Simulation of lubricating behavior of a thioether liquid lubricant by an electrochemical method
NASA Technical Reports Server (NTRS)
Morales, W.
1984-01-01
An electrochemical cell was constructed to explore the possible radical anion forming behavior of a thioether liquid lubricant. The electrochemical behavior of the thioether was compared with the electrochemical behavior of biphenyl, which is known to form radical anions. Under controlled conditions biphenyl undergoes a reversible reaction to a radical anion, whereas the thioether undergoes an irreversible reduction yielding several products. These results are discussed in relation to boundary lubrication.
Schertz, T D; Reiter, R C; Stevenson, C D
2001-11-16
Ninhydrin (the fingerprint developing agent) spontaneously dehydrates in liquid ammonia and in hexamethylphosphoramide (HMPA) to form indantrione, which has a sufficiently large solution electron affinity to extract an electron from the solvent (HMPA) to produce the indantrione anion radical. In liquid NH(3), the presence of trace amounts of amide ion causes the spontaneous formation of an anion radical condensation product, wherein the no. 2 carbon (originally a carbonyl carbon) becomes substituted with -NH(2) and -OH groups. In HMPA, the indantrione anion radical spontaneously forms condensation products with the HMPA to produce a variety of zwitterionic radicals, wherein the no. 2 carbon becomes directly attached to a nitrogen of the HMPA. The mechanisms for the formation of the zwitterionic paramagnetic condensation products are analogous to that observed in the reaction of ninhydrin with amino acids to yield Ruhemann's Purple, the contrast product in fingerprint development. The formation of anion and zwitterionic radical condensation products from ninhydrin and nitrogen-containing solvents may represent an example of a host of analogous polyketone-solvent reactions.
Configuration and energy landscape of the benzonitrile anion
NASA Astrophysics Data System (ADS)
Kirnosov, Nikita; Adamowicz, Ludwik
2017-05-01
Quantum chemical calculations are employed to study the configurational isomers of the anion formed by benzene substituted with a cyano group. It is found that an excess electron can form dipole-bound (DB) states with benzonitrile and phenyl-isocyanide isomers. It can also attach to the cyano group, if this group is separated from the benzene ring by some distance, forming a covalent CN- anion. There are four positions at peripherals of the benzene ring where this anion can localize and form stable complexes with the benzene radical. In these complexes CN- is connected to the benzene radical via non-covalent interactions.
Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman
2013-01-01
Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion in aqueous media. Biological implications of the minor free radical pathway are discussed in the context of ONOO− detection, using the boronate probes. PMID:21434648
Structure of free radicals in irradiated acetyl-L-leucine single crystals at 77 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Almanov, G.A.; Bogdanchikov, G.A.; Usov, O.M.
1988-09-01
By using the EPR method, two types of radicals are observed, which are formed in acetyl-L-leucine single crystals irradiated at 77K. These are alkyl type radicals (CH/sub 3/)/sub 2/CCH/sub 2/CH(NHCOCH/sub 3/)COOH and peptide group radicals. When the crystals are defrozen to room temperatures, the radicals of the second type disappear without formation of paramagnetic particles. Two possible structures of the peptide group radicals were studied by the INDO method. On defreezing to room temperature, the alkyl group radical is retained, while the peptide radical disappears without formation of paramagnetic particles. For the protonated form of the anion-radical, a better agreementmore » is observed between the theoretically calculated and the experimentally obtained HFI constants. The quantum chemical analysis of the possible structures of the peptide group radicals indicates that the formation of the protonated form of the anion-radical is energetically favorable.« less
Konarev, Dmitri V; Kuzmin, Alexey V; Faraonov, Maxim A; Ishikawa, Manabu; Khasanov, Salavat S; Nakano, Yoshiaki; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N
2015-01-12
Radical anion salts of metal-containing and metal-free phthalocyanines [MPc(3-)](·-), where M = Cu(II), Ni(II), H2, Sn(II), Pb(II), Ti(IV)O, and V(IV)O (1-10) with tetraalkylammonium cations have been obtained as single crystals by phthalocyanine reduction with sodium fluorenone ketyl. Their formation is accompanied by the Pc ligand reduction and affects the molecular structure of metal phthalocyanine radical anions as well as their optical and magnetic properties. Radical anions are characterized by the alternation of short and long C-Nimine bonds in the Pc ligand owing to the disruption of its aromaticity. Salts 1-10 show new bands at 833-1041 nm in the NIR range, whereas the Q- and Soret bands are blue-shifted by 0.13-0.25 eV (38-92 nm) and 0.04-0.07 eV (4-13 nm), respectively. Radical anions with Ni(II), Sn(II), Pb(II), and Ti(IV)O have S = 1/2 spin state, whereas [Cu(II)Pc(3-)](·-) and [V(IV)OPc(3-)](·-) containing paramagnetic Cu(II) and V(IV)O have two S = 1/2 spins per radical anion. Central metal atoms strongly affect EPR spectra of phthalocyanine radical anions. Instead of narrow EPR signals characteristic of metal-free phthalocyanine radical anions [H2Pc(3-)](·-) (linewidth of 0.08-0.24 mT), broad EPR signals are manifested (linewidth of 2-70 mT) with g-factors and linewidths that are strongly temperature-dependent. Salt 11 containing the [Na(I)Pc(2-)](-) anions as well as previously studied [Fe(I)Pc(2-)](-) and [Co(I)Pc(2-)](-) anions that are formed without reduction of the Pc ligand do not show changes in molecular structure or optical and magnetic properties characteristic of [MPc(3-)](·-) in 1-10. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hassan, Isra; Pinto, Spencer; Weisbecker, Carl; Attygalle, Athula B
2016-03-01
Carboxamides bearing an N-H functionality are known to undergo deprotonation under negative-ion-generating mass spectrometric conditions. Herein, we report that N-H bearing carboxamides with acidities lower than that of the hydroperoxyl radical (HO-O(•)) preferentially form superoxide radical-anion (O2(-•)) adducts, rather than deprotonate, when they are exposed to the glow discharge of a helium-plasma ionization source. For example, the spectra of N-alkylacetamides show peaks for superoxide radical-anion (O2(-•)) adducts. Conversely, more acidic amides, such as N-alkyltrifluoroacetamides, preferentially undergo deprotonation under similar experimental conditions. Upon collisional activation, the O2(-•) adducts of N-alkylacetamides either lose the neutral amide or the hydroperoxyl radical (HO-O(•)) to generate the superoxide radical-anion (m/z 32) or the deprotonated amide [m/z (M - H)(-)], respectively. For somewhat acidic carboxamides, the association between the two entities is weak. Thus, upon mildest collisional activation, the adduct dissociates to eject the superoxide anion. Superoxide-adduct formation results are useful for structure determination purposes because carboxamides devoid of a N-H functionality undergo neither deprotonation nor adduct formation under HePI conditions.
Joffe, Avrum; Mock, Steven; Yun, Byeong Hwa; Kolbanovskiy, Alexander; Geacintov, Nicholas E; Shafirovich, Vladimir
2003-08-01
A simple photochemical approach is described for synthesizing site specific, stable 5-guanidino-4-nitroimidazole (NIm) adducts in single- and double-stranded oligodeoxynucleotides containing single and multiple guanine residues. The DNA sequences employed, 5'-d(ACC CG(1)C G(2)TC CG(3)C G(4)CC) and 5'-d(ACC CG(1)C G(2)TC C), were a portion of exon 5 of the p53 tumor suppressor gene, including the codons 157 (G(2)) and 158 (G(3)) mutation hot spots in the former sequence with four Gs and the codon 157 (G(2)) mutation hot spot in the latter sequence with two Gs. The nitration of oligodeoxynucleotides was initiated by the selective photodissociation of persulfate anions to sulfate radicals induced by UV laser pulses (308 nm). In aqueous solutions, of bicarbonate and nitrite anions, the sulfate radicals generate carbonate anion radicals and nitrogen dioxide radicals by one electron oxidation of the respective anions. The guanine residue in the oligodeoxynucleotide is oxidized by the carbonate anion radical to form the neutral guanine radical. While the nitrogen dioxide radicals do not react with any of the intact DNA bases, they readily combine with the guanine radicals at either the C8 or the C5 positions. The C8 addition generates the well-known 8-nitroguanine (8-nitro-G) lesions, whereas the C5 attack produces unstable adducts, which rapidly decompose to NIm lesions. The maximum yields of the nitro products (NIm + 8-nitro-G) were typically in the range of 20-40%, depending on the number of guanine residues in the sequence. The ratio of the NIm to 8-nitro-G lesions gradually decreases from 3.4 in the model compound, 2',3',5'-tri-O-acetylguanosine, to 2.1-2.6 in the single-stranded oligodeoxynucleotides and to 0.8-1.1 in the duplexes. The adduct of the 5'-d(ACC CG(1)C G(2)TC C) oligodeoxynucleotide containing the NIm lesion in codon 157 (G(2)) was isolated in HPLC-pure form. The integrity of this adduct was established by a detailed analysis of exonuclease digestion ladders by matrix-assisted laser desorption ionization with time-of-flight detection MS techniques.
Tarabek, Peter; Bonifacić, Marija; Beckert, Dieter
2006-06-08
Using time-resolved Fourier transform electron paramagnetic resonance, FT EPR, and optical spectroscopy, the photooxidation of glycine, alpha-alanine, alpha-aminoisobutyric acid, and model compounds beta-alanine, methylamine and sodium acetate, by excited triplets of anthraquinone-2,6-disulfonate dianion was studied in aqueous solutions in the pH range 5-13. Anthraquinone radical trianions showing strong emissive spin-polarization (CIDEP) were formed, indicating fast electron transfer from the quenchers to the spin-polarized quinone triplet as the primary reaction. None of the primary radicals formed upon one-electron oxidation of quenchers could be detected at the nanosecond time scale of FT EPR measurements because of their very fast transformation into secondary products. The latter were identified to be decarboxylated alpha-aminoalkyl radicals for alpha-amino acids anions and zwitterions, beta-aminoalkyl radicals for beta-alanine zwitterions, and methyl radicals for acetate anions; corresponding aminyl radicals were the first EPR detectable products from beta-alanine anions and methylamine. Thus, anthraquinone-2,6-disulfonate triplet can take an electron from both NH(2)- and -CO(2)(-) functional groups forming aminium ((+*)NH(2)-) and acyloxyl (-CO(2)(*)) radicals, respectively. Aminium radicals derived from beta-alanine anions and CH(3)-NH(2) stabilize by deprotonation into aminyl radicals, whereas these derived from alpha-amino acids anions are known to suffer ultrafast decarboxylation (tau approximately 10 ps). Analysis of the polarization patterns revealed that decarboxylation from acyloxyl radicals are considerably slower (ns < tau < 0.1 micros). Therefore, in the case of alpha-amino acids, the isoelectronic structures NH(2)-CR(2)-CO(2)(*) and (+*)NH(2)-CR(2)-CO(2)(-) probably do not constitute resonance mesomeric forms of one and the same species and the decarboxylation of aminium radicals is not preceded by the intramolecular carboxylate to amino group electron transfer. Absolute triplet quenching rate constants at zero ionic strength were in the range of 2 x 10(8) to 2 x 10(9) M(-1) s(-1) for R-NH(2) and 2 x 10(7) to 10(8) M(-1) s(-1) for R-CO(2)(-) type of electron donors, reflecting in principle their standard reduction potentials. The strengths of acids: (+)NH(3)-(*)CH(2), (+)NH(3)-(*)C(CH(3))H, and (+)NH(3)-(*)C(CH(3))(2), pK(a) <4, >6, and >7, respectively, were found to be remarkably strongly dependent on alpha-C substitution. The conjugate bases of these alpha-aminoalkyl radicals reduce anthraquinone-2,6-disulfonate dianion ground state with k(sec) = 3 x 10(9) M(-1) s(-1).
Super-pnicogen bonding in the radical anion of the fluorophosphine dimer
NASA Astrophysics Data System (ADS)
Setiawan, Dani; Cremer, Dieter
2016-10-01
The LUMO of the pnicogen-bonded fluoro-phosphine dimer has PP bonding character. Radical anion and dianion form relatively strong pnicogen bonds with some covalent character where however the dianion turns out to be a second order transition state. The binding energy of (FPH 2)2- is 30.4 kcal/mol (CCSD(T)/aug-cc-pVTZ; CASPT2(5,8): 30.7 kcal/mol) and the bond strength order measured with the local PP bond stretching force constant increases from 0.055 for the neutral dimer to 0.187 thus revealing that the stabilization of the radical anion is to a large extend a result of one-electron six-center delocalization. Pnicogen-bonded complexes have a stabilizing electron affinity.
ESR study of electron reactions with esters and triglycerides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sevilla, M.D.; Morehouse, K.M.; Swarts, S.
1981-04-02
Reactions which occurred after electron attachment at 77K to a number of small carboxylic acid esters and triglycerides in an aqueous glass are reported. Most ester anions are found to decay on warming to form alkyl radicals by ..beta.. scission: RC(O/sup -/)OR' ..-->.. RCO/sub 2//sup -/ + R'.. The alkyl radical (R'.) produced by annealing is found to abstract hydrogen from the parent ester at an ..cap alpha..-carbon site, R'.+ R''CH/sub 2/CO/sub 2/R' ..-->.. R''CHCO/sub 2/R', or in the case of ethyl formate from the formate hydrogen, CH/sub 3/CH/sub 2/.+ HCO/sub 2/C/sub 2/H/sub 5/ ..-->.. C/sub 2/H/sub 6/ +.CO/sub 2/C/submore » 2/H/sub 5/. Results found for the methyl formate anion suggest hydrogen abstraction by the anion itself may compete with alkyl radical formation. The anion of the triglyceride triacetin is found to undergo an analogous mechanism to the ester anions producing the propane diol diester radical, .CH/sub 2/CH(Ac)CH/sub 2/(Ac), Ac = acetate. This species subsequently abstracts hydrogen from the parent compound to produce the ..cap alpha..-carbon radical, .CH/sub 2/CO/sub 2/R. Results found after annealing the tripropionin radical anion give evidence for abstraction from the ..cap alpha.. carbon in the propionate side groups producing CH/sub 3/CHCO/sub 2/R. Studies of a ..gamma..-irradiated ester (ethyl myristate) and two triglycerides (tripalmitin and tristearin) yield results which suggest that the mechanism of ester anion decay found in aqueous glasses applies to ..gamma..-irradiated neat long-chain esters and triglycerides. Results found in this work are compared to the results of product analysis.« less
NASA Astrophysics Data System (ADS)
MacAleese, Luke; Girod, Marion; Nahon, Laurent; Giuliani, Alexandre; Antoine, Rodolphe; Dugourd, Philippe
2018-06-01
The nonapeptide oxytocin (OT) is used as a model sulfur-containing peptide to study the damage induced by vacuum UV (VUV) radiations. In particular, the effect of the presence (or absence in reduced OT) of oxytocin's internal disulfide bridge is evaluated in terms of photo-fragmentation yield and nature of the photo-fragments. Intact, as well as reduced, OT is studied as dianions and radical anions. Radical anions are prepared and photo-fragmented in two-color experiments (UV + VUV) in a linear ion trap. VUV photo-fragmentation patterns are analyzed and compared, and radical-induced mechanisms are proposed. The effect of VUV is principally to ionize but secondary fragmentation is also observed. This secondary fragmentation seems to be considerably enabled by the initial position of the radical on the molecule. In particular, the possibility to form a radical on free cysteines seems to increase the susceptibility to VUV fragmentation. Interestingly, disulfide bridges, which are fundamental for protein structure, could also be responsible for an increased resistance to ionizing radiations. [Figure not available: see fulltext.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Laboni; Kumar, Rahul; Maity, Dilip K.
A pulse radiolysis study on pyrrolidinium cation based ionic liquids is presented here in this paper. Time-resolved absorption spectra for 1-methyl-1-propylpyrrolidinium dicyanamide (DCA) at 500 ns after the electron pulse show broad absorption bands at wavelengths below 440 nm and at 640 nm. In pyrrolidinium bis(trifluoromethylsulfonyl)imide (NTf 2) and tris(perfluoroethyl)trifluorophosphate (FAP) ILs, the transient absorption below 440 nm is much weaker. The absorption at 500 ns, which increases with wavelength from 500 nm to beyond 800 nm, was assigned to the tail of the solvated electron NIR absorption spectrum, since it disappears in the presence of N 2O. In themore » DCA IL, the presence of a reducing species was confirmed by the formation of pyrene radical anion. The difference in the transient species in the case of the DCA IL compared to other two ILs should be due to the anion, with cations being similar. In pseudohalide ILs such as DCA, radicals are formed by direct hole trapping by the anion (X – + h + → X•), followed by addition to the parent anion. Prediction of the UV/vis absorption spectra of the dimer radical anion by computational calculation supports the experimental results. The oxidizing efficiency of (DCA) 2•– and its reduction potential (E(DCA)2•–/(2DCA–)) have been determined.« less
Das, Laboni; Kumar, Rahul; Maity, Dilip K.; ...
2018-03-06
A pulse radiolysis study on pyrrolidinium cation based ionic liquids is presented here in this paper. Time-resolved absorption spectra for 1-methyl-1-propylpyrrolidinium dicyanamide (DCA) at 500 ns after the electron pulse show broad absorption bands at wavelengths below 440 nm and at 640 nm. In pyrrolidinium bis(trifluoromethylsulfonyl)imide (NTf 2) and tris(perfluoroethyl)trifluorophosphate (FAP) ILs, the transient absorption below 440 nm is much weaker. The absorption at 500 ns, which increases with wavelength from 500 nm to beyond 800 nm, was assigned to the tail of the solvated electron NIR absorption spectrum, since it disappears in the presence of N 2O. In themore » DCA IL, the presence of a reducing species was confirmed by the formation of pyrene radical anion. The difference in the transient species in the case of the DCA IL compared to other two ILs should be due to the anion, with cations being similar. In pseudohalide ILs such as DCA, radicals are formed by direct hole trapping by the anion (X – + h + → X•), followed by addition to the parent anion. Prediction of the UV/vis absorption spectra of the dimer radical anion by computational calculation supports the experimental results. The oxidizing efficiency of (DCA) 2•– and its reduction potential (E(DCA)2•–/(2DCA–)) have been determined.« less
Reaction of 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl)phenoxazine with certain group II-IV metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karsanov, I.V.; Ivakhnenko, E.P.; Khandkarova, V.S.
1987-07-10
It has already been shown that 2-amino-4,6-di(tert-butyl)phenol reacts with 3,5-di(tert-butyl)-o-benzoquinone to form 1H-1-oxo-2,4,6,8-tetrakis(tert-butyl)phenoxazine (I), which is readily reduced by alkali metals to the corresponding semiquinone anion-radical (II), and further to the diamagnetic dianion (IIA). They made use of this ability of (I) to undergo reduction to prepare anion-radical salts with different group II-IV metals in the form of their amalgams. In the EPR spectrum of the anion-radical complex (III) formed in the reduction of (I) by a thallium amalgam, the HFI constants of the unpaired electron with magnetic nuclei of the organic ligand are close to those of the K-saltmore » (II), and a substantial HFI is observed with the /sup 203,205/Tl nuclei. This unequivocally proves that the complex has a semiquinone structure, since an HFI on the /sup 203,205/Tl nuclei of such an order of magnitude is characteristic of o-benzoquinone salts with a thallium cation.« less
Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J
2018-06-04
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.
Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions
NASA Astrophysics Data System (ADS)
Williams, Peggy E.; Marshall, David L.; Poad, Berwyck L. J.; Narreddula, Venkateswara R.; Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.
2018-06-01
In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.
Effects of microsolvation on uracil and its radical anion: Uracil.(H2O)n (n=1-5)
NASA Astrophysics Data System (ADS)
Kim, Sunghwan; Schaefer, Henry F.
2006-10-01
Microsolvation effects on the stabilities of uracil and its anion have been investigated by explicitly considering the structures of complexes of uracil with up to five water molecules at the B3LYP /DZP++ level of theory. For all five systems, the global minimum of the neutral cluster has a different equilibrium geometry from that of the radical anion. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of uracil are predicted to increase gradually with the number of hydrating molecules, qualitatively consistent with experimental results from a photodetachment-photoelectron spectroscopy study [J. Schiedt et al., Chem. Phys. 239, 511 (1998)]. The trend in the AEAs implies that while the conventional valence radical anion of uracil is only marginally bound in the gas phase, it will form a stable anion in aqueous solution. The gas-phase AEA of uracil (0.24eV) was higher than that of thymine by 0.04eV and this gap was not significantly affected by microsolvation. The largest AEA is that predicted for uracil•(H2O)5, namely, 0.96eV. The VDEs range from 0.76to1.78eV.
Effects of microsolvation on uracil and its radical anion: uracil(H2O)n (n = 1-5).
Kim, Sunghwan; Schaefer, Henry F
2006-10-14
Microsolvation effects on the stabilities of uracil and its anion have been investigated by explicitly considering the structures of complexes of uracil with up to five water molecules at the B3LYPDZP++ level of theory. For all five systems, the global minimum of the neutral cluster has a different equilibrium geometry from that of the radical anion. Both the vertical detachment energy (VDE) and adiabatic electron affinity (AEA) of uracil are predicted to increase gradually with the number of hydrating molecules, qualitatively consistent with experimental results from a photodetachment-photoelectron spectroscopy study [J. Schiedt et al., Chem. Phys. 239, 511 (1998)]. The trend in the AEAs implies that while the conventional valence radical anion of uracil is only marginally bound in the gas phase, it will form a stable anion in aqueous solution. The gas-phase AEA of uracil (0.24 eV) was higher than that of thymine by 0.04 eV and this gap was not significantly affected by microsolvation. The largest AEA is that predicted for uracil(H2O)5, namely, 0.96 eV. The VDEs range from 0.76 to 1.78 eV.
Pilo, Alice L; Bu, Jiexun; McLuckey, Scott A
2015-07-01
The gas-phase oxidation of doubly protonated peptides is demonstrated here using ion/ion reactions with a suite of reagents derived from persulfate. Intact persulfate anion (HS2O8(-)), peroxymonosulfate anion (HSO5(-)), and sulfate radical anion (SO4(-•)) are all either observed directly upon negative nanoelectrospray ionization (nESI) or easily obtained via beam-type collisional activation of persulfate into the mass spectrometer. Ion/ion reactions between each of these reagents and doubly protonated peptides result in the formation of a long-lived complex. Collisional activation of the complex containing a peroxymonosulfate anion results in oxygen transfer from the reagent to the peptide to generate the [M + H + O](+) species. Activation of the complex containing intact persulfate anion either results in oxygen transfer to generate the [M + H + O](+) species or abstraction of two hydrogen atoms and a proton to generate the [M - H](+) species. Activation of the complex containing sulfate radical anion results in abstraction of one hydrogen atom and a proton to form the peptide radical cation, [M](+•). This suite of reagents allows for the facile transformation of the multiply protonated peptides obtained via nESI into a variety of oxidized species capable of providing complementary information about the sequence and structure of the peptide.
Esaka, Yukihiro; Okumura, Noriko; Uno, Bunji; Goto, Masashi
2003-05-01
We have investigated analysis of anion radicals of phenanthrenequinone (PhQ) and anthraquinone (AQ) using acetonitrile-capillary electrophoresis (CE) under anaerobic conditions. PhQ and AQ have relatively high negative reduction potentials meaning that their anion radicals are re-oxidized quite readily by the surrounding O(2) to disappear during analysis and we failed to detect them with our previous system. In this work, we have developed an on-line system combining a unique electrolysis cell for generation of the radicals and a CE unit to keep the analysis system free from external O(2) molecules and to reduce analysis time remarkably. As a result, electrophoretic detection of the anion radicals of PhQ and AQ has been achieved. Furthermore, we have observed hydrogen-bonding interaction between the anion radicals and dimethylurea (DMU) using the present system and have indicated a characteristic interaction of the anion radical of PhQ as an ortho-quinone with DMU.
NASA Astrophysics Data System (ADS)
DeBlase, Andrew F.; Weddle, Gary H.; Archer, Kaye A.; Jordan, Kenneth D.; Johnson, Mark
2015-06-01
As an isolated species, the radical anion of pyridine (Py-) exists as an unstable transient negative ion, while in aqueous environments it is known to undergo rapid protonation to form the neutral pyridinium radical [PyH(0)] along with hydroxide. Furthermore, the negative adiabatic electron affinity (AEA) of Py- can become diminished by the solvation energy associated with cluster formation. In this work, we focus on the hydrates [Py\\cdot(H2O)n]- with n = 3-5 and elucidate the structures of these water clusters using a combination of vibrational predissociation and photoelectron spectroscopies. We show that H-trasfer to form PyH(0) occurs in these clusters by the infrared signature of the nascent hydroxide ion and by the sharp bending vibrations of aromatic ring CH bending.
Sikora, Adam; Zielonka, Jacek; Adamus, Jan; Debski, Dawid; Dybala-Defratyka, Agnieszka; Michalowski, Bartosz; Joseph, Joy; Hartley, Richard C.; Murphy, Michael P.; Kalyanaraman, Balaraman
2013-01-01
Aromatic boronic acids react rapidly with peroxynitrite (ONOO−) to yield phenols as major products. This reaction was used to monitor ONOO− formation in cellular systems. Previously, we proposed that the reaction between ONOO− and arylboronates (PhB(OH)2) yields a phenolic product (major pathway) and a radical pair PhB(OH)2O•−…•NO2 (minor pathway). [Sikora A. et al., Chem Res Toxicol 24, 687-97, 2011]. In this study, we investigated the influence of a bulky triphenylphosphonium (TPP) group on the reaction between ONOO− and mitochondria-targeted arylboronate isomers (o-, m-, and p-MitoPhB(OH)2). Results from the electron paramagnetic resonance (EPR) spin-trapping experiments unequivocally showed the presence of a phenyl radical intermediate from meta and para isomers, and not from the ortho isomer. The yield of o-MitoPhNO2 formed from the reaction between o-MitoPhB(OH)2 and ONOO− was not diminished by phenyl radical scavengers, suggesting a rapid fragmentation of the o-MitoPhB(OH)2O•− radical anion with subsequent reaction of the resulting phenyl radical with •NO2 in the solvent cage. The DFT quantum mechanical calculations showed that the energy barrier for the dissociation of o-MitoPhB(OH)2O•− radical anion is significantly lower than that of m-MitoPhB(OH)2O•− and p-MitoPhB(OH)2O•− radical anions. The nitrated product, o-MitoPhNO2, is not formed by nitrogen dioxide radical generated by myeloperoxidase in the presence of nitrite anion and hydrogen peroxide, indicating that this specific nitrated product may be used as a diagnostic marker product for ONOO−. Incubation of o-MitoPhB(OH)2 with RAW 264.7 macrophages activated to produce ONOO− yielded the corresponding phenol o-MitoPhOH as well as the diagnostic nitrated product, o-MitoPhNO2. We conclude that the ortho isomer probe reported here is most suitable for specific detection of ONOO− in biological systems. PMID:23611338
Design and Evaluation of a Boron Dipyrrin Electrophore for Redox Flow Batteries.
Heiland, Niklas; Cidarér, Clemens; Rohr, Camilla; Piescheck, Mathias; Ahrens, Johannes; Bröring, Martin; Schröder, Uwe
2017-08-29
A boron dipyrrin (BODIPY) dye was designed as a molecular single-component electrophore for redox flow batteries. All positions of the BODIPY core were assessed on the basis of literature data, in particular cyclic voltammetry and density functional calculations, and a minimum required substitution pattern was designed to provide solubility, aggregation, radical cation and anion stabilities, a large potential window, and synthetic accessibility. In-depth electrochemical and physical studies of this electrophore revealed suitable cathodic behavior and stability of the radical anion but rapid anodic decomposition of the radical cation. The three products that formed under the conditions of controlled oxidative electrolysis were isolated, and their structures were determined by spectroscopy and comparison with a synthetic model compound. From these structures, a benzylic radical reactivity, initiated by one-electron oxidation, was concluded to play the major role in this unexpected decomposition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cheng, Ling-Li; Wang, Mei; Zhu, Hui; Li, Kun; Zhu, Rong-Rong; Sun, Xiao-Yu; Yao, Si-De; Wu, Qing-Sheng; Wang, Shi-Long
2009-09-01
Using 266 nm laser flash photolysis it has been demonstrated that Berberine (BBR) in aqueous solution is ionized via a mono-photonic process giving a hydrated electron, anion radical that formed by hydrated electron react with steady state of BBR, and neutral radical that formed from rapid deprotonation of the radical cation of BBR. The quantum yield of photoionization is determined to be 0.03 at room temperature with KI solution used as a reference. Furthermore utilizing pH changing method and the SO 4rad - radical oxidation method, the assignment of radical cation of BBR was further confirmed, the p Ka value of it was calculated, and the related set up rate constant was also determined.
NASA Astrophysics Data System (ADS)
Černák, Juraj; Hegedüs, Michal; Váhovská, Lucia; Kuchár, Juraj; Šoltésová, Daniela; Čižmár, Erik; Feher, Alexander; Falvello, L. R.
2018-03-01
From the aqueous-methanolic systems Ni(NO3)2 - LiTCNQ - 5,5‧-dmbpy and Ni(NO3)2 - LiTCNQ - 4,4‧-dmbpy three novel complexes [Ni(5,5‧-dmbpy)3](TCNQ)2 (1), [Ni(4,4‧-dmbpy)3](TCNQ)2 (2) and [Ni(4,4‧-dmbpy)3]2(TCNQ-TCNQ)(TCNQ)2•0.60H2O (3), were isolated in single crystal form. The new compounds were identified using chemical analyses and IR spectroscopy. Single crystal studies of all samples corroborated their compositions and have shown that their ionic structures contain the complex cations [Ni(5,5‧-dmbpy)]2+ (1) or [Ni(4,4‧-dmbpy)]2+ (2 and 3). The anionic parts of the respective crystal structures 1-3 are formed by TCNQṡ- anion-radicals and in 3 also by a σ-dimerized dianion (TCNQ-TCNQ)2- with a C-C distance of 1.663(5) Å. The supramolecular structures are governed by weak hydrogen bonding interactions. The variable-temperature (2-300 K) magnetic studies of 1 and 3 confirmed the presence of magnetically active Ni(II) atoms with S = 1 and TCNQṡ- anion-radicals with S = 1/2 while the (TCNQ-TCNQ)2- dianion is magnetically silent. The magnetic behavior was described by a complex magnetic model assuming strong antiferromagnetic interactions between some TCNQṡ- anion-radicals.
Copper complexes of anionic nitrogen ligands in the amidation and imidation of aryl halides.
Tye, Jesse W; Weng, Zhiqiang; Johns, Adam M; Incarvito, Christopher D; Hartwig, John F
2008-07-30
Copper(I) imidate and amidate complexes of chelating N,N-donor ligands, which are proposed intermediates in copper-catalyzed amidations of aryl halides, have been synthesized and characterized by X-ray diffraction and detailed solution-phase methods. In some cases, the complexes adopt neutral, three-coordinate trigonal planar structures in the solid state, but in other cases they adopt an ionic form consisting of an L 2Cu (+) cation and a CuX 2 (-) anion. A tetraalkylammonium salt of the CuX 2 (-) anion in which X = phthalimidate was also isolated. Conductivity measurements and (1)H NMR spectra of mixtures of two complexes all indicate that the complexes exist predominantly in the ionic form in DMSO and DMF solutions. One complex was sufficiently soluble for conductance measurements in less polar solvents and was shown to adopt some degree of the ionic form in THF and predominantly the neutral form in benzene. The complexes containing dative nitrogen ligands reacted with iodoarenes and bromoarenes to form products from C-N coupling, but the ammonium salt of [Cu(phth) 2] (-) did not. Similar selectivities for stoichiometric and catalytic reactions with two different iodoarenes and faster rates for the stoichiometric reactions implied that the isolated amidate and imidate complexes are intermediates in the reactions of amides and imides with haloarenes catalyzed by copper complexes containing dative N,N ligands. These amidates and imidates reacted much more slowly with chloroarenes, including chloroarenes that possess more favorable reduction potentials than some bromoarenes and that are known to undergo fast dissociation of chloride from the chloroarene radical anion. The reaction of o-(allyloxy)iodobenzene with [(phen) 2Cu][Cu(pyrr) 2] results in formation of the C-N coupled product in high yield and no detectable amount of the 3-methyl-2,3-dihydrobenzofuran or 3-methylene-2,3-dihydrobenzofuran products that would be expected from a reaction that generated free radicals. These data and computed reaction barriers argue against mechanisms in which the haloarene reacts with a two-coordinate anionic copper species and mechanisms that start with electron transfer to generate a free iodoarene radical anion. Instead, these data are more consistent with mechanisms involving cleavage of the carbon-halogen bond within the coordination sphere of the metal.
Self-exchange reactions of radical anions in n-hexane.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werst, D. W.; Chemistry
The formation and reactions of radical anions in n-hexane at 190 K were investigated by pulse radiolysis and time-resolved fluorescence-detected magnetic resonance (FDMR). Electron attachment was found to occur for compounds with gas-phase electron affinities (EA) more positive than -1.1 {+-} 0.1 eV. The FDMR concentration and time dependence are interpreted as evidence for self-exchange electron-transfer reactions, indicating that formation of dimer radical anions is not prevalent for the range of molecules studied. FDMR detection of radical anions is mainly restricted to electron acceptors with EA less than approximately 0.5 eV.
Prasad, Ajit Kumar; Mishra, P C
2015-06-25
The mechanism of action of sulforaphane as a scavenger of superoxide radical anion (O2(•-)) and hydrogen peroxide (H2O2) was investigated using density functional theory (DFT) in both gas phase and aqueous media. Iron superoxide dismutase (Fe-SOD) involved in scavenging superoxide radical anion from biological media was modeled by a complex consisting of the ferric ion (Fe(3+)) attached to three histidine rings. Reactions related to scavenging of superoxide radical anion by sulforaphane were studied using DFT in the presence and absence of Fe-SOD represented by this model in both gas phase and aqueous media. The scavenging action of sulforaphane toward both superoxide radical anion and hydrogen peroxide was found to involve the unusual mechanism of double hydrogen transfer. It was found that sulforaphane alone, without Fe-SOD, cannot scavenge superoxide radical anion in gas phase or aqueous media efficiently as the corresponding reaction barriers are very high. However, in the presence of Fe-SOD represented by the above-mentioned model, the scavenging reactions become barrierless, and so sulforaphane scavenges superoxide radical anion by converting it to hydrogen peroxide efficiently. Further, sulforaphane was found to scavenge hydrogen peroxide also very efficiently by converting it into water. Thus, the mechanism of action of sulforaphane as an excellent antioxidant has been unravelled.
Kwong, Kai Chung; Chim, Man Mei; Davies, James F.; ...
2018-02-27
Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this study investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH 3SO 4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85%. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time,more » DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO 4 -) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH 2O) and a sulfate radical anion (SO 4 .-) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10 -13cm 3molecule -1s -1 with an effective OH uptake coefficient, γ eff, of 0.17 ± 0.03. While about 40% of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 10 12molecule cm -3s), only a 3% decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.« less
NASA Astrophysics Data System (ADS)
Chung Kwong, Kai; Chim, Man Mei; Davies, James F.; Wilson, Kevin R.; Nin Chan, Man
2018-02-01
Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this work investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH3SO4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85 %. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time, DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO4-) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH2O) and a sulfate radical anion (SO4 ṡ -) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10-13 cm3 molecule-1 s-1 with an effective OH uptake coefficient, γeff, of 0.17 ± 0.03. While about 40 % of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 1012 molecule cm-3 s), only a 3 % decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwong, Kai Chung; Chim, Man Mei; Davies, James F.
Organosulfates are important organosulfur compounds present in atmospheric particles. While the abundance, composition, and formation mechanisms of organosulfates have been extensively investigated, it remains unclear how they transform and evolve throughout their atmospheric lifetime. To acquire a fundamental understanding of how organosulfates chemically transform in the atmosphere, this study investigates the heterogeneous OH radical-initiated oxidation of sodium methyl sulfate (CH 3SO 4Na) droplets, the smallest organosulfate detected in atmospheric particles, using an aerosol flow tube reactor at a high relative humidity (RH) of 85%. Aerosol mass spectra measured by a soft atmospheric pressure ionization source (direct analysis in real time,more » DART) coupled with a high-resolution mass spectrometer showed that neither functionalization nor fragmentation products are detected. Instead, the ion signal intensity of the bisulfate ion (HSO 4 -) has been found to increase significantly after OH oxidation. We postulate that sodium methyl sulfate tends to fragment into a formaldehyde (CH 2O) and a sulfate radical anion (SO 4 .-) upon OH oxidation. The formaldehyde is likely partitioned back to the gas phase due to its high volatility. The sulfate radical anion, similar to OH radical, can abstract a hydrogen atom from neighboring sodium methyl sulfate to form the bisulfate ion, contributing to the secondary chemistry. Kinetic measurements show that the heterogeneous OH reaction rate constant, k, is (3.79 ± 0.19) × 10 -13cm 3molecule -1s -1 with an effective OH uptake coefficient, γ eff, of 0.17 ± 0.03. While about 40% of sodium methyl sulfate is being oxidized at the maximum OH exposure (1.27 × 10 12molecule cm -3s), only a 3% decrease in particle diameter is observed. This can be attributed to a small fraction of particle mass lost via the formation and volatilization of formaldehyde. Overall, we firstly demonstrate that the heterogeneous OH oxidation of an organosulfate can lead to the formation of sulfate radical anion and produce inorganic sulfate. Fragmentation processes and sulfate radical anion chemistry play a key role in determining the compositional evolution of sodium methyl sulfate during heterogeneous OH oxidation.« less
NASA Astrophysics Data System (ADS)
Caliskan, Betul; Caliskan, Ali Cengiz; Er, Emine
2017-09-01
Succinic anhydride single crystals were exposed to 60Co-gamma irradiation at room temperature. The irradiated single crystals were investigated at 125 K by Electron Paramagnetic Resonance (EPR) Spectroscopy. The investigation of EPR spectra of irradiated single crystals of succinic anhydride showed the presence of two succinic anhydride anion radicals. The anion radicals observed in gamma-irradiated succinic anhydride single crystal were created by the scission of the carbon-oxygen double bond. The structure of EPR spectra demonstrated that the hyperfine splittings arise from the same radical species. The reduction of succinic anhydride was identified which is formed by the addition of an electron to oxygen of the Csbnd O bond. The g values, the hyperfine structure constants and direction cosines of the radiation damage centers observed in succinic anhydride single crystal were obtained.
Oxidation of aqueous polyselenide solutions. A mechanistic pulse radiolysis study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldbach, A.; Saboungi, M.L.; Johnson, J.A.
