Science.gov

Sample records for radiatively cooled plasma

  1. Radiative cooling of a hydrogen plasma in a shock tube

    NASA Technical Reports Server (NTRS)

    Stickford, G. H., Jr.

    1975-01-01

    A method of computing radiative cooling of a hydrogen plasma assuming quasi-isothermal radiative transfer is described. A comparison with nonisothermal calculations for a plane parallel slab indicates good agreement for temperature gradients up to 300 K/cm. The calculations are compared with shock-tube data obtained in the JPL high-performance shock-tube facility. The calculations agreed with the data for one run but were 20 percent high for the other. Due to greater radiative cooling at the test slug boundaries a lateral temperature variation typically exists. This would cause the intensity measurement, which is integrated across the diameter of the test slug, to be below the prediction.

  2. Collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet

    NASA Astrophysics Data System (ADS)

    Espinosa, G.; Gil, J. M.; Rodriguez, R.; Rubiano, J. G.; Mendoza, M. A.; Martel, P.; Minguez, E.; Suzuki-Vidal, F.; Lebedev, S. V.; Swadling, G. F.; Burdiak, G.; Pickworth, L. A.; Skidmore, J.

    2015-12-01

    A computational investigation based on collisional-radiative simulations of a supersonic and radiatively cooled aluminum plasma jet is presented. The jet, both in vacuum and in argon ambient gas, was produced on the MAGPIE (Mega Ampere Generator for Plasma Implosion Experiments) generator and is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. In this work, population kinetics and radiative properties simulations of the jet in different theoretical approximations were performed. In particular, local thermodynamic equilibrium (LTE), non-LTE steady state (SS) and non-LTE time dependent (TD) models have been considered. This study allows us to make a convenient microscopic characterization of the aluminum plasma jet.

  3. Expansion of radiative cooling of the laser induced plasma

    SciTech Connect

    Wen, Sy-Bor; Mao, Xianglei; Liu, Chunyi; Greif, Ralph; Russo,Richard

    2006-05-05

    To study the expansion and cooling process of the laser induced plasma generated by nanosecond pulsed laser ablation, experiments have been conducted which measure the position of the external shockwaves and the temperature of the vapor plumes. The positions of external shockwaves were determined by a femtosecond laser time-resolved imaging system. Vapor plume temperature was determined from spectroscopic measurements of the plasma emission lines. A model which considers the mass, momentum, and energy conservation of the region affected by the laser energy was developed. It shows good agreement to the experimental data.

  4. Radiative cooling in shock-heated hydrogen-helium plasmas. [for planetary entry probe heat shields

    NASA Technical Reports Server (NTRS)

    Poon, P. T. Y.; Stickford, G. H., Jr.

    1978-01-01

    Axial and off-axis radiative cooling of cylindrical shock-heated hydrogen-helium plasmas is investigated theoretically and experimentally. The coupled fluid dynamic-radiative transfer equations are solved by a combination of approximation techniques aimed at simplifying the computation of the flux divergence term, namely, the quasi-isothermal approximation and the exponential approximation developed for the solid angle integration. The accuracy of the approximation schemes has been assessed and found acceptable for applying the methods to the rapid computation of the radiatively coupled flow problem. Radiative cooling experiments were conducted in a 6-inch annular arc accelerator shock tube (ANAA) for an initial pressure of 1 torr and shock speeds from 35 to 45 Km/sec. The results indicate that the lateral cooling is small compared with the axial cooling, and that better agreement is achieved between the data and the theoretical results by inclusion of the lateral temperature gradient.

  5. Radiation cooling and gain calculation for C VI 182 A line in C/Se plasma

    SciTech Connect

    Nam, C.H.; Valeo, E.; Suckewer, S.; Feldman, U.

    1986-04-01

    A model is developed which is capable of describing the evolution of gain resulting from both rapid radiative and expansion cooling of a recombining, freely expanding plasma. It is demonstrated for the particular case of a carbon/selenium plasma that the cooling rate which leads to optimal gain can be achieved by adjusting the admixture of an efficiently radiating material (selenium) in the gain medium (carbon). Comparison is made to a recent observation of gain in a recent NRL/Rochester experiment with carbon/selenium plasma for the n = 3 ..-->.. 2 transition in C VI occurring at 182 A. The predicted maximum gain is approx.10 cm/sup -1/, as compared to observation of 2 to 3 cm/sup -1/.

  6. Radiative cooling efficiencies and predicted spectra of species of the Io plasma torus

    NASA Technical Reports Server (NTRS)

    Shemansky, D. E.

    1980-01-01

    Calculations of the physical condition of the Io plasma torus have been made based on the recent Voyager EUV observations. The calculations represent an assumed thin plasma collisional ionization equilibrium among the states within each species. The observations of the torus are all consistent with this condition. The major energy loss mechanism is radiative cooling in discrete transitions. Calculations of radiative cooling efficiencies of the identified species leads to an estimated energy loss rate of at least 1.5 x 10 to the 12th watts. The mean electron temperature and density of the plasma are estimated to be 100,000 K and 2100/cu cm. The estimated number densities of S III, S IV, and O III are roughly 95, 80, and 190-740/cu cm. Upper limits have been placed on a number of other species based on the first published Voyager EUV spectrum of the torus. The assumption that energy is supplied to the torus through injection of neutral particles from Io leads to the conclusion that ion loss rates are controlled by diffusion, and relative species abundances consequently are not controlled by collisional ionization equilibrium.

  7. The structure of shocks with thermal conduction and radiative cooling. [in astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Lacey, Cedric G.

    1988-01-01

    A general analysis is presented of the structure of a steady state, plane-parallel shock wave in which both thermal conduction and radiative cooling are important. The fluid is assumed to have a perfect-gas equation of state, with radiative cooling a function only of its temperature and density. Conduction in both diffusive and saturated regimes is treated. For the case of a strong shock, with conductivity and cooling function varying as power laws in temperature, approximate analytic solutions describing the shock wave are derived. For a plasma of solar composition, conduction is found to have a significant effect on the shock temperature and overall thickness of the postshock layer only for shock velocities greater than about 30,000 km/s, corresponding to shock temperatures greater than about 10 to the 10th K, but it affects the local structure of parts of the shock wave at much lower velocities. The effects of conduction are greatly enhanced if the heavy-element abundance is increased.

  8. Hybrid radiator cooling system

    DOEpatents

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  9. Beam characteristics of a large-bore copper laser with a radiatively cooled plasma

    SciTech Connect

    Chang, J.J.; Boley, C.D.; Molander, W.A.; Warner, B.E.; Martinez, M.W.

    1994-01-18

    In a large-bore copper vapor laser (CVL), excessive gas heating at the axial region of the discharge lowers its efficiency by thermally populating the metastable lower laser levels. The associated lower gas density also lengthens the discharge field-diffusion time, leading to weaker axial pumping and undesired beam characteristics. The authors` laboratory has developed a novel approach to circumvent this obstacle by cooling the plasma radiatively via a series of segmented metal plates (septa) placed vertically along the length of the tube. This improved tube design significantly lowers the average gas temperature and shortens the radial delay. A 27% increase in laser power was observed with the addition of septa. The authors have characterized the beam intensity profile, spatial and temporal pulse variation, and beam polarization through extensive laboratory measurements. A detailed computational model of the laser has been used to characterize and interpret the laboratory results.

  10. Evidence for gain on the C VI 182 A transition in a radiation-cooled selenium/Formvar plasma

    NASA Technical Reports Server (NTRS)

    Seely, J. F.; Brown, C. M.; Feldman, U.; Richardson, M.; Behring, W. E.

    1985-01-01

    Thin plastic foils coated with selenium have been irradiated using from 4 to 8 beams of the OMEGA laser in a line focus configuration. Spectra were recorded using a 3 meter spectrograph that viewed the plasma along the line focus. Based on a comparison of the intensities of the spectral lines from plasmas with lengths of 1.7, 3.4, 6.8, and 13.6 mm, the C VI n = 3 to 2 transition at 182 A was anomalously intense in the spectra from the longer plasmas. Calculations indicate that the carbon plasma was cooled by radiation from the highly-charged selenium plasma in a time that was smaller than the expansion time of the plasma. These plasma conditions are favorable for the occurrence of population inversions between the n = 2 and 3 levels of C VI resulting from recombination and cascading from higher levels. The measured gain coefficient for the C VI 182 A transition is 3/cm, and this corresponds to a gain-length product of 4 in the longest plasma.

  11. THE COOLING OF CORONAL PLASMAS. IV. CATASTROPHIC COOLING OF LOOPS

    SciTech Connect

    Cargill, P. J.; Bradshaw, S. J.

    2013-07-20

    We examine the radiative cooling of coronal loops and demonstrate that the recently identified catastrophic cooling is due to the inability of a loop to sustain radiative/enthalpy cooling below a critical temperature, which can be >1 MK in flares, 0.5-1 MK in active regions, and 0.1 MK in long tenuous loops. Catastrophic cooling is characterized by a rapid fall in coronal temperature, while the coronal density changes by a small amount. Analytic expressions for the critical temperature are derived and show good agreement with numerical results. This effect considerably limits the lifetime of coronal plasmas below the critical temperature.

  12. Stimulated radiative laser cooling

    NASA Astrophysics Data System (ADS)

    Muys, P.

    2008-04-01

    Building a refrigerator based on the conversion of heat into optical energy is an ongoing engineering challenge. Under well-defined conditions, spontaneous anti-Stokes fluorescence of a dopant material in a host matrix is capable of lowering the host temperature. The fluorescence is conveying away a part of the thermal energy stored in the vibrational oscillations of the host lattice. In particular, applying this principle to the cooling of (solid-state) lasers opens up many potential device applications, especially in the domain of high-power lasers. In this paper, an alternative optical cooling scheme is outlined, leading to the radiative cooling of solid-state lasers. It is based on converting the thermal energy stored in the host into optical energy by means of a stimulated nonlinear process, rather than a spontaneous process. This should lead to better cooling efficiencies and a higher potential of applying the principle for device applications.

  13. Electron beam dynamics and self-cooling up to PeV level due to betatron radiation in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Deng, Aihua; Nakajima, Kazuhisa; Liu, Jiansheng; Shen, Baifei; Zhang, Xiaomei; Yu, Yahong; Li, Wentao; Li, Ruxin; Xu, Zhizhan

    2012-08-01

    In plasma-based accelerators, electrons are accelerated by ultrahigh gradient of 1-100GV/m and undergo the focusing force with the same order as the accelerating force. Heated electrons are injected in a plasma wake and exhibit the betatron oscillation that generates synchrotron radiation. Intense betatron radiation from laser-plasma accelerators is attractive x-ray/gamma-ray sources, while it produces radiation loss and significant effects on energy spread and transverse emittance via the radiation reaction force. In this article, electron beam dynamics on transverse emittance and energy spread with considering radiation reaction effects are studied numerically. It is found that the emittance growth and the energy spread damping initially dominate and balance with radiative damping due to the betatron radiation. Afterward the emittance turns to decrease at a constant rate and leads to the equilibrium at a nanometer radian level with growth due to Coulomb scattering at PeV-level energies. A constant radiation loss rate RT=2/3 is found without regard to the electron beam and plasma conditions. Self-cooling of electron beams due to betatron radiation may guarantee TeV-range linear colliders and give hints on astrophysical ultrahigh-energy phenomena.

  14. Synchrotron cooling and annihilation of an E(+)-E(-) plasma: The radiation mechanism for the March 5, 1979 transient

    NASA Technical Reports Server (NTRS)

    Ramaty, R.; Lingenfelter, R. E.; Bussard, R. W.

    1980-01-01

    Positron-electron pair radiation is examined as a mechanism that could be responsible for the impulsive phase emission of the March 5, 1979 transient. Synchrotron cooling and subsequent annihilation of the pairs can account for the energy spectrum, the very high brightness, and the approximately 0.4 MeV feature observed from this transient, whose source is likely to be a neutron star in the supernova remnant N49 in the Large Magellanic Cloud. In this model, the observed radiation is produced in the skin layer of a hot, radiation dominated pair atmosphere, probably confined to the vicinity of the neutron star by a strong magnetic field. The width of this layer is only about 0.1 mm. In this layer, approximately 10 to the 12th power generations of pairs are formed (by photon-photon collisions), cooled and annihilated during the approximately 0.15 sec duration of the impulsive phase. The very large burst energy implied by the distance of the Large Magellanic Cloud, and its very rapid release, are unsolved problems. Nonetheless, the possibility of neutron star vibrations, which could transport the energy coherently to the surface, heat the atmosphere mechanically to a hot, pair-producing temperature, and have a characteristic damping time roughly equal to the duration of the impulsive phase are addressed.

  15. Cooling of solar flares plasmas. 1: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Mariska, John T.; Antiochos, Spiro K.

    1995-01-01

    Theoretical models of the cooling of flare plasma are reexamined. By assuming that the cooling occurs in two separate phase where conduction and radiation, respectively, dominate, a simple analytic formula for the cooling time of a flare plasma is derived. Unlike earlier order-of-magnitude scalings, this result accounts for the effect of the evolution of the loop plasma parameters on the cooling time. When the conductive cooling leads to an 'evaporation' of chromospheric material, the cooling time scales L(exp 5/6)/p(exp 1/6), where the coronal phase (defined as the time maximum temperature). When the conductive cooling is static, the cooling time scales as L(exp 3/4)n(exp 1/4). In deriving these results, use was made of an important scaling law (T proportional to n(exp 2)) during the radiative cooling phase that was forst noted in one-dimensional hydrodynamic numerical simulations (Serio et al. 1991; Jakimiec et al. 1992). Our own simulations show that this result is restricted to approximately the radiative loss function of Rosner, Tucker, & Vaiana (1978). for different radiative loss functions, other scaling result, with T and n scaling almost linearly when the radiative loss falls off as T(exp -2). It is shown that these scaling laws are part of a class of analytic solutions developed by Antiocos (1980).

  16. Surface Power Radiative Cooling Tests

    NASA Astrophysics Data System (ADS)

    Vaughn, Jason; Schneider, Todd

    2006-01-01

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. ~5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  17. Surface Power Radiative Cooling Tests

    SciTech Connect

    Vaughn, Jason; Schneider, Todd

    2006-01-20

    Terrestrial nuclear power plants typically maintain their temperature through convective cooling, such as water and forced air. However, the space environment is a vacuum environment, typically 10-8 Torr pressure, therefore in proposed missions to the lunar surface, power plants would have to rely on radiative cooling to remove waste heat. Also, the Martian surface has a very tenuous atmosphere (e.g. {approx}5 Torr CO2), therefore, the main heat transfer method on the Martian surface is also radiative. Because of the lack of atmosphere on the Moon and the tenuous atmosphere on Mars, surface power systems on both the Lunar and Martian surface must rely heavily on radiative heat transfer. Because of the large temperature swings on both the lunar and the Martian surfaces, trying to radiate heat is inefficient. In order to increase power system efficiency, an effort is underway to test various combinations of materials with high emissivities to demonstrate their ability to survive these degrading atmospheres to maintain a constant radiator temperature improving surface power plant efficiency. An important part of this effort is the development of a unique capability that would allow the determination of a materials emissivity at high temperatures. A description of the test capability as well as initial data is presented.

  18. The cooling and condensation of flare coronal plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1981-01-01

    A model is investigated for the decay of flare heated coronal loops in which rapid radiative cooling at the loop base creates strong pressure gradients which, in turn, generate large (supersonic) downward flows. The coronal material cools and 'condenses' onto the flare chromosphere. The features which distinguish this model from previous models of flare cooling are: (1) most of the thermal energy of the coronal plasma may be lost by mass motion rather than by conduction or coronal radiation; (2) flare loops are not isobaric during their decay phase, and large downward velocities are present near the footpoints; (3) the differential emission measure q has a strong temperature dependence.

  19. Final Report for Project DE-SC0006958: "An Investigation of the Effects of magnetic Fields and Collisionality on Shock Formation in Radiatively Cooled Plasma Flows"

    SciTech Connect

    Bott-Suzuki, Simon

    2014-11-05

    We have developed a new experimental platform to study bow-shock formation in plasma flows generated using an inverse wire array z-pinch. We have made significant progress on the analysis of both hydrodynamic and magnetized shocks using this system. The hydrodynamic experiments show formation of a well-defined Mach cone, and highly localized shock strong associated with radiative losses and rapidly cooling over the shock. Magnetized shocks show that the balance of magnetic and ram pressures dominate the evolution of the shock region, generating a low plasma beta void around the target. Manuscripts are in preparation for publication on both these topics. We have also published the development of a novel diagnostic method which allow recovery of interferometry and self-emission data along the same line of sight. Finally, we have carried out work to integrate a kinetic routine with the 3D MHD code Gorgon, however it remains to complete this process. Both undergraduate and graduate students have been involved in both the experimental work and publications.

  20. Laser synchrotron radiation and beam cooling

    SciTech Connect

    Esarey, E.; Sprangle, P.; Ting, A.

    1995-12-31

    The interaction of intense {approx_gt} 10{sup 18} W/cm{sup 2}, short pulse ({approx_lt} 1 ps) lasers with electron beams and plasmas can lead to the generation of harmonic radiation by several mechanisms. Laser synchrotron radiation may provide a practical method for generating tunable, near monochromatic, well collimated, short pulse x-rays in compact, relatively inexpensive source. The mechanism for the generation of laser synchrotron radiation is nonlinear Thomson scattering. Short wavelengths can be generated via Thomson scattering by two methods, (i) backscattering from relativistic electron beams, in which the radiation frequency is upshifted by the relativistic factor 4{gamma}{sup 2}, and (ii) harmonic scattering, in which a multitude of harmonics are generated with harmonic numbers extending out to the critical harmonic number nc{approx_equal}a{sub 0}{sup 3} {much_gt} 1, where a{sub 0} {approx_equal}10{sup -9}{lambda}I{sup 1/2}, {lambda} is the laser wavelength in {mu}m and I is the laser intensity in W/cm{sup 2}. Laser synchrotron sources are capable of generating short ({approx_lt} ps) x-ray pulses with high peak flux ({approx_gt} 10{sup 21} photons/s) and brightness ({approx_gt}{sup 19} photons/s-mm{sup 2}-mrad{sup 2} 0.1%BW. As the electron beam radiates via Thomson scattering, it can subsequently be cooled, i.e., the beam emittance and energy spread can be reduced. This cooling can occur on rapid ({approximately} ps) time scales. In addition, electron distributions with sufficiently small axial energy spreads can be used to generate coherent XUV radiation via a laser-pumped FEL mechanism.

  1. NightCool: A Nocturnal Radiation Cooling Concept

    SciTech Connect

    Parker, Danny S.; Sherwin, John R.; Hermelink, Andreas H.

    2008-08-26

    This report describes an experimental evaluation that was conducted on a night sky cooling system designed to substantially reduce space cooling needs in homes in North American climates. The system uses a sealed attic covered by a highly conductive metal roof (a roof integrated radiator) which is selectively linked by air flow to the main zone with the attic zone to provide cooling - largely during nighttime hours.

  2. Radiative Cooling: Principles, Progress, and Potentials

    PubMed Central

    Hossain, Md. Muntasir

    2016-01-01

    The recent progress on radiative cooling reveals its potential for applications in highly efficient passive cooling. This approach utilizes the maximized emission of infrared thermal radiation through the atmospheric window for releasing heat and minimized absorption of incoming atmospheric radiation. These simultaneous processes can lead to a device temperature substantially below the ambient temperature. Although the application of radiative cooling for nighttime cooling was demonstrated a few decades ago, significant cooling under direct sunlight has been achieved only recently, indicating its potential as a practical passive cooler during the day. In this article, the basic principles of radiative cooling and its performance characteristics for nonradiative contributions, solar radiation, and atmospheric conditions are discussed. The recent advancements over the traditional approaches and their material and structural characteristics are outlined. The key characteristics of the thermal radiators and solar reflectors of the current state‐of‐the‐art radiative coolers are evaluated and their benchmarks are remarked for the peak cooling ability. The scopes for further improvements on radiative cooling efficiency for optimized device characteristics are also theoretically estimated. PMID:27812478

  3. Color-preserving daytime radiative cooling

    NASA Astrophysics Data System (ADS)

    Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2013-11-01

    We introduce a general approach to radiatively lower the temperature of a structure, while preserving its color under sunlight. The cooling effect persists in the presence of considerable convective and conductive heat exchange and for different solar absorptances.

  4. Color-preserving daytime radiative cooling

    SciTech Connect

    Zhu, Linxiao; Raman, Aaswath; Fan, Shanhui

    2013-11-25

    We introduce a general approach to radiatively lower the temperature of a structure, while preserving its color under sunlight. The cooling effect persists in the presence of considerable convective and conductive heat exchange and for different solar absorptances.

  5. Energy Savings Potential of Radiative Cooling Technologies

    SciTech Connect

    Fernandez, Nicholas; Wang, Weimin; Alvine, Kyle J.; Katipamula, Srinivas

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  6. Infrared receiver having a cooled radiation detector

    SciTech Connect

    Van Antwerpen, H. C.

    1985-04-09

    An infrared receiver having an infrared radiation detector cooled by means of a cold-gas engine, the thermal contact between a cooling surface of the cold-gas engine and the radiation detector being obtained by an elastic thermally conducting bridge. The cylindrical bridge is comprised of a plurality of turns of a metal strip. Due to the presence of the bridge, a good thermal conduction and further a compensation for differences in thermal expansion coefficients of the materials used are obtained. The infrared receiver is particularly suitable for night vision apparatus.

  7. Runaway electron generation in a cooling plasma

    SciTech Connect

    Smith, H.; Helander, P.; Eriksson, L.-G.; Fueloep, T.

    2005-12-15

    The usual calculation of Dreicer [Phys. Rev. 115, 238 (1959); 117, 329 (1960)] generation of runaway electrons assumes that the plasma is in a steady state. In a tokamak disruption this is not necessarily true since the plasma cools down quickly and the collision time for electrons at the runaway threshold energy can be comparable to the cooling time. The electron distribution function then acquires a high-energy tail which can easily be converted to a burst of runaways by the rising electric field. This process is investigated and simple criteria for its importance are derived. If no rapid losses of fast electrons occur, this can be a more important source of runaway electrons than ordinary Dreicer generation in tokamak disruptions.

  8. Radiative heat transport instability in a laser produced inhomogeneous plasma

    SciTech Connect

    Bychenkov, V. Yu.; Rozmus, W.

    2015-08-15

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation emission and radiative heat transfer supports ion acoustic instability. A linear dispersion relation is derived, and instability is compared to the radiation cooling instability [R. G. Evans, Plasma Phys. Controlled Fusion 27, 751 (1985)]. Under conditions of indirect drive fusion experiments, the driving term for the instability is the radiative heat flux and, in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered. This instability may lead to plasma jet formation and anisotropic x-ray generation, thus affecting inertial confinement fusion related experiments.

  9. RADIATING BONDI AND COOLING SITE FLOWS

    SciTech Connect

    Mathews, William G.; Guo, Fulai

    2012-08-01

    Steady accretion of a radiating gas onto a central mass point is described and compared to classic Bondi accretion. Radiation losses are essential for accretion flows to be observed. Unlike Bondi flows, radiating Bondi flows pass through a sonic point at a finite radius and become supersonic near the center. The morphology of all radiating flows is described by a single dimensionless parameter proportional to M-dot /MT{sub s} where T{sub s} is the gas temperature at the sonic point. In radiating Bondi flows the relationship between the mass accretion rate and central mass, M-dot {proportional_to}M{sup p} with p {approx} 1, differs significantly from the quadratic dependence in classical Bondi flows, M-dot {proportional_to}M{sup 2}. Mass accretion rates onto galaxy or cluster-centered black holes estimated from traditional and radiating Bondi flows are significantly different. In radiating Bondi flows the gas temperature increases at large radii, as in the cores of many galaxy groups and clusters, allowing radiating Bondi flows to merge naturally with gas arriving from their cluster environments. Some radiating flows cool completely before reaching the center of the flow, and this also occurs in cooling site flows, in which there is no central gravitating mass.

  10. Radiative heat transport instability in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Rozmus, W.; Bychenkov, V. Yu.

    2015-11-01

    A laser produced high-Z plasma in which an energy balance is achieved due to radiation losses and radiative heat transfer supports ion acoustic wave instability. A linear dispersion relation is derived and instability is compared to the radiation cooling instability. This instability develops in the wide range of angles and wavenumbers with the typical growth rate on the order of cs/LT (cs is the sound speed, LT is the temperature scale length). In addition to radiation dominated systems, a similar thermal transport driven ion acoustic instability was found before in plasmas where the thermal transport coefficient depends on electron density. However, under conditions of indirect drive ICF experiments the driving term for the instability is the radiative heat flux and in particular, the density dependence of the radiative heat conductivity. A specific example of thermal Bremsstrahlung radiation source has been considered corresponding to a thermal conductivity coefficient that is inversely proportional to the square of local particle density. In the nonlinear regime this instability may lead to plasma jet formation and anisotropic x-ray generation.

  11. Experimental radiation cooled magnetrons for space

    NASA Astrophysics Data System (ADS)

    Brown, W. C.; Pollock, M.

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  12. Microwave Cooling of Josephson Plasma Oscillations

    NASA Astrophysics Data System (ADS)

    Hammer, J.; Aprili, M.; Petković, I.

    2011-07-01

    An extended Josephson junction can be described as a microwave cavity coupled to a Josephson oscillator. This is formally equivalent to a Fabry-Perot cavity with a freely vibrating mirror, where it has been shown that radiation pressure from photons in the cavity can reduce (increase) the vibrations of the mirror, effectively cooling (heating) it. We demonstrate that, similarly, the superconducting phase difference across a Josephson junction—the Josephson phase—can be “cooled” or “heated” by microwave excitation of the junction and that both these effects increase with microwave power.

  13. Resistance and Cooling Power of Various Radiators

    NASA Technical Reports Server (NTRS)

    Smith, R H

    1928-01-01

    This reports combines the wind tunnel results of radiator tests made at the Navy Aerodynamical Laboratory in Washington during the summers of 1921, 1925, and 1926. In all, 13 radiators of various types and capacities were given complete tests for figure of merit. Twelve of these were tested for resistance to water flow and a fourteenth radiator was tested for air resistance alone, its heat dissipating capacity being known. All the tests were conducted in the 8 by 8 foot tunnel, or in its 4 by 8 foot restriction, by the writer and under conditions as nearly the same as possible. That is to say, as far as possible, the general arrangement and condition of the apparatus, the observation intervals, the ratio of water flow per unit of cooling surface, the differential temperatures, and the air speeds were the same for all.

  14. The Cool Surge Following Flux Emergence in a Radiation-MHD Experiment

    NASA Astrophysics Data System (ADS)

    Nóbrega-Siverio, D.; Moreno-Insertis, F.; Martínez-Sykora, J.

    2016-05-01

    Cool and dense ejections, typically Hα surges, often appear alongside EUV or X-ray coronal jets as a result of the emergence of magnetized plasma from the solar interior. Idealized numerical experiments explain those ejections as being indirectly associated with the magnetic reconnection taking place between the emerging and preexisting systems. However, those experiments miss basic elements that can importantly affect the surge phenomenon. In this paper we study the cool surges using a realistic treatment of the radiation transfer and material plasma properties. To that end, the Bifrost code is used, which has advanced modules for the equation of state of the plasma, photospheric and chromospheric radiation transfer, heat conduction, and optically thin radiative cooling. We carry out a 2.5D experiment of the emergence of magnetized plasma through (meso) granular convection cells and the low atmosphere to the corona. Through detailed Lagrange tracing we study the formation and evolution of the cool ejection and, in particular, the role of the entropy sources; this allows us to discern families of evolutionary patterns for the plasma elements. In the launch phase, many elements suffer accelerations well in excess of gravity; when nearing the apex of their individual trajectories, instead, the plasma elements follow quasi-parabolic trajectories with accelerations close to {g}ȯ . We show how the formation of the cool ejection is mediated by a wedge-like structure composed of two shocks, one of which leads to the detachment of the surge from the original emerged plasma dome.

  15. Strong drive compression of a gas-cooled positron plasma

    SciTech Connect

    Cassidy, D. B.; Mills, A. P. Jr.; Greaves, R. G.; Meligne, V. E.

    2010-03-08

    The use of rotating electric fields to control plasmas has found numerous applications in the manipulation and storage of antimatter. When used in strong magnetic fields plasma heating caused by the applied field is mitigated by cyclotron cooling, leading to an efficient broadband mode of compression known as the strong drive regime. We have found that it is possible to access the strong drive regime in a low field trap where cyclotron cooling is negligible and a gas is used for cooling, and we have been able to compress positron plasmas to more than 10% of the Brillouin density limit.

  16. Influence of plasma loading in a hybrid muon cooling channel

    SciTech Connect

    Freemire, B.; Stratakis, D.; Yonehara, K.

    2015-05-03

    In a hybrid 6D cooling channel, cooling is accomplished by reducing the beam momentum through ionization energy loss in wedge absorbers and replenishing the momentum loss in the longitudinal direction with gas-filled rf cavities. While the gas acts as a buffer to prevent rf breakdown, gas ionization also occurs as the beam passes through the pressurized cavity. The resulting plasma may gain substantial energy from the rf electric field which it can transfer via collisions to the gas, an effect known as plasma loading. In this paper, we investigate the influence of plasma loading on the cooling performance of a rectilinear hybrid channel. With the aid of numerical simulations we examine the sensitivity in cooling performance and plasma loading to key parameters such as the rf gradient and gas pressure.

  17. Plasmas are Hot and Fusion is Cool

    SciTech Connect

    2011-01-01

    Plasmas are Hot and Fusion is Cold. The DOE Princeton Plasma Physics Laboratory (PPPL) collaborates to develop fusion as a safe, clean and abundant energy source for the future. This video discusses PPPL's research and development on plasma, the fourth state of matter.

  18. Noise Radiation from Engine Cooling Fans

    NASA Astrophysics Data System (ADS)

    Wu, S. F.; Su, S.; Shah, H.

    1998-09-01

    The semi-empirical formulation previously derived by the authors (Journal of Sound and Vibration200,379-399) for predicting noise spectra of axial flow fans running in a free field is extended to engine cooling fans installed in full-size vehicles. Because of the presence of shroud, upstream radiator/condenser, and downstream engine block, the ingested and discharged flow fields around the fan blades are completely different from those in a free field. Accordingly, the noise generation mechanisms become much more difficult to analyze and model. The shroud may significantly increase the unsteady fluctuating forces exerted on the fan blades, thus greatly enhancing the levels of the discrete sounds centred at the blade passage frequency and its harmonics. The upstream radiator/condenser set may induce a significant amount of intake turbulence, thus raising the levels of the broadband sounds. The downstream engine block may force the airflow to recirculate to the front and more importantly, raise the static pressure drop across the fan assembly, which has a direct impact on the resulting flow rate. Obviously, an exact description of the effects of these factors on the resulting noise spectra is not possible. In this paper it is shown that these factors can be approximated by using certain shapes and functions. The computer model thus developed is used to predict the noise spectra from different fan assemblies under various working conditions, and the results thus obtained are compared with the measured data. Also, this model is used to calculate the overall sound pressure levels from dimensionally similar fans running under different working conditions, and the results are compared with those predicted by the fan laws currently in use by engineers in the automotive industry.

  19. Properties of plasma radiation diagnostics

    SciTech Connect

    Idzorek, G.C.; Oona, H.

    1996-06-01

    A number of diagnostics utilizing the radiation emitted from high-temperature plasmas have been developed at Los Alamos. Photoemissive x-ray diodes with photon energy bandpass filters provide time resolved rough spectral data from bout 6 eV to > 10 keV photon energy. Filtered silicon photodiodes can be used down to 1 eV and offer the advantages of nominally flat response and ability to operate in poor vacuum conditions. Both types of diodes will provide a rough time resolved spectrum and both are relatively inexpensive, reliable, and passive (i.e. no synchronization problems). For higher energy resolution bent crystal spectrographs are used in the x-ray region. With the addition of streak cameras or gated microchannel plates these systems provide data with high energy and high time resolution. To measure the total energy output a thin foil bolometer is used that measures the change in foil resistance as it is heated by the plasma radiation. Information on the physical location of the plasma is provided by a suite of visible framing cameras and x-ray pinhole cameras. By combining these diagnostics into a complementary set good diagnostic information can be guaranteed on any plasma experiment.

  20. Numerical simulations of transverse oscillations in radiatively cooling coronal loops

    NASA Astrophysics Data System (ADS)

    Magyar, Norbert; Van Doorsselaere, Tom; Marcu, Alexandru

    2016-05-01

    We aim to study the influence of radiative cooling on the standing kink oscillations of coronal loops. To solve the 3D MHD ideal problem, we use the FLASH code. Our model consists of a straight, density enhanced and gravitationally stratified magnetic flux tube. We perturbed the system initially, leading to a transverse oscillation of the structure, and followed its evolution for a number of periods. A realistic radiative cooling is implemented. Results are compared to available analytical theory. We find that in the linear regime (i.e. low amplitude perturbation and slow cooling) the obtained period and damping time are in good agreement with theory. The cooling leads to an amplification of the oscillation amplitude. However, the difference between the cooling and non-cooling cases is small (around 6% after 6 oscillations). In high amplitude runs with realistic cooling, instabilities deform the loop, leading to increased damping. In this case, the difference between cooling and non-cooling is still negligible at around 12%. A set of simulations with higher density loops are also performed, to explore what happens when the cooling takes place in a very short time (t cool ≈ 100 s). In this case, the difference in amplitude after nearly 3 oscillation periods for the low amplitude case is 21% between cooling and non-cooling cases. We strengthen the results of previous analytical studies that state that the amplification due to cooling is ineffective, and its influence on the oscillation characteristics is small, at least for the cases shown here. Furthermore, the presence of a relatively strong damping in the high amplitude runs even in the fast cooling case indicates that it is unlikely that cooling could alone account for the observed, flare-related undamped oscillations of coronal loops. These results may be significant in the field of coronal seismology, allowing its application to coronal loop oscillations with observed fading-out or cooling behaviour.

  1. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, J.R.; Schertz, W.W.

    1985-06-27

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  2. Passive-solar directional-radiating cooling system

    DOEpatents

    Hull, John R.; Schertz, William W.

    1986-01-01

    A radiative cooling system for use with an ice-making system having a radiating surface aimed at the sky for radiating energy at one or more wavelength bands for which the atmosphere is transparent and a cover thermally isolated from the radiating surface and transparent at least to the selected wavelength or wavelengths, the thermal isolation reducing the formation of condensation on the radiating surface and/or cover and permitting the radiation to continue when the radiating surface is below the dewpoint of the atmosphere, and a housing supporting the radiating surface, cover and heat transfer means to an ice storage reservoir.

  3. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day.

  4. Passive radiative cooling below ambient air temperature under direct sunlight.

    PubMed

    Raman, Aaswath P; Anoma, Marc Abou; Zhu, Linxiao; Rephaeli, Eden; Fan, Shanhui

    2014-11-27

    Cooling is a significant end-use of energy globally and a major driver of peak electricity demand. Air conditioning, for example, accounts for nearly fifteen per cent of the primary energy used by buildings in the United States. A passive cooling strategy that cools without any electricity input could therefore have a significant impact on global energy consumption. To achieve cooling one needs to be able to reach and maintain a temperature below that of the ambient air. At night, passive cooling below ambient air temperature has been demonstrated using a technique known as radiative cooling, in which a device exposed to the sky is used to radiate heat to outer space through a transparency window in the atmosphere between 8 and 13 micrometres. Peak cooling demand, however, occurs during the daytime. Daytime radiative cooling to a temperature below ambient of a surface under direct sunlight has not been achieved because sky access during the day results in heating of the radiative cooler by the Sun. Here, we experimentally demonstrate radiative cooling to nearly 5 degrees Celsius below the ambient air temperature under direct sunlight. Using a thermal photonic approach, we introduce an integrated photonic solar reflector and thermal emitter consisting of seven layers of HfO2 and SiO2 that reflects 97 per cent of incident sunlight while emitting strongly and selectively in the atmospheric transparency window. When exposed to direct sunlight exceeding 850 watts per square metre on a rooftop, the photonic radiative cooler cools to 4.9 degrees Celsius below ambient air temperature, and has a cooling power of 40.1 watts per square metre at ambient air temperature. These results demonstrate that a tailored, photonic approach can fundamentally enable new technological possibilities for energy efficiency. Further, the cold darkness of the Universe can be used as a renewable thermodynamic resource, even during the hottest hours of the day. PMID:25428501

  5. Liquid cooled fiber thermal radiation receiver

    DOEpatents

    Butler, Barry L.

    1987-01-01

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  6. Liquid cooled fiber thermal radiation receiver

    DOEpatents

    Butler, B.L.

    1985-03-29

    A radiation-to-thermal receiver apparatus for collecting radiation and converting it to thermal energy is disclosed. The invention includes a fibrous mat material which captures radiation striking the receiver. Captured radiation is removed from the fibrous mat material by a transparent fluid within which the material is bathed.

  7. Radiation detector system having heat pipe based cooling

    DOEpatents

    Iwanczyk, Jan S.; Saveliev, Valeri D.; Barkan, Shaul

    2006-10-31

    A radiation detector system having a heat pipe based cooling. The radiation detector system includes a radiation detector thermally coupled to a thermo electric cooler (TEC). The TEC cools down the radiation detector, whereby heat is generated by the TEC. A heat removal device dissipates the heat generated by the TEC to surrounding environment. A heat pipe has a first end thermally coupled to the TEC to receive the heat generated by the TEC, and a second end thermally coupled to the heat removal device. The heat pipe transfers the heat generated by the TEC from the first end to the second end to be removed by the heat removal device.

  8. A Radiative Instability in Post-shock-cooling Circumstellar Gas

    NASA Astrophysics Data System (ADS)

    Schirrmacher, V.; Woitke, P.; Sedlmayr, E.

    Investigations on non-LTE radiative heating and cooling processes behind shock waves in circumstellar environments have revealed the existence of a radiative/thermal instability in the post-shock cooling gas. The results have been obtained in the framework of spherical symmetric, hydrodynamical model calculations for dust-enshrouded circumstellar envelopes (CSEs) of Asymptotic Giant Branch (AGB) stars, which combine a time-dependent treatment of dust formation with grey radiative transfer and tabulated non-LTE state functions. The instability occurs in a situation, where thin and hot atomic gas behind a shock wave cools down to the molecular domain where it remains in pressure equilibrium with its environment. Radiative cooling in this case causes a temperature decrease and a density increase which both favour molecule formation. The molecules, in return, accelerate the radiative cooling. Thereby, a self-amplifying feedback loop is established, which in the model leads to the amplification of small density fluctuations in the post-shock cooling region to large density inhomogeneities of more than one order of magnitude. This radiative/thermal instability is not restricted to one spatial dimension (as in the model) and is possibly capable to generate a strongly non-homogeneous density distribution around pulsating stars, which can, for example lead to dust cloud formation. In this presentation, we discuss the parameter range for this instability as well as the underlying thermodynamical concept of the model calculations.

  9. Non-LTE kinetics modeling of krypton ions: Calculations of radiative cooling coefficients

    NASA Astrophysics Data System (ADS)

    Chung, H.-K.; Fournier, K. B.; Lee, R. W.

    2006-06-01

    For plasmas containing high-Z ions the energy loss due to radiative processes can be important in understanding energy distributions and spectral characteristics. Since high-Z plasmas occur over a wide range of temperature and density conditions, a general non-LTE population kinetics description is required to provide a qualitative and quantitative description for radiative energy loss. We investigate radiative properties of non-LTE krypton plasmas with a collisional-radiative (CR) model constructed from detailed atomic data. This work makes two extensions beyond previous non-LTE kinetics models. First, this model explicitly treats the dielectronic recombination (DR) channels. Second, this model allows one to investigate the higher electron density regimes found commonly in laboratory plasmas. This more comprehensive approach enables the study of population kinetics in a general manner and will provide a systematic guide for reducing a complex model to a simpler one. Specifically, we present the calculations of radiative cooling coefficients of krypton ions as a function of electron density in the optically thin limit. Total, soft X-ray (1.6 keV ≤ E ≤ 12 keV), and hard X-ray ( E ≥ 12 keV) radiative cooling coefficients are given for the plasma conditions of 0.6 keV ≤ Te ≤ 10 keV and 10 14 cm -3 ≤ Ne ≤ 10 24 cm -3. The ionic radiative cooling coefficients provided are sufficient to allow users to construct the total rate from given charge state distributions. Steady-state calculations of the average charge state at given Te and Ne values are also presented.

  10. Effects of nature of cooling surface on radiator performance

    NASA Technical Reports Server (NTRS)

    Parsons, S R; Kleinschmidt, R V

    1921-01-01

    This report discusses the effects of roughness, smoothness, and cleanness of cooling surfaces on the performance of aeronautic radiators, as shown by experimental work, with different conditions of surface, on (1) heat transfer from a single brass tube and from a radiator; (2) pressure drop in an air stream in a single brass tube and in a radiator; (3) head resistance of a radiator; and (4) flow of air through a radiator. It is shown that while smooth surfaces are better than rough, the surfaces usually found in commercial radiators do not differ enough to show marked effect on performance, provided the surfaces are kept clean.

  11. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  12. Cool Plasma Observed in the FUV using IRIS

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; Innes, D.

    2014-12-01

    Cool plasma in the outer solar atmosphere is commonly observed in prominences and coronal rain. Theory suggests that these phenomena are related to cooling, and analysis of observations provides a constraint on the time-dependent energetics of the chromosphere and corona. Using the IRIS SG and SJI datasets, we discuss new observations of molecular absorption features in the Si IV emission lines near 1400A. The presence of molecules above the transition region provides an extreme example of complex structure and dynamics at the chromosphere-corona interface. There are two morphological models that can explain the absorption features: cool plasma hundreds of kilometers above the photosphere or a localized transition region deeply embedded in the photosphere. We discuss the merit of these scenarios and introduce complementary IRIS observations of inverted temperature structure in Ellerman bombs and diffuse Si I continuum absorption above active region loops.

  13. Inductively coupled plasma torch with laminar flow cooling

    DOEpatents

    Rayson, Gary D.; Shen, Yang

    1991-04-30

    An improved inductively coupled gas plasma torch. The torch includes inner and outer quartz sleeves and tubular insert snugly fitted between the sleeves. The insert includes outwardly opening longitudinal channels. Gas flowing through the channels of the insert emerges in a laminar flow along the inside surface of the outer sleeve, in the zone of plasma heating. The laminar flow cools the outer sleeve and enables the torch to operate at lower electrical power and gas consumption levels additionally, the laminar flow reduces noise levels in spectroscopic measurements of the gaseous plasma.

  14. Radiative Damping in Plasma-Based Accelerators

    NASA Astrophysics Data System (ADS)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-11-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. It is shown that the radiation could significantly affect the beam properties (e.g., increased relative energy spread) in plasma wakefield accelerators.

  15. Passive radiative cooling of a HTS coil for attitude orbit control in micro-spacecraft

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Ozaki, Naoya; Saisutjarit, Phongsatorn; Ohsaki, Hiroyuki

    2015-02-01

    This paper proposes a novel radiative cooling system for a high temperature superconducting (HTS) coil for an attitude orbit control system in nano- and micro-spacecraft missions. These days, nano-spacecraft (1-10 kg) and micro-spacecraft (10-100 kg) provide space access to a broader range of spacecraft developers and attract interest as space development applications. In planetary and high earth orbits, most previous standard-size spacecraft used thrusters for their attitude and orbit control, which are not available for nano- and micro-spacecraft missions because of the strict power consumption, space, and weight constraints. This paper considers orbit and attitude control methods that use a superconducting coil, which interacts with on-orbit space plasmas and creates a propulsion force. Because these spacecraft cannot use an active cooling system for the superconducting coil because of their mass and power consumption constraints, this paper proposes the utilization of a passive radiative cooling system, in which the superconducting coil is thermally connected to the 3 K cosmic background radiation of deep space, insulated from the heat generation using magnetic holders, and shielded from the sun. With this proposed cooling system, the HTS coil is cooled to 60 K in interplanetary orbits. Because the system does not use refrigerators for its cooling system, the spacecraft can achieve an HTS coil with low power consumption, small mass, and low cost.

  16. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  17. Efficient needle plasma actuators for flow control and surface cooling

    NASA Astrophysics Data System (ADS)

    Zhao, Pengfei; Portugal, Sherlie; Roy, Subrata

    2015-07-01

    We introduce a milliwatt class needle actuator suitable for plasma channels, vortex generation, and surface cooling. Electrode configurations tested for a channel configuration show 1400% and 300% increase in energy conversion efficiency as compared to conventional surface and channel corona actuators, respectively, generating up to 3.4 m/s air jet across the channel outlet. The positive polarity of the needle is shown to have a beneficial effect on actuator efficiency. Needle-plate configuration is demonstrated for improving cooling of a flat surface with a 57% increase in convective heat transfer coefficient. Vortex generation by selective input signal manipulation is also demonstrated.

  18. Decay processes and radiative cooling of small anionic copper clusters

    NASA Astrophysics Data System (ADS)

    Breitenfeldt, Christian; Blaum, Klaus; Froese, Michael W.; George, Sebastian; Guzmán-Ramírez, Gregorio; Lange, Michael; Menk, Sebastian; Schweikhard, Lutz; Wolf, Andreas

    2016-09-01

    The decay of copper clusters Cun- with size n =4 -7 , produced in a metal ion sputter source, was studied in an electrostatic ion-beam trap. The neutral products after electron emission and fragmentation were monitored for ion storage times of up to a second. The observations indicated the presence of radiative cooling. The energy distributions of the remaining clusters were probed by laser irradiation up to several further seconds of storage time. This defined excitation lead to photoinduced decay signals which, again, showed signs of radiative cooling for Cu6,7 -, not, however, for Cu4,5 -.

  19. Geostationary Radiatively-Cooled Telescope (Grot)

    NASA Astrophysics Data System (ADS)

    Sholomitskii, G. B.; Maslov, I. A.

    A possibility of the survey experiment onboard the geostationary GOMS-Electro spacecraft comprising the 15cm-telescope 1:1.8 and the in-flight-tested radiative cooler is considered. With presumed CCD perfomance the limiting stellar magnitudes V=16 and K=12 would allow regular daily monitoring of variable and high throughput observations of extended sources as well as environmental studies of the near-Earth and near-Earth-orbit space in the wide FOV 2 deg

  20. Beam-Plasma Interaction in Muon Ionization Cooling Lattices

    NASA Astrophysics Data System (ADS)

    Ellison, James; Snopok, Pavel

    2015-04-01

    New computational tools are essential for accurate modeling and simulation of the next generation of muon-based accelerator experiments. There are a number of software packages available to the muon accelerator community that allow detailed simulations with many physics processes accounted for. However, there is also a list of missing physics processes that require implementation or interfacing with other codes. This list is being prioritized, and the most important processes addressed. One of the crucial physics processes specific to muon accelerators that has not yet been implemented in any current simulation code is beam-induced plasma effect in liquid, solid, and gaseous absorbers that are key elements of a cooling channel. We report here on the progress of developing the required simulation tools and applying them to study the properties of plasma and its effects on the beam in muon ionization cooling channels.

  1. Radiative properties in ICF plasmas

    NASA Astrophysics Data System (ADS)

    Benredjem, D.; Calisti, A.; Gilleron, F.; Mondet, G.; Pain, J.-C.

    2011-03-01

    We present new calculations on radiative power losses of carbon and gold. Both ions are involved in inertial confinement fusion. The first element could also be utilized in the walls of future TOKAMAK reactors such as ITER (International Thermonuclear Experimental Reactor) while the second is present in holraums and its X-ray emission contributes to the heating in ICF. Because argon impurities may be used in the fusion core, in order to diagnose the electron temperature, we have calculated the intensities of the He-β line and the Li-like Ar satellite lines. In fact, the intensity ratio depends on electron temperature. The effect of the plasma electric field on the line intensities is discussed. Our approach is based on a detailed line calculation in which the atomic database is provided by the MCDF code. Then a lineshape code allowing for NLTE ionic populations was adapted to the calculation of RPL profiles. Because the calculation time is sometimes prohibitive, a second approach, based on the first moments of the RPL, is investigated. This approach was used for extensive calculations on germanium.

  2. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Whelan, D. A.

    1982-01-01

    The mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves is of great current interest in space plasma physics. Electromagnetic radiation arises from both natural beam-plasma systems, e.g., type III solar bursts and kilometric radiation, and from man-made electron beams injected from rockets and spacecraft. In the present investigation the diagnostic difficulties encountered in space plasmas are overcome by using a large laboratory plasma. A finite diameter (d approximately equal to 0.8 cm) electron beam is injected into a uniform quiescent magnetized afterglow plasma of dimensions large compared with electromagnetic wavelength. Electrostatic waves grow, saturate and decay within the uniform central region of the plasma volume so that linear mode conversion on density gradients can be excluded as a possible generation mechanism for electromagnetic waves.

  3. Experimental Study of Plasma Cooling and Laser Beam Interaction in Gas Filled ICF Engines

    NASA Astrophysics Data System (ADS)

    Rhodes, Mark; Kane, Jave; Loosmore, Gwendolen; Demuth, James; Latkowski, Jeffery

    2010-11-01

    ICF power plants, such as the LIFE scheme under development at LLNL, may employ a high-Z, target-chamber gas-fill to moderate the first-wall heat-pulse due to x-rays and energetic ions released during target detonation. This gas-fill is heated and ionized by this energy release. It must cool and recombine before the next shot (at nominally 70-ms intervals) to a temperature where the next target and laser pulse can propagate to chamber center with minimal degradation. While we expect rapid cooling to 2eV by radiation, our modeling of cooling below 2 eV has a high degree of uncertainty. We have developed a plasma source to study the cooling rates and laser propagation in high-Z gaseous plasmas. The source is a theta discharge configuration driven by a low-inductance, 5-kJ, 100-ns pulsed power system. This configuration delivers high peak power levels, has an electrode-less discharge, and has unobstructed axial access for diagnostics and beam propagation studies. Our diagnostics include Thompson scattering, time resolved spectroscopy, and plasma probes. We will report on the system design, operation, and initial results.

  4. Simulations Of Laser Cooling In An Ultracold Neutral Plasma

    NASA Astrophysics Data System (ADS)

    Langin, Thomas; Strickler, Trevor; Pohl, Thomas; Vrinceanu, Daniel; Killian, Thomas

    2016-05-01

    Ultracold neutral plasmas (UNPs) generated by photoionization of laser-cooled, magneto-optically trapped neutral gases, are useful systems for studying strongly coupled plasmas. Coupling is parameterized by Γi, the ratio of the average nearest neighbor Coulomb interaction energy to the ion kinetic energy. For typical UNPs, Γi is currently limited to ~ 3 . For alkaline earth ions, higher Γi can be achieved by laser-cooling. Using Molecular Dynamics and a quantum trajectories approach, we have simulated laser-cooling of Sr+ ions interacting through a Yukawa potential. The simulations include re-pumping from two long-lived D-states, and are conducted at experimentally achievable parameters (density n = 2 e+14 m-3, size σ0 = 4 mm, Te = 19 K). Laser-cooling is shown to both reduce the temperature by a factor of 2 over relevant timescales (tens of μ s) and slow the electron thermal-pressure driven radial expansion of the UNP. We also discuss the unique aspects of laser-cooling in a highly collisional system; in particular, the effect of collisions on dark state formation due to the coupling of the P3/2 state to both the S1/2 (via the cooling transition) and the D5/2 (via a re-pump transition) states. Supported by NSF and DoE, the Air Force Office of Scientific Research, the NDSEG Program, and NIH NCRR S10RR02950, an IBM SUR Award in partnership with CISCO, Qlogic and Adaptive Computing.

  5. Terahertz radiation from a laser plasma filament

    SciTech Connect

    Wu, H.-C.; Meyer-ter-Vehn, J.; Ruhl, H.; Sheng, Z.-M.

    2011-03-15

    By the use of two-dimensional particle-in-cell simulations, we clarify the terahertz (THz) radiation mechanism from a plasma filament formed by an intense femtosecond laser pulse. The nonuniform plasma density of the filament leads to a net radiating current for THz radiation. This current is mainly located within the pulse and the first cycle of the wakefield. As the laser pulse propagates, a single-cycle and radially polarized THz pulse is constructively built up forward. The single-cycle shape is mainly due to radiation damping effect.

  6. Radiative cooling of bulk silicon by incoherent light pump

    SciTech Connect

    Malyutenko, V. K. Bogatyrenko, V. V.; Malyutenko, O. Yu.

    2013-12-23

    In contrast to radiative cooling by light up conversion caused exclusively by a low-entropy laser pump and employing thermally assisted fluorescence/luminescence as a power out, we demonstrate light down conversion cooling by incoherent pumps, 0.47–0.94 μm light emitting diodes, and employing thermal emission (TE) as a power out. We demonstrate ≤3.5 K bulk cooling of Si at 450 K because overall energy of multiple below bandgap TE photons exceeds the energy of a single above bandgap pump photon. We show that using large entropy TE as power out helps avoid careful tuning of an incoherent pump wavelength and cool indirect-bandgap semiconductors.

  7. Adiabatic cooling of the artificial Porcupine plasma jet

    NASA Astrophysics Data System (ADS)

    Ruizhin, Iu. Ia.; Treumann, R. A.; Bauer, O. H.; Moskalenko, A. M.

    1987-01-01

    Measurements of the plasma density obtained during the interaction of the artificial plasma jet, fired into the ionosphere with the body of the Porcupine main payload, have been analyzed for times when there was a well-developed wake effect. Using wake theory, the maximum temperature of the quasi-neutral xenon ion beam has been determined for an intermediate distance from the ion beam source when the beam has left the diamagnetic region but is still much denser than the ionospheric background plasma. The beam temperature is found to be about 4 times less than the temperature at injection. This observation is very well explained by adiabatic cooling of the beam during its initial diamagnetic and current-buildup phases at distances r smaller than 10 m. Outside this region, the beam conserves the temperature achieved. The observation proves that the artificial plasma jet passes through an initial gas-like diamagnetic phase restricted to the vicinity of the beam source, where it expands adiabatically. Partial cooling also takes place outside the diamagnetic region where the beam current still builds up. The observations also support a recently developed current-closure model of the quasi-neutral ion beam.

  8. Interactions of intense laser radiation with plasma

    NASA Astrophysics Data System (ADS)

    Key, M. H.

    1981-04-01

    The dominant physical processes involved in the interaction of intense laser radiation with plasma are discussed with emphasis on their dependence on the wavelength of the laser radiation. Hydrodynamic pressure resulting from these interactions, acceleration of spherical shell targets, and fluid instability associated with the acceleration are discussed with reference to compression of plasma in laser driven implosions. Experimental data are presented to illustrate the various phenomena.

  9. Uranium plasma radiates in the UV spectrum

    NASA Technical Reports Server (NTRS)

    Williams, M. D.

    1973-01-01

    Description of an experiment designed to produce and spectroscopically analyze a simulated gas core reactor plasma in the spectral range from 300 to 1300 A. The plasma was produced by focusing the radiation of a Q-spoiled ruby laser onto the flat surface of a pure U-238 specimen.

  10. The Stability of Radiatively Cooling Jets I. Linear Analysis

    NASA Technical Reports Server (NTRS)

    Hardee, Philip E.; Stone, James M.

