for the first time with GRETINA using the (p,p') reaction at 16 MeV. No difference was observed in the energy dependence of the γSF built on 2 + and 4 + final states, supporting the Brink hypothesis. In addition, angular distribution and polarization measurements were performed. The angular distributions are consistent with dipole radiation. In conclusion, the polarization results show a small bias towards magnetic character in the region of the enhancement.

  3. Collapsing radiating stars with various equations of state

    NASA Astrophysics Data System (ADS)

    Brassel, Byron P.; Goswami, Rituparno; Maharaj, Sunil D.

    2017-06-01

    We study the gravitational collapse of radiating stars in the context of the cosmic censorship conjecture. We consider a generalized Vaidya spacetime with three concentric regions. The local internal atmosphere is a two-component system consisting of standard pressure-free, null radiation and an additional string fluid with energy density and nonzero pressure obeying all physically realistic energy conditions. The middle region is purely radiative which matches to a third region which is the Schwarzschild exterior. We outline the general mathematical framework to study the conditions on the mass function so that future-directed nonspacelike geodesics can terminate at the singularity in the past. Mass functions for several equations of state are analyzed using this framework and it is shown that the collapse in each case terminates at a locally naked central singularity. We calculate the strength of these singularities to show that they are strong curvature singularities which implies that no extension of spacetime through them is possible.

  4. Analysis of diffuse radiation data for Beer Sheva: Measured (shadow ring) versus calculated (global-horizontal beam) values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudish, A.I.; Ianetz, A.

    1993-12-01

    The authors have utilized concurrently measured global, normal incidence beam, and diffuse radiation data, the latter measured by means of a shadow ring pyranometer to study the relative magnitude of the anisotropic contribution (circumsolar region and nonuniform sky conditions) to the diffuse radiation. In the case of Beer Sheva, the monthly average hourly anisotropic correction factor varies from 2.9 to 20.9%, whereas the [open quotes]standard[close quotes] geometric correction factor varies from 5.6 to 14.0%. The monthly average hourly overall correction factor (combined anisotropic and geometric factors) varies from 8.9 to 37.7%. The data have also been analyzed using a simplemore » model of sky radiance developed by Steven in 1984. His anisotropic correction factor is a function of the relative strength and angular width of the circumsolar radiation region. The results of this analysis are in agreement with those previously reported for Quidron on the Dead Sea, viz. the anisotropy and relative strength of the circumsolar radiation are significantly greater than at any of the sites analyzed by Steven. In addition, the data have been utilized to validate a model developed by LeBaron et al. in 1990 for correcting shadow ring diffuse radiation data. The monthly average deviation between the corrected and true diffuse radiation values varies from 4.55 to 7.92%.« less

  5. Dynamics in the solar chromosphere as a function of the magnetic field topology

    NASA Astrophysics Data System (ADS)

    Karlsen, N.; Carlsson, M.

    2002-06-01

    We have looked at the coupling between the magnetic field and chromospheric dynamics. Observations with the SUMER spectrograph of the continuum radiation at 1319 Å have been correlated with simultaneous MDI magnetograms and dopplergrams in high resolution mode. We have used 7 different observing runs for our analysis, all from 1996. The absolute value of the magnetic field crossing the SUMER slit lies in the range 0-100 gauss. We observe a correlation between continuum intensity and magnetic field strength all the way to the sensitivity limit of MDI (about 2 G as 3σ in the mean value). Relative intensity fluctuations at frequencies corresponding to propagating acoustic waves (>4.5 mHz) have smaller amplitudes with increasing radiation temperature (or magnetic field strength). The absolute intensity fluctuations show an increase with increasing radiation temperature. These findings are consistent with a picture where a basic intensity level is set by a magnetic heating process even in the darkest internetwork areas with superimposed intensity variations caused by acoustic waves.

  6. Gamma radiation effects in packaging for sterilization of health products and their constituents paper and plastic film

    NASA Astrophysics Data System (ADS)

    B. G. Porto, Karina Meschini; Napolitano, Celia Marina; Borrely, Sueli Ivone

    2018-01-01

    The integrity of materials containing packaging (natural or synthetic polymers) is essential to keep the aseptic condition of commercialized products (health care products, food and pharmaceuticals). The objective of this paper was to study gamma radiation effects (25 kGy, 40 kGy and 50 kGy) on the main properties of paper and multilayer films (polyester and polyethylene). Paper and multilayer films are components of packaging (pouches) for radiation sterilization containing medical equipment or products. Paper was the more radiation sensitive among the studied materials and radiation effects were more pronounced at brightness, pH, tearing resistance, bursting strength and tensile strength. Concerning plastic film, no pinholes were induced by radiation and the effects on the tensile strength were not significant. Although the seal strength packaging (pouches) decreased according to increasing dose, the sealing integrity was preserved.

  7. First indication of the coherent unipolar diffraction radiation generated by relativistic electrons

    NASA Astrophysics Data System (ADS)

    Naumenko, G.; Shevelev, M.

    2018-05-01

    As is generally known, the integral of the electric field strength over all time for usual (bipolar) radiation is zero. The first demonstration of the possibility of unipolar radiation generation has been considered theoretically by Bessonov in 1981 [E.G. Bessonov, Zh. Eksp. Teor. Fiz. 80 (1981) 852]. According to this work, the unipolar radiation (or strange electromagnetic waves) is radiation for which the integral of the electric field strength over the entire duration of a pulse differs significantly from zero. Later, several theoretical papers devoted to this phenomenon have appeared in the literature, where authors investigated mainly synchrotron radiation. However, despite the critical interest, the experimental investigations ignored this effect. In this paper we present results of the first experimental investigation of the unipolar radiation generated by a relativistic electron beam. To detect the unipolar radiation the detector that is sensitive to the selected direction of the electric field strength has been elaborated and tested. We used a designed detector to observe the coherent backward diffraction radiation appearing when a bunched electron beam travels in the vicinity of a flat conductive target. The asymmetry of the electric field strength of the coherent backward diffraction radiation has been demonstrated.

  8. Atomic data and line intensities for the S V ion

    NASA Astrophysics Data System (ADS)

    Iorga, C.; Stancalie, V.

    2017-05-01

    The energy levels, oscillator strengths, spontaneous radiative decay rates, lifetimes and electron impact collision strengths have been obtained for the [ Ne ] 3s nl, [ Ne ] 3p nl, [ Ne ] 3d nl configurations belonging to S V ion, with n ≤ 7 and l ≤ 4, resulting in 567 fine-structure levels. The calculations have been performed within the fully relativistic Flexible Atomic Code (FAC, Gu, 2008) framework and the distorted wave approximation. To attain the desired accuracy for the levels energy, the valence-valence and valence-core correlations have been taken care of by including 96 configuration state functions (CSFs) in the model, reaching a total of 3147 fine-structure levels. Two separate calculations have been performed with the local central potential computed for two different average configurations. A third calculation is also performed without the addition of the core-excited states in the atomic model for completeness. The effects of slightly different mean configurations and valence-core correlations on the energy levels and decay rates are investigated. The collision data have been computed employing the relativistic distorted-wave method along with the atomic model containing the 96 CSFs and corresponding to the ground state mean configuration. The collision strengths corresponding to excitation from the first four fine-structure levels are given for five energy values of the scattered electron 2.65, 6.18, 11.02, 17.36, 25.43 Rydberg, plus an additional variable small energy value near the threshold. A collisional-radiative model has been employed to solve the rate equations for the populations of the 567 fine-structure levels, for a temperature of LogTE(K) = 5.2 corresponding to the maximum abundance of S V, and at densities 106-1016cm-3, assuming a Maxwellian electron energy distribution function and black body radiation of temperature 6000 K and dilution factor 0.35 for the photon distribution function. The main processes responsible for the level population variations are the electron-impact collisional excitation and the radiative decay along with their inverse processes. As a result, the level populations along with the spectral high-line intensity ratios are provided.

  9. Collisional redistribution of radiation. III - The equation of motion for the correlation function and the scattered spectrum

    NASA Technical Reports Server (NTRS)

    Burnett, K.; Cooper, J.

    1980-01-01

    Computations were made of the scattering of monochromatic radiation by a degenerate atom in the binary-collision approximation for field strengths whose products of the Rabi frequency for atomic transition and the duration of a strong collision are much less than 1. An expression of motion for the correlation function is derived which does not exclude the region where thermal correlations may be neglected; the equation is valid outside the quantum-regression regime, and has a straightforward solution for practical cases. Solutions for the weak-field linear response regime are presented in terms of generalized absorption and emission profiles which depend on the indices of the atomic multipoles.

  10. Einstein coefficients and oscillator strengths for low lying state of CO molecules

    NASA Astrophysics Data System (ADS)

    Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.

    2018-04-01

    Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.

  11. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    DOE PAGES

    Grosse, E.; Junghans, A. R.; Massarczyk, R.

    2017-11-28

    Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less

  12. Breaking of axial symmetry in excited heavy nuclei as identified in giant dipole resonance data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grosse, E.; Junghans, A. R.; Massarczyk, R.

    Here, a recent theoretical prediction of a breaking of axial symmetry in quasi all heavy nuclei is confronted to a new critical analysis of photon strength functions of nuclei in the valley of stability. For the photon strength in the isovector giant dipole resonance (IVGDR) regime a parameterization of GDR shapes by the sum of three Lorentzians (TLO) is extrapolated to energies below and above the IVGDR. The impact of non-GDR modes adding to the low energy slope of photon strength is discussed including recent data on photon scattering and other radiative processes. These are shown to be concentrated inmore » energy regions where various model calculations predict intermediate collective strength; thus they are obviously separate from the IVGDR tail. The triple Lorentzian (TLO) ansatz for giant dipole resonances is normalized in accordance to the dipole sum rule. The nuclear droplet model with surface dissipation accounts well for positions and widths without local, nuclide specific, parameters. Very few and only global parameters are needed when a breaking of axial symmetry already in the valley of stability is admitted and hence a reliable prediction for electric dipole strength functions also outside of it is expected.« less

  13. Hypervelocity Impact Experiments on Epoxy/Ultra-High Molecular Weight Polyethylene Composite Panels Reinforced with Nanotubes

    NASA Technical Reports Server (NTRS)

    Khatiwada, Suman; Laughman, Jay W.; Armada, Carlos A.; Christiansen, Eric L.; Barrera, Enrique V.

    2012-01-01

    Advanced composites with multi-functional capabilities are of great interest to the designers of aerospace structures. Polymer matrix composites (PMCs) reinforced with high strength fibers provide a lightweight and high strength alternative to metals and metal alloys conventionally used in aerospace architectures. Novel reinforcements such as nanofillers offer potential to improve the mechanical properties and add multi-functionality such as radiation resistance and sensing capabilities to the PMCs. This paper reports the hypervelocity impact (HVI) test results on ultra-high molecular weight polyethylene (UHMWPE) fiber composites reinforced with single-walled carbon nanotubes (SWCNT) and boron nitride nanotubes (BNNT). Woven UHMWPE fabrics, in addition to providing excellent impact properties and high strength, also offer radiation resistance due to inherent high hydrogen content. SWCNT have exceptional mechanical and electrical properties. BNNT (figure 1) have high neutron cross section and good mechanical properties that add multi-functionality to this system. In this project, epoxy based UHMWPE composites containing SWCNT and BNNT are assessed for their use as bumper shields and as intermediate plates in a Whipple Shield for HVI resistance. Three composite systems are prepared to compare against one another: (I) Epoxy/UHMWPE, (II) Epoxy/UHMWPE/SWCNT and (III) Epoxy/UHMWPE/SWCNT/BNNT. Each composite is a 10.0 by 10.0 by 0.11 cm3 panel, consisting of 4 layers of fabrics arranged in cross-ply orientation. Both SWCNT and BNNT are 0.5 weight % of the fabric preform. Hypervelocity impact tests are performed using a two-stage light gas gun at Rice University

  14. Radiation characteristics of multiple and single sound hole vihuelas and a classical guitar.

    PubMed

    Bader, Rolf

    2012-01-01

    Two recently built vihuelas, quasi-replicas of the Spanish Renaissance guitar, one with a small body and one sound hole and one with a large body with five sound holes, together with a classical guitar are investigated. Frequency dependent radiation strengths are measured using a 128 microphone array, back-propagating the frequency dependent sound field upon the body surface. All three instruments have a strong sound hole radiation within the low frequency range. Here the five tone holes vihuela has a much wider frequency region of strong sound hole radiation up to about 500 Hz, whereas the single hole instruments only have strong sound hole radiations up to about 300 Hz due to the enlarged radiation area of the sound holes. The strong broadband radiation of the five sound hole vihuela up to about 500 Hz is also caused by the sound hole phases, showing very consistent in-phase relations up to this frequency range. Also the radiation strength of the sound holes placed nearer to the center of the sound box are much stronger than those near the ribs, pointing to a strong position dependency of sound hole to radiation strength. The Helmholtz resonance frequency of the five sound hole vihuela is influenced by this difference in radiation strength but not by the rosettas, which only have a slight effect on the Helmholtz frequency. © 2012 Acoustical Society of America.

  15. Effect of broken axial symmetry on the electric dipole strength and the collective enhancement of level densities in heavy nuclei

    NASA Astrophysics Data System (ADS)

    Grosse, E.; Junghans, A. R.; Wilson, J. N.

    2017-11-01

    The basic parameters for calculations of radiative neutron capture, photon strength functions and nuclear level densities near the neutron separation energy are determined based on experimental data without an ad hoc assumption about axial symmetry—at variance to previous analysis. Surprisingly few global fit parameters are needed in addition to information on nuclear deformation, taken from Hartree Fock Bogolyubov calculations with the Gogny force, and the generator coordinator method assures properly defined angular momentum. For a large number of nuclei the GDR shapes and the photon strength are described by the sum of three Lorentzians, extrapolated to low energies and normalised in accordance to the dipole sum rule. Level densities are influenced strongly by the significant collective enhancement based on the breaking of shape symmetry. The replacement of axial symmetry by the less stringent requirement of invariance against rotation by 180° leads to a novel prediction for radiative neutron capture. It compares well to recent compilations of average radiative widths and Maxwellian average cross sections for neutron capture by even target nuclei. An extension to higher spin promises a reliable prediction for various compound nuclear reactions also outside the valley of stability. Such predictions are of high importance for future nuclear energy systems and waste transmutation as well as for the understanding of the cosmic synthesis of heavy elements.

  16. Subphotospheric fluctuations in magnetized radiative envelopes: contribution from unstable magnetosonic waves

    NASA Astrophysics Data System (ADS)

    Sen, Koushik; Fernández, Rodrigo; Socrates, Aristotle

    2018-06-01

    We examine the excitation of unstable magnetosonic waves in the radiative envelopes of intermediate- and high-mass stars with a magnetic field of ˜kG strength. Wind clumping close to the star and microturbulence can often be accounted for when including small-scale, subphotospheric density or velocity perturbations. Compressional waves - with wavelengths comparable to or shorter than the gas pressure scale height - can be destabilized by the radiative flux in optically thick media when a magnetic field is present, in a process called the radiation-driven magneto-acoustic instability (RMI). The instability does not require radiation or magnetic pressure to dominate over gas pressure, and acts independently of subsurface convection zones. Here we evaluate the conditions for the RMI to operate on a grid of stellar models covering a mass range 3-40 M⊙ at solar metallicity. For a uniform 1 kG magnetic field, fast magnetosonic modes are unstable down to an optical depth of a few tens, while unstable slow modes extend beyond the depth of the iron convection zone. The qualitative behaviour is robust to magnetic field strength variations by a factor of a few. When combining our findings with previous results for the saturation amplitude of the RMI, we predict velocity fluctuations in the range ˜0.1-10 km s-1. These amplitudes are a monotonically increasing function of the ratio of radiation to gas pressure, or alternatively, of the zero-age main sequence mass.

  17. Long-term environmental effects and flight service evaluation of composite materials

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1987-01-01

    Results of a NASA-Langley sponsored research program to establish the long term effects of realistic flight environments and ground based exposure on advanced composite materials are presented. The effects of moisture, ultraviolet radiation, aircraft fuels and fluids, sustained stress, and fatigue loading are reported. Residual strength and stiffness as a function of exposure time and exposure location are reported for seven different material systems after 10 years of worldwide outdoor exposure. Flight service results of over 300 composite components installed on rotorcraft and transport aircraft are included. Over 4 million total component flight hours were accumulated on various aircraft since initiation of flight service in 1973. Service performance, maintenance characteristics, and residual strength of numerous composite components installed on commercial and military aircraft are reported as a function of flight hours and years in service. Residual strength test results of graphite/epoxy spoilers with 10 years of worldwide service and over 28,000 flight hours are reported.

  18. Isomeric ratio measurements for the radiative neutron capture 176Lu(n ,γ ) at the LANL DANCE facility

    NASA Astrophysics Data System (ADS)

    Denis-Petit, D.; Roig, O.; Méot, V.; Morillon, B.; Romain, P.; Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-11-01

    The isomeric ratios for the neutron capture reaction 176Lu(n ,γ ) to the Jπ=5 /2- , 761.7 keV, T1 /2=32.8 ns and the Jπ=15 /2+ , 1356.9 keV, T1 /2=11.1 ns levels of 177Lu have been measured for the first time. The experiment was carried out with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. Measured isomeric ratios are compared with talys calculations using different models for photon strength functions, level densities, and optical potentials. In order to reproduce the experimental γ -ray spectra, a low-energy resonance must be added in the photon strength function used in our Hauser-Feshbach calculations.

  19. Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust

    NASA Astrophysics Data System (ADS)

    Reissl, Stefan; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Pellegrini, Eric W.

    2018-03-01

    Aim. We aim to test the hypothesis that radiation pressure from young star clusters acting on dust is the dominant feedback agent disrupting the largest star-forming molecular clouds and thus regulating the star-formation process. Methods: We performed multi-frequency, 3D, radiative transfer calculations including both scattering and absorption and re-emission to longer wavelengths for model clouds with masses of 104-107 M⊙, containing embedded clusters with star formation efficiencies of 0.009-91%, and varying maximum grain sizes up to 200 μm. We calculated the ratio between radiative and gravitational forces to determine whether radiation pressure can disrupt clouds. Results: We find that radiation pressure acting on dust almost never disrupts star-forming clouds. Ultraviolet and optical photons from young stars to which the cloud is optically thick do not scatter much. Instead, they quickly get absorbed and re-emitted by the dust at thermal wavelengths. As the cloud is typically optically thin to far-infrared radiation, it promptly escapes, depositing little momentum in the cloud. The resulting spectrum is more narrowly peaked than the corresponding Planck function, and exhibits an extended tail at longer wavelengths. As the opacity drops significantly across the sub-mm and mm wavelength regime, the resulting radiative force is even smaller than for the corresponding single-temperature blackbody. We find that the force from radiation pressure falls below the strength of gravitational attraction by an order of magnitude or more for either Milky Way or moderate starbust conditions. Only for unrealistically large maximum grain sizes, and star formation efficiencies far exceeding 50% do we find that the strength of radiation pressure can exceed gravity. Conclusions: We conclude that radiation pressure acting on dust does not disrupt star-forming molecular clouds in any Local Group galaxies. Radiation pressure thus appears unlikely to regulate the star-formation process on either local or global scales.

  20. Energy levels, radiative rates and electron impact excitation rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV

    NASA Astrophysics Data System (ADS)

    Aggarwal, Kanti M.; Keenan, Francis P.

    2013-04-01

    We report calculations of energy levels, radiative rates and electron impact excitation cross sections and rates for transitions in He-like Ga XXX, Ge XXXI, As XXXII, Se XXXIII and Br XXXIV. The grasp (general-purpose relativistic atomic structure package) is adopted for calculating energy levels and radiative rates. For determining the collision strengths, and subsequently the excitation rates, the Dirac atomic R-matrix code (darc) is used. Oscillator strengths, radiative rates and line strengths are reported for all E1, E2, M1 and M2 transitions among the lowest 49 levels of each ion. Additionally, theoretical lifetimes are provided for all 49 levels of the above five ions. Collision strengths are averaged over a Maxwellian velocity distribution and the effective collision strengths obtained listed over a wide temperature range up to 108 K. Comparisons are made with similar data obtained using the flexible atomic code (fac) to highlight the importance of resonances, included in calculations with darc, in the determination of effective collision strengths. Discrepancies between the collision strengths from darc and fac, particularly for some forbidden transitions, are also discussed. Finally, discrepancies between the present results for effective collision strengths with the darc code and earlier semi-relativistic R-matrix data are noted over a wide range of electron temperatures for many transitions in all ions.

  1. Bond strengths evaluation of laser ceramic bracket debonding

    NASA Astrophysics Data System (ADS)

    Dostalová, T.; Jelinková, H.; Šulc, J.; Němec, M.; Fibrich, M.; Jelínek, M.; Michalík, P.; Bučková, M.

    2012-09-01

    Ceramic brackets often used for an orthodontic treatment can lead to problems such as enamel tear outs because of their low fracture resistance and high bond strengths. Therefore the aim of our study was to investigate the positive laser radiation effect on bracket debonding. Moreover, the influence of the enamel shape surface under the bracket and laser radiation power on the debonding strength was investigated. The source of the radiation was the longitudinally diode-pumped Tm:YAP laser operating at 1997 nm. To eliminate the tooth surface roughness the flat enamel surface was prepared artificially and the bracket was bonded on it. The debonding was accomplished by Tm:YAP laser radiation with different the power value while recording the temperature rise in the pulp. To simulate the debonding process in vivo the actual bond strength was measured by the digital force gauge. The results were analyzed by scanning electron microscope.

  2. Bond strength of dental adhesive systems irradiated with ionizing radiation.

    PubMed

    Dibo da Cruz, Adriana; Goncalves, Luciano de Souza; Rastelli, Alessandra Nara de Souza; Correr-Sobrinho, Lorenco; Bagnato, Vanderlei Salvador; Boscolo, Frab Norberto

    2010-04-01

    The aim of the present paper was to determine the effect of different types of ionizing radiation on the bond strength of three different dentin adhesive systems. One hundred twenty specimens of 60 human teeth (protocol number: 032/2007) sectioned mesiodistally were divided into 3 groups according to the adhesives systems used: SB (Adper Single Bond Plus), CB (Clearfil SE Bond) and AP (Adper Prompt Self-Etch). The adhesives were applied on dentin and photo-activated using LED (Lec 1000, MMoptics, 1000 mW/cm2). Customized elastomer molds (0.5 mm thickness) with three orifices of 1.2 mm diameter were placed onto the bonding areas and filled with composite resin (Filtek Z-250), which was photo-activated for 20 s. Each group was subdivided into 4 subgroups for application of the different types of ionizing radiation: ultraviolet radiation (UV), diagnostic x-ray radiation (DX), therapeutic x-ray radiation (TX) and without irradiation (control group, CG). Microshear tests were carried out (Instron, model 4411), and afterwards the modes of failure were evaluated by optical and scanning electron microscope and classified using 5 scores: adhesive failure, mixed failures with 3 significance levels, and cohesive failure. The results of the shear bond strength test were submitted to ANOVA with Tukey's test and Dunnett's test, and the data from the failure pattern evaluation were analyzed with the Mann Whitney test (p = 0.05). No change in bond strength of CB and AP was observed after application of the different radiation types, only SB showed increase in bond strength after UV (p = 0.0267) irradiation. The UV also changed the failure patterns of SB (p = 0.0001). The radio-induced changes did not cause degradation of the restorations, which means that they can be exposed to these types of ionizing radiation without weakening the bond strength.

  3. Optimization of Martian regolith and ultra-high molecular weight polyethylene composites for radiation shielding and habitat structures

    NASA Astrophysics Data System (ADS)

    Wilkins, Richard; Gersey, Brad; Baburaj, Abhijit; Barnett, Milan; Zhou, Xianren

    2012-07-01

    In preparation for long duration missions to the moon, Mars or, even near earth asteroids, one challenge, amongst many others, that the space program faces is shielding against space radiation. It is difficult to effectively shield all sources of space radiation because of the broad range of types and high energies found in space, so the most important goal is to minimize the damaging effects that may occur to humans and electronics during long duration space flight. For a long duration planetary habitat, a shielding option is to use in situ resources such as the native regolith. A possible way to utilize regolith on a planet is to combine it with a binder to form a structural material that also exhibits desirable shielding properties. In our studies, we explore Martian regolith and ultra-high molecular weight polyethylene (UHMWPE) composites. We selected UHMWPE as the binder in our composites due to its high hydrogen content; a desirable characteristic for shielding materials in a space environment. Our initial work has focused on the process of developing the right ratio of simulated Martian regolith and UHMWPE to yield the best results in material endurance and strength, while retaining good shielding characteristics. Another factor in our optimization process is to determine the composite ratio that minimizes the amount of ex situ UHMWPE while retaining desirable structural and shielding properties. This consideration seeks to minimize mission weight and costs. Mechanical properties such as tensile strength of the Martian regolith/UHMWPE composite as a function of its grain size, processing parameters, and different temperature variations used are discussed. The radiation shielding effectiveness of loose mixtures of Martian regolith/ UHMWPE is evaluated using a 200 MeV proton beam and a tissue equivalent proportional counter. Preliminary results show that composites with an 80/20 ratio percent weight of regolith to UHMWPE can be fabricated with potentially useful structural strength. I n addition, Martian regolith, while not as efficient as polyethylene at reducing proton energy as a function of shield thickness, compares well with polyethylene at shielding the 200 MeV protons. These preliminary results indicate that native Martian regolith has promising properties as a habitat material for future human missions. Future work studying the shielding effectiveness and radiation tolerance will also be discussed.

  4. Energy levels and radiative rates for Ne-like ions from Cu to Ga

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Aggarwal, Sunny

    2017-11-01

    Energy levels, lifetimes and wave function compositions are computed for 127 fine structural levels in Ne-like ions (Z=29{-}31). Configuration interaction has been included among 51 configurations (generating 1016 levels) and multiconfigurational Dirac-Fock method is used to generate the wave functions. Similar calculations have also been performed using the fully relativistic flexible atomic code (FAC). Transition wavelength, oscillator strength, transition probabilities and line strength are reported for electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1) and magnetic quadrupole (M2) transitions from the ground level. We compared our calculated results with the available data in the literature. The calculated results are found to be in close agreement with the previous results. Further, we predict some new atomic data which may be important for plasma diagnostics.

  5. Effects of Different Radiation Doses on the Bond Strengths of Two Different Adhesive Systems to Enamel and Dentin.

    PubMed

    da Cunha, Sandra Ribeiro de Barros; Ramos, Pedro Augusto Minorin Mendes; Haddad, Cecília Maria Kalil; da Silva, João Luis Fernandes; Fregnani, Eduardo Rodrigues; Aranha, Ana Cecília Corrêa

    2016-01-01

    To evaluate the effects of three different radiation doses on the bond strengths of two different adhesive systems to enamel and dentin. Eighty human third molars were randomly divided into four groups (n = 20) according to the radiation dose (control/no radiation, 20 Gy, 40 Gy, and 70 Gy). The teeth were sagittally sectioned into three slices: one mesial and one distal section containing enamel and one middle section containing dentin. The sections were then placed in the enamel and dentin groups, which were further divided into two subgroups (n = 10) according to the adhesive used. Three restorations were performed in each tooth (one per section) using Adper Single Bond 2 (3M ESPE) or Universal Single Bond (3M ESPE) adhesive system and Filtek Z350 XT (3M ESPE) resin composite and subjected to the microshear bond test. Data were analyzed using a two-way ANOVA followed by Tukey's test. Failure modes were examined under a stereoscopic loupe. Radiotherapy did not affect the bond strengths of the adhesives to either enamel or dentin. In dentin, the Universal Single Bond adhesive system showed higher bond strength values when compared with the Adper Single Bond adhesive system. More adhesive failures were observed in the enamel for all radiation doses and adhesives. Radiotherapy did not influence the bond strength to enamel or dentin, irrespective of the adhesive or radiation dose used.

  6. Structural connectivity of right frontal hyperactive areas scales with stuttering severity

    PubMed Central

    Neef, Nicole E; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    Abstract A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain–behaviour and structure–function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI–diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering. PMID:29228195

  7. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.

    PubMed

    Neef, Nicole E; Anwander, Alfred; Bütfering, Christoph; Schmidt-Samoa, Carsten; Friederici, Angela D; Paulus, Walter; Sommer, Martin

    2018-01-01

    A neuronal sign of persistent developmental stuttering is the magnified coactivation of right frontal brain regions during speech production. Whether and how stuttering severity relates to the connection strength of these hyperactive right frontal areas to other brain areas is an open question. Scrutinizing such brain-behaviour and structure-function relationships aims at disentangling suspected underlying neuronal mechanisms of stuttering. Here, we acquired diffusion-weighted and functional images from 31 adults who stutter and 34 matched control participants. Using a newly developed structural connectivity measure, we calculated voxel-wise correlations between connection strength and stuttering severity within tract volumes that originated from functionally hyperactive right frontal regions. Correlation analyses revealed that with increasing speech motor deficits the connection strength increased in the right frontal aslant tract, the right anterior thalamic radiation, and in U-shaped projections underneath the right precentral sulcus. In contrast, with decreasing speech motor deficits connection strength increased in the right uncinate fasciculus. Additional group comparisons of whole-brain white matter skeletons replicated the previously reported reduction of fractional anisotropy in the left and right superior longitudinal fasciculus as well as at the junction of right frontal aslant tract and right superior longitudinal fasciculus in adults who stutter compared to control participants. Overall, our investigation suggests that right fronto-temporal networks play a compensatory role as a fluency enhancing mechanism. In contrast, the increased connection strength within subcortical-cortical pathways may be implied in an overly active global response suppression mechanism in stuttering. Altogether, this combined functional MRI-diffusion tensor imaging study disentangles different networks involved in the neuronal underpinnings of the speech motor deficit in persistent developmental stuttering. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  8. Detailed Characteristics of Radiation Belt Electrons Revealed by CSSWE/REPTile Measurements

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Li, X.; Schiller, Q.; Gerhardt, D. T.; Millan, R. M.

    2016-12-01

    The outer radiation belt electrons are highly dynamic. We study the detailed characteristics of the relativistic electrons in the outer belt using measurements from the Colorado Student Space Weather Experiment (CSSWE) mission, a low Earth orbit Cubesat, which transverses the radiation belt four times in one orbit ( 1.5 hr) and has the advantage of measuring the dynamic activities of the electrons including their rapid precipitations. Among the features of the relativistic electrons, we show the measured electron distribution as a function of geomagnetic activities and local magnetic field strength. Moreover, a specific precipitation band, which happened on 19 Jan 2013, is investigated based on the conjunctive measurement of CSSWE and the Balloon Array for Radiation belt Relativistic Electron Losses (BARREL). In this precipitation band event, the net loss of the 0.58 1.63 MeV electrons (L=3.5 6) is estimated to account for 6.84% of the total electron content.

  9. Non-random walk diffusion enhances the sink strength of semicoherent interfaces

    DOE PAGES

    Vattré, A.; Jourdan, T.; Ding, H.; ...

    2016-01-29

    Clean, safe and economical nuclear energy requires new materials capable of withstanding severe radiation damage. One strategy of imparting radiation resistance to solids is to incorporate into them a high density of solid-phase interfaces capable of absorbing and annihilating radiation-induced defects. Here we show that elastic interactions between point defects and semicoherent interfaces lead to a marked enhancement in interface sink strength. Our conclusions stem from simulations that integrate first principles, object kinetic Monte Carlo and anisotropic elasticity calculations. Surprisingly, the enhancement in sink strength is not due primarily to increased thermodynamic driving forces, but rather to reduced defect migrationmore » barriers, which induce a preferential drift of defects towards interfaces. The sink strength enhancement is highly sensitive to the detailed character of interfacial stresses, suggesting that ‘super-sink’ interfaces may be designed by optimizing interface stress fields. Lastly, such interfaces may be used to create materials with unprecedented resistance to radiation-induced damage.« less

  10. E-beam sterilizable thermoplastics elastomers for healthcare devices: Mechanical, morphology, and in vivo studies.

    PubMed

    Balaji, Ananad Bellam; Ratnam, Chantara Thevy; Khalid, Mohammad; Walvekar, Rashmi

    2018-03-01

    The effect of electron beam radiation on ethylene-propylene diene terpolymer/polypropylene blends is studied as an attempt to develop radiation sterilizable polypropylene/ethylene-propylene diene terpolymer blends suitable for medical devices. The polypropylene/ethylene-propylene diene terpolymer blends with mixing ratios of 80/20, 50/50, 20/80 were prepared in an internal mixer at 165°C and a rotor speed of 50 rpm/min followed by compression molding. The blends and the individual components were radiated using 3.0 MeV electron beam accelerator at doses ranging from 0 to 100 kGy in air and room temperature. All the samples were tested for tensile strength, elongation at break, hardness, impact strength, and morphological properties. After exposing to 25 and 100 kGy radiation doses, 50% PP blend was selected for in vivo studies. Results revealed that radiation-induced crosslinking is dominating in EPDM dominant blends, while radiation-induced degradation is prevailing in PP dominant blends. The 20% PP blend was found to be most compatible for 20-60 kGy radiation sterilization. The retention in impact strength with enhanced tensile strength of 20% PP blend at 20-60 kGy believed to be associated with increased compatibility between PP and EPDM along with the radiation-induced crosslinking. The scanning electron micrographs of the fracture surfaces of the PP/EPDM blends showed evidences consistent with the above contentation. The in vivo studies provide an instinct that the radiated blends are safe to be used for healthcare devices.

  11. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter.

    PubMed

    Bae, Youngchul

    2016-05-23

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision.

  12. An Improved Measurement Method for the Strength of Radiation of Reflective Beam in an Industrial Optical Sensor Based on Laser Displacement Meter

    PubMed Central

    Bae, Youngchul

    2016-01-01

    An optical sensor such as a laser range finder (LRF) or laser displacement meter (LDM) uses reflected and returned laser beam from a target. The optical sensor has been mainly used to measure the distance between a launch position and the target. However, optical sensor based LRF and LDM have numerous and various errors such as statistical errors, drift errors, cyclic errors, alignment errors and slope errors. Among these errors, an alignment error that contains measurement error for the strength of radiation of returned laser beam from the target is the most serious error in industrial optical sensors. It is caused by the dependence of the measurement offset upon the strength of radiation of returned beam incident upon the focusing lens from the target. In this paper, in order to solve these problems, we propose a novel method for the measurement of the output of direct current (DC) voltage that is proportional to the strength of radiation of returned laser beam in the received avalanche photo diode (APD) circuit. We implemented a measuring circuit that is able to provide an exact measurement of reflected laser beam. By using the proposed method, we can measure the intensity or strength of radiation of laser beam in real time and with a high degree of precision. PMID:27223291

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mughabghab, S.

    The s- and p-wave neutron strength functions and average radiative widths of fission product nuclides are reviewed. The direct capture mechanism of Land and Lynn is quantitatively varified for the two reactions /sup 42/Ca(n,..gamma..) /sup 43/Ca and /sup 136/Xe(n,..gamma..) /sup 137/Xe. Thermal capture cross sections of /sup 132/Te and /sup 126/Sn are estimated with the aid of the Lane-Lynn theory. 7 figures, 1 table.

  14. The monitoring results of electromagnetic radiation of 110-kV high-voltage lines in one urban location in Chongqing P.R. China.

    PubMed

    Qin, Qi-Zhong; Chen, Yu; Fu, Ting-Ting; Ding, Li; Han, Ling-Li; Li, Jian-Chao

    2012-03-01

    To understand electromagnetic radiation field strength and its influencing factors of certain 110-kV high-voltage lines in one urban area of Chongqing by measuring 110-kV high-voltage line's electromagnetic radiation level. According to the methodology as determined by the National Hygienic Standards, we selected certain adjacent residential buildings, high-voltage lines along a specific street and selected different distances around its vertical projection point as monitoring points. The levels of electromagnetic radiations were measured respectively. In this investigation within the frequency of 5-1,000 Hz both the electric field strength and magnetic field strength of each monitoring sites were lower than the public exposure standards as determined by the International Commission on Non-Ionizing Radiation Protection. However, the electrical field strength on the roof adjacent to the high-voltage lines was significantly higher than that as measured on the other floors in the same buildings (p < 0.05). The electromagnetic radiation measurements of different monitoring points, under the same high-voltage lines, showed the location which is nearer the high-voltage line maintain a consistently higher level of radiation than the more distant locations (p < 0.05). Electromagnetic radiation generated by high-voltage lines decreases proportionally to the distance from the lines. The buildings can to some extent shield (or absorb) the electric fields generated by high-voltage lines nearby. The electromagnetic radiation intensity near high-voltage lines may be mitigated or intensified by the manner in which the high-voltage lines are set up, and it merits attention for the potential impact on human health.

  15. The circumstellar envelope of the C-rich post-AGB star HD 56126

    NASA Astrophysics Data System (ADS)

    Hony, S.; Tielens, A. G. G. M.; Waters, L. B. F. M.; de Koter, A.

    2003-04-01

    We present a detailed study of the circumstellar envelope of the post-asymptotic giant branch ``21 mu m object'' HD 56126. We build a detailed dust radiative transfer model of the circumstellar envelope in order to derive the dust composition and mass, and the mass-loss history of the star. To model the emission of the dust we use amorphous carbon, hydrogenated amorphous carbon, magnesium sulfide and titanium carbide. We present a detailed parametrisation of the optical properties of hydrogenated amorphous carbon as a function of H/C content. The mid-infrared imaging and spectroscopy is best reproduced by a single dust shell from 1.2 to 2.6'' radius around the central star. This shell originates from a short period during which the mass-loss rate exceeded 10-4 Msun/yr. We find that the strength of the ``21'' mu m feature poses a problem for the TiC identification. The low abundance of Ti requires very high absorption cross-sections in the ultraviolet and visible wavelength range to explain the strength of the feature. Other nano-crystalline metal carbides should be considered as well. We find that hydrogenated amorphous carbon in radiative equilibrium with the local radiation field does not reach a high enough temperature to explain the strength of the 3.3-3.4 and 6-9 mu m hydrocarbon features relative to the 11-17 mu m hydrocarbon features. We propose that the carriers of these hydrocarbon features are not in radiative equilibrium but are transiently heated to high temperature. We find that 2 per cent of the dust mass is required to explain the strength of the ``30'' mu m feature, which fits well within the measured atmospheric abundance of Mg and S. This further strengthens the MgS identification of the ``30'' mu m feature. Based on observations taken at the European Southern Observatory, La Silla, Chile and observation obtained with ISO, an ESA project with instruments funded by ESA Member states (especially the PI countries: France, Germany, The Netherlands and the UK) with the participation of ISAS and NASA.

  16. Analysis of the Radiated Field in an Electromagnetic Reverberation Chamber as an Upset-Inducing Stimulus for Digital Systems

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2012-01-01

    Preliminary data analysis for a physical fault injection experiment of a digital system exposed to High Intensity Radiated Fields (HIRF) in an electromagnetic reverberation chamber suggests a direct causal relation between the time profile of the field strength amplitude in the chamber and the severity of observed effects at the outputs of the radiated system. This report presents an analysis of the field strength modulation induced by the movement of the field stirrers in the reverberation chamber. The analysis is framed as a characterization of the discrete features of the field strength waveform responsible for the faults experienced by a radiated digital system. The results presented here will serve as a basis to refine the approach for a detailed analysis of HIRF-induced upsets observed during the radiation experiment. This work offers a novel perspective into the use of an electromagnetic reverberation chamber to generate upset-inducing stimuli for the study of fault effects in digital systems.

  17. 47 CFR 15.245 - Operation within the bands 902-928 MHz, 2435-2465 MHz, 5785-5815 MHz, 10500-10550 MHz, and 24075...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... limited to intentional radiators used as field disturbance sensors, excluding perimeter protection systems. (b) The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following: Fundamental frequency (MHz) Field strength of fundamental (millivolts...

  18. Dye-Assisted Laser Skin Closure with Pulsed Radiation: An In Vitro Study of Weld Strength and Thermal Damage

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Walsh, Joseph T.

    1998-10-01

    Previous laser skin welding studies have used continuous wave delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage. Previously published results indicate that a thermal damage zone in skin greater than 200 micrometers may prevent normal wound healing. We proposed that both strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a series of sufficiently short pulses. Two-cm-long incisions were made in guinea pig skin, in vitro. India ink and egg white (albumin) were applied to the wound edges to enhance radiation absorption and to close the wound, respectively. Continuous wave (cw), 1.06 micrometers , Nd:yttrium-aluminum-garnet laser radiation was scanned over the weld producing approximately 100 ms pulses. The cooling time between scans and the number of scans was varied. The thermal damage zone at the weld edges was measured using a transmission polarizing light microscope. The tensile strength of the welds was measured using a tensiometer. For pulsed welding and long cooling times between pulses (8 s), weld strengths of 2.4 +/- 0.9 kg/cm2 were measured, and lateral thermal damage at the epidermis was limited to 500 +/- 150 micrometers . With cw welding, comparable weld strengths produced 2700 +/- 300 micrometers of lateral thermal damage. The cw weld strengths were only 0.6 +/- 0.3 kg/cm2 for thermal damage zones comparable to pulsed welding.

  19. Radiative rates and electron impact excitation rate coefficients for Ne-like selenium, Se XXV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, K.; Chen, C.Y., E-mail: chychen@fudan.edu.cn; Huang, M.

    2011-07-15

    In this article we report calculations of energy levels, radiative rates, electron impact collision strengths, and effective collision strengths for transitions among the 241 fine-structure levels arising from 2l{sup 8} and 2l{sup 7}n{sup '}l{sup '} (n{sup '{<=}}6 and l{sup '{<=}}n{sup '}-1) configurations of Ne-like Se XXV using the Flexible Atomic Code. Energy levels and radiative rates are calculated within the relativistic configuration-interaction method. Direct excitation collision strengths are calculated using the relativistic distorted-wave approximation and high-energy collision strengths are obtained in the relativistic plane-wave approximation. Resonance contributions through the relevant Na-like doubly-excited configurations 2l{sup 7}n'l'n''l'' (3{<=}n'{<=}7, l'{<=}n'-1, n'{<=}n''{<=}50, and l''{<=}8)more » are explicitly taken into account via the independent-process and isolated-resonance approximation using distorted waves. Resonant stabilizing transitions and possibly important radiative decays from the resonances toward low-lying autoionizing levels are considered. In addition, the resonance contributions from Na-like 2l{sup 6}3l'3l'''n''' (n'''=3-6) configurations are included and found to be predominant for many transitions among the singly-excited states in Ne-like Se XXV. We present the radiative rates, oscillator strengths, and line strengths for all electric dipole, magnetic dipole, electric quadrupole, magnetic quadrupole, electric octopole, and magnetic octopole transitions among the 241 levels. The effective collision strengths are reported for all 28920 transitions among the 241 levels over a wide temperature range up to 10 keV. To assess the reliability and accuracy of the present collisional data, we have performed a 27-state close-coupling calculation, employing the Dirac R-matrix theory. The results from the close-coupling calculation and the independent-process calculation for the identical target states are found to be in good agreement. - Highlights: {yields} Radiative and collisional atomic data are presented for the lowest 241 fine-structure levels in Ne-like Se. {yields} Calculations are performed using the FAC package. {yields} Resonances enhance significantly a large amount of transitions. {yields} Radiative damping effects are significant for many transitions. {yields} Close-coupling effects are small in Ne-like Se.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiller, A; Voinov, A; Algin, E

    Two-step-cascade spectra in {sup 172}Yb have been measured after thermal neutron capture. they are compared to calculations based on experimental values of the level density and radiative strength function (RSF) obtained from the {sup 173}Yb(3{sup 3}He,{alpha}{gamma}){sup 172}Yb reaction. The multipolarity of a 6.5(15) {mu}{sub N}{sup 2} resonance at E{sub {gamma}} = 3.3(1) MeV in the RSF is determined to be M1 by this comparison.

  1. Statistical Challenges in Biomedical Research

    NASA Technical Reports Server (NTRS)

    Feiveson, Alan H.; Ploutz-Snyder, Rob; Fiedler, James

    2010-01-01

    Potentially debilitating effects of spaceflight environment include: a) Bone Demineralization - Osteoporosis. b)Impaired Fracture Healing - Non-Union. c) Renal Stone Formation & Soft Tissue Calcification. d) Orthostatic Intolerance (on return to gravity). e) Cardiac Arrhythmias. f) Dehydration (on return to gravity). g) Decreased Aerobic Capacity. h) Impaired Coordination. i) Muscle Atrophy (Loss of Strength). j) Radiation Sickness. k) Increased Cancer Risk. l) Impaired Immune Function. m) Behavioral Changes & Performance Decrements n) Altitude Decompression Sickness during EVA.

  2. Competition both drives and impedes diversification in a model adaptive radiation

    PubMed Central

    Bailey, Susan F.; Dettman, Jeremy R.; Rainey, Paul B.; Kassen, Rees

    2013-01-01

    Competitors are known to be important in governing the outcome of evolutionary diversification during an adaptive radiation, but the precise mechanisms by which they exert their effects remain elusive. Using the model adaptive radiation of Pseudomonas fluorescens, we show experimentally that the effect of competition on diversification of a focal lineage depends on both the strength of competition and the ability of the competitors to diversify. We provide evidence that the extent of diversification in the absence of interspecific competitors depends on the strength of resource competition. We also show that the presence of competitors can actually increase diversity by increasing interspecific resource competition. Competitors that themselves are able to diversify prevent diversification of the focal lineage by removing otherwise available ecological opportunities. These results suggest that the progress of an adaptive radiation depends ultimately on the strength of resource competition, an effect that can be exaggerated or impeded by the presence of competitors. PMID:23843392

  3. Emitted radiation characteristics of plutonium dioxide radioisotope thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Gingo, P. J.; Steyn, J. J.

    1971-01-01

    The nuclear and emitted radiation characteristics of the radioisotope elements and impurities in commercial grade plutonium dioxide are presented in detail. The development of the methods of analysis are presented. Radioisotope thermoelectric generators (RTG) of 1575, 3468 and 5679 thermal watts are characterized with respect to neutron and gamma photon source strength as well as spatial and number flux distribution. The results are presented as a function of detector position and light element contamination concentration for fuel age ranging from 'fresh' to 18 years. The data may be used to obtain results for given O-18 and Pu-236 concentrations. The neutron and gamma photon flux and dose calculations compare favorably with reported experimental values for SNAP-27.

  4. Skin welding using pulsed laser radiation and a dye

    NASA Astrophysics Data System (ADS)

    Fried, Nathaniel M.; Walsh, Joseph T., Jr.

    1998-07-01

    Previous skin welding studies have used continuous wave (CW) delivery of radiation. However, heat diffusion during irradiation prevents strong welds from being achieved without creating large zones of thermal damage to surrounding tissue. This damage may prevent normal wound healing. Strong welds and minimal thermal damage can be achieved by introducing a dye and delivering the radiation in a pulsed mode. Two-cm-long, full-thickness incisions were made in guinea pig skin. India ink was used as an absorber, and egg white albumin was used as an adhesive. A 5-mm-diameter spot of CW, 1.06-micrometer Nd:YAG laser radiation was scanned over the weld site, producing 100 millisecond pulses. The cooling time between scans and number of scans was varied. Thermal damage zones were measured using a transmission polarizing microscope to identify birefringence changes in tissue. Tensile strengths were measured using a tensiometer. For pulsed welding and long cooling times, weld strengths of 2.4 kg/cm2 were measured, and thermal damage to the epidermis was limited to approximately 500 micrometers. With CW welding, comparable weld strengths resulted in approximately 2700 micrometer of thermal damage. CW laser radiation weld strengths were only 0.6 kg/cm2 when thermal damage in the epidermis was limited to approximately 500 micrometers.

  5. Measuring Radiofrequency and Microwave Radiation from Varying Signal Strengths

    NASA Technical Reports Server (NTRS)

    Davis, Bette; Gaul, W. C.

    2007-01-01

    This viewgraph presentation discusses the process of measuring radiofrequency and microwave radiation from various signal strengths. The topics include: 1) Limits and Guidelines; 2) Typical Variable Standard (IEEE) Frequency Dependent; 3) FCC Standard 47 CFR 1.1310; 4) Compliance Follows Unity Rule; 5) Multiple Sources Contribute; 6) Types of RF Signals; 7) Interfering Radiations; 8) Different Frequencies Different Powers; 9) Power Summing - Peak Power; 10) Contribution from Various Single Sources; 11) Total Power from Multiple Sources; 12) Are You Out of Compliance?; and 13) In Compliance.

  6. Magnetic field effects on the energy deposition spectra of MV photon radiation.

    PubMed

    Kirkby, C; Stanescu, T; Fallone, B G

    2009-01-21

    Several groups worldwide have proposed various concepts for improving megavoltage (MV) radiotherapy that involve irradiating patients in the presence of a magnetic field-either for image guidance in the case of hybrid radiotherapy-MRI machines or for purposes of introducing tighter control over dose distributions. The presence of a magnetic field alters the trajectory of charged particles between interactions with the medium and thus has the potential to alter energy deposition patterns within a sub-cellular target volume. In this work, we use the MC radiation transport code PENELOPE with appropriate algorithms invoked to incorporate magnetic field deflections to investigate electron energy fluence in the presence of a uniform magnetic field and the energy deposition spectra within a 10 microm water sphere as a function of magnetic field strength. The simulations suggest only very minor changes to the electron fluence even for extremely strong magnetic fields. Further, calculations of the dose-averaged lineal energy indicate that a magnetic field strength of at least 70 T is required before beam quality will change by more than 2%.

  7. Effective mie-scattering and CO2 absorption in the dust-laden Martian atmosphere and its impact on radiative-convective temperature changes in the lower scale heights

    NASA Technical Reports Server (NTRS)

    Pallmann, A. J.

    1976-01-01

    A time dependent computer model of radiative-convective-conductive heat transfer in the Martian ground-atmosphere system was refined by incorporating an intermediate line strength CO2 band absorption which together with the strong-and weak-line approximation closely simulated the radiative transmission through a vertically inhomogeneous stratification. About 33,000 CO2 lines were processed to cover the spectral range of solar and planetary radiation. Absorption by silicate dust particulates, was taken into consideration to study its impact on the ground-atmosphere temperature field as a function of time. This model was subsequently attuned to IRIS, IR-radiometric and S-band occultation data. Satisfactory simulations of the measured IRIS spectra were accomplished for the dust-free condition. In the case of variable dust loads, the simulations were sufficiently fair so that some inferences into the effect of dust on temperature were justified.

  8. EM Modeling of Far-Field Radiation Patterns for Antennas on the GMA-TT UAV

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    2015-01-01

    To optimize communication with the Generic Modular Aircraft T-Tail (GMA-TT) unmanned aerial vehicle (UAV), electromagnetic (EM) simulations have been performed to predict the performance of two antenna types on the aircraft. Simulated far-field radiation patterns tell the amount of power radiated by the antennas and the aircraft together, taking into account blockage by the aircraft as well as radiation by conducting and dielectric portions of the aircraft. With a knowledge of the polarization and distance of the two communicating antennas, e.g. one on the UAV and one on the ground, and the transmitted signal strength, a calculation may be performed to find the strength of the signal travelling from one antenna to the other and to check that the transmitted signal meets the receiver system requirements for the designated range. In order to do this, the antenna frequency and polarization must be known for each antenna, in addition to its design and location. The permittivity, permeability, and geometry of the UAV components must also be known. The full-wave method of moments solution produces the appropriate dBi radiation pattern in which the received signal strength is calculated relative to that of an isotropic radiator.

  9. Method and apparatus for measuring electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Been, J. F. (Inventor)

    1973-01-01

    An apparatus and method are described in which the capacitance of a semiconductor junction subjected to an electromagnetic radiation field is utilized to indicate the intensity or strength of the radiation.

  10. Atomic data for a five-configuration model of Fe XIV

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Kastner, S. O.

    1993-01-01

    Collision strengths calculated in the distorted wave approximation are presented for electron excitation of Fe XIV at incident energies of 10, 20 and 30 Rydbergs. Configurations 3s(2)3p, 3s3p(2), 3s(2)3d, 3p(3), and 3s3p3d are included, comprising 40 levels, and wave function mixing coefficients are tabulated. Radiative transition rates are given for the same model using the Superstructure program.

  11. General-relativistic pulsar magnetospheric emission

    NASA Astrophysics Data System (ADS)

    Pétri, J.

    2018-06-01

    Most current pulsar emission models assume photon production and emission within the magnetosphere. Low-frequency radiation is preferentially produced in the vicinity of the polar caps, whereas the high-energy tail is shifted to regions closer but still inside the light cylinder. We conducted a systematic study of the merit of several popular radiation sites like the polar cap, the outer gap, and the slot gap. We computed sky maps emanating from each emission site according to a prescribed distribution function for the emitting particles made of an electron/positron mixture. Calculations are performed using a three-dimensional integration of the plasma emissivity in the vacuum electromagnetic field of a rotating and centred general-relativistic dipole. We compare Newtonian electromagnetic fields to their general-relativistic counterpart. In the latter case, light bending is also taken into account. As a typical example, light curves and sky maps are plotted for several power-law indices of the particle distribution function. The detailed pulse profiles strongly depend on the underlying assumption about the fluid motion subject to strong electromagnetic fields. This electromagnetic topology enforces the photon propagation direction directly, or indirectly, from aberration effects. We also discuss the implication of a net stellar electric charge on to sky maps. Taking into account, the electric field strongly affects the light curves originating close to the light cylinder, where the electric field strength becomes comparable to the magnetic field strength.

  12. Radiative lifetimes, branching fractions, and oscillator strengths of some levels in Be I

    NASA Astrophysics Data System (ADS)

    Wang, Xinghao; Quinet, Pascal; Li, Qiu; Yu, Qi; Li, Yongfan; Wang, Qian; Gong, Yimin; Dai, Zhenwen

    2018-06-01

    Radiative lifetimes of five levels in Be I lying in the energy range 64,506.45-71,160.52 cm-1 were measured by the time-resolved laser-induced fluorescence technique. These new data, together with previously measured radiative lifetimes and two reliable calculated lifetimes, were combined with branching fractions obtained from pseudo-relativistic Hartree-Fock calculations to deduce semi-empirical transition probabilities and oscillator strengths for 90 Be I spectral lines involving upper levels ranging from 42,565.35 to 72,251.27 cm-1.

  13. Atomic Data and Spectral Line Intensities for NI XVII

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XVII. We include in the calculations the 23 lowest configurations, corresponding to 159 fine-structure levels: 3l3l', 3l4l0'' , and 3s5l0''' , with l,l' = s,p,d, l'' = s,p,d, f, and l''' = s,p,d. Collision strengths are calculated at five incident energies for all transitions at varying energies above the threshold of each transition. One additional energy, very close to the threshold of each transition, has also been included. Calculations have been carried out using the Flexible Atomic Code in the distorted wave approximation. Additional calculations have been performed with the University College London suite of codes for comparison. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8) - 10(exp 14) / cubic cm and at an electron temperature of logT(sub e)e(K) = 6.5, corresponding to the maximum abundance of Ni XVII. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database

  14. Atomic Data and Spectral Line Intensities for Ca IX

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2012-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca IX. We include in the calculations the 33 lowest configurations in the n = 3, 4, 5 complexes, corresponding to 283 fine structure levels in the 3l3l ', 3l4l'' and 3l4l''' configurations, where l,l' = s, p, d, l '' = s, p, d, f and l''' = s, p, d, f, g. Collision strengths are calculated at five incident energies for all transitions: 5.8, 13.6, 24.2, 38.6 and 57.9 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.0055 Ry and 0.23 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cubic cm range and at an electron temperature of log T(sub e)(K)=5.8, corresponding to the maximum abundance of Ca IX. Spectral line intensities are calculated, and their diagnostic relevance is discussed.

  15. Using of borosilicate glass waste as a cement additive

    NASA Astrophysics Data System (ADS)

    Han, Weiwei; Sun, Tao; Li, Xinping; Sun, Mian; Lu, Yani

    2016-08-01

    Borosilicate glass waste is investigated as a cement additive in this paper to improve the properties of cement and concrete, such as setting time, compressive strength and radiation shielding. The results demonstrate that borosilicate glass is an effective additive, which not only improves the radiation shielding properties of cement paste, but also shows the irradiation effect on the mechanical and optical properties: borosilicate glass can increase the compressive strength and at the same time it makes a minor impact on the setting time and main mineralogical compositions of hydrated cement mixtures; and when the natural river sand in the mortar is replaced by borosilicate glass sand (in amounts from 0% to 22.2%), the compressive strength and the linear attenuation coefficient firstly increase and then decrease. When the glass waste content is 14.8%, the compressive strength is 43.2 MPa after 28 d and the linear attenuation coefficient is 0.2457 cm-1 after 28 d, which is beneficial for the preparation of radiation shielding concrete with high performances.

  16. A numerical study of three-dimensional flame propagation over thin solids in purely forced concurrent flow including gas-phase radiation

    NASA Astrophysics Data System (ADS)

    Feier, Ioan I., Jr.

    The effect of flame radiation on concurrent-flow flame spread over a thin solid sample of finite width in a low-speed wind tunnel is modeled using three-dimensional full Navier-Stokes equations and three-dimensional flame radiation transfer equations. The formulation includes the conservation of mass, momentum, energy, and species: fuel vapor, oxygen, carbon dioxide and water vapor. The SN discrete ordinates method is used to solve the radiation transfer equation with a mean absorption coefficient kappa = Ckappa p, where kappap is the Planck mean absorption coefficient of the gas mixture. The varying parameter C has a value between 0 and 1; C represents the strength of flame radiation. In addition, the solid fuel absorptivity alpha is varied to ascertain the effect of flame radiation heat feedback to the solid. The flow tunnel modeled has a dimension of 10x10x30 cm, the solid fuel has a width of 6-cm with two 1-cm inert strips as edges. Incoming forced flow velocity (5 cm/s) of 21% oxygen is assumed. For comparison with the three-dimensional results, corresponding two-dimensional computations are also performed. Detailed spatial flame profiles, solid surface profiles, and heat fluxes are presented. Increasing the flame radiation strength decreases the flame length. Although flame radiation provides an additional heat transfer mechanism to preheat the solid, it is insufficient to offset the decreased convective heating due to the shorter flame; the net effect is a slower spread rate. The percentage of unreacted fuel vapor that escapes from the flame is under 2%. It is theorized that some of the pyrolyzed fuel vapor diffuses sideway and reacts at the flame edges. A radiative energy balance is analyzed also. Flame radiative feedback to the solid plays a more important role in two-dimensional flames. With high solid fuel absorptivity, a peak in the flame spread rate occurs at an intermediate value of flame radiation strength---due to the competition between two mechanisms: gas-radiation heat loss weakening the flame and the radiative feedback boosting the solid pyrolysis. Two-dimensional calculations suggest that a larger percentage of unreacted fuel vapor can escape from the flame when the flame radiation strength is high.

  17. Restoration of orbicularis oculi muscle function in rabbits with peripheral facial paralysis via an implantable artificial facial nerve system

    PubMed Central

    Sun, Yajing; Jin, Cheng; Li, Keyong; Zhang, Qunfeng; Geng, Liang; Liu, Xundao; Zhang, Yi

    2017-01-01

    The purpose of the present study was to restore orbicularis oculi muscle function using the implantable artificial facial nerve system (IAFNS). The in vivo part of the IAFNS was implanted into 12 rabbits that were facially paralyzed on the right side of the face to restore the function of the orbicularis oculi muscle, which was indicated by closure of the paralyzed eye when the contralateral side was closed. Wireless communication links were established between the in vivo part (the processing chip and microelectrode) and the external part (System Controller program) of the system, which were used to set the working parameters and indicate the working state of the processing chip and microelectrode implanted in the body. A disturbance field strength test of the IAFNS processing chip was performed in a magnetic field dark room to test its electromagnetic radiation safety. Test distances investigated were 0, 1, 3 and 10 m, and levels of radiation intensity were evaluated in the horizontal and vertical planes. Anti-interference experiments were performed to test the stability of the processing chip under the interference of electromagnetic radiation. The fully implanted IAFNS was run for 5 h per day for 30 consecutive days to evaluate the accuracy and precision as well as the long-term stability and effectiveness of wireless communication. The stimulus intensity (range, 0–8 mA) was set every 3 days to confirm the minimum stimulation intensity which could indicate the movement of the paralyzed side was set. Effective stimulation rate was also tested by comparing the number of eye-close movements on both sides. The results of the present study indicated that the IAFNS could rebuild the reflex arc, inducing the experimental rabbits to close the eye of the paralyzed side. The System Controller program was able to reflect the in vivo part of the artificial facial nerve system in real-time and adjust the working pattern, stimulation intensity and frequency, range of wave and stimulation time. No significant differences in the stimulus intensities were observed during 30 days. The artificial facial nerve system chip operation stable in the anti-interference test, and the radiation field strength of the system was in a safe range according to the national standard. The IAFNS functioned without any interference and was able to restore functionality to facially paralyzed rabbits over the course of 30 days. PMID:29285055

  18. SYNCHROTRON ORIGIN OF THE TYPICAL GRB BAND FUNCTION—A CASE STUDY OF GRB 130606B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Bin-Bin; Briggs, Michael S.; Uhm, Z. Lucas

    2016-01-10

    We perform a time-resolved spectral analysis of GRB 130606B within the framework of a fast-cooling synchrotron radiation model with magnetic field strength in the emission region decaying with time, as proposed by Uhm and Zhang. The data from all time intervals can be successfully fit by the model. The same data can be equally well fit by the empirical Band function with typical parameter values. Our results, which involve only minimal physical assumptions, offer one natural solution to the origin of the observed GRB spectra and imply that, at least some, if not all, Band-like GRB spectra with typical Bandmore » parameter values can indeed be explained by synchrotron radiation.« less

  19. Middle atmosphere project: A radiative heating and cooling algorithm for a numerical model of the large scale stratospheric circulation

    NASA Technical Reports Server (NTRS)

    Wehrbein, W. M.; Leovy, C. B.

    1981-01-01

    A Curtis matrix is used to compute cooling by the 15 micron and 10 micron bands of carbon dioxide. Escape of radiation to space and exchange the lower boundary are used for the 9.6 micron band of ozone. Voigt line shape, vibrational relaxation, line overlap, and the temperature dependence of line strength distributions and transmission functions are incorporated into the Curtis matrices. The distributions of the atmospheric constituents included in the algorithm, and the method used to compute the Curtis matrices are discussed as well as cooling or heating by the 9.6 micron band of ozone. The FORTRAN programs and subroutines that were developed are described and listed.

  20. Near Field Radiation Characteristics of Implantable Square Spiral Chip Inductor Antennas for Bio-Sensors

    NASA Technical Reports Server (NTRS)

    Nessel, James A.; Simons, Rainee N.; Miranda, Felix A.

    2007-01-01

    The near field radiation characteristics of implantable Square Spiral Chip Inductor Antennas (SSCIA) for Bio-Sensors have been measured. Our results indicate that the measured near field relative signal strength of these antennas agrees with simulated results and confirm that in the near field region the radiation field is fairly uniform in all directions. The effects of parameters such as ground-plane, number of turns and microstrip-gap width on the performance of the SSCIA are presented. Furthermore, the SSCIA antenna with serrated ground plane produce a broad radiation pattern, with a relative signal strength detectable at distances within the range of operation of hand-held devices for self-diagnosis.