2000-05-04
The oxidation of aqueous polyselenide solutions was studied by pulse radiolysis in the presence of N{sub 2}O at pH 12.3; the hydroxyl radical OH was the predominant oxidant, while hydrogen selenide anions HSe{sup {minus}} and triselenide dianions Se{sub 3}{sup 2{minus}} were the major selenide species in the starting solution. The progress of the oxidation was monitored by optical spectroscopy. Transient polyselenides appeared immediately after the electron pulse and rapidly proceeded to form adducts with HSe{sup {minus}}, i.e., HSe{sub 2}{sup 2{minus}} and H{sub 2}Se{sub 2}{sup {minus}}, and a fairly long-lived intermediate that was identified as the diselenide radical anion Se{sub 2}{supmore » {minus}}. These radicals recombine to give eventually the tetraselenide dianion, Se{sub 4}{sup 2{minus}}.« less
Catalysts For Hydrogenation And Hydrosilylation Methods Of Making And Using The Same
Dioumaev, Vladimir K.; Bullock, R. Morris
2004-05-18
A compound is provided including an organometallic complex represented by the formula I: wherein M is an atom of molybdenum or tangsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5 Q.sup.1 Q.sup.2 Q.sup.3 Q.sup.4 Q.sup.5 ], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2 R', --SiR'.sub.3 and --NR'R", wherein R' and R" are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complex as catalyst for hydrogenation of aldehydes and ketones are provided. Processes using the organometallic complex as catalyst for the hydrosilylation of aldehydes, ketones and esters are also provided.
Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy
Mani, Tomoyasu; Grills, David C.
2017-07-05
Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we showmore » that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1. IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.« less
Involvement of the chloroplast plastoquinone pool in the Mehler reaction.
Vetoshkina, Daria V; Ivanov, Boris N; Khorobrykh, Sergey A; Proskuryakov, Ivan I; Borisova-Mubarakshina, Maria M
2017-09-01
Light-dependent oxygen reduction in the photosynthetic electron transfer chain, i.e. the Mehler reaction, has been studied using isolated pea thylakoids. The role of the plastoquinone pool in the Mehler reaction was investigated in the presence of dinitrophenyl ether of 2-iodo-4-nitrothymol (DNP-INT), the inhibitor of plastohydroquinone oxidation by cytochrome b6/f complex. Oxygen reduction rate in the presence of DNP-INT was higher than in the absence of the inhibitor in low light at pH 6.5 and 7.6, showing that the capacity of the plastoquinone pool to reduce molecular oxygen in this case exceeded that of the entire electron transfer chain. In the presence of DNP-INT, appearance of superoxide anion radicals outside thylakoid membrane represented approximately 60% of the total superoxide anion radicals produced. The remaining 40% of the produced superoxide anion radicals was suggested to be trapped by plastohydroquinone molecules within thylakoid membrane, leading to the formation of hydrogen peroxide (H 2 O 2 ). To validate the reaction of superoxide anion radical with plastohydroquinone, xanthine/xanthine oxidase system was integrated with thylakoid membrane in order to generate superoxide anion radical in close vicinity of plastohydroquinone. Addition of xanthine/xanthine oxidase to the thylakoid suspension resulted in a decrease in the reduction level of the plastoquinone pool in the light. The obtained data provide additional clarification of the aspects that the plastoquinone pool is involved in both reduction of oxygen to superoxide anion radicals and reduction of superoxide anion radicals to H 2 O 2 . Significance of the plastoquinone pool involvement in the Mehler reaction for the acclimation of plants to light conditions is discussed. © 2017 Scandinavian Plant Physiology Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamuku, S.; Kigawa, H.; Suematsu, H.
1982-05-13
One-electron reduction of dimethyl ..mu..-truxinate (..mu..-DMT), dimethyl ..beta..-truxinate (..beta..-DMT), and dimethyl ..cap alpha..-truxillate (..cap alpha..-DMT) has been investigated by pulse radiolysis and 77 K matrix ..gamma.. irradiation of the 2-methyltetrahydrofuran solutions. Cycloreversion of the radical anions formed by an electron attachment to these cyclobutanes was observed in all cases, even at 77 K. The orientation of the cycloreversion was dependent on the stereochemistry of the cyclobutanes, and the selectivity was reasonably explained by a so-called cis effect; the best possible release of steric hindrance decides the primary step of the reaction. In 77 K matrix ..gamma.. irradiation of ..cap alpha..-DMT,more » an intense IR absorption was found after the photobleaching of trapped electrons with light > 690 nm. In other DMTs, the IR absorption band was not observed while the cycloreversion of DMT by mobile electrons occurred. Thus, the IR band in the case of ..cap alpha..-DMT was assigned to an associated dimer anion due to the interaction between the radical anion and the neutral molecule pair of trans-methyl cinnamate orginally formed by the cycloreversion of ..cap alpha..-DMT. The dimer anion was presumed to be oriented in a head-to-tail structure in a solvent cage on the basis of the original configuration of ..cap alpha..-DMT.« less
Moreno, S N; Mason, R P; Docampo, R
1984-12-10
At the concentrations usually employed as a Ca2+ indicator, arsenazo III underwent a one-electron reduction by rat liver mitochondria to produce an azo anion radical as demonstrated by electron-spin resonance spectroscopy. Either NADH or NADPH could serve as a source of reducing equivalents for the production of this free radical by intact rat liver mitochondria. Under aerobic conditions, addition of arsenazo III to rat liver mitochondria produced an increase in electron flow from NAD(P)H to molecular oxygen, generating superoxide anion. NAD(P)H generated from endogenous mitochondrial NAD(P)+ by intramitochondrial reactions could not be used for the NAD(P)H azoreductase reaction unless the mitochondria were solubilized by detergent or anaerobiosis. In addition, NAD(P)H azoreductase activity was higher in the crude outer mitochondrial membrane fraction than in mitoplasts and intact mitochondria. The steady-state concentration of the azo anion radical and the arsenazo III-stimulated cyanide-insensitive oxygen consumption were enhanced by calcium and magnesium, suggesting that, in addition to an enhanced azo anion radical-stabilization by complexation with the metal ions, enhanced reduction of arsenazo III also occurred. Accordingly, addition of cations to crude outer mitochondrial membrane preparations increased arsenazo III-stimulated cyanide-insensitive O2 consumption, H2O2 formation, and NAD(P)H oxidation. Antipyrylazo III was much less effective than arsenazo III in increasing superoxide anion formation by rat liver mitochondria and gave a much weaker electron spin resonance spectrum of an azo anion radical. These results provide direct evidence of an azoreductase activity associated with the outer mitochondrial membrane and of a stimulation of arsenazo III reduction by cations.
Draper, Emily R.; Lee, Jonathan R.; Wallace, Matthew; Jäckel, Frank; Cowan, Alexander J.
2016-01-01
We show that a perylene bisimide (PBI)-based gelator forms self-sorted mixtures with a stilbene-based gelator. To form the self-sorted gels, we use a slow pH change induced by the hydrolysis of glucono-δ-lactone (GdL) to gluconic acid. We prove that self-sorting occurs using NMR spectroscopy, UV-Vis spectroscopy, rheology, and viscometry. The corresponding xerogels are photoconductive. Importantly, the wavelength dependence of the photoconductive films is different to that of the films formed from the perylene bisimide alone. Transient absorption spectroscopy of the xerogels reveals changes in the spectrum of the PBI on the picosecond timescale in the presence of stilbene with a PBI radical anion being formed within 10 ps when the stilbene is present. The ability to form the PBI radical anion under visible light leads to the enhanced spectral response of the multicomponent gels. These systems therefore have potential as useful visible-active optoelectronics. PMID:28451108
Fong, Clifford W
2016-06-01
The literature on the anti-neoplastic effects of Pt drugs provides substantial evidence that free radical may be involved in the formation of Pt-DNA adducts and other cytotoxic effects. The conditions specific to cancerous tumours are more conducive to free radical mechanisms than the commonly accepted hydrolysis nucleophilic-electrophilic mechanism of Pt-DNA adduct formation. Molecular orbital studies of the adiabatic attachment of hydrated electrons to Pt drugs reveal that there is a significant lengthening of the Pt-X bond (where X is Cl, O in cisplatin, carboplatin and some pyrophosphate-Pt drugs but not oxaliplatin) in the anion radical species. This observation is consistent with a dissociative electron transfer (DET) mechanism for the formation of Pt-DNA adducts. A DET reaction mechanism is proposed for the reaction of Pt drugs with guanine which involves a quasi-inner sphere 2 electron transfer process involving a transient intermediate 5 co-ordinated activated anion radical species {R2Pt---Cl(G)(Cl)•}*(-) (where R is an ammine group, and G is guanine) and the complex has an elongated Pt---Cl (or Pt---O) bond. A DET mechanism is also proposed when Pt drugs are activated by reaction with free radicals such as HO•, CO3•(-), O2•(-) but do not react with DNA bases to form adducts, but form Pt-protein adducts with proteins such ezrin, FAS, DR5, TNFR1 etc. The DET mechanism may not occur with oxaliplatin. Copyright © 2016 Elsevier Inc. All rights reserved.
Ultrafast above-threshold dynamics of the radical anion of a prototypical quinone electron-acceptor.
Horke, Daniel A; Li, Quansong; Blancafort, Lluís; Verlet, Jan R R
2013-08-01
Quinones feature prominently as electron acceptors in nature. Their electron-transfer reactions are often highly exergonic, for which Marcus theory predicts reduced electron-transfer rates because of a free-energy barrier that occurs in the inverted region. However, the electron-transfer kinetics that involve quinones can appear barrierless. Here, we consider the intrinsic properties of the para-benzoquinone radical anion, which serves as the prototypical electron-transfer reaction product involving a quinone-based acceptor. Using time-resolved photoelectron spectroscopy and ab initio calculations, we show that excitation at 400 and 480 nm yields excited states that are unbound with respect to electron loss. These excited states are shown to decay on a sub-40 fs timescale through a series of conical intersections with lower-lying excited states, ultimately to form the ground anionic state and avoid autodetachment. From an isolated electron-acceptor perspective, this ultrafast stabilization mechanism accounts for the ability of para-benzoquinone to capture and retain electrons.
Photogenerated radical intermediates of vitamin K 1: a time-resolved resonance Raman study
NASA Astrophysics Data System (ADS)
Balakrishnan, G.; Umapathy, S.
1999-01-01
Quinones play a vital role in the process of electron transfer in bacterial photosynthetic reaction centers. It is of interest to investigate the photochemical reactions involving quinones with a view to elucidating the structure-function relationships in the biological processes. Resonance Raman spectra of radical anions and the time-resolved resonance Raman spectra of vitamin K 1 (model compound for Q A in Rhodopseudomonas viridis, a bacterial photosynthetic reception center) are presented. The photochemical intermediates of vitamin K 1, viz. radical anion, ketyl radical and o-quinone methide have been identified. The vibrational assignments of all these intermediates are made on the basis of comparison with our earlier TR3 studies on radical anions of naphthoquinone and menaquinone.
Shen, Mei; Rodríguez-López, Joaquín; Huang, Ju; Liu, Quan; Zhu, Xu-Hui; Bard, Allen J
2010-09-29
We report here the electrochemistry and electrogenerated chemiluminescence (ECL) of a red-emitting dithienylbenzothiadiazole-based molecular fluorophore (4,7-bis(4-(4-sec-butoxyphenyl)-5-(3,5-di(1-naphthyl)phenyl)thiophen-2-yl)-2,1,3-benzothiadiazole, 1b). 1b contains two substituted thiophene groups as strong electron donors at the ends connected directly to a strong electron acceptor, 2,1,3-benzothiadiazole, in the center. Each thiophene moiety is substituted in position 2 by 3,5-di(1-naphthyl)phenyl and in position 3 by 4-sec-butoxyphenyl. Cyclic voltammetry of 1b, with scan rate ranging from 0.05 to 0.75 V/s, shows a single one-electron reduction wave (E°(red) = -1.18 V vs SCE) and two nernstian one-electron oxidation waves (E°(1,ox) = 1.01 V, E°(2,ox) = 1.24 V vs SCE). Reduction of the unsubstituted 2,1,3-benzothiadiazole center shows nernstian behavior with E°(red) = -1.56 V vs SCE. By comparison to a digital simulation, the heterogeneous electron-transfer rate constant for reduction, k(r)° = 1.5 × 10(-3) cm/s, is significantly smaller than those for the oxidations, k(o)° > 0.1 cm/s, possibly indicating that the two substituted end groups have a blocking effect on the reduction of the benzothiadiazole center. The ECL spectrum, produced by electron-transfer annihilation of the reduced and oxidized forms, consists of a single peak with maximum emission at about 635 nm, consistent with the fluorescence of the parent molecule. Relative ECL intensities with respect to 9,10-diphenylanthracene are 330% and 470% for the radical anion-cation and radical anion-dication annihilation, respectively. Radical anion (A(-•))-cation (A(+•)) annihilation produced by potential steps shows symmetric ECL transients during anodic and cathodic pulses, while for anion (A(-•))-dication (A(2+•)) annihilation, transient ECL shows asymmetry in which the anodic pulse is narrower than the cathodic pulse. Digital simulation of the transient ECL experiments showed that the origin of the observed asymmetry is asymmetry in the amount of generated charges rather than instability of the electrogenerated species.
Bedrov, Dmitry; Smith, Grant D; van Duin, Adri C T
2012-03-22
We have conducted quantum chemistry calculations and gas- and solution-phase reactive molecular dynamics simulation studies of reactions involving the ethylene carbonate (EC) radical anion EC(-) using the reactive force field ReaxFF. Our studies reveal that the substantial barrier for transition from the closed (cyclic) form, denoted c-EC(-), of the radical anion to the linear (open) form, denoted o-EC(-), results in a relatively long lifetime of the c-EC(-) allowing this compound to react with other singly reduced alkyl carbonates. Using ReaxFF, we systematically investigate the fate of both c-EC(-) and o-EC(-) in the gas phase and EC solution. In the gas phase and EC solutions with a relatively low concentration of Li(+)/x-EC(-) (where x = o or c), radical termination reactions between radical pairs to form either dilithium butylene dicarbonate (CH(2)CH(2)OCO(2)Li)(2) (by reacting two Li(+)/o-EC(-)) or ester-carbonate compound (by reacting Li(+)/o-EC(-) with Li(+)/c-EC(-)) are observed. At higher concentrations of Li(+)/x-EC(-) in solution, we observe the formation of diradicals which subsequently lead to formation of longer alkyl carbonates oligomers through reaction with other radicals or, in some cases, formation of (CH(2)OCO(2)Li)(2) through elimination of C(2)H(4). We conclude that the local ionic concentration is important in determining the fate of x-EC(-) and that the reaction of c-EC(-) with o-EC(-) may compete with the formation of various alkyl carbonates from o-EC(-)/o-EC(-) reactions. © 2012 American Chemical Society
Savic, Aleksandar G; Guidetti, Roberto; Turi, Ana; Pavicevic, Aleksandra; Giovannini, Ilaria; Rebecchi, Lorena; Mojovic, Milos
2015-01-01
Anhydrobiosis is an adaptive strategy that allows withstanding almost complete body water loss. It has been developed independently by many organisms belonging to different evolutionary lines, including tardigrades. The loss of water during anhydrobiotic processes leads to oxidative stress. To date, the metabolism of free radicals in tardigrades remained unclear. We present a method for in vivo monitoring of free radical production in tardigrades, based on electron paramagnetic resonance and spin-trap DEPMPO, which provides simultaneous identification of various spin adducts (i.e., different types of free radicals). The spin trap can be easily absorbed in animals, and tardigrades stay alive during the measurements and during 24-h monitoring after the treatment. The results show that hydrated specimens of the tardigrade Paramacrobiotus richtersi produce the pure superoxide anion radical ((•)O2(-)). This is an unexpected result, as all previously examined animals and plants produce both superoxide anion radical and hydroxyl radical ((•)OH) or exclusively hydroxyl radical.
Gu, Jiande; Wang, Jing; Leszczynski, Jerzy
2014-01-30
Computational chemistry approach was applied to explore the nature of electron attachment to cytosine-rich DNA single strands. An oligomer dinucleoside phosphate deoxycytidylyl-3',5'-deoxycytidine (dCpdC) was selected as a model system for investigations by density functional theory. Electron distribution patterns for the radical anions of dCpdC in aqueous solution were explored. The excess electron may reside on the nucleobase at the 5' position (dC(•-)pdC) or at the 3' position (dCpdC(•-)). From comparison with electron attachment to the cytosine related DNA fragments, the electron affinity for the formation of the cytosine-centered radical anion in DNA is estimated to be around 2.2 eV. Electron attachment to cytosine sites in DNA single strands might cause perturbations of local structural characteristics. Visible absorption spectroscopy may be applied to validate computational results and determine experimentally the existence of the base-centered radical anion. The time-dependent DFT study shows the absorption around 550-600 nm for the cytosine-centered radical anions of DNA oligomers. This indicates that if such species are detected experimentally they would be characterized by a distinctive color.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mani, Tomoyasu; Grills, David C.
Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we showmore » that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1. IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.« less
NASA Astrophysics Data System (ADS)
Shou-te, Lian C. T.; Mittal, Jai P.
The absorption spectra of several perfluorosubstituted aromatic radical anions are compared with the corresponding perhydro compounds in which the various transitions involved have been assigned to those predicted theoretically. The electronic absorption spectra were obtained for pentafluorostyrene, pentafluorobenzaldehyde, pentafluorobenzoic acid, pentafluorobenzonitride, tetrafluorophthalic acid and pentafluoroaniline, by gamma radiolysis in 2-methyltetrahydrofuran at 77 K. A general similarity in the absorption spectra between the perfluorinated and the corresponding perhydro radical anion is observed except for a shift in the absorption band.
Gupta, Ashutosh; Jaeger, Heather M; Compaan, Katherine R; Schaefer, Henry F
2012-05-17
The guanine-cytosine (GC) radical anion and its interaction with a single water molecule is studied using ab initio and density functional methods. Z-averaged second-order perturbation theory (ZAPT2) was applied to GC radical anion for the first time. Predicted spin densities show that the radical character is localized on cytosine. The Watson-Crick monohydrated GC anion is compared to neutral GC·H2O, as well as to the proton-transferred analogue on the basis of structural and energetic properties. In all three systems, local minima are identified that correspond to water positioned in the major and minor grooves of macromolecular DNA. On the anionic surface, two novel structures have water positioned above or below the GC plane. On the neutral and anionic surfaces, the global minimum can be described as water interacting with the minor groove. These structures are predicted to have hydration energies of 9.7 and 11.8 kcal mol(-1), respectively. Upon interbase proton-transfer (PT), the anionic global minimum has water positioned in the major groove, and the hydration energy increases to 13.4 kcal mol(-1). PT GC·H2O(•-) has distonic character; the radical character resides on cytosine, while the negative charge is localized on guanine. The effects of proton transfer are further investigated through the computed adiabatic electron affinities (AEA) of GC and monohydrated GC, and the vertical detachment energies (VDE) of the corresponding anions. Monohydration increases the AEAs and VDEs by only 0.1 eV, while proton-transfer increases the VDEs substantially (0.8 eV). The molecular charge distribution of monohydrated guanine-cytosine radical anion depends heavily on interbase proton transfer.
NASA Astrophysics Data System (ADS)
Biswas, Sohag; Dasgupta, Teesta; Mallik, Bhabani S.
2016-09-01
We present the reactivity of an organic intermediate by studying the proton transfer process from water to ketyl radical anion using gas phase electronic structure calculations and the metadynamics method based first principles molecular dynamics (FPMD) simulations. Our results indicate that during the micro solvation of anion by water molecules systematically, the presence of minimum three water molecules in the gas phase cluster is sufficient to observe the proton transfer event. The analysis of trajectories obtained from initial FPMD simulation of an aqueous solution of the anion does not show any evident of complete transfer of the proton from water. The cooperativity of water molecules and the relatively weak anion-water interaction in liquid state prohibit the full release of the proton. Using biasing potential through first principles metadynamics simulations, we report the observation of proton transfer reaction from water to ketyl radical anion with a barrier height of 16.0 kJ/mol.
SOMO–HOMO Level Inversion in Biologically Important Radicals
2017-01-01
Conventionally, the singly occupied molecular orbital (SOMO) of a radical species is considered to be the highest occupied molecular orbital (HOMO), but this is not the case always. In this study, we considered a number of radicals from smallest diatomic anion radicals such as superoxide anion radical to one-electron oxidized DNA related base radicals that show the SOMO is energetically lower than one or more doubly occupied molecular orbitals (MOs) (SOMO–HOMO level inversion). The electronic configurations are calculated employing the B3LYP/6-31++G** method, with the inclusion of aqueous phase via the integral equation formalism of the polarized continuum model solvation model. From the extensive study of the electronic configurations of radicals produced by one-electron oxidation or reduction of natural-DNA bases, bromine-, sulfur-, selenium-, and aza-substituted DNA bases, as well as 20 diatomic molecules, we highlight the following important findings: (i) SOMO–HOMO level inversion is a common phenomenon in radical species. (ii) The more localized spin density in σ-orbital on a single atom (carbon, nitrogen, oxygen, sulfur, or selenium), the greater the gap between HOMO and SOMO. (iii) In species with SOMO–HOMO level inversion, one-electron oxidation takes place from HOMO not from the SOMO, which produces a molecule in its triplet ground state. Oxidation of aqueous superoxide anion producing triplet molecular oxygen is one example of many. (iv) These results are for conventional radicals and in contrast with those reported for distonic radical anions in which SOMO–HOMO gaps are smaller for more localized radicals and the orbital inversions vanish in water. Our findings yield new insights into the properties of free radical systems. PMID:29240424
Chen, Fengkun; Zhang, Jie; Jiang, Hong; Wan, Xinhua
2013-07-01
The large redshift of near-infrared (NIR) absorptions of nitro-substituted anthraquinone imide (Nitro-AQI) radical anions, relative to other AQI derivatives, is rationalized based on quantum chemical calculations. Calculations reveal that the delocalization effects of electronegative substitution in the radical anion states is dramatically enhanced, thus leading to a significant decrease in the HOMO-LUMO band gap in the radical anion states. Based on this understanding, an AQI derivative with an even stronger electron-withdrawing dicyanovinyl (di-CN) substituent was designed and prepared. The resulting molecule, di-CN-AQI, displays no absorption in the Vis/NIR region in the neutral state, but absorbs intensively in the range of λ=700-1000 (λmax ≈860 nm) and λ=1100-1800 nm (λmax ≈1400 nm) upon one-electron reduction; this is accompanied by a transition from a highly transmissive colorless solution to one that is purple-red. The relationship between calculated radical anionic HOMO-LUMO gaps and the electron-withdrawing capacity of the substituents is also determined by employing Hammett parameter, which could serve as a theoretical tool for further molecular design. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
St Denis, Tyler G.; Vecchio, Daniela; Zadlo, Andrzej; Rineh, Ardeshir; Sadasivam, Magesh; Avci, Pinar; Huang, Liyi; Kozinska, Anna; Chandran, Rakkiyappan; Sarna, Tadeusz; Hamblin, Michael R.
2013-01-01
Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (•OH) and singlet oxygen (1O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN−) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN− enhanced PDT (10 μM MB, 5J/cm2 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10 mM (P < 0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10 mM (P < 0.01). We determined that SCN− rapidly depleted O2 from an irradiated MB system, reacting exclusively with 1O2, without quenching the MB excited triplet state. SCN− reacted with 1O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN− in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of •OH, which, together with kinetic data, strongly suggests that MB, known to produce •OH and 1O2, may, under the conditions used, preferentially form 1O2. PMID:23969112
Goez, Martin; Henbest, Kevin B; Windham, Emma G; Maeda, Kiminori; Timmel, Christiane R
2009-06-08
Magnetic-field effects (MFEs) are used to investigate the photoreaction of xanthone (A) and DABCO (D) in anionic (SDS) or cationic (DTAC) micelles at high pH (DABCO = 1,4-diazabicyclo[2.2.2]octane, SDS = sodium dodecyl sulfate, DTAC = dodecyl trimethyl ammonium chloride). From MFE experiments with nanosecond time resolution, the radical anion A(.)(-) can be observed without any interference from the much more strongly absorbing triplet (3)A*, the different quenching processes can be separated and their rates can be measured. Triplet (3)A* is quenched dynamically both by the SDS micelle (k(1) = 5.0x10(5) s(-1)) and by DABCO approaching from the aqueous phase (k(2) = 2.0x10(9) M(-1) s(-1)). Static quenching by solubilised DABCO (association constant with the SDS micelles, 1.5 M(-1)) also participates at high DABCO concentrations, but is chemically nonproductive and does not lead to MFE generation. The MFEs stemming from the radical ion pairs A(.)(-) D(.)(+) are about 40 times larger in the anionic micelles than in the cationic ones despite a higher yield of free radicals in the latter case. This can be rationalised by different diffusional dynamics: Because of the location of their precursors, A(.)(-) and D(.)(+) are formed at opposite sides of the micelle boundary. Subsequently, the negatively charged Stern layer of the SDS micelle traps the radical cation, which then undergoes surface diffusion, so both the recombination probability and the spin mixing are high; in contrast, the positive surface charge of the DTAC micelle forces the radical cation into the bulk of the solution, thus efficiently blocking a recombination.
Zhao, Yongyu; Bordwell, Frederick G.
1996-09-20
Cleavage of radical anions, HA(*)(-), have been considered to give either H(*) + A(-) (path a) or H(-) + A(*) (path b), and factors determining the preferred mode of cleavage have been discussed. It is conceivable that cleavage to give a proton and a radical dianion, HA(*)(-) right harpoon over left harpoon H(+) + A(*)(2)(-) (path c), might also be feasible. A method, based on a thermodynamic cycle, to estimate the bond dissociation free energy (BDFE) by path c has been devised. Comparison of the BDFEs for cleavage of the radical anions derived from 24 nitroaromatic OH, SH, NH, and CH acids by paths a, b, c has shown that path c is favored thermodynamically.
NASA Astrophysics Data System (ADS)
Joshi, Ravi
2017-10-01
Copper (Cu) and manganese (Mn) ions are catalytic centers, in complexed form, in scavenging and dismutation process of superoxide radicals anion (O2.-) by superoxide dismutase enzyme. In the present work, fast reaction kinetics and mechanism of scavenging and dismutation of O2.- by Cu2+, Mn2+ and their complexes formed with some natural ligands have been studied using pulse radiolysis technique. Catechol, gentisic acid, tetrahydroxyquinone, tyrosine, tryptophan, embelin and bilirubin have been used as low molecular weight natural ligands for Cu2+ and Mn2+ to understand superoxide radical scavenging and dismutation reactions. These complexes have been found to be efficient scavengers of O2.- (k 107-109 M-1 s-1). The effects of nature of metal ion and ligand, and stoichiometry of complex on scavenging reaction rate constants are reported. Higher scavenging rate constants have been observed with complexes of: (1) Cu2+ as compared to Mn2+, and (2) at [ligand]/[metal] ratio of one as compared to two. A clear evidence of O2.- dismutation by free metal ions and some of the complexes has been observed. The study suggests that complexes of Cu2+ and Mn2+ with small natural ligands can also act as SOD mimics.
Konarev, Dmitri V.; Zorina, Leokadiya V.; Khasanov, Salavat S.; Popov, Alexey A.; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N.
2017-01-01
Reduction of scandium nitride clusterfullerene, Sc3N@Ih-C80, by sodium fluorenone ketyl in the presence of cryptand[2,2,2] allows the crystallization of the {cryptand[2,2,2](Na+)}2(Sc3N@Ih-C80−)2·2.5C6H4Cl2 (1) salt. The Sc3N@Ih-C80•− radical anions are dimerized to form single-bonded (Sc3N@Ih-C80−)2 dimers. PMID:27511304
Attygalle, Athula B; Bialecki, Jason B; Nishshanka, Upul; Weisbecker, Carl S; Ruzicka, Josef
2008-09-01
Collision-induced dissociation of anions derived from ortho-alkyloxybenzoic acids provides a facile way of producing gaseous enolate anions. The alkyloxyphenyl anion produced after an initial loss of CO(2) undergoes elimination of a benzene molecule by a double-hydrogen transfer mechanism, unique to the ortho isomer, to form an enolate anion. Deuterium labeling studies confirmed that the two hydrogen atoms transferred in the benzene loss originate from positions 1 and 2 of the alkyl chain. An initial transfer of a hydrogen atom from the C-1 position forms a phenyl anion and a carbonyl compound, both of which remain closely associated as an ion/neutral complex. The complex breaks either directly to give the phenyl anion by eliminating the neutral carbonyl compound, or to form an enolate anion by transferring a hydrogen atom from the C-2 position and eliminating a benzene molecule in the process. The pronounced primary kinetic isotope effect observed when a deuterium atom is transferred from the C-1 position, compared to the weak effect seen for the transfer from the C-2 position, indicates that the first transfer is the rate determining step. Quantum mechanical calculations showed that the neutral loss of benzene is a thermodynamically favorable process. Under the conditions used, only the spectra from ortho isomers showed peaks at m/z 77 for the phenyl anion and m/z 93 for the phenoxyl anion, in addition to that for the ortho-specific enolate anion. Under high collision energy, the ortho isomers also produce a peak at m/z 137 for an alkene loss. The spectra of meta and para compounds show a peak at m/z 92 for the distonic anion produced by the homolysis of the O-C bond. Moreover, a small peak at m/z 136 for a distonic anion originating from an alkyl radical loss allows the differentiation of para compounds from meta isomers.
The Effect of Reduction Potential on the Generation of the Perylene Diimide Radical Anions
NASA Astrophysics Data System (ADS)
Zhao, Y. Z.; Li, K. X.; Ding, S. Y.; Zhu, M.; Ren, H. P.; Ma, Q.; Guo, Z.; Tian, S. P.; Zhang, H. Q.; Miao, Z. C.
2018-07-01
Perylene diimide derivatives (PDIs) with different substituents in the bay positions (Un-PDI, DFPDI and THBPDI) were chosen in this report to investigate the effect of potential on the reduction of PDIs through base (hydrazine, 1,2-ethanediamine and triethylamine)-driven keto-enol anion tautomerism. The reduction potentials (PDI/PDI•-) of these compounds determined via cyclic voltammetry are -0.51, ‒0.34, and -0.098 V for Un-PDI, DFPDI, and THBPDI, respectively. The reduction of Un-PDI, DFPDI and THBPDI by hydrazine can produce corresponding radical anions and dianions, but the volume of hydrazine added at which the radicals started to appear is different and depends on their reduction potential. The similar phenomenon was observed using 1,2-ethylenediamine and triethylamine. However, only the radical anion was obtained even in a large excess of 1,2-ethanediamine or triethylamine. Moreover, the reduction of these PDIs with different bases added in the same amount was investigated, and the correlation with their basicity was shown.
Scott, Melanie J.; Billiar, Timothy R.; Stoyanovsky, Detcho A.
2016-01-01
The electron spin resonance (EPR) spin-trapping technique allows detection of radical species with nanosecond half-lives. This technique is based on the high rates of addition of radicals to nitrones or nitroso compounds (spin traps; STs). The paramagnetic nitroxides (spin-adducts) formed as a result of reactions between STs and radical species are relatively stable compounds whose EPR spectra represent “structural fingerprints” of the parent radical species. Herein we report a novel protocol for the synthesis of N-tert-butylmethanimine N-oxide (EBN), which is the simplest nitrone containing an α-H and a tertiary α′-C atom. We present EPR spin-trapping proof that: (i) EBN is an efficient probe for the analysis of glutathione thiyl radical (GS•); (ii) β-cyclodextrins increase the kinetic stability of the spin-adduct EBN/•SG; and (iii) in aqueous solutions, EBN does not react with superoxide anion radical (O2−•) to form EBN/•OOH to any significant extent. The data presented complement previous studies within the context of synthetic accessibility to EBN and efficient spin-trapping analysis of GS•. PMID:27941944
Photoelectron Spectroscopy Study of Quinonimides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossain, Ekram; Deng, Shihu M.; Gozem, Samer
Structures and energetics of o-, m- and p-quinonimide anions (OC6H4N) and quinoniminyl radicals have been investigated by using negative ion photoelectron spectroscopy. Modeling of the photoelectron spectrum of the ortho isomer shows that the ground state of the anion is a triplet, while the quinoniminyl radical has a doublet ground state with a doublet-quartet splitting of 35.5 kcal/mol. The para radical has doublet ground state, but a band for a quartet state is missing from the photoelectron spectrum indicating that the anion has a singlet ground state, in contrast to previously reported calculations. The theoretical modeling is revisited here, andmore » it is shown that accurate predictions for the electronic structure of the para quinonimide anion require both an accurate account of electron correlation and a sufficiently diffuse basis set. Electron affinities of o- and p-quinoniminyl radicals are measured to be 1.715 ± 0.010 and 1.675 ± 0.010 eV, respectively. The photoelectron spectrum of the m-quinonimide anion shows that the ion undergoes several different rearrangements, including a rearrangement to the energetically favorable para isomer. Such rearrangements preclude a meaningful analysis of the experimental spectrum.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carelli, F.; Grassi, T.; Gianturco, F. A.
The elementary mechanisms through which molecular polyynes could form stable negative ions after interacting with free electrons in planetary atmospheres (e.g., Titan's) are analyzed using quantum scattering calculations and quantum structure methods. The case of radical species and of nonpolar partners are analyzed via specific examples for both the C{sub n}H and HC{sub n}H series, with n values from 4 to 12. We show that attachment processes to polar radicals are dominating the anionic production and that the mediating role of dipolar scattering states is crucial to their formation. The corresponding attachment rates are presented as calculated upper limits tomore » their likely values and are obtained down to the low temperatures of interest. The effects of the computed rates, when used in simple evolutionary models, are also investigated and presented in detail.« less
Polyarene mediators for mediated redox flow battery
Delnick, Frank M.; Ingersoll, David; Liang, Chengdu
2018-01-02
The fundamental charge storage mechanisms in a number of currently studied high energy redox couples are based on intercalation, conversion, or displacement reactions. With exception to certain metal-air chemistries, most often the active redox materials are stored physically in the electrochemical cell stack thereby lowering the practical gravimetric and volumetric energy density as a tradeoff to achieve reasonable power density. In a general embodiment, a mediated redox flow battery includes a series of secondary organic molecules that form highly reduced anionic radicals as reaction mediator pairs for the reduction and oxidation of primary high capacity redox species ex situ from the electrochemical cell stack. Arenes are reduced to stable anionic radicals that in turn reduce a primary anode to the charged state. The primary anode is then discharged using a second lower potential (more positive) arene. Compatible separators and solvents are also disclosed herein.
NASA Astrophysics Data System (ADS)
Setifi, Fatima; Ota, Akira; Ouahab, Lahcéne; Golhen, Stèphane; Yamochi, Hideki; Saito, Gunzi
2002-11-01
The preparation, X-ray structures and magnetic properties of two isostructural new charge transfer salts: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III(1), Fe III(2) and isoq=isoquinoline are reported. Their structure consists of alternate organic and inorganic layers, each layer being formed by mixed columns of BO radical cations and paramagnetic metal complex anions. There are short intermolecular contacts between donor and anion (S2 anion· · ·S4 BO<3.5 Å) and between adjacent BO molecules (O· · · O1<3.2 Å). The two compounds are insulators. ESR measurements show single signal without separating the donor and anion spins. The magnetic measurements obey the Curie-Weiss law and revealed dominant antiferromagnetic interactions between anion spin and donor spin, but long-range magnetic ordering did not occur down to 2 K. This is directly related to structural reasons which were deduced from a comparison of the title compounds with other 1:1 salts containing same anion complexes and different donors.
Indole Alkaloids from Chaetomium globosum.
Xu, Guo-Bo; He, Gu; Bai, Huan-Huan; Yang, Tao; Zhang, Guo-Lin; Wu, Lin-Wei; Li, Guo-You
2015-07-24
Two new indole alkaloids chaetocochin J (1) and chaetoglobinol A (8), along with chetomin (2), chetoseminudin A (3), cochliodinol (9), and semicochliodinol (10), were isolated from the rice culture of the fungus Chaetomium globosum. Their structures were elucidated by spectral analysis. Three new epipolythiodioxopiperazines, chaetocochins G-I (5-7), were identified by the combination of UPLC and mass spectrometric analysis. Chaetocochin I contained two sulfur bridges, one formed by three sulfur atoms between C-3 and C-11a, and the other formed by four sulfur atoms between C-3' and C-6'. Chaetocochin I was readily transformed into chetomin (2), chetoseminudin A (3), chaetocochin D (4), chaetocochin G (5), and chaetocochin H (6) by losing sulfur atoms. Compounds 1-3, and 8 exhibited antibacterial activities against Bacillus subtilis with MICs of 25, 0.78, 0.78, and 50 μg/mL, respectively, but not against Gram-negative bacterium (Escherichia coli). Compounds 2 and 8 were inactive against Candida albicans, Fusarium graminearum, Fusarium vasinfectum, Saccharomyces cerevisiae, and Aspergillus niger even at the high concentrations of 200 and 100 μg/mL, respectively. Compound 8 showed free radical scavenging capacity against the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid radical (ABTS(+•)), with IC50 values of 143.6 and 45.2 μM, respectively. The free radical scavenging capacity rates of compounds 1-3 on the DPPH and ABTS(+•) were less than 20% at the test concentrations (89.9-108.3 μM). The superoxide anion radical scavenging assay indicated that compounds 1-3, and 8 showed 14.8% (90.9 μM), 18.1% (90.9 μM), 51.5% (88.3 μM), and 30.4% (61.3 μM) superoxide anion radical scavenging capacity, respectively.
Stefanić, I; Ljubić, I; Bonifacić, M; Sabljić, A; Asmus, K-D; Armstrong, D A
2009-04-07
A pulse radiolysis study was carried out of the reaction rate constants and kinetic isotope effects of hydroxyl-radical-induced H/D abstraction from the most-simple alpha-amino acid glycine in its anionic form in water. The rate constants and yields of three predominantly formed radical products, glycyl (NH2-*CH-CO2-), aminomethyl (NH2-*CH2), and aminyl (*NH-CH2-CO2-) radicals, as well as of their partially or fully deuterated analogs, were found to be of comparable magnitude. The primary, secondary, and primary/secondary H/D kinetic isotope effects on the rate constants were determined with respect to each of the three radicals. The unusual variety of products for such an elementary reaction between two small and simple species indicates a complex mechanism with several reactions taking place simultaneously. Thus, a theoretical modeling of the reaction mechanism and kinetics in the gas- and aqueous phase was performed by using the unrestricted density functional theory with the BB1K functional (employing the polarizable continuum model for the aqueous phase), unrestricted coupled cluster UCCSD(T) method, and improved canonical variational theory. Several hydrogen-bonded prereaction complexes and transition states were detected. In particular, the calculations pointed to a significant mechanistic role of the three-electron two-orbital (sigma/sigma* N therefore O) hemibonded prereaction complexes in the aqueous phase. A good agreement with the experimental rate constants and kinetic isotope effects was achieved by downshifting the calculated reaction barriers by 3 kcal mol(-1) and damping the NH(D) stretching frequency by a factor of 0.86.