    1997-01-01

    The results of a spatial stability analysis of a two-dimensional slab jet, in which optically thin radiative cooling is dynamically important, are presented. We study both magnetized and unmagnetized jets at external Mach numbers of 5 and 20. We model the cooling rate by using two different cooling curves: one appropriate to interstellar gas, and the other to photoionized gas of reduced metallicity. Thus, our results will be applicable to both protostellar (Herbig-Haro) jets and optical jets from active galactic nuclei. We present analytical solutions to the dispersion relations in useful limits and solve the dispersion relations numerically over a broad range of perturbation frequencies. We find that the growth rates and wavelengths of the unstable Kelvin-Helmholtz (K-H) modes are significantly different from the adiabatic limit, and that the form of the cooling function strongly affects the results. In particular, if the cooling curve is a steep function of temperature in the neighborhood of the equilibrium state, then the growth of K-H modes is reduced relative to the adiabatic jet. On the other hand, if the cooling curve is a shallow function of temperature, then the growth of K-H modes can be enhanced relative to the adiabatic jet by the increase in cooling relative to heating in overdense regions. Inclusion of a dynamically important magnetic field does not strongly modify the important differences between an adiabatic jet and a cooling jet, provided the jet is highly supermagnetosonic and not magnetic pressure-dominated. In the latter case, the unstable modes behave more like the transmagnetosonic magnetic pressure-dominated adiabatic limit. We also plot fluid displacement surfaces associated with the various waves in a cooling jet in order to predict the structures that might arise in the nonlinear regime. This analysis predicts that low-frequency surface waves and the lowest order body modes will be the most effective at producing observable features in

  11. Forming chondrules in impact splashes. I. Radiative cooling model

    SciTech Connect

    Dullemond, Cornelis Petrus; Stammler, Sebastian Markus; Johansen, Anders

    2014-10-10

    The formation of chondrules is one of the oldest unsolved mysteries in meteoritics and planet formation. Recently an old idea has been revived: the idea that chondrules form as a result of collisions between planetesimals in which the ejected molten material forms small droplets that solidify to become chondrules. Pre-melting of the planetesimals by radioactive decay of {sup 26}Al would help produce sprays of melt even at relatively low impact velocity. In this paper we study the radiative cooling of a ballistically expanding spherical cloud of chondrule droplets ejected from the impact site. We present results from numerical radiative transfer models as well as analytic approximate solutions. We find that the temperature after the start of the expansion of the cloud remains constant for a time t {sub cool} and then drops with time t approximately as T ≅ T {sub 0}[(3/5)t/t {sub cool} + 2/5]{sup –5/3} for t > t {sub cool}. The time at which this temperature drop starts t {sub cool} depends via an analytical formula on the mass of the cloud, the expansion velocity, and the size of the chondrule. During the early isothermal expansion phase the density is still so high that we expect the vapor of volatile elements to saturate so that no large volatile losses are expected.

  12. Plasma wake field XUV radiation source

    DOEpatents

    Prono, Daniel S.; Jones, Michael E.

    1997-01-01

    A XUV radiation source uses an interaction of electron beam pulses with a gas to create a plasma radiator. A flowing gas system (10) defines a circulation loop (12) with a device (14), such as a high pressure pump or the like, for circulating the gas. A nozzle or jet (16) produces a sonic atmospheric pressure flow and increases the density of the gas for interacting with an electron beam. An electron beam is formed by a conventional radio frequency (rf) accelerator (26) and electron pulses are conventionally formed by a beam buncher (28). The rf energy is thus converted to electron beam energy, the beam energy is used to create and then thermalize an atmospheric density flowing gas to a fully ionized plasma by interaction of beam pulses with the plasma wake field, and the energetic plasma then loses energy by line radiation at XUV wavelengths Collection and focusing optics (18) are used to collect XUV radiation emitted as line radiation when the high energy density plasma loses energy that was transferred from the electron beam pulses to the plasma.

  13. Betatron radiation from density tailored plasmas

    SciTech Connect

    Ta Phuoc, K.; Rousse, A.; Esarey, E.; Cormier-Michel, E.; Leemans, W. P.; Leurent, V.; Geddes, C. G. R.; Schroeder, C. B.

    2008-06-15

    In laser wakefield accelerators, electron motion is driven by intense forces that depend on the plasma density. Transverse oscillations in the accelerated electron orbits produce betatron radiation. The electron motion and the resulting betatron radiation spectrum can therefore be controlled by shaping the plasma density along the orbit of the electrons. Here, a method based on the use of a plasma with a longitudinal density variation (density depression or step) is proposed to increase the transverse oscillation amplitude and the energy of the electrons accelerated in a wakefield cavity. For fixed laser parameters, by appropriately tailoring the plasma profile, the betatron radiation emitted by these electrons is significantly increased in both flux and energy.

  14. Betatron radiation from density tailored plasmas

    SciTech Connect

    Ta Phuoc, Kim; Esarey, E.; Leurent, V.; Cormier-Michel, E.; Geddes, C.G.R.; Schroeder, C.B.; Rousse, A.; Leemans, W.P.

    2009-04-11

    In laser wakefield accelerators, electron motion is driven by intense forces that depend on the plasma density. Transverse oscillations in the accelerated electron orbits produce betatron radiation. The electron motion and the resulting betatron radiation spectrum can therefore be controlled by shaping the plasma density along the orbit of the electrons. Here, a method based on the use of a plasma with a longitudinal density variation (density depression or step) is proposed to increase the transverse oscillation amplitude and the energy of the electrons accelerated in a wakefield cavity. For fixed laser parameters, by appropriately tailoring the plasma profile, the betatron radiation emitted by these electrons is significantly increased in both flux and energy.

  15. High quality actively cooled plasma facing components for fusion

    SciTech Connect

    Nygren, R.

    1993-12-31

    This paper interweaves some suggestions for developing actively-cooled PFCs (plasma facing components) for future fusion devices with supporting examples taken from the design, fabrication and operation of Tore Supra`s Phase III Outboard Pump Limiter (OPL). This actively-cooled midplane limiter, designed for heat and particle removal during long pulse operation, has been operated in essentially thermally steady state conditions. From experience with testing to identify braze flaws in the OPL, recommendations are made to analyze the impact of joining flaws on thermal-hydraulic performance of PFCs and to validate a method of inspection for such flaws early in the design development. Capability for extensive in-service monitoring of future PFCs is also recommended and the extensive calorimetry and IR thermography used to confirm and update safe operating limits for power handling of the OPL are reviewed.

  16. Laboratory Studies of Supersonic Magnetized Plasma Jets and Radiative Shocks

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey

    2013-06-01

    In this talk I will focus on laboratory plasma experiments producing magnetically driven supersonic plasma jets and on the interaction of these jets with ambient media. The experiments are scalable to astrophysical flows in that the critical dimensionless numbers such as the plasma collisionality, the plasma beta, the Reynolds number and the magnetic Reynolds number are all in the astrophysically appropriate ranges. The experimental results will be compared with computer simulations performed with laboratory plasma codes and with astrophysical codes. In the experiments the jets are driven and collimated by the toroidal magnetic fields and it is found that the level of MHD instabilities in the jets strongly depends on the strength of the field represented by the ratio of the thermal to magnetic field pressures (plasma beta). The experiments show the possibility of formation of episodic outflows, with periodic ejections of magnetic bubbles naturally evolving into a heterogeneous jet propagating inside a channel made of self-collimated magnetic cavities [1,2]. We also found that it is possible to form quasi-laminar jets which are “indirectly” collimated by the toroidal magnetic fields, but this requires the presence of the lower density halo plasma surrounding the central jet [3]. Studies of the radiative shocks formed in the interaction of the supersonic magnetized plasma flows with ambient plasma will be also presented, and the development of cooling instabilities in the post-shock plasma will be discussed. This research was sponsored by EPSRC Grant No. EP/G001324/1 and by the OFES DOE under DOE Cooperative Agreement No. DE-SC-0001063. References 1. A. Ciardi, S.V. Lebedev, A. Frank et al., The Astrophysical Journal, 691: L147-L150 (2009) 2. F.A. Suzuki-Vidal, S.V. Lebedev, S.N. Bland et al., Physics of Plasmas, 17, 112708 (2010). 3. F.A. Suzuki-Vidal, M. Bocchi, S.V. Lebedev et al., Physics of Plasmas, 19, 022708 (2012).

  17. Advances in cooled semen technologies: seminal plasma and semen extender.

    PubMed

    Rigby, S L; Brinsko, S P; Cochran, M; Blanchard, T L; Love, C C; Varner, D D

    2001-12-01

    This study evaluated motility and fertility of uncentrifuged and centrifuged equine semen following dilution in a skim milk-glucose extender with or without supplemental Tyrode's medium. In addition, the effect of seminal plasma addition to each extender was evaluated. For Experiment 1, motility of 48h cooled, stored spermatozoa was evaluated following eight dilution treatments: uncentrifuged and diluted 1:4 (v/v) in skim milk-glucose extender (EZ Mixin CSTJ; CST-1:4) or in CST supplemented 65:35 (v/v) with modified Tyrode's medium (KMT-1:4); uncentrifuged and diluted to 25x10(6) spermatozoa/ml in CST (CST-1:9) or in KMT (KMT-1:9); centrifuged and diluted in CST with 0% seminal plasma (CST-0) or 20% seminal plasma (CST-20) or centrifuged and diluted in KMT containing 0% seminal plasma (KMT-0) or in KMT containing 20% seminal plasma (KMT-20). Sperm motility parameters evaluated included percentage of total motile sperm (% TMOT), percentage of progressively motile sperm (% PMOT), curvilinear velocity (VCL) and straight-line velocity (VSL). Mean % PMOT was lower (P<0.05) for spermatozoa extended in CST-1:4 compared to CST-1:9, whereas, all motility parameters were reduced (P<0.05) in KMT-1:4 compared to KMT-1:9. Spermatozoa extended in CST-1:4 had greater % TMOT, % PMOT and VSL (P<0.05) than in KMT-1:4. Spermatozoa extended in CST-1:9 had greater (P<0.05) % PMOT than in KMT-1:9, however, VCL was greater (P<0.05) in KMT-1:9. Mean VCL and VSL were lower (P<0.05) for spermatozoa extended in CST-0 compared with CST-20, whereas, spermatozoa extended in KMT-0 had greater (P<0.05) % TMOT, % PMOT and VSL compared to spermatozoa extended in KMT-20. Mean % TMOT and % PMOT were greater (P<0.05) in CST-20 compared to KMT-20, however, KMT-0 increased (P<0.05) velocity measures (VCL and VSL) compared to CST-0. In Experiment 2, fertility of centrifuged spermatozoa diluted in either CST-20 or KMT-0 was similar (P>0.05). We conclude that modified Tyrode's medium was not detrimental to

  18. Radiative human body cooling by nanoporous polyethylene textile

    NASA Astrophysics Data System (ADS)

    Hsu, Po-Chun; Song, Alex Y.; Catrysse, Peter B.; Liu, Chong; Peng, Yucan; Xie, Jin; Fan, Shanhui; Cui, Yi

    2016-09-01

    Thermal management through personal heating and cooling is a strategy by which to expand indoor temperature setpoint range for large energy saving. We show that nanoporous polyethylene (nanoPE) is transparent to mid-infrared human body radiation but opaque to visible light because of the pore size distribution (50 to 1000 nanometers). We processed the material to develop a textile that promotes effective radiative cooling while still having sufficient air permeability, water-wicking rate, and mechanical strength for wearability. We developed a device to simulate skin temperature that shows temperatures 2.7° and 2.0°C lower when covered with nanoPE cloth and with processed nanoPE cloth, respectively, than when covered with cotton. Our processed nanoPE is an effective and scalable textile for personal thermal management.

  19. Radiative cooling of C{sub 7}{sup −}

    SciTech Connect

    Najafian, K.; Pettersson, M. S.; Hansen, K.; Dynefors, B.; Shiromaru, H.; Matsumoto, J.; Tanuma, H.; Furukawa, T.; Azuma, T.

    2014-03-14

    The spontaneous and photo-induced neutralization of C{sub 7}{sup −} produced in a laser ablation source was measured in an electrostatic storage ring. The measurements provide three independent determinations of the radiative cooling of the ions, based on the short time spontaneous decay and on the integrated amplitude and the shape of the photo-induced neutralization signal. The amplitude of the photo-induced signal was measured between 0.5 ms and 35 ms and found to depend on photon wavelength and ion storage time. All three signals can be reproduced with identical thermal IR radiative cooling rates with oscillator strengths equal to theoretical predictions. In addition, the measurements provide the excitation energy distribution.

  20. Transient cooling of a square region of radiating medium

    NASA Technical Reports Server (NTRS)

    Siegel, Robert

    1991-01-01

    A time-accurate numerical solution was carried out for transient radiative cooling of a gray emitting and absorbing medium in a square two-dimensional region. The integro-differential energy equation for transient temperature distributions was solved in two stages. At each time increment, the local radiative source term was obtained by numerical integration of the temperature field using two-dimensional Gaussian integration over rectangular subregions. Then the differential portion of the equation was integrated forward in time by use of the local first and second time derivatives. The results were compared with available limiting case, and excellent agreement was obtained. Transient results are given for a wide range of optical thicknesses of the region. Optimum transient cooling is obtained when the optical side length is about 4.

  1. Effect of a Radiation Cooling and Heating Function on Standing Longitudinal Oscillations in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Nakariakov, V. M.; Moon, Y.-J.

    2016-06-01

    Standing long-period (with periods longer than several minutes) oscillations in large, hot (with a temperature higher than 3 MK) coronal loops have been observed as the quasi-periodic modulation of the EUV and microwave intensity emission and the Doppler shift of coronal emission lines, and they have been interpreted as standing slow magnetoacoustic (longitudinal) oscillations. Quasi-periodic pulsations of shorter periods, detected in thermal and non-thermal emissions in solar flares could be produced by a similar mechanism. We present theoretical modeling of the standing slow magnetoacoustic mode, showing that this mode of oscillation is highly sensitive to peculiarities of the radiative cooling and heating function. We generalized the theoretical model of standing slow magnetoacoustic oscillations in a hot plasma, including the effects of the radiative losses and accounting for plasma heating. The heating mechanism is not specified and taken empirically to compensate the cooling by radiation and thermal conduction. It is shown that the evolution of the oscillations is described by a generalized Burgers equation. The numerical solution of an initial value problem for the evolutionary equation demonstrates that different dependences of the radiative cooling and plasma heating on the temperature lead to different regimes of the oscillations, including growing, quasi-stationary, and rapidly decaying. Our findings provide a theoretical foundation for probing the coronal heating function and may explain the observations of decayless long-period, quasi-periodic pulsations in flares. The hydrodynamic approach employed in this study should be considered with caution in the modeling of non-thermal emission associated with flares, because it misses potentially important non-hydrodynamic effects.

  2. Relativistically strong electromagnetic radiation in a plasma

    NASA Astrophysics Data System (ADS)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Kiriyama, H.; Kondo, K.

    2016-03-01

    Physical processes in a plasma under the action of relativistically strong electromagnetic waves generated by high-power lasers have been briefly reviewed. These processes are of interest in view of the development of new methods for acceleration of charged particles, creation of sources of bright hard electromagnetic radiation, and investigation of macroscopic quantum-electrodynamical processes. Attention is focused on nonlinear waves in a laser plasma for the creation of compact electron accelerators. The acceleration of plasma bunches by the radiation pressure of light is the most efficient regime of ion acceleration. Coherent hard electromagnetic radiation in the relativistic plasma is generated in the form of higher harmonics and/or electromagnetic pulses, which are compressed and intensified after reflection from relativistic mirrors created by nonlinear waves. In the limit of extremely strong electromagnetic waves, radiation friction, which accompanies the conversion of radiation from the optical range to the gamma range, fundamentally changes the behavior of the plasma. This process is accompanied by the production of electron-positron pairs, which is described within quantum electrodynamics theory.

  3. Local cooling, plasma reheating and thermal pinching induced by single aerosol droplets injected into an inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chan, George C.-Y.; Hieftje, Gary M.

    2016-07-01

    The injection of a single micrometer-sized droplet into an analytical inductively coupled plasma (ICP) perturbs the plasma and involves three sequential effects: local cooling, thermal pinching and plasma reheating. Time-resolved two-dimensional monochromatic imaging of the load-coil region of an ICP was used to monitor this sequence of plasma perturbations. When a microdroplet enters the plasma, it acts as a local heat sink and cools the nearby plasma region. The cooling effect is considered local, although the cooling volume can be large and extends 6 mm from the physical location of the vaporizing droplet. The liberated hydrogen, from decomposition of water, causes a thermal pinch effect by increasing the thermal conductivity of the bulk plasma and accelerating heat loss at the plasma periphery. As a response to the heat loss, the plasma shrinks in size, which increases its power density. Plasma shrinkage starts around the same time when the microdroplet enters the plasma and lasts at least 2 ms after the droplet leaves the load-coil region. Once the vaporizing droplet passes through a particular plasma volume, that volume is reheated to an even higher temperature than under steady-state conditions. Because of the opposing effects of plasma cooling and reheating, the plasma conditions are different upstream (downward) and downstream (upward) from a vaporizing droplet - cooling dominates the downstream region whereas reheating controls in the upstream domain. The boundary between the local cooling and reheating zones is sharp and is only ~ 1 mm thick. The reheating effect persists a relatively long time in the plasma, at least up to 4 ms after the droplet moves out of the load-coil region. The restoration of plasma equilibrium after the perturbation induced by microdroplet injection is slow. Microdroplet injection also induces a momentary change in plasma impedance, and the impedance change was found to correlate qualitatively with the different stages of plasma

  4. Radiative cooling in a flameholder for NOx reduction

    NASA Astrophysics Data System (ADS)

    Breidenthal, Robert; Krichtafovitch, Igor; Karkow, Doug; Colannino, Joseph

    2014-11-01

    Recent experiments have revealed dramatic reductions in NOx emissions using a ceramic honeycomb as a flameholder. A jet of fuel entrains and mixes air before entering the honeycomb. The honeycomb is positioned at a distance away from the jet nozzle such that the mixed fluid arriving at the upstream edge of the honeycomb is combustible. Combustion occurs within the honeycomb, transferring heat to the ceramic walls, which glow red hot. According to a simple physical model, radiation and thermal conduction transport energy toward the upstream end of the honeycomb, thereby heating the incident cold reactants to maintain combustion. The radiation also transports energy downstream and away from the honeycomb, toward a thermal load. This is an attractive characteristic in boiler applications, for example. Furthermore, the hot combustion products in intimate thermal contact with the walls of the radiating honeycomb are rapidly cooled, consistent with the low NOx emissions. Preliminary experiments with different honeycomb configurations are in accord with this model.

  5. Development of a plasma panel radiation detector

    SciTech Connect

    Ball, Robert; Beene, James R; Ben Moshe, M.; Benhammou, Yan; Bensimon, B; Chapman, J. Wehrley; Etzion, E; Ferretti, Claudio; Friedman, Dr. Peter S.; Levin, Daniel S.; Silver, Yiftah; Weaverdyck, Curtis; Wetzel, R.; Zhou, Bing; Anderson, T; McKinny, K; Bentefour, E

    2014-11-01

    This article reports on the development and experimental results of commercial plasma display panels adapted for their potential use as micropattern gas radiation detectors. The plasma panel sensor (PPS) design and materials include glass substrates, metal electrodes and inert gas mixtures which provide a physically robust, hermetically sealed device. Plasma display panels used as detectors were tested with cosmic ray muons, beta rays and gamma rays, protons, and thermal neutrons. The results demonstrated rise times and time resolution of a few nanoseconds, as well as sub-millimeter spatial resolution compatible with the pixel pitch.

  6. Design and analysis of the DII-D radiative divertor water-cooled structures

    SciTech Connect

    Hollerbach, M.A.; Smith, J.P.; Baxi, C.B.; Bozek; Chin, E.; Phelps, R.D.; Redler, K.M.; Reis, E.E.

    1995-10-01

    The Radiative Divertor is a major modification to the divertor of DIII-D and is being designed and fabricated for installation in late 1996. The Radiative Divertor Program (RDP) will enhance the dissipative processes in the edge and divertor plasmas to reduce the heat flux and plasma erosion at the divertor target. This approach will have major implications for the heat removal methods used in future devices. The divertor is of slot-type configuration designed to minimize the flow of sputtered and injected impurities back to the core plasma. The new divertor will be composed of toroidally continuous, Inconel 625 water-cooled rings of sandwich construction with an internal water channel, incorporating seam welding to provide the water-to-vacuum seal as well as structural integrity. The divertor structure is designed to withstand electromagnetic loads as a result of halo currents and induced toroidal currents. It also accommodates the thermal differences experienced during the 400 {degrees}C bake used on DIII-D. A low Z plasma-facing surface is provided by mechanically attached graphite tiles. Water flow through the rings will inertially cool these tiles which will be subjected to 38 MW, 10 second pulses. Current schedules call for detailed design in 1996 with installation completed in March 1997. A full size prototype, one-quarter of one ring, is being built to validate manufacturing techniques, machining, roll-forming, and seam welding. The experience and knowledge gained through the fabrication of the prototype is discussed. The design of the electrically isolated (5 kV) vacuum-to-air water feedthroughs supplying the water-cooled rings is also discussed.

  7. Characterization of AN Actively Cooled Metal Foil Thermal Radiation Shield

    NASA Astrophysics Data System (ADS)

    Feller, J. R.; Kashani, A.; Helvensteijn, B. P. M.; Salerno, L. J.

    2010-04-01

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (˜20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  8. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, C.J.; Warner, D.K.

    1984-02-16

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.

  9. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  10. Influence of electron evaporative cooling on ultracold plasma expansion

    SciTech Connect

    Wilson, Truman; Chen, Wei-Ting; Roberts, Jacob

    2013-07-15

    The expansion of ultracold neutral plasmas (UCP) is driven primarily by the thermal pressure of the electron component and is therefore sensitive to the electron temperature. For typical UCP spatial extents, evaporative cooling has a significant influence on the UCP expansion rate at lower densities (less than 10{sup 8}/cm{sup 3}). We studied the effect of electron evaporation in this density range. Owing to the low density, the effects of three-body recombination were negligible. We modeled the expansion by taking into account the change in electron temperature owing to evaporation as well as adiabatic expansion and found good agreement with our data. We also developed a simple model for initial evaporation over a range of ultracold plasma densities, sizes, and electron temperatures to determine over what parameter range electron evaporation is expected to have a significant effect. We also report on a signal calibration technique, which relates the signal at our detector to the total number of ions and electrons in the ultracold plasma.

  11. Astrophysically relevant radiatively cooled hypersonic bow shocks in nested wire arrays

    NASA Astrophysics Data System (ADS)

    Ampleford, David

    2009-11-01

    We have performed laboratory experiments which introduce obstructions into hypersonic plasma flows to study the formation of shocks. Astrophysical observations have demonstrated many examples of equivalent radiatively cooled bow shocks, for example the head of protostellar jets or supernova remnants passing through the interstellar medium or between discrete clumps in jets. Wire array z-pinches allow us to study quasi-planar radiatively cooled flows in the laboratory. The early stage of a wire array z-pinch implosion consists of a steady flow of the wire material towards the axis. Given a high rate of radiative cooling, these flows reach high sonic- Mach numbers, typically up to 5. The 2D nature of this configuration allows the insertion of obstacles into the flow, such as a concentric ``inner'' wire array, as has previously been studied for ICF research. Here we study the application of such a nested array to laboratory astrophysics where the inner wires act as obstructions perpendicular to the flow, and induce bow shocks. By varying the wire array material (W/Al), the significance of radiative cooling on these shocks can be controlled, and is shown to change the shock opening angle. As multiple obstructions are present, the experiments show the interaction of multiple bow shocks. It is also possible to introduce a magnetic field around the static object, increasing the opening angle of the shocks. Further experiments can be designed to control the flow density, magnetic field structure and obstruction locations. In collaboration with: S.V. Lebedev, M.E. Cuneo, C.A. Jennings, S.N. Bland, J.P. Chittenden, A. Ciardi, G.N. Hall, S.C. Bott, M. Sherlock, A. Frank, E. Blackman

  12. Propagation of converted solar axions inside the surface cool plasma

    NASA Astrophysics Data System (ADS)

    Zioutas, K.; Tsagri, M.; Semertzidis, Y.; Papaevangelou, Th.

    2009-04-01

    Under certain conditions of solar plasma density, magnetic field and eventually field gradient, axions or other exotica with similar properties can be converted back to hard X-rays as they stream out of the hot solar core. A GEANT4 simulation was performed for the propagation of ~1-10 keV photons in a relatively cool plasma, some 100 km below the solar surface. Due to multiple Compton scattering, the photon's random path depends sensitively on the actual depth of the axion-to-photon conversion place, where the otherwise unexpected X-rays are assumed to be emitted radially outwards. This results to a continuous non-linear energy degradation of the converted solar axion energy spectrum: an initially wide and hard X-ray spectrum is being continuously redshifted into an exponential form, whose steepness (i.e., the power law index) critically depends on the plasma column density above the place of conversion. In addition, an initial pencil-like beam of hard X-rays, when escaping from the solar surface gives rise to a characteristic wide spot (e.g., some Mm). Thus, the measured shape of the energy spectrum, the spatial extension of the outstreaming X-rays, etc., can be regarded (individually or combined) as novel signatures of the solar axion particle ID. If plasma resonance effects are at work for the enhanced conversion to occur, a comparison with X-ray observations from the flaring Sun results, within the axion(-like) scenario, to a rest mass of m_axion ~10 [meV]. We note that the Monte Carlo results of this work are conventional in nature. Only the origin of the suddenly appearance of X-rays has been motivated by axions or the like. Further reading: http://xxx.lanl.gov/ftp/arxiv/papers/0808/0808.1545.pdf

  13. Nonequilibrium radiative properties in fluctuating plasmas1

    SciTech Connect

    Rosmej, F. B.; Lisitsa, V. S.

    2011-06-15

    A general kinetic model was developed to simulate the radiative properties of nonstationary fluctuating plasmas and characterize the relationship between the nonstationary fluctuation time and the atomic relaxation times. The developed theory is applied to the radiative line emission in the case of instabilities in tokamaks. It is shown by exact time dependent simulations that involve explicitly LSJ-split excited states that the radiation emission in fluctuating plasma can be larger than in the corresponding stationary limits. For regular fluctuations like the sawtooth activity, also the startup phase of sawtooth activity can lead to higher emission compared to the time dependent regular phase. It is demonstrated that the sawtooth crash can be almost exactly followed by resonance line emission like H-like Lyman-alpha and He-like Helium-alpha of, e.g., argon impurity ions, whereas the effective charge state distribution lags seriously behind.

  14. Radiative damping in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.

    2012-11-01

    The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.

  15. Radiative cooling implementations in simulations of primordial star formation

    NASA Astrophysics Data System (ADS)

    Hirano, Shingo; Yoshida, Naoki

    2012-09-01

    We study the thermal evolution of a primordial star-forming gas cloud using the three-dimensional cosmological simulation. We critically examine how assumptions and approximations made in calculations of radiative cooling rates affect the dynamics of the collapsing gas cloud. We run the numerical simulation with different treatment to compute gas opacity, using the three-dimensional calculation and simplified fitting function. We find that there are time-and direction-dependence of opacity and the gravitational collapse of the cloud core is accelerated when the isotropic fitting formula is used. We conclude that physically motivated implementation of radiative transfer is necessary to follow accurately the thermal and chemical evolution of a primordial gas to high densities.

  16. The enhancement mechanism of thin plasma layer on antenna radiation

    SciTech Connect

    Wang, Chunsheng Jiang, Binhao; Li, Xueai

    2015-03-09

    A model of plasma-antenna is carried out to study the radiation enhancement mechanism of antenna covered by thin plasma layer. The results show when the radiation intensity achieves maximum, a region of equal electric field is formed due to the reflection of electric field at the interface of plasma and air. The plasma layer acted as an extension of the antenna. Furthermore, the shape of plasma layer is changed to verify the effect of plasma boundary on antenna radiation. The study shows the effect of thin plasma layer on electromagnetic field and provides a type of plasma antenna.

  17. Radiative cooling of Al{sub 4}{sup -} clusters

    SciTech Connect

    Toker, Y.; Aviv, O.; Eritt, M.; Rappaport, M. L.; Heber, O.; Zajfman, D.; Schwalm, D.

    2007-11-15

    The radiative cooling of isolated, negatively charged four-atom aluminum clusters has been measured using an electrostatic ion beam trap. Stored Al{sub 4}{sup -} ions were irradiated by a short laser pulse at different times after their production in a hot ion source, and delayed electron emission was observed up to hundreds of microseconds after the laser pulse. The decay curves could be well reproduced using an Arrhenius decay law and allowed us to deduce the cluster temperatures at the time of the laser pulse. Using this sensitive molecular thermometer, the cluster temperature could be determined as a function of storage time. The radiation intensity is found to decrease from 40 eV/s at T=1400 K to 1 eV/s at 500 K with a temperature dependence as given by T{sup b} with b=3.5{+-}0.2--i.e., similar to what would be expected from a blackbody. This cooling behavior requires the presence of either electronic transitions or very collective infrared-active vibrations at transition energies around {approx}200 meV.

  18. Small global-mean cooling due to volcanic radiative forcing

    NASA Astrophysics Data System (ADS)

    Gregory, J. M.; Andrews, T.; Good, P.; Mauritsen, T.; Forster, P. M.

    2016-03-01

    In both the observational record and atmosphere-ocean general circulation model (AOGCM) simulations of the last ˜ 150 years, short-lived negative radiative forcing due to volcanic aerosol, following explosive eruptions, causes sudden global-mean cooling of up to ˜ 0.3 K. This is about five times smaller than expected from the transient climate response parameter (TCRP, K of global-mean surface air temperature change per W m-2 of radiative forcing increase) evaluated under atmospheric CO2 concentration increasing at 1 % yr-1. Using the step model (Good et al. in Geophys Res Lett 38:L01703, 2011. doi: 10.1029/2010GL045208), we confirm the previous finding (Held et al. in J Clim 23:2418-2427, 2010. doi: 10.1175/2009JCLI3466.1) that the main reason for the discrepancy is the damping of the response to short-lived forcing by the thermal inertia of the upper ocean. Although the step model includes this effect, it still overestimates the volcanic cooling simulated by AOGCMs by about 60 %. We show that this remaining discrepancy can be explained by the magnitude of the volcanic forcing, which may be smaller in AOGCMs (by 30 % for the HadCM3 AOGCM) than in off-line calculations that do not account for rapid cloud adjustment, and the climate sensitivity parameter, which may be smaller than for increasing CO2 (40 % smaller than for 4 × CO2 in HadCM3).

  19. Updating Plasma Scattering of Electromagnetic Radiation

    NASA Astrophysics Data System (ADS)

    Sheffield, J.

    2010-05-01

    The monograph Plasma Scattering of Electromagnetic Radiation was published by Academic Press in 1975. A Russian edition, Atomidzat, came out in 1978. An updated version is being prepared by D. Froula, S. Glenzer. N Luhmann, and J. Sheffield for publication in 2010 by Elsevier. The new version will discuss the broader applications of Thomson scattering, which include the full range of plasmas used in research and industry. The expansion of the field has been made possible by the growing number of powerful radiation sources (from X-rays to microwaves), detectors, and innovative techniques. When the book was published, the highest temperatures in laboratory plasmas were around 2 keV for the electrons. Compare this to today's 25 keV where the relativistic effects are dramatic. The application to low temperature plasmas with Te in the range of 1 - 30+ eV, important in industry, has grown. Important capabilities have been developed in the areas of energetic particle, micro-instability, and high energy density plasma measurements. For the future, we look forward to the use of scattering as a diagnostic on the large new fusion facilities-NIF, LMJ, and ITER.

  20. Scattering of radiation in collisionless dusty plasmas

    SciTech Connect

    Tolias, P.; Ratynskaia, S.

    2013-04-15

    Scattering of electromagnetic waves in collisionless dusty plasmas is studied in the framework of a multi-component kinetic model. The investigation focuses on the spectral distribution of the scattered radiation. Pronounced dust signatures are identified in the coherent spectrum due to scattering from the shielding cloud around the dust grains, dust acoustic waves, and dust-ion acoustic waves. The magnitude and shape of the scattered signal near these spectral regions are determined with the aid of analytical expressions and its dependence on the dust parameters is investigated. The use of radiation scattering as a potential diagnostic tool for dust detection is discussed.

  1. Radiation and Plasma Environments for Lunar Missions

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.; Altstatt, Richard L.; Diekmann, Anne M.; Blackwell, William C., Jr.; Harine, Katherine J.

    2006-01-01

    Space system design for lunar orbit and extended operations on the lunar surface requires analysis of potential system vulnerabilities to plasma and radiation environments to minimize anomalies and assure that environmental failures do not occur during the mission. Individual environments include the trapped particles in Earth s radiation belts, solar energetic particles and galactic cosmic rays, plasma environments encountered in transit to the moon and on the lunar surface (solar wind, terrestrial magnetosheath and magnetotail, and lunar photoelectrons), and solar ultraviolet and extreme ultraviolet photons. These are the plasma and radiation environments which contribute to a variety of effects on space systems including total ionizing dose and dose rate effects in electronics, degradation of materials in the space environment, and charging of spacecraft and lunar dust. This paper provides a survey of the relevant charged particle and photon environments of importance to lunar mission design ranging from the lowest (approx.few 10 s eV) photoelectron energies to the highest (approx.GeV) cosmic ray energies.

  2. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  3. Cooling of Electronically-Excited He2 Molecules in a Microcavity Plasma Jet

    NASA Astrophysics Data System (ADS)

    Su, Rui; Houlahan, Thomas J., Jr.; Eden, J. Gary

    2016-06-01

    Helium dimers in the d3Σ+u excited electronic state with potential energy >24 eV and radiative lifetime of 25 ns have been generated in a microcavity plasma jet and rotationally cooled by supersonic expansion in vacuum. The dynamic process of cooling is recorded by imaging the axis of expansion onto the slit of Czerny-Turner spectrometer, yielding spatial-temporal spectrograms of d3Σ+u→b3Πg (v', v'')=(0, 0) emission. Analysis of the data shows the spatial-temporal evolution of the rotational temperature to be a damped sinusoid that reaches a minimum value of 100K. This reproducible behavior is attributed to the reflection of electrons from a virtual cathode located downstream of the nozzle and indicates that the spatially-averaged electron density is 108 cm-3. We present this observed rotational temperature oscillation during the supersonic cooling process as an example of the potential of our supersonic microplasma expansion as a tool to explore physical dynamics in diatomic molecules having high excitation energies and small lifetimes.

  4. Cooling fractures in impact melt deposits on the Moon and Mercury: Implications for cooling solely by thermal radiation

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Zeng, Zuoxun; Li, Zhiyong; Blair, David M.; Xiao, Long

    2014-07-01

    We study the distribution, morphology, and geometrical properties of fractures in several young impact melt deposits on the Moon and Mercury, and the ways that these fractures may form from cooling by thermal radiation. In each impact melt complex, the topography of the underlying terrain determines the orientation of cooling fractures, such that interior fractures that formed in the relatively thick interior areas of the melt unit are wider and have a larger spacing than marginal fractures that formed in the relatively thin areas near the unit's margins. Solid debris entrained in molten deposits provides prefracture flaws that can seed cooling fractures, but too much solid debris prevents cooling fractures from growing to macroscopic sizes. The appearance of subparallel fractures is mainly caused by subsidence of the deposits during the process of cooling and solidification. Tensile stresses caused by thermal radiation are large enough to initiate cooling fractures on both the Moon and Mercury, which may represent the initial stage of columnar joints formation, but the cooling rate caused solely by thermal radiation is not large enough to form well-organized columnar joints that feature polygonal colonnades. We therefore propose that thermal conduction and convection are the major contributors in the formation of columnar joints on planetary bodies.

  5. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    Detailed measurements and modeling of the spectral emission of an atmospheric pressure air plasma at temperatures up to -3400 K have been made. The cold gas injected in the plasma torch contained an estimated mole fraction of water vapor of approximately 4.5 x 10(exp -3) and an estimated carbon dioxide mole fraction of approximately 3.3 x 10(exp -4). Under these conditions, the minimum level of air plasma emission is found to be between 3.9 and 4.15 microns. Outside this narrow region, significant spectral emission is detected that can be attributed to the fundamental and overtone bands of NO and OH, and to the v(sub 3) and the (v(sub 1)+v(sub 3)) bands Of CO2. Special attention was paid to the effects of ambient air absorption in the optical path between the plasma and the detector. Excellent quantitative agreement is obtained between the measured and simulated spectra, which are both on absolute intensity scales, thus lending confidence in the radiation models incorporated into NEQAIR2-IR over the course of this research program.

  6. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    This report describes progress during the second year of our research program on Infrared Signature Masking by Air Plasmas at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Our previous annual report described spectral measurements and modeling of the radiation emitted between 3.2 and 5.5 microns by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3100 K. One of our goals was to examine the spectral emission of secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million Of CO2, which is the natural CO2 concentration in atmospheric air at room temperature, and a small amount of water vapor with an estimated mole fraction of 3.8 x 10(exp -4). As can be seen from Figure 1, it was found that the measured spectrum exhibited intense spectral features due to the fundamental rovibrational bands of NO at 4.9 - 5.5 microns and the V(3) band of CO2 (antisymmetric stretch) at 4.2-4.8 microns. These observations confirmed the well-known fact that infrared signatures between 4.15 - 5.5 microns can be masked by radiative emission in the interceptor's bow-shock. Figure I also suggested that the range 3.2 - 4.15 microns did not contain any significant emission features (lines or continuum) that could mask IR signatures. However, the signal-to-noise level, close to one in that range, precluded definite conclusions. Thus, in an effort to further investigate the spectral emission in the range of interest to signature masking problem, new measurements were made with a higher signal-to-noise ratio and an extended wavelength range.

  7. Absolute intensity of radiation emitted by uranium plasmas

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.; Lee, J. H.; Mcfarland, D. R.

    1975-01-01

    The absolute intensity of radiation emitted by fissioning and nonfissioning uranium plasmas in the spectral range from 350 nm to 1000 nm was measured. The plasma was produced in a plasma-focus apparatus and the plasma properties are simular to those anticipated for plasma-core nuclear reactors. The results are expected to contribute to the establishment of design criteria for the development of plasma-core reactors.

  8. Radiatively driven plasma jets around compact objects

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Indranil; Chakrabarti, Sandip K.

    2002-06-01

    Matter accreting on to black holes may develop shocks due to the centrifugal barrier. Some of the inflowing matter in the post-shock flow is deflected along the axis in the form of jets. Post-shock flow which behaves like a Compton cloud has `hot' electrons emitting high-energy photons. We study the effect of these `hot' photons on the outflowing matter. Radiation from this region could accelerate the outflowing matter, but radiation pressure should also slow it down. We show that the radiation drag restricts the flow from attaining a very high velocity. We introduce the concept of an `equilibrium velocity' (veq~0.5c), which sets the upper limit of the terminal velocity achieved by a cold plasma due to radiation deposition force in the absence of gravity. If the injection energy is Ein, then we find that the terminal velocity v∞ satisfies a relation v2<~veq2+2Ein.

  9. Material Response of One-Dimensional, Steady-State Transpiration Cooling in Radiative and Convective Environments

    NASA Technical Reports Server (NTRS)

    Kubota, Hirotoshi

    1975-01-01

    A simplified analytical solution for thermal response of a transpiration-cooled porous heat-shield material in an intense radiative-convective heating environment is presented. Essential features of this approach are "two-flux method" for radiative transfer process and "two-temperature" assumption for solid and gas temperatures. Incident radiative-convective heatings are specified as boundary conditions. Sample results are shown using porous silica with CO2 transpiration and some parameters quantitatively show the effect on this transpiration cooling system. Summarized maps for mass injection rate, porosity and blowing correction factor for radiation are obtained in order to realize such a cooling system.

  10. Investigation of film cooling from cylindrical hole with plasma actuator on flat plate

    NASA Astrophysics Data System (ADS)

    Xiao, Yang; Dai, Sheng-ji; He, Li-ming; Jin, Tao; Zhang, Qian; Hou, Peng-hui

    2016-08-01

    This paper reports the Computational Fluid Dynamics modeling studies on the effect of plasma aerodynamic actuation on combustor film cooling performance. By comparing Case (i.e. film cooling hole with plasma actuator) result to Base (i.e. film cooling hole without plasma actuator) result, the mechanism of improving film cooling performance by using plasma actuator was analyzed. The results show that the Counter Rotating Vortex Pairs in Base are weakened by a new pair of vortex in Case, which is induced by the plasma-actuator-generated arc-shape-distributed electric body force. This leads to less interaction and less mixing between the main flow and the jet flow. Then it causes enhancement of the stability and the steadiness of the jet flow. Finally the average film cooling effectiveness in Case is higher than that in Base. For Case, the uniformity of temperature distribution along spanwise wall surface is improved as the actuator electrode radian increases, so does the average film cooling effectiveness. The film cooling effectiveness is higher when actuator is closer to the exit of hole.

  11. Coherent microwave radiation from a laser induced plasma

    SciTech Connect

    Shneider, M. N.; Miles, R. B.

    2012-12-24

    We propose a method for generation of coherent monochromatic microwave/terahertz radiation from a laser-induced plasma. It is shown that small-scale plasma, located in the interaction region of two co-propagating plane-polarized laser beams, can be a source of the dipole radiation at a frequency equal to the difference between the frequencies of the lasers. This radiation is coherent and appears as a result of the so-called optical mixing in plasma.

  12. System for control of cooled CCD and image data processing for plasma spectroscopy

    SciTech Connect

    Mimura, M.; Kakeda, T.; Inoko, A.

    1995-12-31

    A Spectroscopic measurement system which has a spacial resolution is important for plasma study. This is especially true for a measurement of a plasma without axial symmetry like the LHD-plasma. Several years ago, we developed an imaging spectroscopy system using a CCD camera and an image-memory board of a personal computer. It was very powerful to study a plasma-gas interaction phenomena. In which system, however, an ordinary CCD was used so that the dark-current noise of the CCD prevented to measure dark spectral lines. Recently, a cooled CCD system can be obtained for the high sensitivity measurement. But such system is still very expensive. The cooled CCD itself as an element can be purchased cheaply, because amateur agronomists began to use it to take a picture of heavenly bodies. So we developed an imaging spectroscopy system using such a cheap cooled CCD for plasma experiment.

  13. Detecting Galaxy Formation with He II Cooling Radiation

    NASA Astrophysics Data System (ADS)

    Yang, Yujin; Zabludoff, Ann; Davé, Romeel; Eisenstein, Daniel

    2006-08-01

    Galaxies obtain material to form their stars from the intergalactic medium, but direct observations of such accretion do not yet exist. Motivated by our theoretical work, we propose the first direct search for gravitational cooling radiation arising from the infall of gas into forming galaxies at z=3. While ``Lyα blobs'' are the best candidates for gas-accreting galaxies at high redshift, and are therefore the focus of our proposed study, their nature remains unknown due to intrinsic difficulties in interpreting their Lyα emission. Here, we propose to survey 10 of the Lyα blobs from the Matsuda et al. sample for He II. Compared to Lyα, Heha is optically thin, less sensitive to the UV background, and less contaminated by the recombination lines from star-forming galaxies, making it an ideal diagnostic line to uncover the processes by which galaxies acquire their baryons. This proposal is a resubmission in which we have explicitly addressed the concerns raised by the TAC last year. This project represents a new approach, which has the potential to revolutionize studies of galaxy formation.

  14. Radiative-condensation instability in gravitating strongly coupled dusty plasma with polarization force

    NASA Astrophysics Data System (ADS)

    Prajapati, R. P.; Bhakta, S.

    2015-06-01

    The radiative-condensation instability (RCI) in self-gravitating strongly coupled dusty plasma (SCDP) is investigated considering the effects of dust thermal velocity and polarization force on the massive dust particulates. In particular, the outer core of the dense neutron star which is supposed to be strongly coupled in nature with temperature T˜107 K and number density n˜1.3×1030 cm-3 is analyzed. The modified generalized hydrodynamic (GH) equations and electron temperature perturbation equation with radiative effects are solved using the linear perturbation method. In the classical hydrodynamic limit, the modified condition of Jeans instability owing to radiative condensation, polarization force and dust thermal velocity is obtained. In the kinetic limit, velocity of compressional mode also modifies the condition of Jeans instability. The dust thermal velocity and viscoelastic effects have stabilizing whereas polarization force and radiative cooling have destabilizing influence on the growth rate of the Jeans instability. The radiative effects stabilize the growth rate of unstable radiative modes. In isobaric mode (short wavelength), the basic condition of radiative instability is obtained which is unaffected due to the presence of polarization force and viscoelastic effects. The radiative cooling time in the outer core of neutron star is estimated and compared with the gravitational free fall time, and it is found that the cooling takes place too fast for self-gravity to be important.

  15. Spontaneous emission of electromagnetic radiation in turbulent plasmas

    SciTech Connect

    Ziebell, L. F.; Yoon, P. H.; Simões, F. J. R.; Pavan, J.; Gaelzer, R.

    2014-01-15

    Known radiation emission mechanisms in plasmas include bremmstrahlung (or free-free emission), gyro- and synchrotron radiation, cyclotron maser, and plasma emission. For unmagnetized plasmas, only bremmstrahlung and plasma emissions are viable. Of these, bremmstrahlung becomes inoperative in the absence of collisions, and the plasma emission requires the presence of electron beam, followed by various scattering and conversion processes. The present Letter proposes a new type of radiation emission process for plasmas in a state of thermodynamic quasi-equilibrium between particles and enhanced Langmuir turbulence. The radiation emission mechanism proposed in the present Letter is not predicted by the linear theory of thermal plasmas, but it relies on nonlinear wave-particle resonance processes. The electromagnetic particle-in-cell numerical simulation supports the new mechanism.

  16. Radiative Power Loss Calculations for Krypton and Argon in Intermediate-to-High Density Plasmas

    SciTech Connect

    Fournier, K B; Chung, H-K; Lee, R W

    2001-12-01

    The scope of work for this subcontract requires that state-of-the-art, detailed atomic kinetics calculations be applied to compute the total radiative cooling rates for Ar and Kr in high density plasmas. This is in support of the Defense Threat Reduction Agency's program of development of simulators with high-fluence radiation and spectral fidelity. Using collisional-radiative modeling codes and unique expertise at Lawrence Livermore National Laboratory (LLNL), the total radiative yields from Ar and Kr, integrated over all photon energies, have been computed. Spectrally resolved yields from K-shell Ar and K- and L-shell Kr have also been tabulated. The present calculations show that high electron density in the plasma sources is essential to maximize the fraction of power output in various x-ray bands.

  17. Radiation temperature of non-equilibrium plasmas

    SciTech Connect

    Arunasalam, V.

    1991-07-01

    In fusion devices measurements of the radiation temperature T{sub r} ({omega}, k) near the electron cyclotron frequency {omega}{sub C} and the second harmonic 2{omega}{sub C} in directions nearly perpendicular to the confining magnetic field B (i.e., k {approx} k {perpendicular}) serve to map out the electron temperature profiles T{sub e}(r,t). For optically thick plasma at thermodynamic equilibrium T{sub r} = T{sub e}. However, there is increasing experimental evidence for the presence of non-equilibrium electron distributions (such as a drifting Maxwellian with appreciable values of the streaming parameter {omicron} = v{sub d}/v{sub t}, a bi- Maxwellian, and anisotropic Maxwellian with T {perpendicular} {ne} T {parallel}, etc.,) in tokamak plasmas, especially in the presence of radio-frequency heating. Here, we examine (both non-relativistically and relativistically) the dependence of T{sub r} on {omicron}, T{perpendicular}/T{parallel}, T{sub h}/T{sub b}, n{sub h}/n{sub b}etc., where n{sub b}, n{sub h}, T{sub b}, T{sub h} are the densities and temperatures, respectively, of the bulk and the hot components of the bi-Maxwellian plasma. Our bi-Maxwellian results predict that the ratio T{sub r}/T{sub e} is a very sensitive function of the ratios n{sub h}/n{sub b} and T{sub h}/T{sub b}. Further, these relativistic and non-relativistic results satisfy the well-known limit c {yields} {infinity} correspondence principle'', showing that the intensity of the emission and absorption line is independent of the line broadening mechanism. 44 refs., 2 figs.

  18. Hand-held, mechanically cooled, radiation detection system for gamma-ray spectroscopy

    DOEpatents

    Burks, Morgan Thomas; Eckels, Joel Del

    2010-06-08

    In one embodiment, a radiation detection system is provided including a radiation detector and a first enclosure encapsulating the radiation detector, the first enclosure including a low-emissivity infra-red (IR) reflective coating used to thermally isolate the radiation detector. Additionally, a second enclosure encapsulating the first enclosure is included, the first enclosure being suspension mounted to the second enclosure. Further, a cooler capable of cooling the radiation detector is included. Still yet, a first cooling interface positioned on the second enclosure is included for coupling the cooler and the first enclosure. Furthermore, a second cooling interface positioned on the second enclosure and capable of coupling the first enclosure to a cooler separate from the radiation detection system is included. Other embodiments are also presented.

  19. Radiation Effects in a Semitransparent Gray Coating Heated by Convection and Cooled by Radiation

    NASA Technical Reports Server (NTRS)

    Spuckler, Charles M.

    2002-01-01

    A parametric study using a one dimensional model of a semitransparent gray thermal barrier coating was performed to gain an understanding of the role thermal radiation can play in the heat transferred. Some ceramic materials are semitransparent in the wavelength ranges were thermal radiation is important. Therefore, absorption, emission, and scattering of thermal radiation can affect the he at transfer through the coating. In this paper, a one dimensional layer was used to model the heat transfer process occurring, in a burner test rig. The semitransparent layer is heated by a hot gas flowing over its surface. The layer and substrate at a cooled by radiation to the surroundings. The back side of the substrate is insulated. The coating is assumed to be gray (absorption and scattering coefficients are not function of wavelength). An absorption coefficient of 0.3/cm and scatter a rig coefficients of 0 (no scattering) and 100/cm (isotropic scattering) were used. The thickness and thermal conductivity of the layer are varied. The results show that the temperatures are affected by the properties of the semitransparent .ever and the emissivity of the substrate. The substrate and surface temperatures are presented. The apparent temperature an optical pyrometer would read for the emitted energy is also given. An apparent thermal conductivity was calculated for the layer.

  20. Generation of radiation by intense plasma and electromagnetic undulators

    SciTech Connect

    Joshi, C.

    1991-10-01

    We examine the characteristics of the classical radiation emission resulting from the interaction of a relativistic electron beam that propagates perpendicularly through a large amplitude relativistic plasma wave. Such a study is useful for evaluating the feasibility of using relativistic plasma waves as extremely short wavelength undulators for generating short wavelength radiation. The electron trajectories in a plasma wave undulator and in an ac FEL undulator are obtained using perturbation techniques. The spontaneous radiation frequency spectrum and angular distribution emitted by a single electron oscillating in these two undulators are then calculated. The radiation gain of a copropagating electromagnetic wave is calculated. The approximate analytic results for the trajectories, spontaneous radiation and gain are compared with 3-D simulation results. The characteristics of the plasma wave undulator are compared with the ac FEL undulator and linearly polarized magnetic undulator. 50 refs., 26 figs., 3 tabs.

  1. Radiative Plasmas At The Edge And Their Basic Properties

    SciTech Connect

    Morozov, D. Kh.

    2006-11-30

    Plasma radiation plays the determining role in temperature balance, equilibrium and stability of plasmas at the edge of fusion devices. The differences in properties of radiative plasmas and pure hydrogen ones are significant. The sound branch is split into two branches, i.e. fast and slow sounds. They may be destabilize by radiation and stabilized by internal relative motion of species. The basic properties of radiative plasmas are discussed in the current presentation. Radiation of multi-electron impurity ions is significant, even if the impurity concentration is small. It depends strongly on the Impurity Distribution Over Ionization States (IDOIS). One can find many interesting effects taking into account the finite relaxation time of IDOIS and thermal forces. In particular, the anomalous sound damping due to the internal friction, decompression shocks, slow thermal waves, and self-sustained thermal oscillation are discussed in the current presentation. Opacity effects also are discussed in the current presentation.

  2. A simplified, numerically verified model for the global plasma reaction on a local cooling

    SciTech Connect

    Tokar, M. Z.; Koltunov, M.

    2013-10-15

    An analytical model for heat losses along a magnetic surface to its small region cooled down abruptly to a very low temperature is deduced by applying a principle of minimum entropy production and verified by comparing with the results obtained by solving non-stationary two-dimensional heat conduction equation numerically. The model is elaborated further by taking into account heat flux limit and the plasma density modification due to the particle convection along the magnetic surface, triggered by the plasma pressure imbalance arising by the local cooling.

  3. Measurement and modeling of detached plasma cooling via ro-vibrational excitation of H 2 neutrals in PISCES-A

    NASA Astrophysics Data System (ADS)

    Hollmann, E. M.; Pigarov, A. Yu.; Yan, Z.

    2007-06-01

    Measurements of the spatial decay of H2 vibrational, rotational, and kinetic temperatures Tvib, Trot, and Tkin down the side port of the PISCES-A vacuum chamber, together with Monte-Carlo modeling, is used to obtain the accommodation probabilities for energy loss to the cold chamber walls during H2 + surface collisions. These accommodation probabilities are used to calculate the steady-state rate at which H2 carries energy away from the plasma column. The power loss due to heating of H2 neutrals is found to be quite significant, being only 2 × weaker than radiation cooling in the higher neutral pressure (detached) discharges. The H2 vibrational temperature Tvib is found to be the most important neutral channel for carrying energy out of the plasma - more important than either kinetic temperature Tkin or rotational temperature Trot.

  4. Convection induced by radiative cooling of a layer of participating medium

    SciTech Connect

    Prasanna, Swaminathan; Venkateshan, S. P.

    2014-05-15

    Simulations and experiments have been conducted to study the effect of radiative cooling on natural convection in a horizontal layer of a participating medium enclosed between isothermal opaque wall and radiatively transparent wall and exposed to a cold background. The study is of relevance to a nocturnal boundary layer under clear and calm conditions. The focus of the study is to capture the onset of convection caused by radiative cooling. The experiments have been designed to mimic the atmospheric radiative boundary conditions, and hence decoupling convection and radiation boundary conditions. Planck number Pl and optical thickness of the layer τ{sub H} are the two important parameters that govern the interaction between radiation and convection. The radiation-convection coupling is a strong function of length scale. Convection sets up within first few seconds for all the experiments. Strong plume like convection is observed for the experimental conditions used in the present study. Both simulations and experiments confirm that radiative cooling increases substantially with decrease in emissivity of the bottom wall. Radiative cooling is strongly influenced by the nongray nature of the participating medium, especially when strong emission from the medium escapes to space, in the window region of the atmosphere. Accurate representation of radiative properties is critical. Linear stability analysis of onset of convection indicates that radiation stabilizes convection as Pl decreases. The observations are similar to the case of Rayleigh Bénard convection in a radiating gas. However, for both experimental and numerical conditions, the observed Rayleigh numbers are much greater than the critical Rayleigh number. To conclude, the role of radiation is to drive and sustain convection in the unstable layer.

  5. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Microwave generation in an optical breakdown plasma created by modulated laser radiation

    NASA Astrophysics Data System (ADS)

    Antipov, A. A.; Grasyuk, Arkadii Z.; Losev, Leonid L.; Soskov, V. I.

    1990-06-01

    It was established that when laser radiation, intensity modulated at a frequency of 2.2 GHz, interacted with an optical breakdown plasma which it had created, a microwave component appeared in the thermal emf of the plasma. The amplitude of the microwave thermal emf reached 0.7 V for a laser radiation intensity of 6 GW/cm2. Laser radiation with λL = 1.06 μm was converted to the microwave range with λmω = 13 cm in the optical breakdown plasma. A microwave signal power of ~ 0.5 W was obtained from a laser power of ~ 5 MW.

  6. Active noise canceling system for mechanically cooled germanium radiation detectors

    DOEpatents

    Nelson, Karl Einar; Burks, Morgan T

    2014-04-22

    A microphonics noise cancellation system and method for improving the energy resolution for mechanically cooled high-purity Germanium (HPGe) detector systems. A classical adaptive noise canceling digital processing system using an adaptive predictor is used in an MCA to attenuate the microphonics noise source making the system more deployable.

  7. The Effect of Radiative Cooling on Coronal Loop Oscillations

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Terradas, Jaume

    2008-10-01

    Coronal loops that exhibit kink-mode oscillations have generally been assumed to have a constant density and temperature during the observed time interval. Analyzing their intensities in an EUV wave band, however, clearly shows that their brightness varies in a way that is consistent with a temperature cooling through the EUV passband, which limits their detection time, observed damping time, and number of observable periods. We study kink-mode oscillations of eight loops observed during the so-called harmonica event on 2001 April 15, 21:58-22:27 UT in the 171 Å band. We find loop densities of ne = (1.4 +/- 0.6) × 109 cm-3, loop widths of w = 2.0 +/- 2.6 Mm, and e-folding cooling times of τcool = 17 +/- 7 minutes, when they cool through the peak temperature T = 0.95 MK of the 171 Å band. We conclude that oscillations of a single loop cannot be detected longer than 10-20 minutes in one single filter and appropriate light curve modeling is necessary to disentangle the subsequent oscillation phases of multiple near-cospatial loops.

  8. Three Canted Radiator Panels to Provide Adequate Cooling for Instruments on Slewing Spacecraft in LEO

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2012-01-01

    Certain free-flying spacecraft in low Earth orbit (LEO) or payloads on the International Space Station (ISS) are required to slew to point the telescopes at targets. Instrument detectors and electronics require cooling. Traditionally a planar thermal radiator is used. The temperature of such a radiator varies significantly when the spacecraft slews because its view factors to space vary significantly. Also for payloads on the ISS, solar impingement on the radiator is possible. These thermal adversities could lead to inadequate cooling for the instrument. This paper presents a novel thermal design concept that utilizes three canted radiator panels to mitigate this problem. It increases the overall radiator view factor to cold space and reduces the overall solar or albedo flux absorbed per unit area of the radiator.