  1. Galactic X-ray emission from pulsars

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1981-01-01

    The contribution of pulsars to the gamma-ray flux from the galactic plane is examined using data from the most recent pulsar surveys. It is assumed that pulsar gamma-rays are produced by curvature radiation from relativistic particles above the polar cap and attenuated by pair production in the strong magnetic and electric fields. Assuming that all pulsars produce gamma-rays in this way, their luminosities can be predicted as a function of period and magnetic field strength. Using the distribution of pulsars in the galaxy as determined from data on 328 pulsars detected in three surveys, the local gamma-ray production spectrum, the longitude profile, and the latitude profile of pulsar gamma-ray flux are calculated. The largest sources of uncertainty in the size of the pulsar contribution are the value of the mean interstellar electron density, the turnover in the pulsar radio luminosity function, and the average pulsar magnetic field strength. A present estimate is that pulsars contribute from 15 to 20 % of the total flux of gamma-rays from the galactic plane.

  2. NONLINEAR EVOLUTION OF THE RADIATION-DRIVEN MAGNETO-ACOUSTIC INSTABILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez, Rodrigo; Socrates, Aristotle

    2013-04-20

    We examine the nonlinear development of unstable magnetosonic waves driven by a background radiative flux-the radiation-driven magneto-acoustic instability (RMI, a.k.a. the ''photon bubble'' instability). The RMI may serve as a persistent source of density, radiative flux, and magnetic field fluctuations in stably stratified, optically thick media. The conditions for instability are present in a variety of astrophysical environments and do not require the radiation pressure to dominate or the magnetic field to be strong. Here, we numerically study the saturation properties of the RMI, covering three orders of magnitude in the relative strength of radiation, magnetic field, and gas energies.more » Two-dimensional, time-dependent radiation-magnetohydrodynamic simulations of local, stably stratified domains are conducted with Zeus-MP in the optically thick, highly conducting limit. Our results confirm the theoretical expectations of Blaes and Socrates in that the RMI operates even in gas-pressure-dominated environments that are weakly magnetized. The saturation amplitude is a monotonically increasing function of the ratio of radiation to gas pressure. Keeping this ratio constant, we find that the saturation amplitude peaks when the magnetic pressure is comparable to the radiation pressure. We discuss the implications of our results for the dynamics of magnetized stellar envelopes, where the RMI should act as a source of sub-photospheric perturbations.« less

  3. Distinctions in manifestation of the hemorrhagic syndrome related to chronic, long-term and acute irradiation. [Rats;. gamma. rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arlashchenko, N.I.; Gorlov, V.G.; Maksimova, E.N.

    Two phenomena, decrease in strength of the vascular wall and decreased amount of thrombocytes in blood, must coincide for manifestation of the hemorrhagic syndrome. Either almost simultaneous injury to the vascular wall and thrombocyte function (with acute irradiation) or dissociation of these two processes (with long-term irradiation) may be observed, depending on the radiation dose. Chronic exposure at low (subliminal) dose rates does not elicit hemorrhagic manifestations or death of rats due to pathological bleeding.

  4. CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis

    NASA Astrophysics Data System (ADS)

    Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Winter, Jan; Xie, Keping; Yuan, C.-P.

    2018-02-01

    We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its potential impact on LHC scattering processes. The "fitted charm" PDF obtained in various QCD analyses contains a process-dependent component that is partly traced to power-suppressed radiative contributions in DIS and is generally different at the LHC. We discuss separation of the universal component of the nonperturbative charm from the rest of the radiative contributions and estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the QCD coupling strength, including the latest experimental data from HERA and the Large Hadron Collider. Models for the nonperturbative charm PDF are examined as a function of the charm quark mass and other parameters. The prospects for testing these models in the associated production of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including effects of the final-state parton showering.

  5. High-temperature partition functions, specific heats and spectral radiative properties of diatomic molecules with an improved calculation of energy levels

    NASA Astrophysics Data System (ADS)

    Qin, Z.; Zhao, J. M.; Liu, L. H.

    2018-05-01

    The level energies of diatomic molecules calculated by the frequently used Dunham expansion will become less accurate for high-lying vibrational and rotational levels. In this paper, the potential curves for the lower-lying electronic states with accurate spectroscopic constants are reconstructed using the Rydberg-Klein-Rees (RKR) method, which are extrapolated to the dissociation limits by fitting of the theoretical potentials, and the rest of the potential curves are obtained from the ab-initio results in the literature. Solving the rotational dependence of the radial Schrödinger equation over the obtained potential curves, we determine the rovibrational level energies, which are then used to calculate the equilibrium and non-equilibrium thermodynamic properties of N2, N2+, NO, O2, CN, C2, CO and CO+. The partition functions and the specific heats are systematically validated by available data in the literature. Finally, we calculate the radiative source strengths of diatomic molecules in thermodynamic equilibrium, which agree well with the available values in the literature. The spectral radiative intensities for some diatomic molecules in thermodynamic non-equilibrium are calculated and validated by available experimental data.

  6. Low ecological disparity in Early Cretaceous birds

    PubMed Central

    Mitchell, Jonathan S.; Makovicky, Peter J.

    2014-01-01

    Ecological divergence is thought to be coupled with evolutionary radiations, yet the strength of this coupling is unclear. When birds diversified ecologically has received much less attention than their hotly debated crown divergence time. Here, we quantify how accurately skeletal morphology can predict ecology in living and extinct birds, and show that the earliest known assemblage of birds (= pygostylians) from the Jehol Biota (≈ 125 Ma) was substantially impoverished ecologically. The Jehol avifauna has few representatives of highly preservable ecomorphs (e.g. aquatic forms) and a notable lack of ecomorphological overlap with the pterosaur assemblage (e.g. no large or aerially foraging pygostylians). Comparisons of the Jehol functional diversity with modern and subfossil avian assemblages show that taphonomic bias alone cannot explain the ecomorphological impoverishment. However, evolutionary simulations suggest that the constrained ecological diversity of the Early Cretaceous pygostylians is consistent with what is expected from a relatively young radiation. Regardless of the proximate biological explanation, the anomalously low functional diversity of the Jehol birds is evidence both for ecological vacancies in Cretaceous ecosystems, which were subsequently filled by the radiation of crown Aves, and for discordance between taxonomic richness and ecological diversity in the best-known Mesozoic ecosystem. PMID:24870044

  7. A possible effect of electromagnetic radiation from mobile phone base stations on the number of breeding house sparrows (Passer domesticus).

    PubMed

    Everaert, Joris; Bauwens, Dirk

    2007-01-01

    A possible effect of long-term exposure to low-intensity electromagnetic radiation from mobile phone (GSM) base stations on the number of House Sparrows during the breeding season was studied in six residential districts in Belgium. We sampled 150 point locations within the 6 areas to examine small-scale geographic variation in the number of House Sparrow males and the strength of electromagnetic radiation from base stations. Spatial variation in the number of House Sparrow males was negatively and highly significantly related to the strength of electric fields from both the 900 and 1800 MHz downlink frequency bands and from the sum of these bands (Chi(2)-tests and AIC-criteria, P<0.001). This negative relationship was highly similar within each of the six study areas, despite differences among areas in both the number of birds and radiation levels. Thus, our data show that fewer House Sparrow males were seen at locations with relatively high electric field strength values of GSM base stations and therefore support the notion that long-term exposure to higher levels of radiation negatively affects the abundance or behavior of House Sparrows in the wild.

  8. Effects Of Radiation On Insulators

    NASA Technical Reports Server (NTRS)

    Bouquet, Frank L.

    1988-01-01

    Report presents data on responses of electrically insulating thermosetting and thermoplastic polymers to radiation. Lowest-threshold-dose (LTD) levels and 25-percent-change levels presented for such properties as tensile strength and electrical resistivity. Data on radiation-induced outgassing also given.

  9. Ideal sinks are not always ideal. Radiation damage accumulation in nanocomposites

    DOE PAGES

    Uberuaga, Blas Pedro; Choudhury, Samrat; Caro, Alfredo

    2014-11-27

    Designing radiation tolerant materials is one of the primary challenges associated with advanced nuclear energy systems. One attractive route that has received much attention world-wide is to introduce a high density of sinks, often in the form of interfaces or secondary phases. Here, we develop a simple model of such nanocomposites and examine the ramifications of various factors on the overall radiation stability of the material. In particular, we determine how the distribution of secondary phases, the relative sink strength of those phases, and the irradiation temperature influence the radiation tolerance of the matrix. We find that the best scenariomore » is one in which the sinks have intermediate strength, transiently trapping defects before releasing them back into the matrix.This provides new insight into the optimal properties of nanocomposites for radiation damage environments.« less

  10. Modelling of micromachining of human tooth enamel by erbium laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.; Shatilova, K. V.

    2014-08-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained.

  11. A method for mapping apparent stress and energy radiation applied to the 1994 Northridge earthquake fault zone

    USGS Publications Warehouse

    McGarr, A.; Fletcher, Joe B.

    2000-01-01

    Using the Northridge earthquake as an example, we demonstrate a new technique able to resolve apparent stress within subfaults of a larger fault plane. From the model of Wald et al. (1996), we estimated apparent stress for each subfault using τa = (G/β)/2 where G is the modulus of rigidity, β is the shear wave speed, and is the average slip rate. The image of apparent stress mapped over the Northridge fault plane supports the idea that the stresses causing fault slip are inhomogeneous, but limited by the strength of the crust. Indeed, over the depth range 5 to 17 km, maximum values of apparent stress for a given depth interval agree with τa(max)=0.06S(z), where S is the laboratory estimate of crustal strength as a function of depth z. The seismic energy from each subfault was estimated from the product τaDA, where A is subfault area and D its slip. Over the fault zone, we found that the radiated energy is quite variable spatially, with more than 50% of the total coming from just 15% of the subfaults.

  12. Novel Concrete Chemistry Achieved with Low Dose Gamma Radiation Curing and Resistance to Neutron Activation

    NASA Astrophysics Data System (ADS)

    Burnham, Steven Robert

    As much as 50% of ageing-related problems with concrete structures can be attributed to con-struction deficiencies at the time of placement. The most influential time affecting longevity of concrete structures is the curing phase, or commonly the initial 28 days following its placement. A novel advanced atomistic analysis of novel concrete chemistry is presented in this dissertation with the objective to improve concrete structural properties and its longevity. Based on experiments and computational models, this novel concrete chemistry is discussed in two cases: (a) concrete chemistry changes when exposed to low-dose gamma radiation in its early curing stage, thus improving its strength in a shorter period of time then curing for the conventional 28 days; (b) concrete chemistry is controlled by its atomistic components to assure strength is not reduced but that its activation due to long-term exposure to neutron flux in nuclear power plants is negligible. High dose gamma radiation is well documented as a degradation mechanism that decreases concrete's compressive strength; however, the effects of low-dose gamma radiation on the initial curing phase of concrete, having never been studied before, proved its compressive strength increases. Using a 137 Cs source, concrete samples were subjected to gamma radiation during the initial curing phase for seven, 14, and 28 days. The compressive strength after seven days is improved for gamma cured concrete by 24% and after 14 days by 76%. Concrete shows no improvement in compressive strength after 28 days of exposure to gamma radiation, showing that there is a threshold effect. Scanning Electron Microscopy is used to examine the microstructure of low-dose gamma radiation where no damage to its microstructure is found, showing no difference between gamma cured and conventionally cured concrete. Molecular dynamics modeling based on the MOPAC package is used to study how gamma radiation during the curing stage improves compressive strength of concrete. The modeling shows that when radiolysis occurs in freshly mixed concrete, the reactivity between key molecules responsible for bonding between cement and aggregate is enhanced due to improved reactivity at the molecular level. A new method is developed that successfully controls a concrete chemistry at the atomistic level by assuring its long-term exposure to neutron flux in nuclear power plants will not activate the dome wall to the level of low-level radioactive waste. This methodology is established to detect and select the level of trace elemental composition in concrete based on a low-flux neutron activation analysis (NAA). By carefully selecting aggregates that do not contain certain elements that activate to high concentrations after decades of concrete exposure to neutron flux, the end of life for concrete is improved by declassifying it as low-level radioactive waste. Directly, it improves economy of commissioning nuclear power plants to be built in near future and reducing important quantities of waste to be disposed at high costs.

  13. Experimental radiative lifetimes, branching fractions, and oscillator strengths of some levels in Tm III

    NASA Astrophysics Data System (ADS)

    Yu, Qi; Wang, Xinghao; Li, Qiu; Gong, Yimin; Dai, Zhenwen

    2018-06-01

    Natural radiative lifetimes for five even-parity levels of Tm III were measured by time-resolved laser-induced fluorescence method. The branching fraction measurements were performed based on the emission spectra of a hollow cathode lamp. By combining the measured branching fractions and the lifetime values reported in this work and in literature, experimental transition probabilities and oscillator strengths for 11 transitions were derived for the first time.

  14. Atomic Data and Spectral Line Intensities for Ni XV

    NASA Technical Reports Server (NTRS)

    Landi, E.; Bhatia, A. K.

    2011-01-01

    Electron impact collision strengths, energy levels, oscillator strengths, and spontaneous radiative decay rates are calculated for Ni XV.Weinclude in the calculations the 9 lowest configurations, corresponding to 126 fine structure levels: 3s23p2, 3s3p3, 3s23p3d, 3p4, 3s3p23d, and 3s2 3p4l with l =, s, p, d, f. Collision strengths are calculated at five incident energies for all transitions: 7.8, 18.5, 33.5, 53.5, and 80.2 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.004 and 0.28 Ry depending on the levels involved. Calculations have been carried out using the Flexible Atomic Code and the distorted-wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates calculated in the present work, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14)/cu cm range and at an electron temperature of log T(sub e)(K) = 6.4, corresponding to the maximum abundance of Ni XV. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.

  15. Atomic Data and Spectral Line Intensities for CA XVII

    NASA Technical Reports Server (NTRS)

    Bhatia, A.K.; Landi, E.

    2007-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ca XVII. The configurations used are 2s(sup 2), 2s2p, 2p(sup 2), 2l3l', 214l' and 2s5l', with l = s,p and l' = s,p, d giving rise to 92 fine-structure levels in intermediate coupling. Collision strengths are calculated at seven incident energies (15, 30, 75, 112.5, 150, 187.5 and 225 Ry) for the transitions within the three lowest configurations corresponding to the 10 lowest energy levels, and five incident energies (75, 112.5, 150, 187.5 and 225 Ry) for transitions between the lowest five levels and the n = 3,4,5 configurations. Calculations have been carried out using the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, and R-Matrix results for the 2s2, 2s2p, 2p2 configurations available in the literature, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14)/cu cm at an electron temperature of log Te(K)=6.7, corresponding to the maximum abundance of Ca XVII. Spectral line intensities are calculated, and their diagnostic relevance L; discussed. This dataset will be made available in the next version of the CHIANTI database.

  16. Ultraviolet-B radiation induced cross-linking improves physical properties of cold- and warm-water fish gelatin gels and films.

    PubMed

    Otoni, Caio G; Avena-Bustillos, Roberto J; Chiou, Bor-Sen; Bilbao-Sainz, Cristina; Bechtel, Peter J; McHugh, Tara H

    2012-09-01

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm(2). Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rheological properties of the solutions as well as the tensile and water vapor barrier properties of the films were characterized. SDS-PAGE and refractive index results indicated cross-linking of gelatin chains after exposure to radiation. Interestingly, UV-B treated samples displayed higher gel strengths, with cold- and warm-water fish gelatin having gel strength increases from 1.39 to 2.11 N and from 7.15 to 8.34 N, respectively. In addition, both gelatin samples exhibited an increase in viscosity for higher UV doses. For gelatin films, the cold-water fish gelatin samples made from irradiated granules showed greater tensile strength. In comparison, the warm-water gelatin films made from irradiated granules had lower tensile strength, but better water vapor barrier properties. This might be due to the UV induced cross-linking in warm-water gelatin that disrupted helical structures. Journal of Food Science copy; 2012 Institute of Food Technologists® No claim to original US government works.

  17. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The K JQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  18. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    DOE PAGES

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; ...

    2016-12-07

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This paper aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide amore » comparative assessment of their high-temperature structural performance. The K JQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Finally, irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.« less

  19. A comparative assessment of the fracture toughness behavior of ferritic-martensitic steels and nanostructured ferritic alloys

    NASA Astrophysics Data System (ADS)

    Byun, Thak Sang; Hoelzer, David T.; Kim, Jeoung Han; Maloy, Stuart A.

    2017-02-01

    The Fe-Cr alloys with ultrafine microstructures are primary candidate materials for advanced nuclear reactor components because of their excellent high temperature strength and high resistance to radiation-induced damage such as embrittlement and swelling. Mainly two types of Fe-Cr alloys have been developed for the high temperature reactor applications: the quenched and tempered ferritic-martensitic (FM) steels hardened primarily by ultrafine laths and carbonitrides and the powder metallurgy-based nanostructured ferritic alloys (NFAs) by nanograin structure and nanoclusters. This study aims at elucidating the differences and similarities in the temperature and strength dependences of fracture toughness in the Fe-Cr alloys to provide a comparative assessment of their high-temperature structural performance. The KJQ versus yield stress plots confirmed that the fracture toughness was inversely proportional to yield strength. It was found, however, that the toughness data for some NFAs were outside the band of the integrated dataset at given strength level, which indicates either a significant improvement or deterioration in mechanical properties due to fundamental changes in deformation and fracture mechanisms. When compared to the behavior of NFAs, the FM steels have shown much less strength dependence and formed narrow fracture toughness data bands at a significantly lower strength region. It appeared that at high temperatures ≥600 °C the NFAs cannot retain the nanostructure advantage of high strength and high toughness either by high-temperature embrittlement or by excessive loss of strength. Irradiation studies have revealed, however, that the NFAs have much stronger radiation resistance than tempered martensitic steels, such as lower radiation-induced swelling, finer helium bubble formation, lower irradiation creep rate and reduced low temperature embrittlement.

  20. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    NASA Astrophysics Data System (ADS)

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.

    2016-04-01

    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  1. Preliminary study of tin slag concrete mixture

    NASA Astrophysics Data System (ADS)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  2. Radar detection of radiation-induced ionization in air

    DOEpatents

    Gopalsami, Nachappa; Heifetz, Alexander; Chien, Hual-Te; Liao, Shaolin; Koehl, Eugene R.; Raptis, Apostolos C.

    2015-07-21

    A millimeter wave measurement system has been developed for remote detection of airborne nuclear radiation, based on electromagnetic scattering from radiation-induced ionization in air. Specifically, methods of monitoring radiation-induced ionization of air have been investigated, and the ionized air has been identified as a source of millimeter wave radar reflection, which can be utilized to determine the size and strength of a radiation source.

  3. Modelling of micromachining of human tooth enamel by erbium laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength betweenmore » the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)« less

  4. The effect of Amifostine prophylaxis on bone densitometry, biomechanical strength and union in mandibular pathologic fracture repair.

    PubMed

    Tchanque-Fossuo, Catherine N; Donneys, Alexis; Sarhaddi, Deniz; Poushanchi, Behdod; Deshpande, Sagar S; Weiss, Daniela M; Buchman, Steven R

    2013-11-01

    Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine's effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures. © 2013.

  5. Amifostine Prophylaxis on Bone Densitometry, Biomechanical Strength and Union in Mandibular Pathologic Fracture Repair

    PubMed Central

    Tchanque-Fossuo, Catherine N.; Donneys, Alexis; Sarhaddi, Deniz; Poushanchi, Behdod; Deshpande, Sagar S.; Weiss, Daniela M.

    2013-01-01

    Background Pathologic fractures (Fx) of the mandibles are severely debilitating consequences of radiation (XRT) in the treatment of craniofacial malignancy. We have previously demonstrated Amifostine’s effect (AMF) in the remediation of radiation-induced cellular damage. We posit that AMF prophylaxis will preserve bone strength and drastically reverse radiotherapy-induced non-union in a murine mandibular model of pathologic fracture repair. Materials and Methods Twenty-nine rats were randomized into 3 groups: Fx, XRT/Fx, and AMF/XRT/Fx. A fractionated human equivalent dose of radiation was delivered to the left hemimandibles of XRT/Fx and AMF/XRT/Fx. AMF/XRT/Fx was pre-treated with AMF. All groups underwent left mandibular osteotomy with external fixation and setting of a 2.1mm fracture gap post-operatively. Utilizing micro-computed tomography and biomechanical testing, the healed fracture was evaluated for strength. Results All radiomorphometrics and biomechanical properties were significantly diminished in XRT/Fx compared to both Fx and AMF/XRT/Fx. No difference was demonstrated between Fx and AMF/XRT/Fx in both outcomes. Conclusion Our investigation establishes the significant and substantial capability of AMF prophylaxis to preserve and enhance bone union, quality and strength in the setting of human equivalent radiotherapy. Such novel discoveries establish the true potential to utilize pharmacotherapy to prevent and improve the treatment outcomes of radiation-induced late pathologic fractures. PMID:23860272

  6. [Evaluation of the capacity of work using upper limbs after radical latero-cervical surgery].

    PubMed

    Capodaglio, P; Strada, M R; Grilli, C; Lodola, E; Panigazzi, M; Bernardo, G; Bazzini, G

    1998-01-01

    Evaluation of arm work capacity after radical neck surgery. The aim of this paper is to describe an approach for the assessment of work capacity in patients who underwent radical neck surgery, including those treated with radiation therapy. Nine male patients, who underwent radical neck surgery 2 months before being referred to our Unit, participated in the study. In addition to manual muscle strength test, we performed the following functional evaluations: 0-100 Constant scale for shoulder function; maximal shoulder strength in adduction/abduction and intrarotation/extrarotation; instrumental. We measured maximal isokinetic strength (10 repetitions) with a computerized dynamometer (Lido WorkSET) set at 100 degrees/sec. During the rehabilitation phase, the patients' mechanical parameters, the perception of effort, pain or discomfort, and the range of movement were monitored while performing daily/occupational task individually chosen on the simulator (Lido WorkSET) under isotonic conditions. On this basis, patients were encouraged to return to levels of daily physical activities compatible with the individual tolerable work load. The second evaluation at 2 month confirmed that the integrated rehabilitation protocol successfully increased patients' capacities and "trust" in their physical capacity. According to the literature, the use of isokinetic and isotonic exercise programs appears to decrease shoulder rehabilitation time. In our experience an excellent compliance has been noted. One of the advantages of the method proposed is to provide quantitative reports of the functional capacity and therefore to facilitate return-to-work of patients who underwent radical neck surgery.

  7. R-matrix electron-impact excitation data for the Li-like iso-electronic sequence including Auger and radiation damping

    NASA Astrophysics Data System (ADS)

    Liang, G. Y.; Badnell, N. R.

    2011-04-01

    We present results for the electron-impact excitation of all Li-like ions from Be+ to Kr33+ which we obtained using the radiation- and Auger-damped intermediate-coupling frame transformation R-matrix approach. We have included both valence- and core-electron excitations up to the 1s25l and 1s2l4l' levels, respectively. A detailed comparison of the target structure and collision data has been made for four specific ions (O5+, Ar15+, Fe23+ and Kr33+) spanning the sequence so as to assess the accuracy for the entire sequence. Effective collision strengths (Υs) are presented at temperatures ranging from 2 × 102(z + 1)2 K to 2 × 106(z + 1)2 K (where z is the residual charge of the ions, i.e. Z - 3). Detailed comparisons for the Υs are made with the results of previous calculations for several ions which span the sequence. The radiation and Auger damping effects were explored for core-excitations along the iso-electronic sequence. Furthermore, we examined the iso-electronic trends of effective collision strengths as a function of temperature. These data are made available in the archives of APAP via http://www.apap-network.org, OPEN-ADAS via http://open.adas.ac.uk, as well as anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/528/A69

  8. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station installed on buildings in Serbia.

    PubMed

    Koprivica, Mladen; Slavkovic, Vladimir; Neskovic, Natasa; Neskovic, Aleksandar

    2016-03-01

    As a result of dense deployment of public mobile base stations, additional electromagnetic (EM) radiation occurs in the modern human environment. At the same time, public concern about the exposure to EM radiation emitted by such sources has increased. In order to determine the level of radio frequency radiation generated by base stations, extensive EM field strength measurements were carried out for 664 base station locations, from which 276 locations refer to the case of base stations with antenna system installed on buildings. Having in mind the large percentage (42 %) of locations with installations on buildings, as well as the inevitable presence of people in their vicinity, a detailed analysis of this location category was performed. Measurement results showed that the maximum recorded value of total electric field strength has exceeded International Commission on Non-Ionizing Radiation Protection general public exposure reference levels at 2.5 % of locations and Serbian national reference levels at 15.6 % of locations. It should be emphasised that the values exceeding the reference levels were observed only outdoor, while in indoor total electric field strength in no case exceeded the defined reference levels. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Towards producing novel fish gelatin films by combination treatments of ultraviolet radiation and sugars (ribose and lactose) as cross-linking agents.

    PubMed

    Bhat, Rajeev; Karim, A A

    2014-07-01

    Developing novel fish gelatin films with better mechanical properties than mammalian gelatin is a challenging but promising endeavor. Studies were undertaken to produce fish gelatin films by combining treatments with different sugars (ribose and lactose) followed 'by' 'and' ultraviolet (UV) radiation, as possible cross-linking agents. Increase in tensile strength and percent elongation at break was recorded, which was more significant in films without sugars that were exposed to UV radiation. Films with added ribose showed decreased solubility after UV treatment and exhibited higher swelling percentage than films with added lactose, which readily dissolved in water. FTIR spectra of all the films showed identical patterns, which indicated no major changes to have occurred in the functional groups as a result of interaction between gelatin, sugars and UV irradiation. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for food packaging purposes.

  10. Room temperature triplet state spectroscopy of organic semiconductors.

    PubMed

    Reineke, Sebastian; Baldo, Marc A

    2014-01-21

    Organic light-emitting devices and solar cells are devices that create, manipulate, and convert excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is 'dark' with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescence type emitters. Control of non-radiative modes in the matrix surrounding a target molecule may also have broader applications in light-emitting and photovoltaic devices.

  11. Mechanical response tissue analyzer for estimating bone strength

    NASA Technical Reports Server (NTRS)

    Arnaud, Sara B.; Steele, Charles; Mauriello, Anthony

    1991-01-01

    One of the major concerns for extended space flight is weakness of the long bones of the legs, composed primarily of cortical bone, that functions to provide mechanical support. The strength of cortical bone is due to its complex structure, described simplistically as cylinders of parallel osteons composed of layers of mineralized collagen. The reduced mechanical stresses during space flight or immobilization of bone on Earth reduces the mineral content, and changes the components of its matrix and structure so that its strength is reduced. Currently, the established clinical measures of bone strength are indirect. The measures are based on determinations of mineral density by means of radiography, photon absorptiometry, and quantitative computer tomography. While the mineral content of bone is essential to its strength, there is growing awareness of the limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially limitations of the measurement as the sole predictor of fracture risk in metabolic bone diseases, especially osteoporosis. Other experimental methods in clinical trials that more directly evaluate the physical properties of bone, and do not require exposure to radiation, include ultrasound, acoustic emission, and low-frequency mechanical vibration. The last method can be considered a direct measure of the functional capacity of a long bone since it quantifies the mechanical response to a stimulus delivered directly to the bone. A low frequency vibration induces a response (impedance) curve with a minimum at the resonant frequency, that a few investigators use for the evaluation of the bone. An alternative approach, the method under consideration, is to use the response curve as the basis for determination of the bone bending stiffness EI (E is the intrinsic material property and I is the cross-sectional moment of inertia) and mass, fundamental mechanical properties of bone.

  12. Fentanyl Iontophoretic Transdermal System (IONSYS(®)) can be Safely used in the Hospital Environment with X-Rays, Computerized Tomography and Radiofrequency Identification Devices.

    PubMed

    Lemke, John; Sardariani, Edmond; Phipps, Joseph Bradley; Patel, Niki; Itri, Loretta M; Caravelli, James; Viscusi, Eugene R

    2016-09-01

    Fentanyl iontophoretic transdermal system (fentanyl ITS, IONSYS(®)) is a patient-controlled analgesia system used for the management of acute postoperative pain, designed to be utilized in a hospital setting. The objective of the two studies was to determine if fentanyl ITS could be safely used with X-rays, computerized tomography (CT) scans and radiofrequency identification (RFID) devices. The ITS system has two components: controller and drug unit; the studies utilized ITS systems without fentanyl, referred to as the ITS Placebo system. The first study evaluated the effect of X-radiation on the operation of an ITS Placebo system. Five ITS Placebo systems were exposed to X-rays (20 and 200 mSv total radiation dose-the 200 mSv radiation dose represents a tenfold higher exposure than in clinical practice) while operating in the Ready Mode and five were exposed while operating in the Dose Mode. The second study evaluated the effect of RFID (worst-case scenario of direct contact with an RFID transmitter) on the operation of an ITS Placebo system. During these tests, observations of the user interface and measurements of output voltage confirmed proper function throughout all operational modes (Ready Mode, Dose Mode, End-of-Use Mode, and End-of-Life Mode). The ITS Placebo system met all specifications and no functional anomalies were observed during and following X-ray exposure at two radiation dose levels or exposure at six different combinations of RFID frequencies and field strengths. The performance of the ITS system was unaffected by X-ray exposure levels well beyond those associated with diagnostic X-rays and CT scans, and by exposure to radiofrequency field strengths typically generated by RFID devices. These results provide added confidence to clinicians that the fentanyl ITS system does not need to be removed during diagnostic X-rays and CT scans and can also be utilized in close proximity to RFID devices. The studies and writing of this manuscript were supported financially by The Medicines Company.

  13. Quantitative Image Quality and Histogram-Based Evaluations of an Iterative Reconstruction Algorithm at Low-to-Ultralow Radiation Dose Levels: A Phantom Study in Chest CT

    PubMed Central

    Lee, Ki Baek

    2018-01-01

    Objective To describe the quantitative image quality and histogram-based evaluation of an iterative reconstruction (IR) algorithm in chest computed tomography (CT) scans at low-to-ultralow CT radiation dose levels. Materials and Methods In an adult anthropomorphic phantom, chest CT scans were performed with 128-section dual-source CT at 70, 80, 100, 120, and 140 kVp, and the reference (3.4 mGy in volume CT Dose Index [CTDIvol]), 30%-, 60%-, and 90%-reduced radiation dose levels (2.4, 1.4, and 0.3 mGy). The CT images were reconstructed by using filtered back projection (FBP) algorithms and IR algorithm with strengths 1, 3, and 5. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were statistically compared between different dose levels, tube voltages, and reconstruction algorithms. Moreover, histograms of subtraction images before and after standardization in x- and y-axes were visually compared. Results Compared with FBP images, IR images with strengths 1, 3, and 5 demonstrated image noise reduction up to 49.1%, SNR increase up to 100.7%, and CNR increase up to 67.3%. Noteworthy image quality degradations on IR images including a 184.9% increase in image noise, 63.0% decrease in SNR, and 51.3% decrease in CNR, and were shown between 60% and 90% reduced levels of radiation dose (p < 0.0001). Subtraction histograms between FBP and IR images showed progressively increased dispersion with increased IR strength and increased dose reduction. After standardization, the histograms appeared deviated and ragged between FBP images and IR images with strength 3 or 5, but almost normally-distributed between FBP images and IR images with strength 1. Conclusion The IR algorithm may be used to save radiation doses without substantial image quality degradation in chest CT scanning of the adult anthropomorphic phantom, down to approximately 1.4 mGy in CTDIvol (60% reduced dose). PMID:29354008

  14. Neutron Capture Cross Sections and Gamma Emission Spectra from Neutron Capture on 234,236,238U Measured with DANCE

    NASA Astrophysics Data System (ADS)

    Ullmann, J. L.; Mosby, S.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Wu, C.-Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.

    2014-05-01

    A new measurement of the 238U(n, γ) cross section using a thin 48 mg/cm2 target was made using the DANCE detector at LANSCE over the energy range from 10 eV to 500 keV. The results confirm earlier measurements. Measurements of the gamma-ray emission spectra were also made for 238U(n, γ) as well as 234,236U(n, γ). These measurements help to constrain the radiative strength function used in the cross-section calculations.

  15. Electric Field Strength Of Coherent Radio Emission In Rock Salt Concerning Ultra High-Energy Neutrino Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Y.; Chiba, M.; Yasuda, O.

    2006-07-12

    Detection possibility of ultra high-energy (UHE) neutrino (E >1015 eV) in natural huge rock salt formation has been studied. Collision between the UHE neutrino and the rock salt produces electromagnetic (EM) shower. Charge difference (excess electrons) between electrons and positrons in EM shower radiates radio wave coherently (Askar'yan effect). Angular distribution and frequency spectrum of electric field strength of radio wave radiated from 3-dimensional EM shower in rock salt are presented.

  16. Appraisal of marigold flower based lutein as natural colourant for textile dyeing under the influence of gamma radiations

    NASA Astrophysics Data System (ADS)

    Adeel, Shahid; Gulzar, Tahsin; Azeem, Muhammad; Fazal-ur-Rehman; Saeed, Muhammad; Hanif, Iram; Iqbal, Naeem

    2017-01-01

    Maintaining colour strength and fastness of the fabrics dyed with natural colourants had been the major constraint of utilizing plant based dyes in modern textile practices. The present study was concerned with the extraction of lutein dye from marigold (Tagetes erecta L.) flowers and role of gamma radiation in improving colour strength and fastness characteristics of the extracted dye. The investigation of dyed fabric in spectraflash showed that gamma ray treatment of 30 kGy was the optimum absorbed dose for surface modification to improve its dye uptake ability. Good colour strength was obtained when irradiated cotton (RC, 30 kGy) was dyed with extract of radiated marigold flower powder (RP) at 70 °C for 85 min, keeping M:L of 1:50 using dye bath of pH 5.0. The results from mordanting experiments revealed that 7% of tannic acid as pre-mordant and 5% of Cu as post-mordant were the best treatments to improve colour strength. It was found that gamma ray induced extraction of lutein from marigold flowers had a potential to be utilized as natural dyes in textile sector to produce yellowish green shades.

  17. Turbulence radiation interaction in Reynolds-averaged Navier-Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habibi, A.; Merci, B.; Roekaerts, D.

    2007-10-15

    Numerical simulation results are presented for two axisymmetric, nonluminous turbulent piloted jet diffusion flames: Sandia Flame D (SFD) and Delft Flame III (DFIII). Turbulence is represented by a Reynolds stress transport model, while chemistry is modeled by means of steady laminar flamelets. We use the preassumed PDF approach for turbulence-chemistry interaction. A weighted sum of gray gases model is used for the gas radiative properties. The radiative transfer equation is solved using the discrete ordinates method in the conservative finite-volume formulation. The radiative loss leads to a decrease in mean temperature, but does not significantly influence the flow and mixingmore » fields, in terms either of mean values or of rms values of fluctuations. A systematic analysis of turbulence-radiation interaction (TRI) is carried out. By considering five different TRI formulations, and comparing also with a simple optically thin model, individual TRI contributions are isolated and quantified. For both flames, effects are demonstrated of (1) influence of temperature fluctuations on the mean Planck function, (2) temperature and composition fluctuations on the mean absorption coefficient, and (3) correlation between absorption coefficient and Planck function. The strength of the last effect is stronger in DFIII than in SFD, because of stronger turbulence-chemistry interaction and lower mean temperature in DFIII. The impact of the choice of TRI model on the prediction of the temperature-sensitive minor species NO is determined in a postprocessing step with fixed flow and mixing fields. Best agreement for NO is obtained using the most complete representation of TRI. (author)« less

  18. Expiratory muscle strength training for radiation-associated aspiration after head and neck cancer: A case series.

    PubMed

    Hutcheson, Katherine A; Barrow, Martha P; Plowman, Emily K; Lai, Stephen Y; Fuller, Clifton David; Barringer, Denise A; Eapen, George; Wang, Yiqun; Hubbard, Rachel; Jimenez, Sarah K; Little, Leila G; Lewin, Jan S

    2018-05-01

    Expiratory muscle strength training (EMST) is a simple, inexpensive, device-driven exercise therapy. Therapeutic potential of EMST was examined among head and neck cancer survivors with chronic radiation-associated aspiration. Retrospective case series. Maximum expiratory pressures (MEPs) were examined among n = 64 radiation-associated aspirators (per penetration-aspiration scale score ≥ 6 on modified barium swallow). Pre-post EMST outcomes were examined in a nested subgroup of patients (n = 26) who enrolled in 8 weeks of EMST (25 repetitions, 5 days/week, 75% load). Nonparametric analyses examined effects of EMST on the primary endpoint MEPs. Secondary measures included swallowing safety (Dynamic Imaging Grade of Swallowing Toxicity [DIGEST]), perceived dysphagia (M.D. Anderson Dysphagia Inventory [MDADI]), and diet (performance status scale for head and neck cancer patients [PSSHN]). Compared to sex-matched published normative data, MEPs were reduced in 91% (58 of 64) of aspirators (mean ± standard deviation: 89 ± 37). Twenty-six patients enrolled in EMST and three patients withdrew. MEPs improved on average 57% (87 ± 29 to 137 ± 44 cm H 2 O, P < 0.001) among 23 who completed EMST. Swallowing safety (per DIGEST) improved significantly (P = 0.03). Composite MDADI scores improved post-EMST (pre-EMST: 59.9 ± 17.1, post-EMST: 62.7 ± 13.9, P = 0.13). PSSHN diet scores did not significantly change. MEPs were reduced in chronic radiation-associated aspirators relative to normative data, suggesting that expiratory strengthening could be a novel therapeutic target to improve airway protection in this population. Similar to findings in neurogenic populations, these data also suggest improved expiratory pressure-generating capabilities after EMST and translation to functional improvements in swallowing safety in chronic radiation-associated aspirators. 4. Laryngoscope, 128:1044-1051, 2018. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  19. Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes

    PubMed Central

    Holzman, Roi; Collar, David C.; Price, Samantha A.; Hulsey, C. Darrin; Thomson, Robert C.; Wainwright, Peter C.

    2012-01-01

    Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution. PMID:21993506

  20. Biomechanical trade-offs bias rates of evolution in the feeding apparatus of fishes.

    PubMed

    Holzman, Roi; Collar, David C; Price, Samantha A; Hulsey, C Darrin; Thomson, Robert C; Wainwright, Peter C

    2012-04-07

    Morphological diversification does not proceed evenly across the organism. Some body parts tend to evolve at higher rates than others, and these rate biases are often attributed to sexual and natural selection or to genetic constraints. We hypothesized that variation in the rates of morphological evolution among body parts could also be related to the performance consequences of the functional systems that make up the body. Specifically, we tested the widely held expectation that the rate of evolution for a trait is negatively correlated with the strength of biomechanical trade-offs to which it is exposed. We quantified the magnitude of trade-offs acting on the morphological components of three feeding-related functional systems in four radiations of teleost fishes. After accounting for differences in the rates of morphological evolution between radiations, we found that traits that contribute more to performance trade-offs tend to evolve more rapidly, contrary to the prediction. While ecological and genetic factors are known to have strong effects on rates of phenotypic evolution, this study highlights the role of the biomechanical architecture of functional systems in biasing the rates and direction of trait evolution.

  1. The assessment of electromagnetic field radiation exposure for mobile phone users.

    PubMed

    Buckus, Raimondas; Strukcinskiene, Birute; Raistenskis, Juozas

    2014-12-01

    During recent years, the widespread use of mobile phones has resulted in increased human ex- posure to electromagnetic field radiation and to health risks. Increased usage of mobile phones at the close proximity raises questions and doubts in safety of mobile phone users. The aim of the study was to assess an electromagnetic field radiation exposure for mobile phone users by measuring electromagnetic field strength in different settings at the distance of 1 to 30 cm from the mobile user. In this paper, the measurements of electric field strength exposure were conducted on different brand of mobile phones by the call-related factors: urban/rural area, indoor/outdoor setting and moving/stationary mode during calls. The different types of mobile phone were placed facing the field probe at 1 cm, 10 cm, 20 cm and 30 cm distance. The highest electric field strength was recorded for calls made in rural area (indoors) while the lowest electric field strength was recorded for calls made in urban area (outdoors). Calls made from a phone in a moving car gave a similar result like for indoor calls; however, calls made from a phone in a moving car exposed electric field strength two times more than that of calls in a standing (motionless) position. Electromagnetic field radiation depends on mobile phone power class and factors, like urban or rural area, outdoor or indoor, moving or motionless position, and the distance of the mobile phone from the phone user. It is recommended to keep a mobile phone in the safe distance of 10, 20 or 30 cm from the body (especially head) during the calls.

  2. 47 CFR 22.353 - Blanketing interference.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... where the field strength of the electromagnetic radiation from such stations equals or exceeds 115 dBµV... consideration of the antenna's vertical radiation pattern or height, must be used in the formula. (c) Licensees...

  3. Late outcomes of adult survivors of childhood non-Hodgkin lymphoma: A report from the St. Jude Lifetime Cohort Study.

    PubMed

    Ehrhardt, Matthew J; Sandlund, John T; Zhang, Nan; Liu, Wei; Ness, Kirsten K; Bhakta, Nickhill; Chemaitilly, Wassim; Krull, Kevin R; Brinkman, Tara M; Crom, Deborah B; Kun, Larry; Kaste, Sue C; Armstrong, Gregory T; Green, Daniel M; Srivastava, Kumar; Robison, Leslie L; Hudson, Melissa M; Mulrooney, Daniel A

    2017-06-01

    Survivors of childhood non-Hodgkin lymphoma (NHL) are at increased risk for chronic health conditions. The objective of this study was to characterize health conditions, neurocognitive function, and physical performance among a clinically evaluated cohort of 200 childhood NHL survivors. Chronic health and neurocognitive conditions were graded as per a modified version of the National Cancer Institute Common Terminology Criteria for Adverse Events (CTCAE) and impaired physical function defined as performance < 10th percentile of normative data. Multivariable regression was used to investigate associations between sociodemographic characteristics, therapeutic exposures, and outcomes. Survivors were a median age of 10 years (range 1-19) at diagnosis and 34 years (range 20-58) at evaluation. Eighty-eight (44%) received radiation, 46 (23%) cranial radiation, and 69 (35%) high-dose methotrexate. Most prevalent CTCAE Grades 3-4 (severe life-threatening) conditions were obesity (35%), hypertension (9%), and impairment of executive function (13%), attention (9%), and memory (4%). Many had impaired strength (48%), flexibility (39%), muscular endurance (36%), and mobility (36%). Demographic and treatment-related factors were associated with the development of individual chronic diseases and functional deficits. Clinical evaluation identified a high prevalence of chronic health conditions, neurocognitive deficits, and performance limitations in childhood NHL survivors. © 2016 Wiley Periodicals, Inc.

  4. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Poster, Dianne L.; Vládar, András E.; Driscoll, Mark S.; LaVerne, Jay A.; Tsinas, Zois; Al-Sheikhly, Mohamad I.

    2018-02-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining by-products, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

  5. Ionizing radiation processing and its potential in advancing biorefining and nanocellulose composite materials manufacturing.

    PubMed

    Postek, Michael T; Poster, Dianne L; Vládar, András E; Driscoll, Mark S; LaVerne, Jay A; Tsinas, Zois; Al-Sheikhly, Mohamad I

    2018-02-01

    Nanocellulose is a high value material that has gained increasing attention because of its high strength, stiffness, unique photonic and piezoelectric properties, high stability and uniform structure. Through utilization of a biorefinery concept, nanocellulose can be produced in large volumes from wood at relatively low cost via ionizing radiation processing. Ionizing radiation causes significant break down of the polysaccharide and leads to the production of potentially useful gaseous products such as H 2 and CO. The application of radiation processing to the production of nanocellulose from woody and non-wood sources, such as field grasses, bio-refining byproducts, industrial pulp waste, and agricultural surplus materials remains an open field, ripe for innovation and application. Elucidating the mechanisms of the radiolytic decomposition of cellulose and the mass generation of nanocellulose by radiation processing is key to tapping into this source of nanocelluose for the growth of nanocellulostic-product development. More importantly, understanding the structural break-up of the cell walls as a function of radiation exposure is a key goal and only through careful, detailed characterization and dimensional metrology can this be achieved at the level of detail that is needed to further the growth of large scale radiation processing of plant materials. This work is resulting from strong collaborations between NIST and its academic partners who are pursuing the unique demonstration of applied ionizing radiation processing to plant materials as well as the development of manufacturing metrology for novel nanomaterials.

  6. Effect of gamma radiation on the mechanical properties of natural silk fiber and synthetic E-glass fiber reinforced polypropylene composites: A comparative study

    NASA Astrophysics Data System (ADS)

    Shubhra, Quazi T. H.; Alam, A. K. M. M.

    2011-11-01

    Silk is a strong natural proteinous fiber and E-glass is a very strong synthetic fiber. Compression molding method was used to fabricate B. mori silk fiber reinforced polypropylene (PP) matrix composites. The tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM) and impact strength (IS) of prepared composites were 55.1 MPa, 780 MPa, 56.3 MPa, 3450 MPa and 17 kJ/m 2, respectively. Synthetic E-glass fiber reinforced PP based composites were fabricated in the same way and TS, TM, BS, BM, IS of E-glass fiber reinforced polypropylene composites were found to be 128.7 MPa, 4350 MPa, 141.6 MPa, 6300 MPa and 19 kJ/m 2, respectively. Gamma radiation is high energy ionizing radiation and was applied to increase the mechanical properties of the composites. Application of gamma ray increases the mechanical properties of silk/PP composites to a greater extent than that of E-glass/PP composites.

  7. EMR Measurements on NDA Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Macdonell, Alexander Thomas; Meierbachtol, Krista Cruse; Evans, James Walter Jr.

    2017-07-10

    Electromagnetic radiation (EMR) emission strength measurements were performed on a suite of passive non-destructive assay (NDA) radiation detection equipment. Data were collected from 9 kHz up to 6 GHz on each of the assembled systems.

  8. Histological and cytological examination of rat reproductive tissue after short-time intermittent radiofrequency exposure.

    PubMed

    Trošić, Ivančica; Mataušić-Pišl, Mirjana; Pavičić, Ivan; Marjanović, Ana Marija

    2013-12-01

    The unfavourable outcomes of mobile phone use on male fertility have still not been fully elaborated. To establish the potentially adverse effects of everyday exposure to radiofrequency radiation (RF) on humans, we performed a controlled animal study that aimed to investigate the influence of RF radiation on rat testis histology as well as the amount, mobility, and structure of epididymal free sperm cell population. Eighteen adult male rats were divided into two groups of nine. One group comprised sham-exposed control animals, while the other group endured total body irradiation for an hour daily during two weeks. A 915 MHz RF field, power density of 2.4 W m(-2) and strength of 30 V m(-1) was generated in a Gigahertz Transversal Electromagnetic chamber. The specific absorption rate (SAR) was 0.6 W kg(-1). Body mass and temperature were measured before and after each exposure treatment. Immediately after the last exposure, the animals were sacrificed and testes removed and prepared for histological analysis. The free sperm cells were collected from the cauda epididymis and their quantity, quality, and morphology were microscopically determined using a haemocytometer. No statistically significant alteration in any of the endpoints was observed. This study found no evidence of an unfavourable effect of the applied RF radiation on testicular function or structure. Based on these results, we can conclude that short-time intermittent exposure to RF radiation does not represent a significant risk factor for rat reproductive functions.

  9. Comparison of three underwater antennas for use in radiotelemetry

    USGS Publications Warehouse

    Beeman, J.W.; Grant, C.; Haner, P.V.

    2004-01-01

    The radiation patterns of three versions of underwater radiotelemetry antennas were measured to compare the relative reception ranges in the horizontal and vertical planes, which are important considerations when designing detection systems. The received signal strengths of an antenna made by stripping shielding from a section of coaxial cable (stripped coax) and by two versions of a dipole antenna were measured at several orientations relative to a dipole transmit antenna under controlled field conditions. The received signal strengths were greater when the transmit and receive antennas were parallel to each other than when they were perpendicular, indicating that a parallel orientation provides optimal detection range. The horizontal plane radiation pattern of the flexible, stripped coax antenna was similar to that of a rigid dipole antenna, but movement of underwater stripped coax antennas in field applications could affect the orientation of transmit and receive antennas in some applications, resulting in decreased range and variation in received signal strengths. Compared with a standard dipole, a dipole antenna armored by housing within a polyvinyl chloride fitting had a smaller radiation pattern in the horizontal plane but a larger radiation pattern in the vertical plane. Each of these types of underwater antenna can be useful, but detection ranges can be maximized by choosing an appropriate antenna after consideration of the location, relation between transmit and receive antenna orientations, radiation patterns, and overall antenna resiliency.

  10. Fabrication and characterization of jute fabrics reinforced polypropylene-based composites: effects of ionizing radiation and disaccharide (sucrose)

    NASA Astrophysics Data System (ADS)

    Sahadat Hossain, Md.; Uddin, Muhammad B.; Razzak, Md.; Sarwaruddin Chowdhury, A. M.; Khan, Ruhul A.

    2017-12-01

    Composites were prepared successfully by compression molding technique using jute fabrics (reinforcing agent) and polypropylene (matrix). Jute fabrics were treated with disaccharide (sucrose) solution and composites were fabricated with the treated fabric and polypropylene. The fiber content of the prepared composites was 40% by weight. It was found that the sucrose (2% solution) decreased the tensile strength (TS) and elongation at break about 6% and 37%, respectively, but tensile modulus and impact strength improved about 27% and 32%, respectively. When gamma radiation was applied through the untreated and treated composites the mechanical properties were improved much higher in non-treated Jute/PP-based composites than that of sucrose treated composites. For 5.0 kGy gamma dose the highest mechanical properties were observed for non-treated composites. At 5.0 kGy gamma dose the improvement of TS was 14% and 2% for non-treated and sucrose treated composites, respectively. The water uptake property of the sucrose treated composites was performed up to 10 days and composites absorbed 18% water. The functional groups of the both composites were analyzed by Fourier transform infrared spectroscopy machine. The scanning electron microscopic images of the both composites were taken for the surface and fiber adhesion analysis.

  11. Seasonal variations of mesopause temperature and the amplitude of the VLF signals of the Novosibirsk radio station during 2009-2016

    NASA Astrophysics Data System (ADS)

    Korsakov, Alexey; Kozlov, Vladimir; Ammosova, Anastasia; Ammosov, Petr; Gavrilyeva, Galina; Koltovskoi, Igor; Pavlov, Yegor

    2017-10-01

    Dynamics of seasonal variations of the amplitude of the VLF radio signal received in Yakutsk from the navigation station near Novosibirsk and the P-branches of the OH band (6-2) radiation intensity in the wavelength range 835 - 853 nm are considered. The radiation variations give information about mesopause region measured at the Maimaga station (130 km from Yakutsk). The observation from 2009 to 2016 covers period with minimum and maximum solar activity. The mesopause temperature and the VLF signal increase with increasing solar flux F10.7 in winter. The mesopause temperature seasonal variations and the VLF signal strength for the Novosibirsk-Yakutsk path are regularly inverted from year to year. By decade data averaging the VLF radio signal strength dependence on the temperature of the atmosphere at the OH excitation height can be expressed by a linear function. The coefficient of determination: R2 = 0.59, the anticorrelation coefficient: r10 = - 0.77. The variations of the VLF radio noise and the radio station signal for the eight-year interval are similar to solar activity (F10.7 index). The signal level of the radio station and radio noise registered in the winter is more sensitive to variations of F10.7 index in 24th solar cycle activity.

  12. Lap Shear Testing of Candidate Radiator Panel Adhesives

    NASA Technical Reports Server (NTRS)

    Ellis, David; Briggs, Maxwell; McGowan, Randy

    2013-01-01

    During testing of a subscale radiator section used to develop manufacturing techniques for a full-scale radiator panel, the adhesive bonds between the titanium heat pipes and the aluminum face sheets failed during installation and operation. Analysis revealed that the thermal expansion mismatch between the two metals resulted in relatively large shear stresses being developed even when operating the radiator at moderate temperatures. Lap shear testing of the adhesive used in the original joints demonstrated that the two-part epoxy adhesive fell far short of the strength required. A literature review resulted in several candidate adhesives being selected for lap shear joint testing at room temperature and 398 K, the nominal radiator operating temperature. The results showed that two-part epoxies cured at room and elevated temperatures generally did not perform well. Epoxy film adhesives cured at elevated temperatures, on the other hand, did very well with most being sufficiently strong to cause yielding in the titanium sheet used for the joints. The use of an epoxy primer generally improved the strength of the joint. Based upon these results, a new adhesive was selected for the second subscale radiator section.

  13. The effect of UV radiation from oxygen and argon plasma on the adhesion of organosilicon coatings on polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, M.; Behm, H.; Hopmann, Ch; Kirchheim, D.; Mitschker, F.; Awakowicz, P.; Dahlmann, R.

    2017-01-01

    The influence of ultraviolet (UV) radiation from oxygen and argon pretreatment plasmas on a plastic substrate has not been fully understood yet. In particular, its influence on the adhesion properties has not been sufficiently researched so far. This paper addresses this issue by comparing the bond strength of a plasmapolymerized silicon organic coating (SiO x C y H z ) on polypropylene (PP) after oxygen and argon plasma pretreatment and pretreatment by UV radiation emitted by the same plasmas. The UV radiation is isolated from the other species from the plasma by means of a magnesium fluoride (MgF2) optical filter. It could be shown that UV radiation originating from an oxygen plasma has a significant impact on both substrate surface chemistry and coating adhesion. The same maximum bond strength enhancement can be reached by pretreating the polypropylene surface either with pulsed oxygen plasma, or with only the UV radiation from this oxygen plasma. Also, similar surface chemistry and topography modifications are induced. For argon plasma no significant influence of its UV radiation on the substrate could be observed in this study.

  14. Effects of solar radiation on glass

    NASA Technical Reports Server (NTRS)

    Tucker, Dennis S.; Kinser, Donald L.

    1991-01-01

    The effects of solar radiation of selected glasses are reported. Optical property degradation is studied using UV-Vis spectrophotometry. Strength changes are measured using a concentric ring bend test. Direct fracture toughness measurements using an indentation test are planned.

  15. Statistical analysis of electromagnetic radiation measurements in the vicinity of GSM/UMTS base station antenna masts.

    PubMed

    Koprivica, Mladen; Neskovic, Natasa; Neskovic, Aleksandar; Paunovic, George

    2014-01-01

    As a result of dense installations of public mobile base station, additional electromagnetic radiation occurs in the living environment. In order to determine the level of radio-frequency radiation generated by base stations, extensive electromagnetic field strength measurements were carried out for 664 base station locations. Base station locations were classified into three categories: indoor, masts and locations with installations on buildings. Having in mind the large percentage (47 %) of sites with antenna masts, a detailed analysis of this location category was performed, and the measurement results were presented. It was concluded that the total electric field strength in the vicinity of base station antenna masts in no case exceeded 10 V m(-1), which is quite below the International Commission on Non-Ionizing Radiation Protection reference levels. At horizontal distances >50 m from the mast bottom, the median and maximum values were <1 and 2 V m(-1), respectively.

  16. Survey of long-term durability of fiberglass reinforced plastic structures

    NASA Technical Reports Server (NTRS)

    Lieblein, S.

    1981-01-01

    Included are fluid containment vessels, marine structures, and aircraft components with up to 19 years of service. Correlations were obtained for the variation of static fatigue strength, cyclic fatigue strength, and residual burst strength for pressure vessels. In addition, data are presented for the effects of moisture on strength retention. Data variations were analyzed, and relationships and implications for testing are discussed. Change in strength properties for complete structures was examined for indications of the effects of environmental conditions such as moisture and outdoor exposure (ultraviolet radiation, weathering) on long term durability.

  17. Predicting hand function in older adults: evaluations of grip strength, arm curl strength, and manual dexterity.

    PubMed

    Liu, Chiung-Ju; Marie, Deana; Fredrick, Aaron; Bertram, Jessica; Utley, Kristen; Fess, Elaine Ewing

    2017-08-01

    Hand function is critical for independence in activities of daily living for older adults. The purpose of this study was to examine how grip strength, arm curl strength, and manual dexterous coordination contributed to time-based versus self-report assessment of hand function in community-dwelling older adults. Adults aged ≥60 years without low vision or neurological disorders were recruited. Purdue Pegboard Test, Jamar hand dynamometer, 30-second arm curl test, Jebsen-Taylor Hand Function Test, and the Late-Life Function and Disability Instrument were administered to assess manual dexterous coordination, grip strength, arm curl strength, time-based hand function, and self-report of hand function, respectively. Eighty-four adults (mean age = 72 years) completed the study. Hierarchical multiple regressions show that older adults with better arm curl strength (β = -.25, p < .01) and manual dexterous coordination (β = -.52, p < .01) performed better on the time-based hand function test. In comparison, older adults with better grip strength (β = .40, p < .01), arm curl strength (β = .23, p < .05), and manual dexterous coordination (β = .23, p < .05) were associated with better self-report of upper extremity function. The relationship between grip strength and hand function may be test-specific. Grip strength becomes a significant factor when the test requires grip strength to successfully complete the test tasks. Arm curl strength independently contributed to hand function in both time-based and self-report assessments, indicating that strength of extrinsic muscles of the hand are essential for hand function.

  18. Boron carbide nanostructures: A prospective material as an additive in concrete

    NASA Astrophysics Data System (ADS)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  19. Characteristics of Quasi-Terminator Orbits Near Primitive Bodies

    NASA Technical Reports Server (NTRS)

    Broschart, Stephen B.; Lantoine, Gregory; Grebow, Daniel J.

    2013-01-01

    Quasi-terminator orbits are introduced as a class of quasi-periodic trajectories in the solar radiation pressure (SRP) perturbed Hill dynamics. These orbits offer significant displacements along the Sun-direction without the need for station-keeping maneuvers. Thus, quasi-terminator orbits have application to primitive-body missions, where a variety of observation geometries relative to the Sun (or other directions) can be achieved. This paper describes the characteristics of these orbits as a function of normalized SRP strength and invariant torus frequency ratio and presents a discussion of mission design considerations for a global surface mapping orbit design.

  20. Electron penetration of spacecraft thermal insulation

    NASA Technical Reports Server (NTRS)

    Powers, W. L.; Adams, B. F.; Inouye, G. T.

    1981-01-01

    The external thermal blanket with 13 mils of polyethylene which has the known range and stopping power as a function of electron energy is investiated. The most recent omnidirectional peak Jovian electron flux at 5 Jupiter radii is applied, the electron current penetrating the thermal blanket is calculated and allowed to impinge on a typical 20 mil polyethylene insulator surrounding a wire. The radiation dose rate to the insulator is then calculated and the electrical conductivity found. The results demonstrate that the increased electronic mobility is sufficient to keep the maximum induced electric field two orders of magnitude below the critical breakdown strength.

  1. Hybrid receiver study

    NASA Technical Reports Server (NTRS)

    Stone, M. S.; Mcadam, P. L.; Saunders, O. W.

    1977-01-01

    The results are presented of a 4 month study to design a hybrid analog/digital receiver for outer planet mission probe communication links. The scope of this study includes functional design of the receiver; comparisons between analog and digital processing; hardware tradeoffs for key components including frequency generators, A/D converters, and digital processors; development and simulation of the processing algorithms for acquisition, tracking, and demodulation; and detailed design of the receiver in order to determine its size, weight, power, reliability, and radiation hardness. In addition, an evaluation was made of the receiver's capabilities to perform accurate measurement of signal strength and frequency for radio science missions.

  2. A Sensitivity Analysis of the Nocturnal Boundary-Layer Properties to Atmospheric Emissivity Formulations

    NASA Astrophysics Data System (ADS)

    Siqueira, Mario B.; Katul, Gabriel G.

    2010-02-01

    A one-dimensional model for the mean potential temperature within the nocturnal boundary layer (NBL) was used to assess the sensitivity of three NBL properties (height, thermal stratification strength, and near-surface cooling) to three widely used atmospheric emissivity formulations. The calculations revealed that the NBL height is robust to the choice of the emissivity function, though this is not the case for NBL Richardson number and near-surface cooling rate. Rather than endorse one formulation, our analysis highlights the importance of atmospheric emissivity in modelling the radiative properties of the NBL especially for clear-sky conditions.

  3. Narrow-band, slowly varying decimetric radiation from the dwarf M flare star YZ Canis Minoris

    NASA Technical Reports Server (NTRS)

    Lang, K. R.; Willson, R. F.

    1986-01-01

    Observations of slowly varying radiation from the dwarf M star YZ Canis Minoris with a maximum flux density of 20 mJy and narrow-band frequency structure at frequencies near 1465 MHz are presented. Possible explanations for this radiation are examined. Thermal gyroresonant radiation would require impossibly large coronal loops and magnetic field strengths. The narrow-band structure cannot be explained by continuum emission processes such as thermal bremsstrahlung, thermal gyroresonant radiation, or nonthermal gyrosynchrotron radiation. Coherent burst mechanisms seem to be required.

  4. Influence of lateral target size on hot electron production and electromagnetic pulse emission from laser-irradiated metallic targets

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu; Li, Jian-Feng; Yu, Yong; Wang, Jia-Xiang; Li, Xiao-Ya; Peng, Qi-Xian; Zhu, Wen-Jun

    2012-11-01

    The influences of lateral target size on hot electron production and electromagnetic pulse emission from laser interaction with metallic targets have been investigated. Particle-in-cell simulations at high laser intensities show that the yield of hot electrons tends to increase with lateral target size, because the larger surface area reduces the electrostatic field on the target, owing to its expansion along the target surface. At lower laser intensities and longer time scales, experimental data characterizing electromagnetic pulse emission as a function of lateral target size also show target-size effects. Charge separation and a larger target tending to have a lower target potential have both been observed. The increase in radiation strength and downshift in radiation frequency with increasing lateral target size can be interpreted using a simple model of the electrical capacity of the target.

  5. Photochromic properties of the N-Salicylideneaniline in Polyvinyl Butyral matrix: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Shahab, Siyamak; Filippovich, Liudmila; Aharodnikova, M.; Almodarresiyeh, Hora A.; Hajikolaee, Fatemeh Haji; Kumar, Rakesh; Mashayekhi, Mahsa

    2017-04-01

    In the present work, isomerization, photophysical properties, thermal conductivity (λ) and spectral study of the N-Salicylideneaniline: 2-[(E)-(phenylimino)methyl]phenol (SA) under the action of UV radiation in the Polyvinyl Butyral (PVB) matrix were studied using the Indicator method and Density Functional Theory (DFT). The electronic absorption spectra of SA and its isomers (SA1 and SA2) in dimethylformamide (DMF) solutions were also calculated. The nature of absorption bands of SA, SA1 and SA2 in the visible and near ultraviolet spectral regions was interpreted. The excitation energies, electronic transitions and oscillator strengths for SA, SA1 and SA2 have also been calculated. Thermal Conductivity of PVB-films containing SA before and after UV radiation was also measured. A Photochromic PVB - film on the basis of SA for application in optical devices and display technologies was made.