Anion photoelectron imaging spectroscopy of glyoxal
NASA Astrophysics Data System (ADS)
Xue, Tian; Dixon, Andrew R.; Sanov, Andrei
2016-09-01
We report a photoelectron imaging study of the radical-anion of glyoxal. The 532 nm photoelectron spectrum provides the first direct spectroscopic determination of the adiabatic electron affinity of glyoxal, EA = 1.10 ± 0.02 eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy of the radical-anion is determined as VDE = 1.30 ± 0.04 eV. The reported EA and VDE values are attributed to the most stable (C2h symmetry) isomers of the neutral and the anion.
Martínez-González, Eduardo; Armendáriz-Vidales, Georgina; Ascenso, José R; Marcos, Paula M; Frontana, Carlos
2015-05-01
Electron transfer controlled hydrogen bonding was studied for a series of nitrobenzene derivative radical anions, working as large guest anions, and substituted ureas, including dihomooxacalix[4]arene bidentate urea derivatives, in order to estimate binding constants (Kb) for the hydrogen-bonding process. Results showed enhanced Kb values for the interaction with phenyl-substituted bidentate urea, which is significantly larger than for the remaining compounds, e.g., in the case of 4-methoxynitrobenzene a 28-fold larger Kb value was obtained for the urea bearing a phenyl (Kb ∼ 6888) vs tert-butyl (Kb ∼ 247) moieties. The respective nucleophilic and electrophilic characters of the participant anion radical and urea hosts were parametrized with global and local electrodonating (ω(-)) and electroaccepting (ω(+)) powers, derived from DFT calculations. ω(-) data were useful for describing trends in structure–activity relationships when comparing nitrobenzene radical anions. However, ω(+) for the host urea structures lead to unreliable explanations of the experimental data. For the latter case, local descriptors ωk(+)(r) were estimated for the atoms within the urea region in the hosts [∑kωk(+)(r)]. By compiling all the theoretical and experimental data, a Kb-predictive contour plot was built considering ω(-) for the studied anion radicals and ∑kωk(+)(r) which affords good estimations.
Photophysics and Photochemistry of 2-Aminobenzoic Acid Anion in Aqueous Solution
NASA Astrophysics Data System (ADS)
Pozdnyakov, Ivan P.; Plyusnin, Victor F.; Grivin, Vjacheslav P.
2009-11-01
Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA-) in aqueous solutions. Excitation of this species gives rise to the ABA- triplet state to the ABA• radical and to the hydrated electron (eaq-). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA- triplet state, the ABA• radical, and eaq- are T-T annihilation, recombination, and capture by the ABA- anion, respectively.
NASA Astrophysics Data System (ADS)
Wang, Bing; Yang, Zewei; An, Hao; Zhai, Jianping; Li, Qin; Cui, Hao
2015-01-01
TiO2 was coated on the surface of hydroxylated fly ash cenospheres (FACs) by the sol-gel method. Platinum (Pt) was then deposited on these TiO2/FAC particles by a photoreduction method to form PTF photocatalyst. The photocatalytic activity of PTF for the degradation of methylene blue (MB) under visible-light irradiation was determined. The PTF sample that was calcined at 450 °C and had a Pt/TiO2 mass ratio of 1.5% exhibited the optimal photocatalytic activity for degradation of MB with a catalyst concentration of 3 g L-1. MB was photodecomposed by PTF in aqueous solution more effectively at alkali pH than at acidic pH, because more MB molecules were adsorbed on the surface of PTF under alkaline conditions than that under acidic. The effect of various inorganic anions (HCO3-, F-, SO42-, NO3-, and Cl-) on the photodegradation of MB by PTF was also investigated. Addition of anions with a concentration of 5 mM enhanced the photocatalytic efficiency of PTF because of the improved adsorption of MB. This effect weakened as the anion concentration was increased, which was attributed to the ability of the anions to scavenge hydroxyl radicals and holes. Our results indicated that the photodegradation of MB took place mainly on the catalyst surface. The generation of hydroxyl radicals in the photocatalytic reaction was measured by the fluorescence method. KI was used to determine the participation of holes in the photocatalytic reaction. Both hydroxyl radicals and valence-band holes were detected in the PTF system. Recycling tests revealed that calcination of the used PTF helped to regain its photocatalytic activity.
Fenton-like Degradation of MTBE: Effects of Iron Counter Anion and Radical Scavengers
Fenton-driven oxidation of Methyl tert-butyl ether (MTBE) (0.11-0.16 mM) in batch reactors containing ferric iron (5 mM), hydrogen peroxide (H2O2) (6 mM) (pH=3) was performed to investigate MTBE transformation mechanisms. Independent variables included the form of iron (Fe) (Fe2(...
Bull, James N.; West, Christopher W.
2015-01-01
Frequency-, angle-, and time-resolved photoelectron imaging of gas-phase menadione (vitamin K3) radical anions was used to show that quasi-bound resonances of the anion can act as efficient doorway states to produce metastable ground electronic state anions on a sub-picosecond timescale. Several anion resonances have been experimentally observed and identified with the assistance of ab initio calculations, and ground state anion recovery was observed across the first 3 eV above threshold. Time-resolved measurements revealed the mechanism of electronic ground state anion formation, which first involves a cascade of very fast internal conversion processes to a bound electronic state that, in turn, decays by slower internal conversion to the ground state. Autodetachment processes from populated resonances are inefficient compared with electronic relaxation through internal conversion. The mechanistic understanding gained provides insight into the formation of radical anions in biological and astrochemical systems. PMID:29560245
Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K
2018-06-20
Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.
EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.
Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef
2018-05-18
We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .
NASA Astrophysics Data System (ADS)
Biswal, Jayashree; Paul, Jhimli; Naik, D. B.; Sarkar, S. K.; Sabharwal, S.
2013-04-01
The radiation induced degradation of 4-nitrophenol (4-NP) has been studied by gamma irradiation, while the reactivity and spectral features of the short lived transients formed by reaction with primary transient radicals at different pHs has been investigated by pulse radiolysis technique. In steady state radiolysis a dose of 4.4 k Gy is able to degrade 98% of 1×10-4 mol dm-3 4-NP. 4-NP has pKa at 7.1, above which it is present in the anionic form. At pH 5.2, •OH and N3• radicals were found to react with 4-NP with rate constants of 4.1×109 dm3 mol-1 s-1 and 2.8×108 dm3 mol-1 s-1, respectively. Differences in the absorption spectra of species formed in the reactions of 4-NP with •OH and N3• radicals suggested that •OH radicals add to the aromatic ring of 4-NP along with electron transfer reaction, whereas N3• radicals undergo only electron transfer reaction. At pH 9.2, rate constants for the reaction of •OH radicals with 4-NP was found to be higher by a factor of 2 compared to that at pH 5.2. This has been assigned to the deprotonation of 4-NP at pH 9.2.
Nemeria, Natalia S.; Ambrus, Attila; Patel, Hetalben; Gerfen, Gary; Adam-Vizi, Vera; Tretter, Laszlo; Zhou, Jieyu; Wang, Junjie; Jordan, Frank
2014-01-01
Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease. PMID:25210035
Photophysics and photochemistry of 2-aminobenzoic acid anion in aqueous solution.
Pozdnyakov, Ivan P; Plyusnin, Victor F; Grivin, Vjacheslav P
2009-12-24
Nanosecond laser flash photolysis and absorption and fluorescence spectroscopy were used to study photochemical processes of 2-aminobenzoic acid anion (ABA(-)) in aqueous solutions. Excitation of this species gives rise to the ABA(-) triplet state to the ABA* radical and to the hydrated electron (e(aq)(-)). The last two species result from two-photon processes. In a neutral medium, the main decay channels of ABA(-) triplet state, the ABA* radical, and e(aq)(-) are T-T annihilation, recombination, and capture by the ABA(-) anion, respectively.
VizieR Online Data Catalog: Cyanomethyl anion and its deuterated derivatives (Liton+, 2014)
NASA Astrophysics Data System (ADS)
Liton, M.; Das., A.; Chakrabarti, S. K.
2013-11-01
We performed detailed quantum chemical simulations to present the spectral properties (infrared, electronic, and rotational) of various forms of the cyanomethyl radical. Moller-Plesset perturbation theory along with the triple-zeta, correlation-consistent basis set is used to obtain different spectroscopic constants of CH2CN-, CHDCN-, and CD2CN- in the gas phase. (4 data files).
VizieR Online Data Catalog: Cyanomethyl anion and its deuterated derivatives (Majumdar+, 2014)
NASA Astrophysics Data System (ADS)
Majumdar, L.; Das., A.; Chakrabarti, S. K.
2013-11-01
We performed detailed quantum chemical simulations to present the spectral properties (infrared, electronic, and rotational) of various forms of the cyanomethyl radical. Moller-Plesset perturbation theory along with the triple-zeta, correlation-consistent basis set is used to obtain different spectroscopic constants of CH2CN-, CHDCN-, and CD2CN- in the gas phase. (4 data files).
Polyphenolic content and antioxidant activity of some wild Saudi Arabian Asteraceae plants.
Shahat, Abdelaaty A; Ibrahim, Abeer Y; Elsaid, Mansour S
2014-07-01
To study the antioxidant properties of crude extract of different Asteraceae plants. The antioxidant properties of six extracts were evaluated using different antioxidant tests, including free radical scavenging, reducing power, metal chelation, superoxide anion radical scavenging, total antioxidant capacity and inhibition of lipid peroxidation activities. Picris cyanocarpa (P. cyanocarpa) and Anthemis deserti (A. deserti) had powerful antioxidant properties as radical scavenger, reducing agent and superoxide anion radical scavenger while Achillia fragrantissima (A. fragrantissima) and Artemissia monosperma (A. monosperma) were the most efficient as ion chelator (100% at 100, 200 and 400 μg/mL) A. fragrantissima and Rhantarium appoposum (R. appoposum) showed 100% inhibition on peroxidation of linoleic acid emulsion at 200 and 400 μg/mL, while butylatedhydroxy toluene and ascorbic acid showed 100 and 95% inhibition percentage at 400 μg/mL, respectively. Those various antioxidant activities were compared to standard antioxidants such as butylated hydroxyl toluene and ascorbic acid. In most tests P. cyanocarpa and A. deserti had powerful antioxidant properties as radical scavenger, reducing agent and superoxide anion radical scavenger. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Masaki, H; Atsumi, T; Sakurai, H
1995-01-01
Previously we demonstrated that hamamelitannin (2',5-di-O-galloyl hamamelose) in Hamamelis virginiana L. exhibits potent superoxide-anion scavenging activity. We then examined the physiological and pharmacological activities of hamamelitannin as well as its functional homologues, gallic acid and syringic acid. The following results were obtained: (1) Hamamelitannin has a higher protective activity against cell damages induced by superoxide anions than gallic acid which is the functional moiety of hamamelitannin. The protective activity of hamamelitannin on murine fibroblast-damage induced by superoxide anions was found at a minimum concentration of 50 microM, while the corresponding figure for gallic acid was 100 microM. (2) Pre-treatment of fibroblasts with hamamelitannin enhances cell survival. (3) The superoxide-anion scavenging activity of the compound in terms of its IC50 value (50% inhibition concentration of superoxide anion radicals generated) was evaluated by ESR spin-trapping. Both hamamelitannin (IC50 = 1.31 +/- 0.06 microM) and gallic acid (IC50 = 1.01 +/- 0.03 microM) exhibited high superoxide-anion scavenging activity followed by syringic acid (IC50 = 13.90 +/- 2.38 microM). (4) When hamamelitannin was treated with superoxide anions generated by a KO2-crown ether system, HPLC analysis showed the disappearance of hamamelitannin and the concomitant formation of hamamelitannin-derived radicals (g = 2.005, delta H1 = 2.16 G, delta H2 = 4.69 G) was detected by ESR spectrometry.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Thurnauer, Marion C.; Brown, James W.; Gast, P.; Feezel, Laura L.
Suggestions that the electron acceptor, A 1, in Photosystem I is a quinone have come from both optical and epr experiments. Vitamin K 1 (phylloquinone) is present in the PSI complex with a stoichiometry of two molecules per reaction center. In order to determine if A 1 can be identified with vitamin K 1, X-band and Q-band epr properties of the vitamin K 1 radical anion in frozen alcohol solutions are examined. The results are compared to the epr properties that have been observed for the reduced A 1 acceptor in vivo. The g-values obtained for the vitamin K 1 radical anion are consistent with identifying A 1 with vitamin K 1.
Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng
2016-11-04
A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.
2,4,6-Trichlorophenylhydrazine Schiff bases as DPPH radical and super oxide anion scavengers.
Khan, Khalid Mohammed; Shah, Zarbad; Ahmad, Viqar Uddin; Khan, Momin; Taha, Muhammad; Rahim, Fazal; Ali, Sajjad; Ambreen, Nida; Perveen, Shahnaz; Choudhary, M Iqbal; Voelter, Wolfgang
2012-05-01
Syntheses of thirty 2,4,6-trichlorophenylhydrazine Schiff bases 1-30 were carried out and evaluated for their in vitro DPPH radical and super oxide anion scavenging activities. Compounds 1-30 have shown a varying degree of DPPH radical scavenging activity and their IC50 values range between 4.05-369.30 µM. The compounds 17, 28, 18, 14, 8, 15, 12, 2, 29, and 7 exhibited IC50 values ranging between 4.05±0.06-24.42±0.86 µM which are superior to standard n-propylgallate (IC50=30.12±0.27 µM). Selected compounds have shown a varying degree of superoxide anion radical scavenger activity and their IC50 values range between 91.23-406.90 µM. The compounds 28, 8, 17, 15, and 14, showed IC50 values between 91.23±1.2-105.31±2.29 µM which are superior to standard n-propylgallate (IC50=106.34±1.6 µM).
Chain Reaction Polymerization.
ERIC Educational Resources Information Center
McGrath, James E.
1981-01-01
The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)
Ab initio study of the structural properties of ascorbic acid (vitamin C)
NASA Astrophysics Data System (ADS)
Allen, Reeshemah N.; Shukla, M. K.; Reed, Demarcio; Leszczynski, Jerzy
Geometries of the neutral and ionic tautomeric species of ascorbic acid were optimized at the density functional theory (DFT) level using the B3LYP functional. The radical species were evaluated using the unrestricted B3LYP method. Single-point energy calculations were also performed using the Møller-Plesset (MP2) and unrestricted MP2 (UMP2) methods for the closed-shell and open-shell systems, respectively. The effects of aqueous solution were evaluated using the conducting polarized continuum model (CPCM) and polarized continuum model (PCM). The geometries of most stable radicals in the respective groups were also optimized in the water solution using the CPCM model at the UB3LYP level. All calculation were performed using the 6-311++G(d,p) basis set. The nature of stationary points on the gas phase potential energy surfaces (PESs) was evaluated using vibrational frequency calculations; all geometries characterize local minima. The species obtained by the deprotonation of the O3 site is the most stable monoanion of ascorbic acid. For the radical species, the structure obtained by the dehydrogenation of the O3 site is the most stable monoradical. Among the radical anions, the species obtained by the deprotonation of the O3 site and subsequent dehydrogenation of the O2 site is the most stable in the gas phase and in an aqueous medium. The computed isotropic hyperfine coupling constants of this species were found to be in good agreement with the experimental data. Our investigation also supports the earlier findings that the oxidized species of ascorbic acid in water solution by the OH? radical is radical anion of the AAO?3O-2 form. The spin densities and molecular electrostatic potentials are also discussed.
Acid proliferation to improve the sensitivity of EUV resists: a pulse radiolysis study
NASA Astrophysics Data System (ADS)
Enomoto, Kazuyuki; Arimitsu, Koji; Yoshizawa, Atsutaro; Yamamoto, Hiroki; Oshima, Akihiro; Kozawa, Takahiro; Tagawa, Seiichi
2011-04-01
The yields of acid have been measured in the electron-beam irradiation of triphenylsulfonium triflate (TPS-Tf) and pinanediol monosulfonates, which consist of tosylate (PiTs), 4-fluorobenzenesulfonate (Pi1F), or 4-trifluoromethylbenzenesulfonate (Pi3F), as an acid amplifier blended in 4-hydroxystyrene matrixes. The acid yields efficiency decreases when PiTs is present, while its efficiency increases in the presence of Pi3F. Reactions of the electrons with TPS-Tf and pinanediol monosulfonates have been studied using pulse radiolysis in liquid tetrahydrofuran (THF) to evaluate the kinetic contributions to acid production. The THF-solvated electrons react with PiTs, Pi1F, and Pi3F to produce the corresponding radical anions; the rate constants are estimated to be 4.1, 5.1, and 9.2 × 1010 M-1 s-1, respectively. Electron transfer from PiTs•-, Pi1F•-, and Pi3F•- radical anions to TPS-Tf occurs with the rate constants of 5.7×1010, 1.2×1011, and 6.3 × 1010 M-1 s-1, respectively. The long-lived Pi3F•- efficiently undergoes the electron transfer to TPS-Tf to form the TPS-Tf•-, which subsequently decompose to generate TfOH. On the other hand, the decay channels of PiTs•- and Pi1F•-, which possess a relatively short lifetime, are presumably dependent on its reactions with solvated protons (charge recombination) rather than the electron transfer to TPS-Tf. The novel acid production pathway via the electron transfer from pinanediol monosulfonate radical anions to TPS-Tf is presented.
Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations
Zhang, Wenxu; Liu, Ye; Jackson, Aaron C.; ...
2016-06-22
Triblock and diblock copolymers based on isoprene (Ip) and chloromethylstyrene (CMS) were synthesized in this paper by sequential polymerization using reversible addition–fragmentation chain transfer radical polymerization (RAFT). The block copolymers were quaternized with tris(2,4,6-trimethoxyphenyl)phosphine (Ar 3P) to prepare soluble ionomers. The ionomers were cast from chloroform to form anion exchange membranes (AEMs) with highly ordered morphologies. At low volume fractions of ionic blocks, the ionomers formed lamellar morphologies, while at moderate volume fractions (≥30% for triblock and ≥22% for diblock copolymers) hexagonal phases with an ionic matrix were observed. Ion conductivities were higher through the hexagonal phase matrix than inmore » the lamellar phases. Finally, promising chloride conductivities (20 mS/cm) were achieved at elevated temperatures and humidified conditions.« less
Pulse radiolysis studies of mangiferin: A C- glycosyl xanthone isolated from Mangifera indica
NASA Astrophysics Data System (ADS)
Mishra, B.; Priyadarsini, K. Indira; Sudheerkumar, M.; Unnikrishhnan, M. K.; Mohan, H.
2006-01-01
Pulse radiolysis technique has been employed to study the reaction of different oxidizing and reducing radicals with mangiferin. The reaction of rad OH radical showed the formation of transient species absorbing in 380-390 and 470-480 nm region. The reaction with specific one-electron oxidants (N 3rad , CCl 3O 2rad ) also showed the formation of similar transient absorption bands and is assigned to phenoxyl radicals. The p Ka values of the transient species have been determined to be 6.3 and 11.9. One-electron oxidation potential of mangiferin at pH 9 has been found to be 0.62 V vs. NHE. The reaction of e aq- showed the formation of transient species with λmax at 340 nm, which is assigned to the ketyl anion radical formed on addition of e aq- at carbonyl site. Reactions of one-electron oxidised mangiferin radicals with ascorbic acid have also been studied.
Synthesis of Oligoimides and Oligoimide Anion Radicals
1992-01-01
University of Minnesota 0 Minneapolis, MN A. Synthesis of Ollgolmides and Oligoimide Anion Radicals. Key to the results described in parts B-D are compounds ...could be synthesized as single molecular weight, pure and usually soluble compounds . 6 ,7.16 Although rotation about the single bonds along the...could be attached and unsymmetrical rigid rods (different end groups) could be prepared. The compounds were characterized by NMR, IR, MS and HPLC, In
Escape of anions from geminate recombination in THF due to charge delocalization
Chen, Hung -Cheng; Cook, Andrew R.; Asaoka, Sadayuki; ...
2017-11-24
Geminate recombination of 24 radical anions (M˙ –) with solvated protons (RH 2 +) was studied in tetrahydrofuran (THF) with pulse radiolysis. The recombination has two steps: (1) diffusion of M˙ – and RH 2 + together to form intimate (contact and solvent separated) ion pairs, driven by Coulomb attraction; (2) annihilation of anions due to proton transfer (PT) from RH 2 + to M˙ –. The non-exponential time-dependence of the geminate diffusion was determined. For all molecules protonated on O or N atoms the subsequent PT step is too fast (<0.2 ns) to measure, except for the anion ofmore » TCNE which did not undergo proton transfer. PT to C atoms was as slow as 70 ns and was always slow enough to be observable. A possible effect of charge delocalization on the PT rates could not be clearly separated from other factors. For 21 of the 24 molecules studied here, a free ion yield (71.6 ± 6.2 nmol J –1) comprising ~29% of the total, was formed. This yield of “Type I” free ions is independent of the PT rate because it arises entirely by escape from the initial distribution of ion pair distances without forming intimate ion pairs. Furthermore, three anions of oligo(9,9-dihexyl)fluorenes, F n˙ – (n = 2–4) were able to escape from intimate ion-pairs to form additional yields of “Type II” free ions with escape rate constants near 3 × 10 6 s –1. These experiments find no evidence for an inverted region for proton transfer.« less
NASA Astrophysics Data System (ADS)
Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Ohomori, Katsumi; Kozawa, Takahiro
2015-03-01
Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub 10nm. An anion-bound polymer(ABP), in which at the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using γ and EUV radiolysis. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The protons of acids are considered to be mainly generated through the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through the hole transfer to the decomposition products of onium salts.
NASA Astrophysics Data System (ADS)
Komuro, Yoshitaka; Yamamoto, Hiroki; Kobayashi, Kazuo; Utsumi, Yoshiyuki; Ohomori, Katsumi; Kozawa, Takahiro
2014-11-01
Extreme ultraviolet (EUV) lithography is the most promising candidate for the high-volume production of semiconductor devices with half-pitches of sub-10 nm. An anion-bound polymer (ABP), in which the anion part of onium salts is polymerized, has attracted much attention from the viewpoint of the control of acid diffusion. In this study, the acid generation mechanism in ABP films was investigated using electron (pulse), γ, and EUV radiolyses. On the basis of experimental results, the acid generation mechanism in anion-bound chemically amplified resists was proposed. The major path for proton generation in the absence of effective proton sources is considered to be the reaction of phenyl radicals with diphenylsulfide radical cations that are produced through hole transfer to the decomposition products of onium salts.
Anion photoelectron spectroscopy of radicals and clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Travis, Taylor R.
1999-12-01
Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C 2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C 2H and C 4H. Other radicals studied include NCN and I 3. The author was able to observe the low-lying singlet and triplet states of NCNmore » for the first time. Measurement of the electron affinity of I 3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.« less
Gülçin, Ilhami; Büyükokuroglu, M Emin; Oktay, Münir; Küfrevioglu, O Irfan
2003-05-01
The aim of this study is to examine possible antioxidant and analgesic activities of turpentine exudes from Pinus nigra Arn. subsp. pallsiana (Lamb.) Holmboe (TPN). Total antioxidant activity, reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities were studied. The total antioxidant activity increased with the increasing amount of extracts (100, 300, and 500 microg) added to linoleic acid emulsion. All of the doses of TPN showed higher antioxidant activity than alpha-tocopherol. The samples showed 49, 70, and 91% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, the 300 microg of alpha-tocopherol showed 40% inhibition on peroxidation of linoleic acid emulsion. There is correlation between antioxidant activity and the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities. Like antioxidant activity, the reducing power, superoxide anion radical scavenging, free radical scavenging, metal chelating, and hydrogen peroxide scavenging activities of TPN depending on concentration and increasing with increased concentration of TPN. These properties may be the major reasons for the inhibition of lipid peroxidation. The results obtained in the present study indicate that the TPN has a potential source of natural antioxidant. In addition, analgesic effect of TPN was investigated in present study and TPN had strong analgesic effect. The analgesic effect of TPN compared with metamizol as a standard analgesic compound.
Roy, Amit Saha; Saha, Pinaki; Adhikary, Nirmal Das; Ghosh, Prasanta
2011-03-21
The diamagnetic VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-), R = H, Me) complexes, (L(-))(VO(2+))(L(R)(IS)(•-)): (L(1)(-))(VO(2+))(L(H)(IS)(•-))•3/2MeOH (1•3/2MeOH), (L(2)(-))(VO(2+))(L(H)(IS)(•-)) (2), and (L(2)(-))(VO(2+))(L(Me)(IS)(•-))•1/2 L(Me)(AP) (3•1/2 L(Me)(AP)), incorporating tridentate monoanionic NNO-donor ligands {L = L(1)(-) or L(2)(-), L(1)H = (2-[(phenylpyridin-2-yl-methylene)amino]phenol; L(2)H = 1-(2-pyridylazo)-2-naphthol; L(H)(IS)(•-) = o-iminobenzosemiquinonate anion radical; L(Me)(IS)(•-) = o-imino-p-methylbenzosemiquinonate anion radical; and L(Me)(AP) = o-amino-p-methylphenol} have been isolated and characterized by elemental analyses, IR, mass, NMR, and UV-vis spectra, including the single-crystal X-ray structure determinations of 1•3/2MeOH and 3•1/2 L(Me)(AP). Complexes 1•3/2MeOH, 2, and 3•1/2 L(Me)(AP) absorb strongly in the visible region because of intraligand (IL) and ligand-to-metal charge transfers (LMCT). 1•3/2MeOH is luminescent (λ(ext), 333 nm; λ(em), 522, 553 nm) in frozen dichloromethane-toluene glass at 77 K due to π(diimine→)π(diimine)* transition. The V-O(phenolato) (cis to the V═O) lengths, 1.940(2) and 1.984(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP) are consistent with the VO(2+) description. The V-O(iminosemiquinonate) (trans to the V═O) lengths, 2.1324(19) in 1•3/2MeOH and 2.083(2) Å in 3•1/2 L(Me)(AP), are expectedly ∼0.20 Å longer due to the trans influence of the V═O bond. Because of the stronger affinity of the paramagnetic VO(2+) ion to the L(H)(IS)(•-) or L(Me)(IS)(•-), the V-N(iminosemiquinonate) lengths, 1.908(2) and 1.921(2) Å, respectively, in 1•3/2MeOH and 3•1/2 L(Me)(AP), are unexpectedly shorter. Density functional theory (DFT) calculations using B3LYP, B3PW91, and PBE1PBE functionals on 1 and 2 have established that the closed shell singlet (CSS) solutions (VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination) of these complexes are unstable with respect to triplet perturbations. But BS (1,1) M(s) = 0 (VO(2+)-iminobenzosemiquinonate anion radical (L(R)(IS)(•-)) coordination) solutions of these species are stable and reproduce the experimental bond parameters well. Spin density distributions of one electron oxidized cations are consistent with the [(L(-))(VO(2+))(L(R)(IQ))](+) descriptions [VO(2+)-o-iminobenzoquinone (L(R)(IQ)) coordination], and one electron reduced anions are consistent with the [(L(•2-))(VO(3+))(L(R)(AP)(2-))](-) descriptions [VO(3+)-amidophenolato (L(R)(AP)(2-)) coordination], incorporating the diimine anion radical (L(1)(•2-)) or azo anion radical (L(2)(3-)). Although, cations and anions are not isolable, but electro-and spectro-electrochemical experiments have shown that 3(+) and 3(-) ions are more stable than 1(+), 2(+) and 1(-), 2(-) ions. In all cases, the reductions occur with simultaneous two electron transfer, may be due to formation of coupled diimine/azo anion radical-VO(2+) species as in [(L(•2-))(VO(2+))(L(R)(AP)(2-))](2-).
Recyclable catalysts methods of making and using the same
Dioumaev, Vladimir K.; Bullock, R. Morris
2006-02-28
Organometallic complexes are provided, which include a catalyst containing a transition metal, a ligand and a component having the formula GAr.sup.F. Ar.sup.F is an aromatic ring system selected from phenyl, naphthalenyl, anthracenyl, fluorenyl, or indenyl. The aromatic ring system has at least a substituent selected from fluorine, hydrogen, hydrocarbyl or fluorinated hydrocarbyl, G is substituted or unsubstituted (CH.sub.2).sub.n or (CF.sub.2).sub.n, wherein n is from 1 to 30, wherein further one or more CH.sub.2 or CF.sub.2 groups are optionally replaced by NR, PR, SiR.sub.2, BR, O or S, or R is hydrocarbyl or substituted hydrocarbyl, GAr.sup.F being covalently bonded to either said transition metal or said ligand of said catalyst, thereby rendering said cationic organometallic complex liquid. The catalyst of the organometallic complex can be [CpM(CO).sub.2(NHC)L.sub.k].sup.+A.sup.-, wherein M is an atom of molybdenum or tungsten, Cp is substituted or unsubstituted cyclopentadienyl radical represented by the formula [C.sub.5Q.sup.1Q.sup.2Q.sup.3Q.sup.4Q.sup.5], wherein Q.sup.1 to Q.sup.5 are independently selected from the group consisting of H radical, GAr.sup.F C.sub.1-20 hydrocarbyl radical, substituted hydrocarbyl radical, substituted hydrocarbyl radical substituted by GAr.sup.F, halogen radical, halogen-substituted hydrocarbyl radical, --OR, --C(O)R', --CO.sub.2R', --SiR'.sub.3 and --NR'R'', wherein R' and R'' are independently selected from the group consisting of H radical, C.sub.1-20 hydrocarbyl radical, halogen radical, and halogen-substituted hydrocarbyl radical, wherein said Q.sup.1 to Q.sup.5 radicals are optionally linked to each other to form a stable bridging group, NHC is any N-heterocyclic carbene ligand, L is either any neutral electron donor ligand, wherein k is a number from 0 to 1 or L is an anionic ligand wherein k is 2, and A.sup.- is an anion. Processes using the organometallic complexes as catalysts in catalytic reactions, such as for example, the hydrosilylation of aldehydes, ketones and esters are also provided.
Free radical scavenging abilities of polypeptide from Chlamys farreri
NASA Astrophysics Data System (ADS)
Han, Zhiwu; Chu, Xiao; Liu, Chengjuan; Wang, Yuejun; Mi, Sun; Wang, Chunbo
2006-09-01
We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O{2/-}), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O{2/-}) (IC50=0.3 mg/ml), hydroxyl radicals (OH·) (IC50=0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50=0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43%. The scavenging effect of PCF on O{2/-}, OH· and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.
Quantum chemical calculations of anion complex [B12Hx(NF2)12-x]2-, x = 9 - 12
NASA Astrophysics Data System (ADS)
Koblova, E. A.; Saldin, V. I.; Ustinov, A. Yu
2017-01-01
The geometric, energetic, spectral and electronic properties of various isomers of B12Hх(NF2)12-х 2- anion complex with x = 9 - 12 have been studied using Density Functional Theory (B3LYP/6-311++G**). It was shown that the most stable isomers are characterized by the preference to form the most symmetric structures with uniformly distributed charge densities. However, when replacing a hydrogen atom with difluoramino group, an inductive effect occurs. NF2 group pulls a part of electron density that leads to the polarization of the boron core. Blue shifts in the IR spectrum compared to the vibrations of the free radical NF2 ranging from 5 to 69 cm-1 for the most stable isomers with the minimum total energy are characteristic and points to the stability of B12Hх(NF2)12-х 2- anions. The obtained results broaden the idea of aromaticity of B12H12 2- anion and will be useful in synthesis of new B12H12 2- derivatives.
NASA Technical Reports Server (NTRS)
Chaban, Galina M.
2004-01-01
Anharmonic vibrational frequencies and intensities are calculated for OH(H2O)n and H(H2O)n radicals (that form on icy particles of the interstellar medium), HCO radical (the main intermediate in the synthesis of organic molecules in space), NH2(-) and C2H(-) anions, H5(+) cation, and other systems relevant to interstellar chemistry. In addition to pure ions and radicals, their complexes with water are studied to assess the effects of water environment on infrared spectra. The calculations are performed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. Fundamental, overtone, and combination excitations are computed. The results are in good agreement with available experimental data and provide reliable predictions for vibrational excitations not yet measured in laboratory experiments. The data should be useful for interpretation of astronomically observed spectra and identification of ions and radicals present in the interstellar medium and in planetary atmospheres.
Rui, Bruno R; Shibuya, Fábio Y; Kawaoku, Allison J T; Losano, João D A; Angrimani, Daniel S R; Dalmazzo, Andressa; Nichi, Marcilio; Pereira, Ricardo J G
2017-03-01
Over the past decades, scientists endeavored to comprehend oxidative stress in poultry spermatozoa and its relationship with fertilizing ability, lipid peroxidation (LPO), free-radical scavenging systems, and antioxidant therapy. Although considerable progress has been made, further improvement is needed in understanding how specific reactive oxygen species (ROS) and malondialdehyde (MDA, a toxic byproduct of LPO) disrupt organelles in avian spermatozoon. Hence, this study examined functional changes in chicken spermatozoa after incubation with different ROS, and their implications for the fertility. First, semen samples from 14 roosters were individually diluted and aliquoted into five equal parts: control, superoxide anion, hydrogen peroxide (H 2 O 2 ), hydroxyl radicals, and MDA. After incubation with these molecules, aliquots were analyzed for motility, plasma membrane and acrosome integrity, mitochondrial activity, and LPO and DNA damage. Hydrogen peroxide was more detrimental for sperm motility than hydroxyl radicals, whereas the superoxide anion and MDA exhibited no differences compared with controls. In turn, plasma membrane and acrosome integrity, mitochondrial activity, LPO and DNA integrity rates were only affected by hydroxyl radicals. Thereafter, semen aliquots were incubated under the same conditions and used for artificial insemination. In accordance to our in vitro observations, H 2 O 2 and hydroxyl radicals sharply reduced egg fertility, whereas superoxide anion and MDA only induced slight declines. Thus, chicken sperm function was severely impaired by H 2 O 2 and hydroxyl radicals, but their mechanisms of action seemingly comprise different pathways. Further analysis regarding susceptibility of spermatozoon organelles to specific radicals in other poultry will help us to understand the development of interspecific differences in scavenging systems and to outline more oriented antioxidant approaches. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Michelle A.; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.; Gerfen, Gary J.
2010-04-01
The reaction intermediates of reduced bovine Cytochrome c Oxidase (CcO) were trapped following its reaction with oxygen at 50 μs-6 ms by innovative freeze-quenching methods and studied by EPR. When the enzyme was reduced with either ascorbate or dithionite, distinct radicals were generated; X-band (9 GHz) and D-band (130 GHz) CW-EPR measurements support the assignments of these radicals to ascorbyl and sulfur dioxide anion radical (SO2-rad), respectively. The X-band spectra show a linewidth of 12 G for the ascorbyl radical and 11 G for the SO2-rad radical and an isotropic g-value of 2.005 for both species. The D-band spectra reveal clear distinctions in the g-tensors and powder patterns of the two species. The ascorbyl radical spectrum displays approximate axial symmetry with g-values of gx = 2.0068, gy = 2.0066, and gz = 2.0023. The SO2-rad>/SUP> radical has rhombic symmetry with g-values of gx = 2.0089, gy = 2.0052, and gz = 2.0017. When the contributions from the ascorbyl and SO2-rad radicals were removed, no protein-based radical on CcO could be identified in the EPR spectra.
Shkrob, Ilya A; Marin, Timothy W
2015-11-19
Because of their extended conjugated bond network, aromatic compounds generally have higher redox stability than less saturated compounds. We conjectured that ionic liquids (ILs) consisting of aromatic heterocyclic anions (AHAs) may exhibit improved radiation and electrochemical stability. Such properties are important in applications of these ILs as diluents in radionuclide separations and electrolytes in the electric energy storage devices. In this study, we systematically examine the redox chemistry of the AHAs. Three classes of these anions have been studied: (i) simple 5-atom ring AHAs, such as the pyrazolide and triazolides, (ii) AHAs containing an adjacent benzene ring, and (iii) AHAs containing electron-withdrawing groups that were introduced to reduce their basicity and interaction with metal ions. It is shown that fragmentation in the reduced and oxidized states of these AHAs does not generally occur, and the two main products, respectively, are the H atom adduct and the imidyl radical. The latter species occurs either as an N σ-radical or as an N π-radical, depending on the length of the N-N bond, and the state that is stabilized in the solid matrix is frequently different from that having the lowest energy in the gas phase. In some instances, the formation of the sandwich π-stack dimer radical anions has been observed. For trifluoromethylated anions, H adduct formation did not occur; instead, there was facile loss of fluoride from their fluorinated groups. The latter can be problematic in nuclear separations, but beneficial in batteries. Overall, our study suggests that AHA-based ILs are viable candidates for use as radiation-exposed diluents and electrolytes.
Slow Photoelectron Velocity-Map Imaging of Cryogenically Cooled Anions
NASA Astrophysics Data System (ADS)
Weichman, Marissa L.; Neumark, Daniel M.
2018-04-01
Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1-2 cm‑1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.
Radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum.
Yu, Huahua; Liu, Xiguang; Xing, Ronge; Liu, Song; Li, Cuiping; Li, Pengcheng
2005-05-16
In this study, radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum (R. esculentum) was assayed including superoxide anion radical and hydroxyl radical scavenging. The protein samples showed strong scavenging activity on superoxide anion radical and values EC50 of full protein (FP), first fraction (FF), second fraction (SF), and 30% (NH4)2 SO4 precipitate (Fr-1) were 2.65, 7.28, 1.10, and 22.51 microg/mL, respectively, while values EC50 of BHA, BHT, and alpha-tocopherol were 31, 61, and 88 microg/mL, respectively. Also, the protein samples had strong scavenging effect on hydroxyl radical and the values EC50 of FP, FF, SF, Fr-1, and Fr-2 were 48.91, 27.72, 1.82, 16.36, and 160.93 microg/mL, but values EC50 of Vc and mannitol were 1907 and 4536 microg/mL, respectively. Of the five protein samples, SF had the strongest radical scavenging activity and may have a use as a possible supplement in the food and pharmaceutical industries. The radical scavenging activity was stable at high temperature so that R. esculentum may be used as a kind of natural functional food.