  9. Microscopic properties of xenon plasmas for density and temperature regimes of laboratory astrophysics experiments on radiative shocks.

    PubMed

    Rodríguez, R; Espinosa, G; Gil, J M; Stehlé, C; Suzuki-Vidal, F; Rubiano, J G; Martel, P; Mínguez, E

    2015-05-01

    This work is divided into two parts. In the first one, a study of radiative properties (such as monochromatic and the Rosseland and Planck mean opacities, monochromatic emissivities, and radiative power loss) and of the average ionization and charge state distribution of xenon plasmas in a range of plasma conditions of interest in laboratory astrophysics and extreme ultraviolet lithography is performed. We have made a particular emphasis in the analysis of the validity of the assumption of local thermodynamic equilibrium and the influence of the atomic description in the calculation of the radiative properties. Using the results obtained in this study, in the second part of the work we have analyzed a radiative shock that propagated in xenon generated in an experiment carried out at the Prague Asterix Laser System. In particular, we have addressed the effect of plasma self-absorption in the radiative precursor, the influence of the radiation emitted from the shocked shell and the plasma self-emission in the radiative precursor, the cooling time in the cooling layer, and the possibility of thermal instabilities in the postshock region.

  10. About iron globules formed at cooling of iron-contained plasma

    NASA Astrophysics Data System (ADS)

    Bulina, N. V.; Gromyko, A. I.; Bondarenko, G. V.; Marachevsky, A. V.; Chekanova, L. A.; Prokof'ev, D. E.; Churilov, G. N.

    2006-12-01

    This paper is devoted to the investigation of iron globules that are formed during cooling of the iron-carbon-helium plasma and as a result of destruction of a natural ball lightning. Scanning electron microscopy, X-ray fluorescence, X-ray diffraction, and ferromagnetic resonance investigations were carried out. The magnetization values of the samplers were determined.

  11. THE COOLING OF CORONAL PLASMAS. III. ENTHALPY TRANSFER AS A MECHANISM FOR ENERGY LOSS

    SciTech Connect

    Bradshaw, S. J.; Cargill, P. J. E-mail: p.cargill@imperial.ac.u

    2010-07-01

    The cooling of impulsively heated coronal loops is examined with emphasis on the phase when optically thin radiation is dominant over conduction. It is shown that this regime cannot be described as purely 'radiative cooling' because an enthalpy flux to the transition region plays an important and, on occasions, a dominant role. The scaling between coronal temperature and density (T {proportional_to} n {sup {delta}}) during such cooling is reconsidered. The parameter {delta} is determined by the relative importance of the coronal radiative losses to the enthalpy flux to the transition region, which in turn powers the transition region radiation. It is seen that {delta} is in the region of 2 for short loops, while gravitational stratification reduces {delta} to below 2 and values of 1 occur for very long, tenuous loops. This can be understood by noting that for given transition region parameters (and hence required inward enthalpy flux), stratification reduces the coronal losses. It is thus appropriate to refer to this stage of coronal evolution as 'radiative-enthalpy cooling'.

  12. Thermal barrier coatings on turbine blades by plasma spraying with improved cooling

    NASA Astrophysics Data System (ADS)

    Cosack, T.; Pawlowski, L.; Schneiderbanger, S.; Sturlese, S.

    1992-06-01

    Turbine blades were coated with a thermal barrier coating system consisting of an MCrAlY bond coat about 100 micron thick deposited by Low Pressure Plasma Spraying (LPPS) and a 300 micron thick ZrO2-7 wt pct Y2O3 top coat. The latter was manufactured by both Atmosphere and Temperature Controlled Spraying (ATCS) and Air Plasma Spraying using internal air cooling through the cooling holes of the turbine blades. Coated blades were submitted to thermal cycling tests in a burner rig with hot gas temperature of 1485 C. In the case of ATCS coated blades the number of cycles until the first spallation at the leading edge of the blade was between 350 and 2400. The number of cycles of the thermal barrier coatings sprayed with internal cooling was between 1200 and 1800.

  13. The Stability of Radiatively Cooling Jets. 2: Nonlinear Evolution

    NASA Technical Reports Server (NTRS)

    Stone, James M.; Xu, Jianjun; Hardee, Philip

    1997-01-01

    We use two-dimensional time-dependent hydrodynamical simulations to follow the growth of the Kelvin-Helmholtz (K-H) instability in cooling jets into the nonlinear regime. We focus primarily on asymmetric modes that give rise to transverse displacements of the jet beam. A variety of Mach numbers and two different cooling curves are studied. The growth rates of waves in the linear regime measured from the numerical simulations are in excellent agreement with the predictions of the linear stability analysis presented in the first paper in this series. In the nonlinear regime, the simulations show that asymmetric modes of the K-H instability can affect the structure and evolution of cooling jets in a number of ways. We find that jets in which the growth rate of the sinusoidal surface wave has a maximum at a so-called resonant frequency can be dominated by large-amplitude sinusoidal oscillations near this frequency. Eventually, growth of this wave can disrupt the jet. On the other hand, nonlinear body waves tend to produce low-amplitude wiggles in the shape of the jet but can result in strong shocks in the jet beam. In cooling jets, these shocks can produce dense knots and filaments of cooling gas within the jet. Ripples in the surface of the jet beam caused by both surface and body waves generate oblique shock "spurs" driven into the ambient gas. Our simulations show these shock "spurs" can accelerate ambient gas at large distances from the jet beam to low velocities, which represents a new mechanism by which low-velocity bipolar outflows may be driven by high-velocity jets. Rapid entrainment and acceleration of ambient gas may also occur if the jet is disrupted. For parameters typical of protostellar jets, the frequency at which K-H growth is a maximum (or highest frequency to which the entire jet can respond dynamically) will be associated with perturbations with a period of - 200 yr. Higher frequency (shorter period) perturbations excite waves associated with body

  14. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect

    Fallahi, A.; Duraschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  15. Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates

    SciTech Connect

    Fallahi, A.; Durschlag, H.; Elliott, D.; Hartsough, J.; Shukla, N.; Kosny, J.

    2013-12-01

    This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulkinsulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiant barrier composed of two aluminum foils combined with an enclosedreflective air space and the second uses spray-applied interior radiation control coatings (IRCC).

  16. Interaction of microwave radiation with an erosion plasma jet

    NASA Astrophysics Data System (ADS)

    Brovkin, V. G.; Pashchina, A. S.; Ryazanskiy, N. M.

    2016-09-01

    The interaction of high-power pulsed microwave radiation with a plasma jet formed by a discharge in an ablative capillary is studied. A significant influence of microwave radiation on the plasma jet flow is found. Depending on the intensity of the initial perturbation of the jet, different scenarios of its evolution downstream are possible: attenuation or amplification accompanied with the development of turbulence up to the disruption of the flow if a certain threshold of the energy action is exceeded. A significant influence of the plasma jet and its state on the spatial position of the microwave energy release zone is found.

  17. Collisional and Radiative Processes in Optically Thin Plasmas

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen J.; Raymond, John

    2013-10-01

    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail.

  18. Collisional and Radiative Processes in Optically Thin Plasmas

    NASA Astrophysics Data System (ADS)

    Bradshaw, Stephen J.; Raymond, John

    Most of our knowledge of the physical processes in distant plasmas is obtained through measurement of the radiation they produce. Here we provide an overview of the main collisional and radiative processes and examples of diagnostics relevant to the microphysical processes in the plasma. Many analyses assume a time-steady plasma with ion populations in equilibrium with the local temperature and Maxwellian distributions of particle velocities, but these assumptions are easily violated in many cases. We consider these departures from equilibrium and possible diagnostics in detail.

  19. Thermal Design and Analysis of a Multi-Stage 30K Radiative Cooling System for EPIC

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Bock, Jamie; Holmes, Warren; Raab, Jeff

    2009-01-01

    The Experimental Probe of Inflationary Cosmology (EPIC) is an implementation of the NASA Einstein Inflation Probe mission, to answer questions about the physics of Inflation in the early Universe by measuring the polarization of the Cosmic Microwave Background (CMB). The mission relies on a passive cooling system to cool the enclosure of a telescope to 30 K; a cryocooler then cools this enclosure to 18 K and the telescope to 4 K. Subsequently, an adiabatic demagnetization refrigerator further cools a large focal plane to approx.100 mK. For this mission, the telescope has an aperture of 1.4 m, and the spacecraft's symmetry axis is oriented approx. 45 degrees relative to the direction of the sun. The spacecraft will be spun at approx. 0.5 rpm around this axis, which then precesses on the sky at 1 rph. The passive system must both supply the necessary cooling power for the cryocooler and meet demanding temperature stability requirements. We describe the thermal design of a passive cooling system consisting of four V-groove radiators for shielding of solar radiation and cooling the telescope to 30 K. The design realizes loads of 20 and 68 mW at the 4 K and 18 K stages on the cooler, respectively. A lower cost option for reaching 40 K with three V-groove radiators is also described. The analysis includes radiation coupling between stages of the radiators and sunshields, and parasitic conduction in the bipod support, harnesses, and ADR leads. Dynamic effects are also estimated, including the very small variations in temperature due to the scan motion of the spacecraft.

  20. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    SciTech Connect

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec le Goahec, M.; Falize, E.; Bouquet, S.; Courtois, C.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Schiavi, A.

    2007-08-02

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  1. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec Le Goahec, M.; Falize, E.; Bouquet, S.; Michaut, C.; Herpe, G.; Baroso, P.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Courtois, C.; Woolsey, N. C.; Gregory, C. D.; Howe, J.; Schiavi, A.; Atzeni, S.

    2007-08-01

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  2. Microwave radiation measurements near the electron plasma frequency of the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.; Roth, J. R.

    1978-01-01

    Microwave emission near the electron plasma frequency of the NASA Lewis Bumpy Torus plasma has been observed, and its relation to the average electron density and the dc toroidal magnetic field was examined. The emission was detected using a spectrum analyzer and a 50-ohm miniature coaxial probe. The radiation appeared as a broad amplitude peak that shifted in frequency as the plasma parameters were varied. The observed radiation scanned an average plasma density ranging from 20 billion to 800 billion per cu cm. A linear relation was observed between the density calculated from the emission frequency and the average plasma density measured with a microwave interferometer. With the aid of a relative density profile measurement of the plasma, it was determined that the emissions occurred from the outer periphery of the plasma.

  3. Radiation from Cerenkov Wakes in a Magnetized Plasma

    SciTech Connect

    Yoshii, J.; Lai, C.H.; Katsouleas, T.; Joshi, C.; Mori, W.B.

    1997-11-01

    The Cerenkov wake excited by a particle beam or a short laser pulse in a perpendicularly magnetized plasma is analyzed. The wake couples to electromagnetic radiation of approximate frequency {omega}{sub p} at the plasma/vacuum boundary. The radiation amplitude is {omega}{sub c}/{omega}{sub p} times the amplitude of the wake excited in the plasma (for a sharp boundary). Particle-in-cell simulations verify the scaling laws. Since plasma wakes as high as a few GeV/m are produced in current experiments, the potential for a high-power (i.e., GW) coherent microwave to THz radiation source exists. {copyright} {ital 1997} {ital The American Physical Society}

  4. Change of radiation pattern in a plasma monopole antenna

    NASA Astrophysics Data System (ADS)

    Siahpoush, V.; Shokri, B.

    2016-07-01

    In the present work, we have numerically solved the dispersion equation of the surface wave propagating on a uniform collisional plasma column. The electric field and surface current distributions have been computed in different situations. We have investigated the effect of plasma frequency variation on the spatial distribution of the surface current. Results show that varying the electron density of the plasma column enables the plasma column to work as a plasma monopole antenna with a fixed geometrical structure and excited frequency which is able to create different radiation patterns. Our numerical analysis also shows that a little change in the radius of the plasma column has a strong influence on the current distribution at the excited frequency in RF region. This effect can be ignored in the usual (metallic) antenna while it is very important in designing of the plasma monopole antenna.

  5. Radiation shielding calculations for MuCool test area at Fermilab

    SciTech Connect

    Igor Rakhno; Carol Johnstone

    2004-05-26

    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets being developed for cooling intense muon beams. In this shielding study the results of Monte Carlo radiation shielding calculations performed using the MARS14 code for the MuCool Test Area and including the downstream portion of the target hall and berm around it, access pit, service building, and parking lot are presented and discussed within the context of the proposed MTA experimental configuration.

  6. Radiation from accelerated Alfven solitons in inhomogeneous plasmas

    NASA Technical Reports Server (NTRS)

    Lakhina, G. S.; Buti, B.; Tsintsadze, N. L.

    1990-01-01

    In a weakly inhomogeneous plasma, the large-amplitude Alfven waves propagating parallel to the ambient magnetic field are shown to evolve into accelerated Alfven solitons. Nonlinear interaction of the accelerated Alfven solitons with the Langmuir waves results in the emission of coherent radiations. Analytical expression for the power radiated per unit solid angle from a soliton is derived for two inhomogeneity profiles, namely the linear profile and the parabolic profile. For the case of uniform plasmas, the emission occurs via a decay-type process or resonant modes. In the presence of inhomogeneity, nonresonant modes provide a new channel for the emission of radiation. The power radiated per unit solid angle is computed for the parameters relevant to Comet Halley's plasma environment. For the nonresonant modes it is found to be several orders of magnitude higher than that for the case of resonant modes.

  7. Direct observations of plasma upflows and condensation in a catastrophically cooling solar transition region loop

    SciTech Connect

    Orange, N. B.; Chesny, D. L.; Oluseyi, H. M.; Hesterly, K.; Patel, M.; Champey, P.

    2013-12-01

    Minimal observational evidence exists for fast transition region (TR) upflows in the presence of cool loops. Observations of such occurrences challenge notions of standard solar atmospheric heating models as well as their description of bright TR emission. Using the EUV Imaging Spectrometer on board Hinode, we observe fast upflows (v {sub λ} ≤ –10 km s{sup –1}) over multiple TR temperatures (5.8 ≤log T ≤ 6.0) at the footpoint sites of a cool loop (log T ≤ 6.0). Prior to cool loop energizing, asymmetric flows of +5 km s{sup –1} and –60 km s{sup –1} are observed at footpoint sites. These flows, speeds, and patterns occur simultaneously with both magnetic flux cancellation (at the site of upflows only) derived from the Solar Dynamics Observatory's Helioseismic Magnetic Imager's line-of-sight magnetogram images, and a 30% mass influx at coronal heights. The incurred non-equilibrium structure of the cool loop leads to a catastrophic cooling event, with subsequent plasma evaporation indicating that the TR is the heating site. From the magnetic flux evolution, we conclude that magnetic reconnection between the footpoint and background field is responsible for the observed fast TR plasma upflows.

  8. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    A steady-state ExB plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasma with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage. Neutrons were produced from deuterium plasma, but it was not established whether thay came from the plasma volume or from the electrode surfaces.

  9. Rock cooling history using thermoluminescence of natural radiation dosimeter

    NASA Astrophysics Data System (ADS)

    Biswas, Rabiul; Herman, Frederic

    2016-04-01

    Recently, optical luminescences from quartz and feldspar have been proposed to have great potential in low temperature thermochronology (<100°C). The present study aims to explore thermoluminescence (TL) of feldspar to determine cooling history of rock. The advantage of thermoluminescence over optical luminesce is single TL glow curve has different thermal and athermal stability at different temperature of the glow curve, which can be determined by computerized glow curve deconvolution (CGCD) method and estimation of rate of anomalous fading in the laboratory. The rock samples were collected from Alex Knob of Franz Josef glacier, New Zealand, which is expected to be one of the rapidly exhuming settings in Southern Alps. The natural luminescence levels, which are in the dynamic equilibrium because of competition between growth due to ambient radioactivity and decay due thermal and athermal loss, are determined using multiple aliquot regeneration (MAR) protocol. Multiple thermal signals with wide range of thermal stability, extracted from composite glow curve, particularly low temperature part which is more sensitive to ambient temperature, is promising for better constraint on late stage cooling history.

  10. Parallel LC circuit model for multi-band absorption and preliminary design of radiative cooling.

    PubMed

    Feng, Rui; Qiu, Jun; Liu, Linhua; Ding, Weiqiang; Chen, Lixue

    2014-12-15

    We perform a comprehensive analysis of multi-band absorption by exciting magnetic polaritons in the infrared region. According to the independent properties of the magnetic polaritons, we propose a parallel inductance and capacitance(PLC) circuit model to explain and predict the multi-band resonant absorption peaks, which is fully validated by using the multi-sized structure with identical dielectric spacing layer and the multilayer structure with the same strip width. More importantly, we present the application of the PLC circuit model to preliminarily design a radiative cooling structure realized by merging several close peaks together. This omnidirectional and polarization insensitive structure is a good candidate for radiative cooling application.

  11. Cooling systems and hybrid A/C systems using an electromagnetic radiation-absorbing complex

    DOEpatents

    Halas, Nancy J.; Nordlander, Peter; Neumann, Oara

    2015-05-19

    A method for powering a cooling unit. The method including applying electromagnetic (EM) radiation to a complex, where the complex absorbs the EM radiation to generate heat, transforming, using the heat generated by the complex, a fluid to vapor, and sending the vapor from the vessel to a turbine coupled to a generator by a shaft, where the vapor causes the turbine to rotate, which turns the shaft and causes the generator to generate the electric power, wherein the electric powers supplements the power needed to power the cooling unit

  12. Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J.; del Moro, D.; Berrilli, F.

    2016-07-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°-60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  13. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  14. Three-temperature plasma shock solutions with gray radiation diffusion

    NASA Astrophysics Data System (ADS)

    Johnson, B. M.; Klein, R. I.

    2016-04-01

    The effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation. Since the radiation heats the electrons on length scales that are much longer than the electron-ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.

  15. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE PAGES

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  16. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, Paul H.

    1986-01-01

    A material for a wavelength-selective radiative cooling system, the material comprising an infrared-reflective substrate coated with magnesium oxide and/or lithium fluoride in a polycrystalline form. The material is non-absorptive for short wavelengths, absorptive from 8 to 13 microns, and reflective at longer wavelengths. The infrared-reflective substrate inhibits absorption at wavelengths shorter than 8 microns, and the magnesium oxide and/or lithium fluoride layers reflect radiation at wavelengths longer than 13 microns.

  17. Microwave radiation measurements near the electron plasma frequency of the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.; Roth, J. R.

    1978-01-01

    Microwave emission near the electron plasma frequency was observed, and its relation to the average electron density and the dc toroidal magnetic field was examined. The emission was detected using a spectrum analyzer and a 50 omega miniature coaxial probe. The radiation appeared as a broad amplitude peak that shifted in frequency as the plasma parameters were varied. The observed radiation scanned an average plasma density ranging from 10 million/cu cm to 8 hundred million/cu cm. A linear relation was observed betweeen the density calculated from the emission frequency and the average plasma density measured with a microwave interferometer. With the aid of a relative density profile measurement of the plasma, it was determined that the emissions occurred from the outer periphery of the plasma.

  18. X-ray Synchrotron Radiation in a Plasma Wiggler

    SciTech Connect

    Wang, Shuoquin; /UCLA /SLAC, SSRL

    2005-09-27

    A relativistic electron beam can radiate due to its betatron motion inside an ion channel. The ion channel is induced by the electron bunch as it propagates through an underdense plasma. In the theory section of this thesis the formation of the ion channel, the trajectories of beam electrons inside the ion channel, the radiation power and the radiation spectrum of the spontaneous emission are studied. The comparison between different plasma wiggler schemes is made. The difficulties in realizing stimulated emission as the beam traverses the ion channel are investigated, with particular emphasis on the bunching mechanism, which is important for the ion channel free electron laser. This thesis reports an experiment conducted at the Stanford Linear Accelerator Center (SLAC) to measure the betatron X-ray radiations for the first time. They first describe the construction and characterization of the lithium plasma source. In the experiment, the transverse oscillations of the SLAC 28.5 GeV electron beam traversing through a 1.4 meter long lithium plasma source are clearly seen. These oscillations lead to a quadratic density dependence of the spontaneously emitted betatron X-ray radiation. The divergence angle of the X-ray radiation is measured. The absolute photon yield and the spectral brightness at 14.2 KeV photon energy are estimated and seen to be in reasonable agreement with theory.

  19. Highly-luminous Cool Core Clusters of Galaxies: Mechanically-driven or Radiatively-driven AGN?

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, Julie; Fabian, Andy

    2011-12-01

    Cool core clusters of galaxies require strong feedback from their central AGN to offset cooling. We present a study of strong cool core, highly-luminous (most with Lx >= 1045 erg s-1), clusters of galaxies in which the mean central AGN jet power must be very high yet no central point X-ray source is detected. Using the unique spatial resolution of Chandra, a sample of 13 clusters is analysed, including A1835, A2204, and one of the most massive cool core clusters, RXCJ1504.1-0248. All of the central galaxies host a radio source, indicating an active nucleus, and no obvious X-ray point source. For all clusters in the sample, the nucleus has an X-ray bolometric luminosity below 2 per cent of that of the entire cluster. We investigate how these clusters can have such strong X-ray luminosities, short radiative cooling-times of the inner intracluster gas requiring strong energy feedback to counterbalance that cooling, and yet have such radiatively-inefficient cores with, on average, Lkin/Lnuc exceeding 200. Explanations of this puzzle carry significant implications for the origin and operation of jets, as well as on establishing the importance of kinetic feedback for the evolution of galaxies and their surrounding medium.

  20. Hot ion plasma production in HIP-1 using water-cooled hollow cathodes

    NASA Technical Reports Server (NTRS)

    Reinmann, J. J.; Lauver, M. R.; Patch, R. W.; Layman, R. W.; Snyder, A.

    1975-01-01

    The paper reports on hot-ion plasma experiments conducted in a magnetic mirror facility. A steady-state E x B plasma was formed by applying a strong radially inward dc electric field near the mirror throats. Most of the results were for hydrogen, but deuterium and helium plasmas were also studied. Three water-cooled hollow cathodes were operated in the hot-ion plasma mode with the following results: (1) thermally emitting cathodes were not required to achieve the hot-ion mode; (2) steady-state operation (several minutes) was attained; (3) input powers greater than 40 kW were achieved; (4) cathode outside diameters were increased from 1.2 cm (uncooled) to 4.4 cm (water-cooled); (5) steady-state hydrogen plasmas with ion temperatures from 185 to 770 eV and electron temperatures from 5 to 21 eV were produced. Scaling relations were empirically obtained for discharge current, ion temperature, electron temperature, and relative ion density as a function of hydrogen gas feed rate, magnetic field, and cathode voltage.

  1. Parameterization of radiative heating and cooling rates in the stratosphere of Jupiter

    NASA Astrophysics Data System (ADS)

    Kuroda, Takeshi; Medvedev, Alexander S.; Hartogh, Paul

    2014-11-01

    We present a newly developed parameterization of radiative heating and cooling for Jupiter's upper troposphere and stratosphere (103 to 10-3hPa ) suitable for general circulation models. The scheme is based on the correlated k-distribution approach, and accounts for all the major radiative mechanisms in the jovian atmosphere: heating due to absorption of solar radiation by methane, cooling in the infrared by methane, acetylene, ethane, and collisionally-induced molecular hydrogen-hydrogen, and molecular hydrogen-helium transitions. The results with the scheme are compared with line-by-line calculations to demonstrate that the accuracy of the scheme is within 10%. The parameterization was applied to study the sensitivity of the heating/cooling rates due to variations of mixing ratios of hydrocarbon molecules. It was also used for calculating the radiative-convective equilibrium temperature, which is in agreement with observations in the equatorial region. In midlatitudes, the equilibrium temperature is approximately 10 K colder. Our results suggest that the radiative forcing in the upper stratosphere is much stronger than it was thought before. In particular, the characteristic radiative relaxation time decreases exponentially with height from 108s near the tropopause to 105s in the upper stratosphere.

  2. Solar-reflecting material for radiative cooling applications: ZnS pigmented polyethylene

    NASA Astrophysics Data System (ADS)

    Nilsson, Torbjorn M.; Niklasson, Gunnar A.; Granqvist, Claes-Goeran

    1992-11-01

    Plastic foils containing nonabsorbing pigments can display a high reflectance of solar radiation combined with a high transmittance in the atmospheric window region in the thermal infrared. Such foils can be applied as selective covers enabling radiative cooling of an underlying material during the night and avoiding heating in direct sunlight during the day. The foils could be used for condensing water or cooling food, buildings, etc. We have prepared ZnS pigmented polyethylene foils with various thicknesses and volume fractions of pigments. The optical properties of the foils were compared with theory, and good agreement was achieved for pigment volume fractions up to 0.1. The optimum solar reflectance of the foil is 0.825 for the available pigment powder; but should be 0.88 if heating were to be avoided at noon with the sun in its zenith. The cooling power for a radiator covered with the best sample is 52 Wm-2 at night, and the equilibrium temperature of a radiator is 12 K below the ambient temperature. Heating of the radiator is avoided 18 hours per day, and the radiator temperature at noon is 8 K above the ambience.

  3. Electrolyte changes in the blood plasma of broilers as influenced by cooling during summer

    NASA Astrophysics Data System (ADS)

    Sharma, M. L.; Gangwar, P. C.

    1987-09-01

    High temperature significantly (P < 0.01) decreased the Na+ and K+ concentrations in the blood plasma of both the sexes of broilers during 4 to 8 weeks of age. Relatively constant levels of these electrolytes were observed during this phase of growth and the sex of the bird had no significant effect on their levels. Greater broiler weights and higher levels of plasma electrolyte were achieved by the use of cooling systems (which were more effective in the hot dry part of the summer than in the hot humid part).

  4. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    SciTech Connect

    Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; Griffard, Cory

    2015-08-18

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasma facing components are identified and attributes of an experiment to close those gaps are presented.

  5. Heating and cooling of the nitroglycerin patch application area modify the plasma level of nitroglycerin.

    PubMed

    Klemsdal, T O; Gjesdal, K; Bredesen, J E

    1992-01-01

    19 healthy volunteers wore a nitroglycerin patch releasing 10 mg per 24 h for 2 h. Subsequently, the skin area surrounding the patch was exposed to 15 min of local heating with an infrared bulb (Group A, n = 10), or local cooling with an ice-pack (Group B, n = 9). The patch was protected by an insulating shield (Styrofoam). After 10 min of heating, the median (Walsh) plasma nitroglycerin level increased from 3.1 to 7.6 nmol.l-1. Body temperature remained constant. After 15 min of cooling the median plasma level had dropped from 2.1 to 1.4 nmol.l-1. The results demonstrate that changes in skin temperature may cause extensive short-term changes in the bioavailability of nitroglycerin. Presumably, a subcutaneous or cutaneous reservoir builds up during transdermal treatment, and changes in regional cutaneous blood flow affect the rate of drainage from the reservoir into the systemic circulation.

  6. Acoustic Plasma Effects in the Diffusion-Cooled Working Medium of an Electric-Discharge CO2 CW Laser*

    NASA Astrophysics Data System (ADS)

    Azharonok, V. V.; Abrahamyan, A. S.; Goncharik, S. V.; Mkrtchyan, A. R.; Filatova, I. I.; Chubrik, N. I.

    2014-01-01

    We have studied the effect of shallow modulation of the discharge current on the burning regime and the plasma parameters of a diffusion-cooled glow discharge in CO2/N2/He laser gas mixtures. We have established that modulation of the discharge current leads to excitation in the discharge of pulsations in the acoustic pressure, the electric current, and the intensity of the generated laser radiation, with the frequency of standing acoustic waves arising in the discharge tube and also with the frequencies of the current modulation, its harmonics, and combinations of all these frequencies with the frequency of the current pulsations in the power supply. We have shown that when self-sustaining resonant oscillations in the discharge current are excited or when the current is modulated, the IR luminescence intensity from the upper laser level of the CO2 molecule and the power of the radiation generated by the laser vary because of plasma heating in the positive column of the discharge, due to its contraction in the acoustic wave field initiated by the current pulsations.

  7. Passive cryogenic cooling of electrooptics with a heat pipe/radiator.

    PubMed

    Nelson, B E; Goldstein, G A

    1974-09-01

    The current status of the heat pipe is discussed with particular emphasis on applications to cryogenic thermal control. The competitive nature of the passive heat pipe/radiator system is demonstrated through a comparative study with other candidate systems for a 1-yr mission. The mission involves cooling a spaceborne experiment to 100 K while it dissipates 10 W.

  8. Moisture removal characteristics of thin layer rough rice under sequenced infrared radiation heating and cooling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice drying with infrared (IR) radiation has been investigated during recent years and showed promising potential with improved quality and energy efficiency. The objective of this study was to further investigate the moisture removal characteristics of thin layer rough rice heated by IR and cooled ...

  9. Observations of the Earth's Radiation Budget in relation to atmospheric hydrology. 4: Atmospheric column radiative cooling over the world's oceans

    NASA Technical Reports Server (NTRS)

    Stephens, Graeme L.; Slingo, Anthony; Webb, Mark J.; Minnett, Peter J.; Daum, Peter H.; Kleinman, Lawrence; Wittmeyer, Ian; Randall, David A.

    1994-01-01

    This paper introduces a simple method for deriving climatological values of the longwave flux emitted from the clear sky atmosphere to the ice-free ocean surface. It is shown using both theory and data from simulations how the ratio of the surface to top-of-atmosphere (TOA) flux is a simple function of water vapor (W) and a validation of the simple relationship is presented based on a limited set of surface flux measurements. The rms difference between the retrieved surface fluxes and the simulated surface fluxes is approximately 6 W/sq m. The clear sky column cooling rate of the atmosphere is derived from the Earth Radiation Budget Experiment (ERBE) values of the clear sky TOA flux and the surface flux retrieved using Special Scanning Microwave Imager (SSM/I) measurements of w together with ERBE clear sky fluxes. The relationship between this column cooling rate, w, and the sea surface temperature (SST) is explored and it is shown how the cooling rate systematically increases as both w and SST increase. The uncertainty implied in these estmates of cooling are approximately +/- 0.2 K/d. The effects of clouds on this longwave cooling are also explored by placing bounds on the possible impact of clouds on the column cooling rate based on certain assumptions about the effect of clouds on the longwave flux to the surface. It is shown how the longwave effects of clouds in a moist atmosphere where the column water vapor exceeds approximately 30 kg/sq m may be estimated from presently available satellite data with an uncertainty estimated to be approximately 0.2 K/d. Based on an approach described in this paper, we show how clouds in these relatively moist regions decrease the column cooling by almost 50% of the clear sky values and the existence of significant longitudinal gradients in column radiative heating across the equatorial and subtropical Pacific Ocean.

  10. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    SciTech Connect

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko; Midorikawa, Katsumi

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changing the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.

  11. Radiative cooling by stratospheric water vapor: Big differences in GCM results

    NASA Astrophysics Data System (ADS)

    Oinas, V.; Lacis, A. A.; Rind, D.; Shindell, D. T.; Hansen, J. E.

    The stratosphere has been cooling by about 2K/decade at 30-60 km over the past several decades and by lesser amounts toward the tropopause. Climate model calculations suggest that stratospheric water vapor is an important contributor to the observed stratospheric cooling, but there are large differences among recent GCM simulations for prescribed changes in stratospheric water vapor, which point to problems with the current GCM treatment of the absorption and emission by stratospheric water vapor. We show that the correlated k-distribution treatment with sufficient resolution is capable of simulating accurately cooling by stratospheric water vapor. We obtain equilibrium cooling of about 0.3K that extends from 20 km to the top of the atmosphere, and adjusted radiative forcing of 0.12 Wm-2, for a stratospheric water vapor increase of 0.7 ppmv which has been estimated for the period 1979-1997.

  12. Radiation Power Affected by Current and Wall Radius in Water Cooled Vortex Wall-stabilized Arc

    NASA Astrophysics Data System (ADS)

    Iwao, Toru; Nakamura, Takaya; Yanagi, Kentaro; Yamamoto, Shinji

    2015-11-01

    The arc lighting to obtain the environment to evacuate, save the life, keep the safety and be comfortable are focus on. The lack of radiation intensity and color rendering is problem because of inappropriate energy balance. Some researchers have researched the arc lamp mixed with metal vapor for improvement of color rendering spectrum. The metal vapor can emit the high intense radiation. In addition, the radiation is derived from the high temperature medium. Because the arc temperature can be controlled by current and arc radius, the radiation can be controlled by the current and arc radius. This research elucidates the radiation power affected by the current and wall radius in wall-stabilized arc of water-cooled vortex type. As a result, the radiation power increases with increasing the square of current / square of wall radius because of the temperature distribution which is derived from the current density at the simulation.

  13. Measuring plasma turbulence using low coherence microwave radiation

    SciTech Connect

    Smith, D. R.

    2012-02-20

    Low coherence backscattering (LCBS) is a proposed diagnostic technique for measuring plasma turbulence and fluctuations. LCBS is an adaptation of optical coherence tomography, a biomedical imaging technique. Calculations and simulations show LCBS measurements can achieve centimeter-scale spatial resolution using low coherence microwave radiation. LCBS measurements exhibit several advantages over standard plasma turbulence measurement techniques including immunity to spurious reflections and measurement access in hollow density profiles. Also, LCBS is scalable for 1-D profile measurements and 2-D turbulence imaging.

  14. Collisional Radiative Models for non-Maxwellian plasmas

    NASA Astrophysics Data System (ADS)

    Hartgers, Bart; van Dijk, Jan; van der Mullen, Joost

    1999-10-01

    Collisional Radiative models are a useful tool for studying plasmas. In their simplest form, they are used to calculate an atomic state distribution function (ASDF) from given electron and neutral densities and an electron temperature. Additionally, global ionization and recombination coefficients can be calculated as a function of electron density and temperature. In turn, these coefficients are used as input for the general plasma model

  15. Plasma ion temperature measurements via charge exchange recombination radiation

    NASA Astrophysics Data System (ADS)

    Fonck, R. J.; Goldston, R. J.; Kaita, R.; Post, D. E.

    1983-02-01

    Spatially and temporally resolved plasma ion temperatures can be determined by measuring the Doppler-broadened line profiles of transitions excited by charge-exchange recombination reactions between fast hydrogen atoms and fully ionized low-Z ions. Plasma rotation velocity profiles can also be obtained. A sample result from the PDX tokamak using He+ radiation is presented, and expected line intensities for model cases for PDX and TFTR are calculated.

  16. Plasma ion temperature measurements via charge-exchange recombination radiation

    SciTech Connect

    Fonck, R.J.; Goldston, R.J.; Kaita, R.; Post, D.E.

    1982-11-01

    Spatially and temporally resolved plasma ion temperatures can be determined by measuring the Doppler-broadened line profiles of transitions excited by charge-exchange recombination reactions between fast hydrogen atoms and fully ionized low-Z ions. Plasma rotation velocity profiles can also be obtained. A sample result from the PDX tokamak using He/sup +/ radiation is presented, and expected line intensities for model cases for PDX and TFTR are calculated.

  17. Plasma ion temperature measurements via charge exchange recombination radiation

    SciTech Connect

    Fonck, R.J.; Goldston, R.J.; Kaita, R.; Post, D.E.

    1983-02-01

    Spatially and temporally resolved plasma ion temperatures can be determined by measuring the Doppler-broadened line profiles of transitions excited by charge-exchange recombination reactions between fast hydrogen atoms and fully ionized low-Z ions. Plasma rotation velocity profiles can also be obtained. A sample result from the PDX tokamak using He/sup +/ radiation is presented, and expected line intensities for model cases for PDX and TFTR are calculated.

  18. Energy distributions and radiation transport in uranium plasmas

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Bathke, C.; Maceda, E.; Choi, C.

    1976-01-01

    An approximate analytic model, based on continuous electron slowing, has been used for survey calculations. Where more accuracy is required, a Monte Carlo technique is used which combines an analytic representation of Coulombic collisions with a random walk treatment of inelastic collisions. The calculated electron distributions have been incorporated into another code that evaluates both the excited atomic state densities within the plasma and the radiative flux emitted from the plasma.

  19. Terahertz radiation in alkali vapor plasmas

    SciTech Connect

    Sun, Xuan; Zhang, X.-C.

    2014-05-12

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization.

  20. Radiating plasma species density distribution in EUV-induced plasma in argon: a spatiotemporal experimental study

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; van de Ven, T. H. M.; Banine, V. Y.

    2015-12-01

    In this contribution we experimentally study temporally and spatially resolved radiating plasma species density distribution in plasma induced by irradiating a low pressure argon gas with high energy photons with a wavelength of 13.5 nm, i.e. extreme ultraviolet (EUV). This is done by recording the optical emission spatially and temporally resolved by an iCCD camera as a function of the argon gas pressure. Our experimental results show that the emission intensity, i.e. density of radiating plasma species, depends quadratically on the gas pressure. The linear term is due to photoionization and simultaneous excitation by EUV photons, the quadratic term due to electron impact excitation by electrons generated by photoionization. The decay of radiating plasma species can be divided into two phases. At time scales shorter than 10 μs (first phase), the decay is governed by radiative decay of radiating plasma species. At longer time scales (second phase, >10 μs), the decay is dominated by diffusion and subsequent de-excitation at the wall. The experimental decay and expansion during this phase corresponds well with a simplified diffusion model. In order to gain more insight in this exotic type of plasma, we compare the electron density from previous measurements with the results obtained here.

  1. Research on radiation characteristic of plasma antenna through FDTD method.

    PubMed

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  2. Research on radiation characteristic of plasma antenna through FDTD method.

    PubMed

    Zhou, Jianming; Fang, Jingjing; Lu, Qiuyuan; Liu, Fan

    2014-01-01

    The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD) approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML). Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic. PMID:25114961

  3. A capillary discharge plasma source of intense VUV radiation

    SciTech Connect

    Sobel'man, Igor I; Shevelko, A P; Yakushev, O F; Knight, L V; Turley, R S

    2003-01-31

    The results of investigation of a capillary discharge plasma, used as a source of intense VUV radiation and soft X-rays, are presented. The plasma was generated during the discharge of low-inductance condensers in a gas-filled ceramic capillary. Intense line radiation was observed in a broad spectral range (30-400 A) in various gases (CO{sub 2}, Ne, Ar, Kr, Xe). The absolute radiation yield for the xenon discharge was {approx}5 mJ (2{pi} sr){sup -1} pulse{sup -1} within a spectral band of width 9 A at 135 A. Such a radiation source can be used for various practical applications, such as EUV projection lithography, microscopy of biological objects in a 'water window', reflectometry, etc. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  4. A hybrid radiation detector based on a plasma display panel

    NASA Astrophysics Data System (ADS)

    Cho, Sungho; Lee, Rena; Yun, Min-Seok; Jang, Gi-Won; Park, Jikoon; Choi, Jang-Yong; Nam, Sanghee

    2009-10-01

    Recently, large-area image detectors have been investigated for X-ray imaging in medical diagnostic and other applications. In this paper, a new type of radiation detector is described, based on the integration of a photoconductor into a plasma display panel (PDP). This device, called a hybrid PDP detector, should be quite inexpensive, because it can directly leverage off the fabrication and materials technologies widely used in plasma display panels. Also, these new radiation detectors should operate under the most challenging environmental conditions, because they are inherently rugged and radiation-resistant and insensitive to magnetic fields. In this paper, we describe a hybrid digital radiation detector device, based on plasma display. The PDP panel is 7 in. in size with a 1000-μm pixel pitch, and filled with 700 Torr of Xe gas; the hybrid PDP panel is of the same structure, except for the photoconductor deposit. The glass absorption, dark current, X-ray sensitivity, and linearity as a function of electric field were measured to investigate its electrical properties. From the results, stabilized dark current density and significant X-ray sensitivity were obtained with both panels; however, the hybrid PDP detector showed better characteristics than the PDP detector. It also had good signal response and linearity. The hybrid digital radiation detector device based on a plasma display seems to be a promising technology for use in radiology and dynamic moving imaging.

  5. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody

    PubMed Central

    Zhu, Linxiao; Raman, Aaswath P.; Fan, Shanhui

    2015-01-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  6. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    PubMed

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities.

  7. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody.

    PubMed

    Zhu, Linxiao; Raman, Aaswath P; Fan, Shanhui

    2015-10-01

    A solar absorber, under the sun, is heated up by sunlight. In many applications, including solar cells and outdoor structures, the absorption of sunlight is intrinsic for either operational or aesthetic considerations, but the resulting heating is undesirable. Because a solar absorber by necessity faces the sky, it also naturally has radiative access to the coldness of the universe. Therefore, in these applications it would be very attractive to directly use the sky as a heat sink while preserving solar absorption properties. Here we experimentally demonstrate a visibly transparent thermal blackbody, based on a silica photonic crystal. When placed on a silicon absorber under sunlight, such a blackbody preserves or even slightly enhances sunlight absorption, but reduces the temperature of the underlying silicon absorber by as much as 13 °C due to radiative cooling. Our work shows that the concept of radiative cooling can be used in combination with the utilization of sunlight, enabling new technological capabilities. PMID:26392542

  8. Radiative forcing of the stratosphere of Jupiter, Part I: Atmospheric cooling rates from Voyager to Cassini

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Nixon, C. A.; Shia, R. L.; West, R. A.; Irwin, P. G. J.; Yelle, R. V.; Allen, M. A.; Yung, Y. L.

    2013-11-01

    We developed a line-by-line heating and cooling rate model for the stratosphere of Jupiter, based on two complete sets of global maps of temperature, C2H2 and C2H6, retrieved from the Cassini and Voyager observations in the latitude and vertical plane, with a careful error analysis. The non-LTE effect is found unimportant on the thermal cooling rate below the 0.01 mbar pressure level. The most important coolants are molecular hydrogen between 10 and 100 mbar, and hydrocarbons, including ethane (C2H6), acetylene (C2H2) and methane (CH4), in the region above. The two-dimensional cooling rate maps are influenced primarily by the temperature structure, and also by the meridional distributions of C2H2 and C2H6. The temperature anomalies at the 1 mbar pressure level in the Cassini data and the strong C2H6 latitudinal contrast in the Voyager epoch are the two most prominent features influencing the cooling rate patterns, with the effect from the 'quasi-quadrennial oscillation (QQO)' thermal structures at ~20 mbar. The globally averaged CH4 heating and cooling rates are not balanced, clearly in the lower stratosphere under 10 mbar, and possibly in the upper stratosphere above the 1 mbar pressure level. Possible heating sources from the gravity wave breaking and aerosols are discussed. The radiative relaxation timescale in the lower stratosphere implies that the temperature profile might not be purely radiatively controlled.

  9. Enhancing photovoltaic efficiency through radiative cooling of solar cells below ambient temperature

    NASA Astrophysics Data System (ADS)

    Safi, Taqiyyah; Munday, Jeremy

    Sunlight heats up solar cells and the resulting elevated solar cell temperature adversely effects the photovoltaic efficiency and the reliability of the cell. Currently, a variety of active and passive cooling strategies are used to lower the operating temperature of the solar cell. Passive radiative cooling requires no energy input, and is ideal for solar cells; however, previously demonstrated devices still operate above the ambient, leading to a lower efficiency as compared to the ideal Shockley-Queisser limit, which is defined for a cell in contact with an ideal heat sink at ambient temperature (300 K). In this talk, we will describe the use of radiative cooling techniques to lower the cell temperature below the ambient temperature. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that these structures yield an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for cells in an extraterrestrial environment in near-earth orbit.

  10. Evolution of radiation profiles during detached plasmas and radiative collapse in LHD

    NASA Astrophysics Data System (ADS)

    Pandya, Shwetang N.; Peterson, Byron J.; Kobayashi, Masahiro; Mukai, Kiyofumi; Sano, Ryuichi; Tanaka, Hirohiko; Masuzaki, Suguru; Miyazawa, Junichi; Akiyama, Tsuyoshi; Motojima, Gen; Ohno, Noriyasu

    2015-08-01

    The divertor heat loads can be efficiently controlled by plasma detachment, hence it is foreseen as a suitable operational regime for divertor operation of future machines. Detachment regime is normally approached by raising the plasma density to a point where plasma detaches from the divertor. If such an approach is adapted to detach the Large Helical Device (LHD) plasma, the plasma goes to radiative collapse due to thermal instabilities. Another approach to detach LHD plasma is by intrinsic impurity seeding using Ne. The discharges detach but ultimately collapse at comparatively lower densities. The detachment is achieved and sustained at high densities by the induction of an m/n = 1/1 resonant magnetic perturbation (RMP) in the stochastic edge of the LHD plasma. First quantitative measurements of the two-dimensional (2D) impurity radiation profiles from the three-dimensional (3D) plasma edge of LHD showing the time evolution of radiative collapse and RMP assisted detachment measured by recently upgraded and calibrated Infrared imaging Video Bolometer (IRVB) are presented in this article.

  11. Imploding plasma radiation sources: basic concepts. Memorandum report

    SciTech Connect

    Guillory, J.; Davis, J.

    1984-07-31

    This document is prepared as a briefing aid and technical primer for persons unfamiliar and uninitiated with the theory of imploding plasma radiation sources. It is hoped that it will prove helpful in introducing the basic physics concepts of these sources and in presenting these concepts to newcomers and potential users.

  12. Analysis of radiation performances of plasma sheet antenna

    NASA Astrophysics Data System (ADS)

    Yin, Bo; Zhang, Zu-Fan; Wang, Ping

    2015-12-01

    A novel concept of plasma sheet antennas is presented in this paper, and the radiation performances of plasma sheet antennas are investigated in detail. Firstly, a model of planar plasma antenna (PPA) fed by a microstrip line is developed, and its reflection coefficient is computed by the JE convolution finite-difference time-domain method and compared with that of the metallic patch antenna. It is found that the design of PPA can learn from the theory of the metallic patch antenna, and the impedance matching and reconstruction of resonant frequency can be expediently realized by adjusting the parameters of plasma. Then the PPA is mounted on a metallic cylindrical surface, and the reflection coefficient of the conformal plasma antenna (CPA) is also computed. At the same time, the influence of conformal cylinder radius on the reflection coefficient is also analyzed. Finally, the radiation pattern of a CPA is given, the results show that the pattern agrees well with the one of PPA in the main radiation direction, but its side lobe level has deteriorated significantly.

  13. On physical and numerical instabilities arising in simulations of non-stationary radiatively cooling shocks

    NASA Astrophysics Data System (ADS)

    Badjin, D. A.; Glazyrin, S. I.; Manukovskiy, K. V.; Blinnikov, S. I.

    2016-06-01

    We describe our modelling of the radiatively cooling shocks and their thin shells with various numerical tools in different physical and calculational setups. We inspect structure of the dense shell, its formation and evolution, pointing out physical and numerical factors that sustain its shape and also may lead to instabilities. We have found that under certain physical conditions, the circular shaped shells show a strong bending instability and successive fragmentation on Cartesian grids soon after their formation, while remain almost unperturbed when simulated on polar meshes. We explain this by physical Rayleigh-Taylor-like instabilities triggered by corrugation of the dense shell surfaces by numerical noise. Conditions for these instabilities follow from both the shell structure itself and from episodes of transient acceleration during re-establishing of dynamical pressure balance after sudden radiative cooling onset. They are also easily excited by physical perturbations of the ambient medium. The widely mentioned non-linear thin shell instability, in contrast, in tests with physical perturbations is shown to have only limited chances to develop in real radiative shocks, as it seems to require a special spatial arrangement of fluctuations to be excited efficiently. The described phenomena also set new requirements on further simulations of the radiatively cooling shocks in order to be physically correct and free of numerical artefacts.

  14. Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation

    NASA Astrophysics Data System (ADS)

    Yoffe, S. R.; Noble, A.; Macleod, A. J.; Jaroszynski, D. A.

    2016-09-01

    Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra.

  15. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    DOEpatents

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  16. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    NASA Astrophysics Data System (ADS)

    Banooni, Salem; Chitsazan, Ali

    2016-11-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  17. Effect of solar radiation on the performance of cross flow wet cooling tower in hot climate of Iran

    NASA Astrophysics Data System (ADS)

    Banooni, Salem; Chitsazan, Ali

    2016-01-01

    In some cities such as Ahvaz-Iran, the solar radiation is very high and the annual-mean-daily of the global solar radiation is about 17.33 MJ m2 d-1. Solar radiation as an external heat source seems to affect the thermal performance of the cooling towers. Usually, in modeling cooling tower, the effects of solar radiation are ignored. To investigate the effect of sunshade on the performance and modeling of the cooling tower, the experiments were conducted in two different states, cooling towers with and without sunshade. In this study, the Merkel's approach and finite difference technique are used to predict the thermal behavior of cross flow wet cooling tower without sunshade and the results are compared with the data obtained from the cooling towers with and without sunshade. Results showed that the sunshade is very efficient and it reduced the outlet water temperature, the approach and the water exergy of the cooling tower up to 1.2 °C, 15 and 1.1 %, respectively and increased the range and the efficiency of the cooling tower up to 29 and 37 %, respectively. Also, the sunshade decreased the error between the experimental data of the cooling tower with sunshade and the modeling results of the cooling tower without sunshade 1.85 % in average.

  18. Double planar wire array as a compact plasma radiation source

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Williamson, K. M.; Yilmaz, M. F.; Shrestha, I.; Ouart, N. D.; Osborne, G. C.; Rudakov, L. I.; Chuvatin, A. S.; Coverdale, C. A.; Deeney, C.

    2008-03-15

    Magnetically compressed plasmas initiated by a double planar wire array (DPWA) are efficient radiation sources. The two rows in a DPWA implode independently and then merge together at stagnation producing soft x-ray yields and powers of up to 11.5 kJ/cm and more than 0.4 TW/cm, higher than other planar arrays or low wire-number cylindrical arrays on the 1 MA Zebra generator. DPWA, where precursors form in two stages, produce a shaped radiation pulse and radiate more energy in the main burst than estimates of implosion kinetic energy. High radiation efficiency, compact size (as small as 3-5 mm wide), and pulse shaping show that the DPWA is a potential candidate for ICF and radiation physics research.

  19. Tunable Circularly Polarized Terahertz Radiation from Magnetized Gas Plasma.

    PubMed

    Wang, W-M; Gibbon, P; Sheng, Z-M; Li, Y-T

    2015-06-26

    It is shown, by simulation and theory, that circularly or elliptically polarized terahertz radiation can be generated when a static magnetic (B) field is imposed on a gas target along the propagation direction of a two-color laser driver. The radiation frequency is determined by √[ω(p)(2)+ω(c)(2)/4]+ω(c)/2, where ω(p) is the plasma frequency and ω(c) is the electron cyclotron frequency. With the increase of the B field, the radiation changes from a single-cycle broadband waveform to a continuous narrow-band emission. In high-B-field cases, the radiation strength is proportional to ω(p)(2)/ω(c). The B field provides a tunability in the radiation frequency, spectrum width, and field strength.

  20. Observations of Infrared Radiative Cooling in the Thermosphere on Daily to Multiyear Timescales from the TIMED/SABER Instrument

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Hunt, Linda A.; Marshall, B. Thomas; Martin-Torres, F. Javier; Mertens, Christopher J.; Russell, James M., III; Remsberg, Ellis E.; Lopez-Puertas, Manuel; Picard, Richard; Winick, Jeremy; Wintersteiner, Peter; Thompson, R. Earl; Gordley, Larry L.

    2009-01-01

    We present observations of the infrared radiative cooling by carbon dioxide (CO2) and nitric oxide (NO) in Earth s thermosphere. These data have been taken over a period of 7 years by the SABER instrument on the NASA TIMED satellite and are the dominant radiative cooling mechanisms for the thermosphere. From the SABER observations we derive vertical profiles of radiative cooling rates (W/cu m), radiative fluxes (W/sq m), and radiated power (W). In the period from January 2002 through January 2009 we observe a large decrease in the cooling rates, fluxes, and power consistent with the declining phase of solar cycle. The power radiated by NO during 2008 when the Sun exhibited few sunspots was nearly one order of magnitude smaller than the peak power observed shortly after the mission began. Substantial short-term variability in the infrared emissions is also observed throughout the entire mission duration. Radiative cooling rates and radiative fluxes from NO exhibit fundamentally different latitude dependence than do those from CO2, with the NO fluxes and cooling rates being largest at high latitudes and polar regions. The cooling rates are shown to be derived relatively independent of the collisional and radiative processes that drive the departure from local thermodynamic equilibrium (LTE) in the CO2 15 m and the NO 5.3 m vibration-rotation bands. The observed NO and CO2 cooling rates have been compiled into a separate dataset and represent a climate data record that is available for use in assessments of radiative cooling in upper atmosphere general circulation models.

  1. Betatron Radiation from a Beam Driven Plasma Source

    SciTech Connect

    Litos, M.; Corde, S.; /SLAC

    2012-08-13

    Photons produced by the betatron oscillation of electrons in a beam-driven plasma wake provide a uniquely intense and high-energy source of hard X-rays and gamma rays. This betatron radiation is interesting not only for its high intensity and spectral characteristics, but also because it can be used as a diagnostic for beam matching into the plasma, which is critical for maximizing the energy extraction efficiency of a plasma accelerator stage. At SLAC, gamma ray detection devices have been installed at the dump area of the FACET beamline where the betatron radiation from the plasma source used in the E200 plasma wakefield acceleration experiment may be observed. The ultra-dense, high-energy beam at FACET (2 x 10{sup 10} electrons, 20 x 20 {micro}m{sup 2} spot, 20-100 {micro}m length, 20 GeV energy) when sent into a plasma source with a nominal density of {approx} 1 x 10{sup 17} cm{sup -3} will generate synchrotron-like spectra with critical energies well into the tens of MeV. The intensity of the radiation can be increased by introducing a radial offset to the centroid of the witness bunch, which may be achieved at FACET through the use of a transverse deflecting RF cavity. The E200 gamma ray detector has two main components: a 30 x 35 cm{sup 2} phosphorescent screen for observing the transverse extent of the radiation, and a sampling electromagnetic calorimeter outfitted with photodiodes for measuring the on-axis spectrum. To estimate the spectrum, the observed intensity patterns across the calorimeter are fit with a Gaussian-integrated synchrotron spectrum and compared to simulations. Results and observations from the first FACET user run (April-June 2012) are presented.

  2. Betatron radiation from a beam driven plasma source

    NASA Astrophysics Data System (ADS)

    Litos, M.; Corde, S.

    2012-12-01

    Photons produced by the betatron oscillation of electrons in a beam-driven plasma wake provide a uniquely intense and high-energy source of hard X-rays and gamma rays. This betatron radiation is interesting not only for its high intensity and spectral characteristics, but also because it can be used as a diagnostic for beam matching into the plasma, which is critical for maximizing the energy extraction efficiency of a plasma accelerator stage. At SLAC, gamma ray detection devices have been installed at the dump area of the FACET beamline where the betatron radiation from the plasma source used in the E200 plasma wakefield acceleration experiment may be observed. The ultra-dense, high-energy beam at FACET (2 × 1010 electrons, 20 × 20μm2 spot, 20 - 100μm length, 20GeV energy) when sent into a plasma source with a nominal density of ˜ 1 × 1017 cm-3 will generate synchrotron-like spectra with critical energies well into the tens of MeV. The intensity of the radiation can be increased by introducing a radial offset to the centroid of the witness bunch, which may be achieved at FACET through the use of a transverse deflecting RF cavity. The E200 gamma ray detector has two main components: a 30 × 35cm2 phosphorescent screen for observing the transverse extent of the radiation, and a sampling electromagnetic calorimeter outfitted with photodiodes for measuring the on-axis spectrum. To estimate the spectrum, the observed intensity patterns across the calorimeter are fit with a Gaussian-integrated synchrotron spectrum and compared to simulations. Results and observations from the first FACET user run (April-June 2012) are presented.

  3. Betatron radiation from a beam driven plasma source

    SciTech Connect

    Litos, M.; Corde, S.