  6. Enhanced nonlinear interactions in quantum optomechanics via mechanical amplification

    PubMed Central

    Lemonde, Marc-Antoine; Didier, Nicolas; Clerk, Aashish A.

    2016-01-01

    The quantum nonlinear regime of optomechanics is reached when nonlinear effects of the radiation pressure interaction are observed at the single-photon level. This requires couplings larger than the mechanical frequency and cavity-damping rate, and is difficult to achieve experimentally. Here we show how to exponentially enhance the single-photon optomechanical coupling strength using only additional linear resources. Our method is based on using a large-amplitude, strongly detuned mechanical parametric drive to amplify mechanical zero-point fluctuations and hence enhance the radiation pressure interaction. It has the further benefit of allowing time-dependent control, enabling pulsed schemes. For a two-cavity optomechanical set-up, we show that our scheme generates photon blockade for experimentally accessible parameters, and even makes the production of photonic states with negative Wigner functions possible. We discuss how our method is an example of a more general strategy for enhancing boson-mediated two-particle interactions and nonlinearities. PMID:27108814

  7. A Pilot Randomized Controlled Trial on the Effects of a Progressive Exercise Program on the Range of Motion and Upper Extremity Grip Strength in Young Adults With Breast Cancer.

    PubMed

    Ibrahim, Marize; Muanza, Thierry; Smirnow, Nadia; Sateren, Warren; Fournier, Beatrice; Kavan, Petr; Palumbo, Michael; Dalfen, Richard; Dalzell, Mary-Ann

    2018-02-01

    The diagnosis of breast cancer in young women (aged 18-45 years) has been increasing. Women are commonly left coping with treatment-related disabilities of the upper limb that can persist for > 2 years postoperatively. A total of 59 young breast cancer patients (29 in the intervention group and 30 in the control group) participated in a pilot prospective randomized controlled trial to determine whether a 12-week postradiation exercise program would improve long-term arm mobility, pain, and handgrip strength. During an 18-month period, range of motion, handgrip strength, and pain with shoulder movements were evaluated at 6 points. Although the differences were not statistically significant, external rotation and horizontal abduction of the shoulder improved in the intervention group immediately after the exercise intervention (3 months) and showed a trend toward less pain on movement. However, at 18 months after radiation the control and intervention groups both retained a residual loss of range and persistent pain with movement. Radiation to the axilla and/or chest wall yielded long-term (18 months) limitations in flexion and horizontal abduction compared with hypofractionation, which resulted in greater flexion and external rotation at 18 months. The median grip strength of the study participants corresponded to the 10th percentile of healthy aged-matched white women. The exercise intervention timed shortly after radiation improved short-term shoulder mobility and pain; however, these gains were not sustained at 18 months after radiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Electrically-controlled near-field radiative thermal modulator made of graphene-coated silicon carbide plates

    NASA Astrophysics Data System (ADS)

    Yang, Yue; Wang, Liping

    2017-08-01

    In this work, we propose a hybrid near-field radiative thermal modulator made of two graphene-covered silicon carbide (SiC) plates separated by a nanometer vacuum gap. The near-field photon tunneling between the emitter and receiver is modulated by changing graphene chemical potentials with symmetrically or asymmetrically applied voltage biases. The radiative heat flux calculated from fluctuational electrodynamics significantly varies with graphene chemical potentials due to tunable near-field coupling strength between graphene plasmons across the vacuum gap. Thermal modulation and switching, which are the key functionalities required for a thermal modulator, are theoretically realized and analyzed. Newly introduced quantities of the modulation factor, the sensitivity factor and switching factor are studied quite extensively in a large parameter range for both graphene chemical potential and vacuum gap distance. This opto-electronic device with faster operating mode, which is in principle only limited by electronics and not by the thermal inertia, will facilitate the practical application of active thermal management, thermal circuits, and thermal computing with photon-based near-field thermal transport.

  9. Field strength measurements of speed measuring radar units

    DOT National Transportation Integrated Search

    1981-06-01

    The objective of this project was to measure the microwave radiation emitted by speed measuring radar units to obtain a data base for evaluating the potential radiation hazards of these devices. Measurements were taken both in free-space and with the...

  10. Effective ionization coefficient of C5 perfluorinated ketone and its mixtures with air

    NASA Astrophysics Data System (ADS)

    Aints, Märt; Jõgi, Indrek; Laan, Matti; Paris, Peeter; Raud, Jüri

    2018-04-01

    C5 perfluorinated ketone (C5 PFK with UIPAC chemical name 1,1,1,3,4,4,4-heptafluoro-3-(trifluoromethyl)-2-butanone and sold by 3M as Novec™ 5110) has a high dielectric strength and a low global warming potential, which makes it interesting as an insulating gas in medium and high-voltage applications. The study was carried out to determine the effective Townsend ionization coefficient α eff as a function of electric field strength and gas density for C5 PFK and for its mixtures with air. The non-self-sustained Townsend discharge between parallel plate electrodes was initiated by illuminating the cathode by UV radiation. The discharge current, I, was measured as a function of inter-electrode distance, d, at different gas densities, N, and electric field strengths, E. The effective ionization coefficient α eff was determined from the semi-logarithmic plots of I/I 0 against d. For each tested gas mixture, the density normalized effective ionization coefficient α eff/N was found to be a unique function of reduced electric field strength E/N. The measurements were carried out in the absolute pressure range of 0.05-1.3 bar and E/N range of 150-1200 Td. The increasing fraction of C5 PFK in air resulted in the decrease of effective ionization coefficient. The limiting electric field strength (E/N)lim where the effective ionization coefficient α eff became zero was 770 Td (190 kV cm-1 at 1 bar) for pure C5 PFK and decreased to 225 Td (78 kV cm-1 at 1.4 bar) for 7.6% C5 PFK/air mixture. The latter value of (E/N)lim is still more than two times higher than the (E/N)lim value of synthetic air and about two-thirds of the value corresponding to pure SF6. The investigated gas mixtures have the potential to become an alternative to SF6 in numerous high- and medium-voltage applications.

  11. Effect of gamma radiation on the physico-chemical properties of alginate-based films and beads

    NASA Astrophysics Data System (ADS)

    Huq, Tanzina; Khan, Avik; Dussault, Dominic; Salmieri, Stephane; Khan, Ruhul A.; Lacroix, Monique

    2012-08-01

    Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1-25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).

  12. Integrating Wireless Networking for Radiation Detection

    NASA Astrophysics Data System (ADS)

    Board, Jeremy; Barzilov, Alexander; Womble, Phillip; Paschal, Jon

    2006-10-01

    As wireless networking becomes more available, new applications are being developed for this technology. Our group has been studying the advantages of wireless networks of radiation detectors. With the prevalence of the IEEE 802.11 standard (``WiFi''), we have developed a wireless detector unit which is comprised of a 5 cm x 5 cm NaI(Tl) detector, amplifier and data acquisition electronics, and a WiFi transceiver. A server may communicate with the detector unit using a TCP/IP network connected to a WiFi access point. Special software on the server will perform radioactive isotope determination and estimate dose-rates. We are developing an enhanced version of the software which utilizes the receiver signal strength index (RSSI) to estimate source strengths and to create maps of radiation intensity.

  13. Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides

    NASA Astrophysics Data System (ADS)

    Todorova, Nevena; Bentvelzen, Alan; English, Niall J.; Yarovsky, Irene

    2016-02-01

    Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.

  14. A quantitative comparison of noise reduction across five commercial (hybrid and model-based) iterative reconstruction techniques: an anthropomorphic phantom study.

    PubMed

    Patino, Manuel; Fuentes, Jorge M; Hayano, Koichi; Kambadakone, Avinash R; Uyeda, Jennifer W; Sahani, Dushyant V

    2015-02-01

    OBJECTIVE. The objective of our study was to compare the performance of three hybrid iterative reconstruction techniques (IRTs) (ASiR, iDose4, SAFIRE) and their respective strengths for image noise reduction on low-dose CT examinations using filtered back projection (FBP) as the standard reference. Also, we compared the performance of these three hybrid IRTs with two model-based IRTs (Veo and IMR) for image noise reduction on low-dose examinations. MATERIALS AND METHODS. An anthropomorphic abdomen phantom was scanned at 100 and 120 kVp and different tube current-exposure time products (25-100 mAs) on three CT systems (for ASiR and Veo, Discovery CT750 HD; for iDose4 and IMR, Brilliance iCT; and for SAFIRE, Somatom Definition Flash). Images were reconstructed using FBP and using IRTs at various strengths. Nine noise measurements (mean ROI size, 423 mm(2)) on extracolonic fat for the different strengths of IRTs were recorded and compared with FBP using ANOVA. Radiation dose, which was measured as the volume CT dose index and dose-length product, was also compared. RESULTS. There were no significant differences in radiation dose and image noise among the scanners when FBP was used (p > 0.05). Gradual image noise reduction was observed with each increasing increment of hybrid IRT strength, with a maximum noise suppression of approximately 50% (48.2-53.9%). Similar noise reduction was achieved on the scanners by applying specific hybrid IRT strengths. Maximum noise reduction was higher on model-based IRTs (68.3-81.1%) than hybrid IRTs (48.2-53.9%) (p < 0.05). CONCLUSION. When constant scanning parameters are used, radiation dose and image noise on FBP are similar for CT scanners made by different manufacturers. Significant image noise reduction is achieved on low-dose CT examinations rendered with IRTs. The image noise on various scanners can be matched by applying specific hybrid IRT strengths. Model-based IRTs attain substantially higher noise reduction than hybrid IRTs irrespective of the radiation dose.

  15. Disrupted resting-state functional connectivity in minimally treated chronic schizophrenia.

    PubMed

    Wang, Xijin; Xia, Mingrui; Lai, Yunyao; Dai, Zhengjia; Cao, Qingjiu; Cheng, Zhang; Han, Xue; Yang, Lei; Yuan, Yanbo; Zhang, Yong; Li, Keqing; Ma, Hong; Shi, Chuan; Hong, Nan; Szeszko, Philip; Yu, Xin; He, Yong

    2014-07-01

    The pathophysiology of chronic schizophrenia may reflect long term brain changes related to the disorder. The effect of chronicity on intrinsic functional connectivity patterns in schizophrenia without the potentially confounding effect of antipsychotic medications, however, remains largely unknown. We collected resting-state fMRI data in 21 minimally treated chronic schizophrenia patients and 20 healthy controls. We computed regional functional connectivity strength for each voxel in the brain, and further divided regional functional connectivity strength into short-range regional functional connectivity strength and long-range regional functional connectivity strength. General linear models were used to detect between-group differences in these regional functional connectivity strength metrics and to further systematically investigate the relationship between these differences and clinical/behavioral variables in the patients. Compared to healthy controls, the minimally treated chronic schizophrenia patients showed an overall reduced regional functional connectivity strength especially in bilateral sensorimotor cortex, right lateral prefrontal cortex, left insula and right lingual gyrus, and these regional functional connectivity strength decreases mainly resulted from disruption of short-range regional functional connectivity strength. The minimally treated chronic schizophrenia patients also showed reduced long-range regional functional connectivity strength in the bilateral posterior cingulate cortex/precuneus, and increased long-range regional functional connectivity strength in the right lateral prefrontal cortex and lingual gyrus. Notably, disrupted short-range regional functional connectivity strength mainly correlated with duration of illness and negative symptoms, whereas disrupted long-range regional functional connectivity strength correlated with neurocognitive performance. All of the results were corrected using Monte-Carlo simulation. This exploratory study demonstrates a disruption of intrinsic functional connectivity without long-term exposure to antipsychotic medications in chronic schizophrenia. Furthermore, this disruption was connection-distance dependent, thus raising the possibility for differential neural pathways in neurocognitive impairment and psychiatric symptoms in schizophrenia. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Chest Computed Tomography Radiation Dose Optimization: Comparison of Automatic Exposure Control Strength Curves.

    PubMed

    Gyssels, Elodie; Bohy, Pascale; Cornil, Arnaud; van Muylem, Alain; Howarth, Nigel; Gevenois, Pierre A; Tack, Denis

    2016-01-01

    The aim of the study was to compare radiation dose and image quality between the "average" and the "very strong" automatic exposure control (AEC) strength curves. Images reconstructed with filtered back-projection techniques and radiation dose data of unenhanced helical chest computed tomography (CT) examinations obtained at 2 hospitals (hospital A, hospital B) using the same scanner devices and acquisition protocols but different AEC strength curves were evaluated over a 3-month period. The selected AEC strength curve applied to "slim" patients (diameter <32 cm estimated from the attenuation automatically measured on the topogram) was "average" and "very strong" in hospital A and hospital B, respectively. Two radiologists with 13 and 24 years of experience scored the image quality of the lung parenchyma and the mediastinum on a 5-point scale. The patients' effective diameter, the delivered CT dose index volume, and dose-length products were recorded. A total of 410 patients were included. The average body mass index was 24.0 kg/m in hospital A and 24.8 kg/m in hospital B. There was no significant difference between hospitals with respect to age, sex ratio, weight, height, body mass index, effective diameters, and image quality scores for each radiologist (P ranging from 0.050 to 1.000). The mean CT dose index volume for the entire population was 2.0 mGy and was significantly lower in hospital B with the "very strong" AEC curve as compared with hospital A (-11%, P=0.001). The mean dose-length product delivered in this 70 kg-weight population was 68 mGy cm, corresponding to an effective dose of 0.95 mSv. Changing the AEC strength curve from "average" to "very strong" for slim patients maintains image quality and reduces the radiation dose to <1 mSv in routine chest CT examinations reconstructed with filtered back-projection techniques.

  17. Dose reduction potential of iterative reconstruction algorithms in neck CTA-a simulation study.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Allmendinger, Thomas; Brand, Michael; Janka, Rolf; Hammon, Matthias; Lell, Michael M; Uder, Michael; Kramer, Manuel

    2016-10-01

    This study aimed to determine the degree of radiation dose reduction in neck CT angiography (CTA) achievable with Sinogram-affirmed iterative reconstruction (SAFIRE) algorithms. 10 consecutive patients scheduled for neck CTA were included in this study. CTA images of the external carotid arteries either were reconstructed with filtered back projection (FBP) at full radiation dose level or underwent simulated dose reduction by proprietary reconstruction software. The dose-reduced images were reconstructed using either SAFIRE 3 or SAFIRE 5 and compared with full-dose FBP images in terms of vessel definition. 5 observers performed a total of 3000 pairwise comparisons. SAFIRE allowed substantial radiation dose reductions in neck CTA while maintaining vessel definition. The possible levels of radiation dose reduction ranged from approximately 34 to approximately 90% and depended on the SAFIRE algorithm strength and the size of the vessel of interest. In general, larger vessels permitted higher degrees of radiation dose reduction, especially with higher SAFIRE strength levels. With small vessels, the superiority of SAFIRE 5 over SAFIRE 3 was lost. Neck CTA can be performed with substantially less radiation dose when SAFIRE is applied. The exact degree of radiation dose reduction should be adapted to the clinical question, in particular to the smallest vessel needing excellent definition.

  18. Future Radiation Damage in Space due to South Atlantic Anomaly

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    Predictions of radiation damage for Low Earth Orbit (LEO) satellites now use semi-empirical models developed from prior satellite data. From these models it is clear that the low field strength of the South Atlantic Anomaly (SAA) controls where the maximum radiation damage occurs. One may make an estimate of future radiation damage to LEO spacecraft if one can predict the future of the SAA. Although reliable maps of the geomagnetic field strength and its secular change have only been made in the last few decades, certain geomagnetic observatories in South America and Africa have recorded the geomagnetic field for a much longer time. These observatories show that the present geomagnetic field change has persisted for more than 100 years. In spite of the fact that a few observatories have shown sudden changes in secular variation, those around the SAA have shown a stable secular variation. Assuming that this will continue for the next 50 to 100 years one can show that the SAA will expand to cover most of the South Atlantic Ocean and will become much weaker. This will greatly intensify the radiation hazard in LEO, put significant new limitations on radiation-hardened hardware, severely restrict the length of time that humans can remain in orbit, and materially change the configuration of the radiation belts.

  19. Resolved Dual-Frequency Observations of the Debris Disk Around AU Mic: Strengths of Bodies in the Collisional Cascade

    NASA Astrophysics Data System (ADS)

    Carter, Evan; Hughes, A. Meredith; Daley, Cail; Flaherty, Kevin; Pan, Margaret; Schlichting, Hilke; Chiang, Eugene; MacGregor, Meredith Ann; Wilner, David; Dent, Bill; Carpenter, John; Andrews, Sean; Moor, Attila; Kospal, Agnes

    2018-01-01

    Debris disks are hallmarks of mature planetary systems, with second-generation dust produced via collisions between pluto-like planetesimals. The vertical structure of a debris disk encodes unique information about the dynamical state of the system, particularly at millimeter wavelengths where gravitational effects dominate over the effects of stellar radiation. We present 450 μm Atacama Large Millimeter/sub-millimeter Array (ALMA) observations of the edge-on debris disk around AU Mic, a nearby (d = 9.91 ± 0.10 pc) M1-type star. The 0.3'' angular resolution of the data allows us to spatially resolve the scale height of the disk, complementing previous observations at a wavelength of 1.3 mm. By resolving the vertical structure of the disk at these two widely-separated frequencies, we are able to spatially resolve the spectral index and study variations in the grain size distribution as a function of disk radius. The comparison of scale heights for two different wavelengths and therefore particle sizes also constrains the velocity dispersion as a function of grain size, which allows us to probe the strengths of bodies in the collisional cascade for the first time outside the Solar System.

  20. EXPERIMENTALLY MEASURED RADIATIVE LIFETIMES AND OSCILLATOR STRENGTHS IN NEUTRAL VANADIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holmes, C. E.; Pickering, J. C.; Ruffoni, M. P.

    2016-06-01

    We report a new study of the V i atom using a combination of time-resolved laser-induced fluorescence and Fourier transform spectroscopy that contains newly measured radiative lifetimes for 25 levels between 24,648 cm{sup −1} and 37,518 cm{sup −1} and oscillator strengths for 208 lines between 3040 and 20000 Å from 39 upper energy levels. Thirteen of these oscillator strengths have not been reported previously. This work was conducted independently of the recent studies of neutral vanadium lifetimes and oscillator strengths carried out by Den Hartog et al. and Lawler et al., and thus serves as a means to verify thosemore » measurements. Where our data overlap with their data, we generally find extremely good agreement in both level lifetimes and oscillator strengths. However, we also find evidence that Lawler et al. have systematically underestimated oscillator strengths for lines in the region of 9000 ± 100 Å. We suggest a correction of 0.18 ± 0.03 dex for these values to bring them into agreement with our results and those of Whaling et al. We also report new measurements of hyperfine structure splitting factors for three odd levels of V i lying between 24,700 and 28,400 cm{sup −1}.« less

  1. Effects of different black mediators on the shear strength of orthodontic bracket to the enamel treated with Nd-Yag laser

    NASA Astrophysics Data System (ADS)

    Huang, Shun-Te; Lin, I.-Shueng; Tsai, Chi-Cheng

    1995-04-01

    The Nd:YAG laser has ablation, crack, and crater effects on the dental enamel through black mediators which are very similar to the acid etching effects of phosphoric acid. This study was designed for searching how the different black mediators influence the shear strengths of the brackets bound to the enamel surfaces which were treated with the Nd:YAG laser. 90 bovine enamels divided into 5 groups were painted with 5 kinds of black mediators including Chinese ink, oil ink, black ball pen, water ink and black transfer paper. The enamel surfaces painted with black mediators were then radiated by Nd:YAG laser (ADL; American Dental Laser 300dl, power: 20 pps, 87.5 mj). Orthodontic brackets were bonded to the radiated surfaces. Then the shear strengths of the brackets to the enamels were measured by Instron. The results showed that the Chinese ink group and oil ink group has the strongest shear strength, ball pen group and water ink group showed the second strength, and the transfer paper group has the lowest shear strength. In addition, scanning electronic microscope also was used to observe the topographic changes of the enamel surfaces induced by the laser ablation.

  2. High-strength porous carbon and its multifunctional applications

    DOEpatents

    Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

    2013-12-31

    High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

  3. Functional specialization in nucleotide sugar transporters occurred through differentiation of the gene cluster EamA (DUF6) before the radiation of Viridiplantae

    PubMed Central

    2011-01-01

    Background The drug/metabolite transporter superfamily comprises a diversity of protein domain families with multiple functions including transport of nucleotide sugars. Drug/metabolite transporter domains are contained in both solute carrier families 30, 35 and 39 proteins as well as in acyl-malonyl condensing enzyme proteins. In this paper, we present an evolutionary analysis of nucleotide sugar transporters in relation to the entire superfamily of drug/metabolite transporters that considers crucial intra-protein duplication events that have shaped the transporters. We use a method that combines the strengths of hidden Markov models and maximum likelihood to find relationships between drug/metabolite transporter families, and branches within families. Results We present evidence that the triose-phosphate transporters, domain unknown function 914, uracil-diphosphate glucose-N-acetylglucosamine, and nucleotide sugar transporter families have evolved from a domain duplication event before the radiation of Viridiplantae in the EamA family (previously called domain unknown function 6). We identify previously unknown branches in the solute carrier 30, 35 and 39 protein families that emerged simultaneously as key physiological developments after the radiation of Viridiplantae, including the "35C/E" branch of EamA, which formed in the lineage of T. adhaerens (Animalia). We identify a second cluster of DMTs, called the domain unknown function 1632 cluster, which has non-cytosolic N- and C-termini, and thus appears to have been formed from a different domain duplication event. We identify a previously uncharacterized motif, G-X(6)-G, which is overrepresented in the fifth transmembrane helix of C-terminal domains. We present evidence that the family called fatty acid elongases are homologous to transporters, not enzymes as had previously been thought. Conclusions The nucleotide sugar transporters families were formed through differentiation of the gene cluster EamA (domain unknown function 6) before Viridiplantae, showing for the first time the significance of EamA. PMID:21569384

  4. Longevity of bond strength of resin cements to root dentine after radiation therapy.

    PubMed

    Yamin, P A; Pereira, R D; Lopes, F C; Queiroz, A M; Oliveira, H F; Saquy, P C; Sousa-Neto, M D

    2018-05-04

    To evaluate the bond strength and adhesive interface between several resin cements and root dentine immediately and 6 months after radiotherapy. Sixty maxillary canines were selected and randomly assigned to two groups (n = 30): one group was not irradiated and the other one was subjected to a cumulative radiation dose of 60 Gy. The teeth were sectioned to obtain roots 16 mm long and the canals were prepared with the Reciproc system (R50) and filled using a lateral condensation technique with an epoxy resin sealer. Each group was divided into three subgroups (n = 10) according to the resin cement used for fibreglass fibre post cementation: RelyX-U200, Panavia-F2.0 and RelyX ARC. The posts were cemented in accordance with the manufacturer's recommendations. Three 1-mm-thick dentine slices were then obtained from each root third. The first two slices in the crown-apex direction of each third were selected for the push-out test. The failure mode after debonding was determined with a stereo microscope. The third slice from each root third was selected for scanning electron microscopy (SEM) analyses to examine the resin cement-dentine interface with 100, 1000, 2000 and 4000× magnification. Bond strength data were analysed by anova and Tukey's test (α = 0.05). Significantly lower bond strength (P < 0.0001) was obtained after irradiation compared to nonirradiated teeth. RelyX-U200 cemented fibre posts had the higher bond strength (15.17 ± 5.89) compared with RelyX ARC (P < 0.001) and Panavia-F2.0 (P < 0.001). The evaluation after 6 months revealed lower bond strength values compared to the immediate values (P < 0.001) for irradiated and nonirradiated teeth. Cohesive failures occurred in the irradiated dentine. SEM revealed fractures, microfractures and fewer collagen fibres in irradiated root dentine. RelyX-U200 and Panavia-F2.0 were associated with a juxtaposed interface of the cement with the radicular dentine in irradiated and nonirradiated teeth, and for RelyX ARC, hybrid layer formation and tags were observed in both irradiated and nonirradiated teeth. Radiation was associated with a decrease in the push-out bond strength and with lower resin cement/root dentine interface adaptation. Self-adhesive resin cement was a better alternative for fibre post cementation in teeth subjected to radiation therapy. The bond strength decreased after 6 months. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Atomic Data and Spectral Line Intensities for Ni XI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.

    2010-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XI. We include in the calculations the 10 lowest configurations, corresponding to 164 fine structure levels: 3s(sup 2)3p(sup 6), 3s(sup 2)3p(sup 5)3d, 3s(sup 2)3p(sup 4)3d(sup 2), 3s3p(sup 6)3d, 3s(sup 2)3p(sup 5)4l and 3s3p6 4l with l =.s, p, d. Collision strengths are calculated at five incident energies for all transitions: 7.1, 16.8, 30.2, 48.7 and 74.1 Ry above the threshold of each transition. An additional energy, very close to the transition threshold, has been added, whose value is between 0.06 Ry and 0.25 Ry depending on the lower level. Calculations have been carried out using the Flexible Atomic Code and the distorted wave approximation. Excitation rate coefficients are calculated as a function of electron temperature by assuming a Maxwellian electron velocity distribution. Using the excitation rate coefficients and the radiative transition rates of the present work, combined with Close Coupling collision excitation rate coefficient available in the literature for the lowest 17 levels, statistical equilibrium equations for level populations are solved at electron densities covering the 10(exp 8)-10(exp 14) cu cm range and at an electron temperature of logT(sub c)(K)=6.1, corresponding to the maximum abundance of Ni XI. Spectral line intensities are calculated, and their diagnostic relevance is discussed. This dataset will be made available in the next version of the CHIANTI database.

  6. RHOBOT: Radiation hardened robotics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, P.C.; Posey, L.D.

    1997-10-01

    A survey of robotic applications in radioactive environments has been conducted, and analysis of robotic system components and their response to the varying types and strengths of radiation has been completed. Two specific robotic systems for accident recovery and nuclear fuel movement have been analyzed in detail for radiation hardness. Finally, a general design approach for radiation-hardened robotics systems has been developed and is presented. This report completes this project which was funded under the Laboratory Directed Research and Development program.

  7. Effects of Various Wavelength Ranges of Vacuum Ultraviolet Radiation on Teflon FEP Film Investigated

    NASA Technical Reports Server (NTRS)

    Dever, Joyce A.; McCracken, Cara A.

    2004-01-01

    Teflon Fluorinated Ethylene Propylene (FTP) films (DuPont) have been widely used for spacecraft thermal control and have been observed to become embrittled and cracked upon exposure to the space environment. This degradation has been attributed to a synergistic combination of radiation and thermal effects. A research study was undertaken at the NASA Glenn Research Center to examine the effects of different wavelength ranges of vacuum ultraviolet (VUV) radiation on the degradation of the mechanical properties of FEP. This will contribute to an overall understanding of space radiation effects on Teflon FEP, and will provide information necessary to determine appropriate techniques for using laboratory tests to estimate space VUV degradation. Research was conducted using inhouse facilities at Glenn and was carried out, in part, through a grant with the Cleveland State University. Samples of Teflon FEP film of 50.8 microns thickness were exposed to radiation from a VUV lamp from beneath different cover windows to provide different exposure wavelength ranges: MgF2 (115 to 400 nm), crystalline quartz (140 to 400 nm), and fused silica (FS, 155 to 400 nm). Following exposure, FEP film specimens were tensile tested to determine the ultimate tensile strength and elongation at failure as a function of the exposure duration for each wavelength range. The graphs show the effect of ultraviolet exposure on the mechanical properties of the FEP samples.

  8. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    PubMed

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties.

  9. Collisional-radiative calculations for the J = 0-1 lasing line of neon-like germanium under anisotropic excitation conditions

    NASA Astrophysics Data System (ADS)

    Bentotoche, M. S.; Inal, M. K.; Benmouna, M.

    2018-02-01

    A new asymmetry parameter characterizing the differences between the polarized π and σ gain components of the soft-x-ray J = 0-1 lasing line of neon-like ions is calculated in the case of Ge22+ assuming an electron distribution which is a weighted sum of an isotropic Maxwellian and a monoenergetic beam. Using a quasi steady-state collisional-radiative model, we determine in the weak amplification regime the relative populations of the upper M = 0 and lower M=0,+/- 1 magnetic sublevels of the lasing line as a function of electron density from 1020 to 2× {10}21 cm-3. This model includes inelastic and elastic collisional transitions, as well as spontaneous radiative decay between all the 337 M-sublevels arising from the 75 lowest-lying Ge22+ J-levels. The computations were performed for a temperature {T}{{e}} of the Maxwellian component between 1.2× {10}6 and 8× {10}6 K, a kinetic energy E 0 and a fraction f of the beam component in the ranges 1.5{--}20 {keV} and 0.1 % {--}10 % , respectively. The basic atomic data, such as level energies, radiative decay probabilities and inelastic collision strengths, were calculated with the flexible atomic code. However, some modifications of this code were made to get the collision strengths for transitions between M-sublevels due to impact with isotropic electrons as well as due to impact with an electron beam in the case of de-excitation. We find that the newly introduced asymmetry parameter may become significant under certain conditions of electron distribution corresponding to relatively low {T}{{e}} (1.2× {10}6{--}2.5× {10}6 K) and E 0 (3-6 keV). The results reported here may be useful in the evaluation of the polarization degree of the J = 0-1 x-ray laser output from a germanium plasma in the presence of fast directional electrons.

  10. Estimation of M 1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

    NASA Astrophysics Data System (ADS)

    Mumpower, M. R.; Kawano, T.; Ullmann, J. L.; Krtička, M.; Sprouse, T. M.

    2017-08-01

    Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ -strength function as model inputs. It has recently been suggested that the M 1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M 1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M 1 scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. We comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M 1 scissors mode active.

  11. Study of transport phenomena in laser-driven, non- equilibrium plasmas in the presence of external magnetic fields

    NASA Astrophysics Data System (ADS)

    Kemp, G. Elijah; Mariscal, D. A.; Williams, G. J.; Blue, B. E.; Colvin, J. D.; Fears, T. M.; Kerr, S. M.; May, M. J.; Moody, J. D.; Strozzi, D. J.; Lefevre, H. J.; Klein, S. R.; Kuranz, C. C.; Manuel, M. J.-E.; Gautier, D. C.; Montgomery, D. S.

    2017-10-01

    We present experimental and simulation results from a study of thermal transport inhibition in laser-driven, mid-Z, non-equilibrium plasmas in the presence external magnetic fields. The experiments were performed at the Jupiter Laser Facility at LLNL, where x-ray spectroscopy, proton radiography, and Brillouin backscatter data were simultaneously acquired from sub-critical-density, Ti-doped silica aerogel foams driven by a 2 ω laser at 5 ×1014 W /cm2 . External B-field strengths up to 20 T (aligned antiparallel to the laser propagation axis) were provided by a capacitor-bank-driven Helmholtz coil. Pre-shot simulations with Hydra, a radiation-magnetohydrodyanmics code, showed increasing electron plasma temperature with increasing B-field strength - the result of thermal transport inhibition perpendicular to the B-field. The influence of this thermal transport inhibition on the experimental observables as a function of external field strength and target density will be shown and compared with simulations. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by LDRD project 17-ERD-027.

  12. Reconciling Models of Luminous Blazars with Magnetic Fluxes Determined by Radio Core-shift Measurements

    NASA Astrophysics Data System (ADS)

    Nalewajko, Krzysztof; Sikora, Marek; Begelman, Mitchell C.

    2014-11-01

    Estimates of magnetic field strength in relativistic jets of active galactic nuclei, obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of the magnetically arrested disk (MAD) scenario of jet formation. On the other hand, the magnetic field strength determines the luminosity of the synchrotron radiation, which forms the low-energy bump of the observed blazar spectral energy distribution (SED). The SEDs of the most powerful blazars are strongly dominated by the high-energy bump, which is most likely due to the external radiation Compton mechanism. This high Compton dominance may be difficult to reconcile with the MAD scenario, unless (1) the geometry of external radiation sources (broad-line region, hot-dust torus) is quasi-spherical rather than flat, or (2) most gamma-ray radiation is produced in jet regions of low magnetization, e.g., in magnetic reconnection layers or in fast jet spines.

  13. RECONCILING MODELS OF LUMINOUS BLAZARS WITH MAGNETIC FLUXES DETERMINED BY RADIO CORE-SHIFT MEASUREMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nalewajko, Krzysztof; Begelman, Mitchell C.; Sikora, Marek, E-mail: knalew@stanford.edu

    2014-11-20

    Estimates of magnetic field strength in relativistic jets of active galactic nuclei, obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of the magnetically arrested disk (MAD) scenario of jet formation. On the other hand, the magnetic field strength determines the luminosity of the synchrotron radiation, which forms the low-energy bump of the observed blazar spectral energy distribution (SED). The SEDs of the most powerful blazars are strongly dominated by the high-energy bump, which is most likely due to the external radiation Compton mechanism. This high Comptonmore » dominance may be difficult to reconcile with the MAD scenario, unless (1) the geometry of external radiation sources (broad-line region, hot-dust torus) is quasi-spherical rather than flat, or (2) most gamma-ray radiation is produced in jet regions of low magnetization, e.g., in magnetic reconnection layers or in fast jet spines.« less

  14. 47 CFR 2.1053 - Measurements required: Field strength of spurious radiation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... For equipment operating on frequencies below 890 MHz, an open field test is normally required, with... either impractical or impossible to make open field measurements (e.g. a broadcast transmitter installed... 47 Telecommunication 1 2010-10-01 2010-10-01 false Measurements required: Field strength of...

  15. Robust tunable excitonic features in monolayer transition metal dichalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Fouladi-Oskouei, J.; Shojaei, S.; Liu, Z.

    2018-04-01

    The effects of quantum confinement on excitons in parabolic quantum dots of monolayer transition metal dichalcogenides (TMDC QDs) are investigated within a massive Dirac fermion model. A giant spin-valley coupling of the TMDC QDs is obtained, larger than that of monolayer TMDC sheets and consistent with recent experimental measurements. The exciton transition energy and the binding energy are calculated, and it is found that the strong quantum confinement results in extremely high exciton binding energies. The enormously large exciton binding energy in TMDC QDs (({{E}{{B2D}}}∼ 500 meV)<{{E}{{BQD}}}~≲ 1800 meV for different kinds of TMDC QDs) ensures that the many body interactions play a significant role in the investigation of the optical properties of these novel nanostructures. The estimated oscillator strength and radiative lifetime of excitons are strongly size-dependent and indicate a giant oscillator strength enhancement and ultrafast radiative annihilation of excitons, varying from a few tens of femtoseconds to a few picoseconds. We found that the spin-dependent band gap, spin-valley coupling, binding energy and excitonic effects can be tuned by quantum confinements, leading to tunable quantum dots in monolayer TMDCs. This finding offers new functionality in engineering the interaction of a 2D material with light and creates promise for the quantum manipulation of spin and valley degrees of freedom in TMDC nanostructures, enabling versatile novel 2D quantum photonic and optoelectronic nanodevices.

  16. Ultraviolet Testing of Space Suit Materials for Mars

    NASA Technical Reports Server (NTRS)

    Larson, Kristine; Fries, Marc

    2017-01-01

    Human missions to Mars may require radical changes in the approach to extra-vehicular (EVA) suit design. A major challenge is the balance of building a suit robust enough to complete multiple EVAs under intense ultraviolet (UV) light exposure without losing mechanical strength or compromising the suit's mobility. To study how the materials degrade on Mars in-situ, the Jet Propulsion Laboratory (JPL) invited the Advanced Space Suit team at NASA's Johnson Space Center (JSC) to place space suit materials on the Scanning Habitable Environments with Raman & Luminescence for Organics and Chemicals (SHERLOC) instrument's calibration target of the Mars 2020 rover. In order to select materials for the rover and understand the effects from Mars equivalent UV exposure, JSC conducted ground testing on both current and new space suit materials when exposed to 2500 hours of Mars mission equivalent UV. To complete this testing, JSC partnered with NASA's Marshall Space Flight Center to utilize their UV vacuum chambers. Materials tested were Orthofabric, polycarbonate, Teflon, Dacron, Vectran, spectra, bladder, nGimat coated Teflon, and nGimat coated Orthofabric. All samples were measured for mass, tensile strength, and chemical composition before and after radiation. Mass loss was insignificant (less than 0.5%) among the materials. Most materials loss tensile strength after radiation and became more brittle with a loss of elongation. Changes in chemical composition were seen in all radiated materials through Spectral Analysis. Results from this testing helped select the materials that will fly on the Mars 2020 rover. In addition, JSC can use this data to create a correlation to the chemical changes after radiation-which is what the rover will send back while on Mars-to the mechanical changes, such as tensile strength.

  17. Silicon Carbide Solar Cells Investigated

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila G.; Raffaelle, Ryne P.

    2001-01-01

    The semiconductor silicon carbide (SiC) has long been known for its outstanding resistance to harsh environments (e.g., thermal stability, radiation resistance, and dielectric strength). However, the ability to produce device-quality material is severely limited by the inherent crystalline defects associated with this material and their associated electronic effects. Much progress has been made recently in the understanding and control of these defects and in the improved processing of this material. Because of this work, it may be possible to produce SiC-based solar cells for environments with high temperatures, light intensities, and radiation, such as those experienced by solar probes. Electronics and sensors based on SiC can operate in hostile environments where conventional silicon-based electronics (limited to 350 C) cannot function. Development of this material will enable large performance enhancements and size reductions for a wide variety of systems--such as high-frequency devices, high-power devices, microwave switching devices, and high-temperature electronics. These applications would supply more energy-efficient public electric power distribution and electric vehicles, more powerful microwave electronics for radar and communications, and better sensors and controls for cleaner-burning, more fuel-efficient jet aircraft and automobile engines. The 6H-SiC polytype is a promising wide-bandgap (Eg = 3.0 eV) semiconductor for photovoltaic applications in harsh solar environments that involve high-temperature and high-radiation conditions. The advantages of this material for this application lie in its extremely large breakdown field strength, high thermal conductivity, good electron saturation drift velocity, and stable electrical performance at temperatures as high as 600 C. This behavior makes it an attractive photovoltaic solar cell material for devices that can operate within three solar radii of the Sun.

  18. Sensory and motor peripheral nerve function and longitudinal changes in quadriceps strength.

    PubMed

    Ward, Rachel E; Boudreau, Robert M; Caserotti, Paolo; Harris, Tamara B; Zivkovic, Sasa; Goodpaster, Bret H; Satterfield, Suzanne; Kritchevsky, Stephen; Schwartz, Ann V; Vinik, Aaron I; Cauley, Jane A; Newman, Anne B; Strotmeyer, Elsa S

    2015-04-01

    Poor peripheral nerve function is common in older adults and may be a risk factor for strength decline, although this has not been assessed longitudinally. We assessed whether sensorimotor peripheral nerve function predicts strength longitudinally in 1,830 participants (age = 76.3 ± 2.8, body mass index = 27.2 ± 4.6kg/m(2), strength = 96.3 ± 34.7 Nm, 51.0% female, 34.8% black) from the Health ABC study. Isokinetic quadriceps strength was measured semiannually over 6 years. Peroneal motor nerve conduction amplitude and velocity were recorded. Sensory nerve function was assessed with 10-g and 1.4-g monofilaments and average vibration detection threshold at the toe. Lower-extremity neuropathy symptoms were self-reported. Worse vibration detection threshold predicted 2.4% lower strength in men and worse motor amplitude and two symptoms predicted 2.5% and 8.1% lower strength, respectively, in women. Initial 10-g monofilament insensitivity predicted 14.2% lower strength and faster strength decline in women and 6.6% lower strength in men (all p < .05). Poor nerve function predicted lower strength and faster strength decline. Future work should examine interventions aimed at preventing declines in strength in older adults with impaired nerve function. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Medical considerations for extending human presence in space

    NASA Technical Reports Server (NTRS)

    Leach, C. S.; Dietlein, L. F.; Pool, S. L.; Nicogossian, A. E.

    1990-01-01

    The prospects for extending the length of time that humans can safely remain in space depend partly on resolution of a number of medical issues. Physiologic effects of weightlessness that may affect health during flight include loss of body fluid, functional alterations in the cardiovascular system, loss of red blood cells and bone mineral, compromised immune system function, and neurosensory disturbances. Some of the physiologic adaptations to weightlessness contribute to difficulties with readaptation to Earth's gravity. These include cardiovascular deconditioning and loss of body fluids and electrolytes; red blood cell mass; muscle mass, strength, and endurance; and bone mineral. Potentially harmful factors in space flight that are not related to weightlessness include radiation, altered circadian rhythms and rest/work cycles, and the closed, isolated environment of the spacecraft. There is no evidence that space flight has long-term effects on humans, except that bone mass lost during flight may not be replaced, and radiation damage is cumulative. However, the number of people who have spent several months or longer in space is still small. Only carefully-planned experiments in space preceded by thorough ground-based studies can provide the information needed to increase the amount of time humans can safely spend in space.

  20. Galaxy clusters and cold dark matter - A low-density unbiased universe?

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue

    1992-01-01

    Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.

  1. Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.

    PubMed

    Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P

    2015-08-01

    Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.

  2. Investigation of radiation damage tolerance in interface-containing metallic nano structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greer, Julia R.

    The proposed work seeks to conduct a basic study by applying experimental and computational methods to obtain quantitative influence of helium sink strength and proximity on He bubble nucleation and growth in He-irradiated nano-scale metallic structures, and the ensuing deformation mechanisms and mechanical properties. We utilized a combination of nano-scale in-situ tension and compression experiments on low-energy He-irradiated samples combined with site-specific microstructural characterization and modeling efforts. We also investigated the mechanical deformation of nano-architected materials, i.e. nanolattices which are comprised of 3-dimensional interwoven networks of hollow tubes, with the wall thickness in the nanometer range. This systematic approach willmore » provide us with critical information for identifying key factors that govern He bubble nucleation and growth upon irradiation as a function of both sink strength and sink proximity through an experimentally-confirmed physical understanding. As an outgrowth of these efforts, we performed irradiations with self-ions (Ni 2+) on Ni-Al-Zr metallic glass nanolattices to assess their resilience against radiation damage rather than He-ion implantation. We focused our attention on studying individual bcc/fcc interfaces within a single nano structure (nano-pillar or a hollow tube): a single Fe (bcc)-Cu (fcc) boundary per pillar oriented perpendicular to the pillar axes, as well as pure bcc and fcc nano structures. Additional interfaces of interest include bcc/bcc and metal/metallic glass all within a single nano-structure volume. The model material systems are: (1) pure single crystalline Fe and Cu, (2) a single Fe (bcc)-Cu (fcc) boundary per nano structure (3) a single metal–metallic glass, all oriented non-parallel to the loading direction so that their fracture strength can be tested. A nano-fabrication approach, which involves e-beam lithography and templated electroplating, as well as two-photon lithography, was utilized, which enabled precise control of the initial microstructure control. Experimentally determined stress-strain relationships were enhanced by in-situ SEM observations coupled with TEM microstructural characterization of the same samples before and after deformation (irradiated and as-fabricated) and atomistic (MD) modeling. A comprehensive suite of experiments was conducted to quantitatively assess the key parameters for He bubble nucleation and growth by independently varying the sink strength, sink proximity, and He implantation temperature and dose. The implantations were conducted at Sandia and Los Alamos National Labs (CINT). Nano structuress containing He-enriched interfaces and irradiation-damaged microstructure were tested under uniaxial tension to assess embrittlement, resulting boundary strength, and deformation mechanisms. Results of this work helped identify which types of interfaces are particularly resilient against radiation damage.« less

  3. Is the relationship between increased knee muscle strength and improved physical function following exercise dependent on baseline physical function status?

    PubMed

    Hall, Michelle; Hinman, Rana S; van der Esch, Martin; van der Leeden, Marike; Kasza, Jessica; Wrigley, Tim V; Metcalf, Ben R; Dobson, Fiona; Bennell, Kim L

    2017-12-08

    Clinical guidelines recommend knee muscle strengthening exercises to improve physical function. However, the amount of knee muscle strength increase needed for clinically relevant improvements in physical function is unclear. Understanding how much increase in knee muscle strength is associated with improved physical function could assist clinicians in providing appropriate strength gain targets for their patients in order to optimise outcomes from exercise. The aim of this study was to investigate whether an increase in knee muscle strength is associated with improved self-reported physical function following exercise; and whether the relationship differs according to physical function status at baseline. Data from 100 participants with medial knee osteoarthritis enrolled in a 12-week randomised controlled trial comparing neuromuscular exercise to quadriceps strengthening exercise were pooled. Participants were categorised as having mild, moderate or severe physical dysfunction at baseline using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Associations between 12-week changes in physical function (dependent variable) and peak isometric knee extensor and flexor strength (independent variables) were evaluated with and without accounting for baseline physical function status and covariates using linear regression models. In covariate-adjusted models without accounting for baseline physical function, every 1-unit (Nm/kg) increase in knee extensor strength was associated with physical function improvement of 17 WOMAC units (95% confidence interval (CI) -29 to -5). When accounting for baseline severity of physical function, every 1-unit increase in knee extensor strength was associated with physical function improvement of 24 WOMAC units (95% CI -42 to -7) in participants with severe physical dysfunction. There were no associations between change in strength and change in physical function in participants with mild or moderate physical dysfunction at baseline. The association between change in knee flexor strength and change in physical function was not significant, irrespective of baseline function status. In patients with severe physical dysfunction, an increase in knee extensor strength and improved physical function were associated. ANZCTR 12610000660088 . Registered 12 August 2010.

  4. UK-5 Van Allen belt radiation exposure: A special study to determine the trapped particle intensities on the UK-5 satellite with spatial mapping of the ambient flux environment

    NASA Technical Reports Server (NTRS)

    Stassinopoulos, E. G.

    1972-01-01

    Vehicle encountered electron and proton fluxes were calculated for a set of nominal UK-5 trajectories with new computational methods and new electron environment models. Temporal variations in the electron data were considered and partially accounted for. Field strength calculations were performed with an extrapolated model on the basis of linear secular variation predictions. Tabular maps for selected electron and proton energies were constructed as functions of latitude and longitude for specified altitudes. Orbital flux integration results are presented in graphical and tabular form; they are analyzed, explained, and discussed.

  5. Cross-sectional association between muscle strength and self-reported physical function in 195 hip osteoarthritis patients.

    PubMed

    Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L

    2017-02-01

    This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Experimental radiative lifetimes, branching fractions, and oscillator strengths of some levels in Co I

    NASA Astrophysics Data System (ADS)

    Wang, Xinghao; Yu, Qi; Li, Qiu; Gao, Yang; Dai, Zhenwen

    2018-04-01

    The radiative lifetime measurements by the time-resolved laser-induced fluorescence technique are reported for 24 levels of Co I with the energy range of 283 45.86-55 922.3 cm-1, amongst which the lifetimes of 20 levels are reported for the first time. The branching fraction measurements by the emission spectrum of a hollow cathode lamp were performed for 11 levels of them together with other two levels reported in the literature, and branching fractions of 39 transitions were obtained. By combining them with lifetime values, the transition probabilities and absolute oscillator strengths of these lines were determined.

  7. Oscillator strengths of the Si II 181 nanometer resonance multiplet

    NASA Technical Reports Server (NTRS)

    Bergeson, S. D.; Lawler, J. E.

    1993-01-01

    We report Si II experimental log (gf)-values of -2.38(4) for the 180.801 nm line, of -2.18(4) for the 181.693 nm line, and of -3.29(5) for the 181.745 nm line, where the number in parentheses is the uncertainty in the last digit. The overall uncertainties (about 10 percent) include the 1 sigma random uncertainty (about 6 percent) and an estimate of the systematic uncertainty. The oscillator strengths are determined by combining branching fractions and radiative lifetimes. The branching fractions are measured using standard spectroradiometry on an optically thin source; the radiative lifetimes are measured using time-resolved laser-induced fluorescence.

  8. Concrete density estimation by rebound hammer method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ismail, Mohamad Pauzi bin, E-mail: pauzi@nm.gov.my; Masenwat, Noor Azreen bin; Sani, Suhairy bin

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containingmore » crushed granite.« less

  9. Theoretical transition probabilities, oscillator strengths, and radiative lifetimes of levels in Pb IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso-Medina, A.; Colon, C., E-mail: cristobal.colon@upm.e; Porcher, P.

    2011-01-15

    Transition probabilities and oscillator strengths of 176 spectral lines with astrophysical interest arising from 5d{sup 10}ns (n = 7,8), 5d{sup 10}np (n = 6,7), 5d{sup 10}nd (n = 6,7), 5d{sup 10}5f, 5d{sup 10}5g, 5d{sup 10}nh (n = 6,7,8), 5d{sup 9}6s{sup 2}, and 5d{sup 9}6s6p configurations, and radiative lifetimes for 43 levels of Pb IV, have been calculated. These values were obtained in intermediate coupling (IC) and using relativistic Hartree-Fock calculations including core-polarization effects. For the IC calculations, we use the standard method of least-square fitting from experimental energy levels by means of the Cowan computer code. The inclusion in thesemore » calculations of the 5d{sup 10}7p and 5d{sup 10}5f configurations has facilitated a complete assignment of the energy levels in the Pb IV. Transition probabilities, oscillator strengths, and radiative lifetimes obtained are generally in good agreement with the experimental data.« less

  10. Hand Strength, Handwriting, and Functional Skills in Children With Autism.

    PubMed

    Alaniz, Michele L; Galit, Eleanor; Necesito, Corina Isabel; Rosario, Emily R

    2015-01-01

    To establish hand strength development trends in children with autism and to investigate correlations between grip and pinch strength, components of handwriting, and functional activities in children with and without autism. Fifty-one children were divided into two groups: typically developing children and children on the autism spectrum. Each child completed testing for pinch and grip strength, handwriting legibility, pencil control, and independence in functional activities. The children with autism followed the same strength development trends as the typically developing children. Grip strength correlated with pencil control in both groups and with handwriting legibility in the typically developing children but not in the children with autism. Grip and pinch strength correlated with independence with functional activities in both groups. This study provides evidence that grip and pinch strength are important components in developing pencil control, handwriting legibility, and independence with functional fine motor tasks. Copyright © 2015 by the American Occupational Therapy Association, Inc.

  11. Energy levels and radiative transition rates for Ge XXXI, As XXXII, and Se XXXIII

    NASA Astrophysics Data System (ADS)

    Aggarwal, Sunny; Singh, J.; Jha, A. K. S.; Mohan, Man

    2014-07-01

    Fine-structure energies of the 67 levels belonging to the 1s2, 1s 2l, 1s3l, 1s4l, 1s5l, and 1s6l configurations of Ge XXXI, As XXXII, and Se XXXIII have been calculated using the General-Purpose Relativistic Atomic Structure Package. In addition, radiative rates, oscillator strengths, transition wavelengths, and line strengths have been calculated for all electric dipole, magnetic dipole, electric quadrupole, and magnetic quadrupole transitions among these levels. Lifetimes are also presented for all excited levels of these three ions. We have compared our results with the results available in the literature and the accuracy of the data is assessed. We predict new energy levels, oscillator strengths, and transition probabilities where no other theoretical or experimental results are available, which will form the basis for future experimental work.

  12. Propagation of Multiwavelength Laser Radiation through Atmospheric Turbulence

    DTIC Science & Technology

    1975-07-01

    eraging time is discussed, including both microthermal and scintillation data and their interrelationship. These considerations are...related to spatial correlation measurements of the turbulence strength ( microthermal envelope) as DO l JAN 73 1473 EDITION OF...strength-of-fluctuation measurements vs. averaging time is discussed, including both microthermal and scintillation data and their inter

  13. Microwave and plasma-assisted modification of composite fiber surface topography

    DOEpatents

    Paulauskas, Felix L [Knoxville, TN; White, Terry L [Knoxville, TN; Bigelow, Timothy S [Knoxville, TN

    2003-02-04

    The present invention introduces a novel method for producing an undulated surface on composite fibers using plasma technology and microwave radiation. The undulated surface improves the mechanical interlocking of the fibers to composite resins and enhances the mechanical strength and interfacial sheer strength of the composites in which they are introduced.

  14. Influence of gamma radiation on the colour strength and fastness properties of fabric using turmeric (Curcuma longa L .) as natural dye

    NASA Astrophysics Data System (ADS)

    Bhatti, Ijaz A.; Adeel, Shahid; Jamal, M. Asghar; Safdar, Muhammad; Abbas, Muhammad

    2010-05-01

    The effect of gamma radiation on the dyeing of cotton with extract of turmeric ( Curcuma longa L.) powder has been investigated. Cotton fabric and turmeric powder were irradiated to absorbed doses of 1, 2, 3, 4 and 6 kGy using Co-60 gamma irradiator. Dyeing parameters such as temperature, pH and mordant concentration were optimized. Dyeing was performed using un-irradiated and irradiated cotton with the extracts of un-irradiated and irradiated turmeric powder in order to investigate the effect of radiation treatment on the colour strength of dyed fabric. The reported data of un-irradiated and irradiated fabrics dyed with un-irradiated and irradiated dyes were obtained using the spectraflash SF-650. The colourfastness to light, rubbing- and washing-fastness properties showed that gamma irradiation has improved the dyeing characteristics from fair to good.

  15. Statistical analysis of electromagnetic radiation measurements in the vicinity of indoor microcell GSM/UMTS base stations in Serbia.

    PubMed

    Koprivica, Mladen; Petrić, Majda; Nešković, Nataša; Nešković, Aleksandar

    2016-01-01

    To determine the level of radiofrequency radiation generated by base stations of Global System for Mobile Communications and Universal Mobile Telecommunication System, extensive electromagnetic field strength measurements were carried out in the vicinity of 664 base station locations. These were classified into three categories: indoor, masts, and locations with installations on buildings. Although microcell base stations with antennas installed indoors typically emit less power than outdoor macrocell base stations, the fact that people can be found close to antennas requires exposure originating from these base stations to be carefully considered. Measurement results showed that maximum recorded value of electric field strength exceeded International Commission on Non-Ionizing Radiation Protection reference levels at 7% of indoor base station locations. At the same time, this percentage was much lower in the case of masts and installations on buildings (0% and 2.5%, respectively). © 2015 Wiley Periodicals, Inc.

  16. Coherent nature of the radiation emitted in delayed luminescence of leaves

    PubMed

    Bajpai

    1999-06-07

    After exposure to light, a living system emits a photon signal of characteristic shape. The signal has a small decay region and a long tail region. The flux of photons in the decay region changes by 2 to 3 orders of magnitude, but remains almost constant in the tail region. The decaying part is attributed to delayed luminescence and the constant part to ultra-weak luminescence. Biophoton emission is the common name given to both kinds of luminescence, and photons emitted are called biophotons. The decay character of the biophoton signal is not exponential, which is suggestive of a coherent signal. We sought to establish the coherent nature by measuring the conditional probability of zero photon detection in a small interval Delta. Our measurements establish the coherent nature of biophotons emitted by different leaves at various temperatures in the range 15-50 degrees C. Our set up could measure the conditional probability for Delta

  17. Relative Band Oscillator Strengths for Carbon Monoxide: Alpha (1)Pi-Chi (1)Sigma(+) Transitions

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Menningen, K. L.; Lee, Wei; Stoll, J. B.

    1997-01-01

    Band oscillator strengths for CO transitions between the electronic states A (l)Pi and X(1)Sigma(+) were measured via absorption with a synchrotron radiation source. When referenced to the well-characterized (5,0) band oscillator strength, our relative values for the (7,0) to (11,0) bands are most consistent with the recent experiments of Chan et al. and the theoretical predictions of Kirby & Cooper. Since the results from various laboratory techniques and theory now agree, analyses of interstellar CO based on absorption from A-X bands are no longer hindered by uncertainties in oscillator strength.

  18. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    NASA Astrophysics Data System (ADS)

    Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.

    2016-03-01

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.

  19. Low energy dipole strength from large scale shell model calculations

    NASA Astrophysics Data System (ADS)

    Sieja, Kamila

    2017-09-01

    Low energy enhancement of radiative strength functions has been deduced from experiments in several mass regions of nuclei. Such an enhancement is believed to impact the calculated neutron capture rates which are crucial input for reaction rates of astrophysical interest. Recently, shell model calculations have been performed to explain the upbend of the γ-strength as due to the M1 transitions between close-lying states in the quasi-continuum in Fe and Mo nuclei. Beyond mean-↓eld calculations in Mo suggested, however, a non-negligible role of electric dipole in the low energy enhancement. So far, no calculations of both dipole components within the same theoretical framework have been presented in this context. In this work we present newly developed large scale shell model appraoch that allows to treat on the same footing natural and non-natural parity states. The calculations are performed in a large sd - pf - gds model space, allowing for 1p{1h excitations on the top of the full pf-shell con↓guration mixing. We restrict the discussion to the magnetic part of the dipole strength, however, we calculate for the ↓rst time the magnetic dipole strength between states built of excitations going beyond the classical shell model spaces. Our results corroborate previous ↓ndings for the M1 enhancement for the natural parity states while we observe no enhancement for the 1p{1h contributions. We also discuss in more detail the e↑ects of con↓guration mixing limitations on the enhancement coming out from shell model calculations.

  20. Changes in physical functioning and muscle strength in men receiving androgen deprivation therapy for prostate cancer: a controlled comparison.

    PubMed

    Gonzalez, Brian D; Jim, Heather S L; Small, Brent J; Sutton, Steven K; Fishman, Mayer N; Zachariah, Babu; Heysek, Randy V; Jacobsen, Paul B

    2016-05-01

    The purpose of the study is to examine changes in muscle strength and self-reported physical functioning in men receiving androgen deprivation therapy (ADT) for prostate cancer compared to matched controls. Prostate cancer patients scheduled to begin ADT (n = 62) were assessed within 20 days of starting ADT and 6 and 12 months later. Age and geographically matched prostate cancer controls treated with prostatectomy only (n = 86) were assessed at similar time intervals. Grip strength measured upper body strength, the Chair Rise Test measured lower body strength, and the SF-12 Physical Functioning scale measured self-reported physical functioning. As expected, self-reported physical functioning and upper body muscle strength declined in ADT recipients but remained stable in prostate cancer controls. Contrary to expectations, lower body muscle strength remained stable in ADT recipients but improved in prostate cancer controls. Higher Gleason scores, more medical comorbidities, and less exercise at baseline predicted greater declines in physical functioning in ADT recipients. ADT is associated with declines in self-reported physical functioning and upper body muscle strength as well as worse lower body muscle strength relative to prostate cancer controls. These findings should be included in patient education regarding the risks and benefits of ADT. Findings also underscore the importance of conducting research on ways to prevent or reverse declines in physical functioning in this patient population.

  1. A New Method of Comparing Forcing Agents in Climate Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kravitz, Benjamin S.; MacMartin, Douglas; Rasch, Philip J.

    We describe a new method of comparing different climate forcing agents (e.g., CO2, CH4, and solar irradiance) that avoids many of the ambiguities introduced by temperature-related climate feedbacks. This is achieved by introducing an explicit feedback loop external to the climate model that adjusts one forcing agent to balance another while keeping global mean surface temperature constant. Compared to current approaches, this method has two main advantages: (i) the need to define radiative forcing is bypassed and (ii) by maintaining roughly constant global mean temperature, the effects of state dependence on internal feedback strengths are minimized. We demonstrate this approachmore » for several different forcing agents and derive the relationships between these forcing agents in two climate models; comparisons between forcing agents are highly linear in concordance with predicted functional forms. Transitivity of the relationships between the forcing agents appears to hold within a wide range of forcing. The relationships between the forcing agents obtained from this method are consistent across both models but differ from relationships that would be obtained from calculations of radiative forcing, highlighting the importance of controlling for surface temperature feedback effects when separating radiative forcing and climate response.« less

  2. Polyurethane acrylate networks including cellulose nanocrystals: a comparison between UV and EB- curing

    NASA Astrophysics Data System (ADS)

    Furtak-Wrona, K.; Kozik-Ostrówka, P.; Jadwiszczak, K.; Maigret, J. E.; Aguié-Béghin, V.; Coqueret, X.

    2018-01-01

    A water-based polyurethane (PUR) acrylate water emulsion was selected as a radiation curable matrix for preparing nanocomposites including cellulose nanocrystals (CNC) prepared by controlled hydrolysis of Ramie fibers. Cross-linking polymerization of samples prepared in the form of films or of 1 mm-thick bars was either initiated by exposure to the 395 nm light of a high intensity LED lamp or by treatment with low energy electron beam (EB). The conversion level of acrylate functions in samples submitted to increasing radiation doses was monitored by Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were used to characterize changes in the glass transition temperature of the PUR-CNC nanocomposites as a function of acrylate conversion and of CNC content. Micromechanical testing indicates the positive effect of 1 wt% CNC on Young's modulus and on the tensile strength at break (σ) of cured nanocomposites. The presence of CNC in the PUR acrylate matrix was shown to double the σ value of the nanocomposite cured to an acrylate conversion level of 85% by treatment with a 25 kGy dose under EB, whereas no increase of σ was observed in UV-cured samples exhibiting the same acrylate conversion level. The occurrence of grafting reactions inducing covalent linkages between the polysaccharide nanofiller and the PUR acrylate matrix during the EB treatment is advanced as an explanation to account for the improvement observed in samples cured under ionizing radiation.

  3. Magnetic Field Strengths and Grain Alignment Variations in the Local Bubble Wall

    NASA Astrophysics Data System (ADS)

    Medan, Ilija; Andersson, B.-G.

    2018-01-01

    Optical and infrared continuum polarization is known to be due to irregular dust grains aligned with the magnetic field. This provides an important tool to probe the geometry and strength of those fields, particularly if the variations in the grain alignment efficiencies can be understood. Here, we examine polarization variations observed throughout the Local Bubble for b>30○, using a large polarization survey of the North Galactic cap from Berdyugin et al. (2014). These data are supported by archival photometric and spectroscopic data along with the mapping of the Local Bubble by Lallement et al. (2003). We can accurately model the observational data assuming that the grain alignment variations are due to the radiation from the OB associations within 1 kpc of the sun. This strongly supports radiatively driven grain alignment. We also probe the relative strength of the magnetic field in the wall of the Local Bubble using the Davis-Chandrasekhar-Fermi method. We find evidence for a bimodal field strength distribution, where the variations in the field are correlated with the variations in grain alignment efficiency, indicating that the higher strength regions might represent a compression of the wall by the interaction of the outflow in the Local Bubble and the opposing flows by the surrounding OB associations.

  4. The effects of a 12-week strength-training program on strength and functionality in women with fibromyalgia.

    PubMed

    Kingsley, J Derek; Panton, Lynn B; Toole, Tonya; Sirithienthad, Prawee; Mathis, Reed; McMillan, Victor

    2005-09-01

    To determine whether women with fibromyalgia benefit from strength training. Randomized controlled trial. Testing was completed at the university and training was completed at a local community wellness facility. Twenty-nine women (age range, 18-54 y) with fibromyalgia participated. Subjects were randomly assigned to a control (n=14; wait-listed for exercise) or strength (n=15) group. After the first 4 weeks, 7 (47%) women dropped from the strength group. Subjects underwent 12 weeks of training on 11 exercises, 2 times a week, performing 1 set of 8 to 12 repetitions at 40% to 60% of their maximal lifts and were progressed to 60% to 80%. Subjects were measured for strength, functionality, tender point sensitivity, and fibromyalgia impact. The strength group significantly (P< or =.05) improved upper- (strength, 39+/-11 to 42+/-12 kg; control, 38+/-13 to 38+/-12 kg) and lower- (strength, 68+/-28 to 82+/-25 kg; control, 61+/-25 to 61+/-26 kg) body strength. Upper-body functionality measured by the Continuous-Scale Physical Functional Performance test improved significantly (strength, 44+/-11 to 50+/-16U; control, 51+/-11 to 49+/-13U) after training. Tender point sensitivity and fibromyalgia impact did not change. Strength training improved strength and some functionality in women with fibromyalgia. Interventions with resistance have important implications on independence and quality of life issues for women with fibromyalgia.