Diaconescu, Paula L; Cummins, Christopher C
2015-02-14
The synthesis and characterization of (bipy)(2)U(N[t-Bu]Ar)(2) (1-(bipy)(2), bipy = 2,2'-bipyridyl, Ar = 3,5-C(6)H(3)Me(2)), (bipy)U(N[(1)Ad]Ar)(3) (2-bipy), (bipy)(2)U(NC[t-Bu]Mes)(3) (3-(bipy)(2), Mes = 2,4,6-C(6)H(2)Me(3)), and IU(bipy)(NC[t-Bu]Mes)(3) (3-I-bipy) are reported. X-ray crystallography studies indicate that bipy coordinates as a radical anion in 1-(bipy)(2) and 2-bipy, and as a neutral ligand in 3-I-bipy. In 3-(bipy)(2), one of the bipy ligands is best viewed as a radical anion, the other as a neutral ligand. The electronic structure assignments are supported by NMR spectroscopy studies of exchange experiments with 4,4'-dimethyl-2,2'-bipyridyl and also by optical spectroscopy. In all complexes, uranium was assigned a +4 formal oxidation state.
Zhou, Jian; Xu, Hong; Wan, Guo-Hui; Duan, Chun-Feng; Cui, Hua
2004-10-08
The effect of 36 aromatic compounds on the luminol-dimethylsulfoxide-OH(-) chemiluminescence (CL) was systematically studied. It was found that dihydroxybenzenes, and ortho- and para-substituted aminophenols and phenylenediamines inhibited the CL and phenols with three or more than three hydroxyls except phloroglucin tended to enhance the CL. The CL inhibition and enhancement was proposed to be dependent on whether superoxide anion radical (O(2)(-)) was competitively consumed by compounds in the CL system. Trihydroxybenzenes were capable of generating superoxide anion radical, leading to the CL enhancement, whereas dihydroxybenzenes were superoxide anion radical scavenger, causing the CL inhibition. Based on the inhibited CL, a novel method for the simultaneous determination of p-phenylenediamine, o-phenylenediamine, p-aminophenol, o-aminophenol, resorcinol and hydroquinone by high-performance liquid chromatography coupled with chemiluminescence detection was developed. The method has been successfully applied to determine intermediates in oxidative hair dyes and wastewater of shampooing after hair dyed.
Isolation and reversible dimerization of a selenium-selenium three-electron σ-bond.
Zhang, Senwang; Wang, Xingyong; Su, Yuanting; Qiu, Yunfan; Zhang, Zaichao; Wang, Xinping
2014-06-11
Three-electron σ-bonding that was proposed by Linus Pauling in 1931 has been recognized as important in intermediates encountered in many areas. A number of three-electron bonding systems have been spectroscopically investigated in the gas phase, solution and solid matrix. However, X-ray diffraction studies have only been possible on simple noble gas dimer Xe∴Xe and cyclic framework-constrained N∴N radical cations. Here, we show that a diselena species modified with a naphthalene scaffold can undergo one-electron oxidation using a large and weakly coordinating anion, to afford a room-temperature-stable radical cation containing a Se∴Se three-electron σ-bond. When a small anion is used, a reversible dimerization with phase and marked colour changes is observed: radical cation in solution (blue) but diamagnetic dimer in the solid state (brown). These findings suggest that more examples of three-electron σ-bonds may be stabilized and isolated by using naphthalene scaffolds together with large and weakly coordinating anions.
One-electron redox processes in a cyclic selenide and a selenoxide: a pulse radiolysis study.
Singh, Beena G; Thomas, Elizabeth; Kumakura, Fumio; Dedachi, Kenichi; Iwaoka, Michio; Priyadarsini, K Indira
2010-08-19
One-electron redox reactions of cyclic selenium compounds, DL-trans-3,4-dihydroxy-1-selenolane (DHS(red)), and DL-trans-3,4-dihydroxy-1-selenolane oxide (DHS(ox)) were carried out in aqueous solutions using nanosecond pulse radiolysis, and the resultant transients were detected by absorption spectroscopy. Both *OH radical and specific one-electron oxidant, Br(2)(*-) radical reacted with DHS(red) to form similar transients absorbing at 480 nm, which has been identified as a dimer radical cation (DHS(red))(2)(*+). Secondary electron transfer reactions of the (DHS(red))(2)(*+) were studied with 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS(2-)) and superoxide (O(2)(*-)) radicals. The bimolecular rate constants for the electron transfer reaction between (DHS(red))(2)(*+) with ABTS(2-) was determined as 2.4 +/- 0.4 x 10(9) M(-1) s(-1). From this reaction, the yield of (DHS(red))(2)(*+) formed on reaction with *OH radical was estimated in the presence of varying phosphate concentrations. (DHS(red))(2)(*+) reacted with O(2)(*-) radical with a bimolecular rate constant of 2.7 +/- 0.1 x 10(9) M(-1) s(-1) at pH 7. From the same reaction, the positive charge on (DHS(red))(2)(*+) was confirmed by the kinetic salt effect. HPLC analysis of the products formed in the reaction of (DHS(red))(2)(*+) with O(2)(*-) radicals showed formation of the selenoxide, DHS(ox). In order to know if a similar mechanism operated during the reduction of DHS(ox), its reactions with e(aq)(-) were studied at pH 7. The rate constant for this reaction was determined as 5.6 +/- 0.9 x 10(9) M(-1) s(-1), and no transient absorption could be observed in the wavelength region from 280 to 700 nm. It is proposed that the radical anion (DHS(ox))(*-) formed by a one-electron reduction would get protonated to form a hydroxyl radical adduct, which in presence of proton donors, would undergo dehydration to form DHS(*+). Evidence for this mechanism was obtained by converting DHS(*+) to (DHS(red))(2)(*+) with the addition of DHS(red) to the same system. Quantum chemical calculations provided supporting evidence for some of the redox reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ponomarenko, N. S.; Poluektov, O. G.; Bylina, E. J.
High-field electron paramagnetic resonance (HF EPR) has been employed to investigate the primary electron donor electronic structure of Blastochloris viridis heterodimer mutant reaction centers (RCs). In these mutants the amino acid substitution His(M200)Leu or His(L173)Leu eliminates a ligand to the primary electron donor, resulting in the loss of a magnesium in one of the constituent bacteriochlorophylls (BChl). Thus, the native BChl/BChl homodimer primary donor is converted into a BChl/bacteriopheophytin (BPhe) heterodimer. The heterodimer primary donor radical in chemically oxidized RCs exhibits a broadened EPR line indicating a highly asymmetric distribution of the unpaired electron over both dimer constituents. Observed tripletmore » state EPR signals confirm localization of the excitation on the BChl half of the heterodimer primary donor. Theoretical simulation of the triplet EPR lineshapes clearly shows that, in the case of mutants, triplet states are formed by an intersystem crossing mechanism in contrast to the radical pair mechanism in wild type RCs. Photooxidation of the mutant RCs results in formation of a BPhe anion radical within the heterodimer pair. The accumulation of an intradimer BPhe anion is caused by the substantial loss of interaction between constituents of the heterodimer primary donor along with an increase in the reduction potential of the heterodimer primary donor D/D{sup +} couple. This allows oxidation of the cytochrome even at cryogenic temperatures and reduction of each constituent of the heterodimer primary donor individually. Despite a low yield of primary donor radicals, the enhancement of the semiquinone-iron pair EPR signals in these mutants indicates the presence of kinetically viable electron donors.« less
NASA Astrophysics Data System (ADS)
Singh, R.; Yadav, R. A.
2014-09-01
Raman and FTIR spectra of solid 2,4-Dithiouracil (DTU) at room temperature have been recorded. DFT calculations were carried out to compute the optimized molecular geometries, GAPT charges and fundamental vibrational frequencies along with their corresponding IR intensities, Raman activities and depolarization ratios of the Raman bands for the neutral DTU molecule and its cation (DTU+) and anion (DTU-) using the Gaussian-03 software. Addition of one electron leads to increase in the atomic charges on the sites N1 and N3 and decrease in the atomic charges on the sites S8 and S10. Due to ionization of DTU molecule, the charge at the site C6 decreases in the cationic and anionic radicals of DTU as compared to its neutral species. As a result of anionic radicalization, the C5sbnd C6 bond length increases and loses its double bond character while the C4sbnd C5 bond length decreases. In the case of the DTU+ ion the IR and Raman band corresponding to the out-of-phase coupled Nsbnd H stretching mode is strongest amongst the three species. The anionic DTU radical is found to be the most stable. The two NH out-of-plane bending modes are found to originate due to out-of-phase and in-phase coupling of the two NH bonds in the anion and cation contrary to the case of the neutral DTU molecule in which the out-of-plane bending motions of the two NH bonds are not coupled.
Singh, R; Yadav, R A
2014-09-15
Raman and FTIR spectra of solid 2,4-Dithiouracil (DTU) at room temperature have been recorded. DFT calculations were carried out to compute the optimized molecular geometries, GAPT charges and fundamental vibrational frequencies along with their corresponding IR intensities, Raman activities and depolarization ratios of the Raman bands for the neutral DTU molecule and its cation (DTU+) and anion (DTU-) using the Gaussian-03 software. Addition of one electron leads to increase in the atomic charges on the sites N1 and N3 and decrease in the atomic charges on the sites S8 and S10. Due to ionization of DTU molecule, the charge at the site C6 decreases in the cationic and anionic radicals of DTU as compared to its neutral species. As a result of anionic radicalization, the C5C6 bond length increases and loses its double bond character while the C4C5 bond length decreases. In the case of the DTU+ ion the IR and Raman band corresponding to the out-of-phase coupled NH stretching mode is strongest amongst the three species. The anionic DTU radical is found to be the most stable. The two NH out-of-plane bending modes are found to originate due to out-of-phase and in-phase coupling of the two NH bonds in the anion and cation contrary to the case of the neutral DTU molecule in which the out-of-plane bending motions of the two NH bonds are not coupled. Copyright © 2014 Elsevier B.V. All rights reserved.
Saeki, Akinori; Kozawa, Takahiro; Ohnishi, Yuko; Tagawa, Seiichi
2007-02-22
The initial decrease of solvated electrons in tetrahydrofuran (THF) upon addition of biphenyl was investigated by picosecond pulse radiolysis. Transient absorption spectra derived from the biphenyl radical anion (centered at 408 and 655 nm) and solvated electrons of THF (infrared) were successfully measured in the wavelength region from 400 to 900 nm by the extension of a femtosecond continuum probe light to near-ultraviolet using a second harmonic generation of Ti:sapphire laser and a CaF2 plate. From the analysis of kinetic traces at 1300 nm considering the overlap of primary solvated electrons and partial biphenyl radical anion, C37, which is defined by the solute concentration to reduce the initial yield of solvated electrons to 1/e, was found to be 87 +/- 3 mM. The rate constant of solvated electrons with biphenyl was determined as 5.8 +/- 0.3 x 10(10) M(-1) s(-1). We demonstrate that the kinetic traces at both 408 nm mainly due to biphenyl radical anion and 1300 nm mainly due to solvated electrons are reproduced with high accuracy and consistency by a simple kinetic analysis. Much higher concentrations of biphenyl (up to 2 M) were examined, showing further increase of the initial yield of biphenyl radical anion accompanying a fast decay component. This observation is discussed in terms of geminate ion recombination, scavenging, delayed geminate ion recombination, and direct ionization of biphenyl at high concentration.
Brennessel, William W; Ellis, John E
2014-08-01
Homoleptic 2,2'-bipyridine (bipy) metalates of iron and cobalt have been synthesized directly from the corresponding homoleptic anthracene metalates. In the iron structure, bis[([2.2.2]cryptand)potassium(I)] tris(2,2'-bipyridine)ferrate(-I) anthracene(-I), [K(C18H36N2O6)]2[Fe(C10H8N2)3](C14H10), the asymmetric unit contains one potassium complex cation in a general position, the Fe center and one and a half bipy ligands of the ferrate complex on a crystallographic twofold axis that includes the Fe atom, and one half of an anthracene radical anion whose other half is generated by a crystallographic inversion center. The cations and anions are well separated and the geometry about the Fe center is essentially octahedral. In the cobalt structure, ([2.2.2]cryptand)potassium(I) bis(2,2'-bipyridine)cobaltate(-I) anthracene hemisolvate tetrahydrofuran (THF) disolvate, [K(C18H36N2O6)][Co(C10H8N2)2]·0.5C14H10·2C4H8O, the asymmetric unit contains the cation, anion, and both cocrystallized THF solvent molecules in general positions, and one half of a cocrystallized anthracene molecule whose other half is generated by a crystallographic inversion center. The cation and anion are well separated and the ligand planes in the cobaltate anion are periplanar. Each anthracene molecule is midway between and is oriented perpendicular to a pair of symmetry-related bipy ligands such that aromatic donor-acceptor interactions may play a role in the packing arrangement. The lengths of the bonds that connect the bipy rings support the assertion that the ligands are bipy radical anions in the iron structure. However, in the case of cobalt, these lengths are between the known ranges for a bipy radical anion and a bipy dianion, and therefore no conclusion can be made from the crystallography alone. One cocrystallized THF solvent molecule in the cobalt structure was modeled as disordered over three positions with appropriate geometric and thermal restraints, which resulted in a refined component mass ratio of 0.412 (4):0.387 (3):0.201 (3).
Janhsen, B.; Daniliuc, C. G.
2017-01-01
In this paper, the application of the double radical nucleophilic aromatic substitution (SRN1) in various dihalogenated, mostly diiodinated, π-conjugated systems as a tool for qualitatively estimating their π-conjugation is described. This approach uses electron delocalisation as a measure of π-conjugation. Electron injection into the π-system is achieved via reaction of an intermediate aryl radical, itself generated from a dihalogenated π-system via SET-reduction of the C–I bond and subsequent reaction with a thiolate anion. The generated arene radical anion can then further react with the second aryl-halogen moiety within the π-system via an intramolecular electron transfer process. The efficiency of this intramolecular electron transfer is related to the π-conjugation of the radical anion. If the π-conjugation within the aromatic unit is weak, the arene radical anion reacts via an intermolecular ET with the starting dihalide. The intramolecular ET process delivers a product of a double SRN1 substitution whereas the intermolecular ET pathway provides a product of a mono- SRN1 substitution. By simple product analysis of mono- versus double substitution, π-conjugation can be qualitatively evaluated. This mechanistic tool is applied to various dihalogenated π-conjugated systems and the results are discussed within the context of π-conjugation. The conjugation mode within the π-system and the length of the aromatic system are varied, and the effect of relative positioning of the two halides within small π-systems is also addressed. PMID:28580099
Samhan-Arias, Alejandro K; Fortalezas, Sofia; Cordas, Cristina M; Moura, Isabel; Moura, José J G; Gutierrez-Merino, Carlos
2018-05-01
In this work, we measured the effect of cytochrome c on the NADH-dependent superoxide anion production by synaptic plasma membrane vesicles from rat brain. In these membranes, the cytochrome c stimulated NADH-dependent superoxide anion production was inhibited by antibodies against cytochrome b 5 reductase linking the production to this enzyme. Measurement of the superoxide anion radical generated by purified recombinant soluble and membrane cytochrome b 5 reductase corroborates the production of the radical by different enzyme isoforms. In the presence of cytochrome c, a burst of superoxide anion as well as the reduction of cytochrome c by cytochrome b 5 reductase was measured. Complex formation between both proteins suggests that cytochrome b 5 reductase is one of the major partners of cytochrome c upon its release from mitochondria to the cytosol during apoptosis. Superoxide anion production and cytochrome c reduction are the consequences of the stimulated NADH consumption by cytochrome b 5 reductase upon complex formation with cytochrome c and suggest a major role of this enzyme as an anti-apoptotic protein during cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Electronic and rovibrational quantum chemical analysis of C3P-: the next interstellar anion?
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan C.; Lukemire, Joseph A.
2015-11-01
C3P- is analogous to the known interstellar anion C3N- with phosphorus replacing nitrogen in a simple step down the periodic table. In this work, it is shown that C3P- is likely to possess a dipole-bound excited state. It has been hypothesized and observationally supported that dipole-bound excited states are an avenue through which anions could be formed in the interstellar medium. Additionally, C3P- has a valence excited state that may lead to further stabilization of this molecule, and C3P- has a larger dipole moment than neutral C3P (˜6 D versus ˜4 D). As such, C3P- is probably a more detectable astromolecule than even its corresponding neutral radical. Highly accurate quantum chemical quartic force fields are also applied to C3P- and its singly 13C substituted isotopologues in order to provide structures, vibrational frequencies, and spectroscopic constants that may aid in its detection.
Sugahara, Shintaro; Ueda, Yuto; Fukuhara, Kumiko; Kamamuta, Yuki; Matsuda, Yasushi; Murata, Tatsuro; Kuroda, Yasuhiro; Kabata, Kiyotaka; Ono, Masateru; Igoshi, Keiji; Yasuda, Shin
2015-11-01
Yacon (Smallanthus sonchifolius), a native Andean plant, has been cultivated as a crop and locally used as a traditional folk medicine for the people suffering from diabetes and digestive/renal disorders. However, the medicinal properties of this plant and its processed foods have not been completely established. This study investigates the potent antioxidative effects of herbal tea leaves from yacon in different free radical models and a ferric reducing model. A hot-water extract exhibited the highest yield of total polyphenol and scavenging effect on 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical among four extracts prepared with hot water, methanol, ethanol, and ethylacetate. In addition, a higher reducing power of the hot-water extract was similarly demonstrated among these extracts. Varying concentrations of the hot-water extract resulted in different scavenging activities in four synthetic free radical models: DPPH radical (EC50 28.1 μg/mL), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (EC50 23.7 μg/mL), galvinoxyl radical (EC50 3.06 μg/mL), and chlorpromazine cation radical (EC50 475 μg/mL). The yacon tea-leaf extract further demonstrated superoxide anion (O2(-)) radical scavenging effects in the phenazine methosulfate-NADH-nitroblue tetrazolium (EC50 64.5 μg/mL) and xanthine oxidase assay systems (EC50 20.7 μg/mL). Subsequently, incubating human neutrophilic cells in the presence of the tea-leaf extract could suppress the cellular O2(-) radical generation (IC50 65.7 μg/mL) in a phorbol 12-myristate 13-acetate-activated cell model. These results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. Yacon has been considered to be a potent alternative food source for patients who require a dietary cure in regional area, while the leaf part has been provided and consumed as an herbal tea in local markets. We demonstrated here potent antioxidative effects of the tea leaves from yacon in different free radical assays, reducing power assay, and cellular superoxide anion radical generation assay. Results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. © 2015 Institute of Food Technologists®
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loeff, I.; Treinin, A.; Linschitz, H.
1992-06-25
Charge-transfer (CT) and energy-transfer (NT) interactions of simple anions with organic triplets are reviewed and discussed in connection with new quenching rate constant (K{sub q}) and radical yield measurements for SO{sub 3}{sup 2{minus}} and No{sub 2}{sup {minus}}. In the latter case both processes may occur at high organic triplet energies. Reorganization energies for one-electron oxidations are obtained for several anions, using data on charge-transfer-to-solvent (CTTS) spectra and photoelectron emission thresholds, which like the kinetic parameters of Marcus-Hush theory, also reflect Franck-Condon strains. The results, combined with thermodynamic free energies, give vertical redox potentials which correlate better than do equilibrium potentialsmore » with quenching rates. The theoretical basis for correlation between k{sub q} and Hv{sub CTTS} is discussed in the framework of Marcus rate theory. Assigning the total reorganization energy in the CT quenching reaction to the small anion component of the D-A pair gives reasonable agreement with data on quenching of dye triplets but too slow rates for aryl carbonyl triplets where exciplex formation may possibly occur. The optical reorganization energy for NO{sub 2}{sup {minus}} leads to values of the thermal self-exchange rate agreeing with those computed from the Marcus-Hush cross-relations, which also neglect bonding effects. The mechanism of NO{sub 2}{sup {minus}} interaction with triplets is discussed in detail, including indirect kinetic evidence for quenching of a short-lived exciplex by NO{sub 2}{sup {minus}} without radical formation. The possibility of reduction by triplet NO{sub 2}{sup {minus}} formed by initial NT from the organic triplet is also considered. Finally, a scheme is presented involving an equilibrium between CT and NT states and relating the free energy difference between these states to radical yields. 54 refs., 8 figs., 3 tabs.« less
1987-07-01
electrons and a homologous series of diaza-aromatics (pyrazine, quinoxaline and phenazine ) in ammonia from 25 to 1500 C at vapor pressures of 0 to...and the anion radicals, and the dianion in the case of phenazine , were stable on the cyclic voltammetric time scale. The purpose of the current...found for the uncocpli catec second electron transfers of phenazine and quinoxaline is manifested in the oin-ammetry of :. "f a line Irawn between the
Metal bacteriochlorins which act as dual singlet oxygen and superoxide generators.
Fukuzumi, Shunichi; Ohkubo, Kei; Zheng, Xiang; Chen, Yihui; Pandey, Ravindra K; Zhan, Riqiang; Kadish, Karl M
2008-03-06
A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).
Yim, Taeeun; Han, Young-Kyu
2017-09-27
Tris(trimethylsilyl) phosphite (TMSP) has received considerable attention as a functional additive for various cathode materials in lithium-ion batteries, but the effect of TMSP on the surface stability of a graphite anode has not been studied. Herein, we demonstrate that TMSP serves as an effective solid electrolyte interphase (SEI)-forming additive for graphite anodes in lithium-ion batteries (LIBs). TMSP forms SEI layers by chemical reactions between TMSP and a reductively decomposed ethylene carbonate (EC) anion, which is strikingly different from the widely known mechanism of the SEI-forming additives. TMSP is stable under cathodic polarization, but it reacts chemically with radical anion intermediates derived from the electrochemical reduction of the carbonate solvents to generate a stable SEI layer. These TMSP-derived SEI layers improve the interfacial stability of the graphite anode, resulting in a retention of 96.8% and a high Coulombic efficiency of 95.2%. We suggest the use of TMSP as a functional additive that effectively stabilizes solid electrolyte interfaces of both the anode and cathode in lithium-ion batteries.
Theoretical Assessment of Norfloxacin Redox and Photochemistry
NASA Astrophysics Data System (ADS)
Musa, Klefah A. K.; Eriksson, Leif A.
2009-09-01
Norfloxacin, 1-ethyl-6-fluoro-1,4-dihydo-4-oxo-7-(1-piperazinyl)-3-quinolinecarboxylic acid, NOR, is an antibiotic drug from the fluoroquinoline family. The different protonation states of this drug formed throughout the pH range is studied by means of density functional theory (DFT) and the spectra of the NOR species computed using time-dependent DFT. Details about their photochemistry are obtained from investigating the highest occupied and lowest unoccupied molecular orbitals. The predominant species under physiological pH, the zwitterion, is the most photoliable one, capable of producing singlet oxygen or/and superoxide radical anions from its triplet state. In addition, the main photodegradation step, defluorination, occurs more easily from this species compared with the other forms. The defluorination from the excited triplet state requires passing a barrier of 16.3 kcal/mol in the case of the zwitterion. The neutral and cationic forms display higher transition barriers, whereas the reaction path of defluorination is completely endothermic for the anionic species. The theoretical results obtained herein are in line with previous experimental data.
Coronado, Eugenio; Curreli, Simona; Giménez-Saiz, Carlos; Gómez-García, Carlos J; Alberola, Antonio
2006-12-25
The synthesis, crystal structure, and physical characterization of five new radical salts formed by the organic donor bis(ethylenediseleno)tetrathiafulvalene (BEST) and the paramagnetic tris(oxalato)metalate anions [M(C2O4)3]3- (M = FeIII and CrIII) are reported. The salts isolated are (BEST)4[M(C2O4)3].PhCOOH.H2O with MIII = Cr (1) or Fe (2) (crystal data: 1, triclinic, space group P(-)1 with a = 14.0999(4) A, b = 15.3464(4) A, c =19.5000(4) A, alpha = 76.711(5) degrees, beta = 71.688(5) degrees, gamma = 88.545(5) degrees, V = 3893.5(2) A3, and Z = 2; 2, triclinic, space group P(-)1 with a = 14.0326(3) A, b =15.1981(4) A, c =19.4106(4) A, alpha = 76.739(5) degrees, beta = 71.938(5) degrees, gamma = 88.845(5) degrees, V = 3824.9(2) A3, and Z = 2), (BEST)4[M(C2O4)3].1.5H2O with MIII = Cr (3) or Fe (4) (crystal data: 3, monoclinic, space group C2/m with a = 33.7480(10) A, b =12.3151(7) A, c = 8.8218(5) A, beta = 99.674(5) degrees, V = 3614.3(3) A3, and Z = 2; 4, monoclinic, space group C2/m with a = 33.659(6) A, b =12.248(2) A, c = 8.759(2) A, beta = 99.74(3) degrees, V = 3558.9(12) A3, and Z = 2), and (BEST)9[Fe(C2O4)3]2.7H2O (5) (crystal data: triclinic, space group P(-)1 with a =12.6993(3) A, b =18.7564(4) A, c = 18.7675(4) A, alpha = 75.649(5) degrees, beta = 107.178(5) degrees, gamma = 79.527(5) degrees, V = 3977.5(3) A3, and Z = 1). The structures of all these salts consist of alternating layers of the organic donors and tris(oxalato)metalate anions. In 1 and 2 the anionic layers contain also benzoic acid molecules H-bonded to the terminal oxygen atoms of the anions. In all salts the organic layers adopt beta-type packings. Along the parallel stacks the donors form dimers in 3 and 4, trimers in 5, and tetramers in 1 and 2. All the compounds are paramagnetic semiconductors with high room-temperature conductivities and magnetic susceptibilities dominated by the Fe- or Cr-containing anions.
p -Carborane Conjugation in Radical Anions of Cage–Cage and Cage–Phenyl Compounds
Cook, Andrew R.; Valášek, Michal; Funston, Alison M.; ...
2017-12-14
Optical electron transfer (intervalence) transitions in radical anions of p-carborane oligomers attest to delocalization of electrons between two p-carboranes cages or a p-carborane and a phenyl ring. Oligomers of the 12 vertex p-carborane (C 2B 10H 12) cage, [12], with up to 3 cages were synthesized, as well as p-carboranes with one or two trimethylsilylphenyl groups, [6], attached to the carbon termini. Pulse radiolysis in tetrahydrofuran produced radical anions, determined redox potentials by equilibria and measured their absorption spectra. Density functional theory computations provided critical insight into the optical electron transfer bands and electron delocalization. One case, [6–12–6], showed bothmore » Robin–Day class II and III transitions. The class III transition resulted from a fully delocalized excess electron across both benzene rings and the central p-carborane, with an electronic coupling H ab = 0.46 eV between the cage and either benzene. This unprecedented finding shows that p-carborane bridges are not simply electron withdrawing insulators. In other cases with more than ~1/2 of the excess electron localized on a [12], large cage distortions were triggered, producing a partially open cage with a nido-like structure. This resulted in class II transitions with similar Hab but massive reorganization energies. The computations also predicted delocalization in radical cations, but complexities in cation formation allowed only tentative experimental support of the predictions. Thus, the results with anions provide clear evidence for carborane conjugation that might be exploited in molecular wire materials, which are classically composed of all π-conjugated molecules.« less
p -Carborane Conjugation in Radical Anions of Cage–Cage and Cage–Phenyl Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Andrew R.; Valášek, Michal; Funston, Alison M.
Optical electron transfer (intervalence) transitions in radical anions of p-carborane oligomers attest to delocalization of electrons between two p-carboranes cages or a p-carborane and a phenyl ring. Oligomers of the 12 vertex p-carborane (C 2B 10H 12) cage, [12], with up to 3 cages were synthesized, as well as p-carboranes with one or two trimethylsilylphenyl groups, [6], attached to the carbon termini. Pulse radiolysis in tetrahydrofuran produced radical anions, determined redox potentials by equilibria and measured their absorption spectra. Density functional theory computations provided critical insight into the optical electron transfer bands and electron delocalization. One case, [6–12–6], showed bothmore » Robin–Day class II and III transitions. The class III transition resulted from a fully delocalized excess electron across both benzene rings and the central p-carborane, with an electronic coupling H ab = 0.46 eV between the cage and either benzene. This unprecedented finding shows that p-carborane bridges are not simply electron withdrawing insulators. In other cases with more than ~1/2 of the excess electron localized on a [12], large cage distortions were triggered, producing a partially open cage with a nido-like structure. This resulted in class II transitions with similar Hab but massive reorganization energies. The computations also predicted delocalization in radical cations, but complexities in cation formation allowed only tentative experimental support of the predictions. Thus, the results with anions provide clear evidence for carborane conjugation that might be exploited in molecular wire materials, which are classically composed of all π-conjugated molecules.« less
Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M
2011-12-20
The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.
Kruczyński, T; Henke, F; Neumaier, M; Bowen, K H; Schnöckel, H
2016-02-01
It caused a sensation eight years ago, when the first room temperature stable molecular compound with a Mg-Mg bond (LMgMgL, L = chelating ligand) containing magnesium in the oxidation state +1 was prepared. Here, we report the preparation of a [Mg 16 Cp*8Br 4 K] - cluster anion (Cp* = pentamethylcyclopentadiene) with 27 Mg-Mg bonds. It has been obtained through the reaction of KCp* with a metastable solution of MgBr in toluene. A highly-resolved Fourier transform mass spectrum (FT-MS) of this cluster anion, brought into vacuum by electrospraying its solution in THF, provides the title cluster's stoichiometry. This Mg 16 cluster together with experiments on the metastable solution of MgBr show that: during the formation process of GRs (Grignard reagents) which are involved in most of sophisticated syntheses of organic products, not the highly reactive MgBr radical as often presumed, but instead the metalloid Mg 16 Cp*8Br 4 cluster anion and its related cousins that are the operative intermediates along the pathway from Mg metal to GRs ( e.g. Cp*MgBr).
Inhibition of Radiolytic Molecular Hydrogen Formation by Quenching of Excited State Water
Horne, Gregory P.; Pimblott, Simon M.; LaVerne, Jay A.
2017-05-11
Comparison of experimental measurements of the yield of molecular hydrogen produced in the gamma radiolysis of water and aqueous nitrate solutions with predictions of a Monte Carlo track chemistry model shows that the nitrate anion scavenging of the hydrated electron, its precursor, and hydrogen atom cannot account for the observed decrease in the yield at high nitrate anion concentrations. Inclusion of the quenching of excited states of water (formed by either direct excitation or reaction of the water radical cation with the precursor to the hydrated electron) by the nitrate anion into the reaction scheme provides excellent agreement between themore » stochastic calculations and experiment demonstrating the existence of this short-lived species and its importance in water radiolysis. Energy transfer from the excited states of water to the nitrate anion producing an excited state provides an additional pathway for the production of nitrogen containing products not accounted for in traditional radiation chemistry scenarios. Such reactions are of central importance in predicting the behavior of liquors common in the reprocessing of spent nuclear fuel and the storage of highly radioactive liquid waste prior to vitrification.« less
Anti-oxidative and photo-protective effects of coumarins isolated from Fraxinus chinensis.
Lee, Bum-Chun; Lee, So Yong; Lee, Hwa Jeong; Sim, Gwan-Sub; Kim, Jin-Hui; Kim, Jin-Hwa; Cho, Young-Ho; Lee, Dong-Hwan; Pyo, Hyeong-Bae; Choe, Tae-Boo; Moon, Dong Cheul; Yun, Yeo Pyo; Hong, Jin Tae
2007-10-01
Free radicals and reactive oxygen species (ROS), which are generated by UV irradiation, may cause serious injury to skin cell membranes, DNA and functional proteins. In addition, these agents stimulate the expressions of matrix metalloproteinases (MMPs), which can degrade most components of the extracellular matrix (ECM), including collagen. In order to develop new anti-photoaging agents, five major components from the extract of Fraxinus chinensis extract (FCE) were identified. Two of the major components of FCE were found to be esculin (11.2%) and esculetin (1.9%). FCE (IC50: 50.0 microg/mL 1, 1-diphenyl-2-picrylhydrazyl (DPPH); 19.8 microg/mL, superoxide anion radical) and esculetin (IC50: 2.1 microg/mL DPPH; 0.6 microg/mL, superoxide anion radical) showed strong antioxidative activities. Of the compounds tested, esculetin showed the strongest scavenging activity against DPPH radicals, followed by superoxide anions from the xanthine/xanthine oxidase system. The intracellular ROS scavenging activity showed that oxidation of 5-(6-)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) was effectively inhibited by esculetin, with potent free radical scavenging activity was also shown in UVB-irradiated human dermal fibroblasts (HDFs). Moreover, treatment of UVA-irradiated HDFs with esculetin resulted in dose-dependent decreases in the expression levels of MMP-1 mRNA and protein. From these results, FCE and one of its components, esculetin, were predicted to be potentially useful as ingredients in cosmetics for protecting against photoaging.
Li, Hui
2017-01-01
Microbial transformation can strengthen the antioxidant and antitumor activities of polyphenols. Polyphenols contents, antioxidant and antitumor activities of pine polyphenols and its biotransformation extracts by Aspergillus niger, Aspergillus oryzae, Aspergillus carbonarius, Aspergillus candidus, Trichodermas viride, Mucor wutungkiao and Rhizopus sp were studied. Significant differences were noted in antioxidant and antitumor activities. The highest antioxidant activities in Trolox equivalent antioxidant capacity (TEAC), DPPH radical scavenging activity, superoxide anion radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay and antitumor activity against LoVo cells were biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Mucor wutungkiao (BMW), biotransformation extract of Aspergillus carbonarius (BAC), biotransformation extract of Aspergillus niger (BAN), biotransformation extract of Aspergillus oryzae (BAO) and BMW, respectively. Correlation analysis found that antioxidant and antitumor activities were associated with polyphenols contents and types of free radicals and tumors. A. carbonarius can make polyphenol oxidation, hydroxylation and methylation, and form new polyphenols. In conclusion, A. carbonarius, A. niger and M. wutungkiao are valuable microorganisms used for polyphenols biotransformation and enhance the antioxidant and antitumor activities of polyphenols. PMID:28560092
NASA Astrophysics Data System (ADS)
Abedi, M.; Farrokhpour, H.; Farnia, S.; Chermahini, A. Najafi
2015-08-01
In this work, a systematic theoretical study was performed on the dissociation, absorption and ionization of several important sulfur oxoanions (S2On2- (n = 2, 3, 4, 6, 7 and 8)). ΔEelec (thermal corrected energy), ΔH° and ΔG° of the dissociation reactions of the oxoanions to their radical monoanions were calculated using combined computational levels of theories such as Gaussian-3 (G3) and a new version of complete basis set method (CBS-4M) in different environments including gas phase, microhydrated in gas phase and different solvents. Calculations showed S2O72- is the most stable anion against the dissociation to its radical monoanions (SO4-rad + SO3-rad). It was also found that S2O42- has more tendency to dissociate to its radical anions (SO2-rad + SO2-rad) compared to the other anions. The absorption spectra of the anions were also calculated using the time-dependent density functional theory (TD-DFT) employing M062X functional. The effect of microhydration and electrostatic field of solvent on the different aspects (intensity, energy shift and assignment) of the absorption spectra of these anions were also discussed. It was observed that both hydrogen bonding and electrostatic effect of water increases the intensity of the absorption spectrum compared to the gas phase. Effect of microhydration in shifting the spectra to the shorter wavelength is considerably higher than the effect of electrostatic field of water. Finally, several gas phase ionization energies of the anions were calculated using the symmetry-adapted cluster-configuration interaction methodology (SAC-CI) and found that the first electron detachment energies of S2O22-, S2O32- and S2O42- are negative. Natural bonding orbital (NBO) calculations were also performed to assign the electron detachment bands of the anions.
Glutarimide alkaloids and a terpenoid benzoquinone from Cordia globifera.
Parks, Joshua; Gyeltshen, Thinley; Prachyawarakorn, Vilailak; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat
2010-05-28
Three new compounds, a meroterpene (2) having a cyclopropane moiety named globiferane and glutarimide alkaloids named cordiarimides A (3) and B (4), were isolated from the roots of Cordia globifera. Compounds 2-4 exhibited weak cytotoxic activity. Cordiarimide B (4) exhibited radical scavenging activity, as it inhibited superoxide anion radical formation in the xanthine/xanthine oxidase (XXO) assay, and also suppressed superoxide anion generation in differentiated HL-60 human promyelocytic leukemia cells when induced by 12-O-tetradecanoylphorbol-13-acetate (TPA). This is the first report on the presence of glutarimide alkaloids in the genus Cordia.
Investigation on the photoreactions of nitrate and nitrite ions with selected azaarenes in water
Beitz; Bechmann; Mitzner
1999-01-01
The photoreactions of selected azaarenes with nitrate and nitrite ions were investigated under irradiation at lambda = 313 nm. The excitation of both anions leads to several photochemical reactions forming mainly hydroxyl radicals and nitrogen oxides. The purification capability of natural waters i.e. the oxidation of inorganic and organic substances results from the formation of hydroxyl radicals. Nitrated isomers of azaarenes were found among the main products of the investigated photoreactions. The nitrogen oxides were responsible for the production of nitrated derivatives which possess a high toxic potential. Their formation was explained by the parallel occurance of two mechanism, a molecular and a radical one. The molecular mechanism became more important with increasing ionisation potentials of the azaarenes. The spectrum of oxidized products corresponded to the one got in the photoreactions of azaarenes with hydrogen peroxide. The formation of several oxidation and nitration products of the pyridine ring with its low electron density was explained by the reaction of excited states of azaarenes. The photoreactions with nitrite ions only led to the formation of oxidized and nitrated products. Nitroso products were not formed. The reactivity of nitrogen monoxide is too low for its reaction with the azaarenes.
Sirota, T V
2015-01-01
An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.
Wang, Yingfei; Deng, Wen; Wang, Fengliang; Su, Yuehan; Feng, Yiping; Chen, Ping; Ma, Jingshuai; Su, Haiying; Yao, Kun; Liu, Yang; Lv, Wenying; Liu, Guoguang
2017-09-20
The aim of this study was to investigate the photolysis mechanism of ketoprofen (KET) under simulated sunlight. The results demonstrated that the photolysis of KET aligned well with pseudo first-order kinetics. Radical scavenging experiments and dissolved oxygen experiments revealed that the superoxide anion radical (O 2 ˙ - ) played a primary role in the photolytic process in pure water. Bicarbonate slightly increased the photodegradation of KET through generating carbonate radicals, while DOM inhibited the photolysis via both attenuating light and competing radicals. Moreover, Zhujiang river water inhibited KET phototransformation. Potential KET degradation pathways were proposed based on the identification of products using LC/MS/MS and GC/MS techniques. The theoretical prediction of reaction sites was derived from Frontier Electron Densities (FEDs), which primarily involved the KET decarboxylation reaction. The ecotoxicity of the treated solutions was evaluated by employing Daphnia magna and V. fischeri as biological indicators. Ecotoxicity was also hypothetically predicted through the "ecological structure-activity relationship" (ECOSAR) program, which revealed that toxic products might be generated during the photolysis process.