    2012-12-21

    Photons produced by the betatron oscillation of electrons in a beam-driven plasma wake provide a uniquely intense and high-energy source of hard X-rays and gamma rays. This betatron radiation is interesting not only for its high intensity and spectral characteristics, but also because it can be used as a diagnostic for beam matching into the plasma, which is critical for maximizing the energy extraction efficiency of a plasma accelerator stage. At SLAC, gamma ray detection devices have been installed at the dump area of the FACET beamline where the betatron radiation from the plasma source used in the E200 plasma wakefield acceleration experiment may be observed. The ultra-dense, high-energy beam at FACET (2 Multiplication-Sign 10{sup 10} electrons, 20 Multiplication-Sign 20{mu}m{sup 2} spot, 20 - 100{mu}m length, 20GeV energy) when sent into a plasma source with a nominal density of {approx} 1 Multiplication-Sign 10{sup 17} cm{sup -3} will generate synchrotron-like spectra with critical energies well into the tens of MeV. The intensity of the radiation can be increased by introducing a radial offset to the centroid of the witness bunch, which may be achieved at FACET through the use of a transverse deflecting RF cavity. The E200 gamma ray detector has two main components: a 30 Multiplication-Sign 35cm{sup 2} phosphorescent screen for observing the transverse extent of the radiation, and a sampling electromagnetic calorimeter outfitted with photodiodes for measuring the on-axis spectrum. To estimate the spectrum, the observed intensity patterns across the calorimeter are fit with a Gaussian-integrated synchrotron spectrum and compared to simulations. Results and observations from the first FACET user run (April-June 2012) are presented.

  4. Cool in the kitchen: Radiation, conduction, and the Newton ``hot block'' experiment

    NASA Astrophysics Data System (ADS)

    Silverman, Mark P.; Silverman, Christopher R.

    2000-02-01

    Despite frequent reference to Newton's law of cooling in physics and math books, the paper in which Newton reported this law is quite obscure and rarely cited. We have managed to acquire a copy of this paper and discuss the interesting experiment that Newton did in his kitchen. Surprisingly, the paper contains no procedural details or data of any experiments measuring the rate at which a hot object cools. We have performed our own kitchen experiments to investigate the cooling of (a) the burner of an electric range and (b) a block of Styrofoam. Newton's law provides a poor model for both systems, whose th! ! ermal energy loss we can much better understand by examining closely the effects of radiation and conduction.

  5. Experiment attributes to establish tube with twisted tape insert performance cooling plasma facing components

    DOE PAGES

    Clark, Emily; Ramirez, Emilio; Ruggles, Art E.; Griffard, Cory

    2015-08-18

    The modeling capability for tubes with twisted tape inserts is reviewed with reference to the application of cooling plasma facing components in magnetic confinement fusion devices. The history of experiments examining the cooling performance of tubes with twisted tape inserts is reviewed with emphasis on the manner of heating, flow stability limits and the details of the test section and fluid delivery system. Models for heat transfer, burnout, and onset of net vapor generation in straight tube flows and tube with twisted tape are compared. As a result, the gaps in knowledge required to establish performance limits of the plasmamore » facing components are identified and attributes of an experiment to close those gaps are presented.« less

  6. Optimization of a heat-pipe-cooled space radiator for use with a reactor-powered Stirling engine

    NASA Technical Reports Server (NTRS)

    Moriarty, Michael P.; French, Edward P.

    1987-01-01

    The design optimization of a reactor-Stirling heat-pipe-cooled radiator is presented. The radiator is a self-deploying concept that uses individual finned heat pipe 'petals' to reject waste heat from a Stirling engine. Radiator optimization methodology is presented, and the results of a parametric analysis of the radiator design variables for a 100-kW(e) system are given. The additional steps of optiminzing the radiator resulted in a net system mass savings of 3 percent.

  7. Collisional-radiative modelling of an Ar helicon plasma discharge

    NASA Astrophysics Data System (ADS)

    Loch, Stuart

    2005-10-01

    We report on recent modelling results of emission observed from a helicon plasma, comparing theoretical and observed line intensities and line ratios of Ar, Ar^+ and Ar^2+. Our Helicon plasma is from the ASTRAL device at Auburn University, with spectral measurements from 275 nm through to 1015 nm. We concentrate on the Ar^+ ion stage, and present the results of a collisional-radiative model using various qualities of atomic data. In particular, we compare the modelling results using Plane-Wave Born, Distorted-Wave and R-matrix electron impact excitation data with those observed from the plasma. As part of the modelling work, we investigate the potential use of various lines as plasma diagnostic tools.

  8. CONVERGENCE STUDIES OF MASS TRANSPORT IN DISKS WITH GRAVITATIONAL INSTABILITIES. II. THE RADIATIVE COOLING CASE

    SciTech Connect

    Steiman-Cameron, Thomas Y.; Durisen, Richard H.; Michael, Scott; McConnell, Caitlin R.; Boley, Aaron C. E-mail: durisen@astro.indiana.edu E-mail: carmccon@indiana.edu

    2013-05-10

    We conduct a convergence study of a protoplanetary disk subject to gravitational instabilities (GIs) at a time of approximate balance between heating produced by the GIs and radiative cooling governed by realistic dust opacities. We examine cooling times, characterize GI-driven spiral waves and their resultant gravitational torques, and evaluate how accurately mass transport can be represented by an {alpha}-disk formulation. Four simulations, identical except for azimuthal resolution, are conducted with a grid-based three-dimensional hydrodynamics code. There are two regions in which behaviors differ as resolution increases. The inner region, which contains 75% of the disk mass and is optically thick, has long cooling times and is well converged in terms of various measures of structure and mass transport for the three highest resolutions. The longest cooling times coincide with radii where the Toomre Q has its minimum value. Torques are dominated in this region by two- and three-armed spirals. The effective {alpha} arising from gravitational stresses is typically a few Multiplication-Sign 10{sup -3} and is only roughly consistent with local balance of heating and cooling when time-averaged over many dynamic times and a wide range of radii. On the other hand, the outer disk region, which is mostly optically thin, has relatively short cooling times and does not show convergence as resolution increases. Treatment of unstable disks with optical depths near unity with realistic radiative transport is a difficult numerical problem requiring further study. We discuss possible implications of our results for numerical convergence of fragmentation criteria in disk simulations.

  9. Numerical investigation of transient heat transfer to hydromagnetic channel flow with radiative heat and convective cooling

    NASA Astrophysics Data System (ADS)

    Makinde, O. D.; Chinyoka, T.

    2010-12-01

    This present study consists of a numerical investigation of transient heat transfer in channel flow of an electrically conducting variable viscosity Boussinesq fluid in the presence of a magnetic field and thermal radiation. The temperature dependent nature of viscosity is assumed to follow an exponentially model and the system exchanges heat with the ambient following Newton's law of cooling. The governing nonlinear equations of momentum and energy transport are solved numerically using a semi-implicit finite difference method. Solutions are presented in graphical form and given in terms of fluid velocity, fluid temperature, skin friction and heat transfer rate for various parametric values. Our results reveal that combined effect of thermal radiation, magnetic field, viscosity variation and convective cooling have significant impact in controlling the rate of heat transfer in the boundary layer region.

  10. Radiation protection performance for the dismantling of the WWR-M primary cooling circuit.

    PubMed

    Lobach, Yu N; Luferenko, E D; Shevel, V N

    2014-12-01

    The WWR-M is a light-water-cooled and moderated heterogonous research reactor with a thermal output of 10 MW. The reactor has been in operation for >50 y and has had an excellent safety record. A non-hermeticity of the inlet line of the primary cooling circuit (PCC) was found, and the only reasonable technical solution was the complete replacement of the PCC inlet and outlet pipe lines. Such a replacement was a challenging technical task due to the necessity to handle large size components with complex geometries under conditions of high-level radiation fields, and therefore, it required detailed planning aiming to reduce staff exposure. This paper describes the dismantling and removal of the PCC components focusing on radiation protection issues.

  11. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  12. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Temporal and thermodynamic characteristics of plasma formation

    NASA Astrophysics Data System (ADS)

    Ignatavichyus, M. V.; Kazakyavichyus, É.; Orshevski, G.; Danyunas, V.

    1991-11-01

    An investigation was made of plasma formation accompanying the interaction with aluminum, iron, and VK-6 alloy targets of nanosecond radiation from a YAG:Nd3+ laser (Emax = 50 mJ, τ = 3-8 ns). The duration of the plasma formation process depended weakly on the laser radiation parameters [the power density was varied in the range 1-3 GW/cm2, the pulse rise time in the range 2-8 ns, or the rate of rise of the power density in the range (1-8) × 108 W · cm - 2 · ns -1]. A study was made of the establishment of a local thermodynamic equilibrium in a plasma jet excited by radiation from nanosecond and picosecond (E = 30 mJ, τ = 40 ps) lasers. The maximum of the luminescence from an aluminum plasma excited by picosecond laser radiation was found to correspond to a local thermodynamic equilibrium. A local thermodynamic equilibrium could be absent in the case of excitation by nanosecond laser radiation.

  13. On the Relationship of Joule Heating and NO Radiative Cooling in the Thermosphere

    NASA Astrophysics Data System (ADS)

    Lu, G.; Mlynczak, M. G.; Stauning, P.

    2009-05-01

    Nitric Oxide (NO) is an important trace constituent in the thermosphere, and it plays an important role in determining the composition and structure of the thermosphere above 100 km. Emissions from the NO molecule are one of the main radiative cooling mechanisms in the thermosphere. Observations from the TIMED SABER instrument have shown that NO emissions at 5.3 mm increase dramatically during geomagnetic storms. This paper examines the relationship between the Joule heating rate and the NO radiative cooling rate, with an aim to obtain an quantitative assessment of global energy balance in the thermosphere. More specifically, we compare in detail the magnetospheric energy input in terms of Joule heating and the thermospheric energy output through radiative cooling for a number of geomagnetic storms. The cross-correlation analysis is carried out to assess the effectiveness of NO "thermostat" effect in regulating the magnetospheric energy input into the thermosphere. Finally, we explore the possibility of using the polar cap index (PCI) as a proxy of thermospheric energetics.

  14. Probing polymer crystallization at processing-relevant cooling rates with synchrotron radiation

    SciTech Connect

    Cavallo, Dario; Portale, Giuseppe; Androsch, René

    2015-12-17

    Processing of polymeric materials to produce any kind of goods, from films to complex objects, involves application of flow fields on the polymer melt, accompanied or followed by its rapid cooling. Typically, polymers solidify at cooling rates which span over a wide range, from a few to hundreds of °C/s. A novel method to probe polymer crystallization at processing-relevant cooling rates is proposed. Using a custom-built quenching device, thin polymer films are ballistically cooled from the melt at rates between approximately 10 and 200 °C/s. Thanks to highly brilliant synchrotron radiation and to state-of-the-art X-ray detectors, the crystallization process is followed in real-time, recording about 20 wide angle X-ray diffraction patterns per second while monitoring the instantaneous sample temperature. The method is applied to a series of industrially relevant polymers, such as isotactic polypropylene, its copolymers and virgin and nucleated polyamide-6. Their crystallization behaviour during rapid cooling is discussed, with particular attention to the occurrence of polymorphism, which deeply impact material’s properties.

  15. Radiative properties measurements of photoionized plasmas on Z

    NASA Astrophysics Data System (ADS)

    Loisel, Guillaume; Bailey, Jim; Nagayama, Taisuke; Hansen, Stephanie; Rochau, Greg; Liedahl, Duane; Fontes, Chris; Flaugh, Matt; Koepke, Mark; Lane, Ted; Mancini, Roberto

    2015-11-01

    Physical descriptions of accretion-powered objects such as black holes, x-ray binaries, or AGN are informed through the interpretation of emergent spectra from the photoionized plasmas that surround them. Line formation in photoionized plasmas is dependent on the details of the radiation transport treatment and the so-called Resonant Auger Destruction hypothesis typically required to interpret the relativistically broadened Fe K α emitted from near the black hole event horizon. The Z facility at Sandia National Laboratories can produced such photoionized plasmas producing 1.6MJ of x-rays from the z-pinch dynamic hohlraum. The extended suite of diagnostics allows for a detailed characterization of plasmas conditions through absorption spectroscopy. present accurate and high-resolution emergent intensity observed from a photoionized silicon plasma for a discrete set of column densities that will help us evaluate understanding for radiation transport in accretion powered objects. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

  16. Electromagnetic radiation generated by arcing in low density plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.; Snyder, David B.; Doreswamy, C. V.

    1996-01-01

    An unavoidable step in the process of space exploration is to use high-power, very large spacecraft launched into Earth orbit. Obviously, the spacecraft will need powerful energy sources. Previous experience has shown that electrical discharges occur on the surfaces of a high-voltage array, and these discharges (arcs) are undesirable in many respects. Moreover, any high voltage conductor will interact with the surrounding plasma, and that interaction may result in electrical discharges between the conductor and plasma (or between two conductors with different potentials, for example, during docking and extravehicular activity). One very important aspect is the generation of electromagnetic radiation by arcing. To prevent the negative influence of electromagnetic noise on the operation of spacecraft systems, it seems necessary to determine the spectra and absolute levels of the radiation, and to determine limitations on the solar array bias voltage that depend on the parameters of LEO plasma and the technical requirements of the spacecraft equipment. This report describes the results of an experimental study and computer simulation of the electromagnetic radiation generated by arcing on spacecraft surfaces. A large set of high quality data was obtained during the Solar Array Module Plasma Interaction Experiment (SAMPIE, flight STS-62) and ground test. These data include the amplitudes of current, pulse forms, duration of each arc, and spectra of plasma waves. A theoretical explanation of the observed features is presented in this report too. The elaborated model allows us to determine the parameters of the electromagnetic noise for different frequency ranges, distances from the arcing site, and distinct kinds of plasma waves.

  17. Vacuum Plasma Spray Forming of Copper Alloy Liners for Regeneratively Cooled Liquid Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Zimmerman, Frank

    2003-01-01

    Vacuum plasma spray (VPS) has been demonstrated as a method to form combustion chambers from copper alloys NARloy-Z and GRCop-84. Vacuum plasma spray forming is of particular interest in the forming of CuCrNb alloys such as GRCop-84, developed by NASA s Glenn Research Center, because the alloy cannot be formed using conventional casting and forging methods. This limitation is related to the levels of chromium and niobium in the alloy, which exceed the solubility limit in copper. Until recently, the only forming process that maintained the required microstructure of CrNb intermetallics was powder metallurgy formation of a billet from powder stock, followed by extrusion. This severely limits its usefulness in structural applications, particularly the complex shapes required for combustion chamber liners. This paper discusses the techniques used to form combustion chambers from CuCrNb and NARloy-Z, which will be used in regeneratively cooled liquid rocket combustion chambers.

  18. Response of nickel surface to pulsed fusion plasma radiations

    SciTech Connect

    Niranjan, Ram Rout, R. K. Srivastava, R. Gupta, Satish C.; Chakravarthy, Y.; Patel, N. N.; Alex, P.

    2014-04-24

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  19. Response of nickel surface to pulsed fusion plasma radiations

    NASA Astrophysics Data System (ADS)

    Niranjan, Ram; Rout, R. K.; Srivastava, R.; Chakravarthy, Y.; Patel, N. N.; Alex, P.; Gupta, Satish C.

    2014-04-01

    Nickel based alloys are being projected as suitable materials for some components of the next generation fusion reactor because of compatible thermal, electrical and mechanical properties. Pure nickel material is tested here for possibility of similar application purpose. Nickel samples (> 99.5 % purity) are exposed here to plasma radiations produced due to D-D fusion reaction inside an 11.5 kJ plasma focus device. The changes in the physical properties of the nickel surface at microscopic level which in turn change the mechanical properties are analyzed using scanning electron microscope, optical microscope, glancing incident X-ray diffractometer and Vicker's hardness gauge. The results are reported here.

  20. Plasma and Radiation Modelling of EUV Sources for Micro Lithography

    NASA Astrophysics Data System (ADS)

    Kruecken, Thomas

    2007-04-01

    Future extreme ultraviolet (EUV) lithography will require very high radiation intensities in a narrow wavelength range around 13.5 nm, which is most efficiently emitted as line radiation by highly ionized heavy particles. Currently the most intense EUV sources are based on Xenon or Tin discharges. After having investigated the limits of a hollow cathode triggered Xenon pinch discharge a Laser triggered Tin vacuum spark discharge is favored by Philips Extreme UV. Plasma and radiation properties of these highly transient discharges will be compared. Besides simple MHD-models the ADAS software package has been used to generate important atomic and spectral data of the relevant ion stages. To compute excitation and radiation properties, collisional radiative equilibria of individual ion stages are computed. For many lines opacity effects cannot be neglected. The optical depths, however, allow for a treatment based on escape factors. Due to the rapid change of plasma parameters the abundances of the different ionization stages must be computed dynamically. This requires effective ionization and recombination rates, which can also be supplied by ADAS.

  1. Plasma and Radiation Modelling of EUV Sources for Micro Lithography

    SciTech Connect

    Kruecken, Thomas

    2007-04-06

    Future extreme ultraviolet (EUV) lithography will require very high radiation intensities in a narrow wavelength range around 13.5 nm, which is most efficiently emitted as line radiation by highly ionized heavy particles. Currently the most intense EUV sources are based on Xenon or Tin discharges. After having investigated the limits of a hollow cathode triggered Xenon pinch discharge a Laser triggered Tin vacuum spark discharge is favored by Philips Extreme UV.Plasma and radiation properties of these highly transient discharges will be compared. Besides simple MHD-models the ADAS software package has been used to generate important atomic and spectral data of the relevant ion stages. To compute excitation and radiation properties, collisional radiative equilibria of individual ion stages are computed. For many lines opacity effects cannot be neglected. The optical depths, however, allow for a treatment based on escape factors. Due to the rapid change of plasma parameters the abundances of the different ionization stages must be computed dynamically. This requires effective ionization and recombination rates, which can also be supplied by ADAS.

  2. Radiative condensation instability in partially ionized dusty plasma with polarization force

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana; Jain, Shweta

    2016-01-01

    This paper studies the effect of polarization force on the radiative condensation (RC) instability of a partially ionized dusty medium both in the presence and absence of self-gravitation. The temperature and density dependent heat loss function is considered in the process of heating and radiative cooling. The linear-perturbation analysis is used to derive general dispersion relation and criteria for both the Jeans and RC instability. The condition of Jeans instability is modified due to the RC, polarization force, magnetic field and dust thermal speed, whereas in the case of RC instability the instability criterion is modified due to the presence of dust thermal speed, magnetic field and polarization force. The effects of various parameters have been numerically estimated on RC instability. It is clear from figure that the presence of polarization parameter and density dependent heat-loss function destabilize the system while the presence of temperature dependent heat-loss function, dust neutral collision frequency and ratio of neutral dust density stabilize the system. These findings are relevant for many areas of space and laboratory plasma research prime examples being the formation of dense molecular clouds in interstellar and intergalactic medium, condensations in planetary nebulae and in laboratory plasmas like tokamak edge plasma.

  3. Jeans instability of rotating magnetized quantum plasma: Influence of radiation

    SciTech Connect

    Joshi, H.; Pensia, R. K.

    2015-07-31

    The effect of radiative heat-loss function and rotation on the Jeans instability of quantum plasma is investigated. The basic set of equations for this problem is constructed by considering quantum magnetohydrodynamic (QMHD) model. Using normal mode analysis, the general dispersion relation is obtained. This dispersion relation is studied in both, longitudinal and transverse direction of propagations. In both case of longitudinal and transverse direction of propagation, the Jeans instability criterion is modified due to presence of radiative heat-loss function and quantum correction.

  4. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    NASA Astrophysics Data System (ADS)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2016-09-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum‑space structure of the electron distribution, fully accounting for the emission of finite‑energy photons by modeling the bremsstrahlung interactions with a Boltzmann collision operator. We find that electrons accelerated by electric fields can reach significantly higher energies than predicted by the commonly used radiative stopping‑power model. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution by causing pitch‑angle scattering at a rate that increases with energy.

  5. Effect of bremsstrahlung radiation emission on fast electrons in plasmas

    NASA Astrophysics Data System (ADS)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2016-09-01

    Bremsstrahlung radiation emission is an important energy loss mechanism for energetic electrons in plasmas. In this paper we investigate the effect of spontaneous bremsstrahlung emission on the momentum-space structure of the electron distribution, fully accounting for the emission of finite-energy photons by modeling the bremsstrahlung interactions with a Boltzmann collision operator. We find that electrons accelerated by electric fields can reach significantly higher energies than predicted by the commonly used radiative stopping-power model. Furthermore, we show that the emission of soft photons can contribute significantly to the dynamics of electrons with an anisotropic distribution by causing pitch-angle scattering at a rate that increases with energy.

  6. A high-tech low-energy house with solar thermal and sky radiation cooling

    SciTech Connect

    Saitoh, Takeo; Fujino, Tetsuji; Suzuki, Masanori

    1998-07-01

    A unique energy-independent house (HARBEMAN HOUSE; HARmony BEtween Man And Nature) incorporating solar thermal, underground coolness, sky radiation cooling, photovoltaic electricity generation and rain water was built in Sendai, Japan on July, 1996. The average solar energy received on a horizontal surface in January is 7900 kJ/m{sup 2}/day. This paper reports the experimental results since September 1996 to date. The annual variations of water temperature in the underground main tank, heating/cooling/domestic hot water demands, collected and emitted heats by solar collector and sky radiator, were obtained by the measured data. The paper also clarifies the method of computer simulation results for the HARBEMAN HOUSE and its results compared with the annual experimental data. The proposed HARBEMAN house, which meets almost all its energy demands, including space heating and cooling, domestic hot water, electricity generated by photovoltaic cell and rainwater for standard Japanese homes. The proposed system has two operational modes: (i) a long-term thermal energy storage mode extending from September to next March and (ii) a long-term cool storage mode extending from April to August. The system is intended to utilize as little energy as possible to collect and emit the heat. This paper also clarifies the primary energy consumption, the external costs (externalities) and the effect for reduction of carbon dioxide (CO2) emissions. The primary energy consumption and carbon dioxide emissions of the proposed house are only one-tenth of these of the conventional standard house. Finally, this paper validates the external costs of this house, which have been intensively discussed in recent years in European countries. The present energy-sufficient house will be promising in the 21st century to reduce carbon dioxide emissions, which will be one of the key factors for mitigating global warming.

  7. Selective radiative cooling with MgO and/or LiF layers

    DOEpatents

    Berdahl, P.H.

    1984-09-14

    A selective radiation cooling material which is absorptive only in the 8 to 13 microns wavelength range is accomplished by placing ceramic magnesium oxide and/or polycrystalline lithium fluoride on an infrared-reflective substrate. The reflecting substrate may be a metallic coating, foil or sheet, such as aluminum, which reflects all atmospheric radiation from 0.3 to 8 microns, the magnesium oxide and lithium fluoride being nonabsorptive at those wavelengths. <10% of submicron voids in the material is permissible in which case the MgO and/or LiF layer is diffusely scattering, but still nonabsorbing, in the wavelength range of 0.3 to 8 microns. At wavelengths from 8 to 13 microns, the magnesium oxide and lithium fluoride radiate power through the ''window'' in the atmosphere, and thus remove heat from the reflecting sheet of material and the attached object to be cooled. At wavelengths longer than 13 microns, the magnesium oxide and lithium fluoride reflects the atmospheric radiation back into the atmosphere. This high reflectance is only obtained if the surface is sufficiently smooth: roughness on a scale of 1 micron is permissible but roughness on a scale of 10 microns is not. An infrared-transmitting cover or shield is mounted in spaced relationship to the material to reduce convective heat transfer. If this is utilized in direct sunlight, the infrared transmitting cover or shield should be opaque in the solar spectrum of 0.3 to 3 microns.

  8. Numerical simulation of zirconia splat formation and cooling during plasma spray deposition

    NASA Astrophysics Data System (ADS)

    Liao, YeMeng; Zheng, YunZhai; Zheng, ZhengHuan; Li, Qiang

    2016-07-01

    The adhesion/cohesion of plasma-sprayed coatings depends strongly on the flattening and solidification of individual splat, taking place in a few microseconds. Such a short time makes it difficult to thoroughly study the splat formation. A three-dimensional numerical model incorporating the substrate melting and solidification was developed using CFD method to simulate the flattening and cooling of zirconia splat involving the influence of interface thermal contact resistance. On smooth substrate where the thermal contact resistance is zero, the splat has a cooling rate of 1.7 × 108 K/s, resulting in substrate melting, and a disk-like splat is formed with a spread factor of approximately 3.5. While on substrate with thermal contact resistance of 10-7 m2 K/W, corresponding cooling rate is 3.17 × 108 K/s and a central splat surrounded by satellite droplets is formed due to the rapid solidification of the splat edges.

  9. Study of radiatively sustained cesium plasmas for solar energy conversion

    NASA Technical Reports Server (NTRS)

    Palmer, A. J.; Dunning, G. J.

    1980-01-01

    The results of a study aimed at developing a high temperature solar electric converter are reported. The converter concept is based on the use of an alkali plasma to serve as both an efficient high temperature collector of solar radiation as well as the working fluid for a high temperature working cycle. The working cycle is a simple magnetohydrodynamic (MHD) Rankine cycle employing a solid electrode Faraday MHD channel. Research milestones include the construction of a theoretical model for coupling sunlight in a cesium plasma and the experimental demonstration of cesium plasma heating with a solar simulator in excellent agreement with the theory. Analysis of a solar MHD working cycle in which excimer laser power rather than electric power is extracted is also presented. The analysis predicts a positive gain coefficient on the cesium-xenon excimer laser transition.

  10. Thermal physiology. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants.

    PubMed

    Shi, Norman Nan; Tsai, Cheng-Chia; Camino, Fernando; Bernard, Gary D; Yu, Nanfang; Wehner, Rüdiger

    2015-07-17

    Saharan silver ants, Cataglyphis bombycina, forage under extreme temperature conditions in the African desert. We show that the ants' conspicuous silvery appearance is created by a dense array of triangular hairs with two thermoregulatory effects. They enhance not only the reflectivity of the ant's body surface in the visible and near-infrared range of the spectrum, where solar radiation culminates, but also the emissivity of the ant in the mid-infrared. The latter effect enables the animals to efficiently dissipate heat back to the surroundings via blackbody radiation under full daylight conditions. This biological solution for a thermoregulatory problem may lead to the development of biomimetic coatings for passive radiative cooling of objects. PMID:26089358

  11. Thermal physiology. Keeping cool: Enhanced optical reflection and radiative heat dissipation in Saharan silver ants.

    PubMed

    Shi, Norman Nan; Tsai, Cheng-Chia; Camino, Fernando; Bernard, Gary D; Yu, Nanfang; Wehner, Rüdiger

    2015-07-17

    Saharan silver ants, Cataglyphis bombycina, forage under extreme temperature conditions in the African desert. We show that the ants' conspicuous silvery appearance is created by a dense array of triangular hairs with two thermoregulatory effects. They enhance not only the reflectivity of the ant's body surface in the visible and near-infrared range of the spectrum, where solar radiation culminates, but also the emissivity of the ant in the mid-infrared. The latter effect enables the animals to efficiently dissipate heat back to the surroundings via blackbody radiation under full daylight conditions. This biological solution for a thermoregulatory problem may lead to the development of biomimetic coatings for passive radiative cooling of objects.

  12. Effect of Radiative Cooling on Cloud-SST Relationship within the Tropical Pacific Region

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Ho, Chang-Hoi; Chou, Ming-Dah; Lau, Ka-Ming; Li, Xiao-Fan; Einaudi, Franco (Technical Monitor)

    2000-01-01

    A recent analysis found a negative correlation between the area-mean cloud amount and the corresponding mean Sea Surface Temperature (SST) within the cloudy areas. The SST-cloud relation becomes more evident when the SST contrast between warm pool and surrounding cold pool (DSST) in the tropical Pacific is stronger than normal. The above feature is related to the finding that the strength of subsidence over the cold pool is limited by radiative cooling because of its small variability. As a result, the area of radiatively-driven subsidence must expand in response to enhanced low-boundary forcing due to SST warming or enhanced basin-scale DSST. This leads to more cloud free regions and less cloudy regions. The increased ratio of cloud-free areas to cloudy areas leads to more high SST areas (>29.50C) due to enhanced solar radiation.

  13. Radiation sources based on laser-plasma interactions.

    PubMed

    Jaroszynski, D A; Bingham, R; Brunetti, E; Ersfeld, B; Gallacher, J; van der Geer, B; Issac, R; Jamison, S P; Jones, D; de Loos, M; Lyachev, A; Pavlov, V; Reitsma, A; Saveliev, Y; Vieux, G; Wiggins, S M

    2006-03-15

    Plasma waves excited by intense laser beams can be harnessed to produce femtosecond duration bunches of electrons with relativistic energies. The very large electrostatic forces of plasma density wakes trailing behind an intense laser pulse provide field potentials capable of accelerating charged particles to high energies over very short distances, as high as 1GeV in a few millimetres. The short length scale of plasma waves provides a means of developing very compact high-energy accelerators, which could form the basis of compact next-generation light sources with unique properties. Tuneable X-ray radiation and particle pulses with durations of the order of or less than 5fs should be possible and would be useful for probing matter on unprecedented time and spatial scales. If developed to fruition this revolutionary technology could reduce the size and cost of light sources by three orders of magnitude and, therefore, provide powerful new tools to a large scientific community. We will discuss how a laser-driven plasma wakefield accelerator can be used to produce radiation with unique characteristics over a very large spectral range.

  14. Enhancement of the radiation yield in plasma flow switch experiments

    SciTech Connect

    Buff, J. ); Peterkin, R.E. Jr.; Roderick, N.F. ); Degnan, J.H. ); Frese, M.H. ); Turchi, P.J. . Dept. of Aeronautical and Astronautical Engineering)

    1991-06-01

    This paper reports that in a series of experiments that was performed at the Phillips Laboratory (Kirtland Air Force Base, New Mexico), the Shiva Star fast capacitor bank, an inductive store, and a plasma flow switch were used together to deliver multimega-ampere currents with submicrosecond rise times to cylindrical foil loads. Based on two-dimensional MHD simulations with the MACH2 code, the authors previously suggested design modifications to the switch that, when implemented in experiments, substantially increased the fraction of available current that was delivered to the load. The authors have performed a new series of numerical simulations of the plasma flow switch/imploding load system with the goal of discovering a way to boost the total power radiated by the imploding plasmas as it stagnates on the axis of symmetry. The changes to the experimental design that were investigated and which are discussed in this paper include variations of: The shape of the electrodes, size, and mass of the load foil, structure of the axial view vanes, shape and mass of the switching plasma, material from which the load is constructed, the degree to which the load is bowed, and the energy of the capacitor bank. Radiation yields in the range 6-9 TW are predicted for future experiments on Shiva Star.

  15. A NEW DIAGNOSTIC OF MAGNETIC FIELD STRENGTHS IN RADIATIVELY COOLED SHOCKS

    SciTech Connect

    Hartigan, P.; Wright, A.

    2015-09-20

    We show that it is possible to measure Alfvénic Mach numbers, defined as the shock velocity in the flow divided by the Alfvén velocity, for low-velocity (V{sub shock} ≲ 100 km s{sup −1}) radiative shocks. The method combines observations of bright forbidden lines with a measure of the size of the cooling zone, the latter typically obtained from spatial separation between the Balmer emission lines and the forbidden lines. Because magnetic fields become compressed as gas in the postshock region cools, even relatively weak preshock magnetic fields can be detected with this method. We derive analytical formulae that explain how the spatial separations relate to emission-line ratios, and compute a large grid of radiatively cooled shock models to develop diagnostic diagrams that can be used to derive Alfvénic Mach numbers in flows. Applying the method to existing data for a bright knot in the HH 111 jet, we obtain a relatively low Alfvénic Mach number of ∼2, indicative of a magnetized jet that has super-magnetosonic velocity perturbations within it.

  16. Seminal plasma proteins inhibit in vitro- and cooling-induced capacitation in boar spermatozoa.

    PubMed

    Vadnais, Melissa L; Roberts, Kenneth P

    2010-01-01

    Dilute boar seminal plasma (SP) has been shown to inhibit in vitro capacitation and cooling-induced capacitation-like changes in boar spermatozoa, as assessed by the ability of the spermatozoa to undergo an ionophore-induced acrosome reaction. We hypothesised that the protein component of SP is responsible for this effect. To test this hypothesis, varying concentrations of total SP protein or SP proteins fractionated by heparin binding were assayed for their ability to inhibit in vitro capacitation, as well as cooling- and cryopreservation-induced capacitation-like changes. In vitro capacitation and cooling-induced capacitation-like changes were prevented by 10% whole SP, as well as by total proteins extracted from SP at concentrations greater than 500 microg mL(-1). No amount of SP protein was able to prevent cryopreservation-induced capacitation-like changes. Total SP proteins were fractionated based on their heparin-binding properties and the heparin-binding fraction was shown to possess capacitation inhibitory activity at concentrations as low as 250 microg mL(-1). The proteins in the heparin-binding fraction were subjected to mass spectrometry and identified. The predominant proteins were three members of the spermadhesin families, namely AQN-3, AQN-1 and AWN, and SP protein pB1. We conclude that one or more of these heparin-binding SP proteins is able to inhibit in vitro capacitation and cooling-induced capacitation-like changes, but not cryopreservation-induced capacitation-like changes, in boar spermatozoa. PMID:20591323

  17. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Conversion of the energy of fast electrons to thermal plasma radiation

    NASA Astrophysics Data System (ADS)

    Vergunova, G. A.; Rozanov, Vladislav B.

    1992-01-01

    An analysis is made of the conversion of the energy of highly energetic fast electrons, generated by the action of CO2 laser radiation on a target, into characteristic radiation emitted by a plasma formed from shell targets which, for instance, may be present inside targets irradiated by the CO2 laser. Analytical formulas are obtained for the temperature of the converted radiation. The results show that it is possible to control this radiation by choosing the parameters of the target and of the fast electron flux. The efficiency of conversion into characteristic thermal radiation is found numerically to be 95%. This method of conversion is more favorable than direct interaction of CO2 laser radiation with a target since the emitting region is localized in the target mass. When a laser interacts with a target the mass of this region increases with time and so the temperature of the emitted radiation is lower than in the case when fast electrons act on the target.

  18. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spectral and temporal characteristics of a laser plasma

    NASA Astrophysics Data System (ADS)

    Lipchak, A. I.; Solomonov, V. I.; Tel'nov, V. A.; Osipov, V. V.

    1995-04-01

    An experimental investigation was made of the spectral and temporal characteristics of a laser plasma formed by the interaction of a CO2 laser pulse with a target in atmospheric air. The results obtained indicate that the main role in the process of filling the excited states in a laser plasma is played by a recombination cascade and that both atoms and molecules of the atmospheric gases are excited. The result also show that a laser plasma can be used in spectroscopic analysis of multicomponent samples. The solution of the thermophysical problem of heating of a target by laser radiation supports the existing ideas on the process of formation of a plasma near the target surface in air.

  19. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-01

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  20. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    SciTech Connect

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-27

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  1. Electron cooling and finite potential drop in a magnetized plasma expansion

    SciTech Connect

    Martinez-Sanchez, M.; Navarro-Cavallé, J.; Ahedo, E.

    2015-05-15

    The steady, collisionless, slender flow of a magnetized plasma into a surrounding vacuum is considered. The ion component is modeled as mono-energetic, while electrons are assumed Maxwellian upstream. The magnetic field has a convergent-divergent geometry, and attention is restricted to its paraxial region, so that 2D and drift effects are ignored. By using the conservation of energy and magnetic moment of particles and the quasi-neutrality condition, the ambipolar electric field and the distribution functions of both species are calculated self-consistently, paying attention to the existence of effective potential barriers associated to magnetic mirroring. The solution is used to find the total potential drop for a set of upstream conditions, plus the axial evolution of various moments of interest (density, temperatures, and heat fluxes). The results illuminate the behavior of magnetic nozzles, plasma jets, and other configurations of interest, showing, in particular, in the divergent plasma the collisionless cooling of electrons, and the generation of collisionless electron heat fluxes.

  2. LSP simulations of fast ions slowing down in cool magnetized plasma

    NASA Astrophysics Data System (ADS)

    Evans, Eugene S.; Cohen, Samuel A.

    2015-11-01

    In MFE devices, rapid transport of fusion products, e.g., tritons and alpha particles, from the plasma core into the scrape-off layer (SOL) could perform the dual roles of energy and ash removal. Through these two processes in the SOL, the fast particle slowing-down time will have a major effect on the energy balance of a fusion reactor and its neutron emissions, topics of great importance. In small field-reversed configuration (FRC) devices, the first-orbit trajectories of most fusion products will traverse the SOL, potentially allowing those particles to deposit their energy in the SOL and eventually be exhausted along the open field lines. However, the dynamics of the fast-ion energy loss processes under conditions expected in the FRC SOL, where the Debye length is greater than the electron gyroradius, are not fully understood. What modifications to the classical slowing down rate are necessary? Will instabilities accelerate the energy loss? We use LSP, a 3D PIC code, to examine the effects of SOL plasma parameters (density, temperature and background magnetic field strength) on the slowing down time of fast ions in a cool plasma with parameters similar to those expected in the SOL of small FRC reactors. This work supported by DOE contract DE-AC02-09CH11466.

  3. Analytical and experimental studies of heat pipe radiation cooling of hypersonic propulsion systems

    NASA Technical Reports Server (NTRS)

    Martin, R. A.; Merrigan, M. A.; Elder, M. G.; Sena, J. T.; Keddy, E. S.; Silverstein, C. C.

    1992-01-01

    Analytical and experimental studies were completed to assess the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This new approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from an external heat pipe nacelle. For propulsion systems using heat pipe radiation cooling (HPRC), it is possible to continue to use hydrocarbon fuels into the Mach 4 to Mach 6 speed range, thereby enhancing the economic attractiveness of commercial or military hypersonic flight. In the second-phase feasibility program recently completed, it is found that heat loads produced by considering both convection and radiation heat transfer from the combustion gas can be handled with HPRC design modifications. The application of thermal insulation to ramburner and nozzle walls was also found to reduce the heat load by about one-half and to reduce peak HPRC system temperatures to below 2700 F. In addition, the operation of HPRC at cruise conditions of around Mach 4.5 and at an altitude of 90,000 ft lowers the peak hot-section temperatures to around 2800 F. An HPRC heat pipe was successfully fabricated and tested at Mach 5 conditions of heat flux, heat load, and temperature.

  4. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Low-threshold generation of harmonics and hard x radiation in a laser plasma. 1. Single-peak generation

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kazakov, K. Kh

    1993-02-01

    A source of hard x radiation based on a laser plasma has been studied under conditions such that parametric instabilities are driven in the plasma at low intensities of the pump radiation (below 10 GW/cm2). A qualitative interpretation of the observed effects is offered.

  5. Computation of vertical profiles of longwave radiative cooling over the equatorial Pacific

    NASA Technical Reports Server (NTRS)

    Ramsey, Perry G.; Vincent, Dayton G.

    1995-01-01

    An important quantity whose magnitude has not been throughly examined is the vertical distribution of heating in the Tropics. The details of the vertical distribution of heating have a significant impact on a number of phenomena, including the 30-60 day oscillation, sometimes known as the intraseasonal oscillation. Prior attempts to establish the structure of the heating relied on limited field data or assimilated data, coupled with climatological radiative heating parameters. The availability of high quality global-scale datasets has made it possible to make more accurate calculations than were possible a few years ago. An important component of the apparent heat budget is the longwave radiative cooling, which in this paper is found by using the ECMWF/WCRP/TOGA Archive 2 and ISCCP C1 datasets, together with a well-established parameterization scheme. A method is developed that can be used to estimate the vertical structure of cloud amounts based on top-of-atmosphere cloud observations, and the results are used with a wide-band longwave parameterization to produce longwave cooling rates over the tropical Pacific Ocean. Outgoing longwave radiation is calculated and compared the ERBE results. The calculated values are generally higher than those from ERBE, though the spatial distributions are similar. Some significant problems exist with the ECMWF upper-tropospheric water vapor amounts, which could imply uncertainties of 0.5 C/day in the calculated cooling rates. This is comparable to the differences associated with the minimum or random overlap assumptions used to generate cloud profiles.

  6. A nonventing cooling system for space environment extravehicular activity, using radiation and regenerable thermal storage

    NASA Technical Reports Server (NTRS)

    Bayes, Stephen A.; Trevino, Luis A.; Dinsmore, Craig E.

    1988-01-01

    This paper outlines the selection, design, and testing of a prototype nonventing regenerable astronaut cooling system for extravehicular activity space suit applications, for mission durations of four hours or greater. The selected system consists of the following key elements: a radiator assembly which serves as the exterior shell of the portable life support subsystem backpack; a layer of phase change thermal storage material, n-hexadecane paraffin, which acts as a regenerable thermal capacitor; a thermoelectric heat pump; and an automatic temperature control system. The capability for regeneration of thermal storage capacity with and without the aid of electric power is provided.

  7. Astrophysical Jets with Conical Wire Arrays: Radiative Cooling, Rotation and Deflection

    SciTech Connect

    Ampleford, D. J.; Jennings, C. A.; Lebedev, S. V.; Bland, S. N.; Hall, G. N.; Suzuki-Vidal, F.; Palmer, J. B. A.; Chittenden, J. P.; Ciardi, A.; Bott, S. C.

    2009-01-21

    Highly collimated outflows or jets are produced by a number of astrophysical objects including protostars. The morphology and collimation of these jets is thought to be strongly influenced by the effects of radiative cooling, angular momentum and the interstellar medium surrounding the jet. Astrophysically relevant experiments are performed with conical wire array z-pinches investigating each of these effects. It is possible in each case to enter the appropriate parameter regime, leading the way towards future experiments where these different techniques can be more fully combined.

  8. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  9. Enhancing VHTR Passive Safety and Economy with Thermal Radiation Based Direct Reactor Auxiliary Cooling System

    SciTech Connect

    Haihua Zhao; Hongbin Zhang; Ling Zou; Xiaodong Sun

    2012-06-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The decay heat first is transferred to the core barrel by conduction and radiation, and then to the reactor vessel by thermal radiation and convection; finally the decay heat is transferred to natural circulated air or water systems. RVACS can be characterized as a surface based decay heat removal system. The RVACS is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to volume) and decay heat removal capability (proportional to surface area). When the relative decay heat removal capability decreases, the peak fuel temperature increases, even close to the design limit. Annular core designs with inner graphite reflector can mitigate this effect; therefore can further increase the reactor power. Another way to increase the reactor power is to increase power density. However, the reactor power is also limited by the decay heat removal capability. Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environment side. For the reactor side, cooling pipes will be inserted into holes made in the outer or

  10. Radiation from plasmas with sub-Larmor scale magnetic fields -- generalized jitter radiation

    NASA Astrophysics Data System (ADS)

    Medvedev, Mikhail

    2009-11-01

    Radiation produced by relativistic electrons in random magnetic fields of a sub-Larmor scale is referred to as the jitter radiation. It has been predicted to be produced from high- energy density environments which naturally generate such fields via Weibel-type (e.g., streaming) instabilities. Thus, it was argued to be a new diagnostic of Weibel turbulence in relativistic collisionless shocks, in reconnection in electron- positron plasmas and in laser-produced plasmas, the latter is of interest to both laser-plasma applications (e.g., Fast Ignition) and to Laboratory Astrophysics. The spectral characteristics of jitter radiation are markedly different from those of synchrotron and carry information about the magnetic fields structure (e.g., its spatial spectrum). Conventional treatment of jitter radiation assumes negligibly small deflections of particles in the magnetic fields, which is not always the case. Here we relax this assumption and discuss the transition between jitter and synchrotron regimes. Although the full treatment is model-dependent, certain important conclusions can be drawn. We will also address applications to both laboratory studies of the Weibel turbulence and astrophysical phenomena.

  11. Free-Free Radiation in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Weisheit, Jon; Daligault, Jerome; Murillo, Michael; Turner, Leaf

    2004-11-01

    In strongly coupled plasmas, the basic electron-ion collision events responsible for emission or absorption of free-free radiation are modified by interrelated collective effects: quasi-static ion correlations, dynamical electron correlations, and screened Coulombic interactions resulting from correlations between the positive and negative charged particle components of the plasma. We are investigating the relative importance of these different phenomena, within the context of the collision frequency formula of Boercker et al.[1] Our statistical model [2] describes the self-consistent fluctuations of a multi-component plasma, and includes quantal effects on the dynamics as well as strong coupling between species. We will present numerical results that identify plasma conditions for which strong coupling causes major changes to the electron-ion collision frequency. [1] D.B. Boercker, F.J. Rogers, H.E. DeWitt, Phys. Rev. A25, 1623 (1982). [2] J. Daligault and M.S. Murillo, Phys. Rev. E68, 015401 (2003).

  12. Xenon plasma sustained by pulse-periodic laser radiation

    SciTech Connect

    Rudoy, I. G.; Solovyov, N. G.; Soroka, A. M.; Shilov, A. O.; Yakimov, M. Yu.

    2015-10-15

    The possibility of sustaining a quasi-stationary pulse-periodic optical discharge (POD) in xenon at a pressure of p = 10–20 bar in a focused 1.07-μm Yb{sup 3+} laser beam with a pulse repetition rate of f{sub rep} ⩾ 2 kHz, pulse duration of τ ⩾ 200 μs, and power of P = 200–300 W has been demonstrated. In the plasma development phase, the POD pulse brightness is generally several times higher than the stationary brightness of a continuous optical discharge at the same laser power, which indicates a higher plasma temperature in the POD regime. Upon termination of the laser pulse, plasma recombines and is then reinitiated in the next pulse. The initial absorption of laser radiation in successive POD pulses is provided by 5p{sup 5}6s excited states of xenon atoms. This kind of discharge can be applied in plasma-based high-brightness broadband light sources.

  13. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Formation of amplified spontaneous radiation in an expanding laser plasma allowing for refraction

    NASA Astrophysics Data System (ADS)

    Gulov, A. V.; Derzhiev, V. I.; Zhidkov, A. G.; Terskikh, A. O.; Yakovlenko, Sergei I.

    1990-06-01

    Calculations are made of the divergence of amplified spontaneous radiation in a laser plasma allowing for refraction by free electrons. An analysis is made of the divergence of the radiation generated due to a 3p→3s' transition in neon-like ions. Calculations are made of the divergence of the radiation due to the 4→3 transition in the O VIII ion allowing for refraction during expansion of a Formvar plasma.

  14. Electromagnetic radiation trapped in the magnetosphere above the plasma frequency

    NASA Technical Reports Server (NTRS)

    Gurnett, D. A.; Shaw, R. R.

    1973-01-01

    An electromagnetic noise band is frequently observed in the outer magnetosphere by the Imp 6 spacecraft at frequencies from about 5 to 20 kHz. This noise band generally extends throughout the region from near the plasmapause boundary to near the magnetopause boundary. The noise typically has a broadband field strength of about 5 microvolts/meter. The noise band often has a sharp lower cutoff frequency at about 5 to 10 kHz, and this cutoff has been identified as the local electron plasma frequency. Since the plasma frequency in the plasmasphere and solar wind is usually above 20 kHz, it is concluded that this noise must be trapped in the low-density region between the plasmapause and magnetopause boundaries. The noise bands often contain a harmonic frequency structure which suggests that the radiation is associated with harmonics of the electron cyclotron frequency.

  15. Analysis of sublimation-cooled coated mirrors in convective and radiative environments.

    NASA Technical Reports Server (NTRS)

    Howe, J. T.; Green, M. J.

    1973-01-01

    Analytical solutions were obtained for the thermal response of a transpiration- or sublimation-cooled spherical mirror coating exposed to convective and radiative heating. The solutions allow unlimited spectral detail to be accounted for. Results indicate that transpiration-cooled thick coatings (1 cm) may withstand up to 10 kW/sq cm on a steady basis without excessive temperature rise for quartzlike materials with an internal absorption coefficient of 0.01 per cm. On a transient basis, fluxes up to 20 kW/sq cm can be accommodated for a second (cW laser exposure time), 4 kW/sq cm for 5 sec (planetary entry heating time), and of the order of MW/sq cm for millisecond times (short-duration laser bursts) without transpiration cooling for a material with an absorption coefficient of 0.1 per cm. Proportionately higher fluxes can be accommodated with lower absorption coefficients. Thermal stresses produced by the heat pulse are found to be high but within the strength of the materials. The regime in which meaningful solutions may be obtained is mapped in detail.

  16. Propagation of radiation in fluctuating multiscale plasmas. II. Kinetic simulations

    SciTech Connect

    Pal Singh, Kunwar; Robinson, P. A.; Cairns, Iver H.; Tyshetskiy, Yu.

    2012-11-15

    A numerical algorithm is developed and tested that implements the kinetic treatment of electromagnetic radiation propagating through plasmas whose properties have small scale fluctuations, which was developed in a companion paper. This method incorporates the effects of refraction, damping, mode structure, and other aspects of large-scale propagation of electromagnetic waves on the distribution function of quanta in position and wave vector, with small-scale effects of nonuniformities, including scattering and mode conversion approximated as causing drift and diffusion in wave vector. Numerical solution of the kinetic equation yields the distribution function of radiation quanta in space, time, and wave vector. Simulations verify the convergence, accuracy, and speed of the methods used to treat each term in the equation. The simulations also illustrate the main physical effects and place the results in a form that can be used in future applications.

  17. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments.

    PubMed

    Safi, Taqiyyah S; Munday, Jeremy N

    2015-09-21

    The method of detailed balance, introduced by Shockley and Queisser, is often used to find an upper theoretical limit for the efficiency of semiconductor pn-junction based photovoltaics. Typically the solar cell is assumed to be at an ambient temperature of 300 K. In this paper, we describe and analyze the use of radiative cooling techniques to lower the solar cell temperature below the ambient to surpass the detailed balance limit for a cell in contact with an ideal heat sink. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that our proposed structure yields an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for solar cells in an extraterrestrial environment in near-earth orbit.

  18. Improving photovoltaic performance through radiative cooling in both terrestrial and extraterrestrial environments.

    PubMed

    Safi, Taqiyyah S; Munday, Jeremy N

    2015-09-21

    The method of detailed balance, introduced by Shockley and Queisser, is often used to find an upper theoretical limit for the efficiency of semiconductor pn-junction based photovoltaics. Typically the solar cell is assumed to be at an ambient temperature of 300 K. In this paper, we describe and analyze the use of radiative cooling techniques to lower the solar cell temperature below the ambient to surpass the detailed balance limit for a cell in contact with an ideal heat sink. We show that by combining specifically designed radiative cooling structures with solar cells, efficiencies higher than the limiting efficiency achievable at 300 K can be obtained for solar cells in both terrestrial and extraterrestrial environments. We show that our proposed structure yields an efficiency 0.87% higher than a typical PV module at operating temperatures in a terrestrial application. We also demonstrate an efficiency advantage of 0.4-2.6% for solar cells in an extraterrestrial environment in near-earth orbit. PMID:26406742

  19. The effect of beam solar radiation distribution on peak cooling loads

    SciTech Connect

    Hittle, D.C.

    1999-07-01

    This paper describes a study conducted to determine the sensitivity of the distribution of solar radiation on cooling load calculations. A typical room was simulated using BLAST for a summer design day in Fort Worth, Texas, using the default distribution for solar radiation and also using detailed solar distribution. A warm winter day was also simulated. It is concluded that for a traditional building that experiences peak air-conditioning loads in the summer, assuming the beam solar radiation is uniform across the floor has a small effect in calculating peak load. However, adding interior surface area and putting carpet on the floor are important if underprediction of the peak load is to be avoided. In climates where peak conditions could occur during the winter when sun angles are lower and gains through south glass are high, it is more important to correctly model the distribution of beam solar radiation. The more accurately the heat transfer in a room is modeled, the more reliable the results will be.

  20. Storm time variation of radiative cooling of thermosphere by nitric oxide emission

    NASA Astrophysics Data System (ADS)

    Krishna, M. V. Sunil; Bag, Tikemani; Bharti, Gaurav

    2016-07-01

    The fundamental vibration-rotation band emission (Δν=1, Δ j=0,± 1) by nitric oxide (NO) at 5.3 µm is one of the most important cooling mechanisms in thermosphere. The collisional vibrational excitation of NO(ν=0) by impact with atomic oxygen is the main source of vibrationally excited nitric oxide. The variation of NO density depends on latitude, longitude and season. The present study aims to understand how the radiative flux gets influenced by the severe geomagnetic storm conditions. The variation of Nitric Oxide (NO) radiative flux exiting thermosphere is studied during the superstorm event of 7-12 November, 2004. The observations of TIMED/SABER suggest a strong anti-correlation with the O/N_2 ratio observed by GUVI during the same period. On a global scale the NO radiative flux showed an enhancement during the main phase on 8 November, 2004, whereas maximum depletion in O/N_2 is observed on 10 November, 2004. Both O/N_2 and NO radiative flux were found to propagate equatorward due to the effect of meridional wind resulting from joule and particle heating in polar region. Larger penetrations is observed in western longitude sectors. These observed variations are effectively connected to the variations in neutral densities. In the equatorial sectors, O/N_2 shows enhancement but almost no variation in radiative flux is observed. The possible reasons for the observed variations in NO radiative emission and O/N_2 ratios are discussed in the light of equator ward increase in the densities and prompt penetration.

  1. Generation of high-power electromagnetic radiation by a beam-driven plasma antenna

    NASA Astrophysics Data System (ADS)

    Annenkov, V. V.; Volchok, E. P.; Timofeev, I. V.

    2016-04-01

    In this paper we study how efficiently electromagnetic radiation can be generated by a relativistic electron beam with a gigawatt power level during its injection into a thin magnetized plasma. It is shown that, if the transverse beam and plasma size is compared with the radiation wavelength and the plasma density is modulated along the magnetic field, such a beam-plasma system can radiate electromagnetic waves via the antenna mechanism. We propose a theoretical model describing generation of electromagnetic waves by this plasma antenna and calculate its main radiation characteristics. In the two-dimensional case theoretical predictions on the radiation efficiency are shown to be confirmed by the results of particle-in-cell simulations, and the three-dimensional variant of this theory is used to estimate the peak power of sub-terahertz radiation that can be achieved in beam-plasma experiments in mirror traps.

  2. PREFACE: Acceleration and radiation generation in space and laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Bingham, R.; Katsouleas, T.; Dawson, J. M.; Stenflo, L.

    1994-01-01

    Sixty-six leading researchers from ten nations gathered in the Homeric village of Kardamyli, on the southern coast of mainland Greece, from August 29-September 4, 1993 for the International Workshop on Acceleration and Radiation Generation in Space and Laboratory Plasmas. This Special Issue represents a cross-section of the presentations made at and the research stimulated by that meeting. According to the Iliad, King Agamemnon used Kardamyli as a dowry offering in order to draw a sulking Achilles into the Trojan War. 3000 years later, Kardamyli is no less seductive. Its remoteness and tranquility made it an ideal venue for promoting the free exchange of ideas between various disciplines that do not normally interact. Through invited presen tations, informal poster discussions and working group sessions, the Workshop brought together leaders from the laboratory and space/astrophysics communities working on common problems of acceleration and radiation generation in plasmas. It was clear from the presentation and discussion sessions that there is a great deal of common ground between these disciplines which is not at first obvious due to the differing terminologies and types of observations available to each community. All of the papers in this Special Issue highlight the role collective plasma processes play in accelerating particles or generating radiation. Some are state-of-the-art presentations of the latest research in a single discipline, while others investi gate the applicability of known laboratory mechanisms to explain observations in natural plasmas. Notable among the latter are the papers by Marshall et al. on kHz radiation in the magnetosphere ; Barletta et al. on collective acceleration in solar flares; and by Dendy et al. on ion cyclotron emission. The papers in this Issue are organized as follows: In Section 1 are four general papers by Dawson, Galeev, Bingham et al. and Mon which serves as an introduction to the physical mechanisms of acceleration

  3. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    NASA Technical Reports Server (NTRS)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  4. 'Averaged' Diffusion of Radiation in Spectral Lines intra Interjacent Plasma-Gas Layer

    SciTech Connect

    Demura, A. V.; Demchenko, G. V.

    2008-10-22

    The approximate model of 'averaged diffusion' for resonance radiation transfer is introduced. It allows to reduce computational efforts preserving satisfactory accuracy while modeling divertor plasmas.

  5. Resonant terahertz radiation from warm collisional inhomogeneous plasma irradiated by two Gaussian laser beams

    NASA Astrophysics Data System (ADS)

    Niknam, A. R.; Banjafar, M. R.; Jahangiri, F.; Barzegar, S.; Massudi, R.

    2016-05-01

    Terahertz (THz) radiation generation by the interaction of two co-propagating high intensity laser beams with a warm collisional inhomogeneous plasma is analytically investigated. By presenting the dielectric permittivity of plasma and taking into account the ponderomotive force, the nonlinear current at THz frequency is obtained. A secondary resonant enhancement of THz radiation is observed, in addition to that occurs at the plasma frequency, which can be tuned by plasma density and temperature. Moreover, we show that for each beat frequency, there exists an optimum temperature at which THz radiation is maximized. It is also shown that the power and efficiency of THz radiation decrease by increasing the collision frequency.