  5. The Effect of Dose Rate on Composite Durability When Exposed to a Simulated Long-Term Lunar Radiation Environment

    NASA Technical Reports Server (NTRS)

    Rojdev, Kristina; O'Rourke, Mary Jane; Hill, Charles; Nutt, Steven; Atwell, William

    2011-01-01

    Human exploration of space beyond low Earth orbit (LEO) requires a safe living and working environment for crew. Composite materials are one type of material being investigated by NASA as a multi-functional structural approach to habitats for long-term use in space or on planetary surfaces with limited magnetic fields and atmosphere. These materials provide high strength with the potential for decreased weight and increased radiation protection of crew and electronics when compared with conventional aluminum structures. However, these materials have not been evaluated in a harsh radiation environment, as would be experienced outside of LEO or on a planetary surface. Thus, NASA has been investigating the durability of select composite materials in a long-term radiation environment. Previously, NASA exposed composite samples to a simulated, accelerated 30-year radiation treatment and tensile stresses similar to those of a habitat pressure vessel. The results showed evidence of potential surface oxidation and enhanced cross-linking of the matrix. As a follow-on study, we performed the same accelerated exposure alongside an exposure with a decreased dose rate. The slower dose ]rate is comparable to a realistic scenario, although still accelerated. Strain measurements were collected during exposure and showed that with a fastdose rate, the strain decreased with time, but with a slow ]dose rate, the strain increased with time. After the radiation exposures, samples were characterized via tensile tests, flexure tests, Fourier Transform Infrared Spectroscopy (FTIR), and Differential Scanning Calorimetry (DSC). The results of these tests will be discussed.

  6. Some engineering properties of heavy concrete added silica fume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated.

  7. Concrete waterproofing in nuclear industry.

    PubMed

    Scherbyna, Alexander N; Urusov, Sergei V

    2005-01-01

    One of the main points of aggregate safety during the transportation and storage of radioactive materials is to supply waterproofing for all constructions having direct contact with radiating substances and providing strength, seismic shielding etc. This is the problem with all waterside structures in nuclear industry and concrete installations in the treatment and storage of radioactive materials. In this connection, the problem of developing efficient techniques both for the repair of operating constructions and the waterproofing of new objects of the specified assignment is genuine. Various techniques of concrete waterproofing are widely applied in the world today. However, in conditions of radiation many of these techniques can bring not a profit but irreparable damage of durability and reliability of a concrete construction; for instance, when waterproofing materials contain organic constituents, polymers etc. Application of new technology or materials in basic construction elements requires in-depth analysis and thorough testing. The price of an error might be very large. A comparative analysis shows that one of the most promising types of waterproofing materials for radiation loaded concrete constructions is "integral capillary systems" (ICS). The tests on radiation, thermal and strength stability of ICS and ICS-treated concrete samples were initiated and fulfilled in RFNC-VNIITF. The main result is--ICS applying is increasing of waterproofing and strength properties of concrete in conditions of readiation The paper is devoted to describing the research strategy, the tests and their results and also to planning of new tests.

  8. Uncertainty Analysis of Air Radiation for Lunar Return Shock Layers

    NASA Technical Reports Server (NTRS)

    Kleb, Bil; Johnston, Christopher O.

    2008-01-01

    By leveraging a new uncertainty markup technique, two risk analysis methods are used to compute the uncertainty of lunar-return shock layer radiation predicted by the High temperature Aerothermodynamic Radiation Algorithm (HARA). The effects of epistemic uncertainty, or uncertainty due to a lack of knowledge, is considered for the following modeling parameters: atomic line oscillator strengths, atomic line Stark broadening widths, atomic photoionization cross sections, negative ion photodetachment cross sections, molecular bands oscillator strengths, and electron impact excitation rates. First, a simplified shock layer problem consisting of two constant-property equilibrium layers is considered. The results of this simplified problem show that the atomic nitrogen oscillator strengths and Stark broadening widths in both the vacuum ultraviolet and infrared spectral regions, along with the negative ion continuum, are the dominant uncertainty contributors. Next, three variable property stagnation-line shock layer cases are analyzed: a typical lunar return case and two Fire II cases. For the near-equilibrium lunar return and Fire 1643-second cases, the resulting uncertainties are very similar to the simplified case. Conversely, the relatively nonequilibrium 1636-second case shows significantly larger influence from electron impact excitation rates of both atoms and molecules. For all cases, the total uncertainty in radiative heat flux to the wall due to epistemic uncertainty in modeling parameters is 30% as opposed to the erroneously-small uncertainty levels (plus or minus 6%) found when treating model parameter uncertainties as aleatory (due to chance) instead of epistemic (due to lack of knowledge).

  9. Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin

    NASA Astrophysics Data System (ADS)

    LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB

    2015-10-01

    Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450-500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation.

  10. Application of granulated lead-zinc slag in concrete as an opportunity to save natural resources

    NASA Astrophysics Data System (ADS)

    Alwaeli, Mohamed

    2013-02-01

    The last decades marked a period of growth and prosperity in construction industry which involves the use of natural resources. This growth is jeopardized by the lack of natural resources that are available. On the other hand there has been rapid increase in the industrial waste production. Most of the waste do not find any effective use and cause a waste disposal crisis, thereby contributing to health and environmental problems. Recycling of industrial waste as aggregate is thus a logical option to manage this problem. The paper reports on some experimental results obtained from the production of concretes containing granulated slag of lead and zinc industry as sand replacement mixed in different proportions. Granulated slag is substituted for raw sand, partly or totally. Ratios of 25%, 50%, 75% and 100% by weight of sand are used. The effects of granulated lead-zinc slag (GLZS) as sand replacement material on the compressive strength and gamma radiation attenuation properties of concrete are investigated and analyzed. Then, these properties are compared with those of ordinary concrete. The results showed that replacement material have some effects on the compressive strength and gamma radiation properties of the concrete. The experimental results indicate that, the concrete mixed with GLZS as a sand replacement have better strength. Concerning the absorption properties for gamma radiation the data show that the addition of GLZS resulted in an increase of the attenuation of gamma radiation. Consequently, these concretes could be used for construction of shields protecting personnel who work in laboratories where radiation is used. Additionally, the thickness of the concrete with GLZS was calculated and compared with ordinary concrete.

  11. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  12. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  13. Radiative data for highly excited 3d84d levels in Ni II from laboratory measurements and atomic calculations

    NASA Astrophysics Data System (ADS)

    Hartman, H.; Engström, L.; Lundberg, H.; Nilsson, H.; Quinet, P.; Fivet, V.; Palmeri, P.; Malcheva, G.; Blagoev, K.

    2017-04-01

    Aims: This work reports new experimental radiative lifetimes and calculated oscillator strengths for transitions from 3d84d levels of astrophysical interest in singly ionized nickel. Methods: Radiative lifetimes of seven high-lying levels of even parity in Ni II (98 400-100 600 cm-1) have been measured using the time-resolved laser-induced fluorescence method. Two-step photon excitation of ions produced by laser ablation has been utilized to populate the levels. Theoretical calculations of the radiative lifetimes of the measured levels and transition probabilities from these levels are reported. The calculations have been performed using a pseudo-relativistic Hartree-Fock method, taking into account core polarization effects. Results: A new set of transition probabilities and oscillator strengths has been deduced for 477 Ni II transitions of astrophysical interest in the spectral range 194-520 nm depopulating even parity 3d84d levels. The new calculated gf-values are, on the average, about 20% higher than a previous calculation and yield lifetimes within 5% of the experimental values.

  14. Correlations between solar wind parameters and auroral kilometric radiation intensity

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Dangelo, N.

    1981-01-01

    The relationship between solar wind properties and the influx of energy into the nightside auroral region as indicated by the intensity of auroral kilometric radiation is investigated. Smoothed Hawkeye satellite observations of auroral radiation at 178, 100 and 56.2 kHz for days 160 through 365 of 1974 are compared with solar wind data from the composite Solar Wind Plasma Data Set, most of which was supplied by the IMP-8 spacecraft. Correlations are made between smoothed daily averages of solar wind ion density, bulk flow speed, total IMF strength, electric field, solar wind speed in the southward direction, solar wind speed multiplied by total IMF strength, the substorm parameter epsilon and the Kp index. The greatest correlation is found between solar wind bulk flow speed and auroral radiation intensity, with a linear correlation coefficient of 0.78 for the 203 daily averages examined. A possible mechanism for the relationship may be related to the propagation into the nightside magnetosphere of low-frequency long-wavelength electrostatic waves produced in the magnetosheath by the solar wind.

  15. Functional Imaging of the Lungs with Gas Agents

    PubMed Central

    Kruger, Stanley J.; Nagle, Scott K.; Couch, Marcus J.; Ohno, Yoshiharu; Albert, Mitchell; Fain, Sean B.

    2015-01-01

    This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI) – hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas – and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multi-detector computed tomography (CT). However, MRI also offers capabilities for fast multi-spectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultra-short echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. Relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (CF) in both adults and children. PMID:26218920

  16. 47 CFR 74.706 - Digital TV (DTV) station protection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Translator, and TV Booster Stations § 74.706 Digital TV (DTV) station protection. (a) For purposes of this... translator or TV booster station field strength is calculated from the proposed effective radiated power (ERP... translator or TV booster station application will not be accepted if the ratio in dB of its field strength to...

  17. 47 CFR 74.706 - Digital TV (DTV) station protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Translator, and TV Booster Stations § 74.706 Digital TV (DTV) station protection. (a) For purposes of this... translator or TV booster station field strength is calculated from the proposed effective radiated power (ERP... translator or TV booster station application will not be accepted if the ratio in dB of its field strength to...

  18. 47 CFR 74.706 - Digital TV (DTV) station protection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Translator, and TV Booster Stations § 74.706 Digital TV (DTV) station protection. (a) For purposes of this... translator or TV booster station field strength is calculated from the proposed effective radiated power (ERP... translator or TV booster station application will not be accepted if the ratio in dB of its field strength to...

  19. 47 CFR 74.706 - Digital TV (DTV) station protection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Translator, and TV Booster Stations § 74.706 Digital TV (DTV) station protection. (a) For purposes of this... translator or TV booster station field strength is calculated from the proposed effective radiated power (ERP... translator or TV booster station application will not be accepted if the ratio in dB of its field strength to...

  20. Celestial bodies macroscopic movement is due to the radiation

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2016-03-01

    The star is radiate, also as the planet. In fact, all the real objects are radiate, but the strength of the radiation is different. Radiation will reduce the quality of the object, but time is not long enough to reduce the mass of the subject, so it is difficult for us to observe. Due to the large object lifecycle, to study the changing rule of the object, we must consider the radiation on the quality of the celestial bodies, and the outer space radiate particles' motion, also consider objects interact with objects of radiation. The reason Celestial bodies moves is that the radiation of those Celestial bodies Interact with each other, Celestial bodies macroscopic movement is due to the radiation. The earth's rotation and revolution is a measure of the survive ability. Author: hanyongquan TEL: 15611860790

  1. Elevated Nitrogen Deposition Enhances the Net CO2 Sink Strength in Alberta Bogs along a Post-fire Chronosequence

    NASA Astrophysics Data System (ADS)

    Wieder, R. K.; Vile, M. A.; Albright, C. M.; Scott, K. D.

    2014-12-01

    About 30% of the landscape of northern Alberta, Canada is occupied by peatlands, which persist at the low end range of both mean annual precipitation (<500 mm/yr) and mean annual atmospheric nitrogen (N) deposition (< 1 kg/ha/yr) across which peatlands are found globally. Ombrotrophic bogs in this region function as a net sink for atmospheric CO2 of over 75 g/m2/yr, taking into consideration changes in CO2 sink strength as a function of time since fire. In addition to fire, a new disturbance is emerging in the Athabasca Oil Sands Region (AOSR) of northern Alberta, where development of the oil sands resource has increased atmospheric N deposition to as much as 2.5 kg/ha/yr. To examine the effects of elevated N deposition on bog C cycling, we experimentally applied N (as NH4NO3 solutions) to replicated plots at levels equivalent to 0 (water added with no N), 10, and 20 kg/ha/yr, and controls (no waher, no N added) at five bog sites, aged at 2, 12, 32, 73, and 113 years since fire in 2013 (6 plots per N treatment per site). Understory net ecosystem exchange of CO2 (NEE) was measured repeatedly throughout the 2013 and 2014 growing season (and in 2011 and 2012 at the most recently burned site) using the closed chamber approach. Using a rectangular hyperbola equation to characterize NEE as a function of photosynthetically active radiation (PAR) and near-surface air temperature (T), monthly and annual NEE was estimated based on hourly measurements of PAR and T at each site. Across all sites, a general pattern emerged that N additions enhanced the net CO2 sink strength of the bogs, with no effect on ecosystem respiration. Net primary production of Sphagnum fuscum, the dominant peat-forming moss, was not affected by N addition, suggesting that the overall response of NEE to N addition is the result of enhanced growth of ericaceous shrubs. These findings suggest that while elevated N deposition in the AOSR may enhance the strength of the overall CO2 sink of bogs in the short term, in the longer term, increased shrub growth has the potential to shade Sphagnum mosses, compromising the future bog CO2sink strength across the region.

  2. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults.

    PubMed

    Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei

    2016-07-01

    Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  3. Altered behavior in experimental cortical dysplasia.

    PubMed

    Zhou, Fu-Wen; Rani, Asha; Martinez-Diaz, Hildabelis; Foster, Thomas C; Roper, Steven N

    2011-12-01

    Developmental delay and cognitive impairment are common comorbidities in people with epilepsy associated with malformations of cortical development (MCDs). We studied cognition and behavior in an animal model of diffuse cortical dysplasia (CD), in utero irradiation, using a battery of behavioral tests for neuromuscular and cognitive function. Fetal rats were exposed to 2.25 Gy external radiation on embryonic day 17 (E17). At 1 month of age they were tested using an open field task, a grip strength task, a grid walk task, inhibitory avoidance, an object recognition task, and the Morris water maze task. Rats with CD showed reduced nonlocomotor activity in the open field task and impaired motor coordination for grid walking but normal grip strength. They showed a reduced tendency to recognize novel objects and reduced retention in an inhibitory avoidance task. Water maze testing showed that learning and memory were impaired in irradiated rats for both cue discrimination and spatially oriented tasks. These results demonstrate significant deficits in cortex- and hippocampus-dependent cognitive functions associated with the diffuse abnormalities of cortical and hippocampal development that have been documented in this model. This study documents multimodal cognitive deficits associated with CD and can serve as the foundation for future investigations into the mechanisms of and possible therapeutic interventions for this problem. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.

  4. Greater understanding of normal hip physical function may guide clinicians in providing targeted rehabilitation programmes.

    PubMed

    Kemp, Joanne L; Schache, Anthony G; Makdissi, Michael; Sims, Kevin J; Crossley, Kay M

    2013-07-01

    This study investigated tests of hip muscle strength and functional performance. The specific objectives were to: (i) establish intra- and inter-rater reliability; (ii) compare differences between dominant and non-dominant limbs; (iii) compare agonist and antagonist muscle strength ratios; (iv) compare differences between genders; and (v) examine relationships between hip muscle strength, baseline measures and functional performance. Reliability study and cross-sectional analysis of hip strength and functional performance. In healthy adults aged 18-50years, normalised hip muscle peak torque and functional performance were evaluated to: (i) establish intra-rater and inter-rater reliability; (ii) analyse differences between limbs, between antagonistic muscle groups and genders; and (iii) associations between strength and functional performance. Excellent reliability (intra-rater ICC=0.77-0.96; inter-rater ICC=0.82-0.95) was observed. No difference existed between dominant and non-dominant limbs. Differences in strength existed between antagonistic pairs of muscles: hip abduction was greater than adduction (p<0.001) and hip ER was greater than IR (p<0.001). Men had greater ER strength (p=0.006) and hop for distance (p<0.001) than women. Strong associations were observed between measures of hip muscle strength (except hip flexion) and age, height, and functional performance. Deficits in hip muscle strength or functional performance may influence hip pain. In order to provide targeted rehabilitation programmes to address patient-specific impairments, and determine when individuals are ready to return to physical activity, clinicians are increasingly utilising tests of hip strength and functional performance. This study provides a battery of reliable, clinically applicable tests which can be used for these purposes. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Radiation enhanced antiferromagnetic exchange between spins in a superconducting host

    NASA Astrophysics Data System (ADS)

    Akkaravarawong, Kamphol; Vayrynen, Jukka; Sau, Jay; Glazman, Leonid; Yao, Norman

    2017-04-01

    A magnetic impurity on a conventional superconductor can host a localized bound state whose energy lies inside the superconducting gap. If the distance between two such impurities is smaller than the coherence length, the presence of these so-called Yu-Shiba-Rusinov (YSR) bound states can induce an antiferromagnetic exchange interaction between the impurities, falling off as 1 /r2 . Although the YSR interaction exhibits a slower decay than conventional RKKY interactions, its strength is significantly weaker, making it extremely challenging to experimentally observe. We demonstrate that the strength of the YSR interaction can be enhanced via radiation assisted virtual occupation, and that the signature of this coupling can naturally be observed through spectroscopy.

  6. Energy levels and radiative rates for transitions in B-like to F-like Kr ions (Kr XXXII XXVIII)

    NASA Astrophysics Data System (ADS)

    Aggarwal, K. M.; Keenan, F. P.; Lawson, K. D.

    2008-05-01

    Energy levels, radiative rates, oscillator strengths, line strengths, and lifetimes have been calculated for transitions in B-like to F-like Kr ions, Kr XXXIII-XXVIII. For the calculations, the fully relativistic GRASP code has been adopted, and results are reported for all electric dipole (E1), electric quadrupole (E2), magnetic dipole (M1), and magnetic quadrupole (M2) transitions among the lowest 125, 236, 272, 226, and 113 levels of Kr XXXII, Kr XXXI, Kr XXX, Kr XXIX, and Kr XXVIII, respectively, belonging to the n ⩽ 3 configurations. Comparisons are made with earlier available theoretical and experimental results, and some discrepancies have been noted and explained.

  7. Joint laxity and the relationship between muscle strength and functional ability in patients with osteoarthritis of the knee.

    PubMed

    van der Esch, M; Steultjens, M; Knol, D L; Dinant, H; Dekker, J

    2006-12-15

    To establish the impact of knee joint laxity on the relationship between muscle strength and functional ability in osteoarthritis (OA) of the knee. A cross-sectional study of 86 patients with OA of the knee was conducted. Tests were performed to determine varus-valgus laxity, muscle strength, and functional ability. Laxity was assessed using a device that measures the angular deviation of the knee in the frontal plane. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by observation (100-meter walking test) and self report (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]). Regression analyses were performed to assess the impact of joint laxity on the relationship between muscle strength and functional ability. In regression analyses, the interaction between muscle strength and joint laxity contributed to the variance in both walking time (P = 0.002) and WOMAC score (P = 0.080). The slope of the regression lines indicated that the relationship between muscle strength and functional ability (walking time, WOMAC) was stronger in patients with high knee joint laxity. Patients with knee OA and high knee joint laxity show a stronger relationship between muscle strength and functional ability than patients with OA and low knee joint laxity. Patients with OA, high knee joint laxity, and low muscle strength are most at risk of being disabled.

  8. Decreased long- and short-range functional connectivity at rest in drug-naive major depressive disorder.

    PubMed

    Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xue, Zhimin; Zhao, Jingping

    2016-08-01

    Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  9. Estimation of M 1 scissors mode strength for deformed nuclei in the medium- to heavy-mass region by statistical Hauser-Feshbach model calculations

    DOE PAGES

    Mumpower, Matthew Ryan; Kawano, Toshihiko; Ullmann, John Leonard; ...

    2017-08-17

    Radiative neutron capture is an important nuclear reaction whose accurate description is needed for many applications ranging from nuclear technology to nuclear astrophysics. The description of such a process relies on the Hauser-Feshbach theory which requires the nuclear optical potential, level density, and γ-strength function as model inputs. It has recently been suggested that the M1 scissors mode may explain discrepancies between theoretical calculations and evaluated data. We explore statistical model calculations with the strength of the M1 scissors mode estimated to be dependent on the nuclear deformation of the compound system. We show that the form of the M1more » scissors mode improves the theoretical description of evaluated data and the match to experiment in both the fission product and actinide regions. Since the scissors mode occurs in the range of a few keV to a few MeV, it may also impact the neutron capture cross sections of neutron-rich nuclei that participate in the rapid neutron capture process of nucleosynthesis. As a result, we comment on the possible impact to nucleosynthesis by evaluating neutron capture rates for neutron-rich nuclei with the M1 scissors mode active.« less

  10. Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders

    PubMed Central

    Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.

    2009-01-01

    Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353

  11. RELATIONSHIP BETWEEN ISOMETRIC THIGH MUSCLE STRENGTH AND MINIMAL CLINICALLY IMPORTANT DIFFERENCES (MCIDS) IN KNEE FUNCTION IN OSTEOARTHRITIS – DATA FROM THE OSTEOARTHRITIS INITIATIVE

    PubMed Central

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2014-01-01

    Objective To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower limb function. Methods Isometric knee extensor and flexor strength of 4553 Osteoarthritis Initiative participants (2651 women/1902 men) was related to Western Ontario McMasters Universities (WOMAC) physical function scores by linear regression. Further, groups of Male and female participant strata with minimal clinically important differences (MCIDs) in WOMAC function scores (6/68) were compared across the full range of observed values, and to participants without functional deficits (WOMAC=0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Results Per regression equations, a 3.7% reduction in extensor and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and a 3.6%/4.8% reduction in men. For strength divided by body weight, reductions were 5.2%/6.7% in women and 5.8%/6.7% in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest non-linear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Conclusion Reductions of approximately 4% in isometric muscle strength and of 6% in strength/weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower limb function. PMID:25303012

  12. State-level emergency preparedness and response capabilities.

    PubMed

    Watkins, Sharon M; Perrotta, Dennis M; Stanbury, Martha; Heumann, Michael; Anderson, Henry; Simms, Erin; Huang, Monica

    2011-03-01

    Prior assessments of public health readiness had identified gaps in radiation preparedness. In recent years, preparedness planning has involved an "all-hazards" approach. Current assessment of the national status related to radiation public health emergency preparedness capabilities at the state and local health department levels was needed. A survey of state health departments related to radiation readiness was undertaken in 2010 by the Council of State and Territorial Epidemiologists (CSTE). States with nuclear power plants were instructed to consider their responses exclusive of capabilities and resources related to the plants given that the emergency response plans for nuclear power plants are specific and unique. Thirty-eight (76%) state health departments responded to the survey, including 26 of the 31 states with nuclear power plants. Specific strengths noted at the state level included that the majority of states had a written radiation response plan and most plans include a detailed section for communications issues during a radiation emergency. In addition, more than half of the states indicated that their relationship with federal partners is sufficient to provide resources for radiation emergencies, indicating the importance states placed on federal resources and expertise. Specific weaknesses are discussed and include that most states had completed little to no planning for public health surveillance to assess potential human health impacts of a radiation event; less than half had written plans to address exposure assessment, environmental sampling, human specimen collection and analysis, and human health assessment. Few reported having sufficient resources to do public health surveillance, radiation exposure assessment, laboratory functions and other capabilities. Levels of planning, resources and partnerships varied among states, those with nuclear power plants were better prepared. Gaps were evident in all states; however and additional training and resources are needed to ensure adequate levels of preparedness. Overall results of this assessment indicate that in most measures of public health capacity and capability, states are poorly prepared to adequately respond to a major radiation emergency event. Specific recommendations are noted in the discussion.

  13. Pulmonary Function, Muscle Strength and Mortality in Old Age

    PubMed Central

    Buchman, A. S.; Boyle, P. A.; Wilson, R.S.; Gu, Liping; Bienias, Julia L.; Bennett, D. A.

    2009-01-01

    Numerous reports have linked extremity muscle strength with mortality but the mechanism underlying this association is not known. We used data from 960 older persons without dementia participating in the Rush Memory and Aging Project to test two sequential hypotheses: first, that extremity muscle strength is a surrogate for respiratory muscle strength, and second, that the association of respiratory muscle strength with mortality is mediated by pulmonary function. In a series of proportional hazards models, we first demonstrated that the association of extremity muscle strength with mortality was no longer significant after including a term for respiratory muscle strength, controlling for age, sex, education, and body mass index. Next, the association of respiratory muscle strength with mortality was attenuated by more than 50% and no longer significant after including a term for pulmonary function. The findings were unchanged after controlling for cognitive function, parkinsonian signs, physical frailty, balance, physical activity, possible COPD, use of pulmonary medications, vascular risk factors including smoking, chronic vascular diseases, musculoskeletal joint pain, and history of falls. Overall, these findings suggest that pulmonary function may partially account for the association of muscle strength and mortality. PMID:18755207

  14. A free-electron laser in a uniform magnetic field

    NASA Technical Reports Server (NTRS)

    Ride, S. K.; Colson, W. B.

    1979-01-01

    The study shows that a free-electron laser can operate in a uniform, longitudinal magnetic field. The fully relativistic Lorentz force equations are examined and solved order by order in a radiation field strength to obtain analytic expressions for the electron trajectory and energy as functions of initial electron position within a wavelength of light. Analytic expressions for the longitudinal and transverse bunching and for laser gain are found. The bunching of this laser process is compared to the bunching processes involved in (1) a Stanford free-electron laser and (2) a cyclotron maser. The results received can be useful in exploring light amplification in astrophysical magnetic fields, the magnetosphere, and in laboratory devices.

  15. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  16. 47 CFR 15.249 - Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHZ, and 24.0-24.25 GHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emissions from intentional radiators operated within these frequency bands shall comply with the following: Fundamental frequency Field strength of fundamental (millivolts/meter) Field strength of harmonics (microvolts..., point-to-point operation as referred to in this paragraph shall be limited to systems employing a fixed...

  17. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  18. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  19. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  20. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  1. 47 CFR 15.221 - Operation in the band 525-1705 kHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Operation in the band 525-1705 kHz. 15.221... kHz. (a) Carrier current systems and transmitters employing a leaky coaxial cable as the radiating antenna may operate in the band 525-1705 kHz provided the field strength levels of the radiated emissions...

  2. Utilization of recycled cathode ray tubes glass in cement mortar for X-ray radiation-shielding applications.

    PubMed

    Ling, Tung-Chai; Poon, Chi-Sun; Lam, Wai-Shung; Chan, Tai-Po; Fung, Karl Ka-Lok

    2012-01-15

    Recycled glass derived from cathode ray tubes (CRT) glass with a specific gravity of approximately 3.0 g/cm(3) can be potentially suitable to be used as fine aggregate for preparing cement mortars for X-ray radiation-shielding applications. In this work, the effects of using crushed glass derived from crushed CRT funnel glass (both acid washed and unwashed) and crushed ordinary beverage container glass at different replacement levels (0%, 25%, 50%, 75% and 100% by volume) of sand on the mechanical properties (strength and density) and radiation-shielding performance of the cement-sand mortars were studied. The results show that all the prepared mortars had compressive strength values greater than 30 MPa which are suitable for most building applications based on ASTM C 270. The density and shielding performance of the mortar prepared with ordinary crushed (lead-free) glass was similar to the control mortar. However, a significant enhancement of radiation-shielding was achieved when the CRT glasses were used due to the presence of lead in the glass. In addition, the radiation shielding contribution of CRT glasses was more pronounced when the mortar was subject to a higher level of X-ray energy. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Relationship between isometric thigh muscle strength and minimum clinically important differences in knee function in osteoarthritis: data from the osteoarthritis initiative.

    PubMed

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2015-04-01

    To determine the relationship between thigh muscle strength and clinically relevant differences in self-assessed lower leg function. Isometric knee extensor and flexor strength of 4,553 Osteoarthritis Initiative participants (2,651 women and 1,902 men) was related to the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function scores by linear regression. Further, groups of male and female participant strata with minimum clinically important differences (MCIDs) in WOMAC function scores (6 of 68 units) were compared across the full range of observed values and to participants without functional deficits (WOMAC score 0). The effect of WOMAC knee pain and body mass index on the above relationships was explored using stepwise regression. Per regression equations, a 3.7% reduction in extensor strength and a 4.0% reduction in flexor strength were associated with an MCID in WOMAC function in women, and, respectively, a 3.6% and 4.8% reduction in men. For strength divided by body weight, reductions were 5.2% and 6.7%, respectively, in women and 5.8% and 6.7%, respectively, in men. Comparing MCID strata across the full observed range of WOMAC function confirmed the above estimates and did not suggest nonlinear relationships across the spectrum of observed values. WOMAC pain correlated strongly with WOMAC function, but extensor (and flexor) muscle strength contributed significant independent information. Reductions of approximately 4% in isometric muscle strength and of 6% in strength per body weight were related to a clinically relevant difference in WOMAC functional disability. Longitudinal studies will need to confirm these relationships within persons. Muscle extensor (and flexor) strength (per body weight) provided significant independent information in addition to pain in explaining variability in lower leg function. Copyright © 2015 by the American College of Rheumatology.

  4. Handgrip Strength Predicts Functional Decline at Discharge in Hospitalized Male Elderly: A Hospital Cohort Study

    PubMed Central

    García-Peña, Carmen; García-Fabela, Luis C.; Gutiérrez-Robledo, Luis M.; García-González, Jose J.; Arango-Lopera, Victoria E.; Pérez-Zepeda, Mario U.

    2013-01-01

    Functional decline after hospitalization is a common adverse outcome in elderly. An easy to use, reproducible and accurate tool to identify those at risk would aid focusing interventions in those at higher risk. Handgrip strength has been shown to predict adverse outcomes in other settings. The aim of this study was to determine if handgrip strength measured upon admission to an acute care facility would predict functional decline (either incident or worsening of preexisting) at discharge among older Mexican, stratified by gender. In addition, cutoff points as a function of specificity would be determined. A cohort study was conducted in two hospitals in Mexico City. The primary endpoint was functional decline on discharge, defined as a 30-point reduction in the Barthel Index score from that of the baseline score. Handgrip strength along with other variables was measured at initial assessment, including: instrumental activities of daily living, cognition, depressive symptoms, delirium, hospitalization length and quality of life. All analyses were stratified by gender. Logistic regression to test independent association between handgrip strength and functional decline was performed, along with estimation of handgrip strength test values (specificity, sensitivity, area under the curve, etc.). A total of 223 patients admitted to an acute care facility between 2007 and 2009 were recruited. A total of 55 patients (24.7%) had functional decline, 23.46% in male and 25.6% in women. Multivariate analysis showed that only males with low handgrip strength had an increased risk of functional decline at discharge (OR 0.88, 95% CI 0.79–0.98, p = 0.01), with a specificity of 91.3% and a cutoff point of 20.65 kg for handgrip strength. Females had not a significant association between handgrip strength and functional decline. Measurement of handgrip strength on admission to acute care facilities may identify male elderly patients at risk of having functional decline, and intervene consequently. PMID:23936113

  5. Study of material properties important for an optical property modulation-based radiation detection method for positron emission tomography.

    PubMed

    Tao, Li; Daghighian, Henry M; Levin, Craig S

    2017-01-01

    We compare the performance of two detector materials, cadmium telluride (CdTe) and bismuth silicon oxide (BSO), for optical property modulation-based radiation detection method for positron emission tomography (PET), which is a potential new direction to dramatically improve the annihilation photon pair coincidence time resolution. We have shown that the induced current flow in the detector crystal resulting from ionizing radiation determines the strength of optical modulation signal. A larger resistivity is favorable for reducing the dark current (noise) in the detector crystal, and thus the higher resistivity BSO crystal has a lower (50% lower on average) noise level than CdTe. The CdTe and BSO crystals can achieve the same sensitivity under laser diode illumination at the same crystal bias voltage condition while the BSO crystal is not as sensitive to 511-keV photons as the CdTe crystal under the same crystal bias voltage. The amplitude of the modulation signal induced by 511-keV photons in BSO crystal is around 30% of that induced in CdTe crystal under the same bias condition. In addition, we have found that the optical modulation strength increases linearly with crystal bias voltage before saturation. The modulation signal with CdTe tends to saturate at bias voltages higher than 1500 V due to its lower resistivity (thus larger dark current) while the modulation signal strength with BSO still increases after 3500 V. Further increasing the bias voltage for BSO could potentially further enhance the modulation strength and thus, the sensitivity.

  6. Strength of knee flexors of the paretic limb as an important determinant of functional status in post-stroke rehabilitation.

    PubMed

    Kostka, Joanna; Czernicki, Jan; Pruszyńska, Magdalena; Miller, Elżbieta

    The purpose of the study was to assess the effectiveness of the multi-modal exercise program (MMEP) in patients after stroke, and to identify muscles that are the best predictors of functional performance and changes in functional status in a 3-week rehabilitation program. Thirty-one post-stroke patients (60.6±12.7 years) participating in a 3-week MMEP took part in the study. Measurements of extensor and flexor strength of the knee (F ext , F flex ) were done. Functional performance was measured using Timed Up & Go test (TUG), 6-Minute Walk Test (6-MWT) and Tinetti Test. The rehabilitation program improved all the results of functional tests, as well as the values of strength in the patients. Both baseline and post-rehabilitation functional status was associated with knee flexor and extensor muscle strength of paretic but not of non-paretic limbs. At baseline examination muscle strength difference between both F flex kg -1 and F ext kg -1 had an influence on functional status. After rehabilitation the effect of muscle strength difference on functional status was not evident for F ext kg -1 and, interestingly, even more prominent for F flex kg -1 . MMEP can effectively increase muscle strength and functional capacity in post-stroke patients. Knee flexor muscle strength of the paretic limb and the knee flexor difference between the limbs is the best predictor of functional performance in stroke survivors. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yulovskaya, V. D.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru; Klechkovskaya, V. V.

    2016-03-15

    Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO{sub 2}/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO{sub 2} characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO{sub 2} aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibitmore » the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.« less

  8. Radiative Efficiency of Collisionless Accretion

    NASA Astrophysics Data System (ADS)

    Gruzinov, Andrei V.

    1998-07-01

    The radiative efficiency, η≡L/Ṁc2, of a slowly accreting black hole is estimated using a two-temperature model of accretion. The radiative efficiency depends on the magnetic field strength near the Schwarzschild radius. For weak magnetic fields, i.e., β-1 ≡ B2/8πp <~ 10-3, the low efficiency η ~ 10-4 that is assumed in some theoretical models is achieved. For β-1 > 10-3, a significant fraction of viscous heat is dissipated by electrons and radiated away resulting in η > 10-4. At equipartition magnetic fields, β-1 ~ 1, we estimate η ~ 10-1.

  9. Effect of 60Co-gamma radiation on the properties of furs

    NASA Astrophysics Data System (ADS)

    Raina, R. K.; Wali, B. K.; Wani, A. M.

    Furs pretanned with various combinations of vegetable tanning agents and retanned with alum have been irradiated with 60Co γ-radiation in the dose range 5.0-114.0 kGy. The physico-chemical modifications induced by the radiation have been assessed by measuring changes in tensile strength, absorption of water, elongation and shrinkage temperature. For investigations, samples have been taken from the same topographic region of the rabbit furs, belonging to the same age and sex. The results are discussed hereunder.

  10. A Characterization of the Ship-Effect in a Maritime Environment and Special Nuclear Material Detection

    DTIC Science & Technology

    2015-05-18

    fees and no tracking. 44 One of its great strengths is that it is designed to be customized to meet the needs of a specific program, mission or...moved on large vessels, detection is complicated. Additionally, the level of the radiation background on and in the immediate vicinity of the ship... on land and surrounding a ship on the water. (3) Simulating a radiation signature emitted from nuclear material aboard a ship using radiation

  11. Method for fusing bone

    DOEpatents

    Mourant, J.R.; Anderson, G.D.; Bigio, I.J.; Johnson, T.M.

    1996-03-12

    The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  12. Level Energies, Oscillator Strengths and Lifetimes for Transitions in Pb IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon, C.; Alonso-Medina, A.; Zanon, A.

    2008-10-22

    Oscillator strengths for several lines of astrophysical interest arising from some configurations and some levels radiative lifetimes of Pb IV have been calculated. These values were obtained in intermediate coupling (IC) and using ab initio relativistic Hartree-Fock calculations. We use for the IC calculations the standard method of least square fitting of experimental energy levels by means of computer codes from Cowan. Transition Probabilities and oscillator strengths obtained, although in general agreement with the rare experimental data, do present some noticeable discrepancies that are studied in the text.

  13. Effect of environmental factors on the complexation of iron and humic acid.

    PubMed

    Fang, Kai; Yuan, Dongxing; Zhang, Lei; Feng, Lifeng; Chen, Yaojin; Wang, Yuzhou

    2015-01-01

    A method of size exclusion chromatography coupled with ultraviolet spectrophotometry and off-line graphite furnace atomic absorption spectrometry was developed to assess the complexation properties of iron (Fe) and humic acid (HA) in a water environment. The factors affecting the complexation of Fe and HA, such as ionic strength, pH, temperature and UV radiation, were investigated. The Fe-HA complex residence time was also studied. Experimental results showed that pH could influence the deprotonation of HA and hydrolysis of Fe, and thus affected the complexation of Fe and HA. The complexation was greatly disrupted by the presence of NaCl. Temperature had some influence on the complexation. The yield of Fe-HA complexes showed a small decrease at high levels of UV radiation, but the effect of UV radiation on Fe-HA complex formation at natural levels could be neglected. It took about 10 hr for the complexation to reach equilibrium, and the Fe-HA complex residence time was about 20 hr. Complexation of Fe and HA reached a maximum level under the conditions of pH 6, very low ionic strength, in the dark and at a water temperature of about 25°C, for 10 hr. It was suggested that the Fe-HA complex could form mainly in freshwater bodies and reach high levels in the warm season with mild sunlight radiation. With changing environmental parameters, such as at lower temperature in winter or higher pH and ionic strength in an estuary, the concentration of the Fe-HA complex would decrease. Copyright © 2014. Published by Elsevier B.V.

  14. Functionalization and Melt-compounding of MWCNTs in PA-6 for Tribological Applications

    NASA Astrophysics Data System (ADS)

    Chopra, Swamini; Deshmukh, Kavita A.; Deshmukh, Abhay D.; Peshwe, D. R.

    2018-04-01

    The present study focuses on the fabrication and mechanical property evaluation of PA-6/MWCNT nanocomposites reinforced with microwave-functionalized MWCNTs. The MWCNTs were subjected to microwave radiation in the solution of H2SO4 and HNO3 for 3 minutes, with the aim of achieving better and faster functionalization. The change observed in the crystal structure of PA-6 matrix after CNT addition suggested improved nucleation due to well-dispersed MWCNTs after functionalization. The tensile strength of PA-6 increased by approx. 12 % and 15 % after addition of pristine and functionalized MWCNTs, respectively. This was credited to improved interaction between CNTs and PA-6 matrix. The dispersion quality of CNTs in PA-6 matrix was verified by FEG-SEM, while the fractography of composites revealed polymer sheathing of PA-6 matrix around CNTs. This again contributed in improving the elongation of the composites by approx. 10 %. The wear resistance of the composites also improved appreciably, irrespective of the applied load. The specific wear rate of PA-6/CNT nanocomposite reinforced with functionalized MWCNTs increased by approx. 60 to 70 %, while coefficient of friction reduced by approx. 30 to 40%.

  15. A computer program for thermal radiation from gaseous rocket exhuast plumes (GASRAD)

    NASA Technical Reports Server (NTRS)

    Reardon, J. E.; Lee, Y. C.

    1979-01-01

    A computer code is presented for predicting incident thermal radiation from defined plume gas properties in either axisymmetric or cylindrical coordinate systems. The radiation model is a statistical band model for exponential line strength distribution with Lorentz/Doppler line shapes for 5 gaseous species (H2O, CO2, CO, HCl and HF) and an appoximate (non-scattering) treatment of carbon particles. The Curtis-Godson approximation is used for inhomogeneous gases, but a subroutine is available for using Young's intuitive derivative method for H2O with Lorentz line shape and exponentially-tailed-inverse line strength distribution. The geometry model provides integration over a hemisphere with up to 6 individually oriented identical axisymmetric plumes, a single 3-D plume, Shading surfaces may be used in any of 7 shapes, and a conical limit may be defined for the plume to set individual line-of-signt limits. Intermediate coordinate systems may specified to simplify input of plumes and shading surfaces.

  16. The Use of Heavy Ion Radiation as an Analog for Space Radiation Environment and Its Effects on Drug Stability

    NASA Technical Reports Server (NTRS)

    Vaksman, Z.; Du, B.; Daniels, V.; Putcha, L.

    2007-01-01

    While it is common knowledge that electromagnetic radiation such as x-rays and gamma rays affect physical-chemical characteristics (PC) of compounds in addition to their toxic and mutagenic effects on biological systems, there are no reports on the effects of cosmic radiation encountered during space missions on stability of pharmaceuticals. Alterations in PC of drug formulations can adversely affect treatment with medications in space. Preliminary evaluation of stability and shelf-life of select pharmaceuticals (12) flown on space missions revealed that 37% and 40% of the formulations failed to meet USP requirements after shuttle and ISS flights, respectively. Based on these results, the current investigation is designed to examine the effect of proton (P) and heavy ion (Fe) radiation on 20 pharmaceutical preparations flown aboard the shuttle and ISS. The objectives of this project are: 1) Examine susceptibility of pharmaceuticals to short acute bouts of high intensity ionizing radiation species encountered during space flights; 2) Estimate extent of degradation of susceptible formulations as a function of intensity of each beam (P & Fe); and 3) compare and contrast the effects of single beam irradiation to that of a combined beam (P + Fe) that simulates space craft environment on drug stability. Irradiations were conducted at the Brookhaven National Laboratories (BNL) with beam strengths of 10 cGy, 10 or 50Gy of P and Fe beams separately. Preliminary evaluation of results revealed a reduction in the chemical content of label claim ranging 12-55 % for Augmentin, 7% for promethzine tablets and 9% for ciprofloxacin ointment. These results are in agreement, although less in magnitude than those observed during space flight and after gamma irradiation.

  17. Technique for Predicting the Radio Frequency Field Strength Inside an Enclosure

    NASA Technical Reports Server (NTRS)

    Hallett, Michael P.; Reddell, Jerry P.

    1997-01-01

    This technical memo represents a simple analytical technique for predicting the Radio Frequency (RF) field inside an enclosed volume in which radio frequency occurs. The technique was developed to predict the RF field strength within a launch vehicle fairing in which some payloads desire to launch with their telemetry transmitter radiating. This technique considers both the launch vehicle and the payload aspects.

  18. Deriving a multivariate αCO conversion function using the [C II]/CO (1-0) ratio and its application to molecular gas scaling relations

    NASA Astrophysics Data System (ADS)

    Accurso, G.; Saintonge, A.; Catinella, B.; Cortese, L.; Davé, R.; Dunsheath, S. H.; Genzel, R.; Gracia-Carpio, J.; Heckman, T. M.; Jimmy; Kramer, C.; Li, Cheng; Lutz, K.; Schiminovich, D.; Schuster, K.; Sternberg, A.; Sturm, E.; Tacconi, L. J.; Tran, K. V.; Wang, J.

    2017-10-01

    We present Herschel PACS observations of the [C II] 158 μm emission line in a sample of 24 intermediate mass (9 < log M*/M⊙ < 10) and low metallicity (0.4 < Z/Z⊙ < 1.0) galaxies from the xCOLD GASS survey. In combination with IRAM CO (1-0) measurements, we establish scaling relations between integrated and molecular region L_{[C II]}/LCO (1-0) ratios as a function of integrated galaxy properties. A Bayesian analysis reveals that only two parameters, metallicity and offset from the main sequence, Δ(MS), are needed to quantify variations in the luminosity ratio; metallicity describes the total dust content available to shield CO from UV radiation, while Δ(MS) describes the strength of this radiation field. We connect the L_{[C II]}/LCO (1-0) ratio to the CO-to-H2 conversion factor and find a multivariate conversion function, which can be used up to z ˜ 2.5. This function depends primarily on metallicity, with a second-order dependence on Δ(MS). We apply this to the full xCOLD GASS and PHIBSS1 surveys and investigate molecular gas scaling relations. We find a flattening of the relation between gas mass fraction and stellar mass at log M* < 10.0. While the molecular gas depletion time varies with sSFR, it is mostly independent of mass, indicating that the low LCO/SFR ratios long observed in low-mass galaxies are entirely due to photodissociation of CO and not to an enhanced star formation efficiency.

  19. Ultraviolet-B radiation induced crosslinking improves physical properties of cold- and warm-water fish gelatin gels and films

    USDA-ARS?s Scientific Manuscript database

    Cold- and warm-water fish gelatin granules were exposed to ultraviolet-B radiation for doses up to 29.7 J/cm2. Solutions and films were prepared from the granules. Gel electrophoresis and refractive index were used to examine changes in molecular weight of the samples. Also, the gel strength and rhe...

  20. The use of Papuan iron sand and river sand for fine aggregate in mortar for nuclear radiation shield application

    NASA Astrophysics Data System (ADS)

    Dahlan, K.; Haryati, E.; Aninam, Y. S.

    2018-03-01

    This study explores the effect of fine aggregate on mortar properties and its application as a nuclear shield. This study was based on a hypothesis that the types of aggregate applied as radiation shield determined the level of its effectiveness on preventing nuclear radiation. There are two types and sources of fine aggregate that was used as main ingredients for mortar production in this research, namely iron sand and river sand. Both types of sand were derived from the respective regions of Sarmi and Jayapura, Papua. The results showed that the mortar materials that were produced with the iron sand provided better results in dispelling radiation than that of river sand. The compressive strength of fine aggregate from the iron sand was 21.62 MPa, while the compressive strength of the river sand was 16.8 MPa. Measuring the attenuation coefficient of material, we found that the largest aggregated value of mortar with fine iron sand reached 0.0863 / cm. On the other hand, the smallest HVT (Half Value Thickness) was obtained from the iron sand mortar, at 8.03 cm.

  1. Knee joint laxity does not moderate the relationship between quadriceps strength and physical function in knee osteoarthritis patients: A cross-sectional study.

    PubMed

    Altubasi, Ibrahim M

    2018-06-07

    Knee osteoarthritis is a common and a disabling musculoskeletal disorder. Patients with knee osteoarthritis have activity limitations which are linked to the strength of the quadriceps muscle. Previous research reported that the relationship between quadriceps muscle strength and physical function is moderated by the level of knee joint frontal plane laxity. The purpose of the current study is to reexamine the moderation effect of the knee joint laxity as measured by stress radiographs on the relationship between quadriceps muscle strength and physical function. One-hundred and sixty osteoarthritis patients participated in this cross-sectional study. Isometric quadriceps muscle strength was measured using an isokinetic dynamometer. Self-rated and performance-based physical function were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) physical function subscale and Get Up and Go test, respectively. Stress radiographs which were taken while applying varus and valgus loads to knee using the TELOS device. Knee joint laxity was determined by measuring the distance between joint surfaces on the medial and lateral sides. Hierarchical multiple regression models were constructed to study the moderation effect of laxity on the strength function relationship. Two regression models were constructed for self-rated and performance-based function. After controlling for demographics, strength contributed significantly in the models. The addition of laxity and laxity-strength interaction did not add significant contributions in the regression models. Frontal plane knee joint laxity measured by stress radiographs does not moderate the relationship between quadriceps muscle strength and physical function in patients with osteoarthritis. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Strength Development: Using Functional Isometrics in an Isotonic Strength Training Program.

    ERIC Educational Resources Information Center

    Jackson, Allen; And Others

    1985-01-01

    A study was made to determine if a combination of functional isometrics and standard isotonic training would be superior to a standard isotonic program in an instructional setting. The results provide support for functional isometrics as an enhancement where achievement of maximum strength is the goal. (Author/MT)

  3. PROTOSTELLAR OUTFLOWS AND RADIATIVE FEEDBACK FROM MASSIVE STARS. II. FEEDBACK, STAR-FORMATION EFFICIENCY, AND OUTFLOW BROADENING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuiper, Rolf; Turner, Neal J.; Yorke, Harold W., E-mail: rolf.kuiper@uni-tuebingen.de, E-mail: Neal.J.Turner@jpl.nasa.gov, E-mail: Harold.W.Yorke@jpl.nasa.gov

    2016-11-20

    We perform two-dimensional axially symmetric radiation hydrodynamic simulations to assess the impact of outflows and radiative force feedback from massive protostars by varying when the protostellar outflow starts, and to determine the ratio of ejection to accretion rates and the strength of the wide-angle disk wind component. The star-formation efficiency, i.e., the ratio of final stellar mass to initial core mass, is dominated by radiative forces and the ratio of outflow to accretion rates. Increasing this ratio has three effects. First, the protostar grows slower with a lower luminosity at any given time, lowering radiative feedback. Second, bipolar cavities clearedmore » by the outflow become larger, further diminishing radiative feedback on disk and core scales. Third, the higher momentum outflow sweeps up more material from the collapsing envelope, decreasing the protostar's potential mass reservoir via entrainment. The star-formation efficiency varies with the ratio of ejection to accretion rates from 50% in the case of very weak outflows to as low as 20% for very strong outflows. At latitudes between the low-density bipolar cavity and the high-density accretion disk, wide-angle disk winds remove some of the gas, which otherwise would be part of the accretion flow onto the disk; varying the strength of these wide-angle disk winds, however, alters the final star-formation efficiency by only ±6%. For all cases, the opening angle of the bipolar outflow cavity remains below 20° during early protostellar accretion phases, increasing rapidly up to 65° at the onset of radiation pressure feedback.« less

  4. What formulas are good for representing dipole and generalized oscillator-strength spectra

    NASA Astrophysics Data System (ADS)

    Inokuti, M.; Dillon, M. A.

    The dipole oscillator-strength distribution df/depsilon for a single continuum excitation of an atom or molecule is a function of the kinetic energy epsilon of an outgoing electron. The distribution describes many optical phenomena such as absorption, refraction, and reflection; in particular, df/depsilon is equal to the cross section for ionization by a photon with energy epsilon + I, apart from an universal constant, where I is the ionization threshold for the relevant shell. Furthermore, df/depsilon governs the ionization by glancing collisions of fast charged particles. Recent years have seen considerable accumulation of experimental data on df/depsilon. Those data are indeed valuable for many aplications in radiation physics, plasma physics, atmospheric physics, and astrophysics. In most of these applications, one needs a comprehensive set of data, i.e., numerical values of df/depsilon over a wide range of epsilon, say, from several eV to many keV; most often, one needs data at all epsilon at which df/depsilon is appreciable. A method for systematizing the data so that one can extrapolate or interpolate them dependably was sought.

  5. Recent advances and issues in development of silicon carbide composites for fusion applications

    NASA Astrophysics Data System (ADS)

    Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.

    2009-04-01

    Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.

  6. Atomic, Molecular, and Optical Physics: Optical Excitation Function of H(1s-2p) Produced by electron Impact from Threshold to 1.8 keV

    NASA Technical Reports Server (NTRS)

    James, G. K.; Slevin, J. A.; Shemansky, D. E.; McConkey, J. W.; Bray, I.; Dziczek, D.; Kanik, I.; Ajello, J. M.

    1997-01-01

    The optical excitation function of prompt Lyman-Alpha radiation, produced by electron impact on atomic hydrogen, has been measured over the extended energy range from threshold to 1.8 keV. Measurements were obtained in a crossed-beams experiment using both magnetically confined and electrostatically focused electrons in collision with atomic hydrogen produced by an intense discharge source. A vacuum-ultraviolet mono- chromator system was used to measure the emitted Lyman-Alpha radiation. The absolute H(1s-2p) electron impact excitation cross section was obtained from the experimental optical excitation function by normalizing to the accepted optical oscillator strength, with corrections for polarization and cascade. Statistical and known systematic uncertainties in our data range from +/- 4% near threshold to +/- 2% at 1.8 keV. Multistate coupling affecting the shape of the excitation function up to 1 keV impact energy is apparent in both the present experimental data and present theoretical results obtained with convergent close- coupling (CCC) theory. This shape function effect leads to an uncertainty in absolute cross sections at the 10% level in the analysis of the experimental data. The derived optimized absolute cross sections are within 7% of the CCC calculations over the 14 eV-1.8 keV range. The present CCC calculations converge on the Bethe- Fano profile for H(1s-2p) excitation at high energy. For this reason agreement with the CCC values to within 3% is achieved in a nonoptimal normalization of the experimental data to the Bethe-Fano profile. The fundamental H(1s-2p) electron impact cross section is thereby determined to an unprecedented accuracy over the 14 eV - 1.8 keV energy range.

  7. Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys

    DOE PAGES

    Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; ...

    2015-07-14

    The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less

  8. Superconducting Magnet Shielding of Astronauts from Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Fisher, Peter; Hoffman, Jeffrey; Zhou, Feng; Batishchev, Oleg

    2004-11-01

    Protecting astronauts traveling outside the Earth's protective magnetic field from cosmic and solar radiation [1] is one of the critical problems that must be solved in order to realize the nation's new human space exploration vision. Superconducting magnets, such as those under construction for the ATLAS experiment [2] at CERN, have achieved sufficient size to be able to surround a reasonable habitable volume, and their field strength is high enough to deflect a significant portion of the incoming radiation. We have undertaken a research effort aimed at developing an accurate numerical model of a crew compartment surrounded by a large magnetic field, with which we can calculate the effect on incoming charged particles. We will use this model to optimize the magnetic configuration to produce the maximum shielding effect while minimizing the mass of the superconducting magnet system. We are also investigating some of the practical problems that must be solved if large, superconducting magnet systems are to be incorporated into human space systems. We will present preliminary results of our modeling, showing the reduction of radiation exposure as a function of energy and atomic species. [1] Review of Particle Physics, Ed. Particle Data Group, Phys. Lett. B, 1-4 (592) 1-1109, 2004 [2] http://atlasexperiment.org/

  9. Dust Attenuation Curves in the Local Universe: Demographics and New Laws for Star-forming Galaxies and High-redshift Analogs

    NASA Astrophysics Data System (ADS)

    Salim, Samir; Boquien, Médéric; Lee, Janice C.

    2018-05-01

    We study the dust attenuation curves of 230,000 individual galaxies in the local universe, ranging from quiescent to intensely star-forming systems, using GALEX, SDSS, and WISE photometry calibrated on the Herschel ATLAS. We use a new method of constraining SED fits with infrared luminosity (SED+LIR fitting), and parameterized attenuation curves determined with the CIGALE SED-fitting code. Attenuation curve slopes and UV bump strengths are reasonably well constrained independently from one another. We find that {A}λ /{A}V attenuation curves exhibit a very wide range of slopes that are on average as steep as the curve slope of the Small Magellanic Cloud (SMC). The slope is a strong function of optical opacity. Opaque galaxies have shallower curves—in agreement with recent radiative transfer models. The dependence of slopes on the opacity produces an apparent dependence on stellar mass: more massive galaxies have shallower slopes. Attenuation curves exhibit a wide range of UV bump amplitudes, from none to Milky Way (MW)-like, with an average strength one-third that of the MW bump. Notably, local analogs of high-redshift galaxies have an average curve that is somewhat steeper than the SMC curve, with a modest UV bump that can be, to first order, ignored, as its effect on the near-UV magnitude is 0.1 mag. Neither the slopes nor the strengths of the UV bump depend on gas-phase metallicity. Functional forms for attenuation laws are presented for normal star-forming galaxies, high-z analogs, and quiescent galaxies. We release the catalog of associated star formation rates and stellar masses (GALEX–SDSS–WISE Legacy Catalog 2).

  10. [Correlations Between Joint Proprioception, Muscle Strength, and Functional Ability in Patients with Knee Osteoarthritis].

    PubMed

    Chen, Yoa; Yu, Yong; He, Cheng-qi

    2015-11-01

    To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (P<0.05). There was no significant correlation between knee proprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, P<0.05). WOMAC score was correlated with poor muscle strength (quadriceps muscle strength r = -0.511, P<0.05, hamstring muscle strength r = -0.408, P<0.05). The multiple stepwise regression model showed that high JMDT C standard partial regression coefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.

  11. Faraday effect on the Rb D{sub 1} line in a cell with a thickness of half the wavelength of light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sargsyan, A., E-mail: sarmeno@mail.ru, E-mail: sargsyanarmen85@gmail.com; Pashayan-Leroy, Y.; Leroy, C.

    2016-09-15

    The rotation of the radiation polarization plane in a longitudinal magnetic field (Faraday effect) on the D{sub 1} line in atomic Rb vapor has been studied with the use of a nanocell with the thickness L varying in the range of 100–900 nm. It has been shown that an important parameter is the ratio L/λ, where λ = 795 nm is the wavelength of laser radiation resonant with the D{sub 1} line. The best parameters of the signal of rotation of the radiation polarization plane have been obtained at the thickness L = λ/2 = 397.5 nm. The fabricated nanocellmore » had a large region with such a thickness. The spectral width of the signal reached at the thickness L = 397.5 nm is approximately 30 MHz, which is much smaller than the spectral width (≈ 500 MHz) reached with ordinary cells with a thickness in the range of 1–100 mm. The parameters of the Faraday rotation signal have been studied as functions of the temperature of the nanocell, the laser power, and the magnetic field strength. The signal has been reliably detected at the laser power P{sub L} ≥ 1 μW, magnetic field strength B ≥ 0.5 G, and the temperature of the nanocell T ≥ 100°C. It has been shown that the maximum rotation angle of the polarization plane in the longitudinal magnetic field is reached on the F{sub g} = 3 → F{sub e} = 2 transition of the {sup 85}Rb atom. The spectral profile of the Faraday rotation signal has a specific shape with a sharp peak, which promotes its applications. In particular, Rb atomic transitions in high magnetic fields about 1000 G are split into a large number of components, which are completely spectrally resolved and allow the study of the behavior of an individual transition.« less

  12. Associations of knee extensor strength and standing balance with physical function in knee osteoarthritis.

    PubMed

    Pua, Yong-Hao; Liang, Zhiqi; Ong, Peck-Hoon; Bryant, Adam L; Lo, Ngai-Nung; Clark, Ross A

    2011-12-01

    Knee extensor strength is an important correlate of physical function in patients with knee osteoarthritis; however, it remains unclear whether standing balance is also a correlate. The purpose of this study was to evaluate the cross-sectional associations of knee extensor strength, standing balance, and their interaction with physical function. One hundred four older adults with end-stage knee osteoarthritis awaiting a total knee replacement (mean ± SD age 67 ± 8 years) participated. Isometric knee extensor strength was measured using an isokinetic dynamometer. Standing balance performance was measured by the center of pressure displacement during quiet standing on a balance board. Physical function was measured by the self-report Short Form 36 (SF-36) questionnaire and by the 10-meter fast-pace gait speed test. After adjustment for demographic and knee pain variables, we detected significant knee strength by standing balance interaction terms for both SF-36 physical function and fast-pace gait speed. Interrogation of the interaction revealed that standing balance in the anteroposterior plane was positively related to physical function among patients with lower knee extensor strength. Conversely, among patients with higher knee extensor strength, the standing balance-physical function associations were, or tended to be, negative. These findings suggest that although standing balance was related to physical function in patients with knee osteoarthritis, this relationship was complex and dependent on knee extensor strength level. These results are of importance in developing intervention strategies and refining theoretical models, but they call for further study. Copyright © 2011 by the American College of Rheumatology.

  13. Bolometer Results in the Long-Microwave-Heated WEGA Stellarator

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Otte, M.; Giannone, L.

    2006-01-01

    A 12 channel bolometer camera based on a gold foil absorber has been installed on the WEGA stellarator to measure the radiation power losses of the plasma. The measured total radiation power is typically less than 30% of the ECRH input power. However, this radiated power fraction depends on the ECRH input power, the magnetic configuration and the field strength as well as the working gas. For separatrix-bounded configurations, core-peaked radiation intensity profiles are usually detected, while in a limiter-configuration they are flatter, broader and more asymmetric. In addition, significant radiation originating from the SOL region is measured for all the cases studied. The SOL radiation changes with changing the plasma-wave interaction region, indicating a strong correlation between radiation and power deposition. Under the WEGA-plasma conditions (Te<10 eV), it is considered that the radiation profile reflects the plasma pressure associated with the power deposition distribution of the ECRH.

  14. Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.

    PubMed

    Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth

    2016-03-31

    Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.

  15. The effect of stimulus strength on the speed and accuracy of a perceptual decision.

    PubMed

    Palmer, John; Huk, Alexander C; Shadlen, Michael N

    2005-05-02

    Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and accuracy. The theory is also shown to subsume the predictions of Piéron's Law, a power function dependence of response time on stimulus strength. The theory's analytic chronometric function allows one to extend theories of accuracy to response time.

  16. Comparing convective heat fluxes derived from thermodynamics to a radiative-convective model and GCMs

    NASA Astrophysics Data System (ADS)

    Dhara, Chirag; Renner, Maik; Kleidon, Axel

    2015-04-01

    The convective transport of heat and moisture plays a key role in the climate system, but the transport is typically parameterized in models. Here, we aim at the simplest possible physical representation and treat convective heat fluxes as the result of a heat engine. We combine the well-known Carnot limit of this heat engine with the energy balances of the surface-atmosphere system that describe how the temperature difference is affected by convective heat transport, yielding a maximum power limit of convection. This results in a simple analytic expression for convective strength that depends primarily on surface solar absorption. We compare this expression with an idealized grey atmosphere radiative-convective (RC) model as well as Global Circulation Model (GCM) simulations at the grid scale. We find that our simple expression as well as the RC model can explain much of the geographic variation of the GCM output, resulting in strong linear correlations among the three approaches. The RC model, however, shows a lower bias than our simple expression. We identify the use of the prescribed convective adjustment in RC-like models as the reason for the lower bias. The strength of our model lies in its ability to capture the geographic variation of convective strength with a parameter-free expression. On the other hand, the comparison with the RC model indicates a method for improving the formulation of radiative transfer in our simple approach. We also find that the latent heat fluxes compare very well among the approaches, as well as their sensitivity to surface warming. What our comparison suggests is that the strength of convection and their sensitivity in the climatic mean can be estimated relatively robustly by rather simple approaches.

  17. Low-energy enhancement and fluctuations of γ-ray strength functions in 56,57Fe: test of the Brink-Axel hypothesis

    NASA Astrophysics Data System (ADS)

    Larsen, A. C.; Guttormsen, M.; Blasi, N.; Bracco, A.; Camera, F.; Crespo Campo, L.; Eriksen, T. K.; Görgen, A.; Hagen, T. W.; Ingeberg, V. W.; Kheswa, B. V.; Leoni, S.; E Midtbø, J.; Million, B.; Nyhus, H. T.; Renstrøm, T.; Rose, S. J.; E Ruud, I.; Siem, S.; Tornyi, T. G.; Tveten, G. M.; Voinov, A. V.; Wiedeking, M.; Zeiser, F.