Antioxidant capacity of flavanols and gallate esters: pulse radiolysis studies.
Bors, W; Michel, C
1999-12-01
Reactivities of several proanthocyanidins (monomers of condensed tannins) and gallate esters (representing hydrolyzable tannins) with hydroxyl radicals, azide radicals, and superoxide anions were investigated using pulse radiolysis combined with kinetic spectroscopy. We determined the scavenging rate constants and the decay kinetics of the aroxyl radicals both at the wavelength of the semiquinone absorption (275 nm) and the absorption band of the gallate ester ketyl radical (400-420 nm). For most compounds second-order decay kinetics were observed, which reflect disproportionation of the semiquinones. In the case of the oligomeric hydrolysable tannins, pentagalloyl glucose and tannic acid, the decay kinetics were more complex involving sequential first-order and second-order reactions, which could only be resolved by kinetic modeling. A correlation of the reaction rates with hydroxyl radicals (k*OH) with the number of adjacent aromatic hydroxyl groups (i.e., representing catechol and/or pyrogallol structures) was obtained for both condensed and hydrolyzable tannins. Similar correlation for the reactions with azide radicals and superoxide anions are less obvious, but exist as well. We consider proanthocyanidins superior radical scavenging agents as compared with the monomeric flavonols and flavones and propose that these substances rather than the flavonoids proper represent the antioxidative principle in red wine and green tea.
NASA Astrophysics Data System (ADS)
Kitajima, Kensei; Majima, Takuya; Nishio, Tatsuya; Oonishi, Yoshiki; Mizutani, Shiori; Kohno, Jun-ya; Saito, Manabu; Tsuchida, Hidetsugu
2018-06-01
We have investigated the negative and positive secondary ions emitted from ethanol droplets by 4.0-MeV C3+ impact to reveal the characteristic features of the reaction processes induced by fast heavy ions at the liquid ethanol surface. Analysis of the secondary ions was performed by time-of-flight mass spectrometry for microdroplet targets in a high vacuum environment. Fragment ions, deprotonated cluster ions, and trace amounts of the reaction product ions are observed in the negative secondary ions. The main fragment anions are C2HmO- (m = 1, 3, and 5) and C2H- generated by loss of hydrogen and oxygen atoms. The reaction product anions include deprotonated glycols, larger alcohols, and their dehydrated and dehydrogenated forms generated by secondary reactions between fragments and radicals. Furthermore, C3Hm- (m = 0-2) and C4Hm- (m = 0 and 1) are observed, which could be produced through a plasma state generated in the heavy ion track. Deprotonated ethanol cluster ions, [(EtOH)n - H]-, are observed up to about n = 25. [(EtOH)n - H]- have smaller kinetic energies than the protonated cluster ions (EtOH)nH+. This probably represents the effect of the positive Coulomb potential transiently formed in the ion track. We also discuss the size distributions and structures of the water- and CH2OH-radical-attached ethanol cluster ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bazante, Alexandre P., E-mail: abazante@chem.ufl.edu; Bartlett, Rodney J.; Davidson, E. R.
The benzene radical anion is studied with ab initio coupled-cluster theory in large basis sets. Unlike the usual assumption, we find that, at the level of theory investigated, the minimum energy geometry is non-planar with tetrahedral distortion at two opposite carbon atoms. The anion is well known for its instability to auto-ionization which poses computational challenges to determine its properties. Despite the importance of the benzene radical anion, the considerable attention it has received in the literature so far has failed to address the details of its structure and shape-resonance character at a high level of theory. Here, we examinemore » the dynamic Jahn-Teller effect and its impact on the anion potential energy surface. We find that a minimum energy geometry of C{sub 2} symmetry is located below one D{sub 2h} stationary point on a C{sub 2h} pseudo-rotation surface. The applicability of standard wave function methods to an unbound anion is assessed with the stabilization method. The isotropic hyperfine splitting constants (A{sub iso}) are computed and compared to data obtained from experimental electron spin resonance experiments. Satisfactory agreement with experiment is obtained with coupled-cluster theory and large basis sets such as cc-pCVQZ.« less
Wu, Jishan; Feng, Jiaqi; Gopalakrishna, Tullimilli Y; Phan, Hoa
2018-04-19
We report a star-shaped hexaquinocyclohexane molecule 4c, which turns out to be a closed-shell extended [6]radialene with a twisted-boat conformation according to X-ray crystallographic analysis. It was formed by an unusually slow decay of its in situ generated open-shell valence isomer, the hexa-radicaloid 4o, with a half-life time of about 156 min at room temperature. Reaction progress kinetic analysis revealed a large energy barrier of about 95.5 ± 4.3 kJ/mol at room temperature from the hexa-radical form 4o to the contorted [6]radialene form 4c, because the transformation need overcome large steric repulsion between the neighbouring phenoxyl units. Compound 4c can be chemically reduced to radical anion and dianion, and the dianion is actually a diradical dianion, with a calculated diradical character of 71.9%. This study demonstrated the unique chemical bonding nature of contorted quinoidal π-conjugated molecules and a very unusual valence isomerization process. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamauchi, Naoki; Takamura, Kohtaro; Shigyo, Masayoshi; Migita, Catharina Taiko; Masuda, Yukihiro; Maekawa, Tetsuya
2014-08-01
The effect of electrostatic atomized water particles (EAWP) on degreening of green sour citrus fruit during storage was determined. Superoxide anion and hydroxyl radicals included in EAWP were present on the surface of the fruit peel after the treatment. Hydrogen peroxide was formed from EAWP in an aqueous solution, which could indicate that a hydroxyl radical of EAWP turns to hydrogen peroxide in the fruit flavedo as well as in the aqueous solution. EAWP treatment effectively suppressed the degreening of green yuzu and Nagato-yuzukichi fruits during storage at 20°C. The enhancement in K+ ion leakage of both EAWP-treated fruits reduced in comparison with the control. In spite of EAWP treatment, total peroxide level in both fruits showed almost no changes during storage, suggesting that hydrogen peroxide formed by EAWP treatment could stimulate the activation of hydrogen peroxide scavenging system and control degreening of these fruits during storage. Copyright © 2014 Elsevier Ltd. All rights reserved.
Facile doping of anionic narrow-band-gap conjugated polyelectrolytes during dialysis.
Mai, Cheng-Kang; Zhou, Huiqiong; Zhang, Yuan; Henson, Zachary B; Nguyen, Thuc-Quyen; Heeger, Alan J; Bazan, Guillermo C
2013-12-02
PCPDTBTSO3 K, an anionic, narrow-band-gap conjugated polyelectrolyte, was found to be doped after dialysis. The proposed doping mechanism involves protonation of the polymer backbone, followed by electron transfer from a neutral chain, to generate radical cations, which are stabilized by the pendant sulfonate anions. Formation of polarons is supported by spectroscopy and electrical-conductivity measurements. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photochemical reduction of cytochrome c by a 1,4,5,8-naphthalenediimide radical anion.
Campos, Ivana B; Nantes, Iseli L; Politi, Mario J; Brochsztain, Sergio
2004-01-01
Steady-state UV irradiation of aqueous solutions containing cytochrome c (cyt c) and N,N'-bis(2-phosphonoethyl)-1,4,5,8-naphthalenediimide (BPNDI), a water-soluble aromatic imide, resulted in the reduction of the heme iron from the Fe(III) to the Fe(II) oxidation state. The reaction kinetics were followed by the increase of the ferrocytochrome c absorbance band at 549 nm. The rate of the photochemical reaction was pH dependent, reaching its maximum values over the pH range 4-7. Addition of electrolyte (NaCl) at pH 5 resulted in a decrease in the reaction rate, as expected for reactions between oppositely charged species. Flash photolysis studies revealed that the actual reductant in the reaction was a photogenerated BPNDI radical anion, which transferred an electron to the cyt c heme iron. The participation of imide radicals in the process was confirmed by the ready reduction of cyt c by BPNDI radicals chemically generated with sodium dithionite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Souza, F.; Forsyth, T.P.; Fukuzumi, S.
1998-10-19
Dodecaphenylporphyrins with varying degrees of fluorination of the peripheral phenyl rings (FXDPPS) were synthesized as model compounds for studying electronic effects in nonplan~ porphyrins, and detailed electrochemical studies of the chloroiron(HI) complexes of these compounds were undertaken. The series of porphyrins, represented as FeDPPCl and as FeFXDPPCl where x = 4, 8 (two isomers), 12, 20,28 or 36, could be reversibly oxidized by two electrons in dichloromethane to give n-cation radicals and n-dications. All of the compounds investigated could also be reduced by three electrons in benzonitrile or pyridine. In benzonitrile, three reversible reductions were observed for the unfluorinated compoundmore » FeDPPC1, whereas the FeFXDPPCl complexes generally exhibited irreversible first and second reductions which were coupled to chemical reactions. The chemical reaction associated with the first reduction involved a loss of the chloride ion after generation of Fe FXDPPC1. The second chemical reaction involved a novel intramolecular electron transfer between the initially generated Fe(H) porphyrin n-anion radical and the final Fe(I) porphyrin reduction product. In pyridine, three reversible one electron reductions were observed with the second reduction affording stable Fe(II) porphyrin o - anion radicals for ail of the complexes investigated.« less
Gas-Phase Oxidation via Ion/Ion Reactions: Pathways and Applications
NASA Astrophysics Data System (ADS)
Pilo, Alice L.; Zhao, Feifei; McLuckey, Scott A.
2017-06-01
Here, we provide an overview of pathways available upon the gas-phase oxidation of peptides and DNA via ion/ion reactions and explore potential applications of these chemistries. The oxidation of thioethers (i.e., methionine residues and S-alkyl cysteine residues), disulfide bonds, S-nitrosylated cysteine residues, and DNA to the [M+H+O]+ derivative via ion/ion reactions with periodate and peroxymono-sulfate anions is demonstrated. The oxidation of neutral basic sites to various oxidized structures, including the [M+H+O]+, [M-H]+, and [M-H-NH3]+ species, via ion/ion reactions is illustrated and the oxidation characteristics of two different oxidizing reagents, periodate and persulfate anions, are compared. Lastly, the highly efficient generation of molecular radical cations via ion/ion reactions with sulfate radical anion is summarized. Activation of the newly generated molecular radical peptide cations results in losses of various neutral side chains, several of which generate dehydroalanine residues that can be used to localize the amino acid from which the dehydroalanine was generated. The chemistries presented herein result in a diverse range of structures that can be used for a variety of applications, including the identification and localization of S-alkyl cysteine residues, the oxidative cleavage of disulfide bonds, and the generation of molecular radical cations from even-electron doubly protonated peptides. [Figure not available: see fulltext.
Water network-mediated, electron-induced proton transfer in [C5H5N ṡ (H2O)n]- clusters
NASA Astrophysics Data System (ADS)
DeBlase, Andrew F.; Wolke, Conrad T.; Weddle, Gary H.; Archer, Kaye A.; Jordan, Kenneth D.; Kelly, John T.; Tschumper, Gregory S.; Hammer, Nathan I.; Johnson, Mark A.
2015-10-01
The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ṡ (H2O)n=3-5]- clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxide ions with the neutral pyridinium radical, PyH(0), occupying one of the primary solvation sites of the OH-. The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the "solvent coordinate" at the heart of a prototypical proton-coupled electron transfer reaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alconcel, L.S.; Deyerl, H.J.; Zengin, V.
1999-11-18
Enolate anions are intermediates in many organic reactions that involve carbon-carbon or carbon-oxygen food formation. They also play a key role in the development of stereoselective and stereocontrolled syntheses of complex compounds. Enolate radicals are important intermediates in combustion and photochemical smog cycles. In particular, the vinoxy radical, C{sub 2}H{sub 3}O{sup {sm{underscore}bullet}} is a major product of the reaction of odd oxygen and ethylene. The photoelectron spectrum of binoxide, C{sub 2}H{sub 3}O{sup {minus}}, at 355 nm is reported, showing photodetachment to both the X({sup 2}A{double{underscore}prime}) ground and first excited A({sup 2}A{prime}) states of the vinoxy radical. Both direct interpretations andmore » Franck-Condon simulations of the photoelectron spectrum of this simple enolate anion have been used to obtain insights into the energetics and structures of the anion and the ground and first excited state of the neutral radical. Franck-Condon simulations were generated from ab initio geometry and frequency calculations using the CASSCF method and showed good agreement with the vibrational structure visible in the experimental spectrum. The electron affinity (E.A.{sub exp} = 1.795 {+-} 0.015 eV; E.A.{sub calc} = 1.82 eV) and separation energy of the ground and first excited states (T{sub 0,exp} = 1.015 {+-} 0.015 eV; T{sub 0,calc} = 0.92 eV) obtained from the ab initio calculations are in good accord with the experimental values.« less
Laramée, J A; Arbogast, B; Deinzer, M L
1989-10-01
It is shown that one-electron reduction is a common process that occurs in negative ion liquid secondary ion mass spectrometry (LSIMS) of oligonucleotides and synthetic oligonucleosides and that this process is in competition with proton loss. Deconvolution of the molecular anion cluster reveals contributions from (M-2H).-, (M-H)-, M.-, and (M + H)-. A model based on these ionic species gives excellent agreement with the experimental data. A correlation between the concentration of species arising via one-electron reduction [M.- and (M + H)-] and the electron affinity of the matrix has been demonstrated. The relative intensity of M.- is mass-dependent; this is rationalized on the basis of base-stacking. Base sequence ion formation is theorized to arise from M.- radical anion among other possible pathways.
Insights in the radical scavenging mechanism of syringaldehyde and generation of its anion
NASA Astrophysics Data System (ADS)
Yancheva, D.; Velcheva, E.; Glavcheva, Z.; Stamboliyska, B.; Smelcerovic, A.
2016-03-01
The ability of syringaldehyde, a naturally occurring phenolic antioxidant and medicinally important compound, to scavenge free radicals according different mechanisms was elucidated by computing the respective reaction enthalpies at DFT B3LYP/6-311++G** level. Bond dissociation enthalpy, ionization potentials and proton affinities were calculated in gas phase, benzene, water and DMSO in order to account for different environment (nonpolar lipid membranes and polar physiological liquids) where the antioxidant action in the living organism could take place and various experimental in vitro conditions. Molecular and electronic properties influencing the reactivity of syringaldehyde according to the different mechanisms were discussed in the light of the reported radical scavenging activities in crocin bleaching, oxidation potential of the first anodic peak and DPPH test. According to the calculated reaction enthalpies, in polar environment the syringaldehyde reacts preferably by sequential proton loss electron transfer which is related to the formation of a phenoxy anion. Such phenoxy anion was generated in DMSO solution and the changes in the force field, steric and electronic structure, resulting from the conversion, were described in detail based on the IR spectral data and DFT computations.
Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.).
Cheel, José; Theoduloz, Cristina; Rodríguez, Jaime; Schmeda-Hirschmann, Guillermo
2005-04-06
Methanol, MeOH/water extracts, infusion, and decoction of Cymbopogon citratus were assessed for free radical scavenging effects measured by the bleaching of the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical, scavenging of the superoxide anion, and inhibition of the enzyme xanthine oxidase (XO) and lipid peroxidation in human erythrocytes. The extracts presented effect in the DPPH and superoxide anion assay, with values ranging between 40 and 68% and 15-32% at 33 and 50 microg/mL, respectively, inhibited lipid peroxidation in erythrocytes by 19-71% at 500 microg/mL and were inactive toward the XO at 50 microg/mL. Isoorientin, isoscoparin, swertiajaponin, isoorientin 2' '-O-rhamnoside, orientin, chlorogenic acid, and caffeic acid were isolated and identified by spectroscopic methods. Isoorientin and orientin presented similar activities toward the DPPH (IC(50): 9-10 microM) and inhibited lipid peroxidation by 70% at 100 microg/mL. Caffeic and chlorogenic acid were active superoxide anion scavengers with IC(50) values of 68.8 and 54.2 microM, respectively, and a strong effect toward DPPH. Caffeic acid inhibited lipid peroxidation by 85% at 100 microg/mL.
Microhydration of cytosine and its radical anion: cytosine.(H2O)n (n=1-5).
Kim, Sunghwan; Schaefer, Henry F
2007-02-14
Microhydration effects on cytosine and its radical anion have been investigated theoretically, by explicitly considering various structures of cytosine complexes with up to five water molecules. Each successive water molecule (through n=5) is bound by 7-10 kcal mol(-1) to the relevant cytosine complex. The hydration energies are uniformly higher for the analogous anion systems. While the predicted vertical detachment energy (VDE) of the isolated cytosine is only 0.48 eV, it is predicted to increase to 1.27 eV for the lowest-lying pentahydrate of cytosine. The adiabatic electron affinity (AEA) of cytosine was also found to increase from 0.03 to 0.61 eV for the pentahydrate, implying that the cytosine anion, while questionable in the gas phase, is bound in aqueous solution. Both the VDE and AEA values for cytosine are smaller than those of uracil and thymine for a given hydration number. These results are in qualitative agreement with available experimental results from photodetachment-photoelectron spectroscopy studies of Schiedt et al. [Chem. Phys. 239, 511 (1998)].
Microhydration of cytosine and its radical anion: Cytosine.(H2O)n (n=1-5)
NASA Astrophysics Data System (ADS)
Kim, Sunghwan; Schaefer, Henry F.
2007-02-01
Microhydration effects on cytosine and its radical anion have been investigated theoretically, by explicitly considering various structures of cytosine complexes with up to five water molecules. Each successive water molecule (through n =5) is bound by 7-10kcalmol-1 to the relevant cytosine complex. The hydration energies are uniformly higher for the analogous anion systems. While the predicted vertical detachment energy (VDE) of the isolated cytosine is only 0.48eV, it is predicted to increase to 1.27eV for the lowest-lying pentahydrate of cytosine. The adiabatic electron affinity (AEA) of cytosine was also found to increase from 0.03to0.61eV for the pentahydrate, implying that the cytosine anion, while questionable in the gas phase, is bound in aqueous solution. Both the VDE and AEA values for cytosine are smaller than those of uracil and thymine for a given hydration number. These results are in qualitative agreement with available experimental results from photodetachment-photoelectron spectroscopy studies of Schiedt et al. [Chem. Phys. 239, 511 (1998)].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Chen, Bo; Transue, Wesley J.
Three newly-synthesized [Na+(221-kryptofix)] salts containing AsCO–, PCO–, and PCS– anions were successfully electrosprayed into the vacuum, and the ECX– (E = As, P; X = O, S) anions were investigated by negative ion photoelectron spectroscopy (NIPES) and high resolution photoelectron imaging spectroscopy. For each ECX– anion, a well-resolved NIPE spectrum was obtained, in which every major peak is split into a doublet. The splittings are attributed to spin-orbit coupling (SOC) in the ECX• radicals. Vibrational progressions in the NIPE spectra of ECX– were assigned to the symmetric and antisymmetric stretching modes in ECX• radicals. The electron affinities (EAs) and SOCmore » splittings of ECX• are determined from the NIPE spectra to be: AsCO•: EA = 2.414 ± 0.002 eV, SOC splitting = 988 cm-1; PCO•: EA = 2.670 ± 0.005 eV, SOC splitting = 175 cm-1; PCS•: EA = 2.850 ± 0.005 eV, SOC splitting = 300 cm-1. Calculations using the B3LYP, CASPT2, and CCSD(T) methods all predict linear geometries for both the anions and neutral radicals. The calculated EAs and SOC splittings for ECX• are in excellent agreement with the experimentally-measured values. The simulated NIPE spectra, based on the calculated Franck-Condon factors, and SOC splittings nicely reproduce all of the observed spectral peaks, thus allowing unambiguous spectral assignments. The finding that PCS has the greatest EA of the three triatomic molecules considered here is counterintuitive based upon electronegativity considerations, but understandable in terms of the HOMO of PCS– having the greatest degree of delocalization onto both terminal atoms.« less
Zhang, Shuwen; Lv, Jiaping; Menghe, Bilige; Zhang, Heping; Zhang, Liyu; Song, Jinhui; Wang, Zhifei
2009-02-01
We evaluated antioxidative effect of two antioxidative strains, isolated from the traditional fermented dairy products. Both intact cells and cell-free extract of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ were used to study the inhibited effect of linoleic acid peroxidation, the ability of scavenging 1,1-diphenyl-2-picrylhydrazyl radical, hydroxyl radical, superoxide anion radical,the ability of tolerancing hydrogen peroxide and the chelating capacity of ferrous ion and reducting activity. Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ demonstrated highest inhibition on linoleic acid peroxidation by 62.95% and 66.16%, respectively. The cell-free extract showed excellent scavenging superoxide anion and hydroxyl radicals activity. However, the intact cells of Lactobacillus delbrueckii subsp. bulgaricus LJJ scavenging superoxide and hydroxyl radicals capacity were not detected. The intact cells of Lactobacillus casei subsp. casei SY13 and Lactobacillus delbrueckii subsp. bulgaricus LJJ on 1,1-diphenyl-2-picrylhydrazyl radical scavenging ability and chelating ferrous ion capacity were superior to cell-free extract. The highest reduced activety was equivalent to 305 micromol/L and 294 micromol/L L-cysteine. Two latobacilli strains had good antioxidant capacity. As potential probiotics, it can be used in future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christopher M. Leavitt; Garold L. Gresham; Michael T. Benson
Diphenyldithiophosphinate (DTP) ligands modified with electron-withdrawing trifluoromethyl (TFM) substitutents are of high interest because they have demonstrated potential for exceptional separation of Am3+ from lanthanide3+ cations. Specifically, the bis(ortho-TFM) (L1-) and (ortho-TFM)(meta-TFM) (L2-) derivatives have shown excellent separation selectivity, while the bis(meta-TFM) (L3)- and unmodified DTP (Lu-) did not. Factors responsible for selective coordination have been investigated using density functional theory (DFT) calculations in concert with competitive dissociation reactions in the gas phase. To evaluate the role of (DTP+H) acidity, density functional calculations were used to predict pKa values, which followed the trend of L3 < L2 < L1
NASA Astrophysics Data System (ADS)
Ouadah, Amina; Xu, Hulin; Luo, Tianwei; Gao, Shuitao; Wang, Xing; Fang, Zhou; Jing, Chaojun; Zhu, Changjin
2017-12-01
A new series of ionic liquid functionalized copolymers for anion exchange membranes (AEM) is prepared. Poly(butylvinylimidazolium)(b-VIB) is copolymerized with para-methyl styrene (p-MS) by the radical polymerization formed block copolymers b-VIB/p-MS, which is crosslinked with poly(diphenylether bibenzimidazole) (DPEBI) providing the desired materials b-VIB/p-MS/DPEBI. Structures are characterized via H1NMR, FTIR spectra and elemental analysis. The b-VIB blocks offer the anion conduction function while DPEBI moieties contribute to enhancing other properties. The prepared membranes display chloride conductivity as high as 19.5 mS/cm at 25 °C and 69.2 mS/cm at 100 °C-higher than that of the commercial membrane tokuyuama A201-. Their hydroxide conductivity reaches 35.7 Scm-1 at 25 °C and 73.1 Scm-1 at 100 °C. The membranes showed a linear Arrhenius behavior in the anion conduction, low activation energies and distinguished nanophase separation of hydrophilic/hydrophobic regions by the transmission electron microscopy (TEM) studies. Thermal investigations using TGA and DSC confirm that the membranes are stable up to 250 °C. Particularly, drastically alkaline stability due to no decrease in the hydroxide conductivity after 168 h of treatment with 2M KOH.
Ushirogata, Keisuke; Sodeyama, Keitaro; Okuno, Yukihiro; Tateyama, Yoshitaka
2013-08-14
The solid-electrolyte interphase (SEI) formed through the reductive decomposition of solvent molecules plays a crucial role in the stability and capability of a lithium-ion battery (LIB). Here we investigated the effects of adding vinylene carbonate (VC) to ethylene carbonate (EC) solvent, a typical electrolyte in LIBs, on the reductive decomposition. We focused on both thermodynamics and kinetics of the possible processes and used density functional theory-based molecular dynamics with explicit solvent and Blue-moon ensemble technique for the free energy change. We considered Li(+) in only EC solvent (EC system) and in EC solvent with a VC additive (EC/VC system) to elucidate the additive effects. In addition to clarifying the equilibrium properties, we evaluated the free energy changes along several EC or VC decomposition pathways under one-electron (1e) reduction condition. Two-electron (2e) reduction and attacks of anion radicals to intact molecules were also examined. The present results completely reproduce the gaseous products observed in the experiments. We also found a new mechanism involving the VC additive: the VC additive preferentially reacts with the EC anion radical to suppress the 2e reduction of EC and enhance the initial SEI formation, contrary to the conventional scenario in which VC additive is sacrificially reduced and its radical oligomerization becomes the source of SEI. Because our mechanism needs only 1e reduction, the irreversible capacity at the SEI formation will decrease, which is also consistent with the experimental observations. These results reveal the primary role of VC additive in the EC solvent.
Fabbri, Claudia; Bietti, Massimo; Lanzalunga, Osvaldo
2005-04-01
[reaction: see text] Ketyl radicals with lignin related structures have been generated by means of radiation chemical and photochemical techniques. In the former studies ketyl radicals are produced by reaction of alpha-carbonyl-beta-aryl ether lignin models with the solvated electron produced by pulse radiolysis of an aqueous solution at pH 6.0. The UV-vis spectra of ketyl radicals are characterized by three main absorption bands. The shape and position of these bands slightly change when the spectra are recorded in alkaline solution (pH 11.0) being now assigned to the ketyl radical anions and a pKa = 9.5 is determined for the 1-(3,4,5-trimethoxyphenyl)-2-phenoxyethanol-1-yl radical. Decay rates of ketyl radicals are found to be dose dependent and, at low doses, lie in the range (1.7-2.7) x 10(3) s(-1). In the presence of oxygen a fast decay of the ketyl radicals is observed (k2 = 1.8-2.7 x 10(9) M(-1) s(-1)) that is accompanied by the formation of stable products, i.e., the starting ketones. In the photochemical studies ketyl radicals have been produced by charge-transfer (CT) photoactivation of the electron donor-acceptor salts of methyl viologen (MV2+) with alpha-hydroxy-alpha-phenoxymethyl-aryl acetates. This process leads to the instantaneous formation of the reduced acceptor (methyl viologen radical cation, MV+*), as is clearly shown in a laser flash photolysis experiment by the two absorption bands centered at 390 and 605 nm, and an acyloxyl radical [ArC(CO2*))(OH)CH2(OC6H5)], which undergoes a very fast decarboxylation with formation of the ketyl radicals. Steady-state photoirradiation of the CT ion pairs indicates that 1-aryl-2-phenoxyethanones are formed as primary photoproducts by oxidation of ketyl radicals by MV2+ (under argon) or by molecular oxygen. Small amounts of acetophenones are formed by further photolysis of 1-aryl-2-phenoxyethanones and not by beta-fragmentation of the ketyl radicals. The high reactivity of ketyl radicals with oxygen coupled with the low rates of beta-fragmentation of the same species have an important bearing in the context of the photoyellowing of lignin containing pulps and papers.
Microfluidic channel flow cell for simultaneous cryoelectrochemical electron spin resonance.
Wain, Andrew J; Compton, Richard G; Le Roux, Rudolph; Matthews, Sinead; Fisher, Adrian C
2007-03-01
A novel microfluidic electrochemical channel flow cell has been constructed for in situ operation in a cylindrical TE011 resonant ESR cavity under variable temperature conditions. The cell has a U-tube configuration, consisting of an inlet and outlet channel which run parallel and contain evaporated gold film working, pseudo-reference, and counter electrodes. This geometry was employed to permit use in conjunction with variable temperature apparatus which does not allow a flow-through approach. The cell is characterized qualitatively and quantitatively using the one-electron reduction of p-bromonitrobenzene in acetonitrile at room temperature as a model system, and the ESR signal-flow rate response is validated by use of three-dimensional digital simulation of the concentration profile for a stable electrogenerated radical species under hydrodynamic conditions. The cell is then used to obtain ESR spectra for a number of radical species in acetonitrile at 233 K, including the radical anions of m- and p-iodonitrobenzene, o-bromonitrobenzene, and m-nitrobenzyl chloride, the latter three being unstable at room temperature. Spectra are also presented for the radical anion of 2-chloranthraquinone and the crystal violet radical, which display improved resolution at low temperatures.
Globins Scavenge Sulfur Trioxide Anion Radical*
Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.
2015-01-01
Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408
Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M
2008-02-21
Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.
Han, Hongling; Xia, Yu; McLuckey, Scott A.
2008-01-01
A series of c- and z•-type product ions formed via gas-phase electron transfer ion/ion reactions between protonated polypeptides with azobenzene radical anions are subjected to ion trap collision activation in a linear ion trap. Fragment ions including a-, b-, y-type and ammonia-loss ions are typically observed in collision induced dissociation (CID) of c ions, showing almost identical CID patterns as those of the C-terminal amidated peptides consisting of the same sequences. Collisional activation of z• species mainly gives rise to side-chain losses and peptide backbone cleavages resulting in a-, b-, c-, x-, y-and z-type ions. Most of the fragmentation pathways of z• species upon ion trap CID can be accounted for by radical driven processes. The side-chain losses from z• species are different from the small losses observed from the charge-reduced peptide molecular species in electron transfer dissociation (ETD), which indicates rearrangement of the radical species. Characteristic side-chain losses are observed for several amino acid residues, which are useful to predict their presence in peptide/protein ions. Furthermore, the unique side-chain losses from leucine and isoleucine residues allow facile distinction of these two isomeric residues. PMID:17608403
Al-Mamun, Mohammad; Yamaki, Koji; Masumizu, Toshiki; Nakai, Yumi; Saito, Katsumi; Sano, Hiroaki; Tamura, Yoshifumi
2007-01-01
Free radicals are not only destructive to the living cells but also reduce the quality of animal products through oxidation. As a result the superoxide anion radical (O2・-), one of the most destructive reactive oxygen species, is a matter of concern for the animal scientists as well as feed manufacturers to ensure the quality of product to reach consumers demand. The superoxide anion radical scavenging activities (SOSA) of water and MeOH extracts of 2 herbs and 9 pasture samples collected from lowland and highland swards were determined against a 5,5-dimethyl-1-pyroline-N-oxide-O2・-spin adduct based on a hypoxanthine-xanthine oxidase reaction using electron spin resonance spectrometry. Both the water and MeOH extracted SOSA differed among the herbs and pastures. Species and altitudinal variations were observed between extraction methods. The herbs were higher in both water and MeOH extracted SOSA than the pastures except for water extracts of one pasture, white clover (Trifolium repens L.). Among the pastures, quackgrass (Agrophyron repens L.) showed higher SOSA in both the MeOH and water extracts, and timothy (Phleum pretense L.) showed higher MeOH extracted SOSA. It is apparent that the kind and amount of antioxidants differ among herbs and pastures. Animal health and quality of animal products could be improved by adequate selection and combining of herbs and pastures having higher SOSA. PMID:17713599
Naumov, Sergej; von Sonntag, Clemens
2008-03-01
DFT calculations on the relative stability of various nucleobase radicals induced by e(aq)(-) and (*)OH have been carried out for assessing the energetics of rearrangements and water elimination reactions, taking the solvent effect of water into account. Uracil and thymine radical anions are protonated fast at O2 and O4, whereby the O2-protonated anions are higher in energy (50 kJ mol(-1), equivalent to a 9-unit lower pK(a)). The experimentally observed pK(a)=7 is thus that of the O4-protonated species. Thermodynamically favored protonation occurs slowly at C6 (driving force, thymine: 49 kJ mol(-1), uracil: 29 kJ mol(-1)). The cytosine radical anion is rapidly protonated by water at N3. Final protonation at C6 is disfavored here. The kinetically favored pyrimidine C5 (*)OH adducts rearrange into the thermodynamically favored C6 (*)OH adducts (driving force, thymine: 42 kJ mol(-1)). Very similar in energy is a water elimination that leads to the Ura-5-methyl radical. Purine (*)OH adducts at C4 and C5 (plus C2 in guanine) eliminate water in exothermic reactions, while water elimination from the C8 (*)OH adducts is endothermic. The latter open the ring en route to the FAPY products, an H transfer from the C8(*)OH to N9 being the most likely process.
Study of organic radicals through anion photoelectron velocity-map imaging spectroscopy
NASA Astrophysics Data System (ADS)
Dixon, Andrew Robert
We report preliminary results on the photoelectron imaging of phenylcarbene, cyanophenylcarbene, and chlorophenylcarbene anions. Triplet phenylcarbene is observed to have an EA of ≤ 0.83 eV, considerably lower than the previously indirectly-determined value. Transitions to the singlet and triplet ground state of both cyanophenylcarbene and chlorophenylcarbene are observable, though unidentified bands make full assignment difficult. Cyanophenylcarbene is found to have a triplet ground-state, with a tentative EA of 2.04 eV. Chlorophenylcarbene is found to have a singlet ground-state. The phenyl-group is found to favor the singlet state slightly. The cyanofluoromethyl radical, FC(H)CN, was estimated to have an EA of 1.53 +/- 0.08 eV, by a combination of experimental and theoretical results.. With similar methodology, we report the adiabatic electron affinity of the cyanobenzyl radical, EA(PhCHCN) = 1.90 +/- 0.01 eV, and assign an upper limit of the EA for the chlorobenzyl radical, EA(PhCHCl) ≤ 1.12 eV. These values were used to estimate the C-H bond dissociation energy (BDE)s for these substituted methanes. Fluoroacetonitrile was found to have a BDE of D H198 = 90.7 +/- 2.8 kcal mol□1. The C-H bond dissociation energies at the benzyl-alpha sites of the phenylmethanes are determined as 80.9 +/- 2.3 kcal mol-1 for benzyl nitrile and an upper limit of 84.2 kcal mol-1 for benzyl chloride. These results are discussed in terms of substituent interactions in a simple MO framework and in relation to other similar molecules, including recently reported results for chloroacetonitrile. The 532 nm photoelectron spectrum of glyoxal provides the first direct spectroscopic determination of the adiabatic electron affinity, EA = 1.10(2) eV. This assignment is supported by a Franck-Condon simulation of the experimental spectrum that successfully reproduces the observed spectral features. The vertical detachment energy (VDE) of the glyoxal radical anion is determined as VDE = 1.30(4) eV. The EA of methylglyoxal is determined as ≤ 0.8 eV based on the signal-to-noise ratio of the X 1A ' ← X 2A'' transition, with a VDE = 1.28(4) eV. The EA of the a 3A'' ← X 2A '' and A 1A'' ← X 2A'' transitions are determined as 3.28(3) eV and 3.614(5) eV respectively. The intrinsically short-lived ethylenedione molecule (OCCO) was observed and investigated using anion photoelectron spectroscopy. The adiabatic electron affinity of its 3Sigmag □ ground state is 1.936(8) eV. The vibrational progression with a 417(15) cm-1 frequency observed within the triplet band corresponds to a trans-bending mode. Several dissociative singlet states are also observed, corresponding to two components of the 1Delta g state and the 1Sigmag + state. The experimental results are in agreement with the theory predictions and constitute the first spectroscopic observation and characterization of the elusive ethylenedione molecule. Two glyoxal derivatives related to the ethylenedione anion (OCCO -), ethynediolide (HOCCO-) and glyoxalide (OHCCO-), were studied. These anions provide access to the corresponding neutral reactive intermediates: the HOCCO and OHCCO radicals. In the HOCCO/OHCCO anion photoelectron spectrum, we identify several electronic states of this radical system and determine the adiabatic electron affinity of HOCCO as 1.763(6) eV. This result is compared to the corresponding 1.936(8) eV value for ethylenedione (OCCO). Initial attempts were made to detect and observe the dicyanoacetylene anion, NCCCCN- , by photoelectron imaging. While it is believed the experimental design path of H2+ abstraction from fumaronitrile is sound, no spectral signature can be assigned to NCCCCN -. Calculations targeting the low-lying transitions from the anion indicate that the molecule should have a significantly positive electron affinity and at least the ground state should be accessible with the currently available laser sources. The cluster ion O2(N2O) of the same nominal mass as NCCCCN- is identified as an interfering ion and ideas have been proposed for resolving this difficulty. (Abstract shortened by ProQuest.).
Rana, Jat; Missler, Stephen R; Persons, Kathryn; Han, Johnson; Li, Teric
2016-09-01
In recent years, the role of reactive nitrogen and oxygen species (RNOS) in human disease has been the subject of considerable study. This has led to research on the potential benefit of natural products as dietary antioxidants to mitigate oxidative stress caused by increased RNOS associated with tissue damage. Five physiologically relevant reactive species include peroxyl radical, hydroxyl radical, peroxynitrite anion, superoxide radical anion, and singlet oxygen. Excessive amounts of these species can lead to the degradation of important biomolecules in vivo, and dietary antioxidants have been shown to inhibit damage both in vitro and in vivo. In this investigation, we have discovered that an extract of the fruit from Nitraria tangutorum Bobr. (Tangut white thorn) demonstrates significant antioxidant capacity against all five reactive species. Rapid bioassay-directed fractionation was used to identify antioxidant phytochemicals by collecting fractions from HPLC effluent into 96 well microplates and testing for antioxidant activity against the 2,2-diphenyl-1-picrylhydrazyl radical. Two different classes of phytochemicals, anthocyanins and flavonoids, were associated with antioxidant activity. Active components were further characterized by UV-Vis spectroscopy and high-resolution MS.
Kawano, Tomonori; Kagenishi, Tomoko; Kadono, Takashi; Bouteau, François; Hiramatsu, Takuya; Lin, Cun; Tanaka, Kenichiro; Tanaka, Licca; Mancuso, Stefano; Uezu, Kazuya; Okobira, Tadashi; Furukawa, Hiroka; Iwase, Junichiro; Inokuchi, Reina; Baluška, Frantisek; Yokawa, Ken
2015-01-01
Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article. PMID:27066179
NASA Astrophysics Data System (ADS)
Yadav, R. A.; Rani, P.; Kumar, M.; Singh, R.; Singh, Priyanka; Singh, N. P.
2011-12-01
IR and spectra of the L-ascorbic acid ( L-AA) also known as vitamin C have been recorded in the region 4000-50 cm -1. In order to make vibrational assignments of the observed IR and Raman bands computations were carried out by employing the RHF and DFT methods to calculate the molecular geometries and harmonic vibrational frequencies along with other related parameters for the neutral L-AA and its singly charged anionic ( L-AA -) and cationic ( L-AA +) species. Significant changes have been found for different characteristics of a number of vibrational modes. The four ν(O-H) modes of the L-AA molecule are found in the order ν(O 9-H 10) > ν(O 19-H 20) > ν(O 7-H 8) > ν(O 14-H 15) which could be due to complexity of hydrogen bonding in the lactone ring and the side chain. The C dbnd O stretching wavenumber ( ν46) decreases by 151 cm -1 in going from the neutral to the anionic species whereas it increases by 151 cm -1 in going from the anionic to the cationic species. The anionic radicals have less kinetic stabilities and high chemical reactivity as compared to the neutral molecule. It is found that the cationic radical of L-AA is kinetically least stable and chemically most reactive as compared to its neutral and anionic species.