  6. Nighttime Infrared radiative cooling and opacity inferred by REMS Ground Temperature Sensor Measurements

    NASA Astrophysics Data System (ADS)

    Martín-Torres, Javier; Paz Zorzano, María; Pla-García, Jorge; Rafkin, Scot; Lepinette, Alain; Sebastián, Eduardo; Gómez-Elvira, Javier; REMS Team

    2013-04-01

    Due to the low density of the Martian atmosphere, the temperature of the surface is controlled primarily by solar heating, and infrared cooling to the atmosphere and space, rather than heat exchange with the atmosphere. In the absence of solar radiation the infrared (IR) cooling, and then the nighttime surface temperatures, are directly controlled by soil termal inertia and atmospheric optical thickness (τ) at infrared wavelengths. Under non-wind conditions, and assuming no processes involving latent heat changes in the surface, for a particular site where the rover stands the main parameter controlling the IR cooling will be τ. The minimal ground temperature values at a fixed position may thus be used to detect local variations in the total dust/aerosols/cloud tickness. The Ground Temperature Sensor (GTS) and Air Temperature Sensor (ATS) in the Rover Environmental Monitoring Station (REMS) on board the Mars Science Laboratory (MSL) Curiosity rover provides hourly ground and air temperature measurements respectively. During the first 100 sols of operation of the rover, within the area of low thermal inertia, the minimal nightime ground temperatures reached values between 180 K and 190 K. For this season the expected frost point temperature is 200 K. Variations of up to 10 K have been observed associated with dust loading at Gale at the onset of the dust season. We will use these measurements together with line-by-line radiative transfer simulations using the Full Transfer By Optimized LINe-by-line (FUTBOLIN) code [Martín-Torres and Mlynczak, 2005] to estimate the IR atmospheric opacity and then dust/cloud coverage over the rover during the course of the MSL mission. Monitoring the dust loading and IR nightime cooling evolution during the dust season will allow for a better understanding of the influence of the atmosphere on the ground temperature and provide ground truth to models and orbiter measurements. References Martín-Torres, F. J. and M. G. Mlynczak

  7. Does the plasma radiate near a Double Layer?

    NASA Astrophysics Data System (ADS)

    Pottelette, Raymond; Berthomier, Matthieu; Pickett, Jolene

    2016-04-01

    Earth is an intense radio source in the kilometer wavelength range. Being a direct consequence of the parallel acceleration processes taking place in the Earth's auroral region, the radiation contains fundamental information on the characteristic spatial and temporal scales of the turbulent accelerating layer. It is now widely assumed that the cyclotron maser instability leads to Auroral Kilometric Radiation (AKR) generation. It has been suggested from the FAST measurements that the AKR results from a so-called horseshoe electron distribution. This distribution is generated when a localized parallel electric field - called Double Layer (DL) - accelerates earthward the electrons that propagate into an increasing magnetic field. The magnetic moment of the electrons is conserved so that their pitch angle is increased. This results in the creation of a horseshoe-like shape for the electron distribution exhibiting large positive velocity gradients in the direction perpendicular to B, thereby providing free energy for the AKR generation which takes place at the local electron gyrofrequency. In these circumstances, the radiation is generated far away (several thousand kilometers) from a DL, because the parallel accelerated electrons need to travel a long distance before forming a horseshoe distribution. From an experimental point of view, it is not an easy task to highlight the presence of DLs, because they are moving transient structures so that high time resolution measurements are needed. A detailed analysis suggests that these large-amplitude parallel electric fields are located inside sharp density gradients at the interface separating the cold, dense ionospheric plasma from the hot, tenuous magnetospheric plasma. We present some FAST observations which illustrate the generation of elementary radiation events in the neighborhood of a DL. The events occur 10 to 20% above the local electron gyrofrequency in association with the presence of nonlinear coherent structures

  8. Predicting radiative transport properties of plasma sprayed porous ceramics

    NASA Astrophysics Data System (ADS)

    Wang, B. X.; Zhao, C. Y.

    2016-03-01

    The typical yttria-stabilized zirconia material for making the thermal barrier coatings (TBCs) is intrinsically semitransparent to thermal radiation, and the unique disordered microstructures in TBCs make them surprisingly highly scattering. To quantitatively understand the influence of disordered microstructures, this paper presents a quantitative prediction on the radiative properties, especially the transport scattering coefficient of plasma sprayed TBC based on microstructure analysis and rigorous electromagnetic theory. The impact of the porosity, shape, size, and orientation of different types of voids on transport scattering coefficient is comprehensively investigated under the discrete dipole approximation. An inverse model integrating these factors together is then proposed to quantitatively connect transport scattering coefficient with microstructural information, which is also validated by available experimental data. Afterwards, an optimization procedure is carried out based on this model to obtain the optimal size and orientation distribution of the microscale voids to achieve the maximal radiation insulation performance at different operating temperatures, providing guidelines for practical coating design and fabrication. This work suggests that the current model is effective and also efficient for connecting scattering properties to microstructures and can be implemented as a quantitative tool for further studies like non-destructive infrared imaging as well as micro/nanoscale thermal design of TBCs.

  9. A new nonlocal thermodynamical equilibrium radiative transfer method for cool stars. Method and numerical implementation

    NASA Astrophysics Data System (ADS)

    Lambert, J.; Josselin, E.; Ryde, N.; Faure, A.

    2015-08-01

    Context. The solution of the nonlocal thermodynamical equilibrium (non-LTE) radiative transfer equation usually relies on stationary iterative methods, which may falsely converge in some cases. Furthermore, these methods are often unable to handle large-scale systems, such as molecular spectra emerging from, for example, cool stellar atmospheres. Aims: Our objective is to develop a new method, which aims to circumvent these problems, using nonstationary numerical techniques and taking advantage of parallel computers. Methods: The technique we develop may be seen as a generalization of the coupled escape probability method. It solves the statistical equilibrium equations in all layers of a discretized model simultaneously. The numerical scheme adopted is based on the generalized minimum residual method. Results: The code has already been applied to the special case of the water spectrum in a red supergiant stellar atmosphere. This demonstrates the fast convergence of this method, and opens the way to a wide variety of astrophysical problems.

  10. Thermal model and associated novel approach for synchrotron radiation liner with end cooling

    SciTech Connect

    Shu, Quan-Sheng; Yu, Kun; Clay, W.; Maddocks, J.; Morales, G.; Zbasnik, J.

    1993-05-01

    An end-conductive cooling approach has been developed to reduce the radial space budget of a synchrotron radiation liner to permit the maximum possible liner tube inner diameter (ID). A thermal model has also been developed to analyze the thermal performance of such liners. This approach is found to be acceptable for a liner in a 5-m-long quadrupole magnet and 3-m-long spool piece, but not for a longer 15-m dipole. The heat transfer and temperature distribution were calculated respectively along the axis of two different liner models: 20 K and 80 K liner with different thicknesses (0.5--2 mm) of liner tubes and different emissivities (0.05--0.3) of liner surface for a variety of magnets. The thermal model is also applied to the case of an 80 K liner connected directly to a 4 K beam position monitor (BPM). In order to utilize the end cooling, a good thermal joint and a compact heat exchanger are designed.

  11. Hybrid optical-thermal devices and materials for light manipulation and radiative cooling

    NASA Astrophysics Data System (ADS)

    Boriskina, Svetlana V.; Tong, Jonathan K.; Hsu, Wei-Chun; Weinstein, Lee; Huang, Xiaopeng; Loomis, James; Xu, Yanfei; Chen, Gang

    2015-09-01

    We report on optical design and applications of hybrid meso-scale devices and materials that combine optical and thermal management functionalities owing to their tailored resonant interaction with light in visible and infrared frequency bands. We outline a general approach to designing such materials, and discuss two specific applications in detail. One example is a hybrid optical-thermal antenna with sub-wavelength light focusing, which simultaneously enables intensity enhancement at the operating wavelength in the visible and reduction of the operating temperature. The enhancement is achieved via light recycling in the form of whispering-gallery modes trapped in an optical microcavity, while cooling functionality is realized via a combination of reduced optical absorption and radiative cooling. The other example is a fabric that is opaque in the visible range yet highly transparent in the infrared, which allows the human body to efficiently shed energy in the form of thermal emission. Such fabrics can find numerous applications for personal thermal management and for buildings energy efficiency improvement.

  12. Pulsar electrodynamics: Relativistic kinetic theory of radiative plasmas--collective phenomena and their radiation

    SciTech Connect

    Costa, A. A. da; Diver, D. A.; Laing, E. W.; Stark, C. R.; Teodoro, L. F. A.

    2011-01-15

    The classical modeling of radiation by accelerated charged particles in pulsars predicts a cutoff in photon energy at around 25 GeV. While this is broadly consistent with observations, the classical treatment is not self-consistent, and cannot be extended to explain the rare high-energy detections of photons in the 100s of GeV range. In this paper we revisit the theoretical modeling of high-energy radiation processes in very strong electromagnetic fields, in the context of both single particles and collective plasmas. There are no classical constraints on this description. We find that there is indeed a critical energy of around 50 GeV that arises naturally in this self-consistent treatment, but rather than being a cutoff, this critical energy signals a transition from radiation that is classical to a quasiquantum description, in which the particle is able to radiate almost its total energy in a single event. This new modeling therefore places pulsar radiation processes on a more secure physical basis, and admits the possibility of the production of TeV photons in a self-consistent way.

  13. Influence of dust charge fluctuation and polarization force on radiative condensation instability of magnetized gravitating dusty plasma

    NASA Astrophysics Data System (ADS)

    Prajapati, R. P.; Bhakta, S.

    2015-10-01

    The influence of dust charge fluctuation, thermal speed and polarization force due to massive charged dust grains is studied on the radiative condensation instability (RCI) of magnetized self-gravitating astrophysical dusty (complex) plasma. The dynamics of the charged dust and inertialess electrons are considered while the Boltzmann distributed ions are assumed to be thermal. The dusty fluid model is formulated and the general dispersion relations are derived analytically using the plane wave solutions under the long wavelength limits in both the presence and the absence of dust charge fluctuations. The combined effects of polarization force, dust thermal speed, dust charge fluctuation and dust cyclotron frequency are observed on the low frequency wave modes and radiative modified Jeans Instability. The classical criterion of RCI is also derived which remains unaffected due to the presence of these parameters. Numerical calculations have been performed to calculate the growth rate of the system and plotted graphically. We find that dust charge fluctuation, radiative cooling and polarization force have destabilizing while dust thermal speed and dust cyclotron frequency have stabilizing influence on the growth rate of Jeans instability. The results have been applied to understand the radiative cooling process in dusty molecular cloud when both the dust charging and polarization force are dominant.

  14. Immobilized enzymes in blood plasma exchangers via radiation grafting

    NASA Astrophysics Data System (ADS)

    Gombotz, Wayne; Hoffman, Allan; Schmer, Gottfried; Uenoyama, Satoshi

    The enzyme asparaginase was immobilized onto a porous hollow polypropylene (PP) fiber blood plasma exchange device for the treatment of acute lymphocytic leukemia. The devices were first radiation grafted with polymethacrylic acid (poly(MAAc)). This introduces carboxyl groups onto the surface of the fibers. Several variables were studied in the grafting reaction including the effects of solvent type and monomer concentration. The carboxyl groups were activated with N-hydroxy succinimide (NHS) using carbodiimide chemistry. Asparaginase was then covalently immobilized on the activated surfaces. Quantitative relationships were found relating the percent graft to the amount of immobilized enzyme which was active. The enzyme reactor was tested both in vitro and in vivo using a sheep as an animal model.

  15. Generation of terahertz radiation by focusing femtosecond bichromatic laser pulses in a gas or plasma

    SciTech Connect

    Chizhov, P A; Volkov, Roman V; Bukin, V V; Ushakov, A A; Garnov, Sergei V; Savel'ev-Trofimov, Andrei B

    2013-04-30

    The generation of terahertz radiation by focusing two-frequency femtosecond laser pulses is studied. Focusing is carried out both in an undisturbed gas and in a pre-formed plasma. The energy of the terahertz radiation pulses is shown to reduce significantly in the case of focusing in a plasma. (extreme light fields and their applications)

  16. Additional Radiative Cooling of the Mesopause Region due to Small-Scale Temperature Fluctuations Associated with Gravity Waves

    NASA Astrophysics Data System (ADS)

    Kutepov, A.; Feofilov, A.; Medvedev, A.; Pauldrach, A.; Hartogh, P.

    2008-05-01

    We address a previously unknown effect of the radiative cooling of the mesosphere and lower thermosphere (MLT) produced by small-scale irregular temperature fluctuations (ITFs) associated with gravity waves. These disturbances are not resolved by present GCMs, but they alter the radiative transfer and the heating/cooling rates significantly. We apply a statistical model of gravity waves superimposed on large-scale temperature profiles, and perform direct calculations of the radiative cooling/heating in the MLT in the IR bands of CO2, O3 and H2O molecules taking into account the breakdown of the local thermodynamic equilibrium (non-LTE). We found that in the periods of strong wave activity the subgrid ITFs can cause an additional cooling up to 3 K/day near the mesopause. The effect is produced mainly by the fundamental 15 μm band of the main CO2 isotope. We derived a simple expression for the correction to mean (resolved by GCMs) temperature profiles using the variance of the temperature perturbations to account for the additional cooling effect. The suggested parameterization can be applied in GCMs in conjunction with existing gravity wave drag parameterizations.

  17. On the origin of the coherent x-ray radiation from plasma focus

    SciTech Connect

    Zhevago, N.K.; Glebov, V.I.

    1995-12-31

    In the experiments with plasma focus a highly monochromatic radiation at {lambda}{approx}13{angstrom} was observed at a small angle to the direction of the plasma discharge. This radiation was attributed to the following features. Firstly, during the development of a plasma focus the short-period (T {approx_lt} 1{mu}m) modulation of the plasma density due to the increasing instabilities takes place along the discharge over many periods. Secondly, a definite part of electrons is accelerated up to MeV energies due the cyclotron instability and the increasing diffusion of the magnetic field in the pinch region. In the present report in order to explain the experimental results, we discuss possible mechanisms of coherent X-ray radiation in plasma focus, including the transition radiation from relativistic electrons in the medium with periodically modulated dielectric permittivity, undulator radiation in periodic electric field in the medium, and Cherenkov radiation from plasma in the presence of a strong magnetic field. The calculations of the spectral and angular distributions of X-rays are presented for the various types of radiation under discussion and estimates of the radiation power are made. We also discuss the possibility of the stimulated radiation from plasma focus.

  18. Influence of radiative processes on the ignition of deuterium-tritium plasma containing inactive impurities

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.; Sherman, V. E.

    2016-08-01

    The degree of influence of radiative processes on the ignition of deuterium-tritium (DT) plasma has been theoretically studied as dependent on the content of inactive impurities in plasma. The analytic criterion of plasma ignition in inertial confinement fusion (ICF) targets is modified taking into account the absorption of intrinsic radiation from plasma in the ignition region. The influence of radiative processes on the DT plasma ignition has been analytically and numerically studied for plasma that contains a significant fraction of inactive impurities either as a result of DT fuel mixing with ICF target ablator material or as a result of using light metal DT-hydrides as solid noncryogenic fuel. It has been shown that the effect of the absorption of intrinsic radiation leads to lower impurity-induced increase in the ignition energy as compared to that calculated in the approximation of optically transparent ignition region.

  19. Self-consistent spectra from GRMHD simulations with radiative cooling: A link to reality for Sgr A

    NASA Astrophysics Data System (ADS)

    Drappeau, S.; Dibi, S.; Dexter, J.; Markoff, S.; Fragile, P. C.

    2011-12-01

    Cosmos++ (Anninos et al., 2005) is one of the first fully relativistic magneto-hydro-dynamical (MHD) codes that can self-consistently account for radiative cooling, in the optically thin regime. As the code combines a total energy conservation formulation with a radiative cooling function, we have now the possibility to produce spectra energy density from these simulations and compare them to data. In this paper, we present preliminary results of spectra calculated using the same cooling functions from 2D Cosmos++ simulations of the accretion flow around Sgr A*. The simulation parameters were designed to roughly reproduce Sgr A*'s behavior at very low ( 10^{-8}-10^{-7} M_{⊙}/yr) accretion rate, but only via spectra can we test that this has been achieved.

  20. Self-consistent spectra from GRMHD simulations with radiative cooling A link to reality for Sgr A*

    NASA Astrophysics Data System (ADS)

    Drappeau, Samia; Dibi, Salomé; Markoff, Sera; Fragile, Chris

    2011-02-01

    Cosmos++ (Anninos et al. 2005) is one of the first fully relativistic magneto-hydro-dynamical (MHD) codes that can self-consistently account for radiative cooling, in the optically thin regime. As the code combines a total energy conservation formulation with a radiative cooling function, we have now the possibility to produce spectra energy density from these simulations and compare them to data. In this paper, we present preliminary results of spectra calculated using the same cooling functions from 2D Cosmos++ simulations of the accretion flow around Sgr A*. The simulation parameters were designed to roughly reproduce Sgr A*'s behavior at very low (10-8-10-7 Msolar/yr) accretion rate, but only via spectra can we test that this has been achieved.

  1. Convergence of smoothed particle hydrodynamics simulations of self-gravitating accretion discs: sensitivity to the implementation of radiative cooling

    NASA Astrophysics Data System (ADS)

    Rice, W. K. M.; Forgan, D. H.; Armitage, P. J.

    2012-02-01

    Recent simulations of self-gravitating accretion discs, carried out using a three-dimensional smoothed particle hydrodynamics (SPH) code by Meru & Bate, have been interpreted as implying that three-dimensional global discs fragment much more easily than would be expected from a two-dimensional local model. Subsequently, global and local two-dimensional models have been shown to display similar fragmentation properties, leaving it unclear whether the three-dimensional results reflect a physical effect or a numerical problem associated with the treatment of cooling or artificial viscosity in SPH. Here, we study how fragmentation of self-gravitating disc flows in SPH depends upon the implementation of cooling. We run disc simulations that compare a simple cooling scheme, in which each particle loses energy based upon its internal energy per unit mass, with a method in which the cooling is derived from a smoothed internal energy density field. For the simple per particle cooling scheme, we find a significant increase in the minimum cooling time-scale for fragmentation with increasing resolution, matching previous results. Switching to smoothed cooling, however, results in lower critical cooling time-scales, and tentative evidence for convergence at the highest spatial resolution tested. We conclude that precision studies of fragmentation using SPH require careful consideration of how cooling (and, probably, artificial viscosity) is implemented, and that the apparent non-convergence of the fragmentation boundary seen in prior simulations is likely a numerical effect. In real discs, where cooling is physically smoothed by radiative transfer effects, the fragmentation boundary is probably displaced from the two-dimensional value by a factor that is only of the order of unity.

  2. An enriched finite element model with q-refinement for radiative boundary layers in glass cooling

    SciTech Connect

    Mohamed, M. Shadi; Seaid, Mohammed; Trevelyan, Jon; Laghrouche, Omar

    2014-02-01

    Radiative cooling in glass manufacturing is simulated using the partition of unity finite element method. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary simplified P{sub 1} approximation for the radiation in non-grey semitransparent media. To integrate the coupled equations in time we consider a linearly implicit scheme in the finite element framework. A class of hyperbolic enrichment functions is proposed to resolve boundary layers near the enclosure walls. Using an industrial electromagnetic spectrum, the proposed method shows an immense reduction in the number of degrees of freedom required to achieve a certain accuracy compared to the conventional h-version finite element method. Furthermore the method shows a stable behaviour in treating the boundary layers which is shown by studying the solution close to the domain boundaries. The time integration choice is essential to implement a q-refinement procedure introduced in the current study. The enrichment is refined with respect to the steepness of the solution gradient near the domain boundary in the first few time steps and is shown to lead to a further significant reduction on top of what is already achieved with the enrichment. The performance of the proposed method is analysed for glass annealing in two enclosures where the simplified P{sub 1} approximation solution with the partition of unity method, the conventional finite element method and the finite difference method are compared to each other and to the full radiative heat transfer as well as the canonical Rosseland model.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spatial distribution of laser radiation scattered in a plasma formed by optical breakdown of a gas

    NASA Astrophysics Data System (ADS)

    Bufetov, Igor'A.; Bufetova, G. A.; Fyodorov, V. B.

    1994-12-01

    Spatial distributions of laser radiation scattered by a laser spark were determined at different laser radiation wavelengths (λ = 1060, 530, 353, and 265 nm) and gas pressures (air at 10-760 Torr). An interference structure of the cone of the scattered radiation behind the spark was detected for the first time. The structure was attributed to interference of the radiation scattered in two or more self-focusing centres in the laser-spark plasma in air. The dependences of the maximum scattering angle on the gas pressure and on the laser radiation wavelength were determined experimentally.

  4. Plasma density from Cerenkov radiation, betatron oscillations, and beam steering in a plasma wakefield experiment at 30 GeV

    SciTech Connect

    Catravas, P.; Chattopadhyay, S.; Esarey, E.; Leemans, W.P.; Assmann, R.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; Siemann, R.H.; Walz, D.; Whittum, D.; Blue, B.; Clayton, C.; Joshi, C.; Marsh, K.; Mori, W.B.; Wang, S.; Katsouleas, T.; Lee, S.; Muggli, P.

    2001-01-01

    A method for using Cerenkov radiation near atomic spectral lines to measure plasma source properties for plasma wakefield applications has been discussed and experimentally verified. Because the radiation co-propagates with the electron beam, the radiation samples the source properties exactly along the path of interest with perfect temporal synchronization. Observation wavelengths were chosen with respect to the atomic resonances of the plasma source, where the relative change in the index of refraction strongly affects the Cerenkov cone angle, and permits flexible diagnostic design. The Cerenkov spatial profiles were systematically studied for a Lithium heat pipe oven as a function of oven temperature and observation wavelength. Neutral densities and plasma densities were extracted from the measurements.

  5. A new method for 44Ca/40Ca determination using cool plasma MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Fietzke, J.; Eisenhauer, A.; Liebetrau, V.; Bock, B.; Gussone, N.; Nägler, T. F.; Dietzel, M.; Spero, H.; Bijma, J.; Dullo, C.

    2003-04-01

    Here we present a new technique for the direct measurement of 44Ca/40Ca isotope ratios on a MC-ICP-MS (Axiom) using the "cool plasma" technique. By reducing the plasma energy from about 1250 Watts to 400 Watts the isobaric effect resulting from 40Ar^+ can be significantly reduced enabling the simultaneous and precise measurement of 44Ca and 40Ca beam intensities in different Faraday cups. In contrast to the TIMS technique requiring a Ca double spike the isotope measurements on a MC-ICP-MS can be performed by bracketing standards. This reduces the effort for chemical preparations without loss of precision. Isobaric effects of MgO^+ and NaOH^+ interfering with 40Ca and MgOH_2 with 44Ca can be neglected by measuring Ca isotopes near the low mass edge of the peaks. No influences of Sr2+ were found monitoring on 43.5amu. Repeated measurements of two Johnson Matthey CaCO_3 standards (lot No. 4064 and lot No. 9912) revealed values of about -11.29 ppm and 0.57 ppm. These values are in accordance with previous values published by Russel et al. (1978) and Heuser et al. (2002). Repeated measurement of the NIST 915a CaCO_3 standard showed that the variance of a single δ44Ca measurement is about 0.28 ppm (2SD) being comparable with TIMS. MC-ICP-MS based δ44Ca values measured on inorganic precipitates are indistinguishable from earlier measurements of Gussone et al. (in press) based on TIMS δ44Ca measurements confirming that there is a positive δ44Ca-temperature gradient. Our study demonstrates the possibility to measure the whole dispersion of Ca isotopes with a MC-ICP-MS showing that 40Ca can be used for normalization of 44Ca. References Russel W. A. et al. (1978) Ca isotope fractionation on the Earth and other solar system materials. Geochim. Cosmochim. Acta 42, 1075--1090. Heuser A. et al. (2002) Measurement of Calcium Isotopes (δ44Ca) Using a Multicollector TIMS Technique. Int. J. Mass Spec. 220, 387--399. Gussone N. et al. (in press) Model for Kinetic Effects on

  6. Theory of coherent transition radiation generated at a plasma-vacuum interface

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; van Tilborg, Jeroen; Leemans, Wim P.

    2003-06-26

    Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and coherent radiation. The effects of the longitudinal and transverse momentum distributions on the differential energy spectra are examined. Diffraction radiation from the finite transverse extent of the plasma is considered and shown to strongly modify the spectra and energy radiated for long wavelength radiation. This method of transition radiation generation has the capability of producing high peak power THz radiation, of order 100 (mu)J/pulse at the plasma-vacuum interface, which is several orders of magnitude beyond current state-of-the-art THz sources.

  7. Cooled railplug

    DOEpatents

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  8. Laser beat wave excitation of terahertz radiation in a plasma slab

    SciTech Connect

    Chauhan, Santosh; Parashar, Jetendra

    2014-10-15

    Terahertz (THz) radiation generation by nonlinear mixing of lasers, obliquely incident on a plasma slab is investigated. Two cases are considered: (i) electron density profile is parabolic but density peak is below the critical density corresponding to the beat frequency, (ii) plasma boundaries are sharp and density is uniform. In both cases, nonlinearity arises through the ponderomotive force that gives rise to electron drift at the beat frequency. In the case of inhomogeneous plasma, non zero curl of the nonlinear current density gives rise to electromagnetic THz generation. In case of uniform plasma, the sharp density variation at the plasma boundaries leads to radiation generation. In a slab width of less than a terahertz wavelength, plasma density one fourth of terahertz critical density, laser intensities ∼10{sup 17 }W/cm{sup 2} at 1 μm, one obtains the THz intensity ∼1 GW/cm{sup 2} at 3 THz radiation frequency.

  9. Middle atmosphere project: A radiative heating and cooling algorithm for a numerical model of the large scale stratospheric circulation

    NASA Technical Reports Server (NTRS)

    Wehrbein, W. M.; Leovy, C. B.

    1981-01-01

    A Curtis matrix is used to compute cooling by the 15 micron and 10 micron bands of carbon dioxide. Escape of radiation to space and exchange the lower boundary are used for the 9.6 micron band of ozone. Voigt line shape, vibrational relaxation, line overlap, and the temperature dependence of line strength distributions and transmission functions are incorporated into the Curtis matrices. The distributions of the atmospheric constituents included in the algorithm, and the method used to compute the Curtis matrices are discussed as well as cooling or heating by the 9.6 micron band of ozone. The FORTRAN programs and subroutines that were developed are described and listed.

  10. Induction plasma tube

    DOEpatents

    Hull, D.E.

    1982-07-02

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  11. Induction plasma tube

    DOEpatents

    Hull, Donald E.

    1984-01-01

    An induction plasma tube having a segmented, fluid-cooled internal radiation shield is disclosed. The individual segments are thick in cross-section such that the shield occupies a substantial fraction of the internal volume of the plasma enclosure, resulting in improved performance and higher sustainable plasma temperatures. The individual segments of the shield are preferably cooled by means of a counterflow fluid cooling system wherein each segment includes a central bore and a fluid supply tube extending into the bore. The counterflow cooling system results in improved cooling of the individual segments and also permits use of relatively larger shield segments which permit improved electromagnetic coupling between the induction coil and a plasma located inside the shield. Four embodiments of the invention, each having particular advantages, are disclosed.

  12. Thermal histories and crystal distributions in partly devitrified lunar glasses cooled by radiation

    NASA Technical Reports Server (NTRS)

    Hopper, R. W.; Onorato, P.; Uhlmann, D. R.

    1974-01-01

    Calculations of the expected crystallization behavior of selected lunar compositions (60095 and 14259) are presented. Knowledge of this behavior combined with measurements of the state of crystallinity in partially devitrified lunar samples permits the determination of the thermal history of the samples. The state of crystallinity of a specimen is described by a statistical crystal distribution function psi. The heat flow problems of a plate of opaque glass quenched on an aluminum block and of a semi-transparent glass sphere cooling by radiation are analyzed. The results are combined with laboratory measurements of the crystal growth velocity and the viscosity, and with theoretical expressions for the nucleation frequency (homogeneous and heterogeneous) to obtain psi. It is found that the calculated psi is much too large in comparison with laboratory experiments on lunar samples. Possible reasons for the discrepancy are discussed, and the most likely cause is that the assumed nucleation barrier is too small. It also appears likely that these materials have relatively few nucleating heterogeneities.

  13. THE LAUNCHING OF COLD CLOUDS BY GALAXY OUTFLOWS. I. HYDRODYNAMIC INTERACTIONS WITH RADIATIVE COOLING

    SciTech Connect

    Scannapieco, Evan; Brüggen, Marcus

    2015-06-01

    To better understand the nature of the multiphase material found in outflowing galaxies, we study the evolution of cold clouds embedded in flows of hot and fast material. Using a suite of adaptive mesh refinement simulations that include radiative cooling, we investigate both cloud mass loss and cloud acceleration under the full range of conditions observed in galaxy outflows. The simulations are designed to track the cloud center of mass, enabling us to study the cloud evolution at long disruption times. For supersonic flows, a Mach cone forms around the cloud, which damps the Kelvin–Helmholtz instability but also establishes a streamwise pressure gradient that stretches the cloud apart. If time is expressed in units of the cloud crushing time, both the cloud lifetime and the cloud acceleration rate are independent of cloud radius, and we find simple scalings for these quantities as a function of the Mach number of the external medium. A resolution study suggests that our simulations accurately describe the evolution of cold clouds in the absence of thermal conduction and magnetic fields, physical processes whose roles will be studied in forthcoming papers.

  14. Hot accretion flow with radiative cooling: state transitions in black hole X-ray binaries

    NASA Astrophysics Data System (ADS)

    Wu, Mao-Chun; Xie, Fu-Guo; Yuan, Ye-Fei; Gan, Zhaoming

    2016-06-01

    We investigate state transitions in black hole X-ray binaries through different parameters by using two-dimensional axisymmetric hydrodynamical simulation method. For radiative cooling in hot accretion flow, we take into account the bremsstrahlung, synchrotron and synchrotron self-Comptonization self-consistently in the dynamics. Our main result is that the state transitions occur when the accretion rate reaches a critical value dot{M} ˜ 3α dot{M}_Edd, above which cold and dense clumpy/filamentary structures are formed, embedded within the hot gas. We argued this mode likely corresponds to the proposed two-phase accretion model, which may be responsible for the intermediate state of black hole X-ray binaries. When the accretion rate becomes sufficiently high, the clumpy/filamentary structures gradually merge and settle down on to the mid-plane. Eventually the accretion geometry transforms to a disc-corona configuration. In summary, our results are consistent with the truncated accretion scenario for the state transition.

  15. Diffusion mechanisms in Ir-coated Re for high-temperature, radiation-cooled rocket thrusters

    NASA Technical Reports Server (NTRS)

    Hamilton, J. C.; Yang, N. Y. C.; Clift, W. M.; Boehme, D. R.; Mccarty, K. F.

    1991-01-01

    Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high temperatures and oxidizing environments. Thruster chambers were developed using chemical-vapor-deposited (CVD) Re coated with CVD Ir on the inside surface which is exposed to hot combustion gases. Ir serves as an oxidation barrier protecting the Re which maintains structural integrity at high temperatures. In order to predict and extend the performance limits of these Ir-coated Re thrusters, the diffusion kinetics of CVD materials at temperature are studied. Thruster end ring sections were examined using electron microprobe analysis both before and after exposure to high temperature vacuum environments. The resulting elemental maps for Re, Ir, and Mo in the near-surface region allow identification of diffusion mechanisms operating at these temperatures. Line scans for Ir and Re were fit using a diffusion model to extract relevant diffusion constants. The fastest diffusion process is seen to be grain boundary diffusion with Re diffusing down grain boundaries in the Ir overlayer. The measured dependence of the diffusion rate on temperature will allow prediction of operating lifetimes for these thrusters.

  16. Diffusion and radiation in magnetized collisionless plasmas with small-scale Whistler turbulence

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Medvedev, Mikhail V.

    2016-04-01

    > Magnetized high-energy-density plasmas can often have strong electromagnetic fluctuations whose correlation scale is smaller than the electron Larmor radius. Radiation from the electrons in such plasmas - which markedly differs from both synchrotron and cyclotron radiation - is tightly related to their energy and pitch-angle diffusion. In this paper, we present a comprehensive theoretical and numerical study of particle transport in cold, `small-scale' Whistler-mode turbulence and its relation to the spectra of radiation simultaneously produced by these particles. We emphasize that this relation is a superb diagnostic tool of laboratory, astrophysical, interplanetary and solar plasmas with a mean magnetic field and strong small-scale turbulence.

  17. The Radiative Transfer Of CH{sub 4}-N{sub 2} Plasma Arc

    SciTech Connect

    Benallal, R.; Liani, B.

    2008-09-23

    Any physical modelling of a circuit-breaker arc therefore requires an understanding of the radiated energy which is taken into account in the form of a net coefficient. The evaluation of the net emission coefficient is performed by the knowledge of the chemical plasma composition and the resolution of the radiative transfer equation. In this paper, the total radiation which escapes from a CH{sub 4}-N{sub 2} plasma is calculated in the temperature range between 5000 and 30000K on the assumption of a local thermodynamic equilibrium and we have studied the nitrogen effect in the hydrocarbon plasmas.

  18. Generation of terahertz radiation in the reflection of a laser pulse from a dense plasma

    SciTech Connect

    Frolov, A. A.

    2007-12-15

    The generation of low-frequency (terahertz) electromagnetic radiation in the reflection of a laser pulse from the boundary of a dense plasma is considered. Low-frequency wave electromagnetic fields in vacuum are excited by a vortex electric current that is induced at the plasma boundary by the ponderomotive force of the laser pulse. The spectral, angular, and energy parameters of the low-frequency radiation, as well as the spatiotemporal structure of the emitted waves, are investigated. It is shown that for typical parameters of present-day laser plasma experiments, the power of terahertz radiation can amount to tens of megawatts.

  19. Energy enhancement of proton acceleration in combinational radiation pressure and bubble by optimizing plasma density

    SciTech Connect

    Bake, Muhammad Ali; Xie Baisong; Shan Zhang; Hong Xueren; Wang Hongyu

    2012-08-15

    The combinational laser radiation pressure and plasma bubble fields to accelerate protons are researched through theoretical analysis and numerical simulations. The dephasing length of the accelerated protons bunch in the front of the bubble and the density gradient effect of background plasma on the accelerating phase are analyzed in detail theoretically. The radiation damping effect on the accelerated protons energy is also considered. And it is demonstrated by two-dimensional particle-in-cell simulations that the protons bunch energy can be increased by using the background plasma with negative density gradient. However, radiation damping makes the maximal energy of the accelerated protons a little reduction.

  20. Collective backscattering of gyrotron radiation by small-scale plasma density fluctuations in large helical device

    SciTech Connect

    Kharchev, Nikolay; Batanov, German; Petrov, Alexandr; Sarksyan, Karen; Skvortsova, Nina; Tanaka, Kenji; Kubo, Shin; Igami, Hiroe; Azuma, Yoshifumi; Tsuji-Iio, Shunji

    2008-10-15

    A version of the collective backscattering diagnostic using gyrotron radiation for small-scale turbulence is described. The diagnostic is used to measure small-scale (k{sub s}{approx_equal}34 cm{sup -1}) plasma density fluctuations in large helical device experiments on the electron cyclotron heating of plasma with the use of 200 kW 82.7 GHz heating gyrotron. A good signal to noise ratio during plasma production phase was obtained, while contamination of stray light increased during plasma build-up phase. The effect of the stray radiation was investigated. The available quasioptical system of the heating system was utilized for this purpose.

  1. Discrete-frequency and broadband noise radiation from diesel engine cooling fans

    NASA Astrophysics Data System (ADS)

    Kim, Geon-Seok

    This effort focuses on measuring and predicting the discrete-frequency and broadband noise radiated by diesel engine cooling fans. Unsteady forces developed by the interaction of the fan blade with inlet flow are the dominant source for both discrete-frequency and broadband noise of the subject propeller fan. In many cases, a primary source of discrepancy between fan noise prediction and measurement is due to incomplete description of the fan inflow. Particularly, in such engine cooling systems where space is very limited, it would be very difficult, if not, impossible to measure the fan inflow velocity field using the conventional, stationary hot-wire method. Instead, the fan inflow was measured with two-component x-type hot-film probes attached very close to the leading edge of a rotating blade. One of the advantages of the blade-mounted-probe measurement technique is that it measures velocities relative to the rotating probe, which enables the acquired data to be applied directly in many aerodynamic theories that have been developed for the airfoil fixed-coordinate system. However, the velocity time data measured by this technique contains the spatially non-uniform mean velocity field along with the temporal fluctuations. A phase-locked averaging technique was successfully employed to decompose the velocity data into time-invariant flow distortions and fluctuations due to turbulence. The angles of attack of the fan blades, obtained from inlet flow measurements, indicate that the blades are stalled. The fan's radiated noise was measured without contamination from the engine noise by driving the fan with an electric motor. The motor operated at a constant speed while a pair of speed controllable pulleys controlled the fan speed. Narrowband and 1/3-octave band sound power of the cooling fan was measured by using the comparison method with a reference sound source in a reverberant room. The spatially non-uniform mean velocity field was used in axial-flow fan noise

  2. Characteristics of the electric arch and stream of plasma in the channel with porous cooling

    NASA Astrophysics Data System (ADS)

    Dautov, G. Yu; Khairetdinova, R. R.; Dautov, I. G.

    2016-01-01

    We study the characteristics of the arc plasma torch with a porous wall. The increase in mass flow of gas through the porous wall leads to an increase in thermal efficiency of the plasma torch. Compared it with the characteristics of the plasma torch with interbay gas supply.

  3. Radiation characteristics of input power from surface wave sustained plasma antenna

    NASA Astrophysics Data System (ADS)

    Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.

    2016-09-01

    This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.

  4. Prediction of critical heat flux in water-cooled plasma facing components using computational fluid dynamics.

    SciTech Connect

    Bullock, James H.; Youchison, Dennis Lee; Ulrickson, Michael Andrew

    2010-11-01

    Several commercial computational fluid dynamics (CFD) codes now have the capability to analyze Eulerian two-phase flow using the Rohsenow nucleate boiling model. Analysis of boiling due to one-sided heating in plasma facing components (pfcs) is now receiving attention during the design of water-cooled first wall panels for ITER that may encounter heat fluxes as high as 5 MW/m2. Empirical thermalhydraulic design correlations developed for long fission reactor channels are not reliable when applied to pfcs because fully developed flow conditions seldom exist. Star-CCM+ is one of the commercial CFD codes that can model two-phase flows. Like others, it implements the RPI model for nucleate boiling, but it also seamlessly transitions to a volume-of-fluid model for film boiling. By benchmarking the results of our 3d models against recent experiments on critical heat flux for both smooth rectangular channels and hypervapotrons, we determined the six unique input parameters that accurately characterize the boiling physics for ITER flow conditions under a wide range of absorbed heat flux. We can now exploit this capability to predict the onset of critical heat flux in these components. In addition, the results clearly illustrate the production and transport of vapor and its effect on heat transfer in pfcs from nucleate boiling through transition to film boiling. This article describes the boiling physics implemented in CCM+ and compares the computational results to the benchmark experiments carried out independently in the United States and Russia. Temperature distributions agreed to within 10 C for a wide range of heat fluxes from 3 MW/m2 to 10 MW/m2 and flow velocities from 1 m/s to 10 m/s in these devices. Although the analysis is incapable of capturing the stochastic nature of critical heat flux (i.e., time and location may depend on a local materials defect or turbulence phenomenon), it is highly reliable in determining the heat flux where boiling instabilities begin

  5. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    SciTech Connect

    Sizyuk, V. Hassanein, A.

    2015-01-15

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.

  6. The absorption and radiation of a tungsten plasma plume during nanosecond laser ablation

    SciTech Connect

    Moscicki, T. Hoffman, J.; Chrzanowska, J.

    2015-10-15

    In this paper, the effect of absorption of the laser beam and subsequent radiation on the dynamics of a tungsten plasma plume during pulsed laser ablation is analyzed. Different laser wavelengths are taken into consideration. The absorption and emission coefficients of tungsten plasma in a pressure range of 0.1–100 MPa and temperature up to 70 000 K are presented. The shielding effects due to the absorption and radiation of plasma may have an impact on the course of ablation. The numerical model that describes the tungsten target heating and the formation of the plasma and its expansion were made for 355 nm and 1064 nm wavelengths of a Nd:YAG laser. The laser beam with a Gaussian profile was focused to a spot size of 0.055 mm{sup 2} with a power density of 1 × 10{sup 9 }W/cm{sup 2} (10 ns full width half maximum pulse duration). The plasma expands into air at ambient pressure of 1 mPa. The use of the shorter wavelength causes faster heating of the target, thus the higher ablation rate. The consequences of a higher ablation rate are slower expansion and smaller dimensions of the plasma plume. The higher plasma temperature in the case of 1064 nm is due to the lower density and lower plasma radiation. In the initial phase of propagation of the plasma plume, when both the temperature and pressure are very high, the dominant radiation is emission due to photo-recombination. However, for a 1064 nm laser wavelength after 100 ns of plasma expansion, the radiation of the spectral lines is up to 46.5% of the total plasma radiation and should not be neglected.

  7. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    SciTech Connect

    Rufai, O. R. Bharuthram, R.; Singh, S. V. Lakhina, G. S.

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  8. A physical model of radiated enhancement of plasma-surrounded antenna

    SciTech Connect

    Gao, Xiaotian; Wang, Chunsheng Jiang, Binhao; Zhang, Zhonglin

    2014-09-15

    A phenomenon that the radiated power may be enhanced when an antenna is surrounded by a finite plasma shell has been found in numerical and experimental studies. In this paper, a physical model was built to express the mechanism of the radiated enhancement. In this model, the plasma shell is treated as a parallel connection of a capacitance and a conductance whose parameters change with the system parameters (plasma density, collision frequency, and antenna frequency). So, the radiated enhancement can be explained by the resonance between the plasma shell and the infinite free space. Furthermore, the effects of system parameters on the radiated power are given and effects corresponding to mechanisms are performed based on the physical model.

  9. Absorption spectroscopy of wire-array plasma at the non-radiative stage

    NASA Astrophysics Data System (ADS)

    Ivanov, V. V.; Hakel, P.; Mancini, R. C.; Wiewior, P.; Durmaz, T.; Anderson, A.; Astanovitskiy, A.; Chalyy, O.; Altemara, S. D.; Papp, D.; McKee, E.; Chittenden, J. P.; Niasse, N.; Shevelko, A. P.

    2010-11-01

    Absorption spectroscopy was applied to 1 MA wire-array Z-pinches. The 50 TW Leopard laser was coupled with the Zebra generator for x-ray backlighting of wire arrays. Wire-array plasmas were investigated at the ablation and implosion stages. Broadband x-ray radiation from a laser produced Sm plasma was used to backlight Al star wire arrays in the range of 7-9 å. Two time-integrated x-ray conical spectrometers recorded reference and main spectra. The backlighting radiation was separated from the powerful Z-pinch x-ray burst by collimators. A comparison of the backlighting radiation spectra that passed through the plasma with reference spectra indicates absorption lines in the range of 8.2-8.4 å. A plasma density profile was simulated with a 3D resistive MHD code. Simulations with atomic kinetics models derived an electron temperature of Al wire-array plasma.

  10. DIII-D Edge Plasma, Disruptions, and Radiative Processes. Final Report

    SciTech Connect

    Boedo, J. A.; Luckhardt, S.C.; Moyer, R. A.

    2001-01-01

    The scientific goal of the UCSD-DIII-D Collaboration during this period was to understand the coupling of the core plasma to the plasma-facing components through the plasma boundary (edge and scrape-off layer). To achieve this goal, UCSD scientists studied the transport of particles, momentum, energy, and radiation from the plasma core to the plasma-facing components under normal (e.g., L-mode, H-mode, and ELMs), and off-normal (e.g., disruptions) operating conditions.

  11. A Regulation of Tropical Climate by Radiative Cooling as Simulated in a Cumulus Ensemble Model

    NASA Technical Reports Server (NTRS)

    Sui, Chung-Hsiung; Lau, K.-M.; Li, X.; Chou, M.-D.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Responses of tropical atmosphere to low-boundary forcing are investigated in a 2-D cumulus ensemble model (CEM) with an imposed warm-pool and cold-pool SST contrast (deltaSST). The domain-mean vertical motion is constrained to produce heat sink and moisture source as in the observed tropical climate. In a series of experiments, the warm pool SST is specified at different values while the cold pool SST is specified at 26 C. The strength of the circulation increases with increasing deltaSST until deltaSST reaches 3.5 C, and remains unchanged as deltaSST exceeds 3.5 C. The regulation of tropical convection by zonal SST gradient is constrained by the radiative cooling over the cold pool. For deltaSST less than 3.5 C, an enhanced subsidence warming is balanced by a reduced condensation heating over the cold pool. For deltaSST greater than 3.5 C, the subsidence regime expands over the entire cold pool where no condensation heating exist so that a further enhanced subsidence warming can no longer be sustained. The above regulation mechanism is also evident in the change of energy at the top of the atmosphere (TOA) that is dominated by cloud and water vapor greenhouse effect (c (sub LW)) and G (sub clear). The change in shortwave radiation at TOA is largely cancelled between the warm pool and cold pool, likely due to the same imposed vertical motion in our experiments. For deltaSST less than 3.5 C, an increase of deltaSST is associated with a large increase in c (sub Lw) due to increased total clouds in response to enhanced SST-induced circulation. For deltaSST greater than 3.5 C, clouds over the warm pool decrease with increasing SST, and the change in c (sub LW) is much smaller. In both dSST regimes, the change in CLW is larger than the change in G(sub clear) which is slightly negative. However, in the case of uniform warming (deltaSST=0), DeltaG(sub clear), is positive, approximately 5 W per square meters per degree change of SST.

  12. Characterization of Iridium Coated Rhenium Used in High-Temperature, Radiation-Cooled Rocket Thrusters

    NASA Technical Reports Server (NTRS)

    Stulen, R. H.; Boehme, D. R.; Clift, W. M.; McCarty, K. F.

    1990-01-01

    Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re.

  13. Initial plasma formation by laser radiation acting on absorbing materials for a planar geometry of expansion of the plasma formed

    SciTech Connect

    Min'ko, L.Y.; Chivel', Y.A.; Chumakov, A.N.

    1985-01-01

    This work is concerned with the experimental studies of nonstationary processes of initial plasma formation as well as with the elucidation of the role of the erosion and air plasmas in the formation of the screening plasma flame. To this end, the authors performed complex experiments using high-speed shadow, photo and spectrographic methods, as well as the methods of photoelectric recording of the incident and reflected laser radiation together with time-referencing of the apparatus complex to within 20 nsec using a specially developed generator of synchronous electrical and light pulses. Specific measurements were performed primarily for determining the dependence of the time of the initial plasma formation and development of screening on the power density of the LR and the chemical composition of the plasma-forming material.

  14. On the Observation of Jitter Radiation in Solid-Density Laser-Plasma Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Keenan, Brett; Medvedev, Mikhail

    2015-11-01

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., ``sub-Larmor scales''. Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence, known as jitter radiation, has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, jitter radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  15. On the magnetic field signal radiated by an atmospheric pressure room temperature plasma jet

    SciTech Connect

    Wu, S.; Huang, Q.; Wang, Z.; Lu, X.

    2013-01-28

    In this paper, the magnetic field signal radiated from an atmospheric pressure room temperature plasma plume is measured. It's found that the magnetic field signal has similar waveform as the current carried by the plasma plume. By calibration of the magnetic field signal, the plasma plume current is obtained by measuring the magnetic field signal radiated by the plasma plume. In addition, it is found that, when gas flow modes changes from laminar regime to turbulence regime, the magnetic field signal waveforms appears different, it changes from a smooth curve to a curve with multiple spikes. Furthermore, it is confirmed that the plasma plume generated by a single electrode (without ground electrode) plasma jet device carries higher current than that with ground electrode.

  16. Dusty Plasma Modeling of the Fusion Reactor Sheath Including Collisional-Radiative Effects

    SciTech Connect

    Dezairi, Aouatif; Samir, Mhamed; Eddahby, Mohamed; Saifaoui, Dennoun; Katsonis, Konstantinos; Berenguer, Chloe

    2008-09-07

    The structure and the behavior of the sheath in Tokamak collisional plasmas has been studied. The sheath is modeled taking into account the presence of the dust{sup 2} and the effects of the charged particle collisions and radiative processes. The latter may allow for optical diagnostics of the plasma.

  17. Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field

    NASA Astrophysics Data System (ADS)

    Esaulov, A. A.; Bauer, B. S.; Makhin, V.; Siemon, R. E.; Lindemuth, I. R.; Awe, T. J.; Reinovsky, R. E.; Struve, K. W.; Desjarlais, M. P.; Mehlhorn, T. A.

    2008-03-01

    Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the “core-corona” behavior in which a heterogeneous Z -pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16eV . The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.

  18. Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field.

    PubMed

    Esaulov, A A; Bauer, B S; Makhin, V; Siemon, R E; Lindemuth, I R; Awe, T J; Reinovsky, R E; Struve, K W; Desjarlais, M P; Mehlhorn, T A

    2008-03-01

    Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.

  19. Comment on ''Scalings for radiation from plasma bubbles''[Phys. Plasmas 17, 056708 (2010)

    SciTech Connect

    Corde, S.; Stordeur, A.; Malka, V.

    2011-03-15

    Thomas has recently derived scaling laws for x-ray radiation from electrons accelerated in plasma bubbles, as well as a threshold for the self-injection of background electrons into the bubble [A. G. R. Thomas, Phys. Plasmas 17, 056708 (2010)]. To obtain this threshold, the equations of motion for a test electron are studied within the frame of the bubble model, where the bubble is described by prescribed electromagnetic fields and has a perfectly spherical shape. The author affirms that any elliptical trajectory of the form x{sup '2}/{gamma}{sub p}{sup 2}+y{sup '2}=R{sup 2} is solution of the equations of motion (in the bubble frame), within the approximation p{sub y}{sup '2}/p{sub x}{sup '2}<<1. In addition, he highlights that his result is different from the work of Kostyukov et al. [Phys. Rev. Lett. 103, 175003 (2009)], and explains the error committed by Kostyukov-Nerush-Pukhov-Seredov (KNPS). In this comment, we show that numerically integrated trajectories, based on the same equations than the analytical work of Thomas, lead to a completely different result for the self-injection threshold, the result published by KNPS [Phys. Rev. Lett. 103, 175003 (2009)]. We explain why the analytical analysis of Thomas fails and we provide a discussion based on numerical simulations which show exactly where the difference arises. We also show that the arguments of Thomas concerning the error of KNPS do not hold, and that their analysis is mathematically correct. Finally, we emphasize that if the KNPS threshold is found not to be verified in PIC (Particle In Cell) simulations or experiments, it is due to a deficiency of the model itself, and not to an error in the mathematical derivation.

  20. Cool in the Kitchen: Radiation, Conduction, and the Newton "Hot Block" Experiment.

    ERIC Educational Resources Information Center

    Silverman, Mark P.; Silverman, Christopher R.

    2000-01-01

    Discusses the history of the development of Newton's Law of Cooling. Describes an experiment conducted in the kitchen that is designed to test the rate of cooling of a hot block of iron. Finds that Newton's law does not represent very well the mechanism of heat loss. (Contains over 10 references.) (WRM)

  1. Analysis of the Solar Radiation Impact on Cooling Performance of the Absorption Chiller

    NASA Astrophysics Data System (ADS)

    Fedorčák, Pavol; Košičanová, Danica; Nagy, Richard; Mlynár, Peter

    2014-11-01

    Absorption cooling at low power is a new technology which has not yet been applied to current conditioning elements. This paper analyzes the various elements of solar absorption cooling. Individual states were simulated in which working conditions were set for the capability of solar absorption cooling to balance heat loads in the room. The research is based on an experimental device (absorption units with a performance of 10kW) developed at the STU in Bratislava (currently inputs and outputs of cold sources are being measured). Outputs in this paper are processed so that they connect the entire scheme of the solar absorption cooling system (i.e. the relationship between the solar systems hot and cold storage and the absorption unit). To determine the size of the storage required, calculated cooling for summer months is considered by the ramp rate of the absorption unit and required flow rate of the collectors.

  2. [Study of enhancement effect of laser-induced crater on plasma radiation].

    PubMed

    Chen, Jin-Zhong; Zhang, Xiao-Ping; Guo, Qing-Lin; Su, Hong-Xin; Li, Guang

    2009-02-01

    Single pulses exported from high-energy neodymium glass laser were used to act on the same position of soil sample surface repeatedly, and the plasma emission spectra generated from sequential laser pulse action were collected by spectral recording system. The experimental results show that the laser-induced soil plasma radiation was enhanced continuously under the confinement effect of the crater walls, and the line intensities and signal-to-background ratios both had different improvements along with increasing the number of acting pulses. The photographs of the plasma image and crater appearance were taken to study the plasma shape, laser-induced crater appearance, and the mass of the ablated sample. The internal mechanism behind that laser-induced crater enhanced plasma radiation was researched. Under the sequential laser pulse action, the forming plasma as a result enlarges gradually first, leading to distortion at the trail of plasma plume, and then, its volume diminishes slowly. And also, the color of the plasma changes from buff to white gradually, which implies that the temperature increases constantly. The laser-induced crater had a regular shape, that is, the diameter increased from its bottom to top gradually, thus forming a taper. The mass of the laser-ablated substance descends along with increasing the amount of action pulse. Atomization degree of vaporized substance was improved in virtue of the crater confinement effect, Fresnel absorption produced from the crater walls reflection, and the inverse bremsstrahlung, and the plasma radiation intensity was enhanced as a result.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Low-threshold generation of harmonics and hard x radiation in a laser plasma. 2. Multipeak generation

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kazakov, K. Kh

    1993-02-01

    The conditions for the generation of hard x radiation with a multipeak structure in a plasma pumped by a long pulse from a free-running CO2 laser at a low intensity (q≲10 GW/cm2) have been studied. This x-ray generation had been observed in a previous study by the present authors. It is shown that this generation of hard x radiation with a multipeak structure leads to a more than tenfold increase in the yield of hard x radiation per laser pulse, under optimum conditions. This increase results from the additional peaks in the x-ray signal. An explanation of this effect is proposed.

  4. Numerical investigation to study effect of radiation on thermal performance of radiator for onan cooling configuration of transformer

    NASA Astrophysics Data System (ADS)

    Chandak, V.; Paramane, S. B.; Veken, W. V. d.; Codde, J.

    2015-09-01

    In the present work, flow and temperature distribution in the radiator fins of a power transformer is studied numerically with conjugate heat transfer using commercial CFD software to study the effect of radiation on heat dissipation. The approach considered here is a complete 3D geometry of the radiator fins with average height of the flute geometry of the fins for meshing and computational time reduction. Simulations are performed for ONAN (Oil Natural Air Natural) case for one radiator configuration. The simulations also study the effect of radiation and its impact on the overall heat dissipation. These results would give a holistic picture of heat transfer phenomenon to the designers.

  5. Laser-plasma-accelerators—A novel, versatile tool for space radiation studies

    NASA Astrophysics Data System (ADS)

    Hidding, Bernhard; Königstein, Thomas; Willi, Oswald; Rosenzweig, James B.; Nakajima, Kazuhisa; Pretzler, Georg

    2011-04-01

    The potential of laser-plasma-based accelerator technology for future advanced space radiation studies is investigated. Laser-plasma accelerators have been shown to be capable of robust generation of particle beams such as electrons, protons, neutrons and ions, as well as photons, having a wide range of accessible parameters. Further, instead of maximum accelerating fields of the order of MV/m as in state-of-the-art accelerators, laser-plasma acceleration operates with fields up to TV/m and can thus be used to reach as yet inaccessible parameter regimes, but which are very relevant to space radiation studies. Due to their versatility and compactness, the same laser-plasma-accelerator can be used in university-scale labs to generate different kinds of particle and photon beams, each yielding up to kGy doses per shot, and allowing combinations of different kinds of radiation production simultaneously. Laser-plasma-accelerators provide the advantage of cost-effective radiation generation, thus ameliorating the current shortage of beam time for testing of radiation resistivity of electronic components. Beyond this, laser-plasma-accelerators can be used to reproduce certain aspects of space radiation, e.g. broad, decreasing multi-MeV-scale spectra, with substantially improved level of fidelity, as compared to state-of-the-art technology. This can increase the significance of electronic components testing, and in turn yield increased reliability and safety of future manned or unmanned space missions, high-altitude flights, as well as the electronic components used in harsh radiation environments in general. Laser-plasma-accelerators may therefore become indispensable tools for next-generation space radiation studies.