    2017-06-01

    Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter-Thomas fluctuations, there is no indication of any significant excitation energy dependence in the γ-ray strength function, in support of the generalized Brink-Axel hypothesis.

  18. Principles of the radiosity method versus radiative transfer for canopy reflectance modeling

    NASA Technical Reports Server (NTRS)

    Gerstl, Siegfried A. W.; Borel, Christoph C.

    1992-01-01

    The radiosity method is introduced to plant canopy reflectance modeling. We review the physics principles of the radiosity method which originates in thermal radiative transfer analyses when hot and cold surfaces are considered within a given enclosure. The radiosity equation, which is an energy balance equation for discrete surfaces, is described and contrasted with the radiative transfer equation, which is a volumetric energy balance equation. Comparing the strengths and weaknesses of the radiosity method and the radiative transfer method, we conclude that both methods are complementary to each other. Results of sample calculations are given for canopy models with up to 20,000 discrete leaves.

  19. Biodamage via shock waves initiated by irradiation with ions.

    PubMed

    Surdutovich, Eugene; Yakubovich, Alexander V; Solov'yov, Andrey V

    2013-01-01

    Radiation damage following the ionising radiation of tissue has different scenarios and mechanisms depending on the projectiles or radiation modality. We investigate the radiation damage effects due to shock waves produced by ions. We analyse the strength of the shock wave capable of directly producing DNA strand breaks and, depending on the ion's linear energy transfer, estimate the radius from the ion's path, within which DNA damage by the shock wave mechanism is dominant. At much smaller values of linear energy transfer, the shock waves turn out to be instrumental in propagating reactive species formed close to the ion's path to large distances, successfully competing with diffusion.

  20. Coronal plasmas on the sun and nearby stars

    NASA Technical Reports Server (NTRS)

    Lang, Kenneth R.

    1986-01-01

    The current understanding of the quiescent, or non-flaring, microwave emission from solar active regions is summarized. The thermal radiation mechanisms that account for most of the quiescent emission is reviewed, while it is also pointed out that current-amplified magnetic fields or non-thermal radiation may be required in some instances. The 20 cm radiation of coronal loops and the thermal cyclotron lines that accurately specify their magnetic field strength are discussed. The 20 cm and X ray emission of the coronal plasma are then compared. The coronae of nearby stars is next discussed, where coherent radiation processes seem to prevail. Some thoughts toward directions for future exploration are given.

  1. X-ray radiation from nonlinear Thomson scattering of an intense femtosecond laser on relativistic electrons in a helium plasma.

    PubMed

    Ta Phuoc, K; Rousse, A; Pittman, M; Rousseau, J P; Malka, V; Fritzler, S; Umstadter, D; Hulin, D

    2003-11-07

    We have generated x-ray radiation from the nonlinear Thomson scattering of a 30 fs/1.5 J laser beam on plasma electrons. A collimated x-ray radiation with a broad continuous spectrum peaked at 0.15 keV with a significant tail up to 2 keV has been observed. These characteristics are found to depend strongly on the laser strength parameter a(0). This radiative process is dominant for a(0) greater than unity at which point the relativistic scattering of the laser light originates from MeV energy electrons inside the plasma.

  2. Earthquake source properties from pseudotachylite

    USGS Publications Warehouse

    Beeler, Nicholas M.; Di Toro, Giulio; Nielsen, Stefan

    2016-01-01

    The motions radiated from an earthquake contain information that can be interpreted as displacements within the source and therefore related to stress drop. Except in a few notable cases, the source displacements can neither be easily related to the absolute stress level or fault strength, nor attributed to a particular physical mechanism. In contrast paleo-earthquakes recorded by exhumed pseudotachylite have a known dynamic mechanism whose properties constrain the co-seismic fault strength. Pseudotachylite can also be used to directly address a longstanding discrepancy between seismologically measured static stress drops, which are typically a few MPa, and much larger dynamic stress drops expected from thermal weakening during localized slip at seismic speeds in crystalline rock [Sibson, 1973; McKenzie and Brune, 1969; Lachenbruch, 1980; Mase and Smith, 1986; Rice, 2006] as have been observed recently in laboratory experiments at high slip rates [Di Toro et al., 2006a]. This note places pseudotachylite-derived estimates of fault strength and inferred stress levels within the context and broader bounds of naturally observed earthquake source parameters: apparent stress, stress drop, and overshoot, including consideration of roughness of the fault surface, off-fault damage, fracture energy, and the 'strength excess'. The analysis, which assumes stress drop is related to corner frequency by the Madariaga [1976] source model, is restricted to the intermediate sized earthquakes of the Gole Larghe fault zone in the Italian Alps where the dynamic shear strength is well-constrained by field and laboratory measurements. We find that radiated energy exceeds the shear-generated heat and that the maximum strength excess is ~16 MPa. More generally these events have inferred earthquake source parameters that are rate, for instance a few percent of the global earthquake population has stress drops as large, unless: fracture energy is routinely greater than existing models allow, pseudotachylite is not representative of the shear strength during the earthquake that generated it, or unless the strength excess is larger than we have allowed.

  3. 47 CFR 73.313 - Prediction of coverage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... strength at 1 kilometer of about 107 dB above 1 uV/m (221.4 mV/m). (2) To use the chart for other ERP... for an ERP of 50 kW should be adjusted by 17 dB [10 log (50 kW) = 17 dBk], and therefore a field... predicting the distance to field strength contours, use the maximum ERP of the main radiated lobe in the...

  4. Temporal Variations of Strength and Location of the South Atlantic Anomaly as Measured by RXTE

    NASA Technical Reports Server (NTRS)

    Wilms, Jorn; Felix, Furst; Rothschild, Richard E.; Pottschmidt, Katja; Smith, David M.; Lingenfelter, Richard

    2009-01-01

    The evolution of the particle background at an altitude of approx.540km during the time interval between 1996 and 2007 is studied using the particle monitor of the High Energy X-ray Timing Experiment on board NASA's Rossi X-ray Timing Explorer. A special emphasis of this study is the location and strength of the South Atlantic Anomaly (SAA). The size and strength of the SAA are anti-correlated with the the 10.7 cm radio flux of the Sun, which leads the SAA strength by approx.1 year reflecting variations in solar heating of the upper atmosphere. The location of the SAA is also found to drift westwards with an average drift rate of about 0.3deg/yr following the drift of the geomagnetic field configuration. Superimposed to this drift rate are irregularities, where the SAA suddenly moves eastwards and where furthermore the speed of the drift changes. The most prominent of these irregularities is found in the second quarter of 2003 and another event took place in 1999. We suggest that these events are previously unrecognized manifestations of the geomagnetic jerks of the Earth's magnetic field. Key words: space radiation environment, South Atlantic Anomaly, radiation monitors, Rossi X-ray Timing Explorer

  5. Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound

    NASA Astrophysics Data System (ADS)

    Selzo, Mallory Renee

    Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.

  6. A Novel Pairwise Comparison-Based Method to Determine Radiation Dose Reduction Potentials of Iterative Reconstruction Algorithms, Exemplified Through Circle of Willis Computed Tomography Angiography.

    PubMed

    Ellmann, Stephan; Kammerer, Ferdinand; Brand, Michael; Allmendinger, Thomas; May, Matthias S; Uder, Michael; Lell, Michael M; Kramer, Manuel

    2016-05-01

    The aim of this study was to determine the dose reduction potential of iterative reconstruction (IR) algorithms in computed tomography angiography (CTA) of the circle of Willis using a novel method of evaluating the quality of radiation dose-reduced images. This study relied on ReconCT, a proprietary reconstruction software that allows simulating CT scans acquired with reduced radiation dose based on the raw data of true scans. To evaluate the performance of ReconCT in this regard, a phantom study was performed to compare the image noise of true and simulated scans within simulated vessels of a head phantom. That followed, 10 patients scheduled for CTA of the circle of Willis were scanned according to our institute's standard protocol (100 kV, 145 reference mAs). Subsequently, CTA images of these patients were reconstructed as either a full-dose weighted filtered back projection or with radiation dose reductions down to 10% of the full-dose level and Sinogram-Affirmed Iterative Reconstruction (SAFIRE) with either strength 3 or 5. Images were marked with arrows pointing on vessels of different sizes, and image pairs were presented to observers. Five readers assessed image quality with 2-alternative forced choice comparisons. In the phantom study, no significant differences were observed between the noise levels of simulated and true scans in filtered back projection, SAFIRE 3, and SAFIRE 5 reconstructions.The dose reduction potential for patient scans showed a strong dependence on IR strength as well as on the size of the vessel of interest. Thus, the potential radiation dose reductions ranged from 84.4% for the evaluation of great vessels reconstructed with SAFIRE 5 to 40.9% for the evaluation of small vessels reconstructed with SAFIRE 3. This study provides a novel image quality evaluation method based on 2-alternative forced choice comparisons. In CTA of the circle of Willis, higher IR strengths and greater vessel sizes allowed higher degrees of radiation dose reduction.

  7. Renormalization of optical transition strengths in semiconductor nanoparticles due to band mixing

    DOE PAGES

    Velizhanin, Kirill A.

    2016-05-25

    We report that unique optical properties of semiconductor nanoparticles (SN) make them very promising in the multitude of applications including lasing, light emission and photovoltaics. In many of these applications it is imperative to understand the physics of interaction of electrons in a SN with external electromagnetic fields on the quantitative level. In particular, the strength of electron–photon coupling determines such important SN parameters as the radiative lifetime and absorption cross section. This strength is often assumed to be fully encoded by the so called Kane momentum matrix element. This parameter, however, pertains to a bulk semiconductor material and, asmore » such, is not sensitive to the quantum confinement effects in SNs. In this work we demonstrate that the quantum confinement, via the so called band mixing, can result in a significant suppression of the strength of electron interaction with electromagnetic field. Within the envelope function formalism we show how this suppression can be described by introducing an effective energy-dependent Kane momentum. Then, the effect of band mixing on the efficiencies of various photoinduced processes can be fully captured by the conventional formulae (e.g., spontaneous emission rate), once the conventional Kane momentum is substituted with the renormalized energy-dependent Kane momentum introduced in here. Lastly, as an example, we evaluate the energy-dependent Kane momentum for spherical PbSe and PbS SNs (i.e., quantum dots) and show that neglecting band mixing in these systems can result in the overestimation of absorption cross sections and emission rates by a factor of ~2.« less

  8. Method for fusing bone

    DOEpatents

    Mourant, Judith R.; Anderson, Gerhard D.; Bigio, Irving J.; Johnson, Tamara M.

    1996-01-01

    Method for fusing bone. The present invention is a method for joining hard tissue which includes chemically removing the mineral matrix from a thin layer of the surfaces to be joined, placing the two bones together, and heating the joint using electromagnetic radiation. The goal of the method is not to produce a full-strength weld of, for example, a cortical bone of the tibia, but rather to produce a weld of sufficient strength to hold the bone halves in registration while either external fixative devices are applied to stabilize the bone segments, or normal healing processes restore full strength to the tibia.

  9. A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Q.H.

    1994-09-12

    This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

  10. Observing the atmosphere in moisture space

    NASA Astrophysics Data System (ADS)

    Schulz, Hauke; Stevens, Bjorn

    2017-04-01

    Processes behind convective aggregation have mostly been analysed and identified on the basis of relatively idealized cloud resolving model studies. Relatively little effort has been spent on using observations to test or quantify the findings coming from the models. In 2010 the Barbados Cloud Observatory (BCO) was established on Barbados, which is on the edge of the ITCZ, in part to test hypotheses such as those emerging form the analysis of cloud resolving models. To better test ideas related to the driving forces of convective aggregation, we analyse BCO measurements to identify the processes changing the moist static energy flux, in moisture space, i.e., as a function of rank column water vapour. Similar approaches are used to analyse cloud resolving models. We composite five years of cloud- and water-vapor profiles, from a cloud radar, and Raman water vapour lidar to construct the structure of the observed atmosphere in moisture space. The data show both agreement and disagreement with the models: radiative transfer calculations of the cross-section reveal a strong anomalous radiative cooling in the boundary layer at the dry end of the moisture space. We show that the radiation, mainly in the long-wave, implies a shallow circulation. This circulation agrees generally with supplementary used reanalysis datasets, but the strength and extent vary more markedly across the analyses. Consistent with the modelling, the implied radiative driven circulation supports the aggregation process by importing net moist static energy into the moist regimes.

  11. Quiet Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Klos, Jacob

    2010-01-01

    Sandwich honeycomb composite panels are lightweight and strong, and, therefore, provide a reasonable alternative to the aluminum ring frame/stringer architecture currently used for most aircraft airframes. The drawback to honeycomb panels is that they radiate noise into the aircraft cabin veil- efficiently provoking the need for additional sound treatment which adds weight and reduces the material's cost advantage. A series of honeycomb panels was made -hick incorporated different design strategies aimed at reducing the honeycomb panels' radiation efficiency while at the same time maintaining their strength. The majority of the designs were centered around the concept of creating areas of reduced stiffness in the panel by adding voids and recesses to the core. The effort culminated with a reinforced/recessed panel which had 6 dB higher transmission loss than the baseline solid core panel while maintaining comparable strength.

  12. The effects of magnetic fields and protostellar feedback on low-mass cluster formation

    NASA Astrophysics Data System (ADS)

    Cunningham, Andrew J.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2018-05-01

    We present a large suite of simulations of the formation of low-mass star clusters. Our simulations include an extensive set of physical processes - magnetohydrodynamics, radiative transfer, and protostellar outflows - and span a wide range of virial parameters and magnetic field strengths. Comparing the outcomes of our simulations to observations, we find that simulations remaining close to virial balance throughout their history produce star formation efficiencies and initial mass function (IMF) peaks that are stable in time and in reasonable agreement with observations. Our results indicate that small-scale dissipation effects near the protostellar surface provide a feedback loop for stabilizing the star formation efficiency. This is true regardless of whether the balance is maintained by input of energy from large-scale forcing or by strong magnetic fields that inhibit collapse. In contrast, simulations that leave virial balance and undergo runaway collapse form stars too efficiently and produce an IMF that becomes increasingly top heavy with time. In all cases, we find that the competition between magnetic flux advection towards the protostar and outward advection due to magnetic interchange instabilities, and the competition between turbulent amplification and reconnection close to newly formed protostars renders the local magnetic field structure insensitive to the strength of the large-scale field, ensuring that radiation is always more important than magnetic support in setting the fragmentation scale and thus the IMF peak mass. The statistics of multiple stellar systems are similarly insensitive to variations in the initial conditions and generally agree with observations within the range of statistical uncertainty.

  13. Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass.

    PubMed

    van Dam, Romee; Van Ancum, Jeanine M; Verlaan, Sjors; Scheerman, Kira; Meskers, Carel G M; Maier, Andrea B

    2018-06-18

    Low muscle strength and muscle mass are associated with adverse outcomes in older hospitalized patients. The aim of this study was to assess the association between cognitive functioning and muscle strength and muscle mass in hospitalized older patients. This prospective inception cohort included 378 patients aged 70 years or older. At admission patients were assessed for cognitive functioning by use of the Six-Item Cognitive Impairment Test (6-CIT). Muscle strength and muscle mass were assessed using handheld dynamometry and segmental multifrequency bioelectrical impedance analysis, within 48 h after admission and on day 7, or earlier on the day of discharge. The data of 371 patients (mean age ± standard deviation 80.1 ± 6.4 years, 49.3% female) were available for analyses. The median (interquartile range) 6-CIT score was 4 (0-8) points. At admission, lower cognitive functioning was associated with lower muscle strength, lower skeletal muscle mass (SMM), lower appendicular lean mass, and lower SMM index. Cognitive functioning was not associated with change in muscle strength and muscle mass during hospitalization. This study further strengthens evidence for an association between lower cognitive functioning and lower muscle strength and muscle mass, but without a further decline during hospitalization. © 2018 The Author(s) Published by S. Karger AG, Basel.

  14. Resonant radiation from oscillating higher order solitons

    DOE PAGES

    Driben, R.; Yulin, A. V.; Efimov, A.

    2015-07-15

    We present radiation mechanism exhibited by a higher order soliton. In a course of its evolution the higher-order soliton emits polychromatic radiation resulting in formation of multipeak frequency comb-like spectral band. Moreover, the shape and spectral position of this band can be effectively controlled by the relative strength of the third order dispersion. An analytical description is corroborated by numerical simulations. It is also shown that for longer pulses the described effect persists also under the action of higher order perturbations such as Raman and self-steepening.

  15. Phonon Spectrum in Hydroxyapatite: Calculations and EPR Study at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Biktagirov, Timur; Gafurov, Marat; Iskhakova, Kamila; Mamin, Georgy; Orlinskii, Sergei

    2016-12-01

    Density functional theory-based calculations within the framework of the plane-wave pseudopotential approach are carried out to define the phonon spectrum of hydroxyapatite Ca_{10}(PO4)6(OH)2 (HAp). It allows to describe the temperature dependence of the electronic spin-lattice relaxation time T_{1e} of the radiation-induced stable radical NO3^{2-} in HAp, which was measured in X-band (9 GHz, magnetic field strength of 0.34 T) in the temperature range T = (10-300) K. It is shown that the temperature behavior of T_{1e} at T> 20 K can be fitted via two-phonon Raman type processes with the Debye temperature Θ D ≈ 280 {K} evaluated from the phonon spectrum.

  16. Characterization of hot dense plasma with plasma parameters

    NASA Astrophysics Data System (ADS)

    Singh, Narendra; Goyal, Arun; Chaurasia, S.

    2018-05-01

    Characterization of hot dense plasma (HDP) with its parameters temperature, electron density, skin depth, plasma frequency is demonstrated in this work. The dependence of HDP parameters on temperature and electron density is discussed. The ratio of the intensities of spectral lines within HDP is calculated as a function of electron temperature. The condition of weakly coupled for HDP is verified by calculating coupling constant. Additionally, atomic data such as transition wavelength, excitation energies, line strength, etc. are obtained for Be-like ions on the basis of MCDHF method. In atomic data calculations configuration interaction and relativistic effects QED and Breit corrections are newly included for HDP characterization and this is first result of HDP parameters from extreme ultraviolet (EUV) radiations.

  17. [A Structural Equation Model on Family Strength of Married Working Women].

    PubMed

    Hong, Yeong Seon; Han, Kuem Sun

    2015-12-01

    The purpose of this study was to identify the effect of predictive factors related to family strength and develop a structural equation model that explains family strength among married working women. A hypothesized model was developed based on literature reviews and predictors of family strength by Yoo. This constructed model was built of an eight pathway form. Two exogenous variables included in this model were ego-resilience and family support. Three endogenous variables included in this model were functional couple communication, family stress and family strength. Data were collected using a self-report questionnaire from 319 married working women who were 30~40 of age and lived in cities of Chungnam province in Korea. Data were analyzed with PASW/WIN 18.0 and AMOS 18.0 programs. Family support had a positive direct, indirect and total effect on family strength. Family stress had a negative direct, indirect and total effect on family strength. Functional couple communication had a positive direct and total effect on family strength. These predictive variables of family strength explained 61.8% of model. The results of the study show a structural equation model for family strength of married working women and that predicting factors for family strength are family support, family stress, and functional couple communication. To improve family strength of married working women, the results of this study suggest nursing access and mediative programs to improve family support and functional couple communication, and reduce family stress.

  18. The urban decline of the house sparrow (Passer domesticus): a possible link with electromagnetic radiation.

    PubMed

    Balmori, Alfonso; Hallberg, Orjan

    2007-01-01

    During recent decades, there has been a marked decline of the house sparrow (Passer domesticus) population in the United Kingdom and in several western European countries. The aims of this study were to determine whether the population is also declining in Spain and to evaluate the hypothesis that electromagnetic radiation (microwaves) from phone antennae is correlated with the decline in the sparrow population. Between October 2002 and May 2006, point transect sampling was performed at 30 points during 40 visits to Valladolid, Spain. At each point, we carried out counts of sparrows and measured the mean electric field strength (radiofrequencies and microwaves: 1 MHz-3 GHz range). Significant declines (P = 0.0037) were observed in the mean bird density over time, and significantly low bird density was observed in areas with high electric field strength. The logarithmic regression of the mean bird density vs. field strength groups (considering field strength in 0.1 V/m increments) was R = -0.87 (P = 0.0001). The results of this article support the hypothesis that electromagnetic signals are associated with the observed decline in the sparrow population. We conclude that electromagnetic pollution may be responsible, either by itself or in combination with other factors, for the observed decline of the species in European cities during recent years. The appearently strong dependence between bird density and field strength according to this work could be used for a more controlled study to test the hypothesis.

  19. Strength estimation of a moving 125Iodine source during implantation in brachytherapy: application to linked sources.

    PubMed

    Tanaka, Kenichi; Endo, Satoru; Tateoka, Kunihiko; Asanuma, Osamu; Hori, Masakazu; Takagi, Masaru; Bengua, Gerard; Kamo, Ken-Ichi; Sato, Kaori; Takeda, Hiromitsu; Hareyama, Masato; Sakata, Koh-Ichi; Takada, Jun

    2014-11-01

    This study sought to demonstrate the feasibility of estimating the source strength during implantation in brachytherapy. The requirement for measuring the strengths of the linked sources was investigated. The utilized sources were (125)I with air kerma strengths of 8.38-8.63 U (μGy m(2) h(-1)). Measurements were performed with a plastic scintillator (80 mm × 50 mm × 20 mm in thickness). For a source-to-source distance of 10.5 mm and at source speeds of up to 200 mm s(-1), a counting time of 10 ms and a detector-to-needle distance of 5 mm were found to be the appropriate measurement conditions. The combined standard uncertainty (CSU) with the coverage factor of 1 (k = 1) was ∼15% when using a grid to decrease the interference by the neighboring sources. Without the grid, the CSU (k = 1) was ∼5%, and an 8% overestimation due to the neighboring sources was found to potentially cause additional uncertainty. In order to improve the accuracy in estimating source strength, it is recommended that the measurment conditions should be optimized by considering the tradeoff between the overestimation due to the neighboring sources and the intensity of the measured value, which influences the random error. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  20. Radiation and mechanical unloading effects on mouse vertebral bone: Ground-based models of the spaceflight environment

    NASA Astrophysics Data System (ADS)

    Alwood, Joshua Stewart

    Astronauts on long-duration space missions experience increased ionizing radiation background levels and occasional acute doses of ionizing radiation from solar particle events, in addition to biological challenges introduced by weightlessness. Previous research indicates that cancer radiotherapy damages bone marrow cell populations and reduces mechanical strength of bone. However, the cumulative doses in radiotherapy are an order of magnitude or greater than dose predictions for long-duration space missions. Further detriments to the skeletal system are the disuse and mechanical unloading experienced during weightlessness, which causes osteopenia in weight-bearing cancellous bone (a sponge-like bony network of rods, plates and voids) and cortical bone (dense, compact bone). Studies of radiation exposure utilizing spaceflight-relevant types and doses, and in combination with mechanical unloading, have received little attention. Motivated by the future human exploration of the solar system, the effects of acute and increased background radiation on astronaut skeletal health are important areas of study in order to prevent osteopenic deterioration and, ultimately, skeletal fracture. This dissertation addresses how spaceflight-relevant radiation affects bone microarchitecture and mechanical properties in the cancellous-rich vertebrae and compares results to that of mechanical unloading. In addition, a period of re-ambulation is used to test whether animals recover skeletal tissue after irradiation. Whether radiation exposure displays synergism with mechanical unloading is further investigated. Finite element structural and statistical analyses are used to investigate how changes in architecture affect mechanical stress within the vertebra and to interpret the mechanical testing results. In this dissertation, ground-based models provide evidence that ionizing radiation, both highly energetic gamma-rays and charged iron ions, resulted in a persistent loss of cancellous bone in male mice. Mechanical unloading, by contrast, is shown to cause bone loss in the vertebrae via cancellous and cortical thinning that resulted in decreased whole-bone mechanical properties. The effects of mechanical unloading were altogether reversible in the vertebra after re-ambulation, though some residual alteration of trabecular morphology persisted. The combination of unloading and radiation exposure appeared to worsen the reductions of strength. Under either environmental condition, cancellous bone loss occurred near the vertebral endplates and at the centrum midplane. Finite element analysis suggested that tissue-level stresses increase in the centrum after either unloading or irradiation in agreement with the cellular-solid model of dense, plate-like trabeculae. Force-sharing between cancellous and cortical bone decreased after radiation, with stress concentrating on the cortex. In conclusion, acute exposure to spaceflight-relevant ionizing radiation altered trabecular microarchitecture and stress distribution, without a loss of whole-bone strength at the endpoints investigated, while unloading presented the greater immediate detriment to whole-bone mechanical properties. From a skeletal-health perspective, strategies to mitigate and counteract astronaut exposure to acute doses of radiation and mechanical unloading should be developed in preparation for long-term human spaceflight.

  1. X-ray Observations of Neutron Stars

    NASA Astrophysics Data System (ADS)

    Enoto, Teruaki

    A large diversity of neutron stars has been discovered by recent multi-wavelength observations from the radio band to the X-ray and gamma-ray energy range. Among different manifestation of neutron stars, magnetars are strongly magnetised objects with the magnetic field strength of B = 1014-15 G. Some of magnetars exhibit transient behaviours, in which activated state the magnetars radiate sporadic short bursts and enhanced persistent X-ray emission for a couple of weeks or more. The Suzaku X-ray satellite has observed 15 magnetars among 23 known sources in 2006-2013, including persistently bright sources and transient objects. We showed that the broadband magnetar spectra, including both of surface emission below 10 keV and magnetospheric power-law radiation above 10 keV, follow spectral evolution as a function of the magnetic field, in terms of wide-band spectral hardness ratio and of power-law photon index. Magnetars are also compared with other rotation powered pulsars on the correlation between X-ray luminosity and the spin-down luminosity. I will address future missions related with investigation of the nature of neutron stars.

  2. The formation flare loops by magnetic reconnection and chromospheric ablation

    NASA Technical Reports Server (NTRS)

    Forbes, T. G.; Malherbe, J. M.; Priest, E. R.

    1989-01-01

    Noncoplanar compressible reconnection theory is combined here with simple scaling arguments for ablation and radiative cooling to predict average properties of hot and cool flare loops as a function of the coronal vector magnetic field. For a coronal field strength of 100 G, the temperature of the hot flare loops decreases from 1.2 x 10 to the 7th K to 4.0 x 10 to the 6th K as the component of the coronal magnetic field perpendicular to the plane of the loops increases from 0 percent to 86 percent of the total field. When the perpendicular component exceeds 86 percent of the total field or when the altitude of the reconnection site exceeds 10 to the 6th km, flare loops no longer occur. Shock-enhanced radiative cooling triggers the formation of cool H-alpha flare loops with predicted densities of roughly 10 to the 13th/cu cm, and a small gap of roughly 1000 km is predicted to exist between the footpoints of the cool flare loops and the inner edges of the flare ribbons.

  3. Low-energy enhancement and fluctuations of γ -ray strength functions in 56,57 Fe: test of the Brink–Axel hypothesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, A. C.; Guttormsen, M.; Blasi, N.

    Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less

  4. Low-energy enhancement and fluctuations of γ -ray strength functions in 56,57 Fe: test of the Brink–Axel hypothesis

    DOE PAGES

    Larsen, A. C.; Guttormsen, M.; Blasi, N.; ...

    2017-04-24

    Nuclear level densities and γ-ray strength functions of 56,57Fe have been extracted from proton-γ coincidences. A low-energy enhancement in the γ-ray strength functions up to a factor of 30 over common theoretical E1 models is confirmed. Angular distributions of the low-energy enhancement in 57Fe indicate its dipole nature, in agreement with findings for 56Fe. The high statistics and the excellent energy resolution of the large-volume LaBr 3(Ce) detectors allowed for a thorough analysis of γ strength as function of excitation energy. Taking into account the presence of strong Porter–Thomas fluctuations, there is no indication of any significant excitation energy dependencemore » in the γ-ray strength function, which is in support of the generalized Brink–Axel hypothesis.« less

  5. Atomic Data and Spectral Line Intensities for Ni XXI

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ni XXI. The configurations used are 2s(sup 2)2p(sup 4), 2s2p(sup 5), 2p(sup 6), 2s(sup 2)2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 58 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 85, 170, 255, 340, and 425 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of log T(sub e)(K)=6.9, corresponding to maximum abundance of Ni XXI. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted intensity ratios are compared with available observations.

  6. Observation of the 63 micron (0 1) emission line in the Orion and Omega Nebulae

    NASA Technical Reports Server (NTRS)

    Melnick, G.; Gull, G. E.; Harwit, M.

    1978-01-01

    The 63 micron fine structure transition P4 : 3Pl yields 3P2 for neutral atomic oxygen was obtained during a series of flights at an altitude of approximately 13.7 km. In the Orion Nebula (M42), the observed line strength was 8 x 10 to the minus 15 power watt cm/2 which is estimated to be approximately 0.3 o/o of the energy radiated at all wavelengths. For the Omega Nebulae (M17), the line strength was 2.4 x 10 to the minus 15 power watt cm/2, and the fraction of the total radiated power was slightly higher. These figures refer to a 4' x 6' field of view centered on the peak for infrared emission from each source. The uncertainty in the line strength is approximately 50% and is caused by variable water vapor absorption along the flight path of the airplane. The line position estimate is 63.2 micron (+0.1, -0.2) micron. The prime uncertainty is due to the uncertain position of the (0 I) emitting regions in the field of view.

  7. Directional Radio-Frequency Identification Tag Reader

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Taylor, John D.; Henderson, John J.

    2004-01-01

    A directional radio-frequency identification (RFID) tag reader has been designed to facilitate finding a specific object among many objects in a crowded room. The device could be an adjunct to an electronic inventory system that tracks RFID-tagged objects as they move through reader-equipped doorways. Whereas commercial RFID-tag readers do not measure directions to tagged objects, the device is equipped with a phased-array antenna and a received signal-strength indicator (RSSI) circuit for measuring direction. At the beginning of operation, it is set to address only the RFID tag of interest. It then continuously transmits a signal to interrogate that tag while varying the radiation pattern of the antenna. It identifies the direction to the tag as the radiation pattern direction of peak strength of the signal returned by the tag. An approximate distance to the tag is calculated from the peak signal strength. The direction and distance can be displayed on a screen. A prototype containing a Yagi antenna was found to be capable of detecting a 915.5-MHz tag at a distance of approximately equal to 15 ft (approximately equal to 4.6 m).

  8. TU-C-18A-01: Models of Risk From Low-Dose Radiation Exposures: What Does the Evidence Say?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bushberg, J; Boreham, D; Ulsh, B

    2014-06-15

    At dose levels of (approximately) 500 mSv or more, increased cancer incidence and mortality have been clearly demonstrated. However, at the low doses of radiation used in medical imaging, the relationship between dose and cancer risk is not well established. As such, assumptions about the shape of the dose-response curve are made. These assumptions, or risk models, are used to estimate potential long term effects. Common models include 1) the linear non-threshold (LNT) model, 2) threshold models with either a linear or curvilinear dose response above the threshold, and 3) a hormetic model, where the risk is initially decreased belowmore » background levels before increasing. The choice of model used when making radiation risk or protection calculations and decisions can have significant implications on public policy and health care decisions. However, the ongoing debate about which risk model best describes the dose-response relationship at low doses of radiation makes informed decision making difficult. This symposium will review the two fundamental approaches to determining the risk associated with low doses of ionizing radiation, namely radiation epidemiology and radiation biology. The strengths and limitations of each approach will be reviewed, the results of recent studies presented, and the appropriateness of different risk models for various real world scenarios discussed. Examples of well-designed and poorly-designed studies will be provided to assist medical physicists in 1) critically evaluating publications in the field and 2) communicating accurate information to medical professionals, patients, and members of the general public. Equipped with the best information that radiation epidemiology and radiation biology can currently provide, and an understanding of the limitations of such information, individuals and organizations will be able to make more informed decisions regarding questions such as 1) how much shielding to install at medical facilities, 2) at what dose level are risk vs. benefit discussions with patients appropriate, 3) at what dose level should we tell a pregnant woman that the baby’s health risk from a prenatal radiation exposure is “significant”, 4) is informed consent needed for patients undergoing medical imaging, and 5) at what dose level is evacuation appropriate after a radiological accident. Examples of the tremendous impact that choosing different risks models can have on the answers to these types of questions will be given.A moderated panel discussion will allow audience members to pose questions to the faculty members, each of whom is an established expert in his respective discipline. Learning Objectives: Understand the fundamental principles, strengths and limitations of radiation epidemiology and radiation biology for determining the risk from exposures to low doses of ionizing radiation Become familiar with common models of risk used to describe the dose-response relationship at low dose levels Learn to identify strengths and weaknesses in studies designed to measure the effect of low doses of ionizing radiation Understand the implications of different risk models on public policy and health care decisions.« less

  9. Benchmarking the Performance of Exchange-Correlation Functionals for Predicting Two-Photon Absorption Strengths.

    PubMed

    Beerepoot, Maarten T P; Alam, Md Mehboob; Bednarska, Joanna; Bartkowiak, Wojciech; Ruud, Kenneth; Zaleśny, Robert

    2018-06-15

    The present work investigates the performance of exchange-correlation functionals in the prediction of two-photon absorption (2PA) strengths. For this purpose, we considered six common functionals used for studying 2PA processes and tested these on six organoboron chelates. The set consisted of two semilocal (PBE and BLYP), two hybrid (B3LYP and PBE0), and two range-separated (LC-BLYP and CAM-B3LYP) functionals. The RI-CC2 method was chosen as a reference level and was found to give results consistent with the experimental data that are available for three of the molecules considered. Of the six exchange-correlation functionals studied, only the range-separated functionals predict an ordering of the 2PA strengths that is consistent with experimental and RI-CC2 results. Even though the range-separated functionals predict correct relative trends, the absolute values for the 2PA strengths are underestimated by a factor of 2-6 for the molecules considered. An in-depth analysis, on the basis of the derived generalized few-state model expression for the 2PA strength for a coupled-cluster wave function, reveals that the problem with these functionals can be linked to underestimated excited-state dipole moments and, to a lesser extent, overestimated excitation energies. The semilocal and hybrid functionals exhibit less predictable errors and a variation in the 2PA strengths in disagreement with the reference results. The semilocal and hybrid functionals show smaller average errors than the range-separated functionals, but our analysis reveals that this is due to fortuitous error cancellation between excitation energies and the transition dipole moments. Our results constitute a warning against using currently available exchange-correlation functionals in the prediction of 2PA strengths and highlight the need for functionals that correctly describe the electron density of excited electronic states.

  10. Sonic Detection and Ranging (SODAR) Wind Profiler Instrument Handbook

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulter, Richard L.

    2016-04-01

    The SODAR (Sonic Detection and Ranging) wind profiler measures wind profiles and backscattered signal strength between (nominally) 15 meters (m) and 500 m. It operates by transmitting acoustic energy into the atmosphere and measuring the strength and frequency of backscattered energy. The strength of the backscattered signal is determined by the strength of temperature inhomogeneities with size on the order of 10 centimeters (cm). Assuming the scattering elements in the atmosphere are moving with the mean wind, the horizontal wind field can be derived. The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Mobile Facility (AMF)more » has a system developed by Scintec, Inc. that transmits a sequence of frequencies to enhance signal determination.« less

  11. Fish-oil supplementation enhances the effects of strength training in elderly women.

    PubMed

    Rodacki, Cintia L N; Rodacki, André L F; Pereira, Gleber; Naliwaiko, Katya; Coelho, Isabela; Pequito, Daniele; Fernandes, Luiz Cléudio

    2012-02-01

    Muscle force and functional capacity generally decrease with aging in the older population, although this effect can be reversed, attenuated, or both through strength training. Fish oil (FO), which is rich in n-3 (omega-3) PUFAs, has been shown to play a role in the plasma membrane and cell function of muscles, which may enhance the benefits of training. The effect of strength training and FO supplementation on the neuromuscular system of the elderly has not been investigated. The objective was to investigate the chronic effect of FO supplementation and strength training on the neuromuscular system (muscle strength and functional capacity) of older women. Forty-five women (aged 64 ± 1.4 y) were randomly assigned to 3 groups. One group performed strength training only (ST group) for 90 d, whereas the others performed the same strength-training program and received FO supplementation (2 g/d) for 90 d (ST90 group) or for 150 d (ST150 group; supplemented 60 d before training). Muscle strength and functional capacity were assessed before and after the training period. No differences in the pretraining period were found between groups for any of the variables. The peak torque and rate of torque development for all muscles (knee flexor and extensor, plantar and dorsiflexor) increased from pre- to posttraining in all groups. However, the effect was greater in the ST90 and ST150 groups than in the ST group. The activation level and electromechanical delay of the muscles changed from pre- to posttraining only for the ST90 and ST150 groups. Chair-rising performance in the FO groups was higher than in the ST group. Strength training increased muscle strength in elderly women. The inclusion of FO supplementation caused greater improvements in muscle strength and functional capacity.

  12. Spaceflight-relevant types of ionizing radiation and cortical bone: Potential LET effect?

    NASA Astrophysics Data System (ADS)

    Lloyd, Shane A. J.; Bandstra, Eric R.; Travis, Neil D.; Nelson, Gregory A.; Bourland, J. Daniel; Pecaut, Michael J.; Gridley, Daila S.; Willey, Jeffrey S.; Bateman, Ted A.

    2008-12-01

    Extended exposure to microgravity conditions results in significant bone loss. Coupled with radiation exposure, this phenomenon may place astronauts at a greater risk for mission-critical fractures. In a previous study, we identified a profound and prolonged loss of trabecular bone (29-39%) in mice following exposure to an acute, 2 Gy dose of radiation simulating both solar and cosmic sources. However, because skeletal strength depends on trabecular and cortical bone, accurate assessment of strength requires analysis of both bone compartments. The objective of the present study was to examine various properties of cortical bone in mice following exposure to multiple types of spaceflight-relevant radiation. Nine-week old, female C57BL/6 mice were sacrificed 110 days after exposure to a single, whole body, 2 Gy dose of gamma, proton, carbon, or iron radiation. Femora were evaluated with biomechanical testing, microcomputed tomography, quantitative histomorphometry, percent mineral content, and micro-hardness analysis. Compared to non-irradiated controls, there were significant differences compared to carbon or iron radiation for only fracture force, medullary area and mineral content. A greater differential effect based on linear energy transfer (LET) level may be present: high-LET (carbon or iron) particle irradiation was associated with a decline in structural properties (maximum force, fracture force, medullary area, and cortical porosity) and mineral composition compared to low-LET radiation (gamma and proton). Bone loss following irradiation appears to be largely specific to trabecular bone and may indicate unique biological microenvironments and microdosimetry conditions. However, the limited time points examined and non-haversian skeletal structure of the mice employed highlight the need for further investigation.

  13. Mechanisms of radiation embrittlement of VVER-1000 RPV steel at irradiation temperatures of (50-400)°C

    NASA Astrophysics Data System (ADS)

    Kuleshova, E. A.; Gurovich, B. A.; Bukina, Z. V.; Frolov, A. S.; Maltsev, D. A.; Krikun, E. V.; Zhurko, D. A.; Zhuchkov, G. M.

    2017-07-01

    This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50-400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔTK) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects - dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔTK shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔTK shift in the studied range of irradiation temperature and fluence.

  14. Relationships of muscle strength and bone mineral density in ambulatory children with cerebral palsy.

    PubMed

    Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y

    2012-02-01

    This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.

  15. Effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy

    PubMed Central

    Choi, Jong-Bae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689

  16. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis.

    PubMed

    de Oliveira, Poliana Alves; Blasczyk, Juscelino Castro; Souza Junior, Gerson; Lagoa, Karina Ferreira; Soares, Milene; de Oliveira, Ricardo Jacó; Filho, Paulo José Barbosa Gutierres; Carregaro, Rodrigo Luiz; Martins, Wagner Rodrigues

    2017-04-01

    Elastic Resistance Exercise (ERE) has already demonstrated its effectiveness in older adults and, when combined with the resistance generated by fixed loads, in adults. This review summarizes the effectiveness of ERE performed as isolated method on muscle strength and functional performance in healthy adults. A database search was performed (MEDLine, Cochrane Library, PEDro and Web of Knowledge) to identify controlled clinical trials in English language. The mean difference (MD) with 95% confidence intervals (CIs) and overall effect size were calculated for all comparisons. The PEDro scale was used assess the methodological quality. From the 93 articles identified by the search strategy, 5 met the inclusion criteria, in which 3 presented high quality (PEDro > 6). Meta-analyses demonstrated that the effects of ERE were superior when compared with passive control on functional performance and muscle strength. When compared with active controls, the effect of ERE was inferior on function performance and with similar effect on muscle strength. ERE are effective to improve functional performance and muscle strength when compared with no intervention, in healthy adults. ERE are not superior to other methods of resistance training to improve functional performance and muscle strength in health adults.

  17. Knee extension range of motion and self-report physical function in total knee arthroplasty: mediating effects of knee extensor strength

    PubMed Central

    2013-01-01

    Background Knee extensor strength and knee extension range of motion (ROM) are important predictors of physical function in patients with a total knee arthroplasty (TKA). However, the relationship between the two knee measures remains unclear. The purpose of this study was to examine whether changes in knee extensor strength mediate the association between changes in knee extension ROM and self-report physical function. Methods Data from 441 patients with a TKA were collected preoperatively and 6 months postoperatively. Self-report measure of physical function was assessed by the Short Form 36 (SF-36) questionnaire. Knee extensor strength was measured by handheld dynamometry and knee extension ROM by goniometry. A bootstrapped cross product of coefficients approach was used to evaluate mediation effects. Results Mediation analyses, adjusted for clinicodemographic measures, revealed that the association between changes in knee extension ROM and SF-36 physical function was mediated by changes in knee extensor strength. Conclusions In patients with TKA, knee extensor strength mediated the influence of knee extension ROM on physical function. These results suggest that interventions to improve the range of knee extension may be useful in improving knee extensor performance. PMID:23332039

  18. Positive effects of 1-year football and strength training on mechanical muscle function and functional capacity in elderly men.

    PubMed

    Sundstrup, Emil; Jakobsen, Markus Due; Andersen, Lars Louis; Andersen, Thomas Rostgaard; Randers, Morten Bredsgaard; Helge, Jørn Wulff; Suetta, Charlotte; Schmidt, Jakob Friis; Bangsbo, Jens; Krustrup, Peter; Aagaard, Per

    2016-06-01

    A decline in physical capacity takes place with increasing age that negatively affects overall physical function including work ability and the ability to perform typical activities of daily living (ADL). The overall aim of the present study was to determine the neuromuscular adaptations to long-term (1 year) football and strength training in older untrained adults, and to assess the concurrent effect on functional ADL capacity. Twenty-seven healthy elderly males (68.2 ± 3.2 years) were randomly assigned to 12 months of either recreational football training (FT: n = 10), strength training (ST: n = 9) or served as inactive controls (CON: n = 8). Recreational football training consisted of small-sided training sessions whereas strength training consisted of high intensity exercises targeting the lower extremity and upper body. Maximal thigh muscle strength and rate of force development (RFD) were assessed with isokinetic dynamometry, while postural balance and vertical jumping performance were evaluated using force plate analysis. Furthermore, functional ability was evaluated by stair-ascent and chair-rising testing. A total of nine, nine and seven participants from FT, ST and CON, respectively, were included in the analysis. Both exercise regimens led to substantial gains in functional ability, evidenced by 24 and 18 % reduced stair-ascent time, and 32 and 21 % increased chair-rising performance in FT and ST, respectively (all P < 0.05). Long-term strength training led to increased concentric (14 %; P < 0.01) and isometric (23 %; P < 0.001) quadriceps and isometric hamstring strength (44 %; P < 0.0001), whereas football training mainly resulted in enhanced hamstring strength (18 %, P < 0.05) and RFD (89 %, P < 0.0001). Long-term (1 year) strength training led to increased quadriceps and hamstring strength, whereas the adaptations to football training mainly included enhanced strength and rapid force capacity of the hamstring muscles. Gains in functional ability were observed in response to both training regimens, evidenced by reduced stair-ascent time and increased chair-rising performance. Long-term football exercise and strength training both appear to be effective interventional strategies to improve factors of importance for ADL by counteracting the age-related decline in lower limb strength and functional capacity among old male adults. This could potentially be a way to improve work ability of senior workers.

  19. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    PubMed Central

    Eslami, J.; Ghafaripour, F.; Mortazavi, S.A.R.; Mortazavi, S.M.J.; Shojaei-fard, M.B.

    2015-01-01

    Background People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors. PMID:26688798

  20. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    PubMed

    Eslami, J; Ghafaripour, F; Mortazavi, S A R; Mortazavi, S M J; Shojaei-Fard, M B

    2015-12-01

    People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched-on mobile phone with no signal strength. The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  1. AFRRI (Armed Forces Radiobiology Research Institute) Annual Research Report, 1 October 1984 through 30 September 1985.

    DTIC Science & Technology

    1985-09-30

    locomotor performance. To evaluate the effects of radiation on social behaviors. To determine how ionizing radiation alters strength and duration of...on social behaviors and the behavioral pharmacology of social behaviors. Study involvement of CNS autostimulation of the immune system of irradiated...marrow cultured in medium not supplemented with the extract. In addition, marrow cultured in media supplemented with various collagen fractions did

  2. Evaluation of stray radiofrequency radiation emitted by electrosurgical devices

    NASA Astrophysics Data System (ADS)

    DeMarco, M.; Maggi, S.

    2006-07-01

    Electrosurgery refers to the passage of a high-frequency, high-voltage electrical current through the body to achieve the desired surgical effects. At the same time, these procedures are accompanied by a general increase of the electromagnetic field in an operating room that may expose both patients and personnel to relatively high levels of radiofrequency radiation. In the first part of this study, we have taken into account the radiation emitted by different monopolar electrosurgical devices, evaluating the electromagnetic field strength delivered by an electrosurgical handle and straying from units and other electrosurgical accessories. As a summary, in the worst case a surgeon's hands are exposed to a continuous and pulsed RF wave whose magnetic field strength is 0.75 A m-1 (E-field 400 V m-1). Occasionally stray radiation may exceed ICNIRP's occupational exposure guidelines, especially close to the patient return plate. In the second part of this paper, we have analysed areas of particular concern to prevent electromagnetic interference with some life-support devices (ventilators and electrocardiographic devices), which have failed to operate correctly. Most clinically relevant interference occurred when an electrosurgery device was used within 0.3 m of medical equipment. In the appendix, we suggest some practical recommendations intended to minimize the potential for electromagnetic hazards due to therapeutic application of RF energy.

  3. Characterization of rotary-percussion drilling as a seismic-while-drilling source

    NASA Astrophysics Data System (ADS)

    Xiao, Yingjian; Hurich, Charles; Butt, Stephen D.

    2018-04-01

    This paper focuses on an evaluation of rotary-percussion drilling (RPD) as a seismic source. Two field experiments were conducted to characterize seismic sources from different rocks with different strengths, i.e. weak shale and hard arkose. Characterization of RPD sources consist of spectral analysis and mean power measurements, along with field measurements of the source radiation patterns. Spectral analysis shows that increase of rock strength increases peak frequency and widens bandwidth, which makes harder rock more viable for seismic-while-drilling purposes. Mean power analysis infers higher magnitude of body waves in RPD than in conventional drillings. Within the horizontal plane, the observed P-wave energy radiation pattern partially confirms the theoretical radiation pattern under a single vertical bit vibration. However a horizontal lobe of energy is observed close to orthogonal to the axial bit vibration. From analysis, this lobe is attributed to lateral bit vibration, which is not documented elsewhere during RPD. Within the horizontal plane, the observed radiation pattern of P-waves is generally consistent with a spherically-symmetric distribution of energy. In addition, polarization analysis is conducted on P-waves recorded at surface geophones for understanding the particle motions. P-wave particle motions are predominantly in the vertical direction showing the interference of the free-surface.

  4. Generation of ionizing radiation from lithium niobate crystals

    NASA Astrophysics Data System (ADS)

    Orlikov, L. N.; Orlikov, N. L.; Arestov, S. I.; Mambetova, K. M.; Shandarov, S. M.

    2017-01-01

    The work done experimentally explores generation of electron and x-ray radiation in the process of heating and cooling monolithic and iron-doped crystals of lithium niobate. Iron doping to the concentrations in the range of 1023 m3 was carried out by adding ferric oxide into the melt during the process of crystal growth. The research into radiation generation was performed at 1-10 Pa. The speed of heating from -10 to 1070 C was 10-20 degrees a minute. Current pulses appeared at 17, 38, 56, 94, 98, 100, 105, 106, 1070 C with the interval of 1-3 minutes. The obtained electron current increased in direct proportion to the crystal surface area. The maximum current was 3mA at the design voltage 11 kV on the crystal with 14,5x10,5x10 mm3 surface area. The article describes the possibility to control the start of generation by introducing priming pulse. The results achieved are explained by the domain repolarization while heating the crystal and the appearance of electric field local strength. Bias and overcharge currents contribute to the appearance of electric strength, which stimulates breakdown and plasma formation. X-ray radiation appears both at the stage of discharge formation and during electron deceleration on gas and target material.

  5. Effect of radiation on disinfection and mechanical properties of Korean traditional paper, Hanji

    NASA Astrophysics Data System (ADS)

    Choi, Jong-il; Chung, Yong Jae; Kang, Dai Ill; Lee, Kyu Shik; Lee, Ju-Woon

    2012-08-01

    Fumigants, including methyl bromide and ethylene oxide, are generally used for the preservation of the Korean cultural heritage, especially paper products like letters and books. However, the use of fumigants is banned because of their harmful effects on humans and the environment. Gamma irradiation is being considered as an alternative for the sterilization of insects and fungi in organic products. Therefore, the purpose of this study was to investigate the sterilization effects of radiation and its effect on the mechanical properties of the Korean traditional paper—Hanji. Treatment doses of 9 kGy and 8 kGy of gamma irradiation inactivated 5 log units of Aspergillus niger and Bacillus cereus spores inoculated on Hanji, respectively. The gamma irradiations up to an absorbed dose of 50 kGy resulted in no significant changes in the tensile strength, bursting strength, and appearance of Hanji. These results confirmed that radiation treatment disinfects the Korean traditional paper efficiently without changing its properties and that this treatment could be used to prevent the damage of Korean ancient archives by molds and fungi.

  6. Sensory and motor peripheral nerve function and lower-extremity quadriceps strength: the health, aging and body composition study.

    PubMed

    Strotmeyer, Elsa S; de Rekeneire, Nathalie; Schwartz, Ann V; Resnick, Helaine E; Goodpaster, Bret H; Faulkner, Kimberly A; Shorr, Ronald I; Vinik, Aaron I; Harris, Tamara B; Newman, Anne B

    2009-11-01

    To determine whether sensory and motor nerve function is associated cross-sectionally with quadriceps or ankle dorsiflexion strength in an older community-based population. Cross-sectional analyses within a longitudinal cohort study. Two U.S. clinical sites. Two thousand fifty-nine Health, Aging and Body Composition Study (Health ABC) participants (49.5% male, 36.7% black, aged 73-82) in 2000/01. Quadriceps and ankle strength were measured using an isokinetic dynamometer. Sensory and motor peripheral nerve function in the legs and feet was assessed using 10-g and 1.4-g monofilaments, vibration threshold, and peroneal motor nerve conduction amplitude and velocity. Monofilament insensitivity, poorest vibration threshold quartile (>60 mu), and poorest motor nerve conduction amplitude quartile (<1.7 mV) were associated with 11%, 7%, and 8% lower quadriceps strength (all P<.01), respectively, than in the best peripheral nerve function categories in adjusted linear regression models. Monofilament insensitivity and lowest amplitude quartile were both associated with 17% lower ankle strength (P<.01). Multivariate analyses were adjusted for demographic characteristics, diabetes mellitus, body composition, lifestyle factors, and chronic health conditions and included all peripheral nerve measures in the same model. Monofilament insensitivity (beta=-7.19), vibration threshold (beta=-0.097), and motor nerve conduction amplitude (beta=2.01) each contributed independently to lower quadriceps strength (all P<.01). Monofilament insensitivity (beta=-5.29) and amplitude (beta=1.17) each contributed independently to lower ankle strength (all P<.01). Neither diabetes mellitus status nor lean mass explained the associations between peripheral nerve function and strength. Reduced sensory and motor peripheral nerve function is related to poorer lower extremity strength in older adults, suggesting a mechanism for the relationship with lower extremity disability.

  7. The inclusion of capillary distribution in the adiabatic tissue homogeneity model of blood flow

    NASA Astrophysics Data System (ADS)

    Koh, T. S.; Zeman, V.; Darko, J.; Lee, T.-Y.; Milosevic, M. F.; Haider, M.; Warde, P.; Yeung, I. W. T.

    2001-05-01

    We have developed a non-invasive imaging tracer kinetic model for blood flow which takes into account the distribution of capillaries in tissue. Each individual capillary is assumed to follow the adiabatic tissue homogeneity model. The main strength of our new model is in its ability to quantify the functional distribution of capillaries by the standard deviation in the time taken by blood to pass through the tissue. We have applied our model to the human prostate and have tested two different types of distribution functions. Both distribution functions yielded very similar predictions for the various model parameters, and in particular for the standard deviation in transit time. Our motivation for developing this model is the fact that the capillary distribution in cancerous tissue is drastically different from in normal tissue. We believe that there is great potential for our model to be used as a prognostic tool in cancer treatment. For example, an accurate knowledge of the distribution in transit times might result in an accurate estimate of the degree of tumour hypoxia, which is crucial to the success of radiation therapy.

  8. A new one-dimensional radiative equilibrium model for investigating atmospheric radiation entropy flux.

    PubMed

    Wu, Wei; Liu, Yangang

    2010-05-12

    A new one-dimensional radiative equilibrium model is built to analytically evaluate the vertical profile of the Earth's atmospheric radiation entropy flux under the assumption that atmospheric longwave radiation emission behaves as a greybody and shortwave radiation as a diluted blackbody. Results show that both the atmospheric shortwave and net longwave radiation entropy fluxes increase with altitude, and the latter is about one order in magnitude greater than the former. The vertical profile of the atmospheric net radiation entropy flux follows approximately that of the atmospheric net longwave radiation entropy flux. Sensitivity study further reveals that a 'darker' atmosphere with a larger overall atmospheric longwave optical depth exhibits a smaller net radiation entropy flux at all altitudes, suggesting an intrinsic connection between the atmospheric net radiation entropy flux and the overall atmospheric longwave optical depth. These results indicate that the overall strength of the atmospheric irreversible processes at all altitudes as determined by the corresponding atmospheric net entropy flux is closely related to the amount of greenhouse gases in the atmosphere.

  9. Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy.

    PubMed

    Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M; Fowler, Eileen; Greenberg, Marcia B; Malkus, Elizabeth C; Rebibo, Odelia; Siener, Catherine S; Caraco, Yoseph; Kolodny, Edwin H; Lau, Heather A; Pestronk, Alan; Shieh, Perry; Skrinar, Alison M; Mayhew, Jill E

    2017-09-01

    To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function.

  10. An Excel-Based System to Manage Radiation Safety for the Family of Patients Undergoing 131I Therapy.

    PubMed

    Steward, Palmer G

    2017-06-01

    The purpose of this study was to develop spreadsheet workbooks that assist in the radiation safety counseling of 131 I therapy patients and their families, providing individualized guidelines that avoid imposing overly conservative restrictions on family members and others. Methods: The mathematic model included biphasic patient radionuclide retention. The extrathyroidal component was a cylindric volume with a diameter corresponding to the patient's size and included patient self-absorption, whereas the thyroidal component was a point source whose transmission was reduced by self-absorption. A separate model in which the thyroid, extrathyroid, and bladder compartments fed serially from one to the next was developed to depict the radionuclide levels within the patient and to estimate the activity entering the environment at each urination. Results: The system was organized into a set of 4 workbooks: the first to be used with ablation patients prepared using thyrogen, the second with ablation patients prepared by deprivation, the third with hyperthyroid patients, and the fourth with the unusual hyperthyroid patient who finds the restrictions to be oppressive and returns 5-10 d after administration for a measurement and reassessment. The workbooks evaluated the radiation field strength external to the patient and indicated restrictions based on selected dose limits. To assist physicians in suggesting contamination precautions, the workbooks also evaluated the radioactivity present within the patient and the estimated discharge into the environment as a function of time. Conclusion: The workbooks that were developed assist the radiation safety counselor in individualizing radiation protection procedures for the family of patients undergoing 131 I therapy. The workbook system avoids overly conservative assumptions while permitting selection of appropriate dose limits for each individual. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  11. Hand grip strength and dexterity function in children aged 6-12 years: A cross-sectional study.

    PubMed

    Omar, Mohammed T A; Alghadir, Ahmad H; Zafar, Hamayun; Al Baker, Shaheerah

    Cross-sectional and clinical measurement. Assessment of hand function considers an essential part in clinical practice. To develop normative values of hand grip strength and dexterity function for 6-12-year-old children in Saudi Arabia. Grip strength and dexterity function was measured in 525 children using Grip Track hand dynamometer (JTECH Medical, Midvale, UT, USA) and 9-hole pegboard test respectively. The grip strength and dexterity function was improved as age progressed regardless of gender. Across all age groups, the hand grip strength of boys was significantly higher than girls for dominant hand (31.75 ± 10.33 vs 28.24 ± 9.35; P < .001) and nondominant hand (31.01 ± 10.27 vs 27.27 ± 9.30; P < .001). The girls performed slightly faster than boys for dominant hand (19.70 vs 20.68; P < .05) and nondominant hand (21.79 vs 23.46; P < .05). In general, girls completed a 9-HPT faster than boys in the 2 of 7 age groups: 11 years (9-HPT scores = 2.10 seconds; P < .01) and 12 years (9-HPT scores = 1.93 seconds; P < .01). The overall patterns of hand grip strength and dexterity function observed in the present study are similar to the previous studies that established acceleration of grip strength with advanced age, and faster performance scores in older children than younger children in both genders. Norms of hand grip strength and dexterity enable therapists to identify some developmental characteristics of hand function among Saudi children, determine the presence of impairment, and compare scores from children in different clinical settings. Not applicable. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  12. Lower limb strength training in children with cerebral palsy – a randomized controlled trial protocol for functional strength training based on progressive resistance exercise principles

    PubMed Central

    Scholtes, Vanessa A; Dallmeijer, Annet J; Rameckers, Eugene A; Verschuren, Olaf; Tempelaars, Els; Hensen, Maartje; Becher, Jules G

    2008-01-01

    Background Until recently, strength training in children with cerebral palsy (CP) was considered to be inappropriate, because it could lead to increased spasticity or abnormal movement patterns. However, the results of recent studies suggest that progressive strength training can lead to increased strength and improved function, but low methodological quality and incomplete reporting on the training protocols hampers adequate interpretation of the results. This paper describes the design and training protocol of a randomized controlled trial to assess the effects of a school-based progressive functional strength training program for children with CP. Methods/Results Fifty-one children with Gross Motor Function Classification Systems levels I to III, aged of 6 to 13 years, were recruited. Using stratified randomization, each child was assigned to an intervention group (strength training) or a control group (usual care). The strength training was given in groups of 4–5 children, 3 times a week, for a period of 12 weeks. Each training session focussed on four exercises out of a 5-exercise circuit. The training load was gradually increased based on the child's maximum level of strength, as determined by the 8 Repetition Maximum (8 RM). To evaluate the effectiveness of the training, all children were evaluated before, during, directly after, and 6 weeks after the intervention period. Primary outcomes in this study were gross motor function (measured with the Gross Motor Function Measure and functional muscle strength tests) and walking ability (measured with the 10-meter, the 1-minute and the timed stair test). Secondary outcomes were lower limb muscle strength (measured with a 6 RM test, isometric strength tests, and a sprint capacity test), mobility (measured with a mobility questionnaire), and sport activities (measured with the Children's Assessment of Participation and Enjoyment). Spasticity and range of motion were assessed to evaluate any adverse events. Conclusion Randomized clinical trials are considered to present the highest level of evidence. Nevertheless, it is of utmost importance to report on the design, the applied evaluation methods, and all elements of the intervention, to ensure adequate interpretation of the results and to facilitate implementation of the intervention in clinical practice if the results are positive. Trial Registration Trial Register NTR1403 PMID:18842125

  13. Shoulder functional ratio in elite junior tennis players.

    PubMed

    Saccol, Michele Forgiarini; Gracitelli, Guilherme Conforto; da Silva, Rogério Teixeira; Laurino, Cristiano Frota de Souza; Fleury, Anna Maria; Andrade, Marília dos Santos; da Silva, Antonio Carlos

    2010-02-01

    To evaluate shoulder rotation strength and compare the functional ratio between shoulders of elite junior tennis players. This cross-sectional study evaluated muscular rotation performance of 40 junior tennis players (26 male and 14 female) with an isokinetic dynamometer. Strength variables of external (ER) and internal rotators (IR) in concentric and eccentric modes were considered. For the peak torque functional ratio, the eccentric strength of the ER and the concentric strength of the IR were calculated. All variables related to IR were significantly higher on the dominant compared to the non-dominant side in males and females (p<0.05), but only boys exhibited this dominance effect in ER (p<0.05 and p<0.001). Regarding functional ratios, they were significantly lower for the dominant shoulder (p<0.001) and below 1.00 for both groups, indicating that the eccentric strength of the ER was not greater than the concentric strength of the IR. Elite junior tennis players without shoulder injury have shoulder rotation muscle strength imbalances that alter the normal functional ratio between rotator cuff muscles. Although these differences do not seem to affect the athletic performance, detection and prevention with exercise programs at an early age are recommended. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  14. Development of Quiet Honeycomb Panels

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.; Klos, Jacob

    2009-01-01

    Sandwich honeycomb composite panels are lightweight and strong, and, therefore, provide a reasonable alternative to the aluminum ring framelstringer architecture currently used for most aircraft airframes. The drawback to honeycomb panels is that they radiate noise into the aircraft cabin very efficiently provoking the need for additional sound treatment which adds weight and reduces the material's cost advantage. A series of honeycomb panels were made which incorporated different design strategies aimed at reducing the honeycomb panels' radiation efficiency while at the same time maintaining its strength. The majority of the desi gns were centered around the concept of creatin g areas of reduced stiffness in the panel by adding voids and recesses to the core. The effort culminated with a reinforced./recessed panel which had 6 dB higher transmission loss than the baseline solid core panel while maintaining comparable strength.