NASA Technical Reports Server (NTRS)
Halasinski, Thomas M.; Hudgins, Douglas M.; Salama, Farid; Allamandola, Louis J.; Mead, Susan (Technical Monitor)
1999-01-01
The absorption spectra of pentacene (C22H14) and its radical cation (C22H14(+)) and anion (C22H14(-)) isolated in inert-gas matrices of Ne, Ar, and Kr are reported from the ultraviolet to the near-infrared. The associated vibronic band systems and their spectroscopic assignments are discussed together with the physical and chemical conditions governing ion (and counterion) production in the solid matrix. In particular, the formation of isolated pentacene anions is found to be optimized in matrices doped with alkali metal (Na and K).
Dikalova, Anna E.; Kadiiska, Maria B.; Mason, Ronald P.
2001-01-01
Electron spin resonance spectroscopy has been used to study free radical generation in rats with acute sodium formate poisoning. The in vivo spin-trapping technique was used with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN), which reacts with free radical metabolites to form radical adducts, which were detected in the bile and urine samples from Fischer rats. The use of [13C]-sodium formate and computer simulations of the spectra identified the 12-line spectrum as arising from the POBN/carbon dioxide anion radical adduct. The identification of POBN/⋅CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} radical adduct provides direct electron spin resonance spectroscopy evidence for the formation of ⋅CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} radicals during acute intoxication by sodium formate, suggesting a free radical metabolic pathway. To study the mechanism of free radical generation by formate, we tested several known inhibitors. Both allopurinol, an inhibitor of xanthine oxidase, and aminobenzotriazole, a cytochrome P450 inhibitor, decreased free radical formation from formate, which may imply a dependence on hydrogen peroxide. In accord with this hypothesis, the catalase inhibitor 3-aminotriazole caused a significant increase in free radical formation. The iron chelator Desferal decreased the formation of free radicals up to 2-fold. Presumably, iron plays a role in the mechanism of free radical generation by formate via the Fenton reaction. The detection of formate free radical metabolites generated in vivo and the key role of the Fenton reaction in this process may be important for understanding the pathogenesis of both formate and methanol intoxication. PMID:11717423
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBlase, Andrew F.; Wolke, Conrad T.; Johnson, Mark A., E-mail: jordan@pitt.edu, E-mail: nhammer@olemiss.edu, E-mail: mark.johnson@yale.edu
2015-10-14
The role of proton-assisted charge accommodation in electron capture by a heterocyclic electron scavenger is investigated through theoretical analysis of the vibrational spectra of cold, gas phase [Py ⋅ (H{sub 2}O){sub n=3−5}]{sup −} clusters. These radical anions are formed when an excess electron is attached to water clusters containing a single pyridine (Py) molecule in a supersonic jet ion source. Under these conditions, the cluster ion distribution starts promptly at n = 3, and the photoelectron spectra, combined with vibrational predissociation spectra of the Ar-tagged anions, establish that for n > 3, these species are best described as hydrated hydroxidemore » ions with the neutral pyridinium radical, PyH{sup (0)}, occupying one of the primary solvation sites of the OH{sup −}. The n = 3 cluster appears to be a special case where charge localization on Py and hydroxide is nearly isoenergetic, and the nature of this species is explored with ab initio molecular dynamics calculations of the trajectories that start from metastable arrangements of the anion based on a diffuse, essentially dipole-bound electron. These calculations indicate that the reaction proceeds via a relatively slow rearrangement of the water network to create a favorable hydration configuration around the water molecule that eventually donates a proton to the Py nitrogen atom to yield the product hydroxide ion. The correlation between the degree of excess charge localization and the evolving shape of the water network revealed by this approach thus provides a microscopic picture of the “solvent coordinate” at the heart of a prototypical proton-coupled electron transfer reaction.« less
Golichenko, Alexander A.; Kravchenko, Andrey V.; Omelchenko, Irina V.; Chudak, Denis M.; Starodub, Vladimir A.; Barszcz, Boleslaw; Shtemenko, Alexander V.
2016-01-01
The asymmetric unit of the title salt, (C10H8S8)[Re2Br6(CH3COO)]·0.5C2H3Cl3, contains one bis(ethylenedithio)tetrathiafulvalene (ET) radical cation, one μ2-acetato-bis[tribromidorhenate(III)] anion and a 1,1,2-trichloroethane molecule with half-occupancy disordered about a twofold rotation axis. The tetrathiafulvalene fragment adopts an almost planar configuration typical of the ET radical cation. The C atoms of both ethylenedithio fragments in the cation are disordered over two orientations with occupancy factors 0.65:0.35 and 0.77:0.23. In the anion, six Br atoms and a μ2-acetate ligand form a strongly distorted cubic O2Br6 coordination polyhedron around the Re2 dinuclear centre. In the crystal, centrosymmetrically related ET cations and Re2O2Br6 anions are linked into dimers by π–π stacking interactions [centroid-to-centroid distance = 3.826 (8) Å] and by pairs of additional Re⋯Br contacts [3.131 (3) Å], respectively. The dimers are further packed into a three-dimensional network by non-directional interionic electrostatic forces and by C—H⋯Br and C—H⋯S hydrogen bonds. The disordered 1,1,2-trichloroethane molecules occupy solvent-accessible channels along the b axis. PMID:27308025
Songlin, Wang; Ning, Zhou; Si, Wu; Qi, Zhang; Zhi, Yang
2015-03-01
Ultrasound degradation of humic acid has been investigated in the presence of persulfate anions at ultrasonic frequency of 40 kHz. The effects of persulfate anion concentration, ultrasonic power input, humic acid concentration, reaction time, solution pH and temperature on humic acid removal efficiency were studied. It is found that up to 90% humic acid removal efficiency was achieved after 2 h reaction. In this system, sulfate radicals (SO₄⁻·) were considered to be the mainly oxidant to mineralize humic acid while persulfate anion can hardly react with humic acid directly. A novel kinetic model based on sulfate radicals (SO₄⁻·) oxidation was established to describe the humic acid mineralization process mathematically and chemically in sono-activated persulfate system. According to the new model, ultrasound power, persulfate dosage, solution pH and reaction temperature have great influence on humic acid degradation. Different initial concentration of persulfate anions and humic acid, ultrasonic power, initial pH and reaction temperature have been discussed to valid the effectiveness of the model, and the simulated data showed new model had good agreement with the experiments data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burba, M.E.; Lim, S.K.; Albrecht, A.C.
The mobility of the C{sub 70} radical anion in n-hexane at room temperature has been measured by the condensed-phase thin-sheet time-of-flight (TOF) technique. The observed value of 5.2 x 10{sup -4} cm{sup 2}/(V s) corresponds to a Stokes radius of 5.4 A, consistent with the molecular geometry of the C{sub 70} molecule as determined by electron diffraction. TOF measurements of anionic mobility in n-hexane, where both C{sub 70} and C{sub 60} are present and compete for photoelectrons, show that the predominant anion changes from C{sub 70}{sup -} to C{sub 60}{sup -} as the C{sub 60} to C{sub 70} concentration ratiomore » is increased from 2 to 20. Quantitative analysis of these `competition experiments` shows that the electron affinity of C{sub 70} exceeds that of C{sub 60} by 0.025 {+-} 0.007 eV in n-hexane and (through a thermodynamic cycle) by 0.073 {+-} 0.019 eV in the gas phase. 18 refs., 4 figs.« less
Polar-Nonpolar Radical Copolymerization under Li+ Catalysis
2008-09-21
bonds or aromatic rings. Thus, we propose that a transfer of a methyl radical from CB11Me12C to IB triggers a radical polymerization chain that yields ...b-PIB and the resulting CB11Me11 byproduct concurrently triggers a cationic polymerization chain that yields l-PIB terminated with a carborate anion...tetrahydrofuran and passed through a column of alumina about five times to remove the bulk of the catalyst. A Soxhlet apparatus was used to recover
Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata
2014-09-30
A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.
Quenching of triplet-excited flavins by flavonoids. Structural assessment of antioxidative activity.
Huvaere, Kevin; Olsen, Karsten; Skibsted, Leif H
2009-10-02
The mechanism of flavin-mediated photooxidation of flavonoids was investigated for aqueous solutions. Interaction of triplet-excited flavin mononucleotide with phenols, as determined by laser flash photolysis, occurred at nearly diffusion-controlled rates (k approximately 1.6 x 10(9) L mol(-1) s(-1) for phenol at pH 7, 293 K), but protection of the phenolic function by methylation inhibited reaction. Still, electron transfer was proposed as the dominating mechanism due to the lack of primary kinetic hydrogen/deuterium isotope effect and the low activation enthalpy (<20 kJ mol(-1)) for photooxidation. Activation entropy worked compensating in a series of phenolic derivatives, supporting a common oxidation mechanism. An ortho-hydroxymethoxy pattern was equally reactive (k approximately 2.3 x 10(9) L mol(-1) s(-1) for guaiacol at pH 7) as compounds with ortho-dihydroxy substitution (k approximately 2.4 x 10(9) L mol(-1) s(-1) for catechol at pH 7), which are generally referred to as good antioxidants. This refutes the common belief that stabilization of incipient phenoxyl radicals through intramolecular hydrogen bonding is the driving force behind the reducing activity of catechol-like compounds. Instead, such bonding improves ionization characteristics of the substrates, hence the differences in reactivity with (photo)oxidation of isolated phenols. Despite the similar reactivity, radicals from ortho-dihydroxy compounds are detected in high steady-state concentrations by electron paramagnetic resonance (EPR) spectroscopy, while those resulting from oxidation of ortho-hydroxymethoxy (or isolated phenolic) patterns were too reactive to be observed. The ability to deprotonate and form the corresponding radical anions at neutral pH was proposed as the decisive factor for stabilization and, consequently, for antioxidative action. Thus, substituting other ionizable functions for the ortho- or para-hydroxyl in phenolic compounds resulted in stable radical anion formation, as demonstrated for para-hydroxybenzoic acid, in contrast to its methyl ester.
Koch, V.R.; Nanjundiah, C.; Carlin, R.T.
1998-10-27
Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas shown in a diagram wherein R{sub 1}, R{sub 2}, R{sub 3}, R{sub 4}, R{sub 5}, and R{sub 6} are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F-, Cl-, CF{sub 3}-, SF{sub 5}-, CF{sub 3}S-, (CF{sub 3}){sub 2}CHS- or (CF{sub 3}){sub 3}CS-; and X{sup {minus}} is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 {angstrom}{sup 3}. 4 figs.
Koch, Victor R.; Nanjundiah, Chenniah; Carlin, Richard T.
1998-01-01
Ionic liquids having improved properties for application in non-aqueous batteries, electrochemical capacitors, electroplating, catalysis and chemical separations are disclosed. Exemplary compounds have one of the following formulas: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, R.sub.5, and R.sub.6 are either H; F; separate alkyl groups of from 1 to 4 carbon atoms, respectively, or joined together to constitute a unitary alkylene radical of from 2 to 4 carbon atoms forming a ring structure converging on N; or separate phenyl groups; and wherein the alkyl groups, alkylene radicals or phenyl groups may be substituted with electron withdrawing groups, preferably F--, Cl--, CF.sub.3 --, SF.sub.5 --, CF.sub.3 S--, (CF.sub.3).sub.2 CHS-- or (CF.sub.3).sub.3 CS--; and X.sup.- is a non-Lewis acid-containing polyatomic anion having a van der Waals volume exceeding 100 .ANG..sup.3.
Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries
Shkrob, Ilya A.; Abraham, Daniel P.
2016-07-06
A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives.more » Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.« less
Reactions in Nitroimidazole and Methylnitroimidazole Triggered by Low-Energy (0-8 eV) Electrons.
Tanzer, Katrin; Feketeová, Linda; Puschnigg, Benjamin; Scheier, Paul; Illenberger, Eugen; Denifl, Stephan
2015-06-25
Low-energy electrons (0-8 eV) effectively decompose 4-nitroimidazole (4NI) and the two methylated isomers 1-methyl-5-nitroimidazole and 1-methyl-4-nitroimidazole via dissociative electron attachment (DEA). The involved unimolecular decompositions range from simple bond cleavages (loss of H(•), formation of NO2(-)) to complex reactions possibly leading to a complete degradation of the target molecule (formation of CN(-), etc.). At energies below 2 eV, the entire rich chemistry induced by DEA is completely quenched by methylation, as demonstrated in a previous communication (Tanzer, K.; Feketeová, L.; Puschnigg, B.; Scheier, P.; Illenberger. E.; Denifl, S. Angew. Chem., Int. Ed. 2014, 53, 12240). The observation that in 4NI neutral radicals and radical anions are formed via DEA at high efficiency already at threshold (0 eV) may have significant implications for the development of nitroimidazole-based radiosensitizers in tumor radiation therapy.
Laser photolysis study of the exciplex between triplet benzil and triethylamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Encinas, M.V.; Scaiano, J.C.
1979-12-19
Nanosecond laser flash photolysis techniques have been used to examine the triplet decay and radical-ion formation in the triethylamine (TEA) - benzil system in wet acetonitrile. Under conditions of high TEA concentrations yielding short triplet lifetime, the formation of the benzil radical anion was found to be considerably slower than the decay of the triplet state. This effect is attributed to the intermediacy of a relatively stable exciplex whose properties are reported here. Results of a study of optical density of the system with time following laser excitation led to the assignment of a lifetime of 55ns to the exciplexmore » formed between the triplet benzil and TEA. A structure is suggested for the exciplex. Results of experiments with the non-polar medium n-heptane indicated a shorter lifetime exciplex or one with very different properties from the species identified in the polar medium, wet acetonitrile. (BLM)« less
Electrocatalysis paradigm for protection of cathode materials in high-voltage lithium-ion batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shkrob, Ilya A.; Abraham, Daniel P.
A new mechanistic framework is suggested to account for the protective action of certain electrolyte additives on high-voltage positive electrode (cathode) materials. The mechanism involves inactivation of catalytically active centers on the electrode active materials through fragmentation reactions involving molecules at its surface. The cathode protection additives oxidize before the solvent and serve as sacrificial inhibitors of the catalytic centers. Without the additive, the surface oxidation of the solvent (like solvent oxidation in the bulk) yields H loss radicals and releases the proton that can combine with anions forming corrosive acids. This proton-release reaction is demonstrated experimentally for boronate additives.more » Specific radical reactions for the latter additives on the electrode surface are suggested. Furthermore, the same approach can be used to rationalize the protective action of other additives and account for various observations regarding their performance.« less
Staluszka, Justyna; Steblecka, Malgorzata; Szajdzinska-Pietek, Ewa; Kohl, Ingrid; Salzmann, Christoph G; Hallbrucker, Andreas; Mayer, Erwin
2008-09-18
Hyperquenched glassy water (HGW) has been suggested as the best model for liquid water, to be used in low-temperature studies of indirect radiation effects on dissolved biomolecules (Bednarek et al. J. Am. Chem. Soc. 1996, 118, 9387). In the present work, these effects are examined by X-band electron spin resonance spectroscopy (ESR) in gamma-irradiated HGW matrix containing 2'-deoxyguanosine-5'-monophosphate. Analysis of the complex ESR spectra indicates that, in addition to OH(*) and HO2(*) radicals generated by water radiolysis, three species are trapped at 77 K:(i) G(C8)H(*) radical, the H-adduct to the double bond at C8; (ii) G(- *) radical anion, the product of electron scavenging by the aromatic ring of the base; and (iii) dR(-H)(*) radicals formed by H abstraction from the sugar moiety, predominantly at the C'5 position. We discuss the yields of the radicals, their thermal stability and transformations, as well as the effect of photobleaching. This study confirms our earlier suggestion that in HGW the H atom addition/abstraction products are created at 77 K in competition with HO2(*) radicals, in a concerted process following ionization of water molecule at L-type defect sites of the H-bonded matrix. The lack of OH(*) reactivity toward the solute suggests that the H-bonded structure in HGW is much more effective in recombining OH(*) radicals than that of aqueous glasses obtained from highly concentrated electrolyte solutions. Furthermore, complementary experiments for the neat matrix have provided evidence that HO2(*) radicals are not the product of H atom reaction with molecular oxygen, possibly generated by ultrasounds used in the process of sample preparation.
In sunscreen lotion (SSL) formulations, titanium dioxide (nTiO2) nanoparticles are coated with an Al(OH)3 layer to shield against the harmful effects of hydroxyl radicals (•OH), superoxide anion radicals (O2-•), and other reactive oxyge...
Aarnts, Maxim P.; Wilms, Maikel P.; Peelen, Karin; Fraanje, Jan; Goubitz, Kees; Hartl, Frantisek; Stufkens, Derk J.; Baerends, Evert Jan; Vlcek, Antonín
1996-09-11
Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) was synthesized and characterized by UV-vis, IR, (1)H NMR, (13)C NMR, (119)Sn NMR, and mass (FAB(+)) spectroscopies and by single-crystal X-ray diffraction, which proved the presence of a nearly linear Sn-Ru-Sn unit. Crystals of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB).3.5C(6)H(6) form in the triclinic space group P&onemacr; in a unit cell of dimensions a = 11.662(6) Å, b = 13.902(3) Å, c = 19.643(2) Å, alpha = 71.24(2) degrees, beta = 86.91(4) degrees, gamma = 77.89(3) degrees, and V = 2946(3) Å(3). One-electron reduction of Ru(SnPh(3))(2)(CO)(2)(iPr-DAB) produces the stable radical-anion [Ru(SnPh(3))(2)(CO)(2)(iPr-DAB)](*-) that was characterized by IR, and UV-vis spectroelectrochemistry. Its EPR spectrum shows a signal at g = 1.9960 with well resolved Sn, Ru, and iPr-DAB (H, N) hyperfine couplings. DFT-MO calculations on the model compound Ru(SnH(3))(2)(CO)(2)(H-DAB) reveal that the HOMO is mainly of sigma(Sn-Ru-Sn) character mixed strongly with the lowest pi orbital of the H-DAB ligand. The LUMO (SOMO in the reduced complex) should be viewed as predominantly pi(H-DAB) with an admixture of the sigma(Sn-Ru-Sn) orbital. Accordingly, the lowest-energy absorption band of the neutral species will mainly belong to the sigma(Sn-Ru-Sn)-->pi(iPr-DAB) charge transfer transition. The intrinsic strength of the Ru-Sn bond and the delocalized character of the three-center four-electron Sn-Ru-Sn sigma-bond account for the inherent stability of the radical anion.
Grills, David Charles; Lymar, Sergei
2018-03-29
In this study, the solvated electron in CH 3CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M –1 s –1 to produce the carbon dioxide radical anion (CO 2 •–), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm –1 corresponding to the antisymmetric CO 2 •– stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH 3CN, CO 2 •– decays on a ~10 μs time scale via recombination with solvent-derivedmore » radicals (R•) and solvated protons. Upon addition of formate (HCO 2 –), the radiation yield of CO 2 •– is substantially increased due to H-atom abstraction by R• from HCO 2 – (R• + HCO 2 – → RH + CO 2 •–), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN•, CH 3•, and possibly, H• primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2CN•. The removal of solvent radicals by HCO 2 – also results in over a hundredfold increase in the CO 2 •– lifetime. CO 2 •– scavenging experiments suggest that at 50 mM HCO 2 –, about 60% of the solvent-derived radicals are engaged in CO 2 •– generation. Finally, even under CO 2 saturation, no formation of the radical adduct, (CO 2) 2 •–, could be detected on the microsecond time scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grills, David Charles; Lymar, Sergei
In this study, the solvated electron in CH 3CN is scavenged by CO 2 with a rate constant of 3.2 × 10 10 M –1 s –1 to produce the carbon dioxide radical anion (CO 2 •–), a strong and versatile reductant. Using pulse radiolysis with time-resolved IR detection, this radical is unambiguously identified by its absorption band at 1650 cm –1 corresponding to the antisymmetric CO 2 •– stretch. This assignment is confirmed by 13C isotopic labelling experiments and DFT calculations. In neat CH 3CN, CO 2 •– decays on a ~10 μs time scale via recombination with solvent-derivedmore » radicals (R•) and solvated protons. Upon addition of formate (HCO 2 –), the radiation yield of CO 2 •– is substantially increased due to H-atom abstraction by R• from HCO 2 – (R• + HCO 2 – → RH + CO 2 •–), which occurs in two kinetically separated steps. The rapid step involves the stronger H-abstracting CN•, CH 3•, and possibly, H• primary radicals, while the slower step is due to the less reactive, but more abundant radical, CH 2CN•. The removal of solvent radicals by HCO 2 – also results in over a hundredfold increase in the CO 2 •– lifetime. CO 2 •– scavenging experiments suggest that at 50 mM HCO 2 –, about 60% of the solvent-derived radicals are engaged in CO 2 •– generation. Finally, even under CO 2 saturation, no formation of the radical adduct, (CO 2) 2 •–, could be detected on the microsecond time scale.« less
Oldemeyer, Sabine; Franz, Sophie; Wenzel, Sandra; Essen, Lars-Oliver; Mittag, Maria
2016-01-01
Cryptochromes constitute a group of flavin-binding blue light receptors in bacteria, fungi, plants, and insects. Recently, the response of cryptochromes to light was extended to nearly the entire visible spectral region on the basis of the activity of the animal-like cryptochrome aCRY in the green alga Chlamydomonas reinhardtii. This finding was explained by the absorption of red light by the flavin neutral radical as the dark state of the receptor, which then forms the anionic fully reduced state. In this study, time-resolved UV-visible spectroscopy on the full-length aCRY revealed an unusually long-lived tyrosyl radical with a lifetime of 2.6 s, which is present already 1 μs after red light illumination of the flavin radical. Mutational studies disclosed the tyrosine 373 close to the surface to form the long-lived radical and to be essential for photoreduction. This residue is conserved exclusively in the sequences of other putative aCRY proteins distinguishing them from conventional (6–4) photolyases. Size exclusion chromatography showed the full-length aCRY to be a dimer in the dark at 0.5 mm injected concentration with the C-terminal extension as the dimerization site. Upon illumination, partial oligomerization was observed via disulfide bridge formation at cysteine 482 in close proximity to tyrosine 373. The lack of any light response in the C-terminal extension as evidenced by FTIR spectroscopy differentiates aCRY from plant and Drosophila cryptochromes. These findings imply that aCRY might have evolved a different signaling mechanism via a light-triggered redox cascade culminating in photooxidation of a yet unknown substrate or binding partner. PMID:27189948
Identification of Ion-Pair Structures in Solution by Vibrational Stark Effects.
Hack, John; Grills, David C; Miller, John R; Mani, Tomoyasu
2016-02-18
Ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N) infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.
Ganguly, Mainak; Mondal, Chanchal; Pal, Anjali; Pratik, Saied Md; Pal, Jaya; Pal, Tarasankar
2014-07-07
The participation of sodium borohydride (NaBH4) in hydrogen bonding interactions and transient anion radical formation has been proved. Thus, the properties of NaBH4 are extended beyond the purview of its normal reducing capability and nucleophilic property. It is reported that ortho- and para-nitroanilines (NAs) form stable aggregates only in tetrahydrofuran (THF) in the presence of NaBH4 and unprecedented orange/red colorations are observed. The same recipe with nitrobenzene instead of nitroanilines (NAs) in the presence of NaBH4 evolves a transient rose red solution due to the formation of a highly fluorescent anion radical. Spectroscopic studies (UV-vis, fluorescence, RLS, Raman, NMR etc.) as well as theoretical calculations supplement the J-aggregate formation of NAs due to extensive hydrogen bonding. This is the first report where BH4(-) in THF has been shown to support such an aggregation process through H-bonding. It is further confirmed that stable intermolecular hydrogen bond-induced aggregation requires a geometrical match in both the nitro- and amino-functionalities attached to the phenyl ring with proper geometry. On the contrary, meta-nitroaniline remains as the odd man out and does not take part in such aggregation. Surprisingly, Au nanoparticles dismantle the J-aggregates of NA in THF. Explicit hydrogen bond formation in NA has been confirmed experimentally considering its promising applications in different fields including non-linear optics.
Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary
2014-01-01
The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2•-) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2•- was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2•- generation in comparison with the Tasty Sweet genotype.
Shah, Shaheen; Hao, Ce
2017-07-01
Sulfamethoxypyridazine (SMP) is one of the commonly used sulfonamide antibiotics (SAs). SAs are mainly studied to undergo triplet-sensitized photodegradation in water under natural sunlight with other coexisting aquatic environmental organic pollutants. In this work, SMP was selected as a representative of SAs. We studied the mechanisms of triplet-sensitized photodegradation of SMP and the influence of selected dissolved inorganic matter, i.e., anions (Br - , Cl - , and NO 3 - ) and cations ions (Ca 2+ , Mg 2+ , and Zn 2+ ) on SMP photodegradation mechanism by quantum chemical methods. In addition, the degradation mechanisms of SMP by hydroxyl radical (OH) were also investigated. The creation of SO 2 extrusion product was accessed with two different energy pathways (pathway-1 and pathway-2) by following two steps (step-I and step-II) in the triplet-sensitized photodegradation of SMP. Due to low activation energy, the pathway-1 was considered as the main pathway to obtain SO 2 extrusion product. Step-II of pathway-1 was measured to be the rate-limiting step (RLS) of SMP photodegradation mechanism and the effect of the selected anions and cations was estimated for this step. All selected anions and cations promoted photodegradation of SMP by dropping the activation energy of pathway-1. The estimated low activation energies of different degradation pathways of SMP with OH radical indicate that OH radical is a very powerful oxidizing agent for SMP degradation via attack through benzene derivative and pyridazine derivative ring. Copyright © 2016. Published by Elsevier B.V.
Babizhayev, Mark A; Deyev, Anatoliy I; Savel'yeva, Ekaterina L; Lankin, Vadim Z; Yegorov, Yegor E
2012-10-01
Advanced glycation Maillard reaction end products (AGEs) are causing the complications of diabetes and skin aging, primarily via adventitious and cross-linking of proteins. Long-lived proteins such as structural collagen are particularly implicated as pathogenic targets of AGE processes. The formation of α-dicarbonyl compounds represents an important step for cross-linking proteins in the glycation or Maillard reaction. The purpose of this study was to investigate the contribution of glycation coupled to the glycation free-radical oxidation reactions as markers of protein damage in the aging of skin tissue proteins and diabetes. To elucidate the mechanism for the cross-linking reaction, we studied the reaction between a three-carbon α-dicarbonyl compound, methylglyoxal, and amino acids using EPR spectroscopy, a spectrophotometric kinetic assay of superoxide anion production at the site of glycation and a chemiluminescence technique. The transglycating activity, inhibition of transition metal ions peroxidative catalysts, resistance to hydrolysis of carnosine mimetic peptide-based compounds with carnosinase and the protective effects of carnosine, carcinine and related compounds against the oxidative damage of proteins and lipid membranes were assessed in a number of biochemical and model systems. A 4-month randomized, double-blind, controlled study was undertaken including 42 subjects where the oral supplement of non-hydrolized carnosine (Can-C Plus® formulation) was tested against placebo for 3 months followed by a 1-month supplement-free period for both groups to assess lasting effects. Assessment of the age-related skin parameters and oral treatment efficacy measurements included objective skin surface evaluation with Visioscan® VC 98 and visual assessment of skin appearance parameters. The results together confirm that a direct one-electron transfer between a Schiff base methylglyoxal dialkylimine (or its protonated form) and methylglyoxal is responsible for the generation of the cross-linked radical cation and the radical counteranion of methylglyoxal. Under aerobic conditions, molecular oxygen can then accept an electron from the methylglyoxal anion to generate the superoxide radical anion causing the propagation of oxidative stress chain reactions in the presence of transition metal ions. Carnosine stabilized from enzymatic hydrolysis, carcinine and leucyl-histidylhydrazide in patented formulations thereof, demonstrate the Schiff bases' transglycating activities concomitant with glycation site specific antioxidant activities and protection of proprietary antioxidant enzymes in the skin during aging and with diabetes lesions. During oral supplementation with stabilized from enzymatic hydrolysis carnosine (Can-C Plus® formulation), the skin parameters investigated showed a continuous and significant improvement in the active group during the 3 months of supplementation as compared to placebo. Visual investigation showed improvement of the overall skin appearance and a reduction of fine lines. No treatment-related side effects were reported. The finding that already-formed AGE cross-links can be pharmacologically severed and attendant pathology thereby reversed by non-hydrolized carnosine or carcinine in patented oral formulations thereof has broad implications for the skin beautification and therapeutics of the complications of diabetes and skin diseases associated with aging.
An in vitro examination of the antioxidant and anti-inflammatory properties of buckwheat honey.
van den Berg, A J J; van den Worm, E; van Ufford, H C Quarles; Halkes, S B A; Hoekstra, M J; Beukelman, C J
2008-04-01
Hydroxyl radical and hypochlorite anion formed at the wound site from superoxide anion produced by activated polymorphonuclear neutrophils (PMNs) are considered important factors in impaired wound healing. Superoxide anion may also react with nitric oxide produced by macrophages to form peroxynitrite, a third strong oxidant that damages surrounding tissue. In order to select honey for use in wound-healing products, different samples were compared for their capacity to reduce levels of reactive oxygen species (ROS) in vitro. Honey samples were tested in assays for inhibition of ROS production by activated human PMNs, antioxidant activity (scavenging of superoxide anion in a cell-free system) and inhibition of human complement (reducing levels of ROS by limiting formation of complement factors that attract and stimulate PMNs). For buckwheat honey (NewYork, US), moisture and free acid content were determined by refractive index measurement and potentiometric titration respectively. Honey constituents other than sugars were investigated by thin layer chromatography, using natural product reagent to detect phenolic compounds. Constituents with antioxidant properties were detected by spraying the chromatogram with DPPH. Although most honey samples were shown to be active, significant differences were observed, with the highly active honey exceeding the activities of samples with minor effects by factors of 4 to 30. Most pronounced activities were found for American buckwheat honey from the state of NewYork. Phenolic constituents of buckwheat honey were shown to have antioxidant activity. As buckwheat honey was most effective in reducing ROS levels, it was selected for use in wound-healing products. The major antioxidant properties in buckwheat honey derive from its phenolic constituents, which are present in relatively large amounts. Its phenolic compounds may also exert antibacterial activity, whereas its low pH and high free acid content may assist wound healing.
Nitrolysis of the CN Single Bond and Related Chemistry of Nitro and Nitroso Groups.
1988-03-01
oxime of be 4,5-diphenyl-l-triphenylmethoxy-l,23- triazole (11). It was benzoyl cyanide (Scheme 6), for which radical intermediates hydrolysed by...S-Pnitroxide (a radical scavenger) or benzoyl peroxide (a radical *PhC CCN)- NO2 Ag PhCON--CPh suc)I I source). A partial extension of the overall...two anomethylenenitronate anion. (Attempts to prepare the pathways for fragmentation of the ester (3) (C,.H,0 N.O,): one ketenimine (15) by a
YouGuo, Chen; ZongJi, Shen; XiaoPing, Chen
2009-12-01
In this study, antioxidant and immunity-modulatory activities of Purslane polysaccharide were estimated. The results revealed that in a dose-dependent manner, Purslane polysaccharides could significantly scavenge superoxide anion, 1,1-diphenyl-2-picrylhydrazyl (DPPH(-)), nitric oxide and hydroxyl radicals. Furthermore, the Purslane polysaccharides could still effectively inhibit the red blood cell (RBC) haemolysis, and increase spleen, thymocyte T and B lymphocyte proliferation, it could be concluded that Purslane polysaccharides could be of considerable preventive and therapeutic significance to some free radical associated health problems such as ovarian cancer, by scavenging accumulating free radicals and enhancing immunity functions.
Attygalle, Athula B; Ruzicka, Josef; Varughese, Deepu; Bialecki, Jason B; Jafri, Sayed
2007-09-01
Collision-induced dissociation (CID) mass spectra of anions derived from several hydroxyphenyl carbaldehydes and ketones were recorded and mechanistically rationalized. For example, the spectrum of m/z 121 ion of deprotonated ortho-hydroxybenzaldehyde shows an intense peak at m/z 93 for a loss of carbon monoxide attributable to an ortho-effect mediated by a charge-directed heterolytic fragmentation mechanism. In contrast, the m/z 121 ion derived from meta and para isomers undergoes a charge-remote homolytic cleavage to eliminate an *H and form a distonic anion radical, which eventually loses CO to produce a peak at m/z 92. In fact, for the para isomer, this two-step homolytic mechanism is the most dominant fragmentation pathway. The spectrum of the meta isomer on the other hand, shows two predominant peaks at m/z 92 and 93 representing both homolytic and heterolytic fragmentations, respectively. (18)O-isotope-labeling studies confirmed that the oxygen in the CO molecule that is eliminated from the anion of meta-hydroxybenzaldehyde originates from either the aldehydic or the phenolic group. In contrast, anions of ortho-hydroxybenzaldehyde and 2-hydroxy-1-naphthaldehyde, both of which show two consecutive CO eliminations, specifically lose the carbonyl oxygen first, followed by that of the phenolic group. Anions from 2-hydroxyphenyl alkyl ketones lose a ketene by a hydrogen transfer predominantly from the alpha position. Interestingly, a very significant charge-remote 1,4-elimination of a H(2) molecule was observed from the anion derived from 2,4-dihydroxybenzaldehyde. For this mechanism to operate, a labile hydrogen atom should be available on the hydroxyl group adjacent to the carbaldehyde functionality.
Natić, Maja M; Dabić, Dragana Č; Papetti, Adele; Fotirić Akšić, Milica M; Ognjanov, Vladislav; Ljubojević, Mirjana; Tešić, Živoslav Lj
2015-03-15
In this study, the polyphenolic profile of 11 Morus alba fruits grown in the Vojvodina region was investigated. Ultra high performance liquid chromatography (UHPLC) coupled with Linear Trap Quadrupole and OrbiTrap mass analyzer, and UHPLC coupled with a diode array detector and a triple-quadrupole mass spectrometer were used for the identification and quantification of the polyphenols, respectively. A total of 14 hydroxycinnamic acid esters, 13 flavonol glycosides, and 14 anthocyanins were identified in the extracts with different distributions and contents according to the sampling. The total phenolic content ranged from 43.84 to 326.29 mg GAE/100g frozen fruit. The radical scavenging capacity (50.18-86.79%), metal chelating ability (0.21-8.15%), ferric ion reducing power (0.03-38.45 μM ascorbic acid) and superoxide anion radical scavenging activity (16.53-62.83%) were assessed. The findings indicated that mulberry polyphenolics may act as potent superoxide anion radical scavengers and reducing agents. Copyright © 2014 Elsevier Ltd. All rights reserved.
Basic medium oxidation of aromatic α-hydroxy-ketones: A free radical mechanism
NASA Astrophysics Data System (ADS)
Gómez-Vidales, Virginia; Vargas, Marina; Meléndez, Iván; Salmón, Manuel; Sansón-O, Carmen; Zaragoza, I. P.; Zolotukhin, Mikhail; Salcedo, Roberto
2010-01-01
A systematic study was undertaken of the EPR of sodium hydroxide solutions of Benzoin, Anisoin and Thenoin in both ethanol and DMSO as well as their corresponding ionised species of varying colours. In all cases, the EPR consist of symmetric spectra, resulting from the generation of a free radical-anion. Furthermore, theoretical DFT methods were applied in order to study the radical anions, revealing the reason for the colour change in the solutions and in the case of benzoin, found to be related to the interaction between the cis and trans-isomers with the molecules in the two solvents. We have defined the structure of the cis-isomer and for the first time we have described how the adduct between the cis-isomer and the solvent molecule, results in a stable conformer. This corresponds with the EPR results which indicated a significant difference between the cis and trans-isomers. Both the theoretical and experimental results inspired similar descriptions of the significant differences between the cis and trans-isomers in solution.
Aluminum stress increases carbon-centered radicals in soybean roots.
Abo, Mitsuru; Yonehara, Hiroki; Yoshimura, Etsuro
2010-10-15
The formation of radical species was examined in roots of soybean seedlings exposed to aluminum (Al). Electron spin resonance (ESR) spectra of root homogenates with the spin-trapping reagent 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) indicated the presence of carbon-centered radicals in plants not exposed to Al. Plants exposed to 50 microM Al showed a similar spectrum, with increased signal intensity. These radicals were likely produced through a H-atom abstraction reaction by hydroxyl (*OH) radicals, the synthesis of which was initiated by the formation of superoxide (O2*-) anions. The increased production of the carbon-centered radicals may be responsible for the lipid peroxidation in Al-treated roots. Copyright (c) 2010 Elsevier GmbH. All rights reserved.
Yamagaki, Tohru; Takeuchi, Michika; Watanabe, Takehiro; Sugahara, Kohtaro; Takeuchi, Takae
2016-12-30
Proton and radical are transferred between matrices and matrix and analyte in matrix-assisted laser desorption/ionization (MALDI) and these transfers drive ionization of analytes. The odd-electron anion [M-2H] •- was generated in dihydroxybenzoic acids (DHBs) and the ion abundance of the 2,5-DHB was the highest among six DHB isomers. We were interested in the mechanism of the ion generation of the odd-electron anion. The observed [M-2H] •- and [M-3H] - ions, which were generated with the hydrogen radical removed from the phenolic hydroxyl groups (OH) in DHB isomers, were analyzed using negative-ion MALDI-MS. The enthalpy for ion generation and their stable structures were calculated using the density functional theory (DFT) calculation program Gaussian 09 with the B3LYP functional and the 6-31+G(d) basis set. The number of observed [M-2H] •- and [M-3H] - ions of the DHB isomers was dependent on the positions of the phenolic OH groups in the DHB isomers because the carboxy group interacts with the ortho OH group due to neighboring group participation, as confirmed from the stable structures of the [M-2H] •- anions calculated with the Gaussian 09 program. The DHB isomers were placed into three categories according to the number of the ions. Odd-electron anions ([M-2H] •- ) and [M-2H • -H] - ([M-3H] - ) ions were generated from DHB isomers due to removal of the hydrogen radical from the phenolic groups. The enthalpy for ion generation revealed that ion formation proceeds via a two-step pathway through the [M-M] - ion as an intermediate. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd. © 2016 The Authors. Rapid Communications in Mass Spectrometry Published by John Wiley & Sons Ltd.