  6. Electron energy distribution in a helium plasma created by nuclear radiations

    NASA Technical Reports Server (NTRS)

    Lo, R. H.; Miley, G. H.

    1974-01-01

    An integral balance technique for calculation of the electron energy distribution in a radiation-induced plasma is described. Results predict W-values reasonably well and compare favorably with more complicated Monte-Carlo calculations. The distribution found differs from that in a normal electrical discharge and is of interest in radiation-pumped laser research.

  7. Investigation of pulsed X-ray radiation of a plasma focus in a broad energy range

    SciTech Connect

    Savelov, A. S. Salakhutdinov, G. Kh.; Koltunov, M. V.; Lemeshko, B. D.; Yurkov, D. I.; Sidorov, P. P.

    2011-12-15

    The results of the experimental investigations of the spectral composition of plasma focus X-ray radiation in the photon energy range of 1.5 keV-400 keV are presented. Three regions in the radiation spectrum where the latter is of a quasi-thermal nature with a corresponding effective temperature are distinguished.

  8. Performance of a silicon photovoltaic module under enhanced illumination and selective filtration of incoming radiation with simultaneous cooling

    SciTech Connect

    Maiti, Subarna; Vyas, Kairavi; Ghosh, Pushpito K.

    2010-08-15

    A promising option to reduce the cost of silicon photovoltaic systems is to concentrate the sunlight incident on the solar cells to increase the output power. However, this leads to higher module temperatures which affects performance adversely and may also cause long term damage. Proper cooling is therefore necessary to operate the system under concentrated radiation. The present work was undertaken to circumvent the problem in practical manner. A suitable liquid, connected to a heat exchanger, was placed in the housing of the photovoltaic module and unwanted wavelengths of solar radiation were filtered out to minimise overheating of the cells. The selection of the liquid was based on factors such as boiling point, transparency towards visible radiation, absorption of infrared and ultraviolet radiation, stability, flow characteristics, heat transfer properties, and electrical nonconductivity. Using a square parabolic type reflector, more than two fold increase in output power was realised on a clear sunny day employing a 0.13 m{sup 2} silicon solar module. Without the cooling arrangement the panel temperature rose uncontrollably. (author)

  9. Hot topic, warm loops, cooling plasma? Multithermal analysis of active region loops

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Christian, G. M.; Dhaliwal, R. S.; Brooks, D. H.

    2014-11-10

    We have found indications of a relationship between the differential emission measure (DEM) weighted temperature and the cross-field DEM width for coronal loops. The data come from the Hinode X-ray Telescope, the Hinode EUV Imaging Spectrometer, and the Solar Dynamics Observatory Atmospheric Imaging Assembly. These data show that cooler loops tend to have narrower DEM widths. If most loops observed by these instruments are composed of bundles of unresolved magnetic strands and are only observed in their cooling phase, as some studies have suggested, then this relationship implies that the DEM of a coronal loop narrows as it cools. This could imply that fewer strands are seen emitting in the later cooling phase, potentially resolving the long standing controversy of whether the cross-field temperatures of coronal loops are multithermal or isothermal.

  10. Hot Topic, Warm Loops, Cooling Plasma? Multithermal Analysis of Active Region Loops

    NASA Astrophysics Data System (ADS)

    Schmelz, J. T.; Pathak, S.; Brooks, D. H.; Christian, G. M.; Dhaliwal, R. S.

    2014-11-01

    We have found indications of a relationship between the differential emission measure (DEM) weighted temperature and the cross-field DEM width for coronal loops. The data come from the Hinode X-ray Telescope, the Hinode EUV Imaging Spectrometer, and the Solar Dynamics Observatory Atmospheric Imaging Assembly. These data show that cooler loops tend to have narrower DEM widths. If most loops observed by these instruments are composed of bundles of unresolved magnetic strands and are only observed in their cooling phase, as some studies have suggested, then this relationship implies that the DEM of a coronal loop narrows as it cools. This could imply that fewer strands are seen emitting in the later cooling phase, potentially resolving the long standing controversy of whether the cross-field temperatures of coronal loops are multithermal or isothermal.

  11. Design and analysis of a radiatively-cooled, inertially-driven nuclear generator system for space-based applications

    SciTech Connect

    Apley, W.J.

    1989-01-01

    The RING (Radiatively-Cooled, Inertially-Driven Nuclear Generator) radiator is proposed as a novel heat rejection system for advanced space reactor power applications in the 1 to 25 MW(t) range. The RING radiator system employs four counter-rotating, hollow, cylindrical, ring-shaped tubes filled with liquid lithium. The rings pass through a cavity heat exchanger, absorb heat, and then re-radiate that absorbed heat to space. Each ring is made of thin-walled, corrugated Nb-1%Zr tubing with external fins, segmented to minimize the consequence of coolant loss. To examine both the system transient and steady-state thermal hydraulic response, a set of detailed, analytical computer codes was developed (RINGSYS-System Thermal Hydraulics and Power Rating/RINGDYN-System Dynamics/RINGRAD-Radiation Damage and Void Gas Formation/RINGDATG-Data Handling). An additional code (TEMPEST) was obtained to examine the impact of augmented, internal ring convective heat transfer on overall system performance. Performance results and a cumulative uncertainty analysis including analytical, computational, property, and environmental condition errors are presented. The optimized radiator configuration at a cavity temperature of 1500 K results in a 3.3 MW(t) heat removal capacity at a minimum radiator weight ratio of 2.1 kg/kW(t); or a radiator weight ratio of 4.0 kg/kW(t) at a maximum achievable capacity of 5.6 MW(t). Despite a higher kg/kW(t) ratio than reported for other comparable temperature radiator designs, the concept is an attractive option for use with high-temperature reactors in high or geosynchronous earth orbit, specifically where the essential design criteria emphasize reliability, safety, and repairability. This dissertation also describes the confirmatory research, especially related to the material and thermal characteristics of key components, necessary to ensure successful RING radiator system deployment.

  12. Experimental observations and model calculations of impurity radiation in a plasma gun compact torus experiment

    SciTech Connect

    Goldenbaum, G.C.; Granneman, E.H.A.; Hartman, C.W.; Prono, D.S.; Taska, J.; Turner, W.C.

    1982-08-10

    Several types of radiation measurements were performed on the Beta II compact forms experiment. Among these are time integrated spectra ranging in wavelength from the vuv to the uv, time resolved bolometer measurements of radiation from the x-ray to the infrared, and time and wavelength resolved measurements of certain spectral lines. It is difficult to relate any one of these measurements to plasma parameters of interest such as temperature, density, or impurity content. In this report we compare the results of these, and other measurements with two simple models of the power balance in the plasma in order to estimate the effect of carbon and oxygen impurities on plasma lifetime.

  13. Strong field-induced frequency conversion of laser radiation in plasma plumes: recent achievements.

    PubMed

    Ganeev, R A

    2013-01-01

    New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV) radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG) spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications.

  14. On the Transport and Radiative Properties of Plasmas with Small-Scale Electromagnetic Fluctuations

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.

    Plasmas with sub-Larmor-scale ("small-scale") electromagnetic fluctuations are a feature of a wide variety of high-energy-density environments, and are essential to the description of many astrophysical/laboratory plasma phenomena. Radiation from particles, whether they be relativistic or non-relativistic, moving through small-scale electromagnetic turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation. The radiation, carrying information on the statistical properties of the turbulence, is also intimately related to the particle diffusive transport. We investigate, both theoretically and numerically, the transport of non-relativistic and transrelativistic particles in plasmas with high-amplitude isotropic sub-Larmor-scale magnetic turbulence---both with and without a mean field component---and its relation to the spectra of radiation simultaneously produced by these particles. Furthermore, the transport of particles through small-scale electromagnetic turbulence---under certain conditions---resembles the random transport of particles---via Coulomb collisions---in collisional plasmas. The pitch-angle diffusion coefficient, which acts as an effective "collision" frequency, may be substantial in these, otherwise, collisionless environments. We show that this effect, colloquially referred to as the plasma "quasi-collisionality", may radically alter the expected radiative transport properties of candidate plasmas. We argue that the modified magneto-optic effects in these plasmas provide an attractive, novel, diagnostic tool for the exploration and characterization of small-scale electromagnetic turbulence. Lastly, we speculate upon the manner in which quasi-collisions may affect inertial confinement fusion (ICF), and other laser-plasma experiments. Finally, we show that mildly relativistic jitter radiation, from laser-produced plasmas, may offer insight into the underlying electromagnetic turbulence. Here we investigate the

  15. Basic knowledge on radiative and transport properties to begin in thermal plasmas modelling

    SciTech Connect

    Cressault, Y.

    2015-05-15

    This paper has for objectives to present the radiative and the transport properties for people beginning in thermal plasmas. The first section will briefly recall the equations defined in numerical models applied to thermal plasmas; the second section will particularly deal with the estimation of radiative losses; the third part will quickly present the thermodynamics properties; and the last part will concern the transport coefficients (thermal conductivity, viscosity and electrical conductivity of the gas or mixtures of gases). We shall conclude the paper with a discussion about the validity of these results the lack of data for some specific applications, and some perspectives concerning these properties for non-equilibrium thermal plasmas.

  16. Strong Field-Induced Frequency Conversion of Laser Radiation in Plasma Plumes: Recent Achievements

    PubMed Central

    Ganeev, R. A.

    2013-01-01

    New findings in plasma harmonics studies using strong laser fields are reviewed. We discuss recent achievements in the growth of the efficiency of coherent extreme ultraviolet (XUV) radiation sources based on frequency conversion of the ultrashort pulses in the laser-produced plasmas, which allowed for the spectral and structural studies of matter through the high-order harmonic generation (HHG) spectroscopy. These studies showed that plasma HHG can open new opportunities in many unexpected areas of laser-matter interaction. Besides being considered as an alternative method for generation of coherent XUV radiation, it can be used as a powerful tool for various spectroscopic and analytical applications. PMID:23864818

  17. High-order harmonic generation of picosecond radiation of moderate intensity in laser plasma

    SciTech Connect

    Boltaev, G S; Ganeev, Rashid A; Kulagin, I A; Satlikov, N Kh; Usmanov, T

    2012-10-31

    The results of investigations into the generation of highorder harmonics (up to the 21st order) of picosecond ({tau} = 38 ps) Nd : YAG laser radiation in the plasma produced by laser ablation of metal and carbon-containing material surfaces are presented. We demonstrate the feasibility of generating high-order harmonics in the vacuum ultraviolet spectral range (with radiation wavelengths shorter than 120 nm) in plasmas with an efficiency of {approx}0.7 Multiplication-Sign 10{sup -4}. In carbon-containing plasma, the 7th harmonic intensity exceeded that of the 5th one by a factor of seven. (nonlinear optical phenomena)

  18. High-order harmonic generation of picosecond radiation of moderate intensity in laser plasma

    NASA Astrophysics Data System (ADS)

    Boltaev, G. S.; Ganeev, Rashid A.; Kulagin, I. A.; Satlikov, N. Kh; Usmanov, T.

    2012-10-01

    The results of investigations into the generation of highorder harmonics (up to the 21st order) of picosecond (τ = 38 ps) Nd : YAG laser radiation in the plasma produced by laser ablation of metal and carbon-containing material surfaces are presented. We demonstrate the feasibility of generating high-order harmonics in the vacuum ultraviolet spectral range (with radiation wavelengths shorter than 120 nm) in plasmas with an efficiency of ~0.7 × 10-4. In carbon-containing plasma, the 7th harmonic intensity exceeded that of the 5th one by a factor of seven.

  19. Temporal Characterization of Femtosecond Laser-Plasma-AcceleratedElectron Bunches using THz Radiation

    SciTech Connect

    van Tilborg, J.; Schroeder, C.B.; Filip, C.V.; Toth, Cs.; Geddes,C.G.R.; Fubiani, G.; Huber, R.; Kaindl, R.A.; Esarey, E.; Leemans, W.P.

    2005-07-12

    The temporal pro le of relativistic laser-plasma-acceleratedelectron bunches has been characterized. Coherent transition radiation atTHz frequencies, emitted at the plasma-vacuum boundary, is measuredthrough electro-optic sampling. The data indicates that THz radiation isemitted by a skewed bunch with a sub-50 fs rise time and a ~; 600 fs tail(half-width-at-half-maximum), consistent with ballistic debunching of 100percent-energy-spread beams. The measurement demonstrates bothshot-to-shot stability of the laser-plasma accelerator and femtosecondsynchronization between bunch and probe beam.

  20. The mechanism of the effect of a plasma layer with negative permittivity on the antenna radiation field

    SciTech Connect

    Wang, Chunsheng Liu, Hui; Jiang, Binhao; Li, Xueai

    2015-06-15

    A model of a plasma–antenna system is developed to study the mechanism of the effect of the plasma layer on antenna radiation. Results show a plasma layer with negative permittivity is inductive, and thus affects the phase difference between electric and magnetic fields. In the near field of antenna radiation, a plasma layer with proper parameters can compensate the capacitivity of the vacuum and enhance the radiation power. In the far field of antenna radiation, the plasma layer with negative permittivity increases the inductivity of the vacuum and reduces the radiation power.

  1. Argon plasma coagulation therapy for a hemorrhagic radiation-induced gastritis in patient with pancreatic cancer.

    PubMed

    Shukuwa, Kazutaka; Kume, Keiichiro; Yamasaki, Masahiro; Yoshikawa, Ichiro; Otsuki, Makoto

    2007-01-01

    Radiation-induced gastritis is a serious complication of radiation therapy for pancreatic cancer which is difficult to manage. A 79-year-old man had been diagnosed as having inoperable pancreatic cancer (stage IVa). We encountered this patient with hemorrhagic gastritis induced by external radiotherapy for pancreatic cancer that was well-treated using argon plasma coagulation (APC). After endoscopic treatment using APC, anemia associated with hemorrhagic radiation gastritis improved and required no further blood transfusion. PMID:17603236

  2. Polarization evolution of radiation in hot magnetized plasma with dissipation

    NASA Astrophysics Data System (ADS)

    Segre, S. E.; Zanza, V.

    2005-06-01

    A formalism is presented for the analysis of polarization evolution in a magnetized plasma with dissipation due to kinetic effects. Such a plasma in addition to the Faraday and Cotton-Mouton effects also presents dichroism, namely anisotropic absorption. As expected this effect is significant near the cyclotron harmonics.

  3. Polarization evolution of radiation in hot magnetized plasma with dissipation

    SciTech Connect

    Segre, S.E.; Zanza, V.

    2005-06-15

    A formalism is presented for the analysis of polarization evolution in a magnetized plasma with dissipation due to kinetic effects. Such a plasma in addition to the Faraday and Cotton-Mouton effects also presents dichroism, namely anisotropic absorption. As expected this effect is significant near the cyclotron harmonics.

  4. Laser plasma influence on the space-time structure of powerful laser radiation

    NASA Astrophysics Data System (ADS)

    Ananyin, O. B.; Bogdanov, G. S.; Vovchenko, E. D.; Gerasimov, I. A.; Kuznetsov, A. P.; Melekhov, A. P.

    2016-01-01

    This paper deals with the influence of laser plasma on the structure of the radiation field of a powerful Nd-glass laser with pulse energy up to 30 J and with the diameter of the output beam 45 mm. Laser plasma is generated by focusing the laser radiation on a low-density target such as nylon mesh and teflon or mylar films. Temporal profile of the laser pulse with a total duration of 25 ns consists of a several short pulse train. Duration of each pulse is about 2 ns. Notable smoothing of spatially non-uniform radiation structure was observed in the middle of the laser pulse.

  5. Experimental, theoretical and computational study of frequency upshift of electromagnetic radiation using plasma techniques

    SciTech Connect

    Joshi, C.

    1992-09-01

    This is a second year progress report on Experimental, Theoretical and Computational Study of Frequency Upshift of Electromagnetic Radiation Using Plasma Techniques.'' The highlights are: (I) Ionization fronts have been shown to frequency upshift e.m. radiation by greater than a factor 5. In the experiments, 33 GHz microwave radiation is upshifted to more than 175 GHz using a relativistically propagating ionization front created by a laser beam. (II) A Letter describing the results has been published in Physical Review Letters and an invited'' paper has been submitted to IEEE Trans. in Plasma Science.

  6. Sound Radiation from Moving Point-Like Charged Particles in Plasmas

    SciTech Connect

    Guio, P.; Miloch, W. J.; Pecseli, H. L.; Trulsen, J.

    2008-10-15

    The electrostatic potential and plasma density variations around a point-like charged object in a plasma flow are studied. These objects can represent small charged dust particles, for instance. The radiation patterns can be interpreted as the result of sound waves being radiated by the obstacle. For large electron to ion temperature ratios we find that radiation patterns develop for the sub-as well as the supersonic case. The results are illustrated by numerical simulations using a hybrid Particle In Cell (PIC) code, where the electrons are treated as an isothermal massless fluid, giving a nonlinear Poisson equation. The analytical results are in good agreement with the numerical simulations.

  7. Vacuum ultraviolet line radiation measurements of a shock-heated nitrogen plasma

    NASA Technical Reports Server (NTRS)

    Mcclenahan, J. O.

    1972-01-01

    Line radiation, in the wavelength region from 1040 to 2500 A from nitrogen plasmas, was measured at conditions typical of those produced in the shock layer in front of vehicles entering the earth's atmosphere at superorbital velocities. The radiation was also predicted with a typical radiation transport computer program to determine whether such calculations adequately model plasmas for the conditions tested. The results of the comparison show that the radiant intensities of the lines between 1040 and 1700 A are actually lower than are predicted by such computer models.

  8. ANTENNA RADIATION NEAR THE LOCAL PLASMA FREQUENCY BY LANGMUIR WAVE EIGENMODES

    SciTech Connect

    Malaspina, David M.; Cairns, Iver H.; Ergun, Robert E. E-mail: cairns@physics.usyd.edu.au

    2012-08-10

    Langmuir waves (LWs) in the solar wind are generated by electron beams associated with solar flares, interplanetary shock fronts, planetary bow shocks, and magnetic holes. In principle, LWs localized as eigenmodes of density fluctuations can emit electromagnetic (EM) radiation by an antenna mechanism near the local plasma frequency f{sub p} and twice the local plasma frequency. In this work, analytic expressions are derived for the radiated electric and magnetic fields and power generated near f{sub p} by LW eigenmodes. The EM wave power emitted near f{sub p} is predicted as a function of the eigenmode length scale L, maximum electric field, driving electron beam speed, and the ambient plasma density and temperature. The escape to a distant observer of f{sub p} radiation from a localized Langmuir eigenmode is also briefly explored as a function of the plasma conditions.

  9. Fine structure in plasma waves and radiation near the plasma frequency in Earth's foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1994-01-01

    Novel observations are presented of intrunsic fine structure in the frequency spectrum of electomagnetic (EM) radiation and plasma waves near the electron plasma frequency f(sub p) during a period of unusually high interplanetary magnetic field strength. Measured using the wideband receiver on the International Sun-Earth Explorer (ISEE) 1 spacecraft, fine-structured emissions are observed both in the solar wind and the foreshock, The fine structure is shown to correspond to emissions spaced above f(sub p) near half harmonies of the electon cyclotron frequency f(sub ce), i.e., near f(sub p) + nf(sub ce)/2. These appear to be the first space physics observations of emissions spaced by f(sub ce)/2. Indirect but strong arguments are used to discriminate between EM and electrostatic (ES) signals, to identify whether ISEE 1 is in the solar wind or the foreshock, and to determine the relative frequencies of the emissions and the local f(sub p). The data are consistent with generation of the ES and EM emissions in the foreshock, with subsequent propagation of the EM emissions into the solar wind. It remains possible that some emissions currently identified as ES have significant EM character. The ES and EM emisions often merge into one another with minimal changes in frequency, arguing that their source regions and generation mechanisms are related and imposing significant constraints on theories. The f(sub ce)/2 ES and EM fine structures observed may be intrinsic to the emission mechanisms or to superposition of two series of signals with f(sub ce) spacing that differ in starting frequency by f(sub ce)/2. Present theories for nonlinear wave coupling processes, cyclotron maser emission, and other linear instability processes are all unable to explain multiple EM and/or ES components spaced by approximately f(sub ce)/2 above f(sub p) for f(sub p)/f(sub ce) much greater than 1 and typical for shock beams parameters. Suitable avenues for further theoretical research are

  10. Statistical approach to studying radiation from multicharged ions in a plasma under coronal equilibrium conditions

    SciTech Connect

    Garanin, S. F.; Kravets, E. M.; Mamyshev, V. I.; Tokarev, V. A.

    2009-08-15

    Radiation spectra from a plasma with multicharged ions, z >> N >> 1(where z is the charge of an ion and N is the number of electrons in the ion) under coronal equilibrium conditions are considered in the quasiclassical approximation. In this case, the bremsstrahlung and recombination radiation can be described by simple quasiclassical formulas. The statistical model of an atom is used to study the high-frequency component of the line radiation spectra from ions ({h_bar}{omega} > I, where I is the ionization energy) that is produced in collisions of free plasma electrons with the electrons at deep levels of an ion and during radiative filling of the forming hole by electrons from higher levels (X-ray terms, characteristic radiation). The intensity of this high-frequency spectral component of the characteristic radiation coincides in order of magnitude with the bremsstrahlung and recombination radiation intensities. One of the channels of collisions of free electrons with a multicharged ion is considered that results in the excitation of the ion and in its subsequent radiative relaxation, which contributes to the low-frequency component of the line spectrum ({h_bar}{omega} < I). The total radiation intensity of this channel correlates fairly well with the results of calculating the radiation intensity from the multilevel coronal model. An analysis of the plasma behavior in the MAGO-IX experiment by two-dimensional MHD numerical simulations and a description of the experimental data from a DANTE spectrometer by the spectra obtained in this study shows that these experimental results cannot be explained if the D-T plasma is assumed to remain pure in the course of experiment. The agreement can be made better, how-ever, by assuming that the plasma is contaminated with impurities of copper and light elements from the wall.

  11. Photon-dominated regions around cool stars: The effects of the color temperature of the radiation field

    NASA Technical Reports Server (NTRS)

    Spaans, Marco; Tielens, A. G. G. M.; Dishoeck, Ewine F. Van; Bakes, E. L. O.

    1994-01-01

    We have investigated the influence of the color temperature of the illuminating radiation field on the chemical and thermal structure of photon-dominated regions (PDRs). We present the results of a study of the photoelectric efficiency of heating by large molecules such as polycyclic aromatic hydrocarbons (PAHs) and very small grains for radiation fields characterized by different effective temperatures. We show that the efficiency for cooler (T(sub eff) approximately = 6000-10,000 K) stars is at most an order of magnitude smaller than that for hotter (T(sub eff) approximately = 20,000-30,000 K) stars. While cooler radiation fields result in less ultraviolet photons capable of heating, the efficiency per absorbed photon is higher, because the grains become less positively charged. We also present detailed calculations of the chemistry and thermal balance for generic PDRs (n(sub 0) approximately = 10(exp 3), G(sub 0) approximately = 10(exp 3)). For cooler radiation fields, the H/H2 and C(+)/C/CO transition layers shift toward the surface of the PDR, because fewer photons are available to photodissociate H2 and CO and to ionize C. The dominant cooling lines are the (C II) 158 micron and the (O I) 63 micron lines for the hotter radiation fields, but cooling by CO becomes dominant for a color temperature of 6000 K or lower. The (C II)/CO and (O I)/CO ratios are found to be very good diagnostics for the color temperature of the radiation field.

  12. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    SciTech Connect

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatible with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.

  13. Evaluation of Cooling Conditions for a High Heat Flux Testing Facility Based on Plasma-Arc Lamps

    DOE PAGES

    Charry, Carlos H.; Abdel-khalik, Said I.; Yoda, Minami; Sabau, Adrian S.; Snead, Lance Lewis

    2015-07-31

    The new Irradiated Material Target Station (IMTS) facility for fusion materials at Oak Ridge National Laboratory (ORNL) uses an infrared plasma-arc lamp (PAL) to deliver incident heat fluxes as high as 27 MW/m2. The facility is being used to test irradiated plasma-facing component materials as part of the joint US-Japan PHENIX program. The irradiated samples are to be mounted on molybdenum sample holders attached to a water-cooled copper rod. Depending on the size and geometry of samples, several sample holders and copper rod configurations have been fabricated and tested. As a part of the effort to design sample holders compatiblemore » with the high heat flux (HHF) testing to be conducted at the IMTS facility, numerical simulations have been performed for two different water-cooled sample holder designs using the ANSYS FLUENT 14.0 commercial computational fluid dynamics (CFD) software package. The primary objective of this work is to evaluate the cooling capability of different sample holder designs, i.e. to estimate their maximum allowable incident heat flux values. 2D axisymmetric numerical simulations are performed using the realizable k-ε turbulence model and the RPI nucleate boiling model within ANSYS FLUENT 14.0. The results of the numerical model were compared against the experimental data for two sample holder designs tested in the IMTS facility. The model has been used to parametrically evaluate the effect of various operational parameters on the predicted temperature distributions. The results were used to identify the limiting parameter for safe operation of the two sample holders and the associated peak heat flux limits. The results of this investigation will help guide the development of new sample holder designs.« less

  14. Covering Materials Incorporating Radiation-Preventing Techniques to Meet Greenhouse Cooling Challenges in Arid Regions: A Review

    PubMed Central

    Abdel-Ghany, Ahmed M.; Al-Helal, Ibrahim M.; Alzahrani, Saeed M.; Alsadon, Abdullah A.; Ali, Ilias M.; Elleithy, Rabeh M.

    2012-01-01

    Cooling greenhouses is essential to provide a suitable environment for plant growth in arid regions characterized by brackish water resources. However, using conventional cooling methods are facing many challenges. Filtering out near infra-red radiation (NIR) at the greenhouse cover can significantly reduce the heating load and can solve the overheating problem of the greenhouse air. This paper is to review (i) the problems of using conventional cooling methods and (ii) the advantages of greenhouse covers that incorporate NIR reflectors. This survey focuses on how the cover type affects the transmittance of photosynthetically active radiation (PAR), the reflectance or absorptance of NIR and the greenhouse air temperature. NIR-reflecting plastic films seem to be the most suitable, low cost and simple cover for greenhouses under arid conditions. Therefore, this review discusses how various additives should be incorporated in plastic film to increase its mechanical properties, durability and ability to stand up to extremely harsh weather. Presently, NIR-reflecting covers are able to reduce greenhouse air temperature by no more than 5°C. This reduction is not enough in regions where the ambient temperature may exceed 45°C in summer. There is a need to develop improved NIR-reflecting plastic film covers. PMID:22629223

  15. Analysis of cooling effect by blood vessel on temperature rise due to ultrasound radiation in tissue phantom

    NASA Astrophysics Data System (ADS)

    Shimizu, Kazuma; Tsuchiya, Takenobu; Fukasawa, Kota; Hatano, Yuichi; Endoh, Nobuyuki

    2015-07-01

    Ultrasound diagnostic equipment using ultrasound pulse-echo techniques is considered minimally invasive and highly versatile. However, one of the causes of damage due to ultrasound radiation is temperature rise caused by the absorption of sound energy. Therefore, it is very important to estimate the temperature rise caused by the radiation of ultrasound. Sound intensity in a medium is analyzed by the finite-difference time-domain (FDTD) method, and the temperature distribution caused by sound is estimated by the heat conduction equation (HCE) method in this study. Because blood vessels keep the temperature constant in tissues, the cooling effect of blood flow has to be taken into account for the precise estimation of temperature rise in human tissues. In general, it is well known that capillary vessels are mainly responsible for the cooling effect in tissues and their effect can be estimated as a function of bloodstream ratio. In this paper, a preliminary study on the cooling effect by a large vessel is described for the precise estimation of temperature rise. Blood flow in blood vessels is analyzed using the Navier-Stokes equation. To confirm the precision of the numerical analysis, the results of the numerical analysis are compared with the experimental results using a soft tissue phantom.

  16. Radiative damping and electron beam dynamics in plasma-based accelerators.

    PubMed

    Michel, P; Schroeder, C B; Shadwick, B A; Esarey, E; Leemans, W P

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  17. Radiative damping and electron beam dynamics in plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Michel, P.; Schroeder, C. B.; Shadwick, B. A.; Esarey, E.; Leemans, W. P.

    2006-08-01

    The effects of radiation reaction on electron beam dynamics are studied in the context of plasma-based accelerators. Electrons accelerated in a plasma channel undergo transverse betatron oscillations due to strong focusing forces. These oscillations lead to emission by the electrons of synchrotron radiation, with a corresponding energy loss that affects the beam properties. An analytical model for the single particle orbits and beam moments including the classical radiation reaction force is derived and compared to the results of a particle transport code. Since the betatron amplitude depends on the initial transverse position of the electron, the resulting radiation can increase the relative energy spread of the beam to significant levels (e.g., several percent). This effect can be diminished by matching the beam into the channel, which could require micron sized beam radii for typical values of the beam emittance and plasma density.

  18. EFFECTS OF LASER RADIATION ON MATTER: Influence of the ambient air pressure on short-wavelength radiation from a laser plasma

    NASA Astrophysics Data System (ADS)

    Golovin, A. F.; Zemtsov, S. S.; Fedyushin, B. T.

    1991-12-01

    A detailed experimental investigation was made of the radiation from a plasma created on an aluminum target by a pulsed CO2 laser at different ambient gas pressures. Measurements were made of the energy and angular distribution of the radiation and of the efficiency of conversion of laser energy into reemitted plasma radiation. The intensity of this radiation was found to exhibit pressure-dependent pulsations. The maximum reflection of the laser radiation from the plasma was recorded at a pressure of ~ 40 Torr. An interpretation is given of the experimental data.

  19. Intestinal Microbiota Derived Metabolomic Blood Plasma Markers for Prior Radiation Injury

    PubMed Central

    Broin, Pilib Ó; Vaitheesvaran, Bhavapriya; Saha, Subhrajit; Hartil, Kirsten; Chen, Emily I.; Goldman, Devorah; Fleming, William Harv; Kurland, Irwin J.; Guha, Chandan; Golden, Aaron

    2014-01-01

    Purpose Assessing whole-body radiation injury and absorbed dose is essential for remediation efforts following accidental or deliberate exposure in medical, industrial, military, or terrorist incidents. We hypothesize that variations in specific metabolite concentrations extracted from blood plasma would correlate with whole-body radiation injury and dose. Methods and Materials Groups of C57BL/6 mice (n=12 per group) were exposed to 0 Gy, 2 Gy, 4 Gy, 8 Gy, and 10.4 Gy of whole-body γ-radiation. At 24 hours post treatment all animals were euthanized and both plasma and liver biopsies obtained - the latter being used to deconvolve a distinct hepatic radiation injury response within plasma. A semi-quantitative untargeted metabolites/lipid profiling using both GC/MS and LC/MS/MS platforms was performed and identified 354 biochemicals. A second set of C57BL/6 mice (n=6 per group) were used to assess a subset of identified plasma markers beyond 24 hours. Results We identified a cohort of 37 biochemical compounds in plasma that yielded the optimal separation of the irradiated sample groups, with the most correlated metabolites associated with pyrimidine (positively correlated) and tryptophan (negatively correlated) metabolism. The latter were predominantly associated with indole compounds, and there was evidence to indicate that these were also correlated between liver and plasma. No evidence of saturation as a function of dose was observed, as has been noted for studies involving metabolite analysis of urine. Conclusion Plasma profiling of specific metabolites related to the pyrimidine and tryptophan pathways can be used to differentiate whole-body radiation injury and dose response. As the tryptophan associated indole compounds have their origin in the intestinal microbiome and subsequently the liver, these metabolites in particular represent an attractive marker for radiation injury within blood plasma. PMID:25636760

  20. Intestinal Microbiota-Derived Metabolomic Blood Plasma Markers for Prior Radiation Injury

    SciTech Connect

    Ó Broin, Pilib; Vaitheesvaran, Bhavapriya; Saha, Subhrajit; Hartil, Kirsten; Chen, Emily I.; Goldman, Devorah; Fleming, William Harv; Kurland, Irwin J.; Guha, Chandan; Golden, Aaron

    2015-02-01

    Purpose: Assessing whole-body radiation injury and absorbed dose is essential for remediation efforts following accidental or deliberate exposure in medical, industrial, military, or terrorist incidents. We hypothesize that variations in specific metabolite concentrations extracted from blood plasma would correlate with whole-body radiation injury and dose. Methods and Materials: Groups of C57BL/6 mice (n=12 per group) were exposed to 0, 2, 4, 8, and 10.4 Gy of whole-body gamma radiation. At 24 hours after treatment, all animals were euthanized, and both plasma and liver biopsy samples were obtained, the latter being used to identify a distinct hepatic radiation injury response within plasma. A semiquantitative, untargeted metabolite/lipid profile was developed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry, which identified 354 biochemical compounds. A second set of C57BL/6 mice (n=6 per group) were used to assess a subset of identified plasma markers beyond 24 hours. Results: We identified a cohort of 37 biochemical compounds in plasma that yielded the optimal separation of the irradiated sample groups, with the most correlated metabolites associated with pyrimidine (positively correlated) and tryptophan (negatively correlated) metabolism. The latter were predominantly associated with indole compounds, and there was evidence that these were also correlated between liver and plasma. No evidence of saturation as a function of dose was observed, as has been noted for studies involving metabolite analysis of urine. Conclusions: Plasma profiling of specific metabolites related to pyrimidine and tryptophan pathways can be used to differentiate whole-body radiation injury and dose response. As the tryptophan-associated indole compounds have their origin in the intestinal microbiome and subsequently the liver, these metabolites particularly represent an attractive marker for radiation injury within blood plasma.

  1. Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations

    NASA Astrophysics Data System (ADS)

    Haus, R.; Kappel, D.; Arnold, G.

    2015-11-01

    A sophisticated radiative transfer model that considers absorption, emission, and multiple scattering by gaseous and particulate constituents over the broad spectral range 0.125-1000 μm is applied to calculate radiative fluxes and temperature change rates in the middle and lower atmosphere of Venus (0-100 km). Responses of these quantities to spectroscopic and atmospheric parameter variations are examined in great detail. Spectroscopic parameter studies include the definition of an optimum spectral grid for monochromatic calculations as well as comparisons for different input data with respect to spectral line databases, continuum absorption, line shape factors, and solar irradiance spectra. Atmospheric parameter studies are based on distinct variations of an initial model data set. Analyses of actual variations of the radiative energy budget using atmospheric features that have been recently retrieved from Venus Express data will be subject of a subsequent paper. The calculated cooling (heating) rates are very reliable at altitudes below 95 (85) km with maximum uncertainties of about 0.25 K/day. Heating uncertainties may reach 3-5 K/day at 100 km. Using equivalent Planck radiation as solar insolation source in place of measured spectra is not recommended. Cooling rates strongly respond to variations of atmospheric thermal structure, while heating rates are less sensitive. The influence of mesospheric minor gas variations is small, but may become more important near the cloud base and in case of episodic SO2 boosts. Responses to cloud mode 1 particle abundance changes are weak, but variations of other mode parameters (abundances, cloud top and base altitudes) may significantly alter radiative temperature change rates up to 50% in Venus' lower mesosphere and upper troposphere. A new model for the unknown UV absorber for two altitude domains is proposed. It is not directly linked to cloud particle modes and permits an investigation of radiative effects regardless of

  2. Mm-Wave Spectroscopy and Determination of the Radiative Branching Ratios of 11BH for Laser Cooling Experiments

    NASA Astrophysics Data System (ADS)

    Truppe, Stefan; Holland, Darren; Hendricks, Richard James; Hinds, Ed; Tarbutt, Michael

    2014-06-01

    We aim to slow a supersonic, molecular beam of 11BH using a Zeeman slower and subsequently cool the molecules to sub-millikelvin temperatures in a magneto-optical trap. Most molecules are not suitable for direct laser cooling because the presence of rotational and vibrational degrees of freedom means there is no closed-cycle transition which is necessary to scatter a large number of photons. As was pointed out by Di Rosa, there exists a class of molecules for which the excitation of vibrational modes is suppressed due to highly diagonal Franck-Condon factors. Furthermore, Stuhl et al. showed that angular momentum selection rules can be used to suppress leakage to undesired rotational states. Here we present a measurement of the radiative branching ratios of the A^1Π→ X^1Σ transition in 11BH - a necessary step towards subsequent laser cooling experiments. We also perform high-resolution mm-wave spectroscopy of the J'=1← J=0 rotational transition in the X^1Σ (v=0) state near 708 GHz. From this measurement we derive new, accurate hyper fine constants and compare these to theoretical descriptions. The measured branching ratios suggest that it is possible to laser cool 11BH molecules close to the recoil temperature of 4 μK using three laser frequencies only. M. D. Di Rosa, The European Physical Journal D, 31, 395, 2004 B. K. Stuhl et al., Physical Review Letters, 101, 243002, 2008

  3. Radiation shielding issues for MuCool test area at Fermilab

    SciTech Connect

    Rakhno, I.; Johnstone, C.; /Fermilab

    2005-03-01

    The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets being developed for cooling intense muon beams. In this study the origin of the outgoing collimated neutron beam is examined. An alternative shielding option for MTA is investigated as well as the hypothetical worst case of experimental setup is considered.

  4. Radiative decay of keV-mass sterile neutrinos in a strongly magnetized plasma

    NASA Astrophysics Data System (ADS)

    Dobrynina, Alexandra A.; Mikheev, Nicolay V.; Raffelt, Georg G.

    2014-12-01

    The radiative decay of sterile neutrinos with typical masses of 10 keV is investigated in the presence of a strong magnetic field and degenerate plasma. A full account is taken of the strongly modified photon dispersion relation relative to vacuum. The limiting cases of relativistic and nonrelativistic plasma are analyzed. The decay rate in a strongly magnetized plasma as a function of the electron number density is compared with the unmagnetized case. We find that a strong magnetic field suppresses the catalyzing influence of the plasma on the decay rate.

  5. Bursts of Terahertz Radiation from Large-Scale Plasmas Irradiated by Relativistic Picosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Liao, G. Q.; Li, Y. T.; Li, C.; Su, L. N.; Zheng, Y.; Liu, M.; Wang, W. M.; Hu, Z. D.; Yan, W. C.; Dunn, J.; Nilsen, J.; Hunter, J.; Liu, Y.; Wang, X.; Chen, L. M.; Ma, J. L.; Lu, X.; Jin, Z.; Kodama, R.; Sheng, Z. M.; Zhang, J.

    2015-06-01

    Powerful terahertz (THz) radiation is observed from large-scale underdense preplasmas in front of a solid target irradiated obliquely with picosecond relativistic intense laser pulses. The radiation covers an extremely broad spectrum with about 70% of its energy located in the high frequency regime over 10 THz. The pulse energy of the radiation is found to be above 1 0 0 μ J per steradian in the laser specular direction at an optimal preplasma scale length around 40 - 50 μ m . Particle-in-cell simulations indicate that the radiation is mainly produced by linear mode conversion from electron plasma waves, which are excited successively via stimulated Raman scattering instability and self-modulated laser wakefields during the laser propagation in the preplasma. This radiation can be used not only as a powerful source for applications, but also as a unique diagnostic of parametric instabilities of laser propagation in plasmas.

  6. Radiation damping effects on the interaction of ultraintense laser pulses with an overdense plasma.

    PubMed

    Zhidkov, A; Koga, J; Sasaki, A; Uesaka, M

    2002-05-01

    A strong effect of radiation damping on the interaction of an ultraintense laser pulse with an overdense plasma slab is found and studied via a relativistic particle-in-cell simulation including ionization. Hot electrons generated by the irradiation of a laser pulse with a radiance of I lambda(2)>10(22) W microm(2)/cm(2) and duration of 20 fs can convert more than 35% of the laser energy to radiation. This incoherent x-ray emission lasts for only the pulse duration and can be intense. The radiation efficiency is shown to increase nonlinearly with laser intensity. Similar to cyclotron radiation, the radiation damping may restrain the maximal energy of relativistic electrons in ultraintense-laser-produced plasmas.

  7. Radiative properties of a plasma moving across a magnetic field. I - Theoretical analysis. II - Numerical results

    NASA Technical Reports Server (NTRS)

    Roussel-Dupre, Robert; Miller, Ronald H.

    1993-01-01

    The early-time evolution of plasmas moving across a background magnetic field is addressed with a 2D model in which a plasma cloud is assumed to have formed instantaneously with a velocity across a uniform background magnetic field and with a Gaussian density profile in the two dimensions perpendicular to the direction of motion. This model treats both the dynamics associated with the formation of a polarization field and the generation and propagation of electromagnetic waves. In general, the results indicate that, to zeroth order, the plasma cloud behaves like a large dipole antenna oriented in the direction of the polarization field which oscillates at frequencies defined by the normal mode of the system. Radiation damping is shown to play an important role in defining the plasma cloud evolution, causing a rapid decay of the polarizaiton field and a loss of plasma kinetic energy and momentum on time scales comprable to several ion gyroperiods. Scaling laws are derived for the plasma momentum and energy loss rates, and predictions for the braking time, the amplitude and spectrum of the radiation field, and the total radiated power are presented for conditions relevant to the recent Combined Release and Radiation Effects Satellite experiments.

  8. Enhancing VHTR passive safety and economy with thermal radiation based direct reactor auxiliary cooling system

    SciTech Connect

    Zhao, H.; Zhang, H.; Zou, L.; Sun, X.

    2012-07-01

    One of the most important requirements for Gen. IV Very High Temperature Reactor (VHTR) is passive safety. Currently all the gas cooled version of VHTR designs use Reactor Vessel Auxiliary Cooling System (RVACS) for passive decay heat removal. The RVACS can be characterized as a surface-based decay heat removal system. It is especially suitable for smaller power reactors since small systems have relatively larger surface area to volume ratio. However, RVACS limits the maximum achievable power level for modular VHTRs due to the mismatch between the reactor power (proportional to the core volume) and decay heat removal capability (proportional to the vessel surface area). Besides the safety considerations, VHTRs also need to be economical in order to compete with other reactor concepts and other types of energy sources. The limit of decay heat removal capability set by using RVACS has affected the economy of VHTRs. A potential alternative solution is to use a volume-based passive decay heat removal system, called Direct Reactor Auxiliary Cooling Systems (DRACS), to remove or mitigate the limitation on decay heat removal capability. DRACS composes of natural circulation loops with two sets of heat exchangers, one on the reactor side and another on the environmental side. For the reactor side, cooling pipes will be inserted into holes made in the outer or inner graphite reflector blocks. There will be gaps or annular regions formed between these cooling pipes and their corresponding surrounding graphite surfaces. Graphite has an excellent heat conduction property. By taking advantage of this feature, we can have a volume-based method to remove decay heat. The scalability can be achieved, if needed, by employing more rows of cooling pipes to accommodate higher decay heat rates. Since heat can easily conduct through the graphite regions among the holes made for the cooling pipes, those cooling pipes located further away from the active core region can still be very

  9. Simulation of the Radiative Emission from Plasmas Based on LSP Particle-In-Cell Simulations

    NASA Astrophysics Data System (ADS)

    Macfarlane, Joseph; Golovkin, Igor; Woodruff, Pamela; Welch, Dale; Thoma, Carston; Witherspoon, Douglas

    2009-11-01

    Particle-in-cell (PIC) simulation codes are valuable tools in simulating the physical properties of plasmas in a wide variety of high energy density laboratory plasma experiments. Two examples of this are short-pulse laser experiments, which are used to study the fast ignition concept for inertial fusion, and plasma jet experiments, which are of interest to magnetic fusion and mageto-inertial fusion studies. The LSP code is a widely-used PIC simulation code that computes the detailed characteristics of electron and ion particle distributions in such experiments. To compute the radiative emission characteristics of plasmas based on PIC simulation predictions, we use the SPECT3D multi-dimensional collisional-radiative package to generate high-resolution spectra and images which can be compared with experimental measurements. SPECT3D includes the effects of energetic particles (including relativistic electrons) in computing non-LTE atomic level populations, emergent spectra, and images for the target plasma. We will present results for the radiative characteristics of plasmas created in short-pulse laser and plasma jet experiments.

  10. Development of Laser Plasma X-ray Microbeam Irradiation System and Radiation Biological Application

    NASA Astrophysics Data System (ADS)

    Sato, Katsutoshi; Nishikino, Masaharu; Numasaki, Hodaka; Kawachi, Tetsuya; Teshima, Teruki; Nishimura, Hiroaki

    Laser plasma x-ray source has the features such as ultra short pulse, high brilliance, monochromaticity, and focusing ability. These features are excellent compared with conventional x-ray source. In order to apply the laser plasma x-ray source to the biomedical study and to more closely research the radiobilogical responce of the cancer cell such as radiation induced bystander effect, we have developed x-ray microbeam system using laser plasma x-ray source. The absorbed dose of laser plasma x-ray was estimated with Gafchromic EBT film and DNA double strand breaks on the cells were detected by immunofluorescence staining. When the cells were irradiated with laser plasma x-ray, the circular regions existing γ-H2AX positive cells were clearly identified. The usefulness of the laser plasma x-ray on the radiobiological study was proved in this research.

  11. Theoretical foundations of detection of terahertz radiation in laser-plasma interactions

    SciTech Connect

    Frolov, A. A.

    2013-02-15

    A theory is developed enabling one to calculate the temporal profile and spectrum of a terahertz wave packet from the energy of the second harmonic of optical radiation generated during the nonlinear interaction between terahertz and circularly polarized laser pulses in the skin layer of an overdense plasma. It is shown that the spectral and temporal characteristics of the envelope of the second harmonic of optical radiation coincide with those of the terahertz pulse only at small durations of the detecting laser radiation. For long laser pulses, the temporal profile and spectrum of the second harmonic are mainly determined by the characteristics of optical radiation at the carrier frequency.

  12. Reception of longitudinal vector potential radiation with a plasma antenna

    SciTech Connect

    Zimmerman, Robert K. Jr.

    2013-07-28

    To help resolve the long-running debate between physicists and engineers regarding the existence of the magnetic vector potential, herewith we describe an experiment demonstrating reception of time-harmonic vector potential radiation at 1.3 GHz.

  13. Influence of radiation field on Non-LTE Xe plasmas

    NASA Astrophysics Data System (ADS)

    Klapisch, Marcel; Busquet, Michel

    2011-10-01

    Several experiments, and simulations of Xe were recently reported, due to the possibility of simulating scaled radiative shocks. Extensive and systematic detailed computations using HULLAC were performed for Te around 100eV and several densities, with initial conditions far or near LTE. The radiation is described as a Planckian at Trad multiplied by a dilution factor D. In each case, D is varied between 0 and 3 for Trad=Te, and Trad is varied from 0 to Te*1.5 with D=1. We show that in some cases, the dilution factor has more influence on the average charge Z* than the ratio Trad/Te, Taking into account radiation field is very important for evaluating Z* and non-LTE opacities. We thank the Center for Radiative Shocks (CRASH) of University of Michigan for partial support under a cooperation agreement No. DE-FC52-08NA28616.

  14. Jet-Cooled Spectroscopy on the Ailes Infrared Beamline of the Synchrotron Radiation Facility Soleil

    NASA Astrophysics Data System (ADS)

    Georges, Robert

    2015-06-01

    The Advanced Infrared Line Exploited for Spectroscopy (AILES) extracts the bright far infrared (FIR) synchrotron continuum of the third generation radiation facility SOLEIL. This beamline is equipped with a high resolution (10-3 cm-1) Bruker IFS125 Fourier transform spectrometer which can be operated in the FIR but also in the mid and near infrared by using its internal conventional sources. The jet-AILES consortium (IPR, PhLAM, MONARIS, SOLEIL) has implemented a supersonic-jet apparatus on the beamline to record absorption spectra at very low temperature (5-50 K) and in highly supersaturated gaseous conditions. Heatable slit-nozzles of various lengths and widths are used to set properly the stagnation conditions. A mechanical pumping (roots pumps) was preferred for its ability to evacuate important mass flow rates and therefore to boost the experimental sensitivity of the set-up, the counterpart being a non-negligible consumption of both carrier (argon, helium or nitrogen) and spectroscopic gases. Various molecular systems were investigated up to now using the Jet-AILES apparatus. The very low temperature achieved in the gas expansion was either used to simplify the rotation-vibration structure of monomers, such as SF6, CF4 or naphthalene, or to stabilize the formation of weakly bonded molecular complexes such as the trimer of HF or the dimer of acetic acid. The nucleation of water vapor and the nuclear spin conversion of water were also investigated under free-jet conditions in the mid infrared. High-resolution spectroscopy and analysis of the νb{2} + νb{3} combination band of SF6 in a supersonic jet expansion. V. Boudon, P. Asselin, P. Soulard, M. Goubet, T. R. Huet, R. Georges, O. Pirali, P. Roy, Mol. Phys. 111, 2154-2162 (2013) The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations. O. Pirali, M. Goubet, T.R. Huet, R. Georges, P. Soulard, P. Asselin, J. Courbe, P. Roy and M

  15. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  16. Calculating the radiation characteristics of accelerated electrons in laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Li, X. F.; Yu, Q.; Gu, Y. J.; Qu, J. F.; Ma, Y. Y.; Kong, Q.; Kawata, S.

    2016-03-01

    In this paper, we studied the characteristics of radiation emitted by electrons accelerated in a laser-plasma interaction by using the Lienard-Wiechert field. In the interaction of a laser pulse with a underdense plasma, electrons are accelerated by two mechanisms: direct laser acceleration (DLA) and laser wakefield acceleration (LWFA). At the beginning of the process, the DLA electrons emit most of the radiation, and the DLA electrons emit a much higher peak photon energy than the LWFA electrons. As the laser-plasma interaction progresses, the LWFA electrons become the major radiation emitter; however, even at this stage, the contribution from DLA electrons is significant, especially to the peak photon energy.

  17. Finite Element Simulation Code for Computing Thermal Radiation from a Plasma

    NASA Astrophysics Data System (ADS)

    Nguyen, C. N.; Rappaport, H. L.

    2004-11-01

    A finite element code, ``THERMRAD,'' for computing thermal radiation from a plasma is under development. Radiation from plasma test particles is found in cylindrical geometry. Although the plasma equilibrium is assumed axisymmetric individual test particle excitation produces a non-axisymmetric electromagnetic response. Specially designed Whitney class basis functions are to be used to allow the solution to be solved on a two-dimensional grid. The basis functions enforce both a vanishing of the divergence of the electric field within grid elements where the complex index of refraction is assumed constant and continuity of tangential electric field across grid elements while allowing the normal component of the electric field to be discontinuous. An appropriate variational principle which incorporates the Sommerfeld radiation condition on the simulation boundary, as well as its discretization by the Rayleigh-Ritz technique is given. 1. ``Finte Element Method for Electromagnetics Problems,'' Volakis et al., Wiley, 1998.

  18. A simplified analytical solution for thermal response of a one-dimensional, steady state transpiration cooling system in radiative and convective environment

    NASA Technical Reports Server (NTRS)

    Kubota, H.

    1976-01-01

    A simplified analytical method for calculation of thermal response within a transpiration-cooled porous heat shield material in an intense radiative-convective heating environment is presented. The essential assumptions of the radiative and convective transfer processes in the heat shield matrix are the two-temperature approximation and the specified radiative-convective heatings of the front surface. Sample calculations for porous silica with CO2 injection are presented for some typical parameters of mass injection rate, porosity, and material thickness. The effect of these parameters on the cooling system is discussed.

  19. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    PubMed

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed.

  20. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    PubMed

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. PMID:27085689

  1. Radiation emission from ultra-relativistic plasma electrons in short-intense laser light interactions

    NASA Astrophysics Data System (ADS)

    Ondarza-Rovira, R.; Boyd, TJM

    2016-05-01

    Intense femtosecond laser light incident on overcritical density plasmas has shown to emit a prolific number of high-order harmonics of the driver frequency, with spectra characterised by power-law decays. When the laser pulse is p-polarised, plasma effects do modify the harmonic spectrum, weakening the so-called universal decay index p = 8/3 to 5/3. In this work appeal is made to a single particle radiation model in support of the predictions from particle-in-cell (PIC) simulations. Using these, we further show that the emission radiated by electrons -those that are relativistically accelerated inside the plasma, after being expelled into vacuum, the so-called Brunel electrons- is characterised not only by the plasma line but also by ultraviolet harmonic orders characterised by the 5/3 decay index.

  2. Evaluation of the NightCool Nocturnal Radiation Cooling Concept: Annual Performance Assessment in Scale Test Buildings Stage Gate 1B

    SciTech Connect

    Parker, Danny S.; Sherwin, John R.

    2008-03-01

    In this report, data is presented on the long-term comparative with all of NightCool system fully operational, with circulating fans when attic conditions are favorable for nocturnal cooling and with conventional air conditioning at other times. Data is included for a full year of the cooling season in Central Florida, which stretches from April to November of 2007.

  3. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Effect of compression of a laser plasma on the generation of harmonics and hard x radiation

    NASA Astrophysics Data System (ADS)

    Apollonov, V. V.; Derzhavin, S. I.; Kazakov, K. Kh

    1993-02-01

    A compression of a plasma produced at a conical target by a low-intensity beam (q≲10 GW/cm2) from a CO2 laser has been studied. The effect of this compression on the onset of the parametric instability responsible for the generation of harmonics and of hard x radiation has also been studied. A qualitative interpretation of the results is offered.

  4. Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna

    NASA Astrophysics Data System (ADS)

    Choe, Yun-Sik; Hao, Zuoqiang; Lin, Jingquan

    2015-06-01

    A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg, and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.

  5. Radiation characteristics of femtosecond laser-induced plasma channel Vee antenna

    SciTech Connect

    Choe, Yun-Sik; Hao, Zuoqiang; Lin, Jingquan

    2015-06-15

    A virtual reconfigurable plasma Vee antenna consisting of a set of laser plasma filaments produced by femtosecond laser pulses in air is investigated in this paper. The calculation results show that radiation pattern becomes more complex and gain shows initially rapid rise but gradually saturate as the leg length increases, but the pattern and gain are not seriously affected by the plasma conductivity; particularly, the gain of the Vee antenna with plasma conductivity σ = 100S/m can reach about 80% of that of a copper antenna. Radiation efficiency of the antenna has shown a strong dependence on radius of the antenna leg, and an efficiency of 65%, considered to have a proper performance, can be obtained with the channel radius of about 10 mm. Apex angle variation can lead to significant change of the radiation pattern and influence the gain; the best apex angle corresponding to maximal gain and good directivity for the third resonance antenna leg length is found to be at 74° at 600 MHz and σ = 100 S/m. The calculation has shown that at terawatt laser power level, the plasma channel conductivity is close to that of conventional plasma antenna, and peak gain of the Vee antenna is more than 8 dB with a good directivity. In addition, the radiation pattern of special Vee antennas with apex angle 180°-dipole antennas, for first and third resonance leg lengths, is compared and underneath physics of the difference is given. The laser-induced plasma channel antenna is especially suitable for achieving good directivity and gain, which has advantage over conventional plasma antenna with gas discharge tube or metal antenna.

  6. Discovery of cometary kilometric radiations and plasma waves at Comet Halley

    NASA Astrophysics Data System (ADS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1986-05-01

    The plasma-wave probe carried by the spacecraft Sakigake discovered discrete spectra of emissions from comet Halley in the frequency range 30 - 195 kHz. The observed cometary kilometric radiation appears to come from moving shocks in the coma region which are possibly associated with temporal variations of the solar wind. Waves due to plasma instabilities associated with the pick-up of cometary ions by the solar wind were observed within a region almost 107km from the comet nucleus.

  7. Radiative transitions of excited ions moving slowly in plasmas

    SciTech Connect

    Hu, Hongwei Chen, Wencong; Li, Peng; Zhao, Yongtao; Zhou, Xianming; Li, Zhen; Li, Fuli; Dong, Chenzhong

    2014-12-15

    The electric dipole transitions of excited ions moving slowly in plasmas are studied. The results show that some transitions forbidden for excited ions at rest become allowed for moving excited ions. The transition rates change with varying speed of the ions. Forbidden transitions are strongly influenced by the speed, non-forbidden transitions are weakly influenced.

  8. Electromagnetic Radiation in the Plasma Environment Around the Shuttle

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Ferguson, Dale C.