  15. Lifetimes and f-values of the D 2Σ- ← X 2Π system of OH and OD

    NASA Astrophysics Data System (ADS)

    Heays, Alan; de Oliveira, Nelson; Gans, Bérenger; Ito, Kenji; Boyé-Péronne, Séverine; Douin, Stéphane; Hickson, Kevin; Nahon, Laurent; Loison, Jean-Christophe

    2017-10-01

    The OH radical is abundant in the interstellar medium and cometary comae, where it plays a significant role in the photochemical cycle of water. Also, the oxidising potential of the Earth atmosphere is influenced by this molecule. The OH lifetime in the presence of ultraviolet radiation is of prime interest in all these locations. The vacuum-ultraviolet absorption of the D 2Σ- ← X 2Π system contributes to a reduction of this lifetime. It also provides an independent way to observe the OH molecule in the interstellar medium. But a reliable oscillator strength (f-value) is needed. Vacuum-ultraviolet absorption of the D 2Σ- ← X 2Π system of OH and OD was recorded with high spectral resolution in a plasma-discharge radical source and using synchrotron radiation coupled to the unique ultraviolet Fourier-transform spectrometer on the DESIRS beamline of synchrotron SOLEIL. Line oscillator strengths are absolutely calibrated with respect to the well-known A 2Σ+ ← X 2Π system. The new oscillator strength decreases the best-estimate lifetime of OH in an interstellar radiation field and reduces its uncertainty. We also measured line broadening of the excited D 2Σ- v=0 and 1 levels for the first time and find a lifetime for these states which is 5 times shorter than theoretically predicted.This new data will aid in the interpretation of astronomical observations and help improve photochemical models in many contexts.

  16. H- photodetachment and radiative attachment for astrophysical applications

    NASA Astrophysics Data System (ADS)

    McLaughlin, B. M.; Stancil, P. C.; Sadeghpour, H. R.; Forrey, R. C.

    2017-06-01

    We combine R-matrix calculations, asymptotic relations, and comparison to available experimental data to construct an H- photodetachment cross section reliable over a large range of photon energies and take into account the series of auto-detaching shape and Feshbach resonances between 10.92 and 14.35 eV. The accuracy of the cross section is controlled by ensuring that it satisfies all known oscillator strength sum rules, including contributions from the resonances and single-photon double-electron photodetachment. From the resulting recommended cross section, spontaneous and stimulated radiative attachment rate coefficients are obtained. Photodetachment rates are also computed for the standard interstellar radiation field, in diffuse and dense interstellar clouds, for blackbody radiation, and for high redshift distortion photons in the recombination epoch. Implications are investigated for these astrophysical radiation fields and epochs.

  17. Grip Strength Is Associated With Cognitive Performance in Schizophrenia and the General Population: A UK Biobank Study of 476559 Participants.

    PubMed

    Firth, Joseph; Stubbs, Brendon; Vancampfort, Davy; Firth, Josh A; Large, Matthew; Rosenbaum, Simon; Hallgren, Mats; Ward, Philip B; Sarris, Jerome; Yung, Alison R

    2018-06-06

    Handgrip strength may provide an easily-administered marker of cognitive functional status. However, further population-scale research examining relationships between grip strength and cognitive performance across multiple domains is needed. Additionally, relationships between grip strength and cognitive functioning in people with schizophrenia, who frequently experience cognitive deficits, has yet to be explored. Baseline data from the UK Biobank (2007-2010) was analyzed; including 475397 individuals from the general population, and 1162 individuals with schizophrenia. Linear mixed models and generalized linear mixed models were used to assess the relationship between grip strength and 5 cognitive domains (visual memory, reaction time, reasoning, prospective memory, and number memory), controlling for age, gender, bodyweight, education, and geographical region. In the general population, maximal grip strength was positively and significantly related to visual memory (coefficient [coeff] = -0.1601, standard error [SE] = 0.003), reaction time (coeff = -0.0346, SE = 0.0004), reasoning (coeff = 0.2304, SE = 0.0079), number memory (coeff = 0.1616, SE = 0.0092), and prospective memory (coeff = 0.3486, SE = 0.0092: all P < .001). In the schizophrenia sample, grip strength was strongly related to visual memory (coeff = -0.155, SE = 0.042, P < .001) and reaction time (coeff = -0.049, SE = 0.009, P < .001), while prospective memory approached statistical significance (coeff = 0.233, SE = 0.132, P = .078), and no statistically significant association was found with number memory and reasoning (P > .1). Grip strength is significantly associated with cognitive functioning in the general population and individuals with schizophrenia, particularly for working memory and processing speed. Future research should establish directionality, examine if grip strength also predicts functional and physical health outcomes in schizophrenia, and determine whether interventions which improve muscular strength impact on cognitive and real-world functioning.

  18. Circuit strength training improves muscle strength, functional performance and anthropometric indicators in sedentary elderly women.

    PubMed

    Mazini Filho, Mauro L; Aidar, Felipe J; Gama de Matos, Dihogo; Costa Moreira, Osvaldo; Patrocínio de Oliveira, Cláudia E; de Oliveira Venturini, Gabriela R; Magalhães Curty, Victor; Menezes Touguinha, Henrique; Caputo Ferreira, Maria E

    2017-04-26

    This study aimed to investigate the effects of circuit strength training on the muscle strength, functional autonomy and anthropometric indicators of the elderly. Were included 65 women divided in two groups: strength training (TG, n= 34) and control group (CG, n = 31). The strength-training group was subjected to a circuit shaped training program, three days per week, for a period of 12 weeks. In each training session, the circuit was repeated three times. In each circuit, all exercises wereperformed once, with 8 to 12 repetitions per exercise, with 30-seconds intervals between each exercise. TG showed significantly changes in body composition post 12 weeks, as decreases in body weight (Δ -1.5±1.8 kg) and BMI (Δ-0.57 ±0.74 kg/m²), and decreases in abdominal (Δ -3±1.61 cm), waist (Δ -1 ± 1.61 cm), hip (Δ -2.75±1.44 cm) and waist hip ratio circumference (Δ -0.02 ± 0.15 cm). For functional autonomy, TG showed increases post 12 weeks by 30-second chair stand (Δ 3.5±0.4 reps), six minute walk (Δ60.95±7.91 m), back scratch (Δ 3.2 ± 1.36 cm), and time up and go tests (Δ -1,62 ±0,15s). TG also showed increases in muscle strength post 12 weeks in both leg press (Δ 11±1,29 kg) and lat pulldown (Δ11 ±0,75 Kg). For CG, Body composition, functional autonomy and muscle strength did not improved in any moment. Hence, circuit strength training provides significant improvements inmuscle strength, functional performance and anthropometric indicators in sedentary elderly women.

  19. Magnetic fields driven by tidal mixing in radiative stars

    NASA Astrophysics Data System (ADS)

    Vidal, Jérémie; Cébron, David; Schaeffer, Nathanaël; Hollerbach, Rainer

    2018-04-01

    Stellar magnetism plays an important role in stellar evolution theory. Approximatively 10 per cent of observed main sequence (MS) and pre-main-sequence (PMS) radiative stars exhibit surface magnetic fields above the detection limit, raising the question of their origin. These stars host outer radiative envelopes, which are stably stratified. Therefore, they are assumed to be motionless in standard models of stellar structure and evolution. We focus on rapidly rotating, radiative stars which may be prone to the tidal instability, due to an orbital companion. Using direct numerical simulations in a sphere, we study the interplay between a stable stratification and the tidal instability, and assess its dynamo capability. We show that the tidal instability is triggered regardless of the strength of the stratification (Brunt-Väisälä frequency). Furthermore, the tidal instability can lead to both mixing and self-induced magnetic fields in stably stratified layers (provided that the Brunt-Väisälä frequency does not exceed the stellar spin rate in the simulations too much). The application to stars suggests that the resulting magnetic fields could be observable at the stellar surfaces. Indeed, we expect magnetic field strengths up to several Gauss. Consequently, tidally driven dynamos should be considered as a (complementary) dynamo mechanism, possibly operating in radiative MS and PMS stars hosting orbital companions. In particular, tidally driven dynamos may explain the observed magnetism of tidally deformed and rapidly rotating Vega-like stars.

  20. Study of photon strength functions via (γ→, γ', γ″) reactions at the γ3-setup

    NASA Astrophysics Data System (ADS)

    Isaak, Johann; Savran, Deniz; Beck, Tobias; Gayer, Udo; Krishichayan; Löher, Bastian; Pietralla, Norbert; Scheck, Marcus; Tornow, Werner; Werner, Volker; Zilges, Andreas

    2018-05-01

    One of the basic ingredients for the modelling of the nucleosynthesis of heavy elements are so-called photon strength functions and the assumption of the Brink-Axel hypothesis. This hypothesis has been studied for many years by numerous experiments using different and complementary reactions. The present manuscript aims to introduce a model-independent approach to study photon strength functions via γ-γ coincidence spectroscopy of photoexcited states in 128Te. The experimental results provide evidence that the photon strength function extracted from photoabsorption cross sections is not in an overall agreement with the one determined from direct transitions to low-lying excited states.

  1. Rectal Dose and Source Strength of the High-Dose-Rate Iridium-192 Both Affect Late Rectal Bleeding After Intracavitary Radiation Therapy for Uterine Cervical Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isohashi, Fumiaki, E-mail: isohashi@radonc.med.osaka-u.ac.j; Yoshioka, Yasuo; Koizumi, Masahiko

    2010-07-01

    Purpose: The purpose of this study was to reconfirm our previous findings that the rectal dose and source strength both affect late rectal bleeding after high-dose-rate intracavitary brachytherapy (HDR-ICBT), by using a rectal dose calculated in accordance with the definitions of the International Commission on Radiation Units and Measurements Report 38 (ICRU{sub RP}) or of dose-volume histogram (DVH) parameters by the Groupe Europeen de Curietherapie of the European Society for Therapeutic Radiology and Oncology. Methods and Materials: Sixty-two patients who underwent HDR-ICBT and were followed up for 1 year or more were studied. The rectal dose for ICBT was calculatedmore » by using the ICRP{sub RP} based on orthogonal radiographs or the DVH parameters based on computed tomography (CT). The total dose was calculated as the biologically equivalent dose expressed in 2-Gy fractions (EQD{sub 2}). The relationship between averaged source strength or the EQD{sub 2} and late rectal bleeding was then analyzed. Results: When patients were divided into four groups according to rectal EQD{sub 2} ({>=} or =} or <2.4 cGy.m{sup 2}.h{sup -1}), the group with both a high EQD{sub 2} and a high source strength showed a significantly greater probability of rectal bleeding for ICRU{sub RP}, D{sub 2cc}, and D{sub 1cc}. The patients with a median rectal dose above the threshold level did not show a greater frequency of rectal bleeding unless the source strength exceeded 2.4 cGy.m{sup 2}.h{sup -1}. Conclusions: Our results obtained with data based on ICRU{sub RP} and CT-based DVH parameters indicate that rectal dose and source strength both affect rectal bleeding after HDR-ICBT.« less

  2. Flower power: its association with bee power and floral functional morphology in papilionate legumes

    PubMed Central

    Córdoba, Silvina A.; Cocucci, Andrea A.

    2011-01-01

    Background and Aims A test was made of the hypothesis that papilionate legume flowers filter pollinators according to their ability to exert strength to open flowers to access rewards. In addition, interactions with pollen vectors were expected to explain the structural complexity of the architecture of these flowers since operative flower strength may be determined by a combination of morphological traits which form part of an intrafloral functional module. Methods Six papilionate species were studied: Collaea argentina, Desmodium uncinatum, Galactia latisiliqua, Lathyrus odoratus, Spartium junceum and Tipuana tipu. Measurements were made of the strength needed to open keels and the strength that pollinators were capable of exerting. Morphological traits of all petals were also measured to determine which of them could be either mutually correlated or correlated with operative strength and moment of strength and participated in a functional module. Key Results It was observed that pollinators were capable in all cases of exerting forces higher and often several times higher than that needed to access floral rewards, and no association could be detected between floral operative strength and strength exerted by the corresponding pollinators. On the other hand, strong and significant correlations were found among morphometric traits and, of these, with operative strength and moment. This was particularly evident among traits of the keel and the wings, presumably involved in the functioning of the floral moveable mechanism. Conclusions Though visitors are often many times stronger than the operative strength of the flowers they pollinate, exceptionally weak bees such as Apis mellifera cannot open the strongest flowers. On the other hand, strong correlations among certain petal morphometric traits (particularly between the keel and wings) give support to the idea that an intrafloral module is associated with the functioning of the mechanism of these legume flowers. In addition, the highly significant correlations found across petals support the view of functional phenotypic integration transcending the ontogenetic organization of flower structure. PMID:21821623

  3. E-Beam Processing of Polymer Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Hou, Tan-Hung; Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Chang, Chie K.; Kiefer, Richard L.

    2005-01-01

    Aliphatic polymers were identified as optimum radiation shielding polymeric materials for building multifunctional structural elements for in-space habitats. Conceptual damage tolerant configurations of polyolefins have been proposed, but many manufacturing issues relied on methods and materials which have sub-optimal radiation shielding characteristics (for example, epoxy matrix and adhesives). In the present approach, we shall investigate e-beam processing technologies for inclusion of high-strength aliphatic polymer reinforcement structures into a highly cross-linked polyolefin matrix. This paper reports the baseline thermo-mechanical properties of low density polyethylene and highly crystallized polyethylene.

  4. Window for radiation detectors and the like

    DOEpatents

    Sparks, C.J. Jr.; Ogle, J.C.

    1975-10-28

    An improved x- and gamma-radiation and particle transparent window for the environment-controlling enclosure of various types of radiation and particle detectors is provided by a special graphite foil of a thickness of from about 0.1 to 1 mil. The graphite must have very parallel hexagonal planes with a mosaic spread no greater than 5$sup 0$ to have the necessary strength in thin sections to support one atmosphere or more of pressure. Such graphite is formed by hot- pressing and annealing pyrolytically deposited graphite and thereafter stripping off layers of sufficient thickness to form the window.

  5. Joint proprioception, muscle strength, and functional ability in patients with osteoarthritis of the knee.

    PubMed

    van der Esch, M; Steultjens, M; Harlaar, J; Knol, D; Lems, W; Dekker, J

    2007-06-15

    To test the hypotheses that poor knee joint proprioception is related to limitations in functional ability, and poor proprioception aggravates the impact of muscle weakness on limitations in functional ability in osteoarthritis (OA) of the knee. Sixty-three patients with symptomatic OA of the knee were tested. Proprioceptive acuity was assessed by establishing the joint motion detection threshold (JMDT) in the anteroposterior direction. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by the 100-meter walking test, the Get Up and Go (GUG) test, and the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlation analyses were performed to assess the relationship between proprioception, muscle strength, and functional ability. Regression analyses were performed to assess the impact of proprioception on the relationship between muscle strength and functional ability. Poor proprioception (high JMDT) was related to more limitation in functional ability (walking time r = 0.30, P < 0.05; GUG time r = 0.30, P < 0.05; WOMAC-PF r = 0.26, P <0.05). In regression analyses, the interaction between proprioception and muscle strength was significantly related to functional ability (walking time, P < 0.001 and GUG time, P < 0.001) but not to WOMAC-PF score (P = 0.625). In patients with poor proprioception, reduction of muscle strength was associated with more severe deterioration of functional ability than in patients with accurate proprioception. Patients with poor proprioception show more limitation in functional ability, but this relationship is rather weak. In patients with poor proprioception, muscle weakness has a stronger impact on limitations in functional ability than in patients with accurate proprioception.

  6. Limited effects of micronutrient supplementation on strength and physical function after abdominal aortic aneurysmectomy.

    PubMed

    Watters, James M; Vallerand, Andrew; Kirkpatrick, Susan M; Abbott, Heather E; Norris, Sonya; Wells, George; Barber, Graeme G

    2002-08-01

    Tissue injury following ischemia-reperfusion is mediated in part by free oxygen radicals. We hypothesized that perioperative micronutrient supplementation would augment antioxidant defenses, minimize muscle injury, and minimize postoperative decreases in muscle strength and physical function following abdominal aortic aneurysmectomy. A university-affiliated hospital and regional referral center. A randomized, double-blind, placebo-controlled trial of supplementation with beta-carotene, vitamins C and E, zinc, and selenium for a period of 2-3 weeks prior to surgery and 1 week thereafter. Patients undergoing elective abdominal aortic aneurysmectomy (n=18 per group). Handgrip and other measures of strength and physical function. Handgrip and quadriceps strength decreased following surgery, but not to a significantly different extent in the placebo and supplemented groups. Self-rated physical function decreased following surgery in the placebo group and was preserved in the supplemented group. Perioperative supplementation with micronutrients with antioxidant properties has limited effects on strength and physical function following major elective surgery.

  7. Effects of Aerobic Exercise Applied Early After Coronary Artery Bypass Grafting on Pulmonary Function, Respiratory Muscle Strength, and Functional Capacity: A Randomized Controlled Trial.

    PubMed

    Borges, Daniel L; Silva, Mayara Gabrielle; Silva, Luan Nascimento; Fortes, João Vyctor; Costa, Erika Thalita; Assunção, Rebeca Pessoa; Lima, Carlos Magno; da Silva Nina, Vinícius José; Bernardo-Filho, Mário; Caputo, Danúbia Sá

    2016-09-01

    Physical activity is beneficial in several clinical situations and recommended for patients with ischemic heart disease, as well as for those undergoing cardiac surgery. In a randomized controlled trial, 34 patients underwent coronary artery bypass grafting. A randomized control group (n = 15) submitted to conventional physiotherapy. The intervention group (n = 19) received the same protocol plus additional aerobic exercise with cycle ergometer. Pulmonary function by spirometry, respiratory muscle strength by manovacuometry, and functional capacity through 6-minute walking test was assessed before surgery and at hospital discharge. There was significant reduction in pulmonary function in both groups. In both groups, inspiratory muscle strength was maintained while expiratory muscle strength significantly decreased. Functional capacity was maintained in the intervention group (364.5 [324.5 to 428] vs. 348 [300.7 to 413.7] meters, P = .06), but it decreased significantly in control group patients (320 [288.5 to 393.0] vs. 292 [237.0 to 336.0] meters, P = .01). A significant difference in functional capacity was also found in intergroup analyses at hospital discharge (P = .03). Aerobic exercise applied early on coronary artery bypass grafting patients may promote maintenance of functional capacity, with no impact on pulmonary function and respiratory muscle strength when compared with conventional physiotherapy.

  8. Ti:sapphire - A theoretical assessment for its spectroscopy

    NASA Astrophysics Data System (ADS)

    Da Silva, A.; Boschetto, D.; Rax, J. M.; Chériaux, G.

    2017-03-01

    This article tries to theoretically compute the stimulated emission cross-sections when we know the oscillator strength of a broad material class (dielectric crystals hosting metal-transition impurity atoms). We apply the present approach to Ti:sapphire and check it by computing some emission cross-section curves for both π and σ polarizations. We also set a relationship between oscillator strength and radiative lifetime. Such an approach will allow future parametric studies for Ti:sapphire spectroscopic properties.

  9. Ionizing radiation and taxonomic, functional and evolutionary diversity of bird communities.

    PubMed

    Morelli, Federico; Benedetti, Yanina; Mousseau, Timothy A; Møller, Anders Pape

    2018-08-15

    Ionizing radiation from nuclear accidents at Chernobyl, Fukushima and elsewhere has reduced the abundance, species richness and diversity of ecosystems. Here we analyzed the taxonomic, functional and evolutionary diversity of bird communities in forested areas around Chernobyl. Species richness decreased with increasing radiation, mainly in 2007. Functional richness, but not functional evenness and divergence, decreased with increasing level of ionizing radiation. Evolutionary distinctiveness of bird communities was higher in areas with higher levels of ionizing radiation. Regression tree models revealed that species richness was higher in bird communities in areas with radiation levels lower than 0.7 μSv/h. In contrast, when radiation levels were higher than 16.67 μSv/h, bird species richness reached a minimum. Functional richness was affected by two variables: Forest cover and radiation level. Higher functional richness was found in bird communities in areas with forest cover lower than 50%. In the areas with forest cover higher than 50%, the functional richness was lower when radiation level was higher than 0.91 μSv/h. Finally, the average evolutionary distinctiveness of bird communities was higher in areas with forest cover exceeding 50%. These findings imply that level of ionizing radiation interacted with forest cover to affect species richness and its component parts, i.e. taxonomic, functional, and evolutionary diversity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Hand grip strength and associated factors in non-institutionalised men and women 50 years and older in South Africa.

    PubMed

    Ramlagan, Shandir; Peltzer, Karl; Phaswana-Mafuya, Nancy

    2014-01-07

    Little is known about the prevalence, predictors and gender differences in hand grip strength of older adults in Africa. This study aims to investigate social and health differences in hand grip strength among older adults in a national probability sample of older South Africans who participated in the Study of Global Ageing and Adults Health (SAGE wave 1) in 2008. We conducted a national population-based cross-sectional study with a sample of 3840 men and women aged 50 years or older in South Africa. The questionnaire included socio-demographic characteristics, health variables, and anthropometric measurements. Linear multivariate regression analysis was performed to assess the association of social factors, health variables and grip strength. The mean overall hand grip strength was 37.9 kgs for men (mean age 61.1 years, SD = 9.1) and 31.5 kgs for women (mean age 62.0 years, SD = 9.7). In multivariate analysis among men, greater height, not being underweight and lower functional disability was associated with greater grip strength, and among women, greater height, better cognitive functioning, and lower functional disability were associated with greater grip strength. Greater height and lower functional disability were found for both older South African men and women to be significantly associated with grip strength.

  11. Core excitation effects on oscillator strengths for transitions in four electron atomic systems

    NASA Astrophysics Data System (ADS)

    Chang, T. N.; Luo, Yuxiang

    2007-06-01

    By including explicitly the electronic configurations with two and three simultaneously excited electronic orbital, we have extended the BSCI (B-spline based configuration interaction) method [1] to estimate directly the effect of inner shell core excitation to oscillator strengths for transitions in four-electron atomic systems. We will present explicitly the change in oscillator strengths due to core excitations, especially for transitions involving doubly excited states and those with very small oscillator strengths. The length and velocity results are typically in agreement better than 1% or less. [1] Tu-nan Chang, in Many-body Theory of Atomic Structure and Photoionization, edited by T. N. Chang (World Scientific, Singapore, 1993), p. 213-47; and T. N. Chang and T. K. Fang, Elsevier Radiation Physics and Chemistry 70, 173-190 (2004).

  12. Quadriceps Strength Asymmetry Following ACL Reconstruction Alters Knee Joint Biomechanics and Functional Performance at Time of Return to Activity

    PubMed Central

    Palmieri-Smith, RM; Lepley, LK

    2016-01-01

    Background Quadriceps strength deficits are observed clinically following anterior cruciate injury and reconstruction and are often not overcome despite rehabilitation. Given that quadriceps strength may be important for achieving symmetrical joint biomechanics and promoting long-term joint health, determining the magnitude of strength deficits that lead to altered mechanics is critical. Purpose To determine if the magnitude of quadriceps strength asymmetry alters knee and hip biomechanical symmetry, as well as functional performance and self-reported function. Study Design Cross-Sectional study. Methods Seventy-three patients were tested at the time they were cleared for return to activity following ACL reconstruction. Quadriceps strength and activation, scores on the International Knee Documentation Committee form, the hop for distance test, and sagittal plane lower extremity biomechanics were recorded while patients completed a single-legged hop. Results Patients with high and moderate quadriceps strength symmetry had larger central activation ratios as well as greater limb symmetry indices on the hop for distance compared to patients with low quadriceps strength symmetry (P<0.05). Similarly, knee flexion angle and external moment symmetry was higher in the patients with high and moderate quadriceps symmetry compared to those with low symmetry (P<0.05). Quadriceps strength was found to be associated with sagittal plane knee angle and moment symmetry (P<0.05). Conclusion Patients with low quadriceps strength displayed greater movement asymmetries at the knee in the sagittal plane. Quadriceps strength was related to movement asymmetries and functional performance. Rehabilitation following ACL reconstruction needs to focus on maximizing quadriceps strength, which likely will lead to more symmetrical knee biomechanics. PMID:25883169

  13. Quadriceps Strength Asymmetry After Anterior Cruciate Ligament Reconstruction Alters Knee Joint Biomechanics and Functional Performance at Time of Return to Activity.

    PubMed

    Palmieri-Smith, Riann M; Lepley, Lindsey K

    2015-07-01

    Quadriceps strength deficits are observed clinically after anterior cruciate ligament (ACL) injury and reconstruction and are often not overcome despite rehabilitation. Given that quadriceps strength may be important for achieving symmetrical joint biomechanics and promoting long-term joint health, determining the magnitude of strength deficits that lead to altered mechanics is critical. To determine if the magnitude of quadriceps strength asymmetry alters knee and hip biomechanical symmetry as well as functional performance and self-reported function. Cross-sectional study; Level of evidence, 3. A total of 73 patients were tested at the time they were cleared for return to activity after ACL reconstruction. Quadriceps strength and activation, scores on the International Knee Documentation Committee form, the hop for distance test, and sagittal plane lower extremity biomechanics were recorded while patients completed a single-legged hop. Patients with high and moderate quadriceps strength symmetry had larger central activation ratios as well as greater limb symmetry indices on the hop for distance compared with patients with low quadriceps strength symmetry (P < .05). Similarly, knee flexion angle and external moment symmetry were higher in the patients with high and moderate quadriceps symmetry compared with those with low symmetry (P < .05). Quadriceps strength was found to be associated with sagittal plane knee angle and moment symmetry (P < .05). Patients with low quadriceps strength displayed greater movement asymmetries at the knee in the sagittal plane. Quadriceps strength was related to movement asymmetries and functional performance. Rehabilitation after ACL reconstruction needs to focus on maximizing quadriceps strength, which likely will lead to more symmetrical knee biomechanics. © 2015 The Author(s).

  14. Sound radiation quantities arising from a resilient circular radiator.

    PubMed

    Aarts, Ronald M; Janssen, Augustus J E M

    2009-10-01

    Power series expansions in ka are derived for the pressure at the edge of a radiator, the reaction force on the radiator, and the total radiated power arising from a harmonically excited, resilient, flat, circular radiator of radius a in an infinite baffle. The velocity profiles on the radiator are either Stenzel functions (1-(sigma/a)2)n, with sigma the radial coordinate on the radiator, or linear combinations of Zernike functions Pn(2(sigma/a)2-1), with Pn the Legendre polynomial of degree n. Both sets of functions give rise, via King's integral for the pressure, to integrals for the quantities of interest involving the product of two Bessel functions. These integrals have a power series expansion and allow an expression in terms of Bessel functions of the first kind and Struve functions. Consequently, many of the results in [M. Greenspan, J. Acoust. Soc. Am. 65, 608-621 (1979)] are generalized and treated in a unified manner. A foreseen application is for loudspeakers. The relation between the radiated power in the near-field on one hand and in the far field on the other is highlighted.

  15. A radiation quality correction factor k for well-type ionization chambers for the measurement of the reference air kerma rate of (60)Co HDR brachytherapy sources.

    PubMed

    Schüller, Andreas; Meier, Markus; Selbach, Hans-Joachim; Ankerhold, Ulrike

    2015-07-01

    The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor kQ can be determined in order to measure the reference air kerma rate of (60)Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for (192)Ir HDR sources. The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of (60)Co and (192)Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor kQ was determined as the ratio of the calibration coefficients for (60)Co and (192)Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor kQ is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor kQ is 1.05. Both kQ values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of kQ is UkQ = 2.1% for both chamber types. The calibration coefficient of a well-type chamber for radiation fields of (60)Co HDR brachytherapy sources can be calculated from a given calibration coefficient for (192)Ir radiation by using a chamber-type-specific radiation quality correction factor kQ. However, the uncertainty of a (60)Co calibration coefficient calculated via kQ is at least twice as large as that for a direct calibration with a (60)Co source.

  16. On Acceptable Exposures to Short Pulses of Electromagnetic Fields

    DTIC Science & Technology

    2015-09-01

    in the comparisons given in this report, the electric and magnetic field strengths are assumed to be related as for a propagating wave . In the...adequacy of current standards is far from a settled issue. 15. SUBJECT TERMS International Commission on Non- Ionizing Radiation Protection, Institute...a source, the electric and magnetic fields are approximately related to each other in the same way as in a radiating wave far from the source. That

  17. VizieR Online Data Catalog: Effective collision strengths of Si VII (Sossah+, 2014)

    NASA Astrophysics Data System (ADS)

    Sossah, A. M.; Tayal, S. S.

    2017-08-01

    The purpose of present work is to calculate more accurate data for Si VII by using highly accurate target descriptions and by including a sufficient number of target states in the close-coupling expansion. We also included fine-structure effects in the close-coupling expansions to account for the relativistic effects. We used the B-spline Breit-Pauli R-matrix (BSR) codes (Zatsarinny 2006CoPhC.174..273Z) in our scattering calculations. The present method utilizes the term-dependent non-orthogonal orbital sets for the description of the target wave functions and scattering functions. The collisional and radiative parameters have been calculated for all forbidden and allowed transitions between the lowest 92 LSJ levels of 2s22p4, 2s2p5, 2p6, 2s22p33s, 2s22p33p, 2s22p33d, and 2s2p43s configurations of Si VII. (3 data files).

  18. Clinical effectiveness of low-power laser radiation and functioning of hemosalivatory barrier in patients with rheumatic diseases

    NASA Astrophysics Data System (ADS)

    Gladkova, Natalia D.; Karachistov, Alexander B.; Komarova, Lia G.; Alekseeva, Olga P.; Grunina, Elena A.

    1996-11-01

    We have estimated the clinical effectiveness of several regimes and ways of low power laser therapy (LT) on the basis of a double 'blind', placebo-controlling randomizing comparative test in 454 patients with rheumatic diseases (RD). LT for RD has a well-expressed placebo effect. The level of clinical effect of LT for RD is not so high. We couldn't achieve 'a considerable improvement' in any cases, 'an improvement' was secured in only 18 percent. LT should be viewed as a symptomatic means, with a primary anesthetic and feebly expressed anti-inflammatory effect, which can not influence the course of the rheumatoid process. Only in 15 percent of patients with RD, a sufficient functioning of hemo-salivary barrier was observed, the latter providing a reserve for adaption mechanism, which leads under the influence of stressor agents of medium strength not only to anesthetic, but also to moderately expressed anti- inflammatory effect.

  19. Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy

    PubMed Central

    Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M.; Fowler, Eileen; Greenberg, Marcia B.; Malkus, Elizabeth C.; Rebibo, Odelia; Siener, Catherine S.; Caraco, Yoseph; Kolodny, Edwin H.; Lau, Heather A.; Pestronk, Alan; Shieh, Perry; Mayhew, Jill E.

    2017-01-01

    Abstract Objective: To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Methods: Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Results: Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. Conclusions: The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function. PMID:28827485

  20. Strength functions, entropies, and duality in weakly to strongly interacting fermionic systems.

    PubMed

    Angom, D; Ghosh, S; Kota, V K B

    2004-01-01

    We revisit statistical wave function properties of finite systems of interacting fermions in the light of strength functions and their participation ratio and information entropy. For weakly interacting fermions in a mean-field with random two-body interactions of increasing strength lambda, the strength functions F(k) (E) are well known to change, in the regime where level fluctuations follow Wigner's surmise, from Breit-Wigner to Gaussian form. We propose an ansatz for the function describing this transition which we use to investigate the participation ratio xi(2) and the information entropy S(info) during this crossover, thereby extending the known behavior valid in the Gaussian domain into much of the Breit-Wigner domain. Our method also allows us to derive the scaling law lambda(d) approximately 1/sqrt[m] ( m is number of fermions) for the duality point lambda= lambda(d), where F(k) (E), xi(2), and S(info) in both the weak ( lambda=0 ) and strong mixing ( lambda= infinity ) basis coincide. As an application, the ansatz function for strength functions is used in describing the Breit-Wigner to Gaussian transition seen in neutral atoms CeI to SmI with valence electrons changing from 4 to 8.

  1. Associations between aging-related changes in grip strength and cognitive function in older adults: A systematic review.

    PubMed

    Zammit, Andrea R; Robitaille, Annie; Piccinin, Andrea; Muniz-Terrera, Graciela; Hofer, Scott M

    2018-03-08

    Grip strength and cognitive function reflect upper body muscle strength and mental capacities. Cross-sectional research has suggested that in old age these two processes are moderately to highly associated, and that an underlying common cause drives this association. Our aim was to synthesize and evaluate longitudinal research addressing whether changes in grip strength are associated with changes in cognitive function in healthy older adults. We systematically reviewed English-language research investigating the longitudinal association between repeated measures of grip strength and of cognitive function in community-dwelling older adults to evaluate the extent to which the two indices decline concurrently. We used four search engines: Embase, PsychINFO, PubMed, and Web of Science. Of 459 unique citations, 6 met our full criteria: 4 studies reported a longitudinal association between rates of change in grip strength and cognitive function in older adults, 2 of which reported the magnitudes of these associations as ranging from low to moderate; 2 studies reported significant cross-sectional but not longitudinal associations among rates of change. All studies concluded that cognitive function and grip strength declined, on average, with increasing age, although with little to no evidence for longitudinal associations among rates of change. Future research is urged to expand the study of physical and cognitive associations in old age using a within-person and multi-study integrative approach to evaluate the reliability of longitudinal results with greater emphasis on the magnitude of this association.

  2. On The Detection Of Footprints From Strong Electron Acceleration In High-Intensity Laser Fields, Including The Unruh Effect

    NASA Astrophysics Data System (ADS)

    Thirolf, P. G.; Habs, D.; Homma, K.; Hörlein, R.; Karsch, S.; Krausz, F.; Maia, C.; Osterhoff, J.; Popp, A.; Schmid, K.; Schreiber, J.; Schützhold, R.; Tajima, T.; Veisz, L.; Wulz, J.; Yamazaki, T.

    2010-04-01

    The ultra-high fields of high-power short-pulse lasers are expected to contribute to understanding fundamental properties of the quantum vacuum and quantum theory in very strong fields. For example, the neutral QED vacuum breaks down at the Schwinger field strength of 1.3 1018V/m, where a virtual e+e- pair gains its rest mass energy over a Compton wavelength and materializes as a real pair. At such an ultra-high field strength, an electron experiences an acceleration of as = 2 1028 g and hence fundamental phenomena such as the long predicted Unruh effect start to play a role. The Unruh effect implies that the accelerated electron experiences the vacuum as a thermal bath with the Unruh temperature. In its accelerated frame the electron scatters photons off the thermal bath, corresponding to the emission of an entangled pair of photons in the laboratory frame. In upcoming experiments with intense accelerating fields, we will encounter a set of opportunities to experimentally study the radiation from electrons under extreme fields. Even before the Unruh radiation detection, we should run into the copious Larmor radiation. The detection of Larmor radiation and its characterization themselves have never been experimentally carried out to the best of our knowledge, and thus this amounts to a first serious study of physics at extreme acceleration. For example, we can study radiation damping effects like the Landau-Lifshitz radiation. Furthermore, the experiment should be able to confirm or disprove whether the Larmor and Landau-Lifshitz radiation components may be enhanced by a collective (N2) radiation, if a tightly clumped cluster of electrons is accelerated. The technique of laser driven dense electron sheet formation by irradiating a thin DLC foil target should provide such a coherent electron cluster with a very high density. If and when such mildly relativistic electron sheets are realized, a counterpropagating second laser can interact with them coherently. Under these conditions enhanced Larmor and Unruh radiation signals may be observed. Detection of the Unruh photons (together with its competing radiation components) is envisaged via Compton polarimetry in a novel highly granular 2D-segmented position-sensitive germanium detector.

  3. Relationship between tongue strength, lip strength, and nutrition-related sarcopenia in older rehabilitation inpatients: a cross-sectional study

    PubMed Central

    Sakai, Kotomi; Nakayama, Enri; Tohara, Haruka; Kodama, Keiji; Takehisa, Takahiro; Takehisa, Yozo; Ueda, Koichiro

    2017-01-01

    Objective The objective of this study was to clarify the relationship between tongue strength, lip strength, and nutrition-related sarcopenia (NRS). Patients and methods A total of 201 older inpatients aged ≥65 years (70 men, median age: 84 years, interquartile range: 79–89 years) consecutively admitted for rehabilitation were included in this cross-sectional study. The main factors evaluated were the presence of NRS diagnosed by malnutrition using the Mini-Nutrition Assessment – Short Form, sarcopenia based on the criteria of the Asian Working Group for Sarcopenia, tongue strength, and lip strength. Other factors such as age, sex, comorbidity, physical function, cognitive function, and oral intake level were also assessed. Results In all, 78 (38.8%) patients were allocated to the NRS group, and 123 (61.2%) patients were allocated to the non-NRS group. The median tongue strength and lip strength (interquartile range) were significantly lower in the NRS group (tongue: 22.9 kPa [17.7–27.7 kPa] and lip: 7.2 N [5.6–9.8 N]) compared with the non-NRS group (tongue: 29.7 kPa [24.8–35.1 kPa] and lip: 9.9 N [8.4–12.3 N], P<0.001 for both). Multivariable logistic regression analysis showed that NRS was independently associated with tongue strength (odds ratio [OR] =0.93, 95% confidence interval [CI] 0.87–0.98, P=0.012) and lip strength (OR =0.76, 95% CI 0.66–0.88, P<0.001), even after adjusting for age, sex, comorbidity, physical function, cognitive function, and oral intake level. Conclusion The likelihood of occurrence of NRS decreased when tongue strength or lip strength increased. Tongue strength and lip strength may be important factors for preventing and improving NRS, regardless of the presence of low oral intake level in older rehabilitation inpatients. PMID:28814847

  4. Residual strength of GFR/POM as a function of damage

    NASA Astrophysics Data System (ADS)

    Zachariev, G.; Rudolph, H.-V.; Ivers, H.

    2010-07-01

    A relation between the residual strength and the dispersed damage accumulated in a short fiber reinforced polyoximethylene (GFR/POM) samples under tension is found. For that purpose dependencies of damage and residual strength on loading percentage are used. Damage as a function of loading percentage is known for the material under study. To find the dependency of residual strength on loading percentage a subsidiary function is introduced and a method is proposed for determination of the parameters in the dependency on the basis of the experimental data. Both damage and residual strength are measured after unloading samples that have been loaded applying different loading percentages. Damage is the accumulation of new internal surfaces that arise under mechanical loading in the whole volume of the material. They are registered by a new original method of X-ray refraction. The analytical relation between the residual strength and damage accumulated is compared to the experimental results found for the residual strength under different damage degrees.

  5. Photoionization and photofragmentation of the C 60 + molecular ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baral, K. K.; Aryal, N. B.; Esteves-Macaluso, D. A.

    2016-03-01

    Cross-section measurements are reported for single and double photoionization of Cmore » $$+\\atop{60}$$ ions in the photon energy range 18-150 eV accompanied by the loss of zero to seven pairs of carbon atoms, as well as for fragmentation without ionization resulting in loss of two to eight pairs of C atoms in the photon energy range 18-65 eV. Absolute measurements were performed by merging a beam of C$$+\\atop{60}$$ molecular ions with a beam of monochromatized synchrotron radiation. Product channels involving dissociation yielding smaller fullerene fragment ions account for nearly half of the total measured oscillator strength in this energy range. The sum of cross sections for the measured product channels is compared to a published calculation of the total photoabsorption cross section of neutral C 60 based on time-dependent density-functional theory. Lastly, this comparison and an accounting of oscillator strengths indicate that with the exception of C$$+\\atop{58}$$, the most important product channels resulting from photoabsorption were accounted for in the experiment. Threshold energies for the successive removal of carbon atom pairs accompanying photoionization are also determined from the measurements.« less

  6. Intense natural selection preceded the invasion of new adaptive zones during the radiation of New World leaf-nosed bats.

    PubMed

    Rossoni, Daniela M; Assis, Ana Paula A; Giannini, Norberto P; Marroig, Gabriel

    2017-09-11

    The family Phyllostomidae, which evolved in the New World during the last 30 million years, represents one of the largest and most morphologically diverse mammal families. Due to its uniquely diverse functional morphology, the phyllostomid skull is presumed to have evolved under strong directional selection; however, quantitative estimation of the strength of selection in this extraordinary lineage has not been reported. Here, we used comparative quantitative genetics approaches to elucidate the processes that drove cranial evolution in phyllostomids. We also quantified the strength of selection and explored its association with dietary transitions and specialization along the phyllostomid phylogeny. Our results suggest that natural selection was the evolutionary process responsible for cranial diversification in phyllostomid bats. Remarkably, the strongest selection in the phyllostomid phylogeny was associated with dietary specialization and the origination of novel feeding habits, suggesting that the adaptive diversification of phyllostomid bats was triggered by ecological opportunities. These findings are consistent with Simpson's quantum evolutionary model of transitions between adaptive zones. The multivariate analyses used in this study provides a powerful tool for understanding the role of evolutionary processes in shaping phenotypic diversity in any group on both micro- and macroevolutionary scales.

  7. Remarkably enhanced thermal stability of an irradiation-crosslinked ethylene-octene copolymer by incorporation of a novel organic/inorganic hybrid nano-sensitizer

    NASA Astrophysics Data System (ADS)

    Zhang, Sideng; Sun, Bin; Jiang, Xiaoze; Li, Lili; Meng, Zhouqi; Zhu, Meifang

    2015-01-01

    We report a novel method to improve the anti-thermal-deformation performance of an ethylene-octene copolymer (POE) using vinyl functionalized silica nanoparticles (M-SiO2) as a sensitizer to enhance radiation-induced crosslinking. The M-SiO2 nanoparticles were prepared by coupling commercially available silica nanoparticles with KH570 (γ-methacryloxypropyl-trimethoxysilane, γ-MPS) and were blended with POE by melt blending. Then, the mixture was irradiated with γ-rays under a nitrogen atmosphere to form the crosslinked POE/M-SiO2 nanocomposite. The novel nanocomposites were characterized, and the results showed that the gel fraction was proportional to the content of M-SiO2 in the loading range studied in this work. When the content of M-SiO2 was 10 wt%, the gel fraction of POE was increased by approximately 50%, and the softening temperature (T0.5D) increased from 104.4 °C to 224.6 °C after a 120 kGy dose of radiation. The tensile strength of the POE/M-SiO2-10 nanocomposite was better than that of the neat POE copolymer irradiated with an absorption dose up to 100 kGy. In contrast, the elongation of the POE/M-SiO2-10 nanocomposite was lower than that of the neat POE irradiated under the same conditions, due to the increased degree of crosslinking by radiation. These results clearly demonstrated that the use of M-SiO2 as an irradiation sensitizer effectively enhanced the radiation-induced crosslinking of POE.

  8. Free-form reticulated shell structures searched for maximum buckling strength

    NASA Astrophysics Data System (ADS)

    Takiuchi, Yuji; Kato, Shiro; Nakazawa, Shoji

    2017-10-01

    In this paper, a scheme of shape optimization is proposed for maximum buckling strength of free-form steel reticulated shells. In order to discuss the effectiveness of objective functions with respect to maximizing buckling strength, several different optimizations are applied to shallow steel single layer reticulated shells targeting rigidly jointed tubular members. The objective functions to be compared are linear buckling load, strain energy, initial yield load, and elasto-plastic buckling strength evaluated based on Modified Dunkerley Formula. With respect to obtained free-forms based on the four optimization schemes, both of their elastic buckling and elasto-plastic buckling behaviour are investigated and compared considering geometrical imperfections. As a result, it is concluded that the first and fourth optimization methods are effective from a viewpoint of buckling strength. And the relation between generalized slenderness ratio and appropriate objective function applied in buckling strength maximization is made clear.

  9. Photon Strength Function at Low Energies in 95Mo

    DOE PAGES

    Wiedeking, M.; Bernstein, L. A.; Allmond, J. M.; ...

    2014-05-01

    A new and model-independent experimental method has been developed to determine the energy dependence of the photon strength function. It is designed to study statistical feeding from the quasi continuum to individual low-lying discrete levels. This new technique is presented and results for 95Mo are compared to data from the University of Oslo. In particular, questions regarding the existence of the low-energy enhancement in the photon strength function are addressed.

  10. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis.

    PubMed

    Park, Sang-Kyoon; Kobsar, Dylan; Ferber, Reed

    2016-10-01

    The relationship between muscle strength, gait biomechanics, and self-reported physical function and pain for patients with knee osteoarthritis is not well known. The objective of this study was to investigate these relationships in this population. Twenty-four patients with knee osteoarthritis and 24 healthy controls were recruited. Self-reported pain and function, lower-limb maximum isometric force, and frontal plane gait kinematics during treadmill walking were collected on all patients. Between-group differences were assessed for 1) muscle strength and 2) gait biomechanics. Linear regressions were computed within the knee osteoarthritis group to examine the effect of muscle strength on 1) self-reported pain and function, and 2) gait kinematics. Patients with knee osteoarthritis exhibited reduced hip external rotator, knee extensor, and ankle inversion muscle force output compared with healthy controls, as well as increased peak knee adduction angles (effect size=0.770; p=0.013). Hip abductor strength was a significant predictor of function, but not after controlling for covariates. Ankle inversion, hip abduction, and knee flexion strength were significant predictors of peak pelvic drop angle after controlling for covariates (34.4% unique variance explained). Patients with knee osteoarthritis exhibit deficits in muscle strength and while they play an important role in the self-reported function of patients with knee osteoarthritis, the effect of covariates such as sex, age, mass, and height was more important in this relationship. Similar relationships were observed from gait variables, except for peak pelvic drop, where hip, knee, and ankle strength remained important predictors of this variable after controlling for covariates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Influence of dimethyl sulfide on the carbon cycle and biological production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shanlin; Maltrud, Mathew; Elliott, Scott

    Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes inmore » phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.« less

  12. Influence of dimethyl sulfide on the carbon cycle and biological production

    DOE PAGES

    Wang, Shanlin; Maltrud, Mathew; Elliott, Scott; ...

    2018-02-27

    Dimethyl sulfide (DMS) is a significant source of marine sulfate aerosol and plays an important role in modifying cloud properties. Fully coupled climate simulations using dynamic marine ecosystem and DMS calculations are conducted to estimate DMS fluxes under various climate scenarios and to examine the sign and strength of phytoplankton-DMS-climate feedbacks for the first time. Simulation results show small differences in the DMS production and emissions between pre-industrial and present climate scenarios, except for some areas in the Southern Ocean. There are clear changes in surface ocean DMS concentrations moving into the future, and they are attributable to changes inmore » phytoplankton production and competition driven by complex spatially varying mechanisms. Comparisons between parallel simulations with and without DMS fluxes into the atmosphere show significant differences in marine ecosystems and physical fields. Without DMS, the missing subsequent aerosol indirect effects on clouds and radiative forcing lead to fewer clouds, more solar radiation, and a much warmer climate. Phaeocystis, a uniquely efficient organosulfur producer with a growth advantage under cooler climate states, can benefit from producing the compound through cooling effects of DMS in the climate system. Our results show a tight coupling between the sulfur and carbon cycles. The ocean carbon uptake declines without DMS emissions to the atmosphere. The analysis indicates a weak positive phytoplankton-DMS-climate feedback at the global scale, with large spatial variations driven by individual autotrophic functional groups and complex mechanisms. The sign and strength of the feedback vary with climate states and phytoplankton groups. This highlights the importance of a dynamic marine ecosystem module and the sulfur cycle mechanism in climate projections.« less

  13. Validity and reliability of isometric, isokinetic and isoinertial modalities for the assessment of quadriceps muscle strength in patients with total knee arthroplasty.

    PubMed

    Lienhard, K; Lauermann, S P; Schneider, D; Item-Glatthorn, J F; Casartelli, N C; Maffiuletti, N A

    2013-12-01

    Reliability of isometric, isokinetic and isoinertial modalities for quadriceps strength evaluation, and the relation between quadriceps strength and physical function was investigated in 29 total knee arthroplasty (TKA) patients, with an average age of 63 years. Isometric maximal voluntary contraction torque, isokinetic peak torque, and isoinertial one-repetition maximum load of the involved and uninvolved quadriceps were evaluated as well as objective (walking parameters) and subjective physical function (WOMAC). Reliability was good and comparable for the isometric, isokinetic, and isoinertial strength outcomes on both sides (intraclass correlation coefficient range: 0.947-0.966; standard error of measurement range: 5.1-9.3%). Involved quadriceps strength was significantly correlated to walking speed (r range: 0.641-0.710), step length (r range: 0.685-0.820) and WOMAC function (r range: 0.575-0.663), independent from the modality (P < 0.05). Uninvolved quadriceps strength was also significantly correlated to walking speed (r range: 0.413-0.539), step length (r range: 0.514-0.608) and WOMAC function (r range: 0.374-0.554) (P < 0.05), except for WOMAC function/isokinetic peak torque (P > 0.05). In conclusion, isometric, isokinetic, and isoinertial modalities ensure valid and reliable assessment of quadriceps muscle strength in TKA patients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Effects of Radiation and a High Iron Load on Bone Mineral Density

    NASA Technical Reports Server (NTRS)

    Yuen, E.; Morgan, J. L. L.; Zwart, S. R.; Gonzales, E.; Camp, K.; Smith, S. M.; Bloomfield, S. A.

    2012-01-01

    Astronauts on long duration space flight missions to the moon or mars are exposed to radiation and have increase iron (Fe) stores, both of which can independently induce oxidative stress and may exacerbate bone mass loss and strength. We hypothesize a high Fe diet and a fractionated gamma radiation exposure would increase oxidative stress and lower bone mass. Three mo-old, SD rats (n=32) were randomized to receive an adequate Fe diet (45 mg Fe/kg diet) or a high Fe diet (650 mg Fe/kg diet) for 4 wks and either a cumulative 3 Gy dose (fractionated 8 x 0.375 Gy) of gamma radiation (Cs-137) or sham exposure starting on day 14. Elisa kit assessed serum catalase, clinical analyzer assessed serum Fe status and ex vivo pQCT scans measured bone parameters in the proximal/midshaft tibia and femoral neck. Mechanical strength was assessed by 3-pt bending and femoral neck test. There is a significant decrease in trabecular bone mineral density (BMD) from radiation (p less than 0.05) and a trend in diet (p=0.05) at the proximal tibia. There is a significant interaction in cortical BMD from the combined treatments at the midshaft tibia (p less than 0.05). There is a trending decrease in total BMD from diet (p=0.07) at the femoral neck. In addition, high serum Fe was correlated to low trabecular BMD (p less than 0.05) and high serum catalase was correlated to low BMD at all 3 bone sites (p less than 0.05). There was no difference in the max load of the tibia or femoral neck. Radiation and a high iron diet increases iron status and catalase in the serum and decreases BMD.

  15. Effect of Free Jet on Refraction and Noise

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Georgiadis, Nicholas J.; Bridges, James E.; Dippold, Vance F., III

    2005-01-01

    This article investigates the role of a free jet on the sound radiated from a jet. In particular, the role of an infinite wind tunnel, which simulates the forward flight condition, is compared to that of a finite wind tunnel. The second configuration is usually used in experiments, where the microphones are located in a static ambient medium far outside the free jet. To study the effect of the free jet on noise, both propagation and source strength need to be addressed. In this work, the exact Green's function in a locally parallel flow is derived for a simulated flight case. Numerical examples are presented that show a reduction in the magnitude of the Green's function in the aft arc and an increase in the forward arc for the simulated flight condition. The effect of finite wind tunnel on refraction is sensitive to the source location and is most pronounced in the aft arc. A Reynolds-averaged Navier-Stokes solution (RANS) yields the required mean flow and turbulence scales that are used in the jet mixing noise spectrum calculations. In addition to the sound/flow interaction, the separate effect of source strength and elongation of the noise-generating region of the jet in a forward flight is studied. Comparisons are made with experiments for the static and finite tunnel cases. Finally, the standard free-jet shear corrections that convert the finite wind tunnel measurements to an ideal wind tunnel arrangement are evaluated.

  16. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy

    PubMed Central

    Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok

    2016-01-01

    Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404

  17. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    PubMed

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  18. Ab Initio Modeling of Molecular Radiation

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Schwenke, David

    2014-01-01

    Radiative emission from excited states of atoms and molecules can comprise a significant fraction of the total heat flux experienced by spacecraft during atmospheric entry at hypersonic speeds. For spacecraft with ablating heat shields, some of this radiative flux can be absorbed by molecular constituents in the boundary layer that are formed by the ablation process. Ab initio quantum mechanical calculations are carried out to predict the strengths of these emission and absorption processes. This talk will describe the methods used in these calculations using, as examples, the 4th positive emission bands of CO and the 1g+ 1u+ absorption in C3. The results of these calculations are being used as input to NASA radiation modeling codes like NeqAir, HARA and HyperRad.

  19. Fluid dynamic aspects of jet noise generation

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The location of the noise sources within jet flows, their relative importance to the overall radiated field, and the mechanisms by which noise generation occurs, are studied by detailed measurements of the level and spectral composition of the radiated sound in the far field. Directional microphones are used to isolate the contribution to the radiated sound of small regions of the flow, and for cross-correlation between the radiated acoustic field and either the velocity fluctuations or the pressure fluctuations in the source field. Acquired data demonstrate the supersonic convection of the acoustic field and the resulting limited upstream influence of the signal source, as well as a possible increase of signal strength as it propagates toward the centerline of the flow.

  20. Atomic Data and Spectral Line Intensities for Ne III

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Thomas, R. J.; Landi, E.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    Electron impact collision strengths, energy levels, oscillator strengths and spontaneous radiative decay rates are calculated for Ne III. The configurations used are 2s(sup 2) 2p(sup 4),2s2p(sup 5),2s(sup 2) 2p(sup 3)3s, and 2s(sup 2)3p(sup 3)3d giving rise to 57 fine-structure levels in intermediate coupling. Collision strengths are calculated at five incident energies, 5, 10, 15, 20, and 25 Ry. Excitation rate coefficients are calculated by assuming a Maxwellian electron velocity distribution at an electron temperature of logT,(K)=5.0, corresponding to maximum abundance of Ne III. Using the excitation rate coefficients and the radiative transition rates, statistical equilibrium equations for level populations are solved at electron densities covering the range of 10(exp 8)-10(exp 14) per cubic centimeter. Relative spectral line intensities are calculated. Proton excitation rates between the lowest three levels have been included in the statistical equilibrium equations. The predicted Ne III line intensities are compared with SERTS rocket measurements of a solar active region and of a laboratory EUV light source.

  1. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    NASA Astrophysics Data System (ADS)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  2. Phase stability, swelling, microstructure and strength of Ti 3SiC 2-TiC ceramics after low dose neutron irradiation

    DOE PAGES

    Ang, Caen; Zinkle, Steven; Shih, Chunghao; ...

    2016-10-22

    In this study, M n+1AX n (MAX) phase Ti 3SiC 2 materials were neutron irradiated at ~400, ~630, and 700 °C to a fluence of ~2 × 10 25 n/m 2 (E > 0.1 MeV). After irradiation at ~400 °C, anisotropic c-axis dilation of ~1.5% was observed. Room temperature strength was reduced from 445 ± 29 MPa to 315 ± 33 MPa and the fracture surfaces showed flat facets and transgranular cracks instead of typical kink-band deformation and bridging ligaments. XRD phase analysis indicated an increase of 10–15 wt% TiC. After irradiation at ~700 °C there were no lattice parametermore » changes, ~5 wt% decomposition to TiC occurred, and strength was 391 ± 71 MPa and 378 ± 31 MPa. The fracture surfaces indicated kink-band based deformation but with lesser extent of delamination than as-received samples. Finally, Ti 3SiC 2 appears to be radiation tolerant at ~400 °C, and increasingly radiation resistant at ~630–700 °C, but a higher temperature may be necessary for full recovery.« less

  3. Performance on the Functional Movement Screen Is Related to Hop Performance But Not to Hip and Knee Strength in Collegiate Football Players.

    PubMed

    Willigenburg, Nienke; Hewett, Timothy E

    2017-03-01

    To define the relationship between Functional Movement Screen (FMS) scores and hop performance, hip strength, and knee strength in collegiate football players. Cross-sectional cohort. Freshmen of a Division I collegiate American football team (n = 59). The athletes performed the FMS, and also a variety of hop tests, isokinetic knee strength, and isometric hip strength tasks. We recorded total FMS score, peak strength, and hop performance, and we calculated asymmetries between legs on the different tasks. Spearman correlation coefficients quantified the relationships between these measures, and χ analyses compared the number of athletes with asymmetries on the different tasks. We observed significant correlations (r = 0.38-0.56, P ≤ 0.02) between FMS scores and hop distance but not between FMS scores and hip or knee strength (all P ≥ 0.21). The amount of asymmetry on the FMS test was significantly correlated to the amount of asymmetry on the timed 6-m hop (r = 0.44, P < 0.01) but not to hip or knee strength asymmetries between limbs (all P ≥ 0.34). Functional Movement Screen score was positively correlated to hop distance, and limb asymmetry in FMS tasks was correlated to limb asymmetry in 6-m hop time in football players. No significant correlations were observed between FMS score and hip and knee strength or between FMS asymmetry and asymmetries in hip and knee strength between limbs. These results indicate that a simple hop for distance test may be a time-efficient and cost-efficient alternative to FMS testing in athletes and that functional asymmetries between limbs do not coincide with strength asymmetries.

  4. The dynamic radiation environment assimilation model (DREAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, Geoffrey D; Koller, Josef; Tokar, Robert L

    2010-01-01

    The Dynamic Radiation Environment Assimilation Model (DREAM) is a 3-year effort sponsored by the US Department of Energy to provide global, retrospective, or real-time specification of the natural and potential nuclear radiation environments. The DREAM model uses Kalman filtering techniques that combine the strengths of new physical models of the radiation belts with electron observations from long-term satellite systems such as GPS and geosynchronous systems. DREAM includes a physics model for the production and long-term evolution of artificial radiation belts from high altitude nuclear explosions. DREAM has been validated against satellites in arbitrary orbits and consistently produces more accurate resultsmore » than existing models. Tools for user-specific applications and graphical displays are in beta testing and a real-time version of DREAM has been in continuous operation since November 2009.« less

  5. Accuracy and reproducibility of bending stiffness measurements by mechanical response tissue analysis in artificial human ulnas.

    PubMed

    Arnold, Patricia A; Ellerbrock, Emily R; Bowman, Lyn; Loucks, Anne B

    2014-11-07

    Osteoporosis is characterized by reduced bone strength, but no FDA-approved medical device measures bone strength. Bone strength is strongly associated with bone stiffness, but no FDA-approved medical device measures bone stiffness either. Mechanical Response Tissue Analysis (MRTA) is a non-significant risk, non-invasive, radiation-free, vibration analysis technique for making immediate, direct functional measurements of the bending stiffness of long bones in humans in vivo. MRTA has been used for research purposes for more than 20 years, but little has been published about its accuracy. To begin to investigate its accuracy, we compared MRTA measurements of bending stiffness in 39 artificial human ulna bones to measurements made by Quasistatic Mechanical Testing (QMT). In the process, we also quantified the reproducibility (i.e., precision and repeatability) of both methods. MRTA precision (1.0±1.0%) and repeatability (3.1 ± 3.1%) were not as high as those of QMT (0.2 ± 0.2% and 1.3+1.7%, respectively; both p<10(-4)). The relationship between MRTA and QMT measurements of ulna bending stiffness was indistinguishable from the identity line (p=0.44) and paired measurements by the two methods agreed within a 95% confidence interval of ± 5%. If such accuracy can be achieved on real human ulnas in situ, and if the ulna is representative of the appendicular skeleton, MRTA may prove clinically useful. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Neutrino-pair emission from nuclear de-excitation in core-collapse supernova simulations

    NASA Astrophysics Data System (ADS)

    Fischer, T.; Langanke, K.; Martínez-Pinedo, G.

    2013-12-01

    We study the impact of neutrino-pair production from the de-excitation of highly excited heavy nuclei on core-collapse supernova simulations, following the evolution up to several 100 ms after core bounce. Our study is based on the agile-boltztransupernova code, which features general relativistic radiation hydrodynamics and accurate three-flavor Boltzmann neutrino transport in spherical symmetry. In our simulations the nuclear de-excitation process is described in two different ways. At first we follow the approach proposed by Fuller and Meyer [Astrophys. J.AJLEEY0004-637X10.1086/170317 376, 701 (1991)], which is based on strength functions derived in the framework of the nuclear Fermi-gas model of noninteracting nucleons. Second, we parametrize the allowed and forbidden strength distributions in accordance with measurements for selected nuclear ground states. We determine the de-excitation strength by applying the Brink hypothesis and detailed balance. For both approaches, we find that nuclear de-excitation has no effect on the supernova dynamics. However, we find that nuclear de-excitation is the leading source for the production of electron antineutrinos as well as heavy-lepton-flavor (anti)neutrinos during the collapse phase. At sufficiently high densities, the associated neutrino spectra are influenced by interactions with the surrounding matter, making proper simulations of neutrino transport important for the determination of the neutrino-energy loss rate. We find that, even including nuclear de-excitations, the energy loss during the collapse phase is overwhelmingly dominated by electron neutrinos produced by electron capture.

  7. Electron beam processed transdermal delivery system for administration of an anti-anginal agent

    NASA Astrophysics Data System (ADS)

    Kotiyan, P. N.; Vavia, P. R.; Bharadwaj, Y. K.; Sabarwal, S.; Majali, A. B.

    2002-12-01

    Electron beam irradiation was used to synthesize a matrix type transdermal system of isosorbide dinitrate, an effective anti-anginal agent. The drug was dissolved in two monomeric systems, 2-ethylhexyl acrylate (EHA) and 2-ethylhexyl acrylate : methyl methacrylate (9 : 1). The solutions were then directly irradiated on a backing membrane (Scotchpak ®1006) at different doses to get transdermal patches. The developed systems were evaluated for residual monomer content, equilibrium weight swelling ratio, weight uniformity, thickness uniformity, drug content, peel strength, in vitro release and skin permeation kinetics. They possessed excellent tack and adhesive properties. In the case of isosorbide dinitrate-EHA systems, an increase in the peel strength values with respect to the skin was observed with increasing radiation doses. The systems exhibited promising skin permeation kinetics favorable for transdermal drug delivery. The radiation stability of the drug in the pure solid state form was also assessed.

  8. Radiation crosslinking of styrene-butadiene rubber containing waste tire rubber and polyfunctional monomers

    NASA Astrophysics Data System (ADS)

    Yasin, Tariq; Khan, Sara; Shafiq, Muhammad; Gill, Rohama

    2015-01-01

    The objective of this study was to investigate the influence of polyfunctional monomers (PFMs) and absorbed dose on the final characteristics of styrene-butadiene rubber (SBR) mixed with waste tire rubber (WTR). A series of SBR/WTR blends were prepared by varying the ratios of WTR in the presence of PFMs, namely trimethylolpropane trimethacrylate (TMPTMA) and trimethylolpropane triacrylate (TMPTA) and crosslinked using gamma rays. The physicochemical characteristics of the prepared blends were investigated. It was observed that tensile strength, hardness and gel content of the blends increased with absorbed dose while the blends containing TMPTA showed higher tensile strength, gel content and thermal stability as compared to the blends containing TMPTMA. Higher thermal stability was observed in the blends which were crosslinked by radiation as compared to the blends crosslinked by sulfur. These blends exhibited higher rate of swelling in organic solvents, whereas negligible swelling was observed in acidic and basic environment.