Konarev, Dmitri V; Khasanov, Salavat S; Ishikawa, Manabu; Nakano, Yoshiaki; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N
2017-04-18
Reduction of aluminum(III), gallium(III), and indium(III) phthalocyanine chlorides by sodium fluorenone ketyl in the presence of tetrabutylammonium cations yielded crystalline salts of the type (Bu 4 N + ) 2 [M III (HFl-O - )(Pc .3- )] .- (Br - )⋅1.5 C 6 H 4 Cl 2 [M=Al (1), Ga (2); HFl-O - =fluoren-9-olato - anion; Pc=phthalocyanine] and (Bu 4 N + ) [In III Br(Pc .3- )] .- ⋅0.875 C 6 H 4 Cl 2 ⋅0.125 C 6 H 14 (3). The salts were found to contain Pc .3- radical anions with negatively charged phthalocyanine macrocycles, as evidenced by the presence of intense bands of Pc .3- in the near-IR region and a noticeable blueshift in both the Q and Soret bands of phthalocyanine. The metal(III) atoms coordinate HFl-O - anions in 1 and 2 with short Al-O and Ga-O bond lengths of 1.749(2) and 1.836(6) Å, respectively. The C-O bonds [1.402(3) and 1.391(11) Å in 1 and 2, respectively] in the HFl-O - anions are longer than the same bond in the fluorenone ketyl (1.27-1.31 Å). Salts 1-3 show effective magnetic moments of 1.72, 1.66, and 1.79 μ B at 300 K, respectively, owing to the presence of unpaired S=1/2 spins on Pc .3- . These spins are coupled antiferromagnetically with Weiss temperatures of -22, -14, and -30 K for 1-3, respectively. Coupling can occur in the corrugated two-dimensional phthalocyanine layers of 1 and 2 with an exchange interaction of J/k B =-0.9 and -1.1 K, respectively, and in the π-stacking {[In III Br(Pc .3- )] .- } 2 dimers of 3 with an exchange interaction of J/k B =-10.8 K. The salts show intense electron paramagnetic resonance (EPR) signals attributed to Pc .3- . It was found that increasing the size of the central metal atom strongly broadened these EPR signals. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moslehi, Maryam; Yazdanparast, Razieh
2013-07-01
Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Nerve cells are incessantly exposed to environmental stresses leading to overproduction of some harmful species like reactive oxygen species (ROS). ROS including hydrogen peroxide and superoxide anion are potent inducers of various signaling pathways encompassing MAPKs and JAK-STAT pathways. In the current study, we scrutinized the effects of hydrogen peroxide and/or menadione (superoxide anion generator) on JNK/p38-MAPKs and JAK2-STAT3 pathways to elucidate the mechanism(s) by which each oxidant modulated the above-mentioned pathways leading to SK-N-MC cell death. Our results delineated that hydrogen peroxide and superoxide anion radical induced distinct responses as we showed that STAT3 and p38 were activated in response to hydrogen peroxide, but not superoxide anion radicals indicating the specificity in ROS-induced signaling pathways activations and behaviors. We also observed that menadione induced JNK-dependent p53 expression and apoptotic death in SK-N-MC cells while H2O2-induced JNK activation was p53 independent. Thus, we declare that ROS type has a key role in selective instigation of JNK/p38-MAPKs and JAK2-STAT3 pathways in SK-N-MC cells. Identifying these differential behaviors and mechanisms of hydrogen peroxide and superoxide anion functions illuminates the possible therapeutic targets in the prevention or treatment of ROS-induced neurodegenerative diseases such as Alzheimer's disease.
Nitroxyl-mediated oxidation of lignin and polycarboxylated products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stahl, Shannon S.; Rafiee, Mohammad
Methods of selectively modifying lignin, polycarboxylated products thereof, and methods of deriving aromatic compounds therefrom. The methods comprise electrochemically oxidizing lignin using stable nitroxyl radicals to selectively oxidize primary hydroxyls on .beta.-O-4 phenylpropanoid units to corresponding carboxylic acids while leaving the secondary hydroxyls unchanged. The oxidation results in polycarboxylated lignin in the form of a polymeric .beta.-hydroxy acid. The polymeric .beta.-hydroxy acid has a high loading of carboxylic acid and can be isolated in acid form, deprotonated, and/or converted to a salt. The .beta.-hydroxy acid, anion, or salt can also be subjected to acidolysis to generate various aromatic monomers ormore » oligomers. The initial oxidation of lignin to the polycarboxylated form renders the lignin more susceptible to acidolysis and thereby enhances the yield of aromatic monomers and oligomers obtained through acidolysis.« less
Ion-Molecule Association in Acrylonitrile
NASA Technical Reports Server (NTRS)
Wilson, Paul F.; Milligan, Daniel B.; McEwan, Murray J.
1997-01-01
Acrylonitrile (propernenitrile or vinyl cyanide) polymerizes readily via a radical mechanism in solution at room temparature. The propensity to polymerize is sufficiently strong that it is usual to add a radical scavenger to the solution to prevent polymerization when oxygen (an inhibitor) is removed. Polymerization of acrylonitrile is also know to occur via nucleophilic addition of an anion by a michael-type reaction.
Ljubić, Ivan; Matasović, Brunislav; Bonifačić, Marija
2013-11-07
A remarkable buffer-mediated control between free-radical substitution (FRS) and proton-coupled electron transfer (PCET) is demonstrated for the reaction between iodoethane and the α-hydroxyethyl radical in neutral aqueous solution in the presence of bicarbonate or phosphate buffer. The reaction is initiated by the γ-radiolysis of the water solvent, and the products, either the iodine atom (FRS) or anion (PCET), are analysed using ion chromatographic and spectrophotometric techniques. A detailed insight into the mechanism is gained by employing density functional theory (M06-2X), Møller-Plesset perturbation treatment to the second order (MP2), and multireference methods (CASSCF/CASPT2). Addition of a basic buffer anion is indispensable for the reaction to occur and the competition between the two channels depends subtly on its proton accepting affinity, with FRS being the dominant channel in the phosphate and PCET in the bicarbonate containing solutions. Unlike the former, the latter channel sustains a chain-like process which significantly enhances the dehalogenation. The present systems furnish an example of the novel PCET/FRS dichotomy, as well as insights into possibilities of its efficient control.
Characterization and in vitro antioxidant activities of polysaccharides from Pleurotus ostreatus.
Zhang, Yunxia; Dai, Ling; Kong, Xiaowei; Chen, Liangwen
2012-10-01
Two polysaccharide fractions (PSPO-1a and PSPO-4a) were isolated from the fruiting bodies of Pleurotus ostreatus using ethanol precipitation, anion-exchange chromatography and gel permeation chromatography. Both fractions were heteropolysaccharide containing protein and uronic acid. PSPO-1a was composed of mannose, glucose, galactose, xylose and rhamnose with a molar ratio of 2.47:0.91:1.00:1.66:3.87. PSPO-4a was composed of only three monosaccharides: rhamnose, mannose and galactose with a molar ratio of 0.92:2.69:1.00. The average molecular weight of PSPO-1a and PSPO-4a determined by HPLC were estimated to be 1.8 × 10(4)Da and 1.1 × 10(6)Da respectively. The in vitro tests revealed that two polysaccharides were natural potential antioxidant. Both polysaccharides presented stronger DPPH radical and superoxide anion radical scavenging activity with increasing concentrations, but less effective on scavenging hydroxyl radical. Compared with PSPO-4a, PSPO-1a was the more effective free-radical scavenger. In conclusion, the two polysaccharides may be useful as a naturally potential antioxidant agent for application in food and medicinal fields. Copyright © 2012 Elsevier B.V. All rights reserved.
Lantow, M; Schuderer, J; Hartwig, C; Simkó, M
2006-01-01
The goal of this study was to investigate whether radiofrequency (RF) electromagnetic-field (EMF) exposure at 1800 MHz causes production of free radicals and/or expression of heat-shock proteins (HSP70) in human immune-relevant cell systems. Human Mono Mac 6 and K562 cells were used to examine free radical release after exposure to incubator control, sham, RF EMFs, PMA, LPS, heat (40 degrees C) or co-exposure conditions. Several signals were used: continuous-wave, several typical modulations of the Global System for Mobile Communications (GSM): GSM-non DTX (speaking only), GSM-DTX (hearing only), GSM-Talk (34% speaking and 66% hearing) at specific absorption rates (SARs) of 0.5, 1.0, 1.5 and 2.0 W/kg. Heat and PMA treatment induced a significant increase in superoxide radical anions and in ROS production in the Mono Mac 6 cells when compared to sham and/or incubator conditions. No significant differences in free radical production were detected after RF EMF exposure or in the respective controls, and no additional effects on superoxide radical anion production were detected after co-exposure to RF EMFs+PMA or RF EMFs+LPS. The GSM-DTX signal at 2 W/kg produced a significant difference in free radical production when the data were compared to sham because of the decreasing sham value. This difference disappeared when data were compared to the incubator controls. To determine the involvement of heat-shock proteins as a possible inhibitor of free radical production, we investigated the HSP70 expression level after different RF EMF exposures; no significant effects were detected.
Kemper, Travis W.; Gennett, Thomas; Larsen, Ross E.
2016-10-19
Here we performed molecular dynamics simulations to understand the effects of solvent swelling and state of charge (SOC) on the redox active, organic radical cathode material poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) (PTMA). We show that the polar solvent acetonitrile primarily solvates the nitroxide radical without disrupting the packing of the (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) pendant groups of PTMA. We also simulated bulk PTMA in different SOC, 25%, 50%, 75%, and 100%, by converting the appropriate number of TEMPO groups to the cation charge state and adding BF 4 - counterions to the simulation. At each SOC the packing of PTMA, the solvent, and the counterionsmore » were examined. The binding of the anion to the nitroxide cation site was examined using the potential of mean force and found to be on the order of tens of meV, with a binding energy that decreased with increasing SOC. Additionally, we found that the cation state is stabilized by the presence of a nearby anion by more than 1 eV, and the implications of this stabilization on charge transport are discussed. Finally, we describe the implications of our results for how the SOC of an organic electrode affects electron and anion charge transport during the charging and discharging processes.« less
NASA Astrophysics Data System (ADS)
Zeng, Mingyong; Xiao, Feng; Zhao, Yuanhui; Liu, Zunying; Li, Bafang; Dong, Shiyuan
2007-07-01
Gelatin from the sea cucumber (Paracaudina chinens var.) was hydrolyzed by bromelain and the hydrolysate was found to have a high free radical scavenging activity. The hydrolysate was fractionated through an ultrafiltration membrane with 5 kDa molecular weight cutoff (MWCO). The portion (less than 5 kDa) was further separated by Sephadex G-25. The active peak was collected and assayed for free radical scavenging activity. The scavenging rates for superoxide anion radicals (O2·-) and hydroxyl radicals (·OH) of the fraction with the highest activity were 29.02% and 75.41%, respectively. A rabbit liver mitochondrial free radical damage model was adopted to study the free radical scavenging activity of the fraction. The results showed that the sea cucumber gelatin hydrolysate can prevent the damage of rabbit liver and mitochondria.
Spectroscopic studies on the antioxidant activity of ellagic acid
NASA Astrophysics Data System (ADS)
Kilic, Ismail; Yeşiloğlu, Yeşim; Bayrak, Yüksel
2014-09-01
Ellagic acid (EA, C14H6O8) is a natural dietary polyphenol whose benefits in a variety of diseases shown in epidemiological and experimental studies involve anti-inflammation, anti-proliferation, anti-angiogenesis, anticarcinogenesis and anti-oxidation properties. In vitro radical scavenging and antioxidant capacity of EA were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. EA inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), α-tocopherol and ascorbic acid displayed 69.8%, 66.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, EA had an effective DPPH• scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that EA can be used in the pharmacological, food industry and medicine because of these properties.
Spectroscopic studies on the antioxidant activity of p-coumaric acid
NASA Astrophysics Data System (ADS)
Kiliç, Ismail; Yeşiloğlu, Yeşim
2013-11-01
p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2‧-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe2+) chelating activity and ferric ions (Fe3+) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45 μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPHrad scavenging, ABTSrad + scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power and ferrous ions (Fe2+) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties.
NASA Astrophysics Data System (ADS)
Tang, Bo; Wang, Yan; Chen, Zhen-zhen
2002-10-01
The coupled reaction of N, N-dimethylaniline (DMA) with 4-aminoantipyrine (4-AAP) using superoxide anion radical (O 2-) as oxidizing agent under the catalysis of horseradish peroxidase (HRP) was studied. Based on the reaction, O 2- produced by irradiating Vitamin B 2, (V B2) was spectrophotometricly determined at 554 nm. The linear range of this method was 1.8×10 -6-1.2×10 -4 mol l -1 with a detection limit of 5.3×10 -7 mol l -1. The effect of interferences on the determination of O 2- was investigated. The proposed method was successfully applied to the determination of superoxide dismutase (SOD) activity in human blood and mouse blood.
Radical quenching by rosmarinic acid from Lavandula vera MM cell culture.
Kovacheva, Elena; Georgiev, Milen; Pashova, Svetlana; Angelova, Maria; Ilieva, Mladenka
2006-01-01
This study was conducted to evaluate the radical scavenging capacities of extracts and preparations from a Lavandula vera MM plant cell culture with different rosmarinic acid content and to compare them with pure rosmarinic and caffeic acids as well. The methods, which were used are superoxide anion and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt radicals scavenging assays. Results showed that extracts and preparations from Lavandula vera MM possess strong radical scavengers, as the best both radical scavengers appeared to be the fractions with enriched rosmarinic acid content, obtained after ethylacetate fractioning (47.7% inhibition of superoxide radicals and 14.2 microM 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid equivalents, respectively). These data reveal the possibilities for application of these preparations as antioxidants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janata, E.; Schuler, R.H.
1980-12-11
Improvements in conductometric pulse radiolysis methods allow direct observation of the protonation of the acetone ketyl radical anion on the 10-ns time scale. The protonation period of 9.7 +- 0.5 ns determined here is in good agreement with that estimated from the ESR line broadening studies of Laroff and Fessenden, (J. Phys. Chem., 77, 1283(1973)).
Potentiation of antimicrobial photodynamic inactivation by inorganic salts.
Hamblin, Michael R
2017-11-01
Antimicrobial photodynamic inactivation (aPDI) involves the use of non-toxic dyes excited with visible light to produce reactive oxygen species (ROS) that can destroy all classes of microorganisms including bacteria, fungi, parasites, and viruses. Selectivity of killing microbes over host mammalian cells allows this approach (antimicrobial photodynamic therapy, aPDT) to be used in vivo as an alternative therapeutic approach for localized infections especially those that are drug-resistant. Areas covered: We have discovered that aPDI can be potentiated (up to 6 logs of extra killing) by the addition of simple inorganic salts. The most powerful and versatile salt is potassium iodide, but potassium bromide, sodium thiocyanate, sodium azide and sodium nitrite also show potentiation. The mechanism of potentiation with iodide is likely to be singlet oxygen addition to iodide to form iodine radicals, hydrogen peroxide and molecular iodine. Another mechanism involves two-electron oxidation of iodide/bromide to form hypohalites. A third mechanism involves a one-electron oxidation of azide anion to form azide radical. Expert commentary: The addition of iodide has been shown to improve the performance of aPDT in several animal models of localized infection. KI is non-toxic and is an approved drug for antifungal therapy, so its transition to clinical use in aPDT should be straightforward.
Insight into the Chemical Compass Mechanism of Cryptochromes by Computational Investigation
NASA Astrophysics Data System (ADS)
Pachter, Ruth; Hong, Gongyi
2014-03-01
In this work we investigated aspects of the light-dependent inclination compass, largely assumed in avian magnetic perception, e.g. of European robins. It is postulated that radical pairs (RPs) are formed in cryptochrome (Cry) photoreceptors that contain a redox-active flavin adenine dinucleotide (FAD) in proximity to a Trp triad. The hypothesis was previously rationalized theoretically for the Cry from Arabidopsis thaliana (AtCry1), and the pKa of the proximate residue (PR) to the FAD we derived from QM/MM MD simulations is consistent with this assumption. However, attempts to extrapolate the results to other species are complicated. In the Cry from Drosophila melanogaster (DmCry1), which demonstrated a magnetic response, the FAD anionic radical ground state differs from an oxidized form in AtCry1, and the PR to the FAD is Cys rather than Asp in AtCry1. Investigation for DmCry1 model compounds, showing potential feasibility of a RP mechanism, will be described, where the calculated excitation energy is in agreement with experiment. Involvement of a Tyr instead of Trp in the triad was also considered. Because Crys from the garden warbler form RPs, a RP mechanism was examined, based on a 3D structure derived by homology modeling and MD simulations.
Carballal, Sebastián; Cuevasanta, Ernesto; Yadav, Pramod K.; Gherasim, Carmen; Ballou, David P.; Alvarez, Beatriz; Banerjee, Ruma
2016-01-01
Cystathionine β-synthase (CBS) is a pyridoxal phosphate-dependent enzyme that catalyzes the condensation of homocysteine with serine or with cysteine to form cystathionine and either water or hydrogen sulfide, respectively. Human CBS possesses a noncatalytic heme cofactor with cysteine and histidine as ligands, which in its oxidized state is relatively unreactive. Ferric CBS (Fe(III)-CBS) can be reduced by strong chemical and biochemical reductants to Fe(II)-CBS, which can bind carbon monoxide (CO) or nitric oxide (NO•), leading to inactive enzyme. Alternatively, Fe(II)-CBS can be reoxidized by O2 to Fe(III)-CBS, forming superoxide radical anion (O2˙̄). In this study, we describe the kinetics of nitrite (NO2−) reduction by Fe(II)-CBS to form Fe(II)NO•-CBS. The second order rate constant for the reaction of Fe(II)-CBS with nitrite was obtained at low dithionite concentrations. Reoxidation of Fe(II)NO•-CBS by O2 showed complex kinetic behavior and led to peroxynitrite (ONOO−) formation, which was detected using the fluorescent probe, coumarin boronic acid. Thus, in addition to being a potential source of superoxide radical, CBS constitutes a previously unrecognized source of NO• and peroxynitrite. PMID:26867575
New type of borophosphate anionic radical in the crystal structure of CsAl2BP6O20
NASA Astrophysics Data System (ADS)
Shvanskaya, L. V.; Yakubovich, O. V.; Belik, V. I.
2016-09-01
The crystal structure of a new borophosphate CsAl2BP6O20 obtained by spontaneous crystallization in a multicomponent Cs-Cu-B-P-O system is determined by X-ray diffraction ( a = 11.815(2), b = 10.042(2), and c = 26.630(4) Å; space group Pbca, Z = 8, V = 3159.5(10) Å3; R 1 = 0.043). A new type of borophosphate anionic 2D radical characterized by the lowest B: P = 1: 6 ratio and containing P3O10 phosphate groups is found in the compound. A mixed-type anionic framework consisting of vertex-sharing BO4 and PO4 tetrahedra and AlO6 octahedra is distinguished in the structure. Large cesium atoms are located in the channels of the framework. Topological relationships are revealed between the structures of the CsAl3(P3O10)2 and CsAl2BP6O20 phases having different cationic compositions. These compounds can be considered quasi-polytypic phases.
Polymerization as a Model Chain Reaction
ERIC Educational Resources Information Center
Morton, Maurice
1973-01-01
Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)
ERIC Educational Resources Information Center
Gilbert, George L., Ed.
1987-01-01
Provides instructions on conducting four demonstrations for the chemistry classroom. Outlines procedures for demonstrations dealing with coupled oscillations, the evaporation of liquids, thioxanthone sulfone radical anion, and the control of variables and conservation of matter. (TW)
Molecular Targets Underlying the Anticancer Effects of Quercetin: An Update
Khan, Fazlullah; Niaz, Kamal; Maqbool, Faheem; Ismail Hassan, Fatima; Abdollahi, Mohammad; Nagulapalli Venkata, Kalyan C.; Nabavi, Seyed Mohammad; Bishayee, Anupam
2016-01-01
Quercetin, a medicinally important member of the flavonoid family, is one of the most prominent dietary antioxidants. It is present in a variety of foods—including fruits, vegetables, tea, wine, as well as other dietary supplements—and is responsible for various health benefits. Numerous pharmacological effects of quercetin include protection against diseases, such as osteoporosis, certain forms of malignant tumors, and pulmonary and cardiovascular disorders. Quercetin has the special ability of scavenging highly reactive species, such as hydrogen peroxide, superoxide anion, and hydroxyl radicals. These oxygen radicals are called reactive oxygen species, which can cause oxidative damage to cellular components, such as proteins, lipids, and deoxyribonucleic acid. Various oxygen radicals play important roles in pathophysiological and degenerative processes, such as aging. Subsequently, several studies have been performed to evaluate possible advantageous health effects of quercetin and to collect scientific evidence for these beneficial health claims. These studies also gather data in order to evaluate the exact mechanism(s) of action and toxicological effects of quercetin. The purpose of this review is to present and critically analyze molecular pathways underlying the anticancer effects of quercetin. Current limitations and future directions of research on this bioactive dietary polyphenol are also critically discussed. PMID:27589790
Narongchai, Paitoon; Niwatananun, Kanokporn; Narongchai, Siripun; Kusirisin, Winthana; Jaikang, Churdsak
2016-01-01
Caffeic acid (CAF) and its amide analogues, ethyl 1-(3',4'-dihydroxyphenyl) propen amide (EDPA), phenethyl 1-(3',4'-dihydroxyphenyl) propen amide (PEDPA), phenmethyl 1- (3',4'-dihydroxyphenyl) propen amide (PMDPA) and octyl 1-(3',4'-dihydroxyphenyl) propen amide (ODPA) were investigated for the inhibition of procarcinogen activating enzyme. CYP1A2 and scavenging activity on formation of nitric oxide, superoxide anion, DPPH radical and hydroxyl radical. It was found that they inhibited CYP1A2 enzyme by uncompetitive inhibition. Apparent Ki values of CAF, EDPA, PEDPA, PMDPA and ODPA were 0.59, 0.39, 0.45, 0.75 and 0.80 µM, respectively suggesting potent inhibitors of CYP1A2. Moreover, they potentially scavenged nitric oxide radical with IC 50 values of 0.12, 0.22, 0.28, 0.22 and 0.51 mM, respectively. The IC50 values of superoxide anion scavenging were 0.20, 0.22, 0.44, 2.18 and 2.50 mM, respectively. 1, 1- diphenyl-2- picrylhydrazyl (DPPH) radical-scavenging ability, shown as IC50 values, were 0.41, 0.29, 0.30, 0.89 and 0.84 mM, respectively. Moreover, the hydroxyl radical scavenging in vitro model was shown as IC50 values of 23.22, 21.06, 17.10, 17.21 and 15.81 µM, respectively. From our results, caffeic acid and its amide analogues are in vitro inhibitors of human CYP1A2 catalytic activity and free radical formation. They may be useful to be developed as potential chemopreventive agents that block CYP1A2-mediated chemical carcinogenesis.
Lim, Jong Tae; Kim, Kyung Nam; Yeom, Geun Young
2009-12-01
Organic light-emitting diodes (OLEDs) with a Ba-doped tris(8-quinolinolato)aluminum(III) (Alq3) layer were fabricated to reduce the barrier height for electron injection and to improve the electron conductivity. In the OLED consisting of glass/ITO/4,4',4"-tris[2-naphthylphenyl-1-phenylamino]triphenylamine (2-TNATA, 30 nm)/4,4'-bis[N-(1-napthyl)-N-phenyl-amino]-biphenyl (NPB, 18 nm)/Alq3 (42 nm)/Ba-doped Alq3 (20 nm, x%: x = 0, 10, 25, and 50)/Al (100 nm), the device with the Alq3 layer doped with 10% Ba showed the highest light out-coupling characteristic. However, as the Ba dopant concentration was increased from 25% to 50%, this device characteristic was largely reduced. The characteristics of these devices were interpreted on the basis of the chemical reaction between Ba and Alq3 and the electron injection property by analyzing the electronic structure of the Ba-doped Alq3 layer. At a low Ba doping of 10%, mainly the Alq3 radical anion species was formed. In addition, the barrier height for electron injection in this layer was decreased to 0.6 eV, when compared to the pristine Alq3 layer. At a high Ba doping of 50%, the Alq3 molecules were severely decomposed. When the Ba dopant concentration was changed, the light-emitting characteristics of the devices were well coincided with the formation mechanism of Alq3 radical anion and Alq3 decomposition species.
Sytykiewicz, Hubert; Chrzanowski, Grzegorz; Czerniewicz, Paweł; Sprawka, Iwona; Łukasik, Iwona; Goławska, Sylwia; Sempruch, Cezary
2014-01-01
The purpose of this report was to evaluate the expression patterns of selected glutathione transferase genes (gst1, gst18, gst23 and gst24) in the tissues of two maize (Zea mays L.) varieties (relatively resistant Ambrozja and susceptible Tasty Sweet) that were colonized with oligophagous bird cherry-oat aphid (Rhopalosiphum padi L.) or monophagous grain aphid (Sitobion avenae L.). Simultaneously, insect-triggered generation of superoxide anion radicals (O2 •−) in infested Z. mays plants was monitored. Quantified parameters were measured at 1, 2, 4, 8, 24, 48 and 72 h post-initial aphid infestation (hpi) in relation to the non-infested control seedlings. Significant increases in gst transcript amounts were recorded in aphid-stressed plants in comparison to the control seedlings. Maximal enhancement in the expression of the gst genes in aphid-attacked maize plants was found at 8 hpi (gst23) or 24 hpi (gst1, gst18 and gst24) compared to the control. Investigated Z. mays cultivars formed excessive superoxide anion radicals in response to insect treatments, and the highest overproduction of O2 •− was noted 4 or 8 h after infestation, depending on the aphid treatment and maize genotype. Importantly, the Ambrozja variety could be characterized as having more profound increments in the levels of gst transcript abundance and O2 •− generation in comparison with the Tasty Sweet genotype. PMID:25365518
Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate
NASA Astrophysics Data System (ADS)
Wu, Shaofei; Wang, Wenxi; Li, Minchan; Cao, Lujie; Lyu, Fucong; Yang, Mingyang; Wang, Zhenyu; Shi, Yang; Nan, Bo; Yu, Sicen; Sun, Zhifang; Liu, Yao; Lu, Zhouguang
2016-11-01
It is a challenge to prepare organic electrodes for sodium-ion batteries with long cycle life and high capacity. The highly reactive radical intermediates generated during the sodiation/desodiation process could be a critical issue because of undesired side reactions. Here we present durable electrodes with a stabilized α-C radical intermediate. Through the resonance effect as well as steric effects, the excessive reactivity of the unpaired electron is successfully suppressed, thus developing an electrode with stable cycling for over 2,000 cycles with 96.8% capacity retention. In addition, the α-radical demonstrates reversible transformation between three states: C=C α-C.radical and α-C- anion. Such transformation provides additional Na+ storage equal to more than 0.83 Na+ insertion per α-C radical for the electrodes. The strategy of intermediate radical stabilization could be enlightening in the design of organic electrodes with enhanced cycling life and energy storage capability.
Masuoka, Noriyoshi; Nihei, Ken-ichi; Maeta, Ayami; Yamagiwa, Yoshiro; Kubo, Isao
2015-01-01
5-Pentadecatrienylresorcinol, isolated from cashew nuts and commonly known as cardol (C₁₅:₃), prevented the generation of superoxide radicals catalysed by xanthine oxidase without the inhibition of uric acid formation. The inhibition kinetics did not follow the Michelis-Menten equation, but instead followed the Hill equation. Cardol (C₁₀:₀) also inhibited superoxide anion generation, but resorcinol and cardol (C₅:₀) did not inhibit superoxide anion generation. The related compounds 3,5-dihydroxyphenyl alkanoates and alkyl 2,4-dihydroxybenzoates, had more than a C9 chain, cooperatively inhibited but alkyl 3,5-dihydroxybenzoates, regardless of their alkyl chain length, did not inhibit the superoxide anion generation. These results suggested that specific inhibitors for superoxide anion generation catalysed by xanthine oxidase consisted of an electron-rich resorcinol group and an alkyl chain having longer than C9 chain. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dong, Ya-Ru; Cheng, Shu-Jie; Qi, Guo-Hong; Yang, Zhi-Ping; Yin, Shi-Yu; Chen, Gui-Tang
2017-04-01
FVP is polysacchrides obtained from Flammulina velutipes. A polysacchride named FVP2 was isolated from FVP by DEAE cellulose-52 chromatography and Sephadex G-100 size-exclusion chromatography. FVP-Fe and FVP2-Fe were synthesized by neutralization of FeCl 3 carbohydrate solution. The antibacterial and antifungal activities of FVP, FVP2, FVP-Fe, FVP2-Fe were investigated and their antioxidant effects on hydroxyl, 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide anion, 2,2'-azobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, reducing power, inhibition of malondialdehyde (MDA) were assessed in vitro. The results suggested that FVP-Fe and FVP2-Fe significantly suppressed the growth of bacteria Staphylococcus aureus, Escherichia coli, and Bacillus subtilis, and have relatively strong antioxidant activity to scavenge superoxide anion radical. In addition, FVP exhibited strong antioxidant activity to eliminate hydroxyl, DPPH, ABTS radicals, had high reducing power and inhibited the MDA production of health mice liver homogenate induced by auto-oxidation and Fe 2+ -H 2 O 2 system. Copyright © 2016 Elsevier Ltd. All rights reserved.
The oxidation of amino acids by ferrate(V). A pre-mix pulse radiolysis study.
Rush, J D; Bielski, B H
1995-06-01
The forms of ferrate(V) which are derived from the one-electron reduction of potassium ferrate (K2FeO4) by ethanol radicals react with representative amino acids (glycine, methionine, phenylalanine and serine) at rates that are greater than 10(5)M-1s-1 near pH 10. The predominant interaction in the alkaline pH range is between the protonated ferrate(V) species, HFeO4(2-), and the amino acid anion. Fe(V) + amino acid-->Fe(III) + NH3 + alpha-keto acid The rate-determining process is the two electron reduction of ferrate(V) to iron(III) with oxidation and subsequent deamination of the amino acid. The reaction appears to involve an entry of the amino acid into the inner coordination sphere of ferrate(V). In all cases, ferrate(V) exhibits preferred attack on the amino group in contrast to the OH radical which attacks the thioether site of methionine and the phenyl ring of phenylalanine.
Höckendorf, Robert F; Hao, Qiang; Sun, Zheng; Fox-Beyer, Brigitte S; Cao, Yali; Balaj, O Petru; Bondybey, Vladimir E; Siu, Chi-Kit; Beyer, Martin K
2012-04-19
The chemistry of (H(2)O)(n)(•-), CO(2)(•-)(H(2)O)(n), and O(2)(•-)(H(2)O)(n) with small sulfur-containing molecules was studied in the gas phase by Fourier transform ion cyclotron resonance mass spectrometry. With hydrated electrons and hydrated carbon dioxide radical anions, two reactions with relevance for biological radiation damage were observed, cleavage of the disulfide bond of CH(3)SSCH(3) and activation of the thiol group of CH(3)SH. No reactions were observed with CH(3)SCH(3). The hydrated superoxide radical anion, usually viewed as major source of oxidative stress, did not react with any of the compounds. Nanocalorimetry and quantum chemical calculations give a consistent picture of the reaction mechanism. The results indicate that the conversion of e(-) and CO(2)(•-) to O(2)(•-) deactivates highly reactive species and may actually reduce oxidative stress. For reactions of (H(2)O)(n)(•-) with CH(3)SH as well as CO(2)(•-)(H(2)O)(n) with CH(3)SSCH(3), the reaction products in the gas phase are different from those reported in the literature from pulse radiolysis studies. This observation is rationalized with the reduced cage effect in reactions of gas-phase clusters. © 2012 American Chemical Society
Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F
2018-01-15
Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.
Makavitskaya, M; Svistunenko, D; Navaselsky, I; Hryvusevich, P; Mackievic, V; Rabadanova, C; Tyutereva, E; Samokhina, V; Straltsova, D; Sokolik, A; Voitsekhovskaja, O; Demidchik, V
2018-02-17
Ascorbate is not often considered as a signalling molecule in plants. This study demonstrates that, in Arabidopsis roots, exogenous L-ascorbic acid triggers a transient increase of the cytosolic free calcium activity ([Ca2+]cyt.) that is central to plant signalling. Exogenous copper and iron stimulates the ascorbate-induced [Ca2+]cyt. elevation while cation channel blockers, free radical scavengers, low extracellular [Ca2+], transition metal chelators and removal of the cell wall inhibit this reaction. These data show that apoplastic redox-active transition metals are involved in the ascorbate-induced [Ca2+]cyt. elevation. Exogenous ascorbate also induces a moderate increase in programmed cell death symptoms in intact roots, but it does not activate Ca2+ influx currents in patch-clamped root protoplasts. Intriguingly, the replacement of gluconate with ascorbate in the patch-clamp pipette reveales a large ascorbate efflux current, which shows sensitivity to the anion channel blocker, anthracene-9-carboxylic acid (A9C), indicative of the ascorbate release via anion channels. EPR spectroscopy measurements demonstrates that salinity (NaCl) triggers the accumulation of root apoplastic ascorbyl radicals in A9C-dependent manner, confirming that L-ascorbate leaks through anion channels under depolarisation. This mechanism may underlie ascorbate release, signalling phenomena, apoplastic redox reactions, iron acquisition and control the ionic and electrical equilibrium (together K+ efflux via GORK channels).
NASA Astrophysics Data System (ADS)
Kuznietsova, I.; Rudzinski, K. J.; Szmigielski, R.; Laboratory of the Environmental Chemistry
2011-12-01
Atmospheric aerosols exhibit an important role in the environment. They have implications on human health and life, and - in the larger scale - on climate, the Earth's radiative balance and the cloud's formation. Organic matter makes up a significant fraction of atmospheric aerosols (~35% to ~90%) and may originate from direct emissions (primary organic aerosol, POA) or result from complex physico-chemical processes of volatile organic compounds (secondary organic aerosol, SOA). Isoprene (2-methyl-buta-1,3-diene) is one of the relevant volatile precursor of ambient SOA in the atmosphere. It is the most abundant non-methane hydrocarbon emitted to the atmosphere as a result of living vegetation. According to the recent data, the isoprene emission rate is estimated to be at the level of 500 TgC per year. While heterogeneous transformations of isoprene have been well documented, aqueous-phase reactions of this hydrocarbon with radical species that lead to the production of new class of wet SOA components such as polyols and their sulfate esters (organosulfates), are still poorly recognized. The chain reactions of isoprene with sulfoxy radical-anions (SRA) are one of the recently researched route leading to the formation of organosulfates in the aqueous phase. The letter radical species originate from the auto-oxidation of sulfur dioxide in the aqueous phase and are behind the phenomenon of atmospheric acid rain formation. This is a complicated chain reaction that is catalyzed by transition metal ions, such as manganese(II), iron(III) and propagated by sulfoxy radical anions . The presented work addresses the chemical interaction of isoprene with sulfoxy radical-anions in the water solution in the presence of nitrite ions and nitrous acid, which are important trace components of the atmosphere. We showed that nitrite ions and nitrous acid significantly altered the kinetics of the auto-oxidation of SO2 in the presence of isoprene at different solution acidity from 2 to 8.7. The presence of nitrogen-containing inorganic salts strongly impact the formation of novel organosulfur products, whereas no organonitrates were observed. A detailed characterization of these products with the triple-quadruple negative electrospray mass spectrometry (-)ESI-MS/MS revealed oxygenated polar species with C-5 skeleton bearing SO3H (MW 182, 180) and SO2H (MW 166, 164) moieties on the hydroxyl group. The structures of these products were firmly confirmed by comparison of their liquid chromatography and mass spectrometry behaviors with that corresponding to the synthesized model compounds. It is believed that newly discovered highly polar low molecular weight compounds may contribute to the growth of wet aerosol particles by the formation of higher molecular weight species.
Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides
NASA Astrophysics Data System (ADS)
Moss, Christopher L.; Chung, Thomas W.; Wyer, Jean A.; Nielsen, Steen Brøndsted; Hvelplund, Preben; Tureček, František
2011-04-01
Electron transfer and capture mass spectra of a series of doubly charged ions that were phosphorylated pentapeptides of a tryptic type (pS,A,A,A,R) showed conspicuous differences in dissociations of charge-reduced ions. Electron transfer from both gaseous cesium atoms at 100 keV kinetic energies and fluoranthene anion radicals in an ion trap resulted in the loss of a hydrogen atom, ammonia, and backbone cleavages forming complete series of sequence z ions. Elimination of phosphoric acid was negligible. In contrast, capture of low-energy electrons by doubly charged ions in a Penning ion trap induced loss of a hydrogen atom followed by elimination of phosphoric acid as the dominant dissociation channel. Backbone dissociations of charge-reduced ions also occurred but were accompanied by extensive fragmentation of the primary products. z-Ions that were terminated with a deaminated phosphoserine radical competitively eliminated phosphoric acid and H2PO4 radicals. A mechanism is proposed for this novel dissociation on the basis of a computational analysis of reaction pathways and transition states. Electronic structure theory calculations in combination with extensive molecular dynamics mapping of the potential energy surface provided structures for the precursor phosphopeptide dications. Electron attachment produces a multitude of low lying electronic states in charge-reduced ions that determine their reactivity in backbone dissociations and H- atom loss. The predominant loss of H atoms in ECD is explained by a distortion of the Rydberg orbital space by the strong dipolar field of the peptide dication framework. The dipolar field steers the incoming electron to preferentially attach to the positively charged arginine side chain to form guanidinium radicals and trigger their dissociations.
Reduction mechanisms of additives on Si anodes of Li-ion batteries.
Martínez de la Hoz, Julibeth M; Balbuena, Perla B
2014-08-28
Solid-electrolyte interphase (SEI) layers are films deposited on the surface of Li-ion battery electrodes during battery charge and discharge processes. They are due to electrochemical instability of the electrolyte which causes electron transfer from (to) the anode (cathode) surfaces. The films could have a protective passivating role and therefore understanding the detailed reduction (oxidation) processes is essential. Here density functional theory and ab initio molecular dynamics simulations are used to investigate the reduction mechanisms of vinylene carbonate (VC) and fluoroethylene carbonate (FEC) on lithiated silicon surfaces. These species are frequently used as "additives" to improve the SEI properties. It is found that on lithiated Si anodes (with low to intermediate degrees of lithiation) VC may be reduced via a 2e(-) mechanism yielding an opened VC(2-) anion. At higher degrees of lithiation, such a species receives two extra electrons from the surface resulting in an adsorbed CO(2-)(ads) anion and a radical anion ˙OC2H2O(2-). Additionally, in agreement with experimental observations, it is shown that CO2 can be generated from reaction of VC with the CO3(2-)anion, a product of the reduction of the main solvent, ethylene carbonate (EC). On the other hand, FEC reduction on LixSiy surfaces is found to be independent of the degree of lithiation, and occurs through three mechanisms. One of them leads to an adsorbed VC(2-) anion upon release from the FEC molecule and adsorption on the surface of F(-) and one H atom. Thus in some cases, the reduction of FEC may lead to the exact same reduction products as that of VC, which explains similarities in SEI layers formed in the presence of these additives. However, FEC may be reduced via two other multi-electron transfer mechanisms that result in formation of either CO2(2-), F(-), and ˙CH2CHO(-) or CO(2-), F(-), and ˙OCH2CHO(-). These alternative reduction products may oligomerize and form SEI layers with different components than those formed in the presence of VC. In all cases, FEC reduction also leads to formation of LiF moieties on the anode surface, in agreement with reported experimental data. The crucial role of the surface in each of these mechanisms is thoroughly explained.