    1995-01-01

    As part of the SAMPIE (The Solar Array Module Plasma Interaction Experiment) program, the Langmuir probe (LP) was employed to measure plasma characteristics during the flight STS-62. The whole set of data could be divided into two parts: (1) low frequency sweeps to determine voltage-current characteristics and to find electron temperature and number density; (2) high frequency turbulence (HFT dwells) data caused by electromagnetic noise around the shuttle. The broadband noise was observed at frequencies 250-20,000 Hz. Measurements were performed in ram conditions; thus, it seems reasonable to believe that the influence of spacecraft operations on plasma parameters was minimized. The average spectrum of fluctuations is in agreement with theoretical predictions. According to purposes of SAMPIE, the samples of solar cells were placed in the cargo bay of the shuttle, and high negative bias voltages were applied to them to initiate arcing between these cells and surrounding plasma. The arcing onset was registered by special counters, and data were obtained that included the amplitudes of current, duration of each arc, and the number of arcs per one experiment. The LP data were analyzed for two different situations: with arcing and without arcing. Electrostatic noise spectra for both situations and theoretical explanation of the observed features are presented in this report.

  9. Observation of Low-Frequency Electromagnetic Radiation from Laser-Plasmas

    NASA Astrophysics Data System (ADS)

    Kando, Masaki; Kawase, Keigo; Daito, Izuru; Pirozhkov, Alexander S.; Esirkepov, Timur Zh.; Fukuda, Yuji; Kotaki, Hideyuki; Kameshima, Takashi; Faenov, Anatoly Ya.; Pikuz, Tatiana A.; Bulanov, Sergei V.

    2009-07-01

    When an intense short laser pulse interacts with plasmas, the nonlinear interaction causes various phenomena such as high energy particle generation, strong radiation in the x-ray to THz frequency range. Formation of solitons is one of these interesting topics and has been studied mainly from theoretical aspects. Solitons are formed in an underdense plasma in the process of the laser pulse frequency downshift. They store a portion of the EM wave energy with the polarization inherited from the laser pulse-driver and emit it at the plasma-vacuum interface in the form of low frequency EM bursts. Solitons were observed experimentally by proton-beam imaging and in the visible-near-infrared emissions from the plasma. A low frequency EM radiation emission has also been observed in our experiments. The interpretation invokes the relativistic electromagnetic solitons. We present the results of the polarization-resolved measurements of low frequency radiation from the plasma region irradiated by the intense laser pulse. A dominant component of the observed THz radiation has the same polarization as the driver laser pulse.

  10. Integration of Acoustic Radiation Force and Optical Imaging for Blood Plasma Clot Stiffness Measurement

    PubMed Central

    Wang, Caroline W.; Perez, Matthew J.; Helmke, Brian P.; Viola, Francesco; Lawrence, Michael B.

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood’s transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  11. Integration of acoustic radiation force and optical imaging for blood plasma clot stiffness measurement.

    PubMed

    Wang, Caroline W; Perez, Matthew J; Helmke, Brian P; Viola, Francesco; Lawrence, Michael B

    2015-01-01

    Despite the life-preserving function blood clotting serves in the body, inadequate or excessive blood clot stiffness has been associated with life-threatening diseases such as stroke, hemorrhage, and heart attack. The relationship between blood clot stiffness and vascular diseases underscores the importance of quantifying the magnitude and kinetics of blood's transformation from a fluid to a viscoelastic solid. To measure blood plasma clot stiffness, we have developed a method that uses ultrasound acoustic radiation force (ARF) to induce micron-scaled displacements (1-500 μm) on microbeads suspended in blood plasma. The displacements were detected by optical microscopy and took place within a micro-liter sized clot region formed within a larger volume (2 mL sample) to minimize container surface effects. Modulation of the ultrasound generated acoustic radiation force allowed stiffness measurements to be made in blood plasma from before its gel point to the stage where it was a fully developed viscoelastic solid. A 0.5 wt % agarose hydrogel was 9.8-fold stiffer than the plasma (platelet-rich) clot at 1 h post-kaolin stimulus. The acoustic radiation force microbead method was sensitive to the presence of platelets and strength of coagulation stimulus. Platelet depletion reduced clot stiffness 6.9 fold relative to platelet rich plasma. The sensitivity of acoustic radiation force based stiffness assessment may allow for studying platelet regulation of both incipient and mature clot mechanical properties. PMID:26042775

  12. Reconstruction of plasma radiation features from projections measured with two bolometer arrays

    SciTech Connect

    Schivell, J.

    1986-09-01

    A specialized method has been developed to maximize the two-dimensional detail obtained from two perpendicular bolometer arrays. The technique relies on the assumption that poloidal variations exists only near the plasma surface. The cross section is divided into appropriate zones, and the emittance is reconstructed by a numerical method. The position, intensity, and width of large features are clearly displayed. A marfe is tracked as it drifts around the plasma and evolves into a radiating shell detached from the limiter. A central peak, plus inner-wall radiating layer, plus a marfe appear in a high-density case reached by pellet injection.

  13. Control over the radiation spectrum of a microwave plasma relativistic oscillator

    SciTech Connect

    Bogdankevich, I. L.; Loza, O. T.; Pavlov, D. A.

    2009-03-15

    General features of the operation of microwave oscillators based on the Cherenkov resonance interaction of a high-current relativistic electron beam with a preformed plasma are considered. Emphasis is placed on the presence of longitudinal modes of the plasma-beam resonator that make it possible to tune the radiation frequency. Methods by which the radiation frequency can be varied severalfold continuously or in discrete controlled steps and the width of the spectrum of simultaneously generated frequencies can be changed substantially are described. The results of numerical simulations are compared with available experimental data.

  14. Living with a Red Dwarf Star: Radiation and Plasma Environments of Hosted Planets

    NASA Astrophysics Data System (ADS)

    Guinan, Edward F.; Engle, S. G.; Ribas, I.; Schulze-Makuch, D.; McCook, G. P.

    2007-05-01

    Red Dwarf (dM) stars are the most numerous stars in our Galaxy. These cool, faint and low mass stars make up > 75% of all stars. Also dM stars have extremely long life times >50-100 Gyr. Determining the number of red dwarfs with planets and assessing planetary habitability (a planet’s potential to develop and sustain life) is critically important because such studies would indicate how common life is in the universe. Our program - Living with a Red Dwarf - addresses these questions by investigating the long-term nuclear evolution and magnetic-dynamo coronal and chromospheric X-ray to Ultraviolet properties of red dwarf stars with widely different ages. The major focus of the program is to study the magnetic-dynamo generated coronal and chromospheric X-ray-Ultraviolet emissions and flare properties. Also studied is how the stellar emissions and winds affect hosted planets and impact on their habitability. For this program we have selected 15 nearby dM0-5 star as proxies for dM-stars of different ages to characterize their radiation and high energy plasma properties. We are constructing irradiance tables (X-UV fluxes) that are used to model the effects of XUV radiation on planetary atmospheres and on possible life on planetary surfaces. Despite the earlier pessimistic view that red dwarfs stars are not suitable environments for habitable planets mainly because their low luminosities require a host planet to orbit quite close (r <0.3 AU) to be warm enough to support life. Our initial study shows that red dwarf stars (at least stars hotter than dM5) can be suitable as hosts for habitable planets. This research is supported by grants from NASA/FUSE (NNX06AD38G) and NSF (AST-0507542 & AST-0507536) which we gratefully acknowledge. The “Living with a Red Dwarf Star” Program is on the web at: http://astronomy.villanova.edu/livingwithareddwarf/Opener.htm

  15. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock.

    PubMed

    Richardson, John D; Kasper, Justin C; Wang, Chi; Belcher, John W; Lazarus, Alan J

    2008-07-01

    The solar wind blows outward from the Sun and forms a bubble of solar material in the interstellar medium. The termination shock occurs where the solar wind changes from being supersonic (with respect to the surrounding interstellar medium) to being subsonic. The shock was crossed by Voyager 1 at a heliocentric radius of 94 au (1 au is the Earth-Sun distance) in December 2004 (refs 1-3). The Voyager 2 plasma experiment observed a decrease in solar wind speed commencing on about 9 June 2007, which culminated in several crossings of the termination shock between 30 August and 1 September 2007 (refs 4-7). Since then, Voyager 2 has remained in the heliosheath, the region of shocked solar wind. Here we report observations of plasma at and near the termination shock and in the heliosheath. The heliosphere is asymmetric, pushed inward in the Voyager 2 direction relative to the Voyager 1 direction. The termination shock is a weak, quasi-perpendicular shock that heats the thermal plasma very little. An unexpected finding is that the flow is still supersonic with respect to the thermal ions downstream of the termination shock. Most of the solar wind energy is transferred to the pickup ions or other energetic particles both upstream of and at the termination shock.

  16. Energy Distribution of Electrons in Radiation Induced-Helium Plasmas. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Lo, R. H.

    1972-01-01

    Energy distribution of high energy electrons as they slow down and thermalize in a gaseous medium is studied. The energy distribution in the entire energy range from source energies down is studied analytically. A helium medium in which primary electrons are created by the passage of heavy-charged particles from nuclear reactions is emphasized. A radiation-induced plasma is of interest in a variety of applications, such as radiation pumped lasers and gaseous core nuclear reactors.

  17. On the thermal stability of a radiating plasma subject to nonlocal thermal conduction. I - Linear analysis

    NASA Technical Reports Server (NTRS)

    Chun, E.; Rosner, R.

    1993-01-01

    We study the linear stability of an optically thin uniform radiating plasma subject to nonlocal heat transport. We derive the dispersion relation appropriate to this problem, and the marginal wavenumbers for instability. Our analysis indicates that nonlocal heat transport acts to reduce the stabilizing influence of thermal conduction, and that there are critical values for the electron mean free path such that the plasma is always unstable. Our results may be applied to a number of astrophysical plasmas, one such example being the halos of clusters of galaxies.

  18. Anisotropic radiative transfer problem in optically thick, strongly magnetized plasma: A comparison of results

    SciTech Connect

    Pavlov, G.G.; Shibanov, Y.A.; Silantev, N.A.; Nagel, W.

    1985-04-01

    Recently developed methods for solving the coherent radiative transferproblem in a strongly magnetized plasma are compared and analyzed for the caseof a semi-infinite, homogeneous plasma with the magnetic field perpendicular to the surface. The work of Meszaros and Bonazzola is shown to contain some errors. The accuracy of numerical methods proposed by Silant'ev and Nagel is investigated for various plasma parameters and photon energies. The coupled diffusion approximation developed by Nagel and Kaminker et al. appears to give quite satisfactory results and seems to be more efficient in many cases than direct numerical methods.

  19. Characteristic measurements of silicon dioxide aerogel plasmas generated in a Planckian radiation environment

    SciTech Connect

    Dong Quanli; Wang Shoujun; Li Yutong; Zhang Yi; Zhao Jing; Wei Huigang; Shi Jianrong; Zhao Gang; Zhang Jiyan; Gu Yuqiu; Ding Yongkun; Wen Tianshu; Zhang Wenhai; Hu Xin; Liu Shenye; Zhang Lin; Tang Yongjian; Zhang Baohan; Zheng Zhijian; Nishimura, Hiroaki

    2010-01-15

    The temporally and spatially resolved characteristics of silicon dioxide aerogel plasmas were studied using x-ray spectroscopy. The plasma was generated in the near-Planckian radiation environment within gold hohlraum targets irradiated by laser pulses with a total energy of 2.4 kJ in 1 ns. The contributions of silicon ions at different charge states to the specific components of the measured absorption spectra were also investigated. It was found that each main feature in the absorption spectra of the measured silicon dioxide aerogel plasmas was contributed by two neighboring silicon ionic species.

  20. Microscopic nonlinear relativistic quantum theory of absorption of powerful x-ray radiation in plasma.

    PubMed

    Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F

    2015-10-01

    The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.

  1. Short pulse, high power microwave radiation source with a laser-induced sheet plasma mirror

    SciTech Connect

    Higashiguchi, Takeshi; Yugami, Noboru

    2009-05-01

    We have demonstrated the short pulse, high power microwave radiation source using an ultraviolet laser-induced sheet plasma mirror in a gas-filled x-band rectangular waveguide from the conventional microwave sources and components. A laser-induced sheet plasma with an overdense plasma acts as a plasma mirror. The long pulse propagating in the gas-filled waveguide was sliced by the sheet plasma mirror at two different points along the waveguide. We observed about twice the power of the pulse by adding the two sliced microwave pulses produced by this scheme. A maximum peak power of 200 kW with a pulse duration of 10 ns (full width at half maximum) from the long microwave pulse source with a pulse duration of 0.8 mus was observed.

  2. Observation of plasma depletions in outer radiation belt by Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, K.; Lee, E.; Kim, Y.; Park, Y.; Parks, G. K.; Sibeck, D. G.

    2013-12-01

    Van Allen Probes (RBSP) observed plasma fine structures in the outer radiation belt during storm time on 14 November 2012. Five plasma depletion regions are clearly identified by VAP_A and VAP_B from 02:00UT to 04:45UT by particle instrument suite that can measure electrons and ions in a wide energy range, from 20 eV to 10 MeV. The plasma flux density dramatically decreases about 2 - 3 orders of magnitude in the depletion regions regardless of energy and particle species. Our analysis shows the plasma cavities are formed at the boundary of trapped and injected particle current. The total plasma pressures inside the depletion regions are much smaller than outside, implying unstable structures. It seems that this structures appear unusually only for storm main phase. During strong storm event, geomagnetic field is stretched and low plasma density region (lobe) moves to low latitude, this event could be analyzed by lobe region crossing of spacecraft. However, to explain temporal sequences of this event, we should assume large fluctuation of lobe boundary. Another possible analysis is plasma bubble generated in the tail region. The bubble model proposed to explain plasma transportation form tail to near Earth region in 1980s. While the bubble model reasonably explain the spatial and temporal structures observed by Van Allen probes, we cannot completely rule out the lobe region crossing model. In this presentation, we shall discuss about the characteristics of the plasma density cavities first observed by Van Allen Probes.

  3. The G value in plasma and radiation chemistry

    NASA Technical Reports Server (NTRS)

    Baird, James K.; Miller, George P.; Li, Ning

    1990-01-01

    The application of the G-value concept to plasma chemistry is considered. A general formula which expresses the G value for a general reaction in terms of experimentally controllable parameters is derived by applying simple gas-dynamic theory to a plasma reactor with straight walls. The formula expresses the G value as a function of the electrical power absorbed, the fraction of molecules transformed, and the flow rate of the gas entering the reactor. The formula was applied to the ammonia plasma radio-frequency discharge data of d'Agostino et al. (1981); the results showed that the G(-NH3) value lies in the range of 6.0-20 molecules/100 eV, depending on the conditions. This similarity of the G(-NH3) value with Peterson's (1974) range 2.7-10 found for the gas-phase radiolysis of ammonia, suggests that there might be a common reaction mechanism initiated by inelastic electron-molecule collisions.

  4. Radiative properties of argon-helium-nitrogen-carbon-cobalt-nickel plasmas used in CNT synthesis

    NASA Astrophysics Data System (ADS)

    Salem, D.; Hannachi, R.; Cressault, Y.; Teulet, Ph; Béji, L.

    2015-02-01

    This work presents the radiative properties of argon-helium-nitrogen-carbon-nickel-cobalt thermal plasmas by the computation of net emission coefficients (NECs) under the assumption of a local thermodynamic equilibrium and at temperature range 1000-20 000 K. These mixtures were often used in the study of carbon nanotubes (CNTs) synthesis with arc plasma which becomes one of the most useful techniques in terms of flexibility of carbon nanostructures produced with fewer defects. The values of NEC allow estimation of total radiation losses in plasmas, by taking into account the emission radiation resulting from the atomic continuum, the molecular continuum, the atomic lines and some molecular bands. Free-free transitions (Bremsstrahlung) and free-bound (electron-ion recombination), have been considered for the calculation of atomic continuum. For bound-bound transitions, natural, resonance, Van der Waals, Stark and Doppler effects have been taken into account in the calculation of the lines broadenings while the self-absorption of the resonance lines has been treated using their escape factors. Molecular continuum has been only considered for N2, C2 and CN molecules whereas we have only taken into account diatomic systems N2, \\text{N}2+ , CN and C2 for the emission of the molecular bands. The results obtained show that even for low concentrations of Ni and Co in the plasma, the NECs are modified and considerably increase only at a low temperature (T < 8000 K) and the major contribution in the total radiation arises from the lines emission. However, the effect of the thickness of the plasma on plasma radiation has been analysed based on the self absorption phenomenon of resonance lines.

  5. Detection of a Cool, Accretion-Shock-Generated X-Ray Plasma in EX Lupi During the 2008 Optical Eruption

    NASA Technical Reports Server (NTRS)

    Teets, William K.; Weintraub, David A.; Kastner, Joel H.; Grosso, Nicholas; Hamaguchi, Kenji; Richmond, Michael

    2012-01-01

    EX Lupi is the prototype for a class of young, pre-main-sequence stars which are observed to undergo irregular, presumably accretion-generated, optical outbursts that result in a several magnitude rise of the optical flux. EX Lupi was observed to optically erupt in 2008 January, triggering Chandra ACIS Target of Opportunity observations shortly thereafter. We find very strong evidence that most of the X-ray emission in the first few months after the optical outburst is generated by accretion of circumstellar material onto the stellar photosphere. Specifically, we find a strong correlation between the decreasing optical and X-ray fluxes following the peak of the outburst in the optical, which suggests that these observed declines in both the optical and X-ray fluxes are the result of declining accretion rate. In addition, in our models of the X-ray spectrum, we find strong evidence for an approx 0.4 keV plasma component, as expected for accretion shocks on low-mass, pre-main-sequence stars. From 2008 March through October, this cool plasma component appeared to fade as EX Lupi returned to its quiescent level in the optical, consistent with a decrease in the overall emission measure of accretion-shock-generated plasma. The overall small increase of the X-ray flux during the optical outburst of EX Lupi is similar to what was observed in previous X-ray observations of the 2005 optical outburst of the EX Lupi-type star V1118 Ori but contrasts with the large increase of the X-ray flux from the erupting young star V1647 Ori during its 2003 and 2008 optical outbursts.

  6. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    NASA Astrophysics Data System (ADS)

    Jablonowski, H.; Bussiahn, R.; Hammer, M. U.; Weltmann, K.-D.; von Woedtke, Th.; Reuter, S.

    2015-12-01

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100-400 nm) and, in particular, vacuum ultraviolet (VUV, 10-200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH2O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H2O2) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O2•-) and hydroxyl radicals (•OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  7. Impact of plasma jet vacuum ultraviolet radiation on reactive oxygen species generation in bio-relevant liquids

    SciTech Connect

    Jablonowski, H.; Hammer, M. U.; Reuter, S.; Bussiahn, R.; Weltmann, K.-D.; Woedtke, Th. von

    2015-12-15

    Plasma medicine utilizes the combined interaction of plasma produced reactive components. These are reactive atoms, molecules, ions, metastable species, and radiation. Here, ultraviolet (UV, 100–400 nm) and, in particular, vacuum ultraviolet (VUV, 10–200 nm) radiation generated by an atmospheric pressure argon plasma jet were investigated regarding plasma emission, absorption in a humidified atmosphere and in solutions relevant for plasma medicine. The energy absorption was obtained for simple solutions like distilled water (dH{sub 2}O) or ultrapure water and sodium chloride (NaCl) solution as well as for more complex ones, for example, Rosewell Park Memorial Institute (RPMI 1640) cell culture media. As moderate stable reactive oxygen species, hydrogen peroxide (H{sub 2}O{sub 2}) was studied. Highly reactive oxygen radicals, namely, superoxide anion (O{sub 2}{sup •−}) and hydroxyl radicals ({sup •}OH), were investigated by the use of electron paramagnetic resonance spectroscopy. All species amounts were detected for three different treatment cases: Plasma jet generated VUV and UV radiation, plasma jet generated UV radiation without VUV part, and complete plasma jet including all reactive components additionally to VUV and UV radiation. It was found that a considerable amount of radicals are generated by the plasma generated photoemission. From the experiments, estimation on the low hazard potential of plasma generated VUV radiation is discussed.

  8. Development of Extreme Ultraviolet Radiation Source using Laser Triggered Vacuum Spark Discharge Plasma

    SciTech Connect

    Watanabe, Masato; Yamada, Junzaburo; Zhu Qiushi; Hotta, Eiki

    2009-01-21

    A laser triggerd discharge produced Sn plasma light source has been developed. Experimental parameters such as electrode separation and laser irradiation power are varied to optimize EUV emission power. It is clear that the maximum EUV radiation was occurred in the position where the pinch was observed.

  9. An investigation of conducted and radiated emissions from a hollow-cathode plasma contactor

    NASA Technical Reports Server (NTRS)

    Buchholtz, Brett W.; Wilbur, Paul J.

    1993-01-01

    An investigation conducted on the electrical interference induced by the operation of a hollow-cathode plasma contractor in a ground-based facility is described. The types of electrical interference, or noise, which are important to Space Station Freedom designers are classified as either conducted or radiated emissions. The procedures required to perform conducted and radiated emission measurements on a plasma contactor are examined. The experimental data obtained are typically examined in the frequency domain (i.e. amplitudes of the noise fluctuations versus frequency). Results presented indicate the conducted emissions, which are the current fluctuations from the contactor into the space station wiring, are affected by operating parameters such as expellant flow rate and discharge current. The radiated emissions, which are the electromagnetic waves induced and emitted by the contactor, appear to be influenced by the contactor emission current. Other experimental results suggest possible sources which are responsible for the observed noise. For example, the influence of the plasma environment downstream from the contactor on noise emission levels is described. In addition, a brief discussion is given on the correlation between conducted and radiated emissions and the mechanisms through which both are influenced by the plasma downstream of the contactor.

  10. Observation of hydrodynamic processes of radiation-ablated plasma in a small hole

    SciTech Connect

    Li, Hang; Kuang, Longyu; Jiang, Shaoen Ding, Yongkun; Song, Tianming; Yang, Jiamin Zhu, Tuo; Lin, Zhiwei; Zheng, Jianhua; Zhang, Haiying; Yu, Ruizhen; Liu, Shenye; Hu, Guangyue; Zhao, Bin; Zheng, Jian

    2015-07-15

    In the hohlraum used in laser indirect-drive inertial confinement fusion experiments, hydrodynamic processes of radiation-ablated high-Z plasma have a great effect on laser injection efficiency, radiation uniformity, and diagnosis of hohlraum radiation field from diagnostic windows (DW). To study plasma filling in the DWs, a laser-irradiated Ti disk was used to generate 2–5 keV narrow energy band X-ray as the intense backlighter source, and laser-produced X-ray in a hohlraum with low-Z foam tamper was used to heat a small hole surrounded by gold wall with 150 μm in diameter and 100 μm deep. The hydrodynamic movement of the gold plasma in the small hole was measured by an X-ray framing camera and the results are analyzed. Quantitative measurement of the plasma areal density distribution and evolution in the small hole can be used to assess the effect of plasma filling on the diagnosis from the DWs.

  11. The cooling of particle beams

    SciTech Connect

    Sessler, A.M.

    1994-10-01

    A review is given of the various methods which can be employed for cooling particle beams. These methods include radiation damping, stimulated radiation damping, ionization cooling, stochastic cooling, electron cooling, laser cooling, and laser cooling with beam coupling. Laser Cooling has provided beams of the lowest temperatures, namely 1 mK, but only for ions and only for the longitudinal temperature. Recent theoretical work has suggested how laser cooling, with the coupling of beam motion, can be used to reduce the ion beam temperature in all three directions. The majority of this paper is devoted to describing laser cooling and laser cooling with beam coupling.

  12. Optical Line Radiation from Uranium Plasmas. Ph.D. Thesis; [for a gaseous core reactor

    NASA Technical Reports Server (NTRS)

    Maceda, E. L.

    1977-01-01

    The radiative energy current due to line radiation is calculated in a U 235 plasma over a temperature range of 5000 K to 8000 K. Also a variation in the neutron flux of 2 x 10 to the 12th power neutrons/ (sq cm-sec) to 2 x 10 to the 16th power neutrons/(sq cm-sec) is considered. The plasma forms a cylinder with a diameter and height of one meter. To calculate the radiative-energy current, a rate equation formalism is developed to solve for the atomic state densities along with a model for the energy levels in neutral and singly ionized uranium. Because the electron states in uranium lie below 5eV, recombination is the principle excitation mechanism. At and above 6000 K, inversions were found, and at all temperatures the line radiation at line center was greater than the corresponding black-body radiation. There are negligible differences in the radiative-energy current at 6000 K for variations in the neutron flux. The average opacity, which varied from 100 to 100,000 gm/sq cm, over the frequency range of line radiation is calculated.

  13. Large Diameter Lasing Tube Cooling Arrangement

    DOEpatents

    Hall, Jerome P.; Alger, Terry W.; Anderson, Andrew T.; Arnold, Philip A.

    2004-05-18

    A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17,31) and mounting members (18, 34) that position the metal members (17,31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

  14. Large diameter lasing tube cooling arrangement

    DOEpatents

    Hall, Jerome P.; Alger, Terry W.; Anderson, Andrew T.; Arnold, Phillip A.

    2004-05-18

    A cooling structure (16) for use inside a ceramic cylindrical tube (11) of a metal vapor laser (10) to cool the plasma in the tube (11), the cooling structure (16) comprising a plurality of circular metal members (17, 31) and mounting members (18, 34) that position the metal members (17, 31) coaxially in the tube (11) to form an annular lasing volume, with the metal members (17, 31) being axially spaced from each other along the length of the tube (11) to prevent the metal members from shorting out the current flow through the plasma in the tube (11) and to provide spaces through which the heat from localized hot spots in the plasma may radiate to the other side of the tube (11).

  15. Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Goree, John; Nosenko, Vladimir; Boufendi, Laifa

    2002-10-01

    A dusty plasma is an ionized gas containing small particles of solid matter. The particle can experience numerous forces in plasma. We measured the radiation pressure and gas drag forces acting on a single melamine-formaldehyde (MF) microsphere immersed in an Ar plasma produced by a capacitively-coupled parallel-plate rf electrode discharge. We verified that both forces are proportional to the particle cross-section area. We report quantitatively results for the coefficient for both forces. We also verified that the horizontal confining potential has a parabolic shape with a characteristic frequency that matches the frequency of random particle motion, as measured by the velocity autocorrelation function in the absence of any radiation pressure. Work at Iowa was supported by NASA and DOE.

  16. A Black-box Modelling Engine for Discharge Produced Plasma Radiation Sources

    NASA Astrophysics Data System (ADS)

    Zakharov, S. V.; Choi, P.; Krukovskiy, A. Y.; Novikov, V. G.; Zakharov, V. S.; Zhang, Q.

    2006-01-01

    A Blackbox Modelling Engine (BME), is an instrument based on the adaptation of the RMHD code Z*, integrated into a specific computation environment to provide a turn key simulation instrument and to enable routine plasma modelling without specialist knowledge in numerical computation. Two different operating modes are provided: Detailed Physics mode & Fast Numerics mode. In the Detailed Physics mode, non-stationary, non-equilibrium radiation physics have been introduced to allow the modelling of transient plasmas in experimental geometry. In the Fast Numerics mode, the system architecture and the radiation transport is simplified to significantly accelerate the computation rate. The Fast Numerics mode allows the BME to be used realistically in parametric scanning to explore complex physical set up, before using the Detailed Physics mode. As an example of the results from the BME modelling, the EUV source plasma dynamics in the pulsed capillary discharge are presented.

  17. Plasma formation on a metal surface under combined action of laser and microwave radiation

    SciTech Connect

    Gavrilyuk, A P; Shaparev, N Ya

    2013-10-31

    By means of numerical modelling of the combined effect of laser (1.06 mm) and microwave (10{sup 10} – 10{sup 13} s{sup -1}) radiation on the aluminium surface in vacuum it is shown that the additional action of microwave radiation with the frequency 10{sup 12} s{sup -1} provides complete ionisation of the metal vapour (for the values of laser radiation duration and intensity used in the calculations), while in the absence of microwave radiation the vapour remains weakly ionised. The mathematical model used accounts for the processes, occurring in the condensed phase (heat conduction, melting), the evaporation and the kinetic processes in the resulting vapour. (interaction of laser radiation with matter. laser plasma)

  18. Plasma damage mechanisms for low-k porous SiOCH films due to radiation, radicals, and ions in the plasma etching process

    SciTech Connect

    Uchida, Saburo; Takashima, Seigo; Hori, Masaru; Fukasawa, Masanaga; Ohshima, Keiji; Nagahata, Kazunori; Tatsumi, Tetsuya

    2008-04-01

    Low dielectric constant (low-k) films have been widely used as insulating materials in ultra-large-scale integrated circuits. Low-k films receive heavy damage during the plasma processes of etching or ashing, resulting in an increase in their dielectric constant. In order to realize damage-free plasma processes for low-k films, it is essential to determine the influence of radiation, radicals, and ions emitted in the plasma process on the characteristics of low-k films. We have developed a technique to evaluate the influence of radiation, radicals, ions, and their synergies on films in real plasma processes and have named it pallet for plasma evaluation (PAPE). Using the PAPE, plasma-induced damage on porous SiOCH films were investigated in dual-frequency capacitively coupled H{sub 2}/N{sub 2} plasmas. The damage was characterized by ellipsometry, Fourier-transform infrared spectroscopy, and thermal desorption spectroscopy. On the basis of the results, the damage mechanisms associated with vacuum ultraviolet (VUV) and UV radiation, radicals, and ions were clarified. The damage was caused not only by ions and radicals but also by VUV and UV radiation emitted by the plasmas. Moreover, it was found that the synergy between the radiation and the radicals enhanced the damage.

  19. Plasma Jet (V)UV-Radiation Impact on Biologically Relevant Liquids and Cell Suspension

    NASA Astrophysics Data System (ADS)

    Tresp, H.; Bussiahn, R.; Bundscherer, L.; Monden, A.; Hammer, M. U.; Masur, K.; Weltmann, K.-D.; Woedtke, Th. V.; Reuter, S.

    2014-10-01

    In this study the generation of radicals in plasma treated liquids has been investigated. To quantify the contribution of plasma vacuum ultraviolet (VUV) and ultraviolet (UV) radiation on the species investigated, three cases have been studied: UV of plasma jet only, UV and VUV of plasma jet combined, and the plasma effluent including all reactive components. The emitted VUV has been observed by optical emission spectroscopy and its effect on radical formation in liquids has been analyzed by electron spin resonance spectroscopy. Radicals have been determined in ultrapure water (dH2O), as well as in more complex, biorelevant solutions like phosphate buffered saline (PBS) solution, and two different cell culture media. Various compositions lead to different reactive species formation, e.g. in PBS superoxide anion and hydroxyl radicals have been detected, in cell suspension also glutathione thiyl radicals have been found. This study highlights that UV has no impact on radical generation, whereas VUV is relevant for producing radicals. VUV treatment of dH2O generates one third of the radical concentration produced by plasma-effluent treatment. It is relevant for plasma medicine because although plasma sources are operated in open air atmosphere, still VUV can lead to formation of biorelevant radicals. This work is funded by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12+11).

  20. Quantification of the VUV radiation in low pressure hydrogen and nitrogen plasmas

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Briefi, S.; Rauner, D.; Wünderlich, D.

    2016-08-01

    Hydrogen and nitrogen containing discharges emit intense radiation in a broad wavelength region in the VUV. The measured radiant power of individual molecular transitions and atomic lines between 117 nm and 280 nm are compared to those obtained in the visible spectral range and moreover to the RF power supplied to the ICP discharge. In hydrogen plasmas driven at 540 W of RF power up to 110 W are radiated in the VUV, whereas less than 2 W is emitted in the VIS. In nitrogen plasmas the power level of about 25 W is emitted both in the VUV and in the VIS. In hydrogen–nitrogen mixtures, the NH radiation increases the VUV amount. The analysis of molecular and atomic hydrogen emission supported by a collisional radiative model allowed determining plasma parameters and particle densities and thus particle fluxes. A comparison of the fluxes showed that the photon fluxes determined from the measured emission are similar to the ion fluxes, whereas the atomic hydrogen fluxes are by far dominant. Photon fluxes up to 5  ×  1020 m‑2 s‑1 are obtained, demonstrating that the VUV radiation should not be neglected in surface modifications processes, whereas the radiant power converted to VUV photons is to be considered in power balances. Varying the admixture of nitrogen to hydrogen offers a possibility to tune photon fluxes in the respective wavelength intervals.

  1. Influence of induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches

    SciTech Connect

    Kantsyrev, V. L.; Esaulov, A. A.; Safronova, A. S.; Osborne, G. C.; Shrestha, I.; Weller, M. E.; Stafford, A.; Shlyaptseva, V. V.; Velikovich, A. L.; Rudakov, L. I.; Williamson, K. M.

    2011-10-15

    The influence of an induced axial magnetic field on plasma dynamics and radiative characteristics of Z pinches is investigated. An axial magnetic field was induced in a novel Z-pinch load: a double planar wire array with skewed wires (DPWAsk), which represents a planar wire array in an open magnetic configuration. The induced axial magnetic field suppressed magneto-Rayleigh-Taylor (MRT) instabilities (with m = 0 and m = 1 instability modes) in the Z-pinch plasma. The influence of the initial axial magnetic field on the structure of the plasma column at stagnation was manifested through the formation of a more uniform plasma column compared to a standard double planar wire array (DPWA) load [V. L. Kantsyrev et al., Phys. Plasmas 15, 030704 (2008)]. The DPWAsk load is characterized by suppression of MRT instabilities and by the formation of the sub-keV radiation pulse that occurs before the main x-ray peak. Gradients in plasma parameters along the cathode-anode gap were observed and analyzed for DPWAsk loads made from low atomic number Z (Al) and mid-Z (brass) wires.

  2. SiC detectors for radiation sources characterization and fast plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Cannavò, A.; Torrisi, L.

    2016-09-01

    Semiconductor detectors based on SiC have been investigated to characterize the radiations (photons and particles) emitted from different sources, such as radioactive sources, electron guns, X-ray tubes and laser-generated plasmas. Detectors show high response velocity, low leakage current, high energy gap and high radiation hardness. Their high detection efficiency permits to use the detectors in spectroscopic mode and in time-of-flight (TOF) approach, generally employed to monitor low and high radiation fluxes, respectively. Using the laser start signal, they permit to study the properties of the generated plasma in vacuum by measuring accurately the particle velocity and energy using pulsed lasers at low and high intensities. Possible applications will be reported and discussed.

  3. Design and fabrication of a radiative actively cooled honeycomb sandwich structural panel for a hypersonic aircraft

    NASA Technical Reports Server (NTRS)

    Ellis, D. A.; Pagel, L. L.; Schaeffer, D. M.

    1978-01-01

    The panel assembly consisted of an external thermal protection system (metallic heat shields and insulation blankets) and an aluminum honeycomb structure. The structure was cooled to temperature 442K (300 F) by circulating a 60/40 mass solution of ethylene glycol and water through dee shaped coolant tubes nested in the honeycomb and adhesively bonded to the outer skin. Rene'41 heat shields were designed to sustain 5000 cycles of a uniform pressure of + or - 6.89kPa (+ or - 1.0 psi) and aerodynamic heating conditions equivalent to 136 kW sq m (12 Btu sq ft sec) to a 422K (300 F) surface temperature. High temperature flexible insulation blankets were encased in stainless steel foil to protect them from moisture and other potential contaminates. The aluminum actively cooled honeycomb sandwich structural panel was designed to sustain 5000 cycles of cyclic in-plane loading of + or - 210 kN/m (+ or - 1200 lbf/in.) combined with a uniform panel pressure of + or - 6.89 kPa (?1.0 psi).

  4. Nuclear characteristics of a fissioning uranium plasma test reactor with light-water cooling

    NASA Technical Reports Server (NTRS)

    Whitmarsh, C. L., Jr.

    1973-01-01

    An analytical study was performed to determine a design configuration for a cavity test reactor. Test section criteria were that an average flux of 10 to the 15th power neutrons/sq cm/sec (E less than or equal to 0.12 eV) be supplied to a 61-cm-diameter spherical cavity at 200-atm pressure. Design objectives were to minimize required driver power, to use existing fuel-element technology, and to obtain fuel-element life of 10 to 100 full-power hours. Parameter calculations were made on moderator region size and material, driver fuel arrangement, control system, and structure in order to determine a feasible configuration. Although not optimized, a configuration was selected which would meet design criteria. The driver fuel region was a cylindrical annular region, one element thick, of 33 MTR-type H2O-cooled elements (Al-U fuel plate configuration), each 101 cm long. The region between the spherical test cavity and the cylindrical driver fuel region was Be (10 vol. % H2O coolant) with a midplane dimension of 8 cm. Exterior to the driver fuel, the 25-cm-thick cylindrical and axial reflectors were also Be with 10 vol. % H2O coolant. The entire reactor was contained in a 10-cm-thick steel pressure vessel, and the 200-atm cavity pressure was equalized throughout the driver reactor. Fuel-element life was 50 hr at the required driver power of 200 MW. Reactor control would be achieved with rotating poison drums located in the cylindrical reflector region. A control range of about 18 percent delta k/k was required for reactor operation.

  5. Characteristics of fabricated si PIN-type radiation detectors on cooling temperature

    NASA Astrophysics Data System (ADS)

    Kim, Han Soo; Jeong, Manhee; Kim, Young Soo; Lee, Dong Hun; Cho, Seung Yeon; Ha, Jang Ho

    2015-06-01

    Si PIN photodiode radiation detectors with three different active areas (3×3 mm2, 5×5 mm2, and 10×10 mm2) were designed and fabricated at the Korea Atomic Energy Research Institute (KAERI) for low energy X- and gamma-ray detection. In Si-based semiconductor radiation detectors, one of the noise sources is thermal noise, which degrades their energy resolution performance. In this study, the temperature effects on the energy resolution were investigated using a 3×3 mm2 active area PIN photodiode radiation detector using a Thermoelectric Module (TEM) from room temperature to -23 °C. Energy resolutions from 25 keV auger electrons to 81 keV gamma-ray from a Ba-133 calibration source were measured and compared at every 10 °C interval. At -23 °C, energy resolutions were improved by 15.6% at 25 keV, 4.0% at 31 keV, and 1.2% at 81 keV in comparison with resolutions at room temperature. CsI(Tl)/PIN photodiode radiation detectors were also fabricated for relatively high energy gamma-ray detection. Energy resolutions for Cs-137, Co-60, and Na-22 sources were measured and compared with the spectral responsivity.

  6. The magnetosphere of uranus: hot plasma and radiation environment.

    PubMed

    Krimigis, S M; Armstrong, T P; Axford, W I; Cheng, A F; Gloeckler, G; Hamilton, D C; Keath, E P; Lanzerotti, L J; Mauk, B H

    1986-07-01

    The low-energy charged-particle (LECP) instrument on Voyager 2 measured lowenergy electrons and ions near and within the magnetosphere of Uranus. Initial analysis of the LECP measurements has revealed the following. (i) The magnetospheric particle population consists principally of protons and electrons having energies to at least 4 and 1.2 megaelectron volts, respectively, with electron intensities substantially excceding proton intensities at a given energy. (ii) The intensity profile for both particle species shows evidence that the particles were swept by planetry satellites out to at least the orbit of Titania. (iii) The ion and electron spectra may be described by a Maxwellian core at low energies (less than about 200 kiloelectron volts) and a power law at high energies (greater than about 590 kiloelectron volts; exponentmicro, 3 to 10) except inside the orbit of Miranda, where power-law spectra (micro approximately 1.1 and 3.1 for electrons and protons, respectively) are observed. (iv) At ion energies between 0.6 and 1 megaelectron volt per nucleon, the composition is dominated by protons with a minor fraction (about 10(-3)) of molecular hydrogen; the lower limit for the ratio of hydrogen to helium is greater than 10(4). (v) The proton population is sufficiently intense that fluences greater than 10(16) per square centimeter can accumulate in 10(4) to 10(') years; such fluences are sufficient to polymerize carbon monoxide and methane ice surfaces. The overall morphology of Uranus' magnetosphere resembles that of Jupiter, as evidenced by the fact that the spacecraft crossed the plasma sheet through the dawn magnetosheath twice per planetary rotation period (17.3 hours). Uranus' magnetosphere differs from that of Jupiter and of Saturn in that the plasma 1 is at most 0.1 rather than 1. Therefore, little distortion ofthe field is expected from particle loading at distances less than about 15 Uranus radii.

  7. Radiative power losses from impurities in high-density plasmas confined by high magnetic fields

    NASA Astrophysics Data System (ADS)

    May, Mark Joseph

    1998-07-01

    Quantifying and controlling the radiative power losses from impurities in the tokamak fusion plasma is crucial for obtaining ignition conditions. In the present work, therefore, losses from impurities have been measured in different operating regimes of the Alcator C-Mod Tokamak and the Frascati Tokamak Upgrade (FTU) plasmas. The major radiating intrinsic impurity in both tokamaks was molybdenum sputtered from the armor tiles covering all the plasma facing surfaces. The radiative power losses from the molybdenum ions accounted for [>]80/% of the total radiative power losses in ICRF heated plasmas and ~60/% in ohmically heated plasmas. Molybdenum could radiate as much as several thousand kW with concentrations as high as ~1× 1011/ particles/cm3 or ~0.001 of the plasma (electron) density. The radiative losses were found to increase linearly with increasing ICRF power and to vary weakly with the central electron density of the plasma. The other major intrinsic impurities in Alcator C-Mod Tokamak, carbon and boron, radiated at most ~100 kW from the plasma and had concentrations in ohmically heated plasmas of ~1.7× 10/ particles/cm3 and ~6.3× 1011/ particles/cm3, respectively. At Alcator C-Mod Tokamak, the total radiative power losses were measured with bolometric systems. The contribution to the total radiative losses from each major impurity and the impurity concentrations were determined spectroscopically from the line brightnesses of XUV (soft X-ray and extreme ultraviolet) transitions. The line brightnesses were interpreted via a detailed atomic physics model which included the Multiple Ionization State Transport (MIST) code, the ab initio atomic rates from the Hebrew University-Jerusalem Lawrence Livermore Atomic Code (HULLAC) and a collisional radiative model. At the FTU Tokamak, brightnesses from impurity emission measured with an X-ray crystal spectrometer were interpreted with a similar atomic physics model which included the molybdenum rates from HULLAC

  8. Mass Spectrometry of 3D-printed plastic parts under plasma and radiative heat environments

    NASA Astrophysics Data System (ADS)

    Rivera, W. F.; Romero-Talamas, C. A.; Bates, E. M.; Birmingham, W.; Takeno, J.; Knop, S.

    2015-11-01

    We present the design and preliminary results of a mass spectrometry system used to assess vacuum compatibility of 3D-printed parts, developed at the Dusty Plasma Laboratory of the University of Maryland Baltimore County (UMBC). A decrease in outgassing was observed when electroplated parts were inserted in the test chamber vs. non electroplated ones. Outgassing will also be tested under different environments such as plasma and radiative heat. Heat will be generated by a titanium getter pump placed inside a 90 degree elbow, such that titanium does not coat the part. A mirror inside the elbow will be used to throttle the heat arriving at the part. Plasma exposure of 3D printed parts will be achieved by placing the parts in a separate chamber connected to the spectrometer by a vacuum line that is differentially pumped. The signals from the mass spectrometer will be analyzed to see how the vacuum conditions fluctuate under different plasma discharges.

  9. The PLX- α project: Radiation-MHD Simulations of Imploding Plasma Liners Using USim

    NASA Astrophysics Data System (ADS)

    Beckwith, Kristian; Stoltz, Peter; Kundrapu, Madhusudhan; Hsu, Scott; PLX-α Team

    2015-11-01

    USim is a tool for modeling high energy density plasmas using multi-fluid models coupled to electromagnetics using fully-implicit iterative solvers, combined with finite volume discretizations on unstructured meshes. Prior work has demonstrated application of USim models and algorithms to simulation of supersonic plasma jets relevant to the Plasma Liner Experiment (PLX) and compared synthetic interferometry to that gathered from the experiment. Here, we give an overview of the models and algorithms included in USim; review results from prior modeling campaigns for the PLX; and describe plans for radiation magnetohydrodynamic (MHD) simulation efforts focusing on integrated plasma-liner implosion and target compression in a fusion-relevant regime using USim for the PLX- α project. Supported by ARPA-E's ALPHA program. Original PLX construction supported by OFES. USim development supported in part by Air Force Office of Scientific Research.

  10. Transport analysis of high radiation and high density plasmas in the ASDEX Upgrade tokamak

    NASA Astrophysics Data System (ADS)

    Casali, L.; Bernert, M.; Dux, R.; Fischer, R.; Kallenbach, A.; Kurzan, B.; Lang, P.; Mlynek, A.; McDermott, R. M.; Ryter, F.; Sertoli, M.; Tardini, G.; Zohm, H.

    2014-12-01

    Future fusion reactors, foreseen in the "European road map" such as DEMO, will operate under more demanding conditions compared to present devices. They will require high divertor and core radiation by impurity seeding to reduce heat loads on divertor target plates. In addition, DEMO will have to work at high core densities to reach adequate fusion performance. The performance of fusion reactors depends on three essential parameters: temperature, density and energy confinement time. The latter characterizes the loss rate due to both radiation and transport processes. The DEMO foreseen scenarios described above were not investigated so far, but are now addressed at the ASDEX Upgrade tokamak. In this work we present the transport analysis of such scenarios. Plasma with high radiation by impurity seeding: transport analysis taking into account the radiation distribution shows no change in transport during impurity seeding. The observed confinement improvement is an effect of higher pedestal temperatures which extend to the core via stiffness. A non coronal radiation model was developed and compared to the bolometric measurements in order to provide a reliable radiation profile for transport calculations. High density plasmas with pellets: the analysis of kinetic profiles reveals a transient phase at the start of the pellet fuelling due to a slower density build up compared to the temperature decrease. The low particle diffusion can explain the confinement behaviour.

  11. Holographic interferometry of a plasma with frequency conversion of radiation passing through the plasma

    SciTech Connect

    Alum, K.; Koval'chuk, Y.; Ostrovskaya, G.

    1981-08-01

    The possibility of obtaining holographic interferograms of a plasma with frequency doubling of the object wave is investigated. Experimental results are presented which demonstrate the doubling of the phase advance introduced into the initial wave as it passes through a phase inhomogeneity.

  12. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects

    PubMed Central

    Takács, Stephen; Bottomley, Hannah; Andreller, Iisak; Zaradnik, Tracy; Schwarz, Joseph; Bennett, Robb; Strong, Ward; Gries, Gerhard

    2008-01-01

    Foraging animals use diverse cues to locate resources. Common foraging cues have visual, auditory, olfactory, tactile or gustatory characteristics. Here, we show a foraging herbivore using infrared (IR) radiation from living plants as a host-finding cue. We present data revealing that (i) conifer cones are warmer and emit more near-, mid- and long-range IR radiation than needles, (ii) cone-feeding western conifer seed bugs, Leptoglossus occidentalis (Hemiptera: Coreidae), possess IR receptive organs and orient towards experimental IR cues, and (iii) occlusion of the insects' IR receptors impairs IR perception. The conifers' cost of attracting cone-feeding insects may be offset by occasional mast seeding resulting in cone crops too large to be effectively exploited by herbivores. PMID:18945664

  13. Infrared radiation from hot cones on cool conifers attracts seed-feeding insects.

    PubMed

    Takács, Stephen; Bottomley, Hannah; Andreller, Iisak; Zaradnik, Tracy; Schwarz, Joseph; Bennett, Robb; Strong, Ward; Gries, Gerhard

    2009-02-22

    Foraging animals use diverse cues to locate resources. Common foraging cues have visual, auditory, olfactory, tactile or gustatory characteristics. Here, we show a foraging herbivore using infrared (IR) radiation from living plants as a host-finding cue. We present data revealing that (i) conifer cones are warmer and emit more near-, mid- and long-range IR radiation than needles, (ii) cone-feeding western conifer seed bugs, Leptoglossus occidentalis (Hemiptera: Coreidae), possess IR receptive organs and orient towards experimental IR cues, and (iii) occlusion of the insects' IR receptors impairs IR perception. The conifers' cost of attracting cone-feeding insects may be offset by occasional mast seeding resulting in cone crops too large to be effectively exploited by herbivores.

  14. A study of the radiation of a Nd:YAG laser-MIG hybrid plasma

    NASA Astrophysics Data System (ADS)

    Li, Zhiyong; Wang, Wei; Wang, Xuyou; Li, Huan

    2010-02-01

    To study the coupling of a Nd:YAG laser beam and a MIG arc with the spectrum of the plasma, a new hollow probe method is used to collect radiation from specific points within the arc plasma. With the probe, the spatial distributions of the MIG arc radiation with and without the Nd:YAG laser hybrid plasma are collected and analyzed by a fiber spectrometer. Through analysis of the spectrum, radiation in the ultraviolet (Fe II dominated), visible (Fe I dominated) and infra (Ar I dominated) spectral zones are acquired for comparison of the difference between the MIG and Laser-MIG hybrid welding processes. The electronic temperature is calculated using the Boltzmann plot method and the electronic density is calculated using the Stark broadening method. The results show that the Laser-MIG hybrid welding processes cause the plasma energy to focus on the center of the welding arc and approach the welding pool. An ionizing duct abundant with Fe ions will be formed near the position of the impinging laser beam, which makes the welding arc stable. The electronic temperature of the Laser-MIG hybrid welding arc is a little higher than that of the MIG. The electronic density of Laser-MIG hybrid welding is higher than that of the MIG.

  15. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    NASA Astrophysics Data System (ADS)

    Lee, Wonwook; Park, Kyungdeuk; Kwon, Duck-Hee; Oh, Cha-Hwan

    2016-06-01

    Low density (ne < 1011 cm-3) and low temperature (Te < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded. The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.

  16. Radionuclide detection by inductively coupled plasma mass spectrometry: A comparison of atomic and radiation detection method

    SciTech Connect

    Smith, M.R.; Wyse, E.J.; Koppenaal, D.W.

    1991-04-01

    Radionuclide detection by mass spectrometric techniques offers inherent advantages over conventional radiation detection methods. Since radionuclides decay at variable rates (half-lives) and via various nuclear transformations (i.e. emission of alpha, beta, and/or gamma radiation) their determination via radiation detection depends not only on decay systematics but also on detector technology. Radionuclide detection by direct atom measurement, however, is dependent only on technique sensitivity and is indifferent to decay mode. Evaluation of inductively coupled plasma mass spectrometry (ICP/MS) indicates this method to be superior conventional radiation detection techniques for many radionuclides. This work discusses factors which influence detection by both methods. Illustrative applications of ICP/MS to the ultra-trace determination of several radionuclides, including {sup 129}I, are presented. 20 refs., 6 figs., 1 tab.

  17. Propagation of Polarized Cosmic Microwave Background Radiation in an Anisotropic Magnetized Plasma

    SciTech Connect

    Moskaliuk, S. S.

    2010-01-01

    The polarization plane of the cosmic microwave background radiation (CMBR) can be rotated either in a space-time with metric of anisotropic type and in a magnetized plasma or in the presence of a quintessential background with pseudoscalar coupling to electromagnetism. A unified treatment of these three phenomena is presented for cold anisotropic plasma at the pre-recombination epoch. It is argued that the generalized expressions derived in the present study may be relevant for direct searches of a possible rotation of the cosmic microwave background polarization.

  18. Leaky unstable modes and electromagnetic radiation amplification by an anisotropic plasma slab

    SciTech Connect

    Vagin, K. Yu. Uryupin, S. A.

    2015-09-15

    The interaction between electromagnetic radiation and a photoionized plasma slab with an anisotropic electron velocity distribution is studied. It is shown that the fields of leaky modes are amplified due to the development of aperiodic instability in the slab, which leads to an increase in both the reflected and transmitted fields. The transmitted field can significantly increase only if the slab thickness does not exceed the ratio of the speed of light to the electron plasma frequency, whereas there is no upper bound on the slab thickness for the reflected signal to be amplified.

  19. Computing the complex : Dusty plasmas in the presence of magnetic fields and UV radiation

    NASA Astrophysics Data System (ADS)

    Land, V.

    2007-12-01

    the void towards the outside of the discharge. The void thus requires electron-impact ionizations inside the void. The electrons gain the energy for these ionizations inside the dust cloud surrounding the void, however. We show that a growing electron temperature gradient is responsible for the transport of electron energy from the surrounding dust cloud into the void. An axial magnetic field in the discharge magnetizes the electrons. This changes the ambipolar flux of ions through the bulk of the discharge. The ion drag force changes, resulting in a differently shaped void and faster void formation. Experiments in a direct current discharge, show a response of both dust and plasma in the E?B direction, when a magnetic field is applied. The dust response consists of two phases: an initial fast phase, and a later, slow phase. Using a Particle-In-Cell plus Monte Carlo model, we show that the dust charge can be reduced by adding a flux of ultraviolet radiation. A source of ultraviolet light can thus serve as a tool to manipulate dusty plasmas, but might also be important for the coagulation of dust particles around young stars and planet formation in general.

  20. Analytic theory for betatron radiation from relativistic electrons in ion plasma channels with magnetic field

    SciTech Connect

    Lee, H. C.; Jiang, T. F.

    2010-11-15

    We analytically solve the relativistic equation of motion for an electron in ion plasma channels and calculate the corresponding trajectory as well as the synchrotron radiation. The relativistic effect on a trajectory is strong, i.e., many high-order harmonic terms in the trajectory, when the ratio of the initial transverse velocity (v{sub x0}) to the longitudinal velocity (v{sub z0}) of the electron injected to ion plasma channels is high. Interestingly, these high-order harmonic terms result in a quite broad and intense radiation spectrum, especially at an oblique angle, in contrast to an earlier understanding. As the initial velocity ratio (v{sub x0}:v{sub z0}) decreases, the relativistic effect becomes weak; only the first and second harmonic terms remain in the transverse and longitudinal trajectories, respectively, which coincides with the result of Esarey et al. [Phys. Rev. E 65, 056505 (2002)]. Our formalism also allows the description of electron's trajectory in the presence of an applied magnetic field. Critical magnetic fields for cyclotron motions are figured out and compared with semiclassical results. The cyclotron motion leads to more high-order harmonic terms than the trajectory without magnetic fields and causes an immensely broad spectrum with vastly large radiation amplitude for high initial velocity ratios (v{sub x0}:v{sub z0}). The radiation from hard x-ray to gamma-ray regions can be generated with a broad radiation angle, thus available for applications.

  1. Estimation of the electron density and radiative energy losses in a calcium plasma source based on an electron cyclotron resonance discharge

    SciTech Connect

    Potanin, E. P. Ustinov, A. L.

    2013-06-15

    The parameters of a calcium plasma source based on an electron cyclotron resonance (ECR) discharge were calculated. The analysis was performed as applied to an ion cyclotron resonance system designed for separation of calcium isotopes. The plasma electrons in the source were heated by gyrotron microwave radiation in the zone of the inhomogeneous magnetic field. It was assumed that, in such a combined trap, the energy of the extraordinary microwave propagating from the high-field side was initially transferred to a small group of resonance electrons. As a result, two electron components with different transverse temperatures-the hot resonance component and the cold nonresonance component-were created in the plasma. The longitudinal temperatures of both components were assumed to be equal. The entire discharge space was divided into a narrow ECR zone, where resonance electrons acquired transverse energy, and the region of the discharge itself, where the gas was ionized. The transverse energy of resonance electrons was calculated by solving the equations for electron motion in an inhomogeneous magnetic field. Using the law of energy conservation and the balance condition for the number of hot electrons entering the discharge zone and cooled due to ionization and elastic collisions, the density of hot electrons was estimated and the dependence of the longitudinal temperature T{sub e Parallel-To} of the main (cold) electron component on the energy fraction {beta} lost for radiation was obtained.

  2. Experiments on the interaction of intense femtosecond radiation with dense plasmas. Final report

    SciTech Connect

    Rhodes, C.K.

    1996-01-24

    An upgraded KrF{sup {asterisk}} (248 nm) system producing a pulse energy of {approximately} 400 mJ, a pulse width of {approximately} 220 fs, and focal intensities above 10{sup 19} W/cm{sup 2}, has been constructed, tested, operated, and used in experimental studies. The spatial morphology of channeled radiation in plasmas has been measured with a spatial resolution of {approximately} 30 {mu}m and damage studies of fused silica indicate that femtosecond (200 - 300 fs) 248 nm radiation has a damage limit not exceeding {approximately} 50 GW/cm{sup 2}, an unfavorably low level. 2 figs.

  3. High-resolution X-ray spectroscopy of hollow atoms created in plasma heated by subpicosecond laser radiation

    SciTech Connect

    Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.

    1997-10-01

    The investigations of ultrashort (0.4-0.6 ps) laser pulse radiation interaction with solid targets have been carried out. The Trident subpicosecond laser system was used for plasma creation. The X-ray plasma emission was investigated with the help of high-resolution spectrographs with spherically bent mica crystals. It is shown that when high contrast ultrashort laser pulses were used for plasma heating its emission spectra could not be explained in terms of commonly used theoretical models, and transitions in so called {open_quotes}hollow atoms{close_quotes} must be taken into account for adequate description of plasma radiation.