  9. The impact of Faraday effects on polarized black hole images of Sagittarius A*.

    NASA Astrophysics Data System (ADS)

    Jiménez-Rosales, Alejandra; Dexter, Jason

    2018-05-01

    We study model images and polarization maps of Sagittarius A* at 230 GHz. We post-process GRMHD simulations and perform a fully relativistic radiative transfer calculation of the emitted synchrotron radiation to obtain polarized images for a range of mass accretion rates and electron temperatures. At low accretion rates, the polarization map traces the underlying toroidal magnetic field geometry. At high accretion rates, we find that Faraday rotation internal to the emission region can depolarize and scramble the map. We measure the net linear polarization fraction and find that high accretion rate "jet-disc" models are heavily depolarized and are therefore disfavoured. We show how Event Horizon Telescope measurements of the polarized "correlation length" over the image provide a model-independent upper limit on the strength of these Faraday effects, and constrain plasma properties like the electron temperature and magnetic field strength.

  10. Tensile strength and the mining of black holes.

    PubMed

    Brown, Adam R

    2013-11-22

    There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of "space elevators" near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings.

  11. Quantifying Cancer Risk from Radiation.

    PubMed

    Keil, Alexander P; Richardson, David B

    2017-12-06

    Complex statistical models fitted to data from studies of atomic bomb survivors are used to estimate the human health effects of ionizing radiation exposures. We describe and illustrate an approach to estimate population risks from ionizing radiation exposure that relaxes many assumptions about radiation-related mortality. The approach draws on developments in methods for causal inference. The results offer a different way to quantify radiation's effects and show that conventional estimates of the population burden of excess cancer at high radiation doses are driven strongly by projecting outside the range of current data. Summary results obtained using the proposed approach are similar in magnitude to those obtained using conventional methods, although estimates of radiation-related excess cancers differ for many age, sex, and dose groups. At low doses relevant to typical exposures, the strength of evidence in data is surprisingly weak. Statements regarding human health effects at low doses rely strongly on the use of modeling assumptions. © 2017 Society for Risk Analysis.

  12. E1 and M1 γ-strength functions in 144Nd

    DOE PAGES

    Voinov, A. V.; Grimes, S. M.

    2015-12-14

    Both E1 and M1 γ-strength functions below the neutron separation energy were analyzed based on experimental data from 143Nd(n,γ) 144Nd and 143Nd(n,γα) 140Ce reactions. It is confirmed that the commonly adopted E1 model based on the temperature dependence of the width of the giant dipole resonance works well. The popular M1 strength function due to the spin-flip magnetic resonance located near the neutron binding energy is not capable of reproducing experimental data. As a result, the low-energy enhancement of the M1 strength or the energy-independent model of Weisskopf, both leading to the low-energy strength sizable to E1 one, fit experimentalmore » data best.« less

  13. Physical and adhesive properties of dental enamel after radiotherapy and bonding of metal and ceramic brackets.

    PubMed

    Santin, Gabriela Cristina; Palma-Dibb, Regina Guenka; Romano, Fábio Lourenço; de Oliveira, Harley Francisco; Nelson Filho, Paulo; de Queiroz, Alexandra Mussolino

    2015-08-01

    The increasing success rates for cancer patients treated with radiotherapy and the frequent occurrence of tooth loss during treatment have led to an increased demand for orthodontic treatment after radiotherapy. The aim of this study was to evaluate tooth enamel of irradiated teeth after the bonding and debonding of metal and ceramic brackets. Ten permanent molars were cut into enamel fragments measuring 1 mm(2) and divided into an irradiated group (total dose of 60 Gy) and a nonirradiated group. The fragments were subjected to microshear testing to evaluate whether radiotherapy altered the strength of the enamel. Furthermore, 90 prepared premolars were divided into 6 groups and subgroups (n = 15): group 1, nonirradiated and nonaged; group 2, nonirradiated and aged (thermal cycled); group 3, irradiated and aged; each group was divided into 2 subgroups: metallic and ceramic brackets. After thermal cycling and radiotherapy, the brackets were bonded onto the specimens with Transbond XT (3M Unitek, Monrovia, Calif). After 24 hours, the specimens were subjected to the shear tests. Images of the enamel surfaces were classified using the adhesive remnant index. The composite resin-enamel interface was also evaluated. Enamel fragments subjected to radiation had lower strength than did the nonirradiated samples (P <0.05). The groups and subgroups submitted to radiation and bonded ceramic brackets had the lowest strength values. Groups 1 and 2 with metallic brackets had less adhesive on the surface, whereas groups 1 and 2 with ceramic brackets and group 3 with both metallic and ceramic brackets had more adhesive on the surfaces. On the images of the composite resin-enamel interface, resin tags were more extensive on irradiated tooth enamel. Radiation decreased tooth enamel strength, and the specimens treated with radiotherapy had higher frequencies of adhesive failure between the bracket and the composite resin as well as more extensive tags. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.

  14. Effects of processing induced defects on laminate response - Interlaminar tensile strength

    NASA Technical Reports Server (NTRS)

    Gurdal, Zafer; Tomasino, Alfred P.; Biggers, S. B.

    1991-01-01

    Four different layup methods were used in the present study of the interlaminar tensile strength of AS4/3501-6 graphite-reinforced epoxy as a function of defects from manufacturing-induced porosity. The methods were: (1) baseline hand layup, (2) solvent wipe of prepreg for resin removal, (3) moisture-introduction between plies, and (4) a low-pressure cure cycle. Pore characterization was conducted according to ASTM D-2734. A significant reduction is noted in the out-of-plane tensile strength as a function of increasing void content; the porosity data were used in an empirical model to predict out-of-plane strength as a function of porosity.

  15. Very Large Array Observations of the Sun with Related Observations Using the SMM (Solar Maximum Mission) Satellite

    DTIC Science & Technology

    1988-10-12

    white light sunspots (black dotsl but these regions are associated with intense radiation at 20 cm wave- material would, however, be invisible in X...spots. The intense , million degree radiation at 6 cm lies above sunspot umbrae in coronal regions where the longitudinal magnetic field strength Hi...capable of measuring the radio intensity and polarization with high angular and time resolution, thereby providing information about the preburst heating

  16. IR fiber temperature sensing system

    NASA Technical Reports Server (NTRS)

    Tran, D. C.; Levin, K. H.; Mossadegh, R.; Koontz, Steve

    1988-01-01

    Infrared fiber optic pyrometry has become a practical reality using improved strength fluoride glass fibers. The addition of a plastic coating and rugged cabling allows the fibers to be used in the field. A detailed theoretical model of the infrared fiber optic pyrometer (non-contact or radiative thermometer) has been derived and compared with data produced by a prototype fluoride glass fiber radiative thermometer. Excellent agreement was obtained between theory and experiment over a temperature range of 30 to 700 C.

  17. The Geomagnetic Field and Radiation in Near-Earth Orbits

    NASA Technical Reports Server (NTRS)

    Heirtzler, J. R.

    1999-01-01

    This report shows, in detail, how the geomagnetic field interacts with the particle flux of the radiation belts to create a hazard to spacecraft and humans in near-Earth orbit. It illustrates the geometry of the geomagnetic field lines, especially around the area where the field strength is anomalously low in the South Atlantic Ocean. It discusses how the field will probably change in the future and the consequences that may have on hazards in near space.

  18. Effect of microwave radiation on Jayadhar cotton fibers: WAXS studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niranjana, A. R., E-mail: arnphysics@gmail.com; Mahesh, S. S., E-mail: arnphysics@gmail.com; Divakara, S., E-mail: arnphysics@gmail.com

    Thermal effect in the form of micro wave energy on Jayadhar cotton fiber has been investigated. Microstructural parameters have been estimated using wide angle x-ray scattering (WAXS) data and line profile analysis program developed by us. Physical properties like tensile strength are correlated with X-ray results. We observe that the microwave radiation do affect significantly many parameters and we have suggested a multivariate analysis of these parameters to arrive at a significant result.

  19. Hand grip strength and associated factors in non-institutionalised men and women 50 years and older in South Africa

    PubMed Central

    2014-01-01

    Background Little is known about the prevalence, predictors and gender differences in hand grip strength of older adults in Africa. This study aims to investigate social and health differences in hand grip strength among older adults in a national probability sample of older South Africans who participated in the Study of Global Ageing and Adults Health (SAGE wave 1) in 2008. Methods We conducted a national population-based cross-sectional study with a sample of 3840 men and women aged 50 years or older in South Africa. The questionnaire included socio-demographic characteristics, health variables, and anthropometric measurements. Linear multivariate regression analysis was performed to assess the association of social factors, health variables and grip strength. Results The mean overall hand grip strength was 37.9 kgs for men (mean age 61.1 years, SD = 9.1) and 31.5 kgs for women (mean age 62.0 years, SD = 9.7). In multivariate analysis among men, greater height, not being underweight and lower functional disability was associated with greater grip strength, and among women, greater height, better cognitive functioning, and lower functional disability were associated with greater grip strength. Conclusions Greater height and lower functional disability were found for both older South African men and women to be significantly associated with grip strength. PMID:24393403

  20. Self similar flow behind an exponential shock wave in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux

    NASA Astrophysics Data System (ADS)

    Bajargaan, Ruchi; Patel, Arvind

    2018-04-01

    One-dimensional unsteady adiabatic flow behind an exponential shock wave propagating in a self-gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux, which has exponentially varying azimuthal and axial fluid velocities, is investigated. The shock wave is driven out by a piston moving with time according to an exponential law. The dusty gas is taken to be a mixture of a non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The equilibrium flow conditions are maintained and energy is varying exponentially, which is continuously supplied by the piston. The heat conduction is expressed in the terms of Fourier's law, and the radiation is assumed of diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density according to a power law. The effects of the variation of heat transfer parameters, gravitation parameter and dusty gas parameters on the shock strength, the distance between the piston and the shock front, and on the flow variables are studied out in detail. It is interesting to note that the similarity solution exists under the constant initial angular velocity, and the shock strength is independent from the self gravitation, heat conduction and radiation heat flux.

  1. Technological challenges in Magnetic Resonance Imaging: enhancing sensitivity, moving to quantitative imaging and searching for disease biomarkers

    NASA Astrophysics Data System (ADS)

    Retico, A.

    2018-02-01

    Diagnostic imaging based on the Nuclear Magnetic Resonance phenomenon has increasingly spread in the recent few decades, mainly owing to its exquisite capability in depicting a contrast between soft tissues, to its generally non-invasive nature, and to the priceless advantage of using non-ionizing radiation. Magnetic Resonance (MR)-based acquisition techniques allow gathering information on the structure (through Magnetic Resonance Imaging— MRI), the metabolic composition (through Magnetic Resonance Spectroscopy—MRS), and the functioning (through functional MRI —fMRI) of the human body. MR investigations are the methods of choice for studying the brain in vivo, including anatomy, structural wiring and functional connectivity, in healthy and pathological conditions. Alongside the efforts of the clinical research community in extending the acquisition protocols to allow the exploration of a large variety of pathologies affecting diverse body regions, some relevant technological improvements are on the way to maximize the impact of MR in medical diagnostic. The development of MR scanners operating at ultra-high magnetic field (UHF) strength (>= 7 tesla), is pushing forward the spatial resolution of MRI and the spectral resolution of MRS, and it is increasing the specificity of fMRI to grey matter signal. UHF MR systems are currently in use for research purposes only; nevertheless, UHF technological advances are positively affecting MR investigations at clinical field strengths. To overcome the current major limitation of MRI, which is mostly based on contrast between tissues rather than on absolute measurements of physical quantities, a new acquisition modality is under development, which is referred as Magnetic Resonance Fingerprinting technique. Finally, as neuroimaging data acquired worldwide are reaching the typical size of Big Data, dedicated technical solutions are required to mine large amount of information and to identify specific biomarkers of pathological conditions.

  2. Low dynamic muscle strength and its associations with fatigue, functional performance, and quality of life in premenopausal patients with systemic lupus erythematosus and low disease activity: a case–control study

    PubMed Central

    2013-01-01

    Background The purpose of the present study was to compare dynamic muscle strength, functional performance, fatigue, and quality of life in premenopausal systemic lupus erythematosus (SLE) patients with low disease activity versus matched-healthy controls and to determine the association of dynamic muscle strength with fatigue, functional performance, and quality of life in SLE patients. Methods We evaluated premenopausal (18–45 years) SLE patients with low disease activity (Systemic lupus erythematosus disease activity index [SLEDAI]: mean 1.5 ± 1.2). The control (n = 25) and patient (n = 25) groups were matched by age, physical characteristics, and the level of physical activities in daily life (International Physical Activity Questionnaire IPAQ). Both groups had not participated in regular exercise programs for at least six months prior to the study. Dynamic muscle strength was assessed by one-repetition maximum (1-RM) tests. Functional performance was assessed by the Timed Up and Go (TUG), in 30-s test a chair stand and arm curl using a 2-kg dumbbell and balance test, handgrip strength and a sit-and-reach flexibility test. Quality of life (SF-36) and fatigue were also measured. Results The SLE patients showed significantly lower dynamic muscle strength in all exercises (leg press 25.63%, leg extension 11.19%, leg curl 15.71%, chest press 18.33%, lat pulldown 13.56%, 1-RM total load 18.12%, P < 0.001-0.02) compared to the controls. The SLE patients also had lower functional performance, greater fatigue and poorer quality of life. In addition, fatigue, SF-36 and functional performance accounted for 52% of the variance in dynamic muscle strength in the SLE patients. Conclusions Premenopausal SLE patients with low disease activity showed lower dynamic muscle strength, along with increased fatigue, reduced functional performance, and poorer quality of life when compared to matched controls. PMID:24011222

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szlufarska, Izabela; Voyles, Paul; Sridharan, Kumar

    Silicon carbide is a promising cladding material because of its high strength and relatively good corrosion resistance. However, SiC is brittle and therefore SiC-based components need to be carefully designed to avoid cracking and failure by fracture. In design of SiC-based composites for nuclear reactor applications it is essential to take into account how mechanical properties are affected by radiation and temperature, or in other words, what strains and stresses develop in this material due to environmental conditions. While thermal strains in SiC can be predicted using classical theories, radiation-induced strains are much less understood. In particular, it is criticalmore » to correctly account for radiation swelling and radiation creep, which contribute significantly to dimensional instability of SiC under radiation. Swelling typically increases logarithmically with radiation dose and saturates at relatively low doses (damage levels of a few dpa). Consequently, swelling-induced stresses are likely to develop within a few months of operation of a reactor. Radiation-induced volume swelling in SiC can be as high as 2%, which is significantly higher than the cracking strain of 0.1% in SiC. Swelling-induced strains will lead to enormous stresses and fracture, unless these stresses can be relaxed via some other mechanism. An effective way to achieve stress relaxation is via radiation creep. Although it has been hypothesized that both radiation swelling and radiation creep are driven by formation of defect clusters, existing models for swelling and creep in SiC are limited by the lack of understanding of specific defects that form due to radiation in the range of temperatures relevant to fuel cladding in light water reactors (LWRs) (<1000°C). For example, defects that can be detected with traditional transmission electron microscopy (TEM) techniques account only for 10-45% of the swelling measured in irradiated SiC. Here, we have undertaken an integrated experimental and modeling effort to discover the previously invisible defects in irradiated SiC and to determine the contributions of these defects to radiation swelling. Knowledge of the most stable defect structures and the rate controlling processes during defect evolution is essential for development of predictive models for swelling and creep as a function of temperature and radiation dose. This research has been enabled by state-of-the-art imaging techniques, such as the aberration corrected scanning transmission electron microscopy (STEM) (FEI TITAN) closely coupled with multi-scale models of stable defect clusters and their evolution.« less

  4. Relationship between physical function and biomechanical gait patterns in boys with haemophilia.

    PubMed

    Stephensen, D; Taylor, S; Bladen, M; Drechsler, W I

    2016-11-01

    The World Federation of Haemophilia recommends joint and muscle health is evaluated using X-ray and magnetic resonance imaging, together with clinical examination scores. To date, inclusion of performance-based functional activities to monitor children with the condition has received little attention. To evaluate test-retest repeatability of physical function tests and quantify relationships between physical function, lower limb muscle strength and gait patterns in young boys with haemophilia. Timed 6-minute walk, timed up and down stairs, timed single leg stance, muscle strength of the knee extensors, ankle dorsi and plantar flexors, together with joint biomechanics during level walking were collected from 21 boys aged 6-12 years with severe haemophilia. Measures of physical function and recording of muscle strength with a hand-held myometer were repeatable (ICC > 0.78). Distances walked in six minutes, time taken to go up and down a flight of stairs and lower limb muscle strength correlated closely with ankle range of motion, together with peak knee flexion and ankle dorsi and plantarflexion moments during walking (P < 0.05). Alterations in gait patterns of boys with haemophilia appear to be associated with changes in performance of physical function and performance seems to depend on their muscle strength. Timed 6-minute walk test, timed up and down steps test and muscle strength of the knee extensors showed the strongest correlation with biomechanical joint function, and hence might serve as a basis for the clinical monitoring of physical function outcomes in children with haemophilia. © 2016 John Wiley & Sons Ltd.

  5. Hand grip strength and cognitive function among elderly cancer survivors.

    PubMed

    Yang, Lin; Koyanagi, Ai; Smith, Lee; Hu, Liang; Colditz, Graham A; Toriola, Adetunji T; López Sánchez, Guillermo Felipe; Vancampfort, Davy; Hamer, Mark; Stubbs, Brendon; Waldhör, Thomas

    2018-01-01

    We evaluated the associations of handgrip strength and cognitive function in cancer survivors ≥ 60 years old using data from the National Health and Nutrition Examination Survey (NHANES). Data in two waves of NHANES (2011-2014) were aggregated. Handgrip strength in kilogram (kg) was defined as the maximum value achieved using either hand. Two cognitive function tests were conducted among adults 60 years and older. The Animal Fluency Test (AFT) examines categorical verbal fluency (a component of executive function), and the Digital Symbol Substitution test (DSST) assesses processing speed, sustained attention, and working memory. Survey analysis procedures were used to account for the complex sampling design of the NHANES. Multiple linear regression models were used to estimate associations of handgrip strength with cognitive test scores, adjusting for confounders (age, gender, race/ethnicity, education, marital status, smoking status, depressive symptoms and leisure time physical activity). Among 383 cancer survivors (58.5% women, mean age = 70.9 years, mean BMI = 29.3 kg/m2), prevalent cancer types were breast (22.9%), prostate (16.4%), colon (6.9%) and cervix (6.2%). In women, each increase in kg of handgrip strength was associated with 0.20 (95% CI: 0.08 to 0.33) higher score on AFT and 0.83 (95% CI: 0.30 to 1.35) higher score on DSST. In men, we observed an inverted U-shape association where cognitive function peaked at handgrip strength of 40-42 kg. Handgrip strength, a modifiable factor, appears to be associated with aspects of cognitive functions in cancer survivors. Prospective studies are needed to address their causal relationship.

  6. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia

    PubMed Central

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    Purpose: To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Subjects and methods: Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by ‘timed up and go’ (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Results: Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Conclusion: Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted. PMID:21472094

  7. EFFECTS OF STRENGTH TRAINING ON PHYSICAL FUNCTION: INFLUENCE OF POWER, STRENGTH, AND BODY COMPOSITION

    PubMed Central

    Hanson, Erik D.; Srivatsan, Sindhu R.; Agrawal, Siddhartha; Menon, Kalapurakkal S.; Delmonico, Matthew J.; Wang, Min Q.; Hurley, Ben F.

    2010-01-01

    The purpose of this study was to determine (a) the effects of strength training (ST) on physical function and (b) the influence of strength, power, muscle volume (MV), and body composition on physical function. Healthy, inactive adults (n = 50) aged 65 years and older underwent strength, power, total body composition (% fat and fat free mass [FFM]), and physical function testing before and after 22 weeks of ST. Physical function testing consisted of tasks designed to mimic common physical activities of daily living (ADL). To improve internal validity of the assessment of mid-thigh intermuscular fat, subcutaneous fat, and knee extensors MV, a 10-week unilateral ST program using the untrained leg as an internal control preceded 12 weeks of whole-body ST. Strength, power, and FFM increased significantly with ST (all p < 0.05), whereas rapid walk, 5 chair stands, and get up and go time decreased significantly with ST in the overall group (all p < 0.05). Women improved significantly in both walking test times (both p < 0.05) but not in the stair climb test, whereas men improved in the stair climb test (p < 0.05) but not in walking test times. Multiple regression analysis revealed the highest R2 (0.28) for the change in chair stands time, followed by stair climb and usual walk at 0.27 and 0.21, respectively. ST improves performance in functional tasks important for ADLs. Changes in strength, power, and FFM are predictors of ST-induced improvements in these tasks. PMID:19910811

  8. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia.

    PubMed

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by 'timed up and go' (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted.

  9. Probabilistic material degradation model for aerospace materials subjected to high temperature, mechanical and thermal fatigue, and creep

    NASA Technical Reports Server (NTRS)

    Boyce, L.

    1992-01-01

    A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.

  10. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios.

    PubMed

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-10-18

    To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines.

  11. Acute effects of static stretching on peak and end-range hamstring-to-quadriceps functional ratios

    PubMed Central

    Sekir, Ufuk; Arabaci, Ramiz; Akova, Bedrettin

    2015-01-01

    AIM: To evaluate if static stretching influences peak and end-range functional hamstring-to-quadriceps (H/Q) strength ratios in elite women athletes. METHODS: Eleven healthy female athletes in an elite competitive level participated to the study. All the participants fulfilled the static stretching or non-stretching (control) intervention protocol in a randomized design on different days. Two static unassisted stretching exercises, one in standing and one in sitting position, were used to stretch both the hamstring and quadriceps muscles during these protocols. The total time for the static stretching was 6 ± 1 min. The isokinetic peak torque measurements for the hamstring and quadriceps muscles in eccentric and concentric modes and the calculations for the functional H/Q strength ratios at angular velocities of 60°/s and 180°/s were made before (pre) and after (post) the control or stretching intervention. The strength measurements and functional strength ratio calculations were based during the entire- and end-range of knee extension. RESULTS: The pre-test scores for quadriceps and hamstring peak torque and end range values were not significantly different between the groups (P > 0.05). Subsequently, although the control group did not exhibit significant changes in quadriceps and hamstring muscle strength (P > 0.05), static stretching decreased eccentric and concentric quadriceps muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). Similarly, static stretching also decreased eccentric and concentric hamstring muscle strength at both the 60°/s and 180°/s test speeds (P < 0.01). On the other hand, when the functional H/Q strength ratios were taken into consideration, the pre-intervention values were not significant different between the groups both during the entire and end range of knee extension (P > 0.05). Furthermore, the functional H/Q strength ratios exhibited no significant alterations during the entire and end ranges of knee extension both in the static stretching or the control intervention (P > 0.05). CONCLUSION: According to our results, static stretching routine does not influence functional H/Q ratio. Athletes can confidently perform static stretching during their warm-up routines. PMID:26495249

  12. Combining Radiography and Passive Measurements for Radiological Threat Localization in Cargo

    NASA Astrophysics Data System (ADS)

    Miller, Erin A.; White, Timothy A.; Jarman, Kenneth D.; Kouzes, Richard T.; Kulisek, Jonathan A.; Robinson, Sean M.; Wittman, Richard A.

    2015-10-01

    Detecting shielded special nuclear material (SNM) in a cargo container is a difficult problem, since shielding reduces the amount of radiation escaping the container. Radiography provides information that is complementary to that provided by passive gamma-ray detection systems: while not directly sensitive to radiological materials, radiography can reveal highly shielded regions that may mask a passive radiological signal. Combining these measurements has the potential to improve SNM detection, either through improved sensitivity or by providing a solution to the inverse problem to estimate source properties (strength and location). We present a data-fusion method that uses a radiograph to provide an estimate of the radiation-transport environment for gamma rays from potential sources. This approach makes quantitative use of radiographic images without relying on image interpretation, and results in a probabilistic description of likely source locations and strengths. We present results for this method for a modeled test case of a cargo container passing through a plastic-scintillator-based radiation portal monitor and a transmission-radiography system. We find that a radiograph-based inversion scheme allows for localization of a low-noise source placed randomly within the test container to within 40 cm, compared to 70 cm for triangulation alone, while strength estimation accuracy is improved by a factor of six. Improvements are seen in regions of both high and low shielding, but are most pronounced in highly shielded regions. The approach proposed here combines transmission and emission data in a manner that has not been explored in the cargo-screening literature, advancing the ability to accurately describe a hidden source based on currently-available instrumentation.

  13. New true-triaxial rock strength criteria considering intrinsic material characteristics

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Li, Cheng; Quan, Xiaowei; Wang, Yanning; Yu, Liyuan; Jiang, Binsong

    2018-02-01

    A reasonable strength criterion should reflect the hydrostatic pressure effect, minimum principal stress effect, and intermediate principal stress effect. The former two effects can be described by the meridian curves, and the last one mainly depends on the Lode angle dependence function. Among three conventional strength criteria, i.e. Mohr-Coulomb (MC), Hoek-Brown (HB), and Exponent (EP) criteria, the difference between generalized compression and extension strength of EP criterion experience a firstly increase then decrease process, and tends to be zero when hydrostatic pressure is big enough. This is in accordance with intrinsic rock strength characterization. Moreover, the critical hydrostatic pressure I_c corresponding to the maximum difference of between generalized compression and extension strength can be easily adjusted by minimum principal stress influence parameter K. So, the exponent function is a more reasonable meridian curves, which well reflects the hydrostatic pressure effect and is employed to describe the generalized compression and extension strength. Meanwhile, three Lode angle dependence functions of L_{{MN}}, L_{{WW}}, and L_{{YMH}}, which unconditionally satisfy the convexity and differential requirements, are employed to represent the intermediate principal stress effect. Realizing the actual strength surface should be located between the generalized compression and extension surface, new true-triaxial criteria are proposed by combining the two states of EP criterion by Lode angle dependence function with a same lode angle. The proposed new true-triaxial criteria have the same strength parameters as EP criterion. Finally, 14 groups of triaxial test data are employed to validate the proposed criteria. The results show that the three new true-triaxial exponent criteria, especially the Exponent Willam-Warnke criterion (EPWW) criterion, give much lower misfits, which illustrates that the EP criterion and L_{{WW}} have more reasonable meridian and deviatoric function form, respectively. The proposed new true-triaxial strength criteria can provide theoretical foundation for stability analysis and optimization of support design of rock engineering.

  14. High and odd impact exercise training improved physical function and fall risk factors in community-dwelling older men

    PubMed Central

    Allison, Sarah J.; Brooke-Wavell, Katherine; Folland, Jonathan

    2018-01-01

    High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. Objectives: This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Methods: Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Results: Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P<0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. Conclusion: The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults. PMID:29504585

  15. Effect of isometric quadriceps exercise on muscle strength, pain, and function in patients with knee osteoarthritis: a randomized controlled study.

    PubMed

    Anwer, Shahnawaz; Alghadir, Ahmad

    2014-05-01

    [Purpose] The aim of present study was to investigate the effects of isometric quadriceps exercise on muscle strength, pain, and function in knee osteoarthritis. [Subjects and Methods] Outpatients (N=42, 21 per group; age range 40-65 years; 13 men and 29 women) with osteoarthritis of the knee participated in the study. The experimental group performed isometric exercises including isometric quadriceps, straight leg raising, and isometric hip adduction exercise 5 days a week for 5 weeks, whereas the control group did not performed any exercise program. The outcome measures or dependent variables selected for this study were pain intensity, isometric quadriceps strength, and knee function. These variables were measured using the Numerical Rating Scale (NRS), strength gauge device, and reduced WOMAC index, respectively. All the measurements were taken at baseline (week 0) and at the end of the trial at week 5. [Results] In between-group comparisons, the maximum isometric quadriceps strength, reduction in pain intensity, and improvement in function in the isometric exercise group at the end of the 5th week were significantly greater than those of the control group (p<0.05). [Conclusion] The 5-week isometric quadriceps exercise program showed beneficial effects on quadriceps muscle strength, pain, and functional disability in patients with osteoarthritis of the knee.

  16. High and odd impact exercise training improved physical function and fall risk factors in community-dwelling older men.

    PubMed

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan

    2018-03-01

    High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P⟨0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults.

  17. Surgery-Induced Changes and Early Recovery of Hip-Muscle Strength, Leg-Press Power, and Functional Performance after Fast-Track Total Hip Arthroplasty: A Prospective Cohort Study

    PubMed Central

    Holm, Bente; Thorborg, Kristian; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas

    2013-01-01

    Background By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits. Objective(s) Firstly, to quantify changes (compared to pre-operative values) in hip muscle strength, leg-press power, and functional performance in the first week after THA, and secondly, to explore relationships between the muscle strength changes, and changes in hip pain, systemic inflammation, and thigh swelling. Design Prospective, cohort study. Setting Convenience sample of patients receiving a THA at Copenhagen University Hospital, Hvidovre, Denmark, between March and December 2011. Participants Thirty-five patients (65.9±7.2 years) undergoing THA. Main outcome measures Hip muscle strength, leg-press power, performance-based function, and self-reported disability were determined prior to, and 2 and 8 days after, THA (Day 2 and 8, respectively). Hip pain, thigh swelling, and C-Reactive Protein were also determined. Results Five patients were lost to follow-up. Hip muscle strength and leg press power were substantially reduced at Day 2 (range of reductions: 41–58%, P<0.001), but less pronounced at Day 8 (range of reductions: 23–31%, P<0.017). Self-reported symptoms and function (HOOS: Pain, Symptoms, and ADL) improved at Day 8 (P<0.014). Changes in hip pain, C-Reactive Protein, and thigh swelling were not related to the muscle strength and power losses. Conclusion(s) Hip muscle strength and leg-press power decreased substantially in the first week after THA – especially at Day 2 – with some recovery at Day 8. The muscle strength loss and power loss were not related to changes in hip pain, systemic inflammation, or thigh swelling. In contrast, self-reported symptoms and function improved. These data on surgery-induced changes in muscle strength may help design impairment-directed, post-operative rehabilitation to be introduced soon after surgery. Trial Registration ClinicalTrials.gov NCT01246674. PMID:23614020

  18. On the contribution of a stochastic background of gravitational radiation to the timing noise of pulsars

    NASA Technical Reports Server (NTRS)

    Mashhoon, B.

    1982-01-01

    The influence of a stochastic and isotropic background of gravitational radiation on timing measurements of pulsars is investigated, and it is shown that pulsar timing noise may be used to establish a significant upper limit of about 10 to the -10th on the total energy density of very long-wavelength stochastic gravitational waves. This places restriction on the strength of very long wavelength gravitational waves in the Friedmann model, and such a background is expected to have no significant effect on the approximately 3 K electromagnetic background radiation or on the dynamics of a cluster of galaxies.

  19. Application of MODIS-Derived Active Fire Radiative Energy to Fire Disaster and Smoke Pollution Monitoring

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.; Hao, Wei Min; Habib, Shahid

    2004-01-01

    The radiative energy emitted by large fires and the corresponding smoke aerosol loading are simultaneously measured from the MODIS sensor from both the Terra and Aqua satellites. Quantitative relationships between the rates of emission of fire radiative energy and smoke are being developed for different fire-prone regions of the globe. Preliminary results are presented. When fully developed, the system will enable the use of MODIS direct broadcast fire data for near real-time monitoring of fire strength and smoke emission as well as forecasting of fire progression and smoke dispersion, several hours to a few days in advance.

  20. Iterative Reconstruction Techniques in Abdominopelvic CT: Technical Concepts and Clinical Implementation.

    PubMed

    Patino, Manuel; Fuentes, Jorge M; Singh, Sarabjeet; Hahn, Peter F; Sahani, Dushyant V

    2015-07-01

    This article discusses the clinical challenge of low-radiation-dose examinations, the commonly used approaches for dose optimization, and their effect on image quality. We emphasize practical aspects of the different iterative reconstruction techniques, along with their benefits, pitfalls, and clinical implementation. The widespread use of CT has raised concerns about potential radiation risks, motivating diverse strategies to reduce the radiation dose associated with CT. CT manufacturers have developed alternative reconstruction algorithms intended to improve image quality on dose-optimized CT studies, mainly through noise and artifact reduction. Iterative reconstruction techniques take unique approaches to noise reduction and provide distinct strength levels or settings.

  1. Balance and ankle muscle strength predict spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy.

    PubMed

    Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T

    2015-01-01

    The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  2. Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness.

    PubMed

    Figueroa, Arturo; Jaime, Salvador J; Alvarez-Alvarado, Stacey

    2016-09-01

    Age-related decreases in muscle mass and strength are associated with decreased mobility, quality of life, and increased cardiovascular risk. Coupled with the prevalence of obesity, the risk of death becomes substantially greater. Resistance training (RT) has a well-documented beneficial impact on muscle mass and strength in young and older adults, although the high-intensity needed to elicit these adaptations may have a detrimental or negligible impact on vascular function, specifically on arterial stiffness. Increased arterial stiffness is associated with systolic hypertension, left ventricular hypertrophy, and myocardial ischemia. Therefore, improvements of muscle strength and arterial function are important in older adults. Recently, whole-body vibration (WBV) exercise, a novel modality of strength training, has shown to exhibit similar results on muscle strength as RT in a wide-variety of populations, with the greatest impact in elderly individuals with limited muscle function. Additionally, WBV training has been shown to have beneficial effects on vascular function by reducing arterial stiffness. This article reviews relevant publications reporting the effects of WBV on muscle strength and/or arterial stiffness. Findings from current studies suggest the use of WBV training as an alternative modality to traditional RT to countermeasure the age-related detriments in muscle strength and arterial stiffness in older adults.

  3. Recovery of calf muscle strength following acute achilles tendon rupture treatment: a comparison between minimally invasive surgery and conservative treatment.

    PubMed

    Metz, Roderik; van der Heijden, Geert J M G; Verleisdonk, Egbert-Jan M M; Tamminga, Rob; van der Werken, Christiaan

    2009-10-01

    The aim of this study was to measure the effect of treatment of acute Achilles tendon ruptures on calf muscle strength recovery. Eighty-three patients with acute Achilles tendon rupture were randomly allocated to either minimally invasive surgery with functional after-treatment or conservative treatment by functional bracing. Calf muscle strength using isokinetic testing was evaluated at 3 months and after 6 or more months posttreatment. To exclusively investigate the effect of treatment on outcome, the authors excluded patients with major complications from the analysis. In 31 of 39 patients in the surgical treatment group and 25 of 34 patients in the conservative treatment group, isokinetic strength tests were performed. In the analysis of differences in mean peak torque, no statistically significant differences were found between surgery and conservative treatment, except for plantar flexion strength at 90 degrees per second at the second measurement, favoring conservative treatment. After 8 to 10 months follow- up, loss of plantar flexion strength was still present in the injured leg in both treatment groups. In conclusion, isokinetic muscle strength testing did not detect a statistically significant difference between minimally invasive surgical treatment with functional after-treatment and conservative treatment by functional bracing of acute Achilles tendon ruptures.

  4. Electronic and optical properties of exciton, trions and biexciton in II-VI parabolic quantum dot

    NASA Astrophysics Data System (ADS)

    Sujanah, P.; John Peter, A.; Woo Lee, Chang

    2015-08-01

    Binding energies of exciton, trions and biexciton and their interband optical transition energies are studied in a CdTe/ZnTe quantum dot nanostructure taking into consideration the geometrical confinement effect. The radial spread of the wavefunctions, binding energies, optical transition energies, oscillator strength, radiative life time and the absorption coefficients of exciton, positively and negatively charged excitons and biexciton are carried out. It is found that the ratio of the radiative life time of exciton with the trions and biexciton enhances with the reduction of geometrical confinement. The results show that (i) the binding energies of exciton, positive and negative trions and the biexciton have strong influence on the reduction of geometrical confinement effect, (ii) the binding energy is found to decrease from the binding energies of exciton to positive trion through biexciton and negative trion binding energies, (iii) the oscillator strength of trions is found to be lesser than exciton and the biexciton and (iv) the electronic and optical properties of exciton, trions and the biexciton are considerably dependent on the spatial confinement, incident photon energy and the radiative life time. The obtained results are in good agreement with the other existing literature.

  5. Quantitative Biology of Exercise-Induced Signal Transduction Pathways.

    PubMed

    Liu, Timon Cheng-Yi; Liu, Gang; Hu, Shao-Juan; Zhu, Ling; Yang, Xiang-Bo; Zhang, Quan-Guang

    2017-01-01

    Exercise is essential in regulating energy metabolism. Exercise activates cellular, molecular, and biochemical pathways with regulatory roles in training response adaptation. Among them, endurance/strength training of an individual has been shown to activate its respective signal transduction pathways in skeletal muscle. This was further studied from the viewpoint of quantitative difference (QD). For the mean values, [Formula: see text], of two sets of data, their QD is defined as [Formula: see text] ([Formula: see text]). The function-specific homeostasis (FSH) of a function of a biosystem is a negative-feedback response of the biosystem to maintain the function-specific conditions inside the biosystem so that the function is perfectly performed. A function in/far from its FSH is called a normal/dysfunctional function. A cellular normal function can resist the activation of other signal transduction pathways so that there are normal function-specific signal transduction pathways which full activation maintains the normal function. An acute endurance/strength training may be dysfunctional, but its regular training may be normal. The normal endurance/strength training of an individual may resist the activation of other signal transduction pathways in skeletal muscle so that there may be normal endurance/strength training-specific signal transduction pathways (NEPs/NSPs) in skeletal muscle. The endurance/strength training may activate NSPs/NEPs, but the QD from the control is smaller than 0.80. The simultaneous activation of both NSPs and NEPs may enhance their respective activation, and the QD from the control is larger than 0.80. The low level laser irradiation pretreatment of rats may promote the activation of NSPs in endurance training skeletal muscle. There may be NEPs/NSPs in skeletal muscle trained by normal endurance/strength training.

  6. Role of dust direct radiative effect on the tropical rain belt over Middle East and North Africa: A high-resolution AGCM study

    NASA Astrophysics Data System (ADS)

    Bangalath, Hamza Kunhu; Stenchikov, Georgiy

    2015-05-01

    To investigate the influence of direct radiative effect of dust on the tropical summer rain belt across the Middle East and North Africa (MENA), the present study utilizes the high-resolution capability of an Atmospheric General Circulation Model, the High-Resolution Atmospheric Model. Ensembles of Atmospheric Model Intercomparison Project style simulations have been conducted with and without dust radiative impacts, to differentiate the influence of dust on the tropical rain belt. The analysis focuses on summer season. The results highlight the role of dust-induced responses in global- and regional-scale circulations in determining the strength and the latitudinal extent of the tropical rain belt. A significant response in the strength and position of the local Hadley circulation is predicted in response to meridionally asymmetric distribution of dust and the corresponding radiative effects. Significant responses are also found in regional circulation features such as African Easterly Jet and West African Monsoon circulation. Consistent with these dynamic responses at various scales, the tropical rain belt across MENA strengthens and shifts northward. Importantly, the summer precipitation over the semiarid strip south of Sahara, including Sahel, increases up to 20%. As this region is characterized by the "Sahel drought," the predicted precipitation sensitivity to the dust loading over this region has a wide range of socioeconomic implications. Overall, the study demonstrates the extreme importance of incorporating dust radiative effects and the corresponding circulation responses at various scales, in the simulations and future projections of this region's climate.

  7. Use of MODIS-Derived Fire Radiative Energy to Estimate Smoke Aerosol Emissions over Different Ecosystems

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram J.

    2003-01-01

    Biomass burning is the main source of smoke aerosols and certain trace gases in the atmosphere. However, estimates of the rates of biomass consumption and emission of aerosols and trace gases from fires have not attained adequate reliability thus far. Traditional methods for deriving emission rates employ the use of emission factors e(sub x), (in g of species x per kg of biomass burned), which are difficult to measure from satellites. In this era of environmental monitoring from space, fire characterization was not a major consideration in the design of the early satellite-borne remote sensing instruments, such as AVHRR. Therefore, although they are able to provide fire location information, they were not adequately sensitive to variations in fire strength or size, because their thermal bands used for fire detection saturated at the lower end of fire radiative temperature range. As such, hitherto, satellite-based emission estimates employ proxy techniques using satellite derived fire pixel counts (which do not express the fire strength or rate of biomass consumption) or burned areas (which can only be obtained after the fire is over). The MODIS sensor, recently launched into orbit aboard EOS Terra (1999) and Aqua (2002) satellites, have a much higher saturation level and can, not only detect the fire locations 4 times daily, but also measures the at-satellite fire radiative energy (which is a measure of the fire strength) based on its 4 micron channel temperature. Also, MODIS measures the optical thickness of smoke and other aerosols. Preliminary analysis shows appreciable correlation between the MODIS-derived rates of emission of fire radiative energy and smoke over different regions across the globe. These relationships hold great promise for deriving emission coefficients, which can be used for estimating smoke aerosol emissions from MODIS active fire products. This procedure has the potential to provide more accurate emission estimates in near real-time, providing opportunities for various disaster management applications such as alerts, evacuation and, smoke dispersion forecasting.

  8. Radiation Dose Reduction via Sinogram Affirmed Iterative Reconstruction and Automatic Tube Voltage Modulation (CARE kV) in Abdominal CT

    PubMed Central

    Shin, Hyun Joo; Lee, Young Han; Choi, Jin-Young; Park, Mi-Suk; Kim, Myeong-Jin; Kim, Ki Whang

    2013-01-01

    Objective To evaluate the feasibility of sinogram-affirmed iterative reconstruction (SAFIRE) and automated kV modulation (CARE kV) in reducing radiation dose without increasing image noise for abdominal CT examination. Materials and Methods This retrospective study included 77 patients who received CT imaging with an application of CARE kV with or without SAFIRE and who had comparable previous CT images obtained without CARE kV or SAFIRE, using the standard dose (i.e., reference mAs of 240) on an identical CT scanner and reconstructed with filtered back projection (FBP) within 1 year. Patients were divided into two groups: group A (33 patients, CT scanned with CARE kV); and group B (44 patients, scanned after reducing the reference mAs from 240 to 170 and applying both CARE kV and SAFIRE). CT number, image noise for four organs and radiation dose were compared among the two groups. Results Image noise increased after CARE kV application (p < 0.001) and significantly decreased as SAFIRE strength increased (p < 0.001). Image noise with reduced-mAs scan (170 mAs) in group B became similar to that of standard-dose FBP images after applying CARE kV and SAFIRE strengths of 3 or 4 when measured in the aorta, liver or muscle (p ≥ 0.108). Effective doses decreased by 19.4% and 41.3% for groups A and B, respectively (all, p < 0.001) after application of CARE kV with or without SAFIRE. Conclusion Combining CARE kV, reduction of mAs from 240 to 170 mAs and noise reduction by applying SAFIRE strength 3 or 4 reduced the radiation dose by 41.3% without increasing image noise compared with the standard-dose FBP images. PMID:24265563

  9. Is exercise used as medicine? Association of meeting strength training guidelines and functional limitations among older US adults.

    PubMed

    Kraschnewski, Jennifer L; Sciamanna, Christopher N; Ciccolo, Joseph T; Rovniak, Liza S; Lehman, Erik B; Candotti, Carolina; Ballentine, Noel H

    2014-09-01

    To determine the association between meeting strength training guidelines (≥2 times per week) and the presence of functional limitations among older adults. This cross-sectional study used data from older adult participants (N=6763) of the National Health Interview Survey conducted in 2011 in the United States. Overall, 16.1% of older adults reported meeting strength training guidelines. For each of nine functional limitations, those with the limitation were less likely to meet strength training recommendations than those without the limitation. For example, 20.0% of those who reported no difficulty walking one-quarter mile met strength training guidelines, versus only 10.1% of those who reported difficulty (p<.001). In sum, 21.7% of those with no limitations (33.7% of sample) met strength training guidelines, versus only 15.9% of those reporting 1-4 limitations (38.5% of sample) and 9.8% of those reporting 5-9 limitations (27.8% of sample) (p<.001). Strength training is uncommon among older adults and even less common among those who need it the most. The potential for strength training to improve the public's health is therefore substantial, as those who have the most to gain from strength training participate the least. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Durable nonslip stainless-steel drivebelts

    NASA Technical Reports Server (NTRS)

    Bahiman, H.

    1979-01-01

    Two toothed stainless-steel drive belt retains its strength and flexibility in extreme heat or cold, intense radiation, or under high loading. Belt does not stretch or slip and is particularly suited to machinery for which replacement is difficult or impossible.

  11. Light, Strong Insulating Tiles

    NASA Technical Reports Server (NTRS)

    Cordia, E.; Schirle, J.

    1987-01-01

    Improved lightweight insulating silica/aluminum borosilicate/silicon carbide tiles combine increased tensile strength with low thermal conductivity. Changes in composition substantially improve heat-insulating properties of silica-based refractory tile. Silicon carbide particles act as high-emissivity radiation scatterers in tile material.

  12. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy.

    PubMed

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy.

  13. Effects of strength training program on hip extensors and knee extensors strength of lower limb in children with spastic diplegic cerebral palsy

    PubMed Central

    Aye, Thanda; Thein, Soe; Hlaing, Thaingi

    2016-01-01

    [Purpose] The purpose of this study was to determine whether strength training programs for hip extensors and knee extensors improve gross motor function of children with cerebral palsy in Myanmar. [Subjects and Methods] Forty children (25 boys and 15 girls, mean age: 6.07 ± 2.74 years) from National Rehabilitation Hospital, Yangon, Myanmar, who had been diagnosed with spastic diplegic cerebral palsy, Gross Motor Classification System I and II participated in a 6-week strength training program (45 minutes per day, 3 days per week) on hip and knee extensors. Assessment was made, before and after intervention, of the amount of training weight in pounds, as well as Gross Motor Function Measure (GMFM) dimensions D (standing) and E (walking, running, jumping). [Results] All scores had increased significantly after the strength-training program. [Conclusion] A simple method of strength-training program for hip and knee extensors might lead to improved muscle strength and gross motor function in children with spastic diplegic cerebral palsy. PMID:27065561

  14. Impact of head and neck radiotherapy on the mechanical behavior of composite resins and adhesive systems: A systematic review.

    PubMed

    Madrid Troconis, Cristhian Camilo; Santos-Silva, Alan Roger; Brandão, Thaís Bianca; Lopes, Marcio Ajudarte; de Goes, Mario Fernando

    2017-11-01

    To analyze the evidence regarding the impact of head and neck radiotherapy (HNRT) on the mechanical behavior of composite resins and adhesive systems. Searches were conducted on PubMed, Embase, Scopus and ISI Web of Science databases using "Radiotherapy", "Composite resins" and "Adhesive systems" as keywords. Selected studies were written in English and assessed the mechanical behavior of composite resins and/or adhesive systems when bonding procedure was conducted before and/or after a maximum radiation dose ≥50Gy, applied under in vitro or in vivo conditions. In total, 115 studies were found but only 16 were included, from which five evaluated the effect of in vitro HNRT on microhardness, wear resistance, diametral tensile and flexural strength of composite resins, showing no significant negative effect in most of reports. Regarding bond strength of adhesive systems, 11 studies were included from which five reported no meaningful negative effect when bonding procedure was conducted before simulated HNRT. Conversely, five studies showed that bond strength diminished when adhesive procedure was done after in vitro radiation therapy. Only two studies about dental adhesion were conducted after in vivo radiotherapy but the results were not conclusive. The mechanical behavior of composite resins and adhesive systems seems not to be affected when in vitro HNRT is applied after bonding procedure. However, bond strength of adhesive systems tends to decrease when simulated radiotherapy is used immediately before bonding procedure. Studies assessing dentin bond strength after in-vivo HNRT were limited and controversial. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. The Charge State of Polycyclic Aromatic Hydrocarbons Across Reflection Nebulae: PAH Charge Balance and Calibration

    NASA Astrophysics Data System (ADS)

    Boersma, C.; Bregman, J.; Allamandola, L. J.

    2016-11-01

    Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g., the 6.2/11.2 μm PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction (f I ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μm PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μm PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.

  16. THE CHARGE STATE OF POLYCYCLIC AROMATIC HYDROCARBONS ACROSS REFLECTION NEBULAE: PAH CHARGE BALANCE AND CALIBRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boersma, C.; Bregman, J.; Allamandola, L. J., E-mail: Christiaan.Boersma@nasa.gov

    Low-resolution Spitzer spectral map data (>1700 spectra) of ten reflection nebulae (RNe) fields are analyzed using the data and tools available through the NASA Ames PAH IR Spectroscopic Database. The PAH emission is broken down into PAH charge state using a database fitting approach. Here, the physics of the PAH emission process is taken into account and uses target appropriate parameters, e.g., a stellar radiation model for the exciting star. The breakdown results are combined with results derived using the traditional PAH band strength approach, which interprets particular PAH band strength ratios as proxies for the PAH charge state, e.g.,more » the 6.2/11.2 μ m PAH band strength ratio. These are successfully calibrated against their database equivalent; the PAH ionized fraction ( f {sub i} ). The PAH ionized fraction is converted into the PAH ionization parameter, which relates the PAH ionized fraction to the strength of the radiation field, gas temperature and electron density. The behavior of the 12.7 μ m PAH band is evaluated as a tracer for PAH ionization and erosion. The plot of the 8.6 versus 11.2 μ m PAH band strength for the northwest photo-dominated region (PDR) in NGC 7023 is shown to be a robust diagnostic template for the PAH ionized fraction. Remarkably, most of the other RNe fall within the limits set by NGC 7023. Finally, PAH spectroscopic templates are constructed and verified as principal components. Template spectra derived from NGC 7023 and NGC 2023 compare extremely well with each other, with those derived for NGC 7023 successfully reproducing the PAH emission observed from NGC 2023.« less

  17. AN ORIENTATIONAL RESPONSE TO WEAK GAMMA RADIATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, F.A. Jr.

    1963-10-01

    The common planarian worm, Duesia dorotocephsla, displays a significant orientational response to increase in Cs/sup 137/ gamma radiation when the increase is no greater than six times background. The worms are able to distinguish the direction of the weak gamma source, turning away from it, whether it is presented on the right or left side. The response sign is, therefore, the same as that of the response of these negatively phototactic worms to visible light. There is a clear compass-directional relationship of the responsiveness to the experimental gamma radiation. A conspicuous negative response is present when the worms are travelingmore » northward or southward in the earth's field with the gamma change in an east-west axis. No statistically significant mean turning response to the gamma radiation is found when the worms are traveling eastward or westward in the earth's field with the gamma change in a north-south axis. The previously observed annual fluctuation in the character of the monthly orientational rhythm of north-directed worms has been confirmed in an additional year of study. During colder months, the rhythm is monthly; during warmer months it is semi-monthly. There is a semi-monthly fluctuation in the response of Dugesia to weak gamma radiation during mid-morning hours, the worms turning away from the source for four days prior to new end full moon, and toward it for two days following new and full moon. The stronger the field strength, up to 9 times backgound, the larger the amplitude of the rhythm. There is a direct relationship between intensities of gamma radiation between that of background and nine times backgound, and the strength of the negative response of the worms. Evidence suggests that the negative response of Dugesia to a gamma source may be modified by experimental alteration of the natural ambient electrostatic field. Some possible biological significances of this remarkable responsiveness to gamma radiation, and its particular properties, are discussed briefly. (auth)« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schüller, Andreas, E-mail: andreas.schueller@ptb.de; Meier, Markus; Selbach, Hans-Joachim

    Purpose: The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor k{sub Q} can be determined in order to measure the reference air kerma rate of {sup 60}Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for {sup 192}Ir HDR sources. Methods: The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of {sup 60}Co and {sup 192}Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor k{sub Q} was determined as the ratio of the calibration coefficients for {supmore » 60}Co and {sup 192}Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. Results: For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor k{sub Q} is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor k{sub Q} is 1.05. Both k{sub Q} values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of k{sub Q} is U{sub k{sub Q}} = 2.1% for both chamber types. Conclusions: The calibration coefficient of a well-type chamber for radiation fields of {sup 60}Co HDR brachytherapy sources can be calculated from a given calibration coefficient for {sup 192}Ir radiation by using a chamber-type-specific radiation quality correction factor k{sub Q}. However, the uncertainty of a {sup 60}Co calibration coefficient calculated via k{sub Q} is at least twice as large as that for a direct calibration with a {sup 60}Co source.« less

  19. Low- and High-Volume Water-Based Resistance Training Induces Similar Strength and Functional Capacity Improvements in Older Women: A Randomized Study.

    PubMed

    Reichert, Thaís; Delevatti, Rodrigo Sudatti; Prado, Alexandre Konig Garcia; Bagatini, Natália Carvalho; Simmer, Nicole Monticelli; Meinerz, Andressa Pellegrini; Barroso, Bruna Machado; Costa, Rochelle Rocha; Kanitz, Ana Carolina; Kruel, Luiz Fernando Martins

    2018-03-27

    Water-based resistance training (WRT) has been indicated to promote strength gains in elderly population. However, no study has compared different training strategies to identify the most efficient one. The aim of this study was to compare the effects of 3 WRT strategies on the strength and functional capacity of older women. In total, 36 women were randomly allocated to training groups: simple set of 30 seconds [1 × 30s; 66.41 (1.36) y; n = 12], multiple sets of 10 seconds [3 × 10s; 66.50 (1.43) y; n = 11], and simple set of 10 seconds [1 × 10s; 65.23 (1.09) y; n = 13]. Training lasted for 12 weeks. The maximal dynamic strength (in kilograms) and muscular endurance (number of repetitions) of knee extension, knee flexion, elbow flexion, and bench press, as well as functional capacity (number of repetitions), were evaluated. All types of training promoted similar gains in maximal dynamic strength of knee extension and flexion as well as elbow flexion. Only the 1 × 30s and 1 × 10s groups presented increments in bench press maximal strength. All 3 groups showed increases in muscular endurance in all exercises and functional capacity. WRT using long- or short-duration simple sets promotes the same gains in strength and functional capacity in older women as does WRT using multiple sets.

  20. Effects of Neuromuscular Training on Children and Young Adults with Down Syndrome: Systematic Review and Meta-Analysis.

    PubMed

    Sugimoto, Dai; Bowen, Samantha L; Meehan, William P; Stracciolini, Andrea

    2016-08-01

    To synthesize existing research evidence and examine effects of neuromuscular training on general strength, maximal strength, and functional mobility tasks in children and young adults with Down syndrome. PubMed and EBSCO were used as a data source. To attain the aim of this study, literature search was performed under following inclusion criteria: (1) included participants with Down syndrome, (2) implemented a neuromuscular training intervention and measured outcome variables of general strength, maximal strength, and functional mobility tasks, (3) had a group of participants whose mean ages were under 30 years old, (4) employed a prospective controlled design, and (5) used mean and standard deviations to express the outcome variables. Effect size was calculated from each study based on pre- and post-testing value differences in general strength, maximal strength, and functional mobility tasks between control and intervention groups. The effect size was further classified in to one of the following categories: small, moderate, and large effects. Seven studies met inclusion criteria. Analysis indicated large to moderate effects on general strength, moderate to small effects on maximal strength, and small effect on functional mobility tasks by neuromuscular training. Although there were limited studies, the results showed that neuromuscular training could be used as an effective intervention in children and young adults with Down syndrome. Synthesis of seven reviewed studies indicated that neuromuscular training could be beneficial to optimize general and maximal muscular strength development in children and young adults with Down syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Association between muscle function, cognitive state, depression symptoms and quality of life of older people: evidence from clinical practice.

    PubMed

    Gariballa, Salah; Alessa, Awad

    2018-04-01

    Although low muscle function/strength is an important predictor of poor clinical outcome in older patients, information on its impact on mental health in clinical practice is still lacking. The aim of this report is to measure the impact of low muscle function measured by handgrip strength on mental health of older people during both acute illness and recovery. Four hundred and thirty-two randomly selected hospitalized older patients had their baseline demographic and clinical characteristics assessed within 72 h of admission, at 6 weeks and at 6 months. Low muscle strength-handgrip was defined using the European Working Group criteria. Mental health outcome measures including cognitive state, depression symptoms and quality of life were also measured. Among the 432 patients recruited, 308 (79%) had low muscle strength at baseline. Corresponding figures at 6 weeks and at 6 months were 140 (73%) and 158 (75%). Patients with poor muscle strength were significantly older with increased disability and poor nutritional status compared with those with normal muscle strength. After adjustment for age, gender, disability, comorbidity including severity of acute illness and body mass index patients with low muscle strength had worse cognitive function, quality of life and higher depression symptoms compared with those with normal muscle strength over a 6-month period (p < 0.05). Poor muscle strength in older people is associated with poor cognitive state and quality of life and increased depression symptoms during both acute illness and recovery.

  2. [Effects of education and strength training on functional tests among older people with osteoarthritis].

    PubMed

    Jiménez S, Christian Edgardo; Fernández G, Rubén; Zurita O, Félix; Linares G, Daniel; Farías M, Ariel

    2014-04-01

    Hip and knee osteoarthritis are important causes of pain and disability among older people. Education and strength training can alleviate symptoms and avoid functional deterioration. To assess muscle strength, fall risk and quality of life of older people with osteoarthritis and the effects of physiotherapy education and strength training on these variables. Thirty participants aged 78 ± 5 years (63% women) were randomly assigned to receive physiotherapy (Controls), physiotherapy plus education (Group 1) and physiotherapy plus strength training (group 2). At baseline and after 16 weeks of intervention, patients were evaluated with the Senior Fitness Test, Timed Up and Go and Quality of Life score short form (SF-36). During the intervention period, Senior Fitness Test and Timed Up and Go scores improved in all groups and SF-36 did not change. The improvement in Senior Fitness Test and Timed Up and Go was more marked in Groups 1 and 2 than in the control group. Education and strength training improve functional tests among older people with osteoarthritis.

  3. Infrared Rydberg Transitions in B Stars.

    NASA Astrophysics Data System (ADS)

    Sigut, Thomas Allan Aaron

    1995-01-01

    The infrared solar spectrum exhibits emission lines near 12 μm from the Mg scI high-l Rydberg transitions 6g - 7h and 6h - 7i. Chang et al. (1991) demonstrated that the emission arises from small deviations in the populations of these Rydberg levels from their thermodynamic equilibrium values. In this thesis, the possible operation of this emission mechanism is investigated in the B stars by performing non-LTE radiative transfer calculations for the high-l Rydberg transitions of Mg scII and O scI. Highly realistic atomic models are employed, complete in energy levels and radiative transitions far into the Rydberg regime. For Mg scII, the collisional excitation rates are improved by computing collision strengths in a 10 state close-coupling approximation using the R-matrix method. The collisional excitation rates derived from these collisions strengths include the full effects of autoionizing resonances and have an expected accuracy of +/-10% for transitions between levels lying low in energy in the close-coupling expansion. For Mg scII, wide-ranging infrared emission is found, spanning the entire range of B spectral types. The emission is caused by the same mechanism operative in the Rydberg levels of Mg scI in the sun. Small divergences between the Rydberg departure coefficients produce rising monochromatic source functions and emission. Flux profiles of the Mg scII high-l ( Delta n = +1) transitions from n = 4 and 5 show an emission peak superposed on wider absorption trough, similar in form to the solar Mg scI lines, while for higher n, the profiles are in full emission. The strongest emission is predicted for transitions from n = 5, 6, and 7 and strongly increases for lower surface gravities where the rates of thermalizing collisions are lower. The emission strengths reach maxima of Flambda /Fc ~ 1.15 and Wlambda ~ -0.1 A. Transitions from higher n exhibit progressively lower continuum contrasts due to the steep rise with wavelength of the continuous opacity in the infrared and increased Stark broadening. The largest source of potential uncertainty affecting the emission strengths is the uncertain scale of the collisional excitation rates between the Rydberg levels. However, reasonable variations of these rates does not eliminate the emission. Although small divergences occur between the Rydberg departure coefficients of O scI, wide-ranging infrared emission is not predicted. Only small self-reversals in the cores of the high-l transitions from n = 4 and 5 are seen and then only at the lowest surface gravities. The failure of O scI to produce significant emission, or more precisely, significant Rydberg population divergences, can be attributed to the lack of strong ultraviolet photoionization rates from its lower energy levels, the increased collisional coupling between its more closely spaced Rydberg levels, and the longer wavelengths of its Rydberg transitions. Considerable uncertainty exists in the prediction of the absolute infrared line strengths of O scI due to uncertainty in the exact treatment or radiative transfer in the resonance line and in the magnitude of the collisional excitation rates among the Rydberg levels. However, these uncertainties do not alter the basic conclusion of no significant emission from the high-l Rydberg transitions of O scI in B stars.

  4. Bats Avoid Radar Installations: Could Electromagnetic Fields Deter Bats from Colliding with Wind Turbines?

    PubMed Central

    Nicholls, Barry; Racey, Paul A.

    2007-01-01

    Large numbers of bats are killed by collisions with wind turbines, and there is at present no direct method of reducing or preventing this mortality. We therefore determine whether the electromagnetic radiation associated with radar installations can elicit an aversive behavioural response in foraging bats. Four civil air traffic control (ATC) radar stations, three military ATC radars and three weather radars were selected, each surrounded by heterogeneous habitat. Three sampling points matched for habitat type and structure, dominant vegetation species, altitude and surrounding land class were located at increasing distances from each station. A portable electromagnetic field meter measured the field strength of the radar at three distances from the source: in close proximity (<200 m) with a high electromagnetic field (EMF) strength >2 volts/metre, an intermediate point within line of sight of the radar (200–400 m) and with an EMF strength <2 v/m, and a control site out of sight of the radar (>400 m) and registering an EMF of zero v/m. At each radar station bat activity was recorded three times with three independent sampling points monitored on each occasion, resulting in a total of 90 samples, 30 of which were obtained within each field strength category. At these sampling points, bat activity was recorded using an automatic bat recording station, operated from sunset to sunrise. Bat activity was significantly reduced in habitats exposed to an EMF strength of greater than 2 v/m when compared to matched sites registering EMF levels of zero. The reduction in bat activity was not significantly different at lower levels of EMF strength within 400 m of the radar. We predict that the reduction in bat activity within habitats exposed to electromagnetic radiation may be a result of thermal induction and an increased risk of hyperthermia. PMID:17372629

  5. Chronic Inflammatory Demyelinating Polyneuropathy (CIDP)

    MedlinePlus

    ... be used even as a first-line therapy. Physiotherapy may improve muscle strength, function and mobility, and ... be used even as a first-line therapy. Physiotherapy may improve muscle strength, function and mobility, and ...

  6. Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear: a randomised trial.

    PubMed

    de Sousa, Davide G; Harvey, Lisa A; Dorsch, Simone; Leung, Joan; Harris, Whitney

    2016-10-01

    Does 4 weeks of active functional electrical stimulation (FES) cycling in addition to usual care improve mobility and strength more than usual care alone in people with a sub-acute acquired brain injury caused by stroke or trauma? Multi centre, randomised, controlled trial. Forty patients from three Sydney hospitals with recently acquired brain injury and a mean composite strength score in the affected lower limb of 7 (SD 5) out of 20 points. Participants in the experimental group received an incremental, progressive, FES cycling program five times a week over a 4-week period. All participants received usual care. Outcome measures were taken at baseline and at 4 weeks. Primary outcomes were mobility and strength of the knee extensors of the affected lower limb. Mobility was measured with three mobility items of the Functional Independence Measure and strength was measured with a hand-held dynamometer. Secondary outcomes were strength of the knee extensors of the unaffected lower limb, strength of key muscles of the affected lower limb and spasticity of the affected plantar flexors. All but one participant completed the study. The mean between-group differences for mobility and strength of the knee extensors of the affected lower limb were -0.3/21 points (95% CI -3.2 to 2.7) and 7.5 Nm (95% CI -5.1 to 20.2), where positive values favoured the experimental group. The only secondary outcome that suggested a possible treatment effect was strength of key muscles of the affected lower limb with a mean between-group difference of 3.0/20 points (95% CI 1.3 to 4.8). Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear. ACTRN12612001163897. [de Sousa DG, Harvey LA, Dorsch S, Leung J, Harris W (2016) Functional electrical stimulation cycling does not improve mobility in people with acquired brain injury and its effects on strength are unclear: a randomised controlled trial.Journal of Physiotherapy62: 203-208]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  7. E-beam-Cure Fabrication of Polymer Fiber/Matrix Composites for Multifunctional Radiation Shielding

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Jensen, Brian J.; Thibeault, Sheila A.; Hou, Tan-Hung; Saether, Erik; Glaessgen, Edward H.; Humes, Donald H.; Chang, Chie K.; Badavi, Francis F.; Kiefer, Rrichard L.; hide

    2004-01-01

    Aliphatic polymers were identified as optimum radiation polymeric shielding materials for building multifunctional structural elements. Conceptual damage-tolerant configurations of polyolefins have been proposed but many issues on the manufacture remain. In the present paper, we will investigate fabrication technologies with e-beam curing for inclusion of high-strength aliphatic polymer fibers into a highly cross-linked polyolefin matrix. A second stage of development is the fabrication methods for applying face sheets to aliphatic polymer closed-cell foams.

  8. Lightweight, High Strength Metals With Enhanced Radiation Shielding - Technology Advancing Partnerships Challenge Project

    NASA Technical Reports Server (NTRS)

    Wright, Maria Clara (Compiler)

    2015-01-01

    The Technology Advancing Partnership (TAP) Challenge will seek to foster innovation throughout the Center by allowing the KSC workforce to identify a specific technology idea that needs improvement and to then work with an external partner to develop that technology. This Challenge will enable competitive partnerships with outside entities that will increase the value by bringing leveraged resources. The selected proposal from the University of Florida will develop new lightweight technologies with radiation mitigation for spacecraft.

  9. Electromagnetic cascades in pulsars

    NASA Technical Reports Server (NTRS)

    Daugherty, J. K.; Harding, A. K.

    1981-01-01

    The development of pair photon cascades initiated by high energy electrons above a pulsar polar cap is simulated numerically. The calculation uses the energy of the primary electron, the magnetic field strength, and the period of rotation as parameters and follows the curvature radiation emitted by the primary, the conversion of this radiation e(+) - e(-) pairs in the intense fields, and the quantized synchrotron radiation by the secondary pairs. A recursive technique allows the tracing of an indefinite number of generations using a Monte Carlo method. Gamma ray and pair spectra are calculated for cascades in different parts of the polar cap and with different acceleration models. It is found that synchrotron radiation from secondary pairs makes an important contribution to the gamma ray spectrum above 25 MeV, and that the final gamma ray and pair spectra are insensitive to the height of the accelerating region, as long as the acceleration of the primary electrons is not limited by radiation reaction.

  10. A basic interpretation of the technical language of radiation processing

    NASA Astrophysics Data System (ADS)

    Deeley, Catherine M.

    2004-09-01

    For the food producer contemplating the purchase of radiation processing equipment the task of evaluating the strengths and weaknesses of the available technologies, electron beam (E-beam), X-ray and gamma, to determine the best option for their application, is onerous. Not only is the level of investment daunting but also, to be sure of comparing like with like, the evaluator requires a basic understanding of the science underpinning radiation processing. There have been many papers published that provide technical specialists with a rigorous interpretation of this science (In: Gaughran, E.R.L., Goudie, A.J. (Eds.), Technical Developments and Prospects of Sterilization by Ionizing Radiation, International Conference, Vienna. Multiscience Publications Ltd., pp. 145-172). The objective for this paper is to give non-specialists an introduction to the language of radiation processing and to clarify some of the terminology associated with the use of radioactive sources for this application.

  11. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults?

    PubMed

    Cawthon, Peggy Mannen; Fox, Kathleen M; Gandra, Shravanthi R; Delmonico, Matthew J; Chiou, Chiun-Fang; Anthony, Mary S; Sewall, Ase; Goodpaster, Bret; Satterfield, Suzanne; Cummings, Steven R; Harris, Tamara B

    2009-08-01

    To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization. Prospective cohort study. Two U.S. clinical centers. Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study. Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions. During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization. Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.

  12. Modeling of functional trunk muscle performance: interfacing ergonomics and spine rehabilitation in response to the ADA.

    PubMed

    Khalaf, K A; Parnianpour, M; Sparto, P J; Simon, S R

    1997-10-01

    The combination of increasing costs of musculoskeletal injuries and the implementation of the Americans with Disabilities Act (ADA) has created the need for a more objective functional understanding of dynamic trunk performance. In this study, trunk extensor and flexor strengths were measured as a function of angular position and velocity for 20 subjects performing maximum isometric and isokinetic exertions. Results indicate that trunk strength is significantly influenced by trunk angular position, trunk angular velocity, gender, and direction, as well as by the interaction between trunk angular position and velocity. Three-dimensional surfaces of trunk strength in response to trunk angular position and velocity were constructed for each subject per direction. Such data presentation is more accurate and gives better insight about the strength profile of an individual than does the traditional use of a single strength value. The joint strength capacity profiles may be combined with joint torque requirements from a manual material handling task, such as a lifting task, to compute the dynamic utilization ratio for the trunk muscles. This ratio can be used as a unified measure of both task demand and functional capacity to guide job assignment, return to work, and prognosis during the rehabilitation processes. Furthermore, the strength regressions developed in this study would provide dynamic strength limits that can be used as functional constraints in the computer simulation of physical activities, such as lifting. In light of the ADA, this would be of great value in predicting the consequences of task modifications and/or workstation alterations without subjecting an injured worker or an individual with a disability to unnecessary testing.

  13. Statistical methods for analysis of radiation effects with tumor and dose location-specific information with application to the WECARE study of asynchronous contralateral breast cancer

    PubMed Central

    Langholz, Bryan; Thomas, Duncan C.; Stovall, Marilyn; Smith, Susan A.; Boice, John D.; Shore, Roy E.; Bernstein, Leslie; Lynch, Charles F.; Zhang, Xinbo; Bernstein, Jonine L.

    2009-01-01

    Summary Methods for the analysis of individually matched case-control studies with location-specific radiation dose and tumor location information are described. These include likelihood methods for analyses that just use cases with precise location of tumor information and methods that also include cases with imprecise tumor location information. The theory establishes that each of these likelihood based methods estimates the same radiation rate ratio parameters, within the context of the appropriate model for location and subject level covariate effects. The underlying assumptions are characterized and the potential strengths and limitations of each method are described. The methods are illustrated and compared using the WECARE study of radiation and asynchronous contralateral breast cancer. PMID:18647297

  14. Terahertz emission driven by two-color laser pulses at various frequency ratios

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Sheng, Z.-M.; Li, Y.-T.; Zhang, Y.; Zhang, J.

    2017-08-01

    We present a simulation study of terahertz radiation from a gas driven by two-color laser pulses in a broad range of frequency ratios ω1/ω0 . Our particle-in-cell simulation results show that there are three series with ω1/ω0=2 n , n +1 /2 , n ±1 /3 (n is a positive integer) for high-efficiency and stable radiation generation. The radiation strength basically decreases with the increasing ω1 and scales linearly with the laser wavelength. These rules are broken when ω1/ω0<1 and much stronger radiation may be generated at any ω1/ω0 . These results can be explained with a model based on gas ionization by two linear-superposition laser fields, rather than a multiwave mixing model.

  15. Musculoskeletal strength, balance performance, and self-efficacy in elderly ving tsun chinese martial art practitioners: implications for fall prevention.

    PubMed

    Fong, Shirley S M; Ng, Shamay S M; Liu, Karen P Y; Pang, Marco Y C; Lee, H W; Chung, Joanne W Y; Lam, Priscillia L; Guo, X

    2014-01-01

    Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = -0.575,  P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly.

  16. Musculoskeletal Strength, Balance Performance, and Self-Efficacy in Elderly Ving Tsun Chinese Martial Art Practitioners: Implications for Fall Prevention

    PubMed Central

    Fong, Shirley S. M.; Ng, Shamay S. M.; Liu, Karen P. Y.; Pang, Marco Y. C.; Lee, H. W.; Chung, Joanne W. Y.; Lam, Priscillia L.; Guo, X.

    2014-01-01

    Objectives. To (1) compare the bone strength, lower limb muscular strength, functional balance performance, and balance self-efficacy between Ving Tsun (VT) martial art practitioners and nonpractitioners and (2) identify the associations between lower limb muscular strength, functional balance performance, and balance self-efficacy among the VT-trained participants. Methods. Thirty-five VT practitioners (mean age ± SD = 62.7 ± 13.3 years) and 49 nonpractitioners (mean age ± SD = 65.9 ± 10.5 years) participated in the study. The bone strength of the distal radius, lower limb muscular strength, functional balance performance, and balance self-efficacy were assessed using an ultrasound bone sonometer, the five times sit-to-stand test (FTSTS), the Berg balance scale (BBS), and the Chinese version of the activities-specific balance confidence scale, respectively. A multivariate analysis of covariance was performed to compare all the outcome variables between the two groups. Results. Elderly VT practitioners had higher radial bone strength on the dominant side (P < 0.05), greater lower limb muscular strength (P = 0.001), better functional balance performance (P = 0.003), and greater balance confidence (P < 0.001) than the nonpractitioners. Additionally, only the FTSTS time revealed a significant association with the BBS score (r = −0.575,  P = 0.013). Conclusions. VT may be a suitable health-maintenance exercise for the elderly. Our findings may inspire the development of VT fall-prevention exercises for the community-dwelling healthy elderly. PMID:25530782

  17. Somatropin treatment of spinal muscular atrophy: a placebo-controlled, double-blind crossover pilot study.

    PubMed

    Kirschner, J; Schorling, D; Hauschke, D; Rensing-Zimmermann, C; Wein, U; Grieben, U; Schottmann, G; Schara, U; Konrad, K; Müller-Felber, W; Thiele, S; Wilichowski, E; Hobbiebrunken, E; Stettner, G M; Korinthenberg, R

    2014-02-01

    In preclinical studies growth hormone and its primary mediator IGF-1 have shown potential to increase muscle mass and strength. A single patient with spinal muscular atrophy reported benefit after compassionate use of growth hormone. Therefore we evaluated the efficacy and safety of growth hormone treatment for spinal muscular atrophy in a multicenter, randomised, double-blind, placebo-controlled, crossover pilot trial. Patients (n = 19) with type II/III spinal muscular atrophy were randomised to receive either somatropin (0.03 mg/kg/day) or placebo subcutaneously for 3 months, followed by a 2-month wash-out phase before 3 months of treatment with the contrary remedy. Changes in upper limb muscle strength (megascore for elbow flexion and hand-grip in Newton) were assessed by hand-held myometry as the primary measure of outcome. Secondary outcome measures included lower limb muscle strength, motor function using the Hammersmith Functional Motor Scale and other functional tests for motor function and pulmonary function. Somatropin treatment did not significantly affect upper limb muscle strength (point estimate mean: 0.08 N, 95% confidence interval (CI:-3.79;3.95, p = 0.965), lower limb muscle strength (point estimate mean: 2.23 N, CI:-2.19;6.63, p = 0.302) or muscle and pulmonary function. Side effects occurring during somatropin treatment corresponded with well-known side effects of growth hormone substitution in patients with growth hormone deficiency. In this pilot study, growth hormone treatment did not improve muscle strength or function in patients with spinal muscular atrophy type II/III. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Shading Contributes to the Reduction of Stem Mechanical Strength by Decreasing Cell Wall Synthesis in Japonica Rice (Oryza sativa L.).

    PubMed

    Wu, Longmei; Zhang, Wujun; Ding, Yanfeng; Zhang, Jianwei; Cambula, Elidio D; Weng, Fei; Liu, Zhenghui; Ding, Chengqiang; Tang, She; Chen, Lin; Wang, Shaohua; Li, Ganghua

    2017-01-01

    Low solar radiation caused by industrial development and solar dimming has become a limitation in crop production in China. It is widely accepted that low solar radiation influences many aspects of plant development, including slender, weak stems and susceptibility to lodging. However, the underlying mechanisms are not well understood. To clarify how low solar radiation affects stem mechanical strength formation and lodging resistance, the japonica rice cultivars Wuyunjing23 (lodging-resistant) and W3668 (lodging-susceptible) were grown under field conditions with normal light (Control) and shading (the incident light was reduced by 60%) with a black nylon net. The yield and yield components, plant morphological characteristics, the stem mechanical strength, cell wall components, culm microstructure, gene expression correlated with cellulose and lignin biosynthesis were measured. The results showed that shading significantly reduced grain yield attributed to reduction of spikelets per panicles and grain weight. The stem-breaking strength decreased significantly under shading treatment; consequently, resulting in higher lodging index in rice plant in both varieties, as revealed by decreased by culm diameter, culm wall thickness and increased plant height, gravity center height. Compared with control, cell wall components including non-structural carbohydrate, sucrose, cellulose, and lignin reduced quite higher. With histochemical straining, shading largely reduced lignin deposition in the sclerenchyma cells and vascular bundle cells compared with control, and decreased cellulose deposition in the parenchyma cells of culm tissue in both Wuyunjing23 and W3668. And under shading condition, gene expression involved in secondary cell wall synthesis, OsPAL, OsCOMT, OsCCoAOMT, OsCCR , and OsCAD2 , and primary cell wall synthesis, OsCesA1, OsCesA3 , and OsCesA8 were decreased significantly. These results suggest that gene expression involved in the reduction of lignin and cellulose in both sclerenchyma and parenchyma cells, which attribute to lignin and cellulose in culm tissue and weak mechanical tissue, consequently, result in poor stem strength and higher lodging risks. Highlights : (1) Shading decreases the stem mechanical strength of japonica rice by decreasing non-structural carbohydrate, sucrose, lignin, and cellulose accumulation in culms. (2) The decrease of carbon source under shading condition is the cause for the lower lignin and cellulose accumulation in culm. (3) The expression of genes involved in lignin and primarily cell wall cellulose biosynthesis ( OsCesA1, OsCesA3 , and OsCesA8 ) at the stem formation stage are down-regulated under shading condition, inducing defective cell wall development and poor lodging resistance.

  19. Comparison of lower body specific resistance training on the hamstring to quadriceps strength ratios in men and women.

    PubMed

    Dorgo, Sandor; Edupuganti, Pradeep; Smith, Darla R; Ortiz, Melchor

    2012-06-01

    In this study, we compared hamstring (H) and quadriceps (Q) strength changes in men and women, as well as changes in conventional and functional H:Q ratios following an identical 12-week resistance training program. An isokinetic dynamometer was used to assess 14 male and 14 female participants before and after the intervention, and conventional and functional H:Q ratios were calculated. Hamstring strength improved similarly in men and women, but improvement in quadriceps strength was significantly greater in men, while women showed only modest improvements. For the conventional and functional H:Q ratios, women showed significantly greater improvements than men. Both men and women were able to exceed the commonly recommended 0.6 conventional and 1.0 functional H:Q ratios after the 12-week lower-body resistance training program.

  20. Effect of Virtual Reality-based Bilateral Upper Extremity Training on Upper Extremity Function after Stroke: A Randomized Controlled Clinical Trial.

    PubMed

    Lee, Suhyun; Kim, Yumi; Lee, Byoung-Hee

    2016-12-01

    In the present study, we aimed to investigate the effect of virtual reality-based bilateral upper extremity training (VRBT) on paretic upper limb function and muscle strength in patients with stroke. Eighteen stroke survivors were assigned to either the VRBT group (n = 10) or the bilateral upper limb training group (BT, n = 8). Patients in the VRBT group performed bilateral upper extremity exercises in a virtual reality environment, whereas those in the BT group performed conventional bilateral upper extremity exercises. All training was conducted for 30 minutes day -1 , 3 days a week, for a period of 6 weeks. Patients were assessed for upper extremity function and hand strength. Compared with the BT group, the VRBT group exhibited significant improvements in upper extremity function and muscle strength (p < 0.05) after the 6-week training programme. The Box and Block test results revealed that upper extremity function and elbow flexion in hand strength were significantly improved in terms of group, time and interaction effect of group by time. Furthermore, the VRBT group demonstrated significant improvements in upper extremity function, as measured by the Jebsen Hand Function Test and Grooved Pegboard test, and in the hand strength test, as measured by elbow extension, grip, palmar pinch, lateral pinch and tip pinch, in both time and the interaction effect of group by time. These results suggest that VRBT is a feasible and beneficial means of improving upper extremity function and muscle strength in individuals following stroke. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  1. No beneficial effects of vitamin D supplementation on muscle function or quality of life in primary hyperparathyroidism: results from a randomized controlled trial.

    PubMed

    Rolighed, Lars; Rejnmark, Lars; Sikjaer, Tanja; Heickendorff, Lene; Vestergaard, Peter; Mosekilde, Leif; Christiansen, Peer

    2015-05-01

    Impairments of muscle function and strength in patients with primary hyperparathyroidism (PHPT) are rarely addressed, although decreased muscle function may contribute to increased fracture risk. We aimed to assess the changes in muscle strength, muscle function, postural stability, quality of life (QoL), and well-being during treatment with vitamin D or placebo before and after parathyroidectomy (PTX) in PHPT patients. A randomized placebo-controlled trial. We included 46 PHPT patients, mean age 58 (range 29-77) years and 35 (76%) were women. Daily treatment with 70 μg (2800 IU) cholecalciferol or placebo for 52 weeks. Treatment was administered 26 weeks before PTX and continued for 26 weeks after PTX. Changes in QoL and measures of muscle strength and function. Preoperatively, 25-hydroxyvitamin D (25OHD) increased significantly (50-94 nmol/l) compared with placebo (57-52 nmol/l). We did not measure any beneficial effects of supplementation with vitamin D compared with placebo regarding well-being, QoL, postural stability, muscle strength, or function. In all patients, we measured marked improvements in QoL, well-being (P<0.01), muscle strength in the knee flexion and extension (P<0.001), and muscle function tests (P<0.01) after surgical cure. Postural stability improved during standing with eyes closed (P<0.05), but decreased with eyes open (P<0.05). Patients with PHPT and 25OHD levels around 50 nmol/l did not benefit from vitamin D supplementation concerning muscle strength, muscle function, postural stability, well-being, or QoL. Independent of preoperative 25OHD levels, PTX improved these parameters. © 2015 European Society of Endocrinology.

  2. Sarcopenia during neoadjuvant therapy for oesophageal cancer: characterising the impact on muscle strength and physical performance.

    PubMed

    Guinan, Emer M; Doyle, S L; Bennett, A E; O'Neill, L; Gannon, J; Elliott, J A; O'Sullivan, J; Reynolds, J V; Hussey, J

    2018-05-01

    Preoperative chemo(radio)therapy for oesophageal cancer (OC) may have an attritional impact on body composition and functional status, impacting postoperative outcome. Physical decline with skeletal muscle loss has not been previously characterised in OC and may be amenable to physical rehabilitation. This study characterises skeletal muscle mass and physical performance from diagnosis to post-neoadjuvant therapy in patients undergoing preoperative chemo(radio)therapy for OC. Measures of body composition (axial computerised tomography), muscle strength (handgrip), functional capacity (walking distance), anthropometry (weight, height and waist circumference), physical activity, quality-of-life and nutritional status were captured prospectively. Sarcopenia status was defined as pre-sarcopenic (low muscle mass only), sarcopenic (low muscle mass and low muscle strength or function) or severely sarcopenic (low muscle mass and low muscle strength and low muscle function). Twenty-eight participants were studied at both time points (mean age 62.86 ± 8.18 years, n = 23 male). Lean body mass reduced by 4.9 (95% confidence interval 3.2 to 6.7) kg and mean grip strength reduced by 4.3 (2.5 to 6.1) kg from pre- to post-neoadjuvant therapy. Quality-of-life scores capturing gastrointestinal symptoms improved. Measures of anthropometry, walking distance, physical activity and nutritional status did not change. There was an increase in sarcopenic status from diagnosis (pre-sarcopenic n = 2) to post-treatment (pre-sarcopenic n = 5, severely sarcopenic n = 1). Despite maintenance of body weight, functional capacity and activity habits, participants experience declines in muscle mass and strength. Interventions involving exercise and/or nutritional support to build muscle mass and strength during preoperative therapy, even in patients who are functioning normally, are warranted.

  3. Knee Extensor Strength and Risk of Structural, Symptomatic, and Functional Decline in Knee Osteoarthritis: A Systematic Review and Meta-Analysis.

    PubMed

    Culvenor, Adam G; Ruhdorfer, Anja; Juhl, Carsten; Eckstein, Felix; Øiestad, Britt Elin

    2017-05-01

    To perform a systematic review and meta-analysis on the association between knee extensor strength and the risk of structural, symptomatic, or functional deterioration in individuals with or at risk of knee osteoarthritis (KOA). We systematically identified and methodologically appraised all longitudinal studies (≥1-year followup) reporting an association between knee extensor strength and structural (tibiofemoral, patellofemoral), symptomatic (self-reported, knee replacement), or functional (subjective, objective) decline in individuals with or at risk of radiographic or symptomatic KOA. Results were pooled for each of the above associations using meta-analysis, or if necessary, summarized according to a best-evidence synthesis. Fifteen studies were included, evaluating >8,000 participants (51% female), with a followup time between 1.5 and 8 years. Meta-analysis revealed that lower knee extensor strength was associated with an increased risk of symptomatic (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC] pain: odds ratio [OR] 1.35, 95% confidence interval [95% CI] 1.10-1.67) and functional decline (WOMAC function: OR 1.38, 95% CI 1.00-1.89, and chair-stand task: OR 1.03, 95% CI 1.03-1.04), but not increased risk of radiographic tibiofemoral joint space narrowing (JSN) (OR 1.15, 95% CI 0.84-1.56). No trend in risk was observed for KOA status (present versus absent). Best-evidence synthesis showed inconclusive evidence for lower knee extensor strength being associated with increased risk of patellofemoral deterioration. Meta-analysis showed that lower knee extensor strength is associated with an increased risk of symptomatic and functional deterioration, but not tibiofemoral JSN. The risk of patellofemoral deterioration in the presence of knee extensor strength deficits is inconclusive. © 2016, American College of Rheumatology.

  4. Insulin-Like Growth Factor-1 Preserves Salivary Gland Function After Fractionated Radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Limesand, Kirsten H., E-mail: limesank@u.arizona.ed; Department of Nutritional Sciences, University of Arizona, Tucson, AZ; Avila, Jennifer L.

    Purpose: Radiotherapy for head-and-neck cancer consists of fractionated radiation treatments that cause significant damage to salivary glands leading to chronic salivary gland dysfunction with only limited prevention and treatment options currently available. This study examines the feasibility of IGF-1 in preserving salivary gland function following a fractionated radiation treatment regimen in a pre-clinical model. Methods and Materials: Mice were exposed to fractionated radiation, and salivary gland function and histological analyses of structure, apoptosis, and proliferation were evaluated. Results: In this study, we report that treatment with fractionated doses of radiation results in a significant level of apoptotic cells in FVBmore » mice after each fraction, which is significantly decreased in transgenic mice expressing a constitutively active mutant of Akt1 (myr-Akt1). Salivary gland function is significantly reduced in FVB mice exposed to fractionated radiation; however, myr-Akt1 transgenic mice maintain salivary function under the same treatment conditions. Injection into FVB mice of recombinant insulin-like growth factor-1 (IGF-1), which activates endogenous Akt, suppressed acute apoptosis and preserved salivary gland function after fractionated doses of radiation 30 to 90 days after treatment. FVB mice exposed to fractionated radiation had significantly lower levels of proliferating cell nuclear antigen-positive salivary acinar cells 90 days after treatment, which correlated with a chronic loss of function. In contrast, FVB mice injected with IGF-1 before each radiation treatment exhibited acinar cell proliferation rates similar to those of untreated controls. Conclusion: These studies suggest that activation of IGF-1-mediated pathways before head-and-neck radiation could modulate radiation-induced salivary gland dysfunction and maintain glandular homeostasis.« less

  5. Investigation of Salivary Function and Oral Microbiota of Radiation Caries-Free People with Nasopharyngeal Carcinoma

    PubMed Central

    Zhang, Jingyang; Liu, Hongling; Liang, Xue; Zhang, Min; Wang, Renke; Peng, Guang; Li, Jiyao

    2015-01-01

    Radiation caries have been reported to be correlated with radiotherapy-induced destruction of salivary function and changes in oral microbiota. There have been no published reports detailing patients who have remained radiation caries-free following radiotherapy for nasopharyngeal carcinoma. The aim of this study was to investigate the relationship between salivary function, oral microbiota and the absence of radiation caries. Twelve radiation caries-free patients and nine patients exhibiting radiation caries following irradiated nasopharyngeal carcinoma were selected. V40, the dose at which the volume of the contralateral parotid gland receives more than 40 Gy, was recorded. Stimulated saliva flow rate, pH values and buffering capacity were examined to assess salivary function. Stimulated saliva was used for molecular profiling by Denaturing Gradient Gel Electrophoresis. Mutans streptococci and Lactobacilli in saliva were also cultivated. There were no significant differences in V40 between radiation caries-free individuals and those with radiation caries. Compared with normal values, the radiation caries-free group had significantly decreased simulated saliva flow rate, while there were no significant differences in the saliva pH value and buffering capacity. Similar results were observed in the radiation caries group. There was no statistical difference in microbial diversity, composition and log CFU counts in cultivation from the radiation caries-free group and the radiation caries group. Eleven genera were detected in these two groups, among which Streptococcus spp. and Neisseria spp. had the highest distribution. Our results suggest that changes in salivary function and in salivary microbiota do not explain the absence of radiation caries in radiation caries-free individuals. PMID:25860481

  6. Investigation of salivary function and oral microbiota of radiation caries-free people with nasopharyngeal carcinoma.

    PubMed

    Zhang, Jingyang; Liu, Hongling; Liang, Xue; Zhang, Min; Wang, Renke; Peng, Guang; Li, Jiyao

    2015-01-01

    Radiation caries have been reported to be correlated with radiotherapy-induced destruction of salivary function and changes in oral microbiota. There have been no published reports detailing patients who have remained radiation caries-free following radiotherapy for nasopharyngeal carcinoma. The aim of this study was to investigate the relationship between salivary function, oral microbiota and the absence of radiation caries. Twelve radiation caries-free patients and nine patients exhibiting radiation caries following irradiated nasopharyngeal carcinoma were selected. V40, the dose at which the volume of the contralateral parotid gland receives more than 40 Gy, was recorded. Stimulated saliva flow rate, pH values and buffering capacity were examined to assess salivary function. Stimulated saliva was used for molecular profiling by Denaturing Gradient Gel Electrophoresis. Mutans streptococci and Lactobacilli in saliva were also cultivated. There were no significant differences in V40 between radiation caries-free individuals and those with radiation caries. Compared with normal values, the radiation caries-free group had significantly decreased simulated saliva flow rate, while there were no significant differences in the saliva pH value and buffering capacity. Similar results were observed in the radiation caries group. There was no statistical difference in microbial diversity, composition and log CFU counts in cultivation from the radiation caries-free group and the radiation caries group. Eleven genera were detected in these two groups, among which Streptococcus spp. and Neisseria spp. had the highest distribution. Our results suggest that changes in salivary function and in salivary microbiota do not explain the absence of radiation caries in radiation caries-free individuals.

  7. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    NASA Astrophysics Data System (ADS)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion of charged particles in a continuous planar potential which is formed by the spatially and thermally averaged action of the individual electrostatic potentials of the crystal atoms of the corresponding plane. Classically, the motion of channeled particles through the crystal resembles transverse oscillations being the source of radiation emission. For electrons of energy less than 100 MeV considered here, planar channeling has to be treated quantum mechanically by a one-dimensional Schrödinger equation for the transverse motion. Hence, this motion of the channeled electrons is restricted to a number of discrete (bound) channeling states in the planar continuum potential, and the emission of channeling radiation is caused by spontaneous electron transitions between these eigenstates. Due to relativistic and Doppler effects, the energy of the emitted photons directed into a narrow forward cone is typically shifted up by about three to five orders of magnitude. Consequently, the observed energy spectrum of channeling radiation is characterized by a number of radiation lines in the energy domain of hard X-rays. Channeling radiation may, therefore, be applied as an intense, tunable, quasi-monochromatic X-ray source. Solution method: The problem consists in finding the electron wave function for the planar continuum potential. Both the wave functions and corresponding energies of channeling states solve the Schrödinger equation of transverse electron motion. In the framework of the so-called many-beam formalism, solving the Schrödinger equation reduces to a eigenvector-eigenvalue problem of a Hermitian matrix. For that the program employs the mathematical tools allocated in the commercial computation software Mathematica. The electric field of the atomic planes in the crystal forces dipole oscillations of the channeled charged particles. In the quantum mechanical approach, the dipole approximation is also valid for spontaneous transitions between bound states. The transition strength for dedicated states depends on the magnitude of the corresponding dipole matrix element. The photon energy correlates with the particle energy, and the spectral width of radiation lines is a function of the life times of the channeling states. Running time: The program has been tested on a PC AMD Athlon X2 245 processor 2.9 GHz with 2 GB RAM. Depending on electron energy and crystal thickness, the running time of the program amounts to 5-10 min.

  8. Shoulder Strength Requirements for Upper Limb Functional Tasks: Do Age and Rotator Cuff Tear Status Matter?

    PubMed

    Santago, Anthony C; Vidt, Meghan E; Li, Xiaotong; Tuohy, Christopher J; Poehling, Gary G; Freehill, Michael T; Saul, Katherine R

    2017-12-01

    Understanding upper limb strength requirements for daily tasks is imperative for early detection of strength loss that may progress to disability due to age or rotator cuff tear. We quantified shoulder strength requirements for 5 upper limb tasks performed by 3 groups: uninjured young adults and older adults, and older adults with a degenerative supraspinatus tear prior to repair. Musculoskeletal models were developed for each group representing age, sex, and tear-related strength losses. Percentage of available strength used was quantified for the subset of tasks requiring the largest amount of shoulder strength. Significant differences in strength requirements existed across tasks: upward reach 105° required the largest average strength; axilla wash required the largest peak strength. However, there were limited differences across participant groups. Older adults with and without a tear used a larger percentage of their shoulder elevation (p < .001, p < .001) and external rotation (p < .001, p = .017) strength than the young adults, respectively. Presence of a tear significantly increased percentage of internal rotation strength compared to young (p < .001) and uninjured older adults (p = .008). Marked differences in strength demand across tasks indicate the need for evaluating a diversity of functional tasks to effectively detect early strength loss, which may lead to disability.

  9. The effect of volume phase changes, mass transport, sunlight penetration, and densification on the thermal regime of icy regoliths

    NASA Technical Reports Server (NTRS)

    Fanale, Fraser P.; Salvail, James R.; Matson, Dennis L.; Brown, Robert H.

    1990-01-01

    The present quantitative modeling of convective, condensational, and sublimational effects on porous ice crust volumes subjected to solar radiation encompasses the effect of such insolation's penetration of visible bandpass-translucent light, but opaque to the IR bandpass. Quasi-steady-state temperatures, H2O mass fluxes, and ice mass-density change rates are computed as functions of time of day and ice depth. When the effects of latent heat and mass transport are included in the model, the enhancement of near-surface temperature due to the 'solid-state greenhouse effect' is substantially diminished. When latent heat, mass transport, and densification effects are considered, however, a significant solid-state greenhouse effect is shown to be compatible with both morphological evidence for high crust strengths and icy shell decoupling from the lithosphere.

  10. Hybrid PET/MR imaging in two sarcoma patients - clinical benefits and implications for future trials.

    PubMed

    Partovi, Sasan; Kohan, Andres A; Zipp, Lisa; Faulhaber, Peter; Kosmas, Christos; Ros, Pablo R; Robbin, Mark R

    2014-01-01

    PET/MRI is an evolving hybrid imaging modality which combines the inherent strengths of MRIs soft-tissue and contrast resolution and PETs functional metabolic capabilities. Bone and soft-tissue sarcoma are a relatively rare tumor entity, relying on MRI for local staging and often on PET/CT for lymph node involvement and metastatic spread evaluation. The purpose of this article is to demonstrate the successful use of PET/MRI in two sarcoma patients. We also use these patients as a starting point to discuss how PET/MRI might be of value in sarcoma. Among its potential benefits are: superior TNM staging than either modality alone, decreased radiation dose, more sensitive and specific follow-up and better assessment of treatment response. These potentials need to be investigated in future PET/MRI soft-tissue sarcoma trials.

  11. Performance evaluation of wireless communications through capsule endoscope.

    PubMed

    Takizawa, Kenichi; Aoyagi, Takahiro; Hamaguchi, Kiyoshi; Kohno, Ryuji

    2009-01-01

    This paper presents a performance evaluation of wireless communications applicable into a capsule endoscope. A numerical model to describe the received signal strength (RSS) radiated from a capsule-sized signal generator is derived through measurements in which a liquid phantom that has equivalent electrical constants is used. By introducing this model and taking into account the characteristics of its direction pattern of the capsule and propagation distance between the implanted capsule and on-body antenna, a cumulative distribution function (CDF) of the received SNR is evaluated. Then, simulation results related to the error ratio in the wireless channel are obtained. These results show that the frequencies of 611 MHz or lesser would be useful for the capsule endoscope applications from the view point of error rate performance. Further, we show that the use of antenna diversity brings additional gain to this application.

  12. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabrikant, J.I.

    1982-08-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer-induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain for problems and difficulties in extrapolation from data obtained at high doses to low doses, and frommore » animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations, and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy.« less

  13. Epidemiological studies on radiation carcinogenesis in human populations following acute exposure: nuclear explosions and medical radiation.

    PubMed Central

    Fabrikant, J. I.

    1981-01-01

    The present review provides an understanding of our current knowledge of the carcinogenic effect of low-dose radiation in man, and surveys the epidemiological studies of human populations exposed to nuclear explosions and medical radiation. Discussion centers on the contributions of quantitative epidemiology to present knowledge, the reliability of the dose-incidence data, and those relevant epidemiological studies that provide the most useful information for risk estimation of cancer induction in man. Reference is made to dose-incidence relationships from laboratory animal experiments where they may obtain, for problems and difficulties in extrapolation from data obtained at high doses to low doses, and from animal data to the human situation. The paper describes the methods of application of such epidemiological data for estimation of excess risk of radiation-induced cancer in exposed human populations and discusses the strengths and limitations of epidemiology in guiding radiation protection philosophy and public health policy. PMID:7043913

  14. Effect of High Energy Radiation on Mechanical Properties of Graphite Fiber Reinforced Composites. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Naranong, N.

    1980-01-01

    The flexural strength and average modulus of graphite fiber reinforced composites were tested before and after exposure to 0.5 Mev electron radiation and 1.33 Mev gamma radiation by using a three point bending test (ASTM D-790). The irradiation was conducted on vacuum treated samples. Graphite fiber/epoxy (T300/5208), graphite fiber/polyimide (C6000/PMR 15) and graphite fiber/polysulfone (C6000/P1700) composites after being irradiated with 0.5 Mev electron radiation in vacuum up to 5000 Mrad, show increases in stress and modulus of approximately 12% compared with the controls. Graphite fiber/epoxy (T300/5208 and AS/3501-6), after being irradiated with 1.33 Mev gamma radiation up to 360 Mrads, show increases in stress and modulus of approximately 6% at 167 Mrad compared with the controls. Results suggest that the graphite fiber composites studied should withstand the high energy radiation in a space environment for a considerable time, e.g., over 30 years.

  15. Innovative strength training-induced neuroplasticity and increased muscle size and strength in children with spastic cerebral palsy: an experimenter-blind case study--three-month follow-up.

    PubMed

    Lee, Dong Ryul; Kim, Yun Hee; Kim, Dong A; Lee, Jung Ah; Hwang, Pil Woo; Lee, Min Jin; You, Sung Hyun

    2014-01-01

    In children with cerebral palsy (CP), the never-learned-to-use (NLTU) effect and underutilization suppress the normal development of cortical plasticity in the paretic limb, which further inhibits its functional use and increases associated muscle weakness. To highlight the effects of a novel comprehensive hand repetitive intensive strengthening training system on neuroplastic changes associated with upper extremity (UE) muscle strength and motor performance in children with spastic hemiplegic CP. Two children with spastic hemiplegic CP were recruited. Intervention with the comprehensive hand repetitive intensive strengthening training system was provided for 60 min a day, three times a week, for 10 weeks. Neuroplastic changes, muscle size, strength, and associated motor function were measured using functional magnetic resonance imaging (MRI), ultrasound imaging, and standardized motor tests, respectively. The functional MRI data showed that the comprehensive hand repetitive intensive strengthening training intervention produced measurable neuroplastic changes in the neural substrates associated with motor control and learning. These neuroplastic changes were associated with increased muscle size, strength and motor function. These results provide compelling evidence of neuroplastic changes and associated improvements in muscle size and motor function following innovative upper extremity strengthening exercise.

  16. Dielectric strength of irradiated fiber reinforced plastics

    NASA Astrophysics Data System (ADS)

    Humer, Karl; Weber, Harald W.; Hastik, Ronald; Hauser, Hans; Gerstenberg, Heiko

    2001-05-01

    The insulation system for the toroidal field model coil of international thermonuclear experimental reactor is a fiber reinforced plastic (FRP) laminate, which consists of a combined Kapton/R-glass-fiber reinforcement tape, vacuum-impregnated with an epoxy DGEBA system. Pure disk-shaped laminates, disk-shaped FRP/stainless-steel sandwiches, and conductor insulation prototypes were irradiated at 5 K in a fission reactor up to a fast neutron fluence of 10 22 m -2 ( E>0.1 MeV) to investigate the radiation induced degradation of the dielectric strength of the insulation system. After warm-up to room temperature, swelling, weight loss, and the breakdown strength were measured at 77 K. The sandwich swells by 4% at a fluence of 5×10 21 m -2 and by 9% at 1×10 22 m -2. The weight loss of the FRP is 2% at 1×10 22 m -2. The dielectric strength remained unchanged over the whole dose range.

  17. THM determination of the 65 keV resonance strength intervening in the {sup 17}O(p,α){sup 14}N reaction rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sergi, M. L.; La Cognata, M.; Pizzone, R. G.

    2015-02-24

    The {sup 17}O(p,α){sup 14}N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at E{sub c.m.}{sup R} = 65 keV (E{sub X} =5.673 MeV). The strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonancemore » strength in the {sup 17}O+p radiative capture channel.« less

  18. Effects of hyperthyroidism on hand grip strength and function.

    PubMed

    Erkol İnal, Esra; Çarlı, Alparslan Bayram; Çanak, Sultan; Aksu, Oğuzhan; Köroğlu, Banu Kale; Savaş, Serpil

    2015-01-01

    Hyperthyroidism is a pathologic condition in which the body is exposed to excessive amounts of circulating thyroid hormones. Skeletal muscle is one of the major target organs of thyroid hormones. We evaluated hand grip strength and function in patients with overt hyperthyroidism. Fifty-one patients newly diagnosed with hyperthyroidism and 44 healthy controls participated in this study. Age, height, weight, and dominant hand of all participants were recorded. The diagnosis of hyperthyroidism was confirmed by clinical examination and laboratory tests. Hand grip strength was tested at the dominant hand with a Jamar hand dynamometer. The grooved pegboard test (PGT) was used to evaluate hand dexterity. The Duruöz Hand Index (DHI) was used to assess hand function. No significant differences were found in terms of clinical and demographic findings between the patients with hyperthyroidism and healthy controls (p > 0.05). Significant differences were found between the patients with hyperthyroidism and healthy controls regarding PGT and DHI scores (p < 0.05). Hyperthyroidism seemed to affect hand dexterity and function more than hand grip strength and seemed to be associated with reduced physical function more than muscle strength. This may also indicate that patients with hyperthyroidism should be evaluated by multidisplinary modalities.

  19. Effect of traditional resistance and power training using rated perceived exertion for enhancement of muscle strength, power, and functional performance.

    PubMed

    Tiggemann, Carlos Leandro; Dias, Caroline Pieta; Radaelli, Regis; Massa, Jéssica Cassales; Bortoluzzi, Rafael; Schoenell, Maira Cristina Wolf; Noll, Matias; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2016-04-01

    The present study compared the effects of 12 weeks of traditional resistance training and power training using rated perceived exertion (RPE) to determine training intensity on improvements in strength, muscle power, and ability to perform functional task in older women. Thirty healthy elderly women (60-75 years) were randomly assigned to traditional resistance training group (TRT; n = 15) or power training group (PT; n = 15). Participants trained twice a week for 12 weeks using six exercises. The training protocol was designed to ascertain that participants exercised at an RPE of 13-18 (on a 6-20 scale). Maximal dynamic strength, muscle power, and functional performance of lower limb muscles were assessed. Maximal dynamic strength muscle strength leg press (≈58 %) and knee extension (≈20 %) increased significantly (p < 0.001) and similarly in both groups after training. Muscle power also increased with training (≈27 %; p < 0.05), with no difference between groups. Both groups also improved their functional performance after training period (≈13 %; p < 0.001), with no difference between groups. The present study showed that TRT and PT using RPE scale to control intensity were significantly and similarly effective in improving maximal strength, muscle power, and functional performance of lower limbs in elderly women.

  20. In-season monitoring of hip and groin strength, health and function in elite youth soccer: Implementing an early detection and management strategy over two consecutive seasons.

    PubMed

    Wollin, Martin; Thorborg, Kristian; Welvaert, Marijke; Pizzari, Tania

    2018-03-14

    The primary purpose of this study was to describe an early detection and management strategy when monitoring in-season hip and groin strength, health and function in soccer. Secondly to compare pre-season to in-season test results. Longitudinal cohort study. Twenty-seven elite male youth soccer players (age: 15.07±0.73years) volunteered to participate in the study. Monitoring tests included: adductor strength, adductor/abductor strength ratio and hip and groin outcome scores (HAGOS). Data were recorded at pre-season and at 22 monthly intervals in-season. Thresholds for alerts to initiate further investigations were defined as any of the following: adductor strength reductions >15%, adductor/abductor strength ratio <0.90, and HAGOS subscale scores <75 out of 100 in any of the six subscales. Overall, 105 alerts were detected involving 70% of players. Strength related alerts comprised 40% and remaining 60% of alerts were related to HAGOS. Hip adductor strength and adductor/abductor strength ratio were lowest at pre-season testing and had increased significantly by month two (p<0.01, mean difference 0.26, CI95%: 0.12, 0.41N/kg and p<0.01, mean difference 0.09, CI95%: 0.04, 0.13 respectively). HAGOS subscale scores were lowest at baseline with all, except Physical Activity, showing significant improvements at time-point one (p<0.01). Most (87%) time-loss were classified minimal or mild. In-season monitoring aimed at early detection and management of hip and groin strength, health and function appears promising. Hip and groin strength, health and function improved quickly from pre-season to in-season in a high-risk population for ongoing hip and groin problems. Copyright © 2018 Sports Medicine Australia. All rights reserved.

  1. Quadriceps rate of torque development and disability in individuals with anterior cruciate ligament reconstruction.

    PubMed

    Davis, Hope C; Troy Blackburn, J; Ryan, Eric D; Luc-Harkey, Brittney A; Harkey, Matthew S; Padua, Darin A; Pietrosimone, Brian

    2017-07-01

    The purpose of this study was to determine associations between self-reported function (International Knee Documentation Committee Index), isometric quadriceps strength and rate of torque development in individuals with a unilateral anterior cruciate ligament reconstruction. Forty-one individuals [31% male, BMI mean 25 (SD 4) kg/m 2 , months post anterior cruciate ligament reconstruction mean 49 (SD 40)] completed the self-reported function and isometric quadriceps function testing. Rate of torque development was assessed at 0-100ms (early), 100-200ms (late) ms, and peak following the onset of contraction. Associations were examined between rate of torque development, strength, and self-reported function. Linear regression was used to determine the unique amount of variance explained by the combination of rate of torque development and strength. Higher rate of torque development 100-200ms is weakly associated with higher self-reported function in individuals with a unilateral anterior cruciate ligament reconstruction (r=0.274, p=0.091); however, rate of torque development 100-200ms does not predict a significant amount of variance in self-reported function after accounting for strength (ΔR 2 =0.003, P=0.721). Quadriceps strength has a greater influence on self-reported function compared to rate of torque development in individuals with an anterior cruciate ligament reconstruction with time from surgery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effects of different strength training frequencies on maximum strength, body composition and functional capacity in healthy older individuals.

    PubMed

    Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon

    2017-11-01

    There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, P<0.05) and EX3 improved more than EX1 (P=0.007) at month 9. Compared to CON, EX3 improved in backward walk (P=0.047) and EX1 in timed-up-and-go (P=0.029) tests. No significant changes occurred in body composition. The present study found no evidence that higher training frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Non-elite gymnastics participation is associated with greater bone strength, muscle size, and function in pre- and early pubertal girls.

    PubMed

    Burt, L A; Naughton, G A; Greene, D A; Courteix, D; Ducher, G

    2012-04-01

    Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.

  4. Effects of daily vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients: a pilot trial.

    PubMed

    Rafiq, Rachida; Prins, Hendrik J; Boersma, Wim G; Daniels, Johannes Ma; den Heijer, Martin; Lips, Paul; de Jongh, Renate T

    2017-01-01

    Although vitamin D is well known for its function in calcium homeostasis and bone mineralization, several studies have shown positive effects on muscle strength and physical function. In addition, vitamin D has been associated with pulmonary function and the incidence of airway infections. As vitamin D deficiency is highly prevalent in chronic obstructive pulmonary disease (COPD) patients, supplementation might have a beneficial effect in these patients. To assess the effect of vitamin D supplementation on respiratory muscle strength and physical performance in vitamin D-deficient COPD patients. Secondary outcomes are pulmonary function, handgrip strength, exacerbation rate, and quality of life. We performed a randomized, double-blind, placebo-controlled pilot trial. Participants were randomly allocated to receive 1,200 IU vitamin D3 per day (n=24) or placebo (n=26) during 6 months. Study visits were conducted at baseline, and at 3 and 6 months after randomization. During the visits, blood was collected, respiratory muscle strength was measured (maximum inspiratory and expiratory pressure), physical performance and 6-minute walking tests were performed, and handgrip strength and pulmonary function were assessed. In addition, participants kept a diary card in which they registered respiratory symptoms. At baseline, the mean (standard deviation [SD]) serum 25-hydroxyvitamin D (25(OH)D) concentration (nmol/L) was 42.3 (15.2) in the vitamin D group and 40.6 (17.0) in the placebo group. Participants with vitamin D supplementation had a larger increase in serum 25(OH)D compared to the placebo group after 6 months (mean difference (SD): +52.8 (29.8) vs +12.3 (25.1), P <0.001). Primary outcomes, respiratory muscle strength and physical performance, did not differ between the groups after 6 months. In addition, no differences were found in the 6-minute walking test results, handgrip strength, pulmonary function, exacerbation rate, or quality of life. Vitamin D supplementation did not affect (respiratory) muscle strength or physical performance in this pilot trial in vitamin D-deficient COPD patients.

  5. Heavy particle irradiation, neurochemistry and behavior: thresholds, dose-response curves and recovery of function

    NASA Astrophysics Data System (ADS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2004-01-01

    Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity.

  6. Heavy particle irradiation, neurochemistry and behavior: thresholds, dose-response curves and recovery of function

    NASA Technical Reports Server (NTRS)

    Rabin, B. M.; Joseph, J. A.; Shukitt-Hale, B.

    2004-01-01

    Exposure to heavy particles can affect the functioning of the central nervous system (CNS), particularly the dopaminergic system. In turn, the radiation-induced disruption of dopaminergic function affects a variety of behaviors that are dependent upon the integrity of this system, including motor behavior (upper body strength), amphetamine (dopamine)-mediated taste aversion learning, and operant conditioning (fixed-ratio bar pressing). Although the relationships between heavy particle irradiation and the effects of exposure depend, to some extent, upon the specific behavioral or neurochemical endpoint under consideration, a review of the available research leads to the hypothesis that the endpoints mediated by the CNS have certain characteristics in common. These include: (1) a threshold, below which there is no apparent effect; (2) the lack of a dose-response relationship, or an extremely steep dose-response curve, depending on the particular endpoint; and (3) the absence of recovery of function, such that the heavy particle-induced behavioral and neural changes are present when tested up to one year following exposure. The current report reviews the data relevant to the degree to which these characteristics are common to neurochemical and behavioral endpoints that are mediated by the effects of exposure to heavy particles on CNS activity. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  7. Scaling submillimeter single-cycle transients toward megavolts per centimeter field strength via optical rectification in the organic crystal OH1.

    PubMed

    Ruchert, Clemens; Vicario, Carlo; Hauri, Christoph P

    2012-03-01

    We present the generation of high-power single-cycle terahertz (THz) pulses in the organic salt crystal 2-[3-(4-hydroxystyryl)-5.5-dimethylcyclohex-2-enylidene]malononitrile or OH1. Broadband THz radiation with a central frequency of 1.5 THz (λ(c)=200 μm) and high electric field strength of 440 kV/cm is produced by optical rectification driven by the signal of a powerful femtosecond optical parametric amplifier. A 1.5% pump to THz energy conversion efficiency is reported, and pulse energy stability better than 1% RMS is achieved. An approach toward the realization of higher field strength is discussed. © 2012 Optical Society of America

  8. Probabilistic lifetime strength of aerospace materials via computational simulation

    NASA Technical Reports Server (NTRS)

    Boyce, Lola; Keating, Jerome P.; Lovelace, Thomas B.; Bast, Callie C.

    1991-01-01

    The results of a second year effort of a research program are presented. The research included development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic phenomenological constitutive relationship, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subjected to a number of effects of primitive variables. These primitive variables often originate in the environment and may include stress from loading, temperature, chemical, or radiation attack. This multifactor interaction constitutive equation is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the constitutive equation using actual experimental materials data together with the multiple linear regression of that data.

  9. Improved excitation rate coefficients for the n = 2 and n = 3 levels of Ca XIX and Fe XXV including fine structure

    NASA Technical Reports Server (NTRS)

    Pradhan, A. K.

    1985-01-01

    Reently calculated collision strengths, including relativistic and resonance effects, are employed to compute Maxwellian averaged collision strengths for 78 transitions involving states of principal quantum numbers 2-1 and 3-1 in Ca XIX and Fe XXV. These rate parameters are tabulated at temperatures of interest in astrophysical and labortory plasmas with radiation in the hard X-ray wavelength range. For some transitions, significant differences are found with the earlier calculations of Pradhan, Norcross, and Hummer (1981).

  10. Photovoltaic system test facility electromagnetic interference measurements

    NASA Technical Reports Server (NTRS)

    Johnson, J. A.; Herke, F. P., Jr.; Knapp, W. D.

    1977-01-01

    Field strength measurements on a single row of panels indicates that the operational mode of the array as configured presents no radiated EMI problems. Only one relatively significant frequency band near 200 kHz showed any degree of intensity (9 muV/m including a background level of 5 muV/m). The level was measured very near the array (at 20 ft distance) while Federal Communications Commission (FCC) regulations limit spurious emissions to 15 muV/m at 1,000 ft. No field strength readings could be obtained even at 35 ft distant.

  11. A New Approach to Improve Cognition, Muscle Strength, and Postural Balance in Community-Dwelling Elderly with a 3-D Virtual Reality Kayak Program.

    PubMed

    Park, Junhyuck; Yim, JongEun

    2016-01-01

    Aging is usually accompanied with deterioration of physical abilities, such as muscular strength, sensory sensitivity, and functional capacity. Recently, intervention methods with virtual reality have been introduced, providing an enjoyable therapy for elderly. The aim of this study was to investigate whether a 3-D virtual reality kayak program could improve the cognitive function, muscle strength, and balance of community-dwelling elderly. Importantly, kayaking involves most of the upper body musculature and needs the balance control. Seventy-two participants were randomly allocated into the kayak program group (n = 36) and the control group (n = 36). The two groups were well matched with respect to general characteristics at baseline. The participants in both groups performed a conventional exercise program for 30 min, and then the 3-D virtual reality kayak program was performed in the kayak program group for 20 min, two times a week for 6 weeks. Cognitive function was measured using the Montreal Cognitive Assessment. Muscle strength was measured using the arm curl and handgrip strength tests. Standing and sitting balance was measured using the Good Balance system. The post-test was performed in the same manner as the pre-test; the overall outcomes such as cognitive function (p < 0.05), muscle strength (p < 0.05), and balance (standing and sitting balance, p < 0.05) were significantly improved in kayak program group compared to the control group. We propose that the 3-D virtual reality kayak program is a promising intervention method for improving the cognitive function, muscle strength, and balance of elderly.

  12. Profile of isokinetic eccentric-to-concentric strength ratios of shoulder rotator muscles in elite female team handball players.

    PubMed

    Andrade, Marilia Dos Santos; Fleury, Anna Maria; de Lira, Claudio Andre Barbosia; Dubas, Joao Paulo; da Silva, Antonio Carlos

    2010-05-01

    The purpose of this study was to establish the isokinetic profile of shoulder rotator muscles strength in female handball players. Twenty-seven handball players performed concentric and eccentric strength tests of both dominant and non-dominant upper limbs on an isokinetic dynamometer. Internal and external rotator muscles peak torque was assessed at 1.05, 3.14, and 5.23 rad . s(-1) in concentric mode and at 3.14 and 5.23 rad . s(-1) in eccentric mode. Concentric balance ratio and functional ratio were obtained. Bi-lateral deficiency was compared. Concentric strength for internal and external rotation was significantly greater for the dominant than for the non-dominant limb for all speeds (P < or = 0.0001). For eccentric actions, internal rotator muscles were stronger in the dominant than the non-dominant limb (P < or = 0.0001) at both speeds. Concentric balance and functional balance ratios did not differ between sides at 3.14 rad . s(-1) (P = 0.1631), but at 5.23 rad . s(-1) the functional balance ratio in the dominant limb was lower than for the non-dominant limb (P = 0.0500). Although the dominant side was stronger than the non-dominant side, balance concentric ratios remained the same, with only the functional strength ratio different at 5.23 rad . s(-1). Our results suggest that concentric strength exercises be used for internal and external rotators on the non-dominant side, and functional exercise that improves eccentric rotation strength for prevention programmes.

  13. Scratch-resistant, highly conductive, and high-strength carbon nanotube-based composite yarns.

    PubMed

    Liu, Kai; Sun, Yinghui; Lin, Xiaoyang; Zhou, Ruifeng; Wang, Jiaping; Fan, Shoushan; Jiang, Kaili

    2010-10-26

    High-strength and conductive carbon nanotube (CNT) yarns are very attractive in many potential applications. However, there is a difficulty when simultaneously enhancing the strength and conductivity of CNT yarns. Adding some polymers into CNT yarns to enhance their strength will decrease their conductivity, while treating them in acid or coating them with metal nanoparticles to enhance their conductivity will reduce their strength. To overcome this difficulty, here we report a method to make high-strength and highly conductive CNT-based composite yarns by using a continuous superaligned CNT (SACNT) yarn as a conductive framework and then inserting polyvinyl alcohol (PVA) into the intertube spaces of the framework through PVA/dimethyl sulphoxide solution to enhance the strength of yarns. The as-produced CNT/PVA composite yarns possess very high tensile strengths up to 2.0 GPa and Young's moduli more than 120 GPa, much higher than those of the CNT/PVA yarns reported. The electric conductivity of as-produced composite yarns is as high as 9.2 × 10(4) S/m, comparable to HNO(3)-treated or Au nanoparticle-coated CNT yarns. These composite yarns are flexible, lightweight, scratch-resistant, very stable in the lab environment, and resistant to extremely humid ambient and as a result can be woven into high-strength and heatable fabrics, showing potential applications in flexible heaters, bullet-proof vests, radiation protection suits, and spacesuits.

  14. Hybrid Monte Carlo/Deterministic Methods for Accelerating Active Interrogation Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peplow, Douglas E.; Miller, Thomas Martin; Patton, Bruce W

    2013-01-01

    The potential for smuggling special nuclear material (SNM) into the United States is a major concern to homeland security, so federal agencies are investigating a variety of preventive measures, including detection and interdiction of SNM during transport. One approach for SNM detection, called active interrogation, uses a radiation source, such as a beam of neutrons or photons, to scan cargo containers and detect the products of induced fissions. In realistic cargo transport scenarios, the process of inducing and detecting fissions in SNM is difficult due to the presence of various and potentially thick materials between the radiation source and themore » SNM, and the practical limitations on radiation source strength and detection capabilities. Therefore, computer simulations are being used, along with experimental measurements, in efforts to design effective active interrogation detection systems. The computer simulations mostly consist of simulating radiation transport from the source to the detector region(s). Although the Monte Carlo method is predominantly used for these simulations, difficulties persist related to calculating statistically meaningful detector responses in practical computing times, thereby limiting their usefulness for design and evaluation of practical active interrogation systems. In previous work, the benefits of hybrid methods that use the results of approximate deterministic transport calculations to accelerate high-fidelity Monte Carlo simulations have been demonstrated for source-detector type problems. In this work, the hybrid methods are applied and evaluated for three example active interrogation problems. Additionally, a new approach is presented that uses multiple goal-based importance functions depending on a particle s relevance to the ultimate goal of the simulation. Results from the examples demonstrate that the application of hybrid methods to active interrogation problems dramatically increases their calculational efficiency.« less

  15. Effects of strength and neuromuscular training on functional performance in athletes after partial medial meniscectomy.

    PubMed

    Zhang, Xiaohui; Hu, Min; Lou, Zhen; Liao, Bagen

    2017-02-01

    The aims of this study were to determine an effective knee function rehabilitation program for athletes undergoing partial medial meniscectomy. Participants were randomly assigned to neuromuscular training (NT) or strength training (ST) group and subjected to functional assessments before surgery and again at 4, and 8 weeks post hoc . Functional knee assessment, such as Lysholm knee scoring, star excursion balance, and BTE PrimusRS isokinetic performance tests were evaluated in each group. All postoperational symptoms were significantly improved after 4 and 8 weeks of NT and ST. Both NT and ST programs showed effective knee function recovery seen as an increase in muscular strength and endurance. However, the NT program showed the most significant functional improvement of dynamic balance and coordination.

  16. Physical and functional measures related to low back pain in individuals with lower-limb amputation: an exploratory pilot study.

    PubMed

    Friel, Karen; Domholdt, Elizabeth; Smith, Douglas G

    2005-01-01

    For this study, we compared the physical impairments and functional deficits of individuals with lower-limb amputation (LLA) for those with and without low back pain (LBP). Nineteen participants with LLA were placed into two groups based on visual analog scores of LBP. We assessed functional limitations, iliopsoas length, hamstring length, abdominal strength, back extensor strength, and back extensor endurance. Data analysis included correlations and t-tests. We found significant correlations between pain score and functional limitations, iliopsoas length, and back extensor endurance. We also detected significant differences in functional limitations, iliopsoas length, back extensor strength, and back extensor endurance between those with and without LBP. We saw significant differences in back extensor strength and back extensor endurance between those with transtibial and transfemoral amputations. Differences exist in physical measures of individuals with LLA with and without LBP. Clinicians should consider these impairments in individuals with amputation who experience LBP. Because of the participants' characteristics, these findings may be applicable to veterans with LLA.

  17. Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy.

    PubMed

    Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger; Prahm, Kira Philipsen; Vissing, John; Jensen, Bente Rona

    2014-06-01

    Recent studies in patients with muscular dystrophies suggest positive effects of aerobic and strength training. These studies focused training on using bicycle ergometers and conventional strength training, which precludes more severely affected patients from participating, because of their weakness. We investigated the functional effects of combined aerobic and strength training in patients with Becker and limb-girdle muscular dystrophies with knee muscle strength levels as low as 3% of normal strength. Eight patients performed 10 weeks of aerobic and strength training on an anti-gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10 weeks prior to training, immediately before training and after 10 weeks of training. Training elicited an improvement of walking distance by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely affected patients with Becker and limb-girdle muscular dystrophies. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults.

    PubMed

    Granacher, Urs; Lacroix, Andre; Muehlbauer, Thomas; Roettger, Katrin; Gollhofer, Albert

    2013-01-01

    Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 ± 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 ± 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group × test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. Copyright © 2012 S. Karger AG, Basel.

  19. Low-energy modification of the γ strength function of the odd-even nucleus 115In

    NASA Astrophysics Data System (ADS)

    Versteegen, Maud; Denis-Petit, David; Méot, Vincent; Bonnet, Thomas; Comet, Maxime; Gobet, Franck; Hannachi, Fazia; Tarisien, Medhi; Morel, Pascal; Martini, Marco; Péru, Sophie

    2016-10-01

    Photoactivation yield measurements on 115In have been performed at the ELSA facility with Bremsstrahlung photon beams over a range of endpoint energies between 4.5 and 18 MeV. The measured photoexcitation yields of the Inm115 metastable state are compared with calculated yields using cross sections obtained with different models of the photon strength function. It is shown that additional photon strength with respect to the general Lorentzian model is needed at 8.1 MeV for the calculated yields to reproduce the data. The origin of this extra strength is unclear, because it is compatible with additional strength predicted in both E 1 and M 1 photon strength distributions by quasiparticle random-phase approximation calculations using the Gogny D1S force.

  20. Equilibrium structure of solar magnetic flux tubes: Energy transport with multistream radiative transfer

    NASA Technical Reports Server (NTRS)

    Hasan, S. S.; Kalkofen, W.

    1994-01-01

    We examine the equilibrium structure of vertical intense magnetic flux tubes on the Sun. Assuming cylindrical geometry, we solve the magnetohydrostatic equations in the thin flux-tube approximation, allowing for energy transport by radiation and convection. The radiative transfer equation is solved in the six-stream approximation, assuming gray opacity and local thermodynamic equilibrium. This constitutes a significant improvement over a previous study, in which the transfer was solved using the multidimensional generalization of the Eddington approximation. Convection in the flux tube is treated using mixing-length theory, with an additional parameter alpha, characterizing the suppression of convective energy transport in the tube by the strong magnetic field. The equations are solved using the method of partial linearization. We present results for tubes with different values of the magnetic field strength and radius at a fixed depth in the atmosphere. In general, we find that, at equal geometric heights, the temperature on the tube axis, compared to the ambient medium, is higher in the photosphere and lower in the convection zone, with the difference becoming larger for thicker tubes. At equal optical depths the tubes are generally hotter than their surroundings. The results are comparatively insensitive to alpha but depend upon whether radiative and convective energy transport operate simultaneously or in separate layers. A comparison of our results with semiempirical models shows that the temperature and intensity contrast are in broad agreement. However, the field strengths of the flux-tube models are somewhat lower than the values inferred from observations.

Top