  4. Ionization competition effects on population distribution and radiative opacity of mixture plasmas

    SciTech Connect

    Li, Yongjun; Gao, Cheng; Tian, Qinyun; Zeng, Jiaolong Yuan, Jianmin

    2015-11-15

    Ionization competition arising from the electronic shell structures of various atomic species in the mixture plasmas was investigated, taking SiO{sub 2} as an example. Using a detailed-level-accounting approximation, we studied the competition effects on the charge state population distribution and spectrally resolved and Planck and Rosseland mean radiative opacities of mixture plasmas. A set of coupled equations for ionization equilibria that include all components of the mixture plasmas are solved to determine the population distributions. For a given plasma density, competition effects are found at three distinct temperature ranges, corresponding to the ionization of M-, L-, and K-shell electrons of Si. Taking the effects into account, the spectrally resolved and Planck and Rosseland mean opacities are systematically investigated over a wide range of plasma densities and temperatures. For a given mass density, the Rosseland mean decreases monotonically with plasma temperature, whereas Planck mean does not. Although the overall trend is a decrease, the Planck mean increases over a finite intermediate temperature regime. A comparison with the available experimental and theoretical results is made.

  5. Highly repetitive, extreme-ultraviolet radiation source based on a gas-discharge plasma.

    PubMed

    Bergmann, K; Schriever, G; Rosier, O; Müller, M; Neff, W; Lebert, R

    1999-09-01

    An extreme-ultraviolet (EUV) radiation source near the 13-nm wavelength generated in a small (1.1 J) pinch plasma is presented. The ignition of the plasma occurs in a pseudosparklike electrode geometry, which allows for omitting a switch between the storage capacity and the electrode system and for low inductive coupling of the electrically stored energy to the plasma. Thus energies of only a few joules are sufficient to create current pulses in the range of several kiloamperes, which lead to a compression and a heating of the plasmas to electron densities of more than 10(17) cm(-3) and temperatures of several tens of electron volts, which is necessary for emission in the EUV range. As an example, the emission spectrum of an oxygen plasma in the 11-18-nm range is presented. Transitions of beryllium- and lithium-like oxygen ions can be identified. Current waveform and time-resolved measurements of the EUV emission are discussed. In initial experiments a repetitive operation at nearly 0.2 kHz could be demonstrated. Additionally, the broadband emission of a xenon plasma generated in a 2.2-J discharge is presented.

  6. Influence of the soft X-ray plasma focus radiation on live microorganisms

    NASA Astrophysics Data System (ADS)

    Zapryanov, S.; Goltsev, V.; Galutsov, B.; Gelev, M.; Blagoev, A.

    2012-04-01

    A 3 kJ plasma focus device was used to study the influence of the soft X-ray on live microorganisms. When Saccharomyces cerevisiae - (yeast) was treated with a dose of 65 mSv of the X-ray radiation (14 shots), no difference in the fertility activity between the control probe and the sample was observed. Also no change in the survival enzyme activity was found after irradiation through a 100 μm Al foil of another type of yeast - Kluyveromyces marxiamus. The irradiation of the Chlamydomonas reinhardtii samples by the PF-X-ray emission through 20 μm Al foil with a dose of 11 mSv produces a considerable change of the photosynthesis parameters. This result is similar to the results of previous studies with plasma focus radiation where strong effects were derived with low doses but with a high dose power.

  7. Generation of radiation from interacion between ultra short pulse high power laser and plasma

    NASA Astrophysics Data System (ADS)

    Yugami, Noboru

    2005-10-01

    The generation of electromagnetic wave from the interaction between short pulse laser and plasmas are studied. The Ti:Sapphire laser (0.2 TW/100 fs) was forcused on neutral gas (N2 : 7.5 Torr) using a lens with a focal length 250 mm. By the interaction between short pulse and plasma, the electromagnetic wave was generated. The frequency of the observed electromagnetic waves was in the microwave range (˜ 100 GHz). The radiation pulses of this microwave were detected by the microwave circuit element, constructed by the horn antenna and crystal the detectors. The pulse duration was typically 200 ps (FWHM). It has the polarization in the radial direction and emitted in the conical direction. The emission of the radiation is due to the electron oscillation, because the direction and its intensity were changed by the applied magnetic field.

  8. Interaction of near-IR laser radiation with plasma of a continuous optical discharge

    NASA Astrophysics Data System (ADS)

    Zimakov, V. P.; Kuznetsov, V. A.; Solovyov, N. G.; Shemyakin, A. N.; Shilov, A. O.; Yakimov, M. Yu.

    2016-01-01

    The interaction of 1.07-μm laser radiation with plasma of a continuous optical discharge (COD) in xenon and argon at a pressure of p = 3-25 bar and temperature of T = 15 kK has been studied. The threshold power required to sustain COD is found to decrease with increasing gas pressure to P t < 30 W in xenon at p > 20 bar and to P t < 350 W in argon at p > 15 bar. This effect is explained by an increase in the coefficient of laser radiation absorption to 20-25 cm-1 in Xe and 1-2 cm-1 in Ar due to electronic transitions between the broadened excited atomic levels. The COD characteristics also depend on the laser beam refraction in plasma. This effect can be partially compensated by a tighter focusing of the laser beam. COD is applied as a broadband light source with a high spectral brightness.

  9. Electron density and temperature measurement by continuum radiation emitted from weakly ionized atmospheric pressure plasmas

    SciTech Connect

    Park, Sanghoo; Choe, Wonho; Youn Moon, Se; Park, Jaeyoung

    2014-02-24

    The electron-atom neutral bremsstrahlung continuum radiation emitted from weakly ionized plasmas is investigated for electron density and temperature diagnostics. The continuum spectrum in 450–1000 nm emitted from the argon atmospheric pressure plasma is found to be in excellent agreement with the neutral bremsstrahlung formula with the electron-atom momentum transfer cross-section given by Popović. In 280–450 nm, however, a large discrepancy between the measured and the neutral bremsstrahlung emissivities is observed. We find that without accounting for the radiative H{sub 2} dissociation continuum, the temperature, and density measurements would be largely wrong, so that it should be taken into account for accurate measurement.

  10. RAPID COMMUNICATION: The dissipative effect of thermal radiation loss in high-temperature dense plasmas

    NASA Astrophysics Data System (ADS)

    Li, L. H.; Zhang, H. Q.

    1996-08-01

    A dynamical model based on the two-fluid dynamical equations with energy generation and loss is obtained and used to investigate the self-generated magnetic fields in high-temperature dense plasmas such as the solar core. The self-generation of magnetic fields might be looked at as a self-organization-type behaviour of stochastic thermal radiation fields, as expected for an open dissipative system according to Prigogine's theory of dissipative structures.

  11. Beyond Extreme Ultra Violet (BEUV) Radiation from Spherically symmetrical High-Z plasmas

    NASA Astrophysics Data System (ADS)

    Yoshida, Kensuke; Fujioka, Shinsuke; Higashiguchi, Takeshi; Ugomori, Teruyuki; Tanaka, Nozomi; Kawasaki, Masato; Suzuki, Yuhei; Suzuki, Chihiro; Tomita, Kentaro; Hirose, Ryouichi; Eshima, Takeo; Ohashi, Hayato; Nishikino, Masaharu; Scally, Enda; Nshimura, Hiroaki; Azechi, Hiroshi; O'Sullivan, Gerard

    2016-03-01

    Photo-lithography is a key technology for volume manufacture of high performance and compact semiconductor devices. Smaller and more complex structures can be fabricated by using shorter wavelength light in the photolithography. One of the most critical issues in development of the next generation photo-lithography is to increase energy conversion efficiency (CE) from laser to shorter wavelength light. Experimental database of beyond extreme ultraviolet (BEUV) radiation was obtained by using spherically symmetrical high-Z plasmas generated with spherically allocated laser beams. Absolute energy and spectra of BEUV light emitted from Tb, Gd, and Mo plasmas were measured with a absolutely calibrated BEUV calorimeter and a transmission grating spectrometer. 1.0 x 1012 W/cm2 is the optimal laser intensity to produced efficient BEUV light source plasmas with Tb and Gd targets. Maximum CE is achieved at 0.8% that is two times higher than the published CEs obtained with planar targets.

  12. Experimental characterization of ultraviolet radiation of air in a high enthalpy plasma torch facility

    NASA Astrophysics Data System (ADS)

    Casses, C. J.; Bertrand, P. J.; Jacobs, C. M.; Mac Donald, M. E.; Laux, Ch. O.

    2015-06-01

    During atmospheric reentry, a plasma is formed ahead of the surface of the vehicle and the excited particle present in the plasma produces radiative heating fluxes to the surface of the vehicle. A high-temperature air plasma torch operating at atmospheric pressure was used to experimentally reproduce atmospheric reentry conditions. A high-resolution and absolute intensity emission spectrum (full width at half maximum (FWHM) = 0.064 nm) was obtained from 200 to 450 nm and then compared with computational results provided by the SPECAIR code [1]. This paper discusses the comparison of the two spectra over this wavelength range in order to confirm the validity of the calculation and provide direction to improve the calculated spectrum.

  13. Non-equilibrium radiation during SiC-CO2 plasma interaction

    NASA Astrophysics Data System (ADS)

    Brémare, Noémie; Jouen, Samuel; Boubert, Pascal

    2016-04-01

    The radiation of a pure CO2 inductive plasma was recorded between 190 and 920 nm during its interaction with a SiC sample under a pressure equal to 6 kPa and an estimated global specific enthalpy close to 12 MJ kg-1. The plasma electronic excitation was found to be out of equilibrium. The main radiators were found to be O, C, C2 and, mainly, CO. The radiation is especially significant where the plasma chemically interacts with the material revealing a stronger electronic excitation close to the surface. Excitation temperatures were also found to increase in the chemical boundary layer, which is four times smaller than the thermal boundary layer. This raises questions about the energy exchange processes of the excited states and about chemical behaviour independent of their respective ground states. The surface is found to be covered by an inhomogeneous silica layer revealing a passive oxidation, but also by bubble structures, indicative of the transition towards active oxidation. The surface temperature is estimated to be 1800-1900 K. Raman spectroscopy measurements on the surface and optical spectroscopy measurements in the boundary layer provide proof of carbon production coming from the SiC.

  14. Experimental study of radiation power flux on the target surface during high heat plasma irradiation

    NASA Astrophysics Data System (ADS)

    Litunovsky, V. N.; Ovchinnikov, I. B.; Titov, V. A.

    2001-03-01

    Some new data of the experimental study of visible radiation from the plasma shielding layer (SL) on the target surface during high heat plasma-material interaction are given in the report. The experiments were performed on the VIKA facility. Long pulse ( τp=0.36 ms) high power ( Pirr˜100 GW m -2 plasma streams were used for irradiation of graphite and tungsten samples. The target inclination ( α=0° normal irradiation; 45°; 70°) and magnetic field ( B=0 to 3 T) were varied in experiments. It is shown that the values of ( Δλ≈400 to 700 nm) visible radiation power flux (VRPF) on the target surface can be characterised by the level of PR˜1 GW m -2 for normal irradiation in the presence of a magnetic field B=2 to 3 T. Inclination of targets leads to the reduction of this flux in conformity with the corresponding decrease of the irradiation power. The material of the target does not influence sufficiently on the level of the incident radiation power flux in the performed experiments.

  15. Cherenkov radiation of shear Alfvén waves in plasmas with two ion species

    NASA Astrophysics Data System (ADS)

    Farmer, W. A.; Morales, G. J.

    2012-09-01

    A calculation is presented of the radiation pattern of shear Alfvén waves generated by a burst of charged particles in a charge-neutral plasma with two-ions of differing charge-to-mass ratios. The wake pattern is obtained for the inertial and kinetic regimes of wave propagation. Due to the presence of two ion-species, the Alfvén waves propagate within two different frequency bands separated by a gap. One band is restricted to frequencies below the cyclotron frequency of the heavier species and the other to frequencies between the ion-ion hybrid frequency and the cyclotron frequency of the lighter species. The radiation pattern in the lower frequency band is found to exhibit essentially the same properties reported in a previous study [Van Compernolle et al., Phys. Plasmas 15, 082101 (2008)] of a single species plasma. However, the upper frequency band differs from the lower one in that it always allows for the Cherenkov radiation condition to be met. The methodology is extended to examine the Alfvénic wake of point-charges in the inertial and adiabatic regimes. The adiabatic regime is illustrated for conditions applicable to fusion-born alpha particles in ITER.

  16. Cherenkov radiation of shear Alfven waves in plasmas with two ion species

    SciTech Connect

    Farmer, W. A.; Morales, G. J.

    2012-09-15

    A calculation is presented of the radiation pattern of shear Alfven waves generated by a burst of charged particles in a charge-neutral plasma with two-ions of differing charge-to-mass ratios. The wake pattern is obtained for the inertial and kinetic regimes of wave propagation. Due to the presence of two ion-species, the Alfven waves propagate within two different frequency bands separated by a gap. One band is restricted to frequencies below the cyclotron frequency of the heavier species and the other to frequencies between the ion-ion hybrid frequency and the cyclotron frequency of the lighter species. The radiation pattern in the lower frequency band is found to exhibit essentially the same properties reported in a previous study [Van Compernolle et al., Phys. Plasmas 15, 082101 (2008)] of a single species plasma. However, the upper frequency band differs from the lower one in that it always allows for the Cherenkov radiation condition to be met. The methodology is extended to examine the Alfvenic wake of point-charges in the inertial and adiabatic regimes. The adiabatic regime is illustrated for conditions applicable to fusion-born alpha particles in ITER.

  17. Exploring the electron density in plasma induced by EUV radiation: I. Experimental study in hydrogen

    NASA Astrophysics Data System (ADS)

    van der Horst, R. M.; Beckers, J.; Osorio, E. A.; Astakhov, D. I.; Goedheer, W. J.; Lee, C. J.; Ivanov, V. V.; Krivtsum, V. M.; Koshelev, K. N.; Lopaev, D. V.; Bijkerk, F.; Banine, V. Y.

    2016-04-01

    Plasmas induced by EUV radiation are unique since they are created without the need of any discharge. Moreover, it is essential to characterize these plasmas to understand and predict their long term impact on highly delicate optics in EUV lithography tools. In this paper we study plasmas induced by 13.5 nm EUV radiation in hydrogen gas. The electron density is measured temporally resolved using a non-invasive technique known as microwave cavity resonance spectroscopy. The influence of the EUV pulse energy and gas pressure on the temporal evolution of the electron density has been explored over a parameter range relevant for industry. Our experimental results show that the maximum electron density is in the order of 1014 m-3 and depends linearly on the EUV pulse energy. Furthermore, the maximum electron density depends quadratically on the pressure; the linear term is caused by photoionization and the quadratic term by subsequent electron impact ionization. The decay of the plasma is governed by ambipolar diffusion and, hence, becomes slower at elevated pressures. Similarities and differences of the same processes in argon are highlighted in this paper.

  18. A Radiative Transport Model for Heating Paints using High Density Plasma Arc Lamps

    SciTech Connect

    Sabau, Adrian S; Duty, Chad E; Dinwiddie, Ralph Barton; Nichols, Mark; Blue, Craig A; Ott, Ronald D

    2009-01-01

    The energy distribution and ensuing temperature evolution within paint-like systems under the influence of infrared radiation was studied. Thermal radiation effects as well as those due to heat conduction were considered. A complete set of material properties was derived and discussed. Infrared measurements were conducted to obtain experimental data for the temperature in the paint film. The heat flux of the incident radiation from the plasma arc lamp was measured using a heat flux sensor with a very short response time. The comparison between the computed and experimental results for temperature show that the models that are based on spectral four-flux RTE and accurate optical properties yield accurate results for the black paint systems.

  19. Systems and methods for imaging using radiation from laser produced plasmas

    DOEpatents

    Renard-Le Galloudec, Nathalie; Cowan, Thomas E.; Sentoku, Yasuhiko; Rassuchine, Jennifer

    2009-06-30

    In particular embodiments, the present disclosure provides systems and methods for imaging a subject using radiation emitted from a laser produced plasma generating by irradiating a target with a laser. In particular examples, the target includes at least one radiation enhancing component, such as a fluor, cap, or wire. In further examples, the target has a metal layer and an internal surface defining an internal apex, the internal apex of less than about 15 .mu.m, such as less than about 1 .mu.m. The targets may take a variety of shapes, including cones, pyramids, and hemispheres. Certain aspects of the present disclosure provide improved imaging of a subject, such as improved medical images of a radiation dose than typical conventional methods and systems.

  20. Effects of laser radiation field on energies of hydrogen atom in plasmas

    SciTech Connect

    Bahar, M. K.

    2015-09-15

    In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye and quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.

  1. The Radiation Yield in Different Spectral Ranges from Low Density Structured Laser Plasma with Different High Z-Admixture

    NASA Astrophysics Data System (ADS)

    Rozanov, V.; Vergunova, G.

    2010-04-01

    The problem is to find particular schemes for different tasks. The competing processes under the laser plasma heating are the plasma thermal radiation and the plasma expansion, i.e. the conversion of the laser pulse energy into the plasma kinetic energy. The efficiency of the two mentioned processes depends on the density and size of plasma, and may be effectively controlled by the two parameters, that is, a decrease in density and an increase in the target size, which enhance the efficiency of radiation. The radiation spectrum depends on the plasma composition and a concentration of heavy-ion admixtures in the plasma. During the last two years, the laser fusion scientists were engaged in studying the processes of energy transformation and transfer (including the radiation) in low-density structured foam-like media with an admixture of heavy elements. It was experimentally found that under laser irradiation of a foam-line target with a heavy ion admixture it is possible to produce the radiation with the efficiency close to 50%. The present report concerns a theoretical basis and the experimental results related to the problem.

  2. Electron, Atomic, and Radiation Kinetics in Plasma Discharge Lighting: Advanced Models and Observations

    NASA Astrophysics Data System (ADS)

    Giuliani, John L.

    2006-10-01

    Non-LTE discharges used in lighting sources provide an excellent testbed for understanding the interplay between plasma, atomic, and radiation physics. Standard models for the Hg fluorescent bulb include non-equilibrium kinetics for the species, but employ both a 0-D Boltzmann equation for the electron distribution function (EDF) and Holstein's probability-of-escape for radiation transport. These assumptions overlook some of the more interesting, and challenging, aspects of plasma lighting. The radial ambipolar potential requires the inclusion of the spatial gradient term in the inhomogeneous electron Boltzmann equation. The resulting EDF is found to depend on both electron energy and radial position [1]. Advanced radiation transport techniques account for non-local photo-pumping, line overlap within the Hg resonance lines, and partial frequency redistribution [2]. The results of our completely coupled model match the observed spatial distribution of Hg excited states and the line-of-sight intensity [3]. Due to environmental initiatives there is also recent interest in non-Hg discharges for high intensity lighting. One example is an RF electrodeless Mo-O-Ar plasma discharge bulb which operates by recycling the emitting Mo with an O catalyst. Based on atomic physics calculations for Mo [4], the kinetic pathways leading to visible emission can be identified [5] and explain the measured lighting efficiency of ˜40 lumens/watt of supplied power.[1] J. Appl. Phys., 94, p.62, 2003. [2] Plasma Sources Sci. Tech., 14, p.236, 2005. [3] J. Phys. D., 38, p.4180, 2005. [4] New J. Physics, 6, p.145, 2004. [5] J. Appl. Phys., 95, p.5284, 2004.

  3. Low-temperature low-damage sterilization based on UV radiation through plasma immersion

    NASA Astrophysics Data System (ADS)

    Pollak, J.; Moisan, M.; Kéroack, D.; Boudam, M. K.

    2008-07-01

    This paper introduces a new type of high-frequency (HF) sustained discharge where the HF field applicator is a planar transmission line that allows us to fill with plasma a long chamber of rectangular cross-section (typically 1 m × 15 cm × 5 cm). Peculiar interesting features of this plasma source are a low gas temperature (typically below 40 °C in the 1 Torr range in argon), broadband impedance matching with no need for retuning, stability and reproducibility of the discharge (non-resonant behaviour). This type of plasma source could be useful for web processing; nonetheless, it is applied here to plasma sterilization, taking advantage of its low gas temperature to inactivate microorganisms on polymer-made medical devices to avoid damaging them. The predominant biocide species are the UV photons emitted by the discharge whereas most plasma sterilization techniques call for reactive species such as O atoms and OH molecules, which induce significant erosion damage on polymers. Polystyrene microspheres are actually observed to be erosion-free under the current plasma sterilization conditions (scanning electron micrographs have been examined). Moreover, inactivation is quite fast: 106 B. atrophaeus spores deposited on a Petri dish are inactivated in less than 1 min. Correlation of the UV radiation with the spore inactivation rate is examined by (i) considering the emitted light intensity integrated over the 112-180 nm vacuum UV (VUV) range with a photomultiplier; (ii) looking with an optical spectrometer at the emission spectrum over the 200-400 nm UV range; (iii) using absorption spectroscopy to determine the role of the VUV argon resonant lines (105 and 107 nm) on spore inactivation. It is found that the test-reference spores are mainly inactivated by VUV photons (112-180 nm) that are primarily emitted by impurities present in the argon plasma.

  4. Law of cooling, heat conduction and Stefan-Boltzmann radiation laws fitted to experimental data for bones irradiated by CO2 laser

    PubMed Central

    Lévesque, Luc

    2014-01-01

    The rate of cooling of domesticated pig bones is investigated within the temperature range of 20°C-320°C. Within the afore-mentioned temperature range, it was found that different behaviors in the rate of cooling were taking place. For bones reaching a temperature within the lower temperature range of 20°C-50°C, it was found that the rate of cooling is mostly governed by the empirical Newton’s law of cooling. It is also shown that a transition is taking place somewhere within 50°C-100°C, where both the heat conduction equation and Newton’s law apply. As bones can be raised at a fairly high temperature before burning, it was found that the rate of cooling within the range 125°C-320°C is mostly behaving according to the heat conduction equation and Stefan-Boltzmann radiation law. A pulsed CO2 laser was used to heat the bones up to a given temperature and the change of temperature as a function of time was recorded by non-contact infrared thermometer during the cooling period. PMID:24688807

  5. Law of cooling, heat conduction and Stefan-Boltzmann radiation laws fitted to experimental data for bones irradiated by CO2 laser.

    PubMed

    Lévesque, Luc

    2014-03-01

    The rate of cooling of domesticated pig bones is investigated within the temperature range of 20°C-320°C. Within the afore-mentioned temperature range, it was found that different behaviors in the rate of cooling were taking place. For bones reaching a temperature within the lower temperature range of 20°C-50°C, it was found that the rate of cooling is mostly governed by the empirical Newton's law of cooling. It is also shown that a transition is taking place somewhere within 50°C-100°C, where both the heat conduction equation and Newton's law apply. As bones can be raised at a fairly high temperature before burning, it was found that the rate of cooling within the range 125°C-320°C is mostly behaving according to the heat conduction equation and Stefan-Boltzmann radiation law. A pulsed CO2 laser was used to heat the bones up to a given temperature and the change of temperature as a function of time was recorded by non-contact infrared thermometer during the cooling period.

  6. Full-Trajectory Diagnosis of Laser-Driven Radiative Blast Waves in Search of Thermal Plasma Instabilities

    SciTech Connect

    Moore, A. S.; Gumbrell, E. T.; Lazarus, J.; Hohenberger, M.; Robinson, J. S.; Smith, R. A.; Plant, T. J. A.; Symes, D. R.; Dunne, M.

    2008-02-08

    Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, {epsilon}, as a function of time for comparison with radiation-hydrodynamics simulations.

  7. Full-trajectory diagnosis of laser-driven radiative blast waves in search of thermal plasma instabilities.

    PubMed

    Moore, A S; Gumbrell, E T; Lazarus, J; Hohenberger, M; Robinson, J S; Smith, R A; Plant, T J A; Symes, D R; Dunne, M

    2008-02-01

    Experimental investigations into the dynamics of cylindrical, laser-driven, high-Mach-number shocks are used to study the thermal cooling instability predicted to occur in astrophysical radiative blast waves. A streaked Schlieren technique measures the full blast-wave trajectory on a single-shot basis, which is key for observing shock velocity oscillations. Electron density profiles and deceleration parameters associated with radiative blast waves were recorded, enabling the calculation of important blast-wave parameters including the fraction of radiated energy, epsilon, as a function of time for comparison with radiation-hydrodynamics simulations. PMID:18352379

  8. Development and Evaluation of an Externally Air-Cooled Low-Flow torch and the Attenuation of Space Charge and Matrix Effects in Inductively Coupled Plasma Mass Spectrometry

    SciTech Connect

    Praphairaksit, N.

    2000-09-12

    An externally air-cooled low-flow torch has been constructed and successfully demonstrated for applications in inductively coupled plasma mass spectrometry (ICP-MS). The torch is cooled by pressurized air flowing at {approximately}70 L/min through a quartz air jacket onto the exterior of the outer tube. The outer gas flow rate and operating RF forward power are reduced considerably. Although plasmas can be sustained at the operating power as low as 400 W with a 2 L/min of outer gas flow, somewhat higher power and outer gas flows are advisable. A stable and analytical useful plasma can be obtained at 850 W with an outer gas flow rate of {approximately}4 L/min. Under these conditions, the air-cooled plasma produces comparable sensitivities, doubly charged ion ratios, matrix effects and other analytical merits as those produced by a conventional torch while using significantly less argon and power requirements. Metal oxide ion ratios are slightly higher with the air-cooled plasma but can be mitigated by reducing the aerosol gas flow rate slightly with only minor sacrifice in analyte sensitivity. A methodology to alleviate the space charge and matrix effects in ICP-MS has been developed. A supplemental electron source adapted from a conventional electron impact ionizer is added to the base of the skimmer. Electrons supplied from this source downstream of the skimmer with suitable amount and energy can neutralize the positive ions in the beam extracted from the plasma and diminish the space charge repulsion between them. As a result, the overall ion transmission efficiency and consequent analyte ion sensitivities are significantly improved while other important analytical aspects, such as metal oxide ion ratio, doubly charged ion ratio and background ions remain relatively unchanged with the operation of this electron source. This technique not only improves the ion transmission efficiency but also minimizes the matrix effects drastically. The matrix-induced suppression

  9. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskii, V. N.; Uspenskiy, S. A.

    2015-03-01

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study.

  10. Laser-plasma SXR/EUV sources: adjustment of radiation parameters for specific applications

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Kostecki, J.; Szczurek, A.; Szczurek, M.; Wachulak, P.; Wegrzyński, Ł.

    2014-12-01

    In this work soft X-ray (SXR) and extreme ultraviolet (EUV) laser-produced plasma (LPP) sources employing Nd:YAG laser systems of different parameters are presented. First of them is a 10-Hz EUV source, based on a double-stream gaspuff target, irradiated with the 3-ns/0.8J laser pulse. In the second one a 10 ns/10 J/10 Hz laser system is employed and the third one utilizes the laser system with the pulse shorten to approximately 1 ns. Using various gases in the gas puff targets it is possible to obtain intense radiation in different wavelength ranges. This way intense continuous radiation in a wide spectral range as well as quasi-monochromatic radiation was produced. To obtain high EUV or SXR fluence the radiation was focused using three types of grazing incidence collectors and a multilayer Mo/Si collector. First of them is a multfoil gold plated collector consisted of two orthogonal stacks of ellipsoidal mirrors forming a double-focusing device. The second one is the ellipsoidal collector being part of the axisymmetrical ellipsoidal surface. Third of the collectors is composed of two aligned axisymmetrical paraboloidal mirrors optimized for focusing of SXR radiation. The last collector is an off-axis ellipsoidal multilayer Mo/Si mirror allowing for efficient focusing of the radiation in the spectral region centered at λ = 13.5 ± 0.5 nm. In this paper spectra of unaltered EUV or SXR radiation produced in different LPP source configurations together with spectra and fluence values of focused radiation are presented. Specific configurations of the sources were assigned to various applications.

  11. Ionizing radiations increase the activity of the cell surface glycohydrolases and the plasma membrane ceramide content.

    PubMed

    Aureli, Massimo; Bassi, Rosaria; Prinetti, Alessandro; Chiricozzi, Elena; Pappalardi, Brigida; Chigorno, Vanna; Di Muzio, Nadia; Loberto, Nicoletta; Sonnino, Sandro

    2012-12-01

    We detected significant levels of β-glucosidase, β-galactosidase, sialidase Neu3 and sphingomyelinase activities associated with the plasma membrane of fibroblasts from normal and Niemann-Pick subjects and of cells from breast, ovary, colon and neuroblastoma tumors in culture. All of the cells subjected to ionizing radiations showed an increase of the activity of plasma membrane β-glucosidase, β-galactosidase and sialidase Neu3, in addition of the well known increase of activity of plasma membrane sphingomyelinase, under similar conditions. Human breast cancer cell line T47D was studied in detail. In these cells the increase of activity of β-glucosidase and β-galactosidase was parallel to the increase of irradiation dose up to 60 Gy and continued with time, at least up to 72 h from irradiation. β-glucosidase increased up to 17 times and β-galactosidase up to 40 times with respect to control. Sialidase Neu3 and sphingomyelinase increased about 2 times at a dose of 20 Gy but no further significant differences were observed with increase of radiation dose and time. After irradiation, we observed a reduction of cell proliferation, an increase of apoptotic cell death and an increase of plasma membrane ceramide up to 3 times, with respect to control cells. Tritiated GM3 ganglioside has been administered to T47D cells under conditions that prevented the lysosomal catabolism. GM3 became component of the plasma membranes and was transformed into LacCer, GlcCer and ceramide. The quantity of ceramide produced in irradiated cells was about two times that of control cells.

  12. Numerical Modeling of Imploding Plasma liners Using the 1D Radiation-Hydrodynamics Code HELIOS

    NASA Astrophysics Data System (ADS)

    Davis, J. S.; Hanna, D. S.; Awe, T. J.; Hsu, S. C.; Stanic, M.; Cassibry, J. T.; Macfarlane, J. J.

    2010-11-01

    The Plasma Liner Experiment (PLX) is attempting to form imploding plasma liners to reach 0.1 Mbar upon stagnation, via 30--60 spherically convergent plasma jets. PLX is partly motivated by the desire to develop a standoff driver for magneto-inertial fusion. The liner density, atomic makeup, and implosion velocity will help determine the maximum pressure that can be achieved. This work focuses on exploring the effects of atomic physics and radiation on the 1D liner implosion and stagnation dynamics. For this reason, we are using Prism Computational Science's 1D Lagrangian rad-hydro code HELIOS, which has both equation of state (EOS) table-lookup and detailed configuration accounting (DCA) atomic physics modeling. By comparing a series of PLX-relevant cases proceeding from ideal gas, to EOS tables, to DCA treatments, we aim to identify how and when atomic physics effects are important for determining the peak achievable stagnation pressures. In addition, we present verification test results as well as brief comparisons to results obtained with RAVEN (1D radiation-MHD) and SPHC (smoothed particle hydrodynamics).

  13. On the structure of quasi-stationary laser ablation fronts in strongly radiating plasmas

    SciTech Connect

    Basko, M. M. Novikov, V. G.; Grushin, A. S.

    2015-05-15

    The effect of strong thermal radiation on the structure of quasi-stationary laser ablation fronts is investigated under the assumption that all the laser flux is absorbed at the critical surface. Special attention is paid to adequate formulation of the boundary-value problem for a steady-state planar ablation flow. The dependence of the laser-to-x-ray conversion efficiency ϕ{sub r} on the laser intensity I{sub L} and wavelength λ{sub L} is analyzed within the non-equilibrium diffusion approximation for radiation transfer. The scaling of the main ablation parameters with I{sub L} and λ{sub L} in the strongly radiative regime 1−ϕ{sub r}≪1 is derived. It is demonstrated that strongly radiating ablation fronts develop a characteristic extended cushion of “radiation-soaked” plasma between the condensed ablated material and the critical surface, which can efficiently suppress perturbations from the instabilities at the critical surface.

  14. Using radiation temperature to monitor plasma drive in materials strength experiments

    NASA Astrophysics Data System (ADS)

    Benedetti, Laura Robin; Moore, A. S.; Park, H.-S.; Prisbrey, S. T.; Huntington, C. M.; McNaney, J. M.; Smith, R.; Wehrenberg, C. E.; Remington, B. A.; Arsenlis, A.

    2015-11-01

    Materials strength experiments at the National Ignition Facility generate smooth loading in a material by the plasma drive of a shocked reservoir mounted on the side of a gold hohlraum. In these experiments, the loading profile of plasma unloading across a gap and then stagnating at the target is measured with VISAR. Geometric limitations preclude simultaneous measurement of VISAR and the Rayleigh-Taylor (RT) growth that is used to determine strength. We use hohlraum radiation temperatures measured with the Dante spectrometer to link the drive measured with VISAR to the stress condition when RT growth is measured. By combining Dante measurements from two different lines of sight with view factor calculations, we infer the radiation drive into the reservoir. With this method, we can account for spatial variations within the hohlraum and also reproduce observed variations due to changes in pointing and target orientation. We describe the simplified, physics-based analysis of Dante spectra and the methods of determining radiation drive to the reservoir. We then discuss the effectiveness of this method for inferring drive at the target material. This work was performed under the auspices of the Lawrence Livermore National Security, LLC, (LLNS) under Contract No. DE-AC52-07NA27344. LLNL-ABS-674966.

  15. Effects of an evaporative cooling system on plasma cortisol, IGF-I, and milk production in dairy cows in a tropical environment

    NASA Astrophysics Data System (ADS)

    Titto, Cristiane Gonçalves; Negrão, João Alberto; Titto, Evaldo Antonio Lencioni; Canaes, Taissa de Souza; Titto, Rafael Martins; Pereira, Alfredo Manuel Franco

    2013-03-01

    Access to an evaporative cooling system can increase production in dairy cows because of improved thermal comfort. This study aimed to evaluate the impact of ambient temperature on thermoregulation, plasma cortisol, insulin-like growth factor 1 (IGF-I), and productive status, and to determine the efficiency of an evaporative cooling system on physiological responses under different weather patterns. A total of 28 Holstein cows were divided into two groups, one with and the other without access to a cooling system with fans and mist in the free stall. The parameters were analyzed during morning (0700 hours) and afternoon milking (1430 hours) under five different weather patterns throughout the year (fall, winter, spring, dry summer, and rainy summer). Rectal temperature (RT), body surface temperature (BS), base of tail temperature (TT), and respiratory frequency (RF) were lower in the morning ( P < 0.01). The cooling system did not affect RT, and both the groups had values below 38.56 over the year ( P = 0.11). Cortisol and IGF-I may have been influenced by the seasons, in opposite ways. Cortisol concentrations were higher in winter ( P < 0.05) and IGF-I was higher during spring-summer ( P < 0.05). The air temperature and the temperature humidity index showed positive moderate correlations to RT, BS, TT, and RF ( P < 0.001). The ambient temperature was found to have a positive correlation with the physiological variables, independent of the cooling system, but cooled animals exhibited higher milk production during spring and summer ( P < 0.01).

  16. Plasma channel produced by femtosecond laser pulses as a medium for amplifying electromagnetic radiation of the subterahertz frequency range

    SciTech Connect

    Bogatskaya, A V; Volkova, E A; Popov, A M

    2013-12-31

    The electron energy distribution function in the plasma channel produced by a femtosecond laser pulse with a wavelength of 248 nm in atmospheric-pressure gases was considered. Conditions were determined whereby this channel may be employed for amplifying electromagnetic waves up to the terahertz frequency range over the energy spectrum relaxation time ∼10{sup -7} s. Gains were calculated as functions of time and radiation frequency. The effect of electron – electron collisions on the rate of relaxation processes in the plasma and on its ability to amplify the electromagnetic radiation was investigated. (interaction of laser radiation with matter)

  17. Study of strong enhancement of synchrotron radiation via surface plasma waves excitation by particle-in-cell simulations

    SciTech Connect

    Pan, K. Q.; Zheng, C. Y. Cao, L. H.; He, X. T.; Wu, Dong; Liu, Z. J.

    2015-11-02

    Synchrotron radiation is strongly enhanced by the resonant excitation of surface plasma waves (SPWs). Two-dimensional particle-in-cell simulations show that energy conversion efficiency from laser to radiation in the case of SPWs excitation is about 18.7%, which is improved by more than 2 orders of magnitude compared with that of no SPWs excitation. Besides the high energy conversion efficiency, the frequency spectrum and the angular distribution of the radiation are also improved in the case of SPWs excitation because of the quasi-static magnet field induced by surface plasma waves excitation.

  18. Ray tracing simulation for radiation trapping of the He I resonance transitions in a linear plasma device

    SciTech Connect

    Kajita, Shin; Nishijima, Daisuke; Hollmann, Eric M.; Ohno, Noriyasu

    2009-06-15

    A ray tracing code combined with a He I collisional-radiative (CR) model has been developed to investigate effects of radiation trapping on the population distribution of He atoms in a weakly ionized plasma. The code accurately reproduces experimentally observed vertical profiles of emission intensities in a linear plasma device. On the other hand, the CR code and that modified with the optical escape factor method to include the radiation trapping effects show that vertical profiles significantly deviate from measured ones at the periphery of the plasma column. This work therefore demonstrates that accurate matching of line intensity profiles over the entire plasma column requires a ray tracing code, not just an optical escape factor approximation.

  19. Calibration of the RSS-131 high efficiency ionization chamber for radiation dose monitoring during plasma experiments conducted on plasma focus device

    NASA Astrophysics Data System (ADS)

    Szewczak, Kamil; Jednoróg, Sławomir

    2014-10-01

    Plasma research poses a radiation hazard. Due to the program of deuterium plasma research using the PF-1000 device, it is an intensive source of neutrons (up to 1011 n · pulse -1) with energy of 2,45 MeV and ionizing electromagnetic radiation with a broad energy spectrum. Both types of radiation are mostly emitted in ultra-short pulses (˜100 ns). The aim of this work was to test and calibrate the RSS-131 radiometer for its application in measurements of ultra-short electromagnetic radiation pulses with broad energy spectrum emitted during PF-1000 discharge. In addition, the results of raw measurements performed in the control room are presented.

  20. Studies of degenerate and nearly degenerate four wave mixing of laser radiation in plasmas

    SciTech Connect

    Joshi, Chan . Dept. of Electrical Engineering)

    1990-12-01

    Optical Phase Conjugation is an area of nonlinear optics with a wide variety of potential applications. One method of generating as phase conjugate signal is with four wave mixing (FWM). In FWM, three input beams interact in a nonlinear medium, and a fourth beam is produced that is the phase conjugate of one of the input waves. Degeneate Four Wave Mixing (DFWM) is a special case of FWM in which all of the beams are at the same frequency. In a plasma, DFWM is an effective technique for phase conjugation in high density, low temperature plasmas. One way of enhancing the phase conjugate signal over and above the DFWM level is with Resonant Four Wave Mixing (RFWM), in which two of the input beams beat at a plasma resonance. In addition to enhancing the generated wave, RFWM can also serve as a diagnostic for many plasma parameters, such as the electron and ion temperatures, the ion acoustic velocity, and the damping rate. In this report, experimental evidence of RFWM with CO{sub 2} laser radiation (10.6 {mu}m) is presented, and the data is compared with theoretical predictions.

  1. Detailed investigations on radiative opacity and emissivity of tin plasmas in the extreme-ultraviolet region.

    PubMed

    Zeng, Jiaolong; Gao, Cheng; Yuan, Jianmin

    2010-08-01

    Radiative opacity and emissivity of tin plasmas at average ionization degree of about 10 was investigated in detail by using a fully relativistic detailed level accounting approach, in which main physical effects on the opacity were carefully taken into account. Among these physical effects, configuration interaction, in particular core-valence electron correlations, plays an important role on the determination of accurate atomic data required in the calculation of opacity. It results in a strong narrowing of lines from all transition arrays and strong absorption is located in a narrow wavelength region of 12.5-14 nm for Sn plasmas. Using a complete accurate atomic data, we investigated the opacity of Sn plasmas at a variety of physical condition. Among the respective ions of Xe6+-Xe15+ , Xe10+ has the largest absorption cross section at 13.5 nm, while the favorable physical condition for maximal absorption at 13.5 nm do not mean that Xe10+ has the largest fraction. Comparison with other theoretical results showed that a complete set of consistent accurate atomic data, which lacks very much, is essential to predict accurate opacity. Our atomic model is useful and can be applied to interpret opacity experiments. Further benchmark experiments are urgently needed to clarify the physical effects on the opacity of Sn plasmas.

  2. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  3. Radiative Characteristics of the Pulse-Periodic Discharge Plasma Initiated by Runaway Electrons

    NASA Astrophysics Data System (ADS)

    Lomaev, M. I.; Beloplotov, D. V.; Tarasenko, V. F.; Sorokin, D. A.

    2016-07-01

    Results of experimental investigations of amplitude-temporal and spectral characteristics of radiation of a pulse-periodic discharge plasma initiated in nitrogen by runaway electrons are presented. The discharge was initiated by high-voltage nanosecond voltage pulses with repetition frequency of 60 Hz in a sharply inhomogeneous electric field in a gap between the conic potential cathode and the planar grounded aluminum anode. It is established that intensive lines of Al I atoms and Al II atomic ions, lines of N I atoms and N II ions, bands of the first (1+) and second positive (2+) nitrogen systems, as well as bands of cyanogen CN are observed in the emission spectrum of the discharge plasma under the given excitation conditions.

  4. Spectroscopic Challenges in the Modelling and Diagnostics of High Temperature Air Plasma Radiation for Aerospace Applications

    SciTech Connect

    Laux, Christophe O.

    2007-04-06

    State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 {mu}m). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed.

  5. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    NASA Astrophysics Data System (ADS)

    Keenan, Brett D.; Medvedev, Mikhail V.

    2015-11-01

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., "sub-Larmor scales." Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.

  6. Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-24

    The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target 'Lead' due to interaction of electron beam. Results indicated that an appropriate design of hollow anode with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.

  7. Radiation from particles moving in small-scale magnetic fields created in solid-density laser-plasma laboratory experiments

    SciTech Connect

    Keenan, Brett D. Medvedev, Mikhail V.

    2015-11-15

    Plasmas created by high-intensity lasers are often subject to the formation of kinetic-streaming instabilities, such as the Weibel instability, which lead to the spontaneous generation of high-amplitude, tangled magnetic fields. These fields typically exist on small spatial scales, i.e., “sub-Larmor scales.” Radiation from charged particles moving through small-scale electromagnetic (EM) turbulence has spectral characteristics distinct from both synchrotron and cyclotron radiation, and it carries valuable information on the statistical properties of the EM field structure and evolution. Consequently, this radiation from laser-produced plasmas may offer insight into the underlying electromagnetic turbulence. Here, we investigate the prospects for, and demonstrate the feasibility of, such direct radiative diagnostics for mildly relativistic, solid-density laser plasmas produced in lab experiments.

  8. Comparative study of radiation emission without and with target in a 2.2 kJ plasma focus device

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-01

    The radiation emission in a 2.2 kJ Mather-type dense plasma focus device is investigated using a five channel BPX65 PIN diode spectrometer. Estimated X-ray associated with the hollow anode without and with target in Argon gas medium is compared. At optimum conditions, the radiation emission from the system is found to be strongly influenced with target in hollow anode and the filling gas pressure. The maximum X-ray yield in 4π sr was obtained in case of hollow anode in argon gas medium with target "Lead" due to interaction of electron beam. Results indicated that an appropriate design of hollow anode with target could enhance the radiation emission by more intense interaction of expected electron beam with target. The outcomes are helpful in designing a plasma focus with enhanced X-ray radiation with improved shot to shot reproducibility in plasma focus device.

  9. Association between sperm DNA integrity and seminal plasma antioxidant levels in health workers occupationally exposed to ionizing radiation

    SciTech Connect

    Kumar, Dayanidhi; Salian, Sujith Raj; Kalthur, Guruprasad; Uppangala, Shubhashree; Kumari, Sandhya; Challapalli, Srinivas; Chandraguthi, Shrinidhi Gururajarao; Jain, Navya; Krishnamurthy, Hanumanthappa; Kumar, Pratap; Adiga, Satish Kumar

    2014-07-15

    There is a paucity of data regarding the association between occupational radiation exposure and risk to human fertility. Recently, we provided the first evidence on altered sperm functional characteristics, DNA damage and hypermethylation in radiation health workers. However, there is no report elucidating the association between seminal plasma antioxidants and sperm chromatin integrity in occupationally exposed subjects. Here, we assessed the seminal plasma antioxidants and lipid peroxidation level in 83 men who were occupationally exposed to ionizing radiation and then correlated with the sperm chromatin integrity. Flow cytometry based sperm chromatin integrity assay revealed a significant decline in αt value in the exposed group in comparison to the non-exposed group (P<0.0001). Similarly, both total and reduced glutathione levels and total antioxidant capacity in the seminal plasma were significantly higher in exposed group than the non-exposed group (P<0.01, 0.001 and 0.0001, respectively). However, superoxide dismutase level and malondialdehyde level, which is an indicator of lipid peroxidation in the seminal plasma, did not differ significantly between two groups. The total antioxidant capacity (TAC) and GSH level exhibited a positive correlation with sperm DNA integrity in exposed subjects. To conclude, this study distinctly shows that altered sperm chromatin integrity in radiation health workers is associated with increase in seminal plasma antioxidant level. Further, the increased seminal plasma GSH and TAC could be an adaptive measure to tackle the oxidative stress to protect genetic and functional sperm deformities in radiation health workers. - Highlights: • Seminal plasma antioxidants were measured in men occupationally exposed to radiation. • Sperm chromatin integrity was significantly affected in the exposed group. • Glutathione and total antioxidant capacity was significantly higher in exposed group. • Sperm DNA damage in exposed subjects

  10. Generation of terahertz radiation via an electromagnetically induced transparency at ion acoustic frequency region in laser-produced dense plasmas.

    PubMed

    Nakagawa, Makoto; Kodama, Ryosuke; Higashiguchi, Takeshi; Yugami, Noboru

    2009-08-01

    Electromagnetically induced transparency is a well-known quantum phenomena that electromagnetic wave controls the refractive index of medium. It enables us to create a passband for low-frequency electromagnetic wave in a dense plasma even if the plasma is opaque for the electromagnetic wave. This technique can be used to prove the ion acoustic wave because the ion acoustic frequency is lower than the plasma frequency. We have investigated a feasibility of electromagnetic radiation at THz region corresponding to the ion acoustic frequency from a dense plasma. We confirmed that the passband is created at about 7.5 THz corresponding to the ion acoustic frequency in the electron plasma density of 10(21) cm(-3) with a Ti:Sapphire laser with the wavelength of 800 nm and the laser intensity of 10(17) W/cm(2). The estimated radiation power is around 1 MW, which is expected to be useful for nonlinear THz science and applications.

  11. Three-dimensional tomographic imaging for dynamic radiation behavior study using infrared imaging video bolometers in large helical device plasma.

    PubMed

    Sano, Ryuichi; Peterson, Byron J; Teranishi, Masaru; Iwama, Naofumi; Kobayashi, Masahiro; Mukai, Kiyofumi; Pandya, Shwetang N

    2016-05-01

    A three-dimensional (3D) tomography system using four InfraRed imaging Video Bolometers (IRVBs) has been designed with a helical periodicity assumption for the purpose of plasma radiation measurement in the large helical device. For the spatial inversion of large sized arrays, the system has been numerically and experimentally examined using the Tikhonov regularization with the criterion of minimum generalized cross validation, which is the standard solver of inverse problems. The 3D transport code EMC3-EIRENE for impurity behavior and related radiation has been used to produce phantoms for numerical tests, and the relative calibration of the IRVB images has been carried out with a simple function model of the decaying plasma in a radiation collapse. The tomography system can respond to temporal changes in the plasma profile and identify the 3D dynamic behavior of radiation, such as the radiation enhancement that starts from the inboard side of the torus, during the radiation collapse. The reconstruction results are also consistent with the output signals of a resistive bolometer. These results indicate that the designed 3D tomography system is available for the 3D imaging of radiation. The first 3D direct tomographic measurement of a magnetically confined plasma has been achieved.

  12. Reflection of electromagnetic radiation from plasma with an anisotropic electron velocity distribution

    SciTech Connect

    Vagin, K. Yu. Uryupin, S. A.

    2013-08-15

    The reflection of a test electromagnetic pulse from the plasma formed as a result of tunnel ionization of atoms in the field of a circularly polarized high-power radiation pulse is analyzed using the kinetic approach to describe electron motion. It is shown that the reflected pulse is significantly amplified due to the development of Weibel instability. The amplification efficiency is determined by the maximum value of the instability growth rate, which depends on the degree of anisotropy of the photoelectron distribution function.

  13. Final Report - Interaction of radiation and charged particles in miniature plasma structures

    SciTech Connect

    Antonsen, Thomas M.

    2014-07-16

    The extension of our program to the development of theories and models capable of describing the interactions of intense laser pulses and charged particles in miniature plasma channels is reported. These channels, which have recently been created in the laboratory, have unique dispersion properties that make them interesting for a variety of applications including particle acceleration, high harmonic generation, and THz generation. Our program systematically explored the properties of these channels, including dispersion, losses, and coupling. A particular application that was pursued is the generation of intense pulses of THz radiation by short laser pulses propagating these channels. We also explored the nonlinear dynamics of laser pulses propagating in these channels.

  14. Plasma Damping Effects on the Radiative Energy Loss of Relativistic Particles

    SciTech Connect

    Bluhm, M.; Gossiaux, P. B.; Aichelin, J.

    2011-12-23

    The energy loss of a relativistic charge undergoing multiple scatterings while traversing an infinite, polarizable and absorptive plasma is investigated. Polarization and absorption mechanisms in the medium are phenomenologically modeled by a complex index of refraction. Apart from the known Ter-Mikaelian effect related to the dielectric polarization of matter, we find an additional, substantial reduction of the energy loss due to the damping of radiation. The observed effect is more prominent for larger damping and/or larger energy of the charge. A conceivable analog of this phenomenon in QCD could influence the study of jet quenching phenomena in ultrarelativistic heavy-ion collisions at RHIC and LHC.

  15. Theory of a laser-plasma method for detecting terahertz radiation

    SciTech Connect

    Frolov, A. A.; Borodin, A. V.; Esaulkov, M. N.; Kuritsyn, I. I.; Shkurinov, A. P.

    2012-06-15

    A theory is developed for calculating the spectrum and the shape of a terahertz wave packet from the temporal profile of the energy of the second harmonic of the laser field generated during nonlinear interaction of laser and terahertz pulses in an optical-breakdown plasma. The spectral and temporal characteristics of the second-harmonic envelope and a terahertz pulse are shown to coincide only for short laser pulses. For long laser pulses, the second-harmonic spectral line shifts to the red and its temporal profile is determined by the time integral of the electric field of terahertz radiation.

  16. A cesium plasma TELEC device for conversion of laser radiation to electric power

    NASA Technical Reports Server (NTRS)

    Britt, E. J.; Rasor, N. S.; Lee, G.; Billman, K. W.

    1978-01-01

    Tests of the thermoelectronic laser energy converter (TELEC) concept are reported. This device has been devised as a means to convert high-average-power laser radiation into electrical energy, a crucial element in any space laser power transmission scheme using the available high-power/efficiency infrared lasers. Theoretical calculations, based upon inverse bremsstrahlung absorption in a cesium plasma, indicate internal conversion efficiency up to 50% with an overall system efficiency of 42%. The experiments reported were made with a test cell designed to confirm the theoretical model rather than demonstrate efficiency; 10.6-micron laser-beam absorption was limited to about 0.001 of the incident beam by the short absorption region. Nevertheless, confirmatory results were obtained, and the conversion of absorbed radiation to electric power is estimated to be near 10%.

  17. Enhanced X-ray radiation from laser wakefield acceleration transition to plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Dong, Chuanfei; Thomas, Alexander; Cummings, Paul; Krushelnick, Karl

    2015-11-01

    The electromagnetic fields responsible for Laser Wakefield Acceleration (LWFA) also cause electrons to radiate bright X-ray pulses though betatron oscillations. Using 3-D OSIRIS particle in cell simulations with a Monte Carlo synchrotron X-ray emission algorithm, the X-ray flux was also shown to increase dramatically for interaction distances beyond the dephasing length, where the main electron beams in the first ion bubble catch up the laser pulse front. Subsequently, it forms a secondary beam in the tail of the first bubble. Laser wakefield acceleration transitions to beam driven plasma wakefield acceleration, which results in the onset of the electron-hose instability and thus significantly enhances the X-ray radiation.

  18. Radiation protection of PFMA-1, a plasma focus for medical applications.

    PubMed

    Fabbri, A; Frignani, M; Mannucci, S; Mostacci, D; Rocchi, F; Sumini, M; Teodori, F; Angeli, E; Tartari, A; Cucchi, G

    2007-12-01

    A plasma focus is being developed for breeding short-lived radionuclides. The different radiation protection issues and concerns posed by the machine once in operation are analysed and discussed. Activation is shown to be totally negligible and likewise neutron emission is found to pose no concern at all. The only source of radiation risk is found to rest in the radionuclides produced, 18F and 15 O, generating a peak exposure of 1.114 Sv y(-1) at the distance of closest approach of 2.5 m. Shielding to protect against this hazard is calculated to be 5 cm Pb or 54 cm concrete for the operation area and 5.5 cm Pb for the transportation flask. PMID:18268377

  19. Optimum Conditions for the Efficacy and Safety of Cryofiltration Apheresis: An Analysis of Circuit Temperatures Depending on Plasma Flow Rate and Cooling Coil Lengths/Turns.

    PubMed

    Nakajima, Hirofumi; Kaneko, Shuzo; Sato, Yukihiro; Takano, Tomoo; Hosino, Toshihisa

    2015-08-01

    A system providing both appropriate cooling and warming are needed for the efficacy and safety of cryofiltration (CF) plasmapheresis. We measured some points of CF circuit temperatures with varying plasma flow rates (QP  = 10-40 mL/min) and the numbers of connecting cooling coils (one or two) under the conditions of blood flow rate (QB ) 100 mL/min with 7700-mm coil length, 19 turns, and 50-mL priming volume. We measured the respective temperatures of each point of starting/returning for an extracorporeal circuit (TA /TV ), intracooling coil (TC ), and post-plasma fractionator (PF) (TPF ). The subtraction of TV from TA (ΔT) was used as an indicator of safe return. There were no significant differences in TC , TPF , or ΔT in accordance with each QP between that of one and two coils. All of the Tc values under the condition QP  ≤ 20 mL/min achieved <4°C. The TPF under the condition QP  ≥ 20 mL/min was not significantly different compared to that of QP 30 mL/min (the lowest condition). Although the ΔT increased depending on the QP increase, the ΔT under the condition QP  ≤ 15 mL/min was not significantly different from that of the control (one-way double-filtration plasmapheresis [DFPP]) group. We conclude that (i) one coil is enough for effective cooling in CF, and (ii) an ideal QP that fulfills the required conditions for both effective cooling and sufficient warming of returning fluid does not exist, but QP from 15 to 20 mL/min may be a relevant range.

  20. Constraining the Radiation and Plasma Environment of the Kepler Circumbinary Habitable-zone Planets

    NASA Astrophysics Data System (ADS)

    Zuluaga, Jorge I.; Mason, Paul A.; Cuartas-Restrepo, Pablo A.

    2016-02-01

    The discovery of many planets using the Kepler telescope includes 10 planets orbiting eight binary stars. Three binaries, Kepler-16, Kepler-47, and Kepler-453, have at least one planet in the circumbinary habitable zone (BHZ). We constrain the level of high-energy radiation and the plasma environment in the BHZ of these systems. With this aim, BHZ limits in these Kepler binaries are calculated as a function of time, and the habitability lifetimes are estimated for hypothetical terrestrial planets and/or moons within the BHZ. With the time-dependent BHZ limits established, a self-consistent model is developed describing the evolution of stellar activity and radiation properties as proxies for stellar aggression toward planetary atmospheres. Modeling binary stellar rotation evolution, including the effect of tidal interaction between stars in binaries, is key to establishing the environment around these systems. We find that Kepler-16 and its binary analogs provide a plasma environment favorable for the survival of atmospheres of putative Mars-sized planets and exomoons. Tides have modified the rotation of the stars in Kepler-47, making its radiation environment less harsh in comparison to the solar system. This is a good example of the mechanism first proposed by Mason et al. Kepler-453 has an environment similar to that of the solar system with slightly better than Earth radiation conditions at the inner edge of the BHZ. These results can be reproduced and even reparameterized as stellar evolution and binary tidal models progress, using our online tool http://bhmcalc.net.