DeVine, Jessalyn A.; Levine, Daniel S.; Kim, Jongjin B.; Neumark, Daniel M.
2016-01-01
Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. Here, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C14H9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm−1 resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excited states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck–Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck–Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data. PMID:26792521
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weichman, Marissa L.; DeVine, Jessalyn A.; Levine, Daniel S.
Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. In this paper, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C 14H 9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm -1 resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excitedmore » states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck–Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck–Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Finally and additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data.« less
Weichman, Marissa L.; DeVine, Jessalyn A.; Levine, Daniel S.; ...
2016-01-20
Polycyclic aromatic hydrocarbons, in various charge and protonation states, are key compounds relevant to combustion chemistry and astrochemistry. In this paper, we probe the vibrational and electronic spectroscopy of gas-phase 9-, 1-, and 2-anthracenyl radicals (C 14H 9) by photodetachment of the corresponding cryogenically cooled anions via slow photoelectron velocity-map imaging (cryo-SEVI). The use of a newly designed velocity-map imaging lens in combination with ion cooling yields photoelectron spectra with <2 cm -1 resolution. Isomer selection of the anions is achieved using gas-phase synthesis techniques, resulting in observation and interpretation of detailed vibronic structure of the ground and lowest excitedmore » states for the three anthracenyl radical isomers. The ground-state bands yield electron affinities and vibrational frequencies for several Franck–Condon active modes of the 9-, 1-, and 2-anthracenyl radicals; term energies of the first excited states of these species are also measured. Spectra are interpreted through comparison with ab initio quantum chemistry calculations, Franck–Condon simulations, and calculations of threshold photodetachment cross sections and anisotropies. Experimental measures of the subtle differences in energetics and relative stabilities of these radical isomers are of interest from the perspective of fundamental physical organic chemistry and aid in understanding their behavior and reactivity in interstellar and combustion environments. Finally and additionally, spectroscopic characterization of these species in the laboratory is essential for their potential identification in astrochemical data.« less
Spectroscopic studies on the antioxidant activity of p-coumaric acid.
Kiliç, Ismail; Yeşiloğlu, Yeşim
2013-11-01
p-coumaric acid (4-hydroxycinnamic acid), a phenolic acid, is a hydroxyl derivative of cinnamic acid. It decreases low density lipoprotein (LDL) peroxidation and reduces the risk of stomach cancer. In vitro radical scavenging and antioxidant capacity of p-coumaric acid were clarified using different analytical methodologies such as total antioxidant activity determination by ferric thiocyanate, hydrogen peroxide scavenging, 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging activity and superoxide anion radical scavenging, ferrous ions (Fe(2+)) chelating activity and ferric ions (Fe(3+)) reducing ability. p-Coumaric acid inhibited 71.2% lipid peroxidation of a linoleic acid emulsion at 45μg/mL concentration. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and ascorbic acid displayed 66.8%, 69.8%, 64.5% and 59.7% inhibition on the peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, p-coumaric acid had an effective DPPH scavenging, ABTS(+) scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe(3+)) reducing power and ferrous ions (Fe(2+)) chelating activities. Also, those various antioxidant activities were compared to BHA, BHT, α-tocopherol and ascorbic acid as references antioxidant compounds. These results suggested that p-coumaric acid can be used in the pharmacological and food industry because of these properties. Copyright © 2013 Elsevier B.V. All rights reserved.
Korn, Joseph A; Urban, Jan; Dang, Andy; Nguyen, Huong T H; Tureček, František
2017-09-07
We report the generation of deoxyriboadenosine dinucleotide cation radicals by gas-phase electron transfer to dinucleotide dications and their noncovalent complexes with crown ether ligands. Stable dinucleotide cation radicals of a novel hydrogen-rich type were generated and characterized by tandem mass spectrometry and UV-vis photodissociation (UVPD) action spectroscopy. Electron structure theory analysis indicated that upon electron attachment the dinucleotide dications underwent a conformational collapse followed by intramolecular proton migrations between the nucleobases to give species whose calculated UV-vis absorption spectra matched the UVPD action spectra. Hydrogen-rich cation radicals generated from chimeric riboadenosine 5'-diesters gave UVPD action spectra that pointed to novel zwitterionic structures consisting of aromatic π-electron anion radicals intercalated between stacked positively charged adenine rings. Analogies with DNA ionization are discussed.
Steudel, Ralf; Steudel, Yana
2013-02-25
The sodium-sulfur (NAS) battery is a candidate for energy storage and load leveling in power systems, by using the reversible reduction of elemental sulfur by sodium metal to give a liquid mixture of polysulfides (Na(2)S(n)) at approximately 320°C. We investigated a large number of reactions possibly occurring in such sodium polysulfide melts by using density functional calculations at the G3X(MP2)/B3LYP/6-31+G(2df,p) level of theory including polarizable continuum model (PCM) corrections for two polarizable phases, to obtain geometric and, for the first time, thermodynamic data for the liquid sodium-sulfur system. Novel reaction sequences for the electrochemical reduction of elemental sulfur are proposed on the basis of their Gibbs reaction energies. We suggest that the primary reduction product of S(8) is the radical anion S(8)(˙-), which decomposes at the operating temperature of NAS batteries exergonically to the radicals S(2)(˙-) and S(3)(˙-) together with the neutral species S(6) and S(5), respectively. In addition, S(8)(˙-) is predicted to disproportionate exergonically to S(8) and S(8)(2-) followed by the dissociation of the latter into two S(4)(˙-) radical ions. By recombination reactions of these radicals various polysulfide dianions can in principle be formed. However, polysulfide dianions larger than S(4)(2-) are thermally unstable at 320°C and smaller dianions as well as radical monoanions dominate in Na(2)S(n) (n=2-5) melts instead. The reverse reactions are predicted to take place when the NAS battery is charged. We show that ion pairs of the types NaS(2)˙, NaS(n)(-), and Na(2)S(n) can be expected at least for n=2 and 3 in NAS batteries, but are unlikely in aqueous sodium polysulfide except at high concentrations. The structures of such radicals and anions with up to nine sulfur atoms are reported, because they are predicted to play a key role in the electrochemical reduction process. A large number of isomerization, disproportionation, and sulfurization reactions of polysulfide mono- and dianions have been investigated in the gas phase and in a polarizable continuum, and numerous reaction enthalpies as well as Gibbs energies are reported. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lanthanide Triangles Supported by Radical Bridging Ligands.
Dolinar, Brian S; Alexandropoulos, Dimitris I; Vignesh, Kuduva R; James, Tia'Asia; Dunbar, Kim R
2018-01-24
The first examples of metallacycles containing rare earth ions bridged by radicals are reported. The molecular triangles [Ln 3 (hfac) 6 (bptz •- ) 3 ] (Ln = Dy III , Y III ; hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) consist of lanthanide ions bridged by bptz radical anion (bptz •- ) ligands. Magnetic susceptibility measurements and CASSCF calculations performed on [Dy 3 (hfac) 6 (bptz •- ) 3 ] reveal the presence of antiferromagnetic coupling between the Dy III centers and the bptz •- ligands, with J = -6.62 cm -1 .
A novel squarylium dye for monitoring oxidative processes in lipid membranes.
Trusova, Valeriya M; Gorbenko, Galyna P; Deligeorgiev, Todor; Gadjev, Nikolai; Vasilev, Aleksey
2009-11-01
A novel squaraine probe SQ-1 has been found to be appropriate for monitoring the peroxidation processes in membrane systems. Formation of free radicals was triggered by methemoglobin (metHb) or cytochrome c (cyt c) binding to the model lipid membranes composed of zwitterionic lipid phosphatidylcholine (PC) and anionic lipid cardiolipin (CL). Protein association with the lipid vesicles was followed by drastic quenching of SQ-1 fluorescence. The observed spectral changes were suppressed in the presence of free radical scavengers, butylated hydroxytoluene (BHT) and thiourea (TM) suggesting that SQ-1 decolorization can be attributed to its reactions with lipid radicals.
Biochemical establishment and characterization of EncM's flavin-N5-oxide cofactor
Teufel, Robin; Stull, Frederick; Meehan, Michael J.; Michaudel, Quentin; Dorrestein, Pieter C.; Palfey, Bruce; Moore, Bradley S.
2016-01-01
The ubiquitous flavin-dependent monooxygenases commonly catalyze oxygenation reactions by means of a transient C4a-peroxyflavin. A recent study, however, suggested an unprecedented flavin-oxygenating species - proposed as the flavin-N5-oxide (FlN5[O]) - as key to an oxidative Favorskii-type rearrangement in the biosynthesis of the bacterial polyketide antibiotic enterocin. This stable superoxidized flavin is covalently tethered to the enzyme EncM and converted into FADH2 (Flred) during substrate turnover. Subsequent reaction of Flred with molecular oxygen restores the postulated FlN5[O] via an unknown pathway. Here we provide direct evidence for the FlN5[O] species via isotope labeling, proteolytic digestion, and high-resolution tandem mass spectrometry of EncM. We propose that formation of this species occurs by hydrogen-transfer from Flred to molecular oxygen, allowing radical coupling of the formed protonated superoxide and anionic flavin semiquinone at N5, before elimination of water affords the FlN5[O] cofactor. Further biochemical and spectroscopic investigations reveal important features of the FlN5[O] species and the EncM catalytic mechanism. We speculate that flavin-N5-oxides may be intermediates or catalytically active species in other flavoproteins that form the anionic semiquinone and promote access of oxygen to N5. PMID:26067765
Antioxidant properties of Aller-7, a novel polyherbal formulation for allergic rhinitis.
D'Souza, P; Amit, A; Saxena, V S; Bagchi, D; Bagchi, M; Stohs, S J
2004-01-01
Allergic rhinitis, a frequently occurring immunological disorder affecting men, women and children worldwide, is a state of hypersensitivity that occurs when the body overreacts to a substance such as pollen, mold, mites or dust. Allergic rhinitis exerts inflammatory response and irritation of the nasal mucosal membranes leading to sneezing; stuffy/runny nose; nasal congestion; and itchy, watery and swollen eyes. A novel, safe polyherbal formulation (Aller-7/NR-A2) has been developed for the treatment of allergic rhinitis using a unique combination of extracts from seven medicinal plants including Phyllanthus emblica, Terminalia chebula, Terminalia bellerica, Albizia lebbeck, Piper nigrum, Zingiber officinale and Piper longum. In this study, the antioxidant efficacy of Aller-7 was investigated by various assays including hydroxyl radical scavenging assay, superoxide anion scavenging assay, 1,1-diphenyl-2-picryl hydrazyl (DPPH) and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical scavenging assays. The protective effect of Aller-7 on free radical-induced lysis of red blood cells and inhibition of nitric oxide release by Aller-7 in lipopolysaccharide-stimulated murine macrophages were determined. Aller-7 exhibited concentration-dependent scavenging activities toward biochemically generated hydroxyl radicals (IC50 741.73 microg/ml); superoxide anion (IC50 24.65 microg/ml by phenazine methosulfate-nicotinamide adenine dinucleotide [PMS-NADH] assay and IC50 4.27 microg/ml by riboflavin/nitroblue tetrazolium [NBT] light assay), nitric oxide (IC50 16.34 microg/ml); 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical (IC50 5.62 microg/ml); and 2,2-azinobis-ethyl-benzothiozoline-sulphonic acid diammonium salt (ABTS) radical (IC50 7.35 microg/ml). Aller-7 inhibited free radical-induced hemolysis in the concentration range of 20-80 microg/ml. Aller-7 also significantly inhibited nitric oxide release from lipopolysaccharide-stimulated murine macrophages. These results demonstrate that Aller-7 is a potent scavenger of free radicals and that it may serve.
Relative stability of radicals derived from artemisinin: A semiempirical and DFT study
NASA Astrophysics Data System (ADS)
Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.
The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.
NASA Astrophysics Data System (ADS)
Zhuang, Yongliang; Li, Bafang; Zhao, Xue
2009-06-01
Fish skin collagen hydrolysates (FSCH) were prepared from walleye pollock ( Theragra chalcogramma) using a mixture of enzymes, namely trypsin and flavourzyme. The degree of hydrolysis of the skin collagen was 27.3%. FSCH was mainly composed of low-molecular-weight peptides and the relative proportion of <1000Da fraction was 70.6%. Free radical and oxygen species scavenging activities of FSCH were investigated in four model systems, including diphenylpicrylhy-drazyl radical (DPPH), superoxide anion radical, hydroxyl radical and hydrogen peroxide model, and compared with that of a native antioxidant, reduced glutathione (GSH). FSCH was also evaluated by water-absorbing and water-holding capacity. The results showed that FSCH was able to scavenge free radical and oxygen species significantly and to enhance water-absorbing and water-holding capacity remarkably. Therefore, FSCH may have potential applications in the medicine and food industries.
Identification of ion-pair structures in solution by vibrational stark effects
Hack, John; Mani, Tomoyasu; Grills, David C.; ...
2016-01-25
Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N)more » infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.« less
Identification of ion-pair structures in solution by vibrational stark effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hack, John; Mani, Tomoyasu; Grills, David C.
Here, ion pairing is a fundamental consideration in many areas of chemistry and has implications in a wide range of sciences and technologies that include batteries and organic photovoltaics. Ions in solution are known to inhabit multiple possible states, including free ions (FI), contact ion pairs (CIP), and solvent-separated ion pairs (SSIP). However, in solutions of organic radicals and nonmetal electrolytes, it is often difficult to distinguish between these states. In the first part of this work, we report evidence for the formation of SSIPs in low-polarity solvents and distinct measurements of CIP, SSIP, and FI, by using the ν(C≡N)more » infrared (IR) band of a nitrile-substituted fluorene radical anion. Use of time-resolved IR detection following pulse radiolysis allowed us to unambiguously assign the peak of the FI. In the presence of nonmetal electrolytes, two distinct red-shifted peaks were observed and assigned to the CIP and SSIP. The assignments are interpreted in the framework of the vibrational Stark effect (VSE) and are supported by (1) the solvent dependence of ion-pair populations, (2) the observation of a cryptand-separated sodium ion pair that mimics the formation of SSIPs, and (3) electronic structure calculations. In the second part of this work, we show that a blue-shift of the ν(C≡N) IR band due to the VSE can be induced in a nitrile-substituted fluorene radical anion by covalently tethering it to a metal-chelating ligand that forms an intramolecular ion pair upon reduction and complexation with sodium ion. This adds support to the conclusion that the shift in IR absorptions by ion pairing originates from the VSE. These results combined show that we can identify ion-pair structures by using the VSE, including the existence of SSIPs in a low-polarity solvent.« less
Kazeem, MI; Akanji, MA; Hafizur, Rahman M; Choudhary, MI
2012-01-01
Objective To evaluate the antioxidant and antiglycation potential of polyphenols from three spices; alligator pepper, ginger and nutmeg. Methods Polyphenol extracts of these spices were subjected to brine-shrimp lethality assay, phytotoxicity test, DPPH and superoxide anion radical scavenging as well as BSA-glucose antiglycation assay. Results Results obtained showed that polyphenol extract of ginger has the highest antioxidant potential with IC50 0.075 and 0.070 mg/mL for DPPH and superoxide anion radical scavenging assay while alligator pepper displayed highest antiglycation activity with IC50 0.125 mg/mL. However, nutmeg extract exhibited weakest cytotoxic and phytotoxic potential with LD50 4359.70 and 1490 µg/mL respectively. Conclusions It can be concluded that the polyphenol extracts of alligator pepper, ginger and nutmeg displayed good antioxidant as well as antiglycation potential and are safe for consumption. PMID:23570003
A theoretical study of the decomposition of gold (I) complexes
NASA Astrophysics Data System (ADS)
Tossell, J. A.
1998-04-01
Structures, energetics and excitation energies are calculated for the gold (I) complexes CH 3Au, (CH 3) 2Au -, CH 3AuOH 2, CH 3AuPH 3 and PH 3AuCl at the Hartree-Fock and MP2 levels of theory, and for CH 3AuP(CH 3) 3, CH 3AuP(OH) 3 and Au 3Cl 3 at the HF level. The lowest-energy neutral triplet state of each 2-coordinate compound dissociates into either two or three radical species (always including the CH 3 radical), with the exception of (CH 3) 2Au - which shows only slight Au-C bond elongation. In contrast, the doublet anion states dissociate neutral ligands, like PH 3, but do not dissociate CH 3. These results indicate that gold (I) chemical vapor deposition processes must involve excited states of the neutrals rather than their anions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, N.; Rozhkova, E.; Rajh, T.
Modification of TiO{sub 2} nanoparticles with dopamine enables harvesting of visible light and promotes spatial separation of charges. The formation of reactive oxygen species (OH, {sup 1}O{sub 2}, O{sub 2}{sup -}, HO{sub 2}, H{sub 2}O{sub 2}) upon illumination of TiO{sub 2}/dopamine was studied using complementary spin-trap EPR and radical-induced fluorescence techniques. The localization of holes on dopamine suppresses oxidation of adsorbed water molecules at the surface of nanoparticles, and thus formation of OH radicals. At the same time, dopamine does not affect electronic properties of photogenerated electrons and their reaction with dissolved oxygen to produce superoxide anions. Superoxide anions aremore » proposed to generate singlet oxygen through dismutation reaction, resulting in a low yield of {sup 1}O{sub 2} detected.« less
NASA Astrophysics Data System (ADS)
Ganesh, K.; Balraj, C.; Satheshkumar, A.; Elango, K. P.
2012-06-01
UV-vis, 1H NMR, FT-IR, mass and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and to characterize the reaction products. The interaction of DDQ with trimethoprim (TMP) and albenadazole (ALB) were found to proceed through the formation of donor-acceptor complex, containing DDQ radical anion and its conversion to the product. Fluorescence quenching studies indicated that the interaction between the donors and the acceptor are spontaneous and the interaction of TMP-DDQ (binding constant = 2.9 × 105) is found to be stronger than that the ALB-DDQ (binding constant = 3 × 103) system. Also, the binding constant increased with an increase in polarity of the medium indicating the involvement of radical anion as intermediate.
NASA Astrophysics Data System (ADS)
Hoffmann, Stanislaw K.; Goslar, Janina; Lijewski, Stefan
2012-08-01
EPR studies of Cu2+ and two free radicals formed by γ-radiation were performed for KHCO3 single crystal at room temperature. From the rotational EPR results we concluded that Cu2+ is chelated by two carbonate molecules in a square planar configuration with spin-Hamiltonian parameters g|| = 2.2349 and A|| = 18.2 mT. Free radicals were identified as neutral HOCOrad with unpaired electron localized on the carbon atom and a radical anion CO3·- with unpaired electron localized on two oxygen atoms. The hyperfine splitting of the EPR lines by an interaction with a single hydrogen atom of HOCOrad was observed with isotropic coupling constants ao = 0.31 mT. Two differently oriented radical sites were identified in the crystal unit cell. Electron spin-lattice relaxation measured by electron spin echo methods shows that both Cu2+ and free radicals relax via two-phonon Raman processes with almost the same relaxation rate. The temperature dependence of the relaxation rate 1/T1 is well described with the effective Debye temperature ΘD = 175 K obtained from a fit to the Debye-type phonon spectrum. We calculated a more realistic Debye temperature value from available elastic constant values of the crystal as ΘD = 246 K. This ΘD-value and the Debye phonon spectrum approximation give a much worse fit to the experimental results. Possible contributions from a local mode or an optical mode are considered and it is suggested that the real phonon spectrum should be used for the relaxation data interpretation. It is unusual that free radicals in KHCO3 relax similarly to the well localized Cu2+ ions, which suggests a small destruction of the host crystal lattice by the ionizing irradiation allowing well coupling between radical and lattice dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lebedeva, Natalia V.; Schmidt, Robert D.; Concepcion, Javier J.
2011-01-01
The proton-coupled electron transfer (PCET) reaction between the bpz-based photoexcited ³MLCT state of [Ru II(bpy) 2(bpz)] 2+ (bpy = 2,2'-bipyridine, bpz = 2,2'-bipyrazine) and a series of substituted hydroquinones (H₂Q) has been studied by transient absorption (TA) and time-resolved electron paramagnetic resonance (TREPR) spectroscopy at X-band. When the reaction is carried out in a CH₃CN/H₂O mixed solvent system with unsubstituted hydroquinone, the neutral semiquinone radical (4a) and its conjugate base, the semiquinone radical anion (4b), are both observed. Variation of the acid strength in the solvent mixture allows the acid/base dependence of the PCET reaction to be investigated. In solutionsmore » with very low acid concentrations, TREPR spectra exclusively derived from radical anion 4b are observed, while at very high acid concentrations, the spectrum is assigned to the protonated structure 4a. At intermediate acid concentrations, either a superposition of spectra is observed (slow exchange between 4a and 4b) or substantial broadening in the TREPR spectrum is observed (fast exchange between 4a and 4b). Variation of substituents on the H₂Q ring substantially alter this acid/base dependence and provide a means to investigate electronic effects on both the ET and PT components of the PCET process. The TA results suggest a change in mechanism from PCET to direct ET quenching in strongly basic solutions and with electron withdrawing groups on the H₂Q ring system. Changing the ligand on the Ru complex also alters the acid/base dependence of the TREPR spectra through a series of complex equilibria between protonated and deprotonated hydroquinone radicals and anions. The relative intensities of the signals from radical 4a versus 4b can be rationalized quantitatively in terms of these equilibria and the relevant pK{sub a} values. An observed equilibrium deuterium isotope effect supports the conclusion that the post-PCET HQ •/Q •- equilibrium is the most important in determining the 4a/4b ratio at early delay times.« less
Hydration effect on ion exchange resin irradiated by swift heavy ions and gamma rays
NASA Astrophysics Data System (ADS)
Boughattas, I.; Labed, V.; Gerenton, A.; Ngono-Ravache, Y.; Dannoux-Papin, A.
2018-06-01
Gamma radiolysis of ion exchange resins (IER) is widely studied since the sixties, as a function of different parameters (resin type, dose, atmosphere, water content …). However, to our knowledge, there are very few data concerning hydrogen emission from anionic and cationic resins irradiated at high Linear Energy Transfers (LET). In the present work, we focus on the influence of hydration on hydrogen emission, in anionic and cationic resins irradiated under inert atmosphere using Swift Heavy Ions (SHI) and gamma irradiations. The radiation chemical yield of molecular hydrogen is nonlinear with water content for both resins. The molecular hydrogen production depends first on the water form in IER (free or linked) and second on the solubility of degradation products. Three steps have been observed: at lower water content where G(H2) is stable, at 50%, G(H2) increases due to reactions between water radiolytic species and the resin functional groups and at high water content, G(H2) decreases probably due to its accumulation in water and its consumption by hydroxyl radicals in the supernatant.
Electron transfer by excited benzoquinone anions: slow rates for two-electron transitions.
Zamadar, Matibur; Cook, Andrew R; Lewandowska-Andralojc, Anna; Holroyd, Richard; Jiang, Yan; Bikalis, Jin; Miller, John R
2013-09-05
Electron transfer (ET) rate constants from the lowest excited state of the radical anion of benzoquinone, BQ(-•)*, were measured in THF solution. Rate constants for bimolecular electron transfer reactions typically reach the diffusion-controlled limit when the free-energy change, ΔG°, reaches -0.3 eV. The rate constants for ET from BQ(-•)* are one-to-two decades smaller at this energy and do not reach the diffusion-controlled limit until -ΔG° is 1.5-2.0 eV. The rates are so slow probably because a second electron must also undergo a transition to make use of the energy of the excited state. Similarly, ET, from solvated electrons to neutral BQ to form the lowest excited state, is slow, while fast ET is observed at a higher excited state, which can be populated in a transition involving only one electron. A simple picture based on perturbation theory can roughly account for the control of electron transfer by the need for transition of a second electron. The picture also explains how extra driving force (-ΔG°) can restore fast rates of electron transfer.
Asymmetric photoredox transition-metal catalysis activated by visible light.
Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric
2014-11-06
Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the 'green' synthesis of non-racemic chiral molecules.
Asymmetric photoredox transition-metal catalysis activated by visible light
NASA Astrophysics Data System (ADS)
Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric
2014-11-01
Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.
Römer, W; Oettel, M; Menzenbach, B; Droescher, P; Schwarz, S
1997-11-01
Antioxidant effects of N,N-dimethyl-p-toluidine, p-cresol, and p-(hydroxy)thioanisol 17 alpha-substituted analogs of 17 beta-estradiol and their delta 9(11)-dehydro homologs were investigated using four different in vitro models: rat synaptosomal lipid peroxidation induced by Fenton's reagent, Fe(II)-chelating activities, the formation of superoxide anion radicals, and total antioxidative activity. Whereas the classical estrogen 17 beta-estradiol as well as selected phenolic compounds was only moderately inhibiting iron-dependent lipid peroxidation and stimulating total antioxidative activity, besides delta 9(11)-dehydro-17 beta-estradiol (J 1213), novel estrogens such as C-17-oriented side chain analogs of 17 beta-estradiol (J 843, J 872, and J 897) and delta 9(11)-dehydro homologs (J 844, J 864, and J 898) directly altered the iron redox chemistry and diminished the formation of superoxide anion radicals generated by a xanthine/xanthine oxidase-dependent luminescence reaction to a great extent. These results suggest that definite modifications in the chemical structure of 17 beta-estradiol, e.g., the introduction of a delta 9(11)-double bond and/or p-cresol as well as p-(hydroxy)thioanisol C-17 substitution, may result in substantial changes in their antioxidant behavior. These compounds may be drug candidates for treating pathologies related to free radical formation.
Radical scavenging ability of some compounds isolated from Piper cubeba towards free radicals.
Aboul-Enein, Hassan Y; Kładna, Aleksandra; Kruk, Irena
2011-01-01
The purpose of this study was to identify the antioxidant activity of 16 compounds isolated from Piper cubeba (CNCs) through the extent of their capacities to scavenge free radicals, hydroxyl radical (HO(•)), superoxide anion radical O•(2)(-) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH(•)), in different systems. Electron paramagnetic resonance (EPR) and 5,5-dimethyl-1-pyrroline-N-oxide, DMPO, as the spin trap, and chemiluminescence techniques were applied. Using the Fenton-like reaction [Fe(II) + H(2)O(2)], CNCs were found to inhibit DMPO-OH radical formation ranging from 5 to 57% at 1.25 mmol L(-1) concentration. The examined CNCs also showed a high DPPH antiradical activity (ranging from 15 to 99% at 5 mmol L(-1) concentration). Furthermore, the results indicated that seven of the 16 tested compounds may catalyse the conversion of superoxide radicals generated in the potassium superoxide/18-crown-6 ether system, thus showing superoxide dismutase-like activity. The data obtained suggest that radical scavenging properties of CNCs might have potential application in many plant medicines. Copyright © 2010 John Wiley & Sons, Ltd.
Ionic liquids as an electrolyte for the electro synthesis of organic compounds.
Kathiresan, Murugavel; Velayutham, David
2015-12-25
The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.
Cytotoxic and radioprotective effects of Podophyllum hexandrum.
Shukla, Sandeep Kumar; Chaudhary, Pankaj; Prem Kumar, Indracanti; Afrin, Farhat; Puri, Satish Chandra; Qazi, Ghulam Nabi; Sharma, Rakesh Kumar
2006-07-01
Podophyllum hexandrum, a herb thriving in Himalayas has already been reported to exhibit antitumor and radioprotective properties. Present study was undertaken to unravel the possible mechanism responsible for the cytotoxic and radioprotective properties of REC-2001, a fraction isolated from the rhizome of P. hexandrum using murine peritoneal macrophages and plasmid DNA as model systems. Cell death, levels of intracellular reactive oxygen species (ROS) and apoptosis were studied employing trypan blue exclusion assay, dichlorofluorescein diacetate and DNA fragmentation assay, respectively. Superoxide anions, hydroxyl radicals and DNA damage were estimated following nitroblue tetrazolium, 2-deoxyribose degradation and plasmid DNA relaxation assays, respectively. Pre-irradiation administration of REC-2001 to peritoneal macrophages in the concentration range of 25-200μg/ml significantly reduced radiation induced ROS generation, DNA damage, apoptosis and cell killing in comparison to radiation control group indicating radioprotective potential. Studies with plasmid DNA indicated the ability of REC-2001 to inhibit 20Gy induced single and double strand breaks further supporting the antioxidative potential. However, REC-2001 in a dose-dependent fashion induced cell death, ROS and DNA fragmentation indicating the cytotoxic nature. REC-2001, in presence of 100μM copper sulfate, generated significant amount of hydroxyl radicals and superoxide anions indicating ability to act as a pro-oxidant in presence of metal ions. The superoxide anion generation was found to be sensitive to metal chelators like EDTA and deferoxamine mesylate (DFR). These results suggest that the ability of REC-2001 to act as a pro-oxidant in presence of metal ions and antioxidant in presence of free radicals might be responsible for cytotoxic and radioprotective properties.
Marković, Zoran; Đorović, Jelena; Petrović, Zorica D; Petrović, Vladimir P; Simijonović, Dušica
2015-11-01
The antioxidant properties of some phenolic Schiff bases in the presence of different reactive particles such as (•)OH, (•)OOH, (CH2=CH-O-O(•)), and (-•)O2 were investigated. The thermodynamic values, ΔH BDE, ΔH IP, and ΔH PA, were used for this purpose. Three possible mechanisms for transfer of hydrogen atom, concerted proton-electron transfer (CPET), single electron transfer followed by proton transfer (SET-PT), and sequential proton loss electron transfer (SPLET) were considered. These mechanisms were tested in solvents of different polarity. On the basis of the obtained results it was shown that SET-PT antioxidant mechanism can be the dominant mechanism when Schiff bases react with radical cation, while SPLET and CPET are competitive mechanisms for radical scavenging of hydroxy radical in all solvents under investigation. Examined Schiff bases react with the peroxy radicals via SPLET mechanism in polar and nonpolar solvents. The superoxide radical anion reacts with these Schiff bases very slowly.
NASA Astrophysics Data System (ADS)
Seydou, M.; Gillet, J. C.; Li, X.; Wang, H.; Posner, G. H.; Grégoire, G.; Schermann, J. P.; Bowen, K. H.; Desfrançois, C.
2007-12-01
Protonated and anionic artemisinin in the gas phase have respectively been studied by infrared multi-photon dissociation (IRMPD) spectroscopy and by anion photoelectron spectroscopy. Comparison of the measured IRMPD spectrum with calculated spectra of various conformations showed that the two lowest-energy protonated structures, both corresponding to protonation at the C dbnd O 14 carbonyl site, were observed experimentally. The calculations also indicated that the peroxide bridge in artemisinin is only slightly modified by protonation. Additionally, stable, intact (parent) artemisinin radical anions have been obtained for the first time in the gas phase and the photoelectron spectrum supports the computational finding that the excess electron is mainly localized on the σ ∗ orbital of the peroxide bond. The vertical detachment energy and adiabatic electron affinity, calculated at the MP2/6-31+G ∗ level, are in good agreement with the experimental data and the O-O distance is calculated to be stretched by more than 50% in the anion.
Storoniak, Piotr; Mazurkiewicz, Kamil; Haranczyk, Maciej; Gutowski, Maciej; Rak, Janusz; Eustis, Soren N; Ko, Yeon Jae; Wang, Haopeng; Bowen, Kit H
2010-09-02
The photoelectron spectrum for (1-methylthymine)-(9-methyladenine)...(formic acid) (1MT-9MA...FA) anions with the maximum at ca. 1.87 eV was recorded with 2.54 eV photons and interpreted through the quantum-chemical modeling carried out at the B3LYP/6-31+G(d,p) level. The relative free energies of the anions and their calculated vertical detachment energies suggest that only seven anionic structures contribute to the observed PES signal. We demonstrate that electron binding to the (1MT-9MA...FA) complex can trigger intermolecular proton transfer from formic acid, leading to the strong stabilization of the resulting radical anion. The SOMO distribution indicates that an excess electron may localize not only on the pyrimidine but also on the purine moiety. The biological context of DNA-environment interactions concerning the formation of single-strand breaks induced by excess electrons has been briefly discussed.
In vitro evaluation of free radical scavenging activity of Codariocalyx motorius root extract.
Chidambaram, Uma; Pachamuthu, Vanitha; Natarajan, Suganya; Elango, Bhakkiyalakshmi; Suriyanarayanan; Ramkumar, Kunga Mohan
2013-03-01
To determine the phenolic content in Codariocalyx motorius root extract and to evaluate its antioxidant properties using various in vitro assay systems. The antioxidant activity was evaluated based on scavenging of 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and by inhibition of lipid peroxidation which was estimated in terms of thiobarbituric acid reactive substances. The root extract of the Codariocalyx motorius (C. motorius) exhibited potent total antioxidant activity that increased with increasing amount of extract concentration, which was compared with standard drug such as quercetin, butylated hydroxytoluene, tocopherol at different concentrations. The different concentrations of the extracts showed inhibition on lipid peroxidation. In addition, the extracts had effective reducing power, free radical scavenging, super oxide anion scavenging, nitric oxide scavenging, lipid peroxidation, and total phenolic content depending on concentration. High correlation between total phenolic contents and scavenging potential of different reactive oxygen species (r(2)=0.831-0.978) indicated the polyphenols as the main antioxidants. Codariocalyx motorius (C. motorius) root possess the highly active antioxidant substance which can be used for the treatment of oxidative stress-related diseases. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
Li, Junting; Zhao, Qi; Tang, Yanli
2016-06-13
We developed a new method for detecting S1 nuclease and hydroxyl radicals based on the use of water-soluble conjugated poly[9,9-bis(6,6-(N,N,N-trimethylammonium)-fluorene)-2,7-ylenevinylene-co-alt-2,5-dicyano-1,4-phenylene)] (PFVCN) and tungsten disulfide (WS₂) nanosheets. Cationic PFVCN is used as a signal reporter, and single-layer WS₂ is used as a quencher with a negatively charged surface. The ssDNA forms complexes with PFVCN due to much stronger electrostatic interactions between cationic PFVCN and anionic ssDNA, whereas PFVCN emits yellow fluorescence. When ssDNA is hydrolyzed by S1 nuclease or hydroxyl radicals into small fragments, the interactions between the fragmented DNA and PFVCN become weaker, resulting in PFVCN being adsorbed on the surface of WS₂ and the fluorescence being quenched through fluorescence resonance energy transfer. The new method based on PFVCN and WS₂ can sense S1 nuclease with a low detection limit of 5 × 10(-6) U/mL. Additionally, this method is cost-effective by using affordable WS₂ as an energy acceptor without the need for dye-labeled ssDNA. Furthermore, the method provides a new platform for the nuclease assay and reactive oxygen species, and provides promising applications for drug screening.
Reduction of paraquat-induced renal cytotoxicity by manganese and copper complexes of EGTA and EHPG.
Samai, Mohamed; Hague, Theresa; Naughton, Declan P; Gard, Paul R; Chatterjee, Prabal K
2008-02-15
Superoxide anion generation plays an important role in the development of paraquat toxicity. Although superoxide dismutase mimetics (SODm) have provided protection against organ injury involving generation of superoxide anions, they often suffer problems, e.g., regarding their bioavailability or potential pro-oxidant activity. The aim here was to investigate and compare the therapeutic potential of two novel SODm, manganese(II) and copper(II) complexes of the calcium chelator ethylenebis(oxyethylenenitrilo)tetraacetic acid (EGTA) and of the contrast agent ethylenebis(hydroxyphenylglycine) (EHPG), against paraquat-induced renal toxicity in vitro. Incubation of renal NRK-52E cells with paraquat (1 mM) for 24 h produced submaximal, yet significant, reduction in cellular viability and cell death and produced significant increases in superoxide anion and hydroxyl radical generation. Manganese and copper complexes of EGTA (10-100 microM) and EHPG (30-100 microM) reduced paraquat-induced renal cell toxicity and reduced superoxide anion and hydroxyl radical generation significantly. Manganese complexes displayed greater efficacy than copper complexes and, at equivalent concentrations, manganese complexed with EHPG provided the greatest protection. Furthermore, these metal complexes did not interfere with the uptake of [methyl-(14)C]paraquat into NRK-52E cells, suggesting that they provided protection against paraquat cytotoxicity via intracellular mechanisms. These complexes did not display cytotoxicity at the concentrations examined. Together, these results suggest that manganese and copper complexes of EGTA and EHPG, and especially the manganese-EHPG complex, could provide benefit against paraquat nephrotoxicity.
Evidence for Formation of a Radical-Mediated Flavin-N5 Covalent Intermediate.
Dai, Yumin; Valentino, Hannah R; Sobrado, Pablo
2018-05-18
The redox-neutral reaction catalyzed by 2-haloacrylate hydratase (2-HAH) leads to the conversion of 2-chloroacrylate to pyruvate. Previous mechanistic studies demonstrated formation of a flavin-iminium ion as an important intermediate in the 2-HAH catalytic cycle. Time-resolved flavin absorbance studies were performed in this study and the data showed that the enzyme is capable of stabilizing both anionic and neutral flavin semiquinone species. The presence of a radical scavenger decreases the activity in a concentration-dependent manner. These data are consistent with the flavin iminium intermediate occurring via radical recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Woen, David H; Chen, Guo P; Ziller, Joseph W; Boyle, Timothy J; Furche, Filipp; Evans, William J
2017-02-13
The first crystallographically characterizable complex of Sc 2+ , [Sc(NR 2 ) 3 ] - (R=SiMe 3 ), has been obtained by LnA 3 /M reactions (Ln=rare earth metal; A=anionic ligand; M=alkali metal) involving reduction of Sc(NR 2 ) 3 with K in the presence of 2.2.2-cryptand (crypt) and 18-crown-6 (18-c-6) and with Cs in the presence of crypt. Dark maroon [K(crypt)] + , [K(18-c-6)] + , and [Cs(crypt)] + salts of the [Sc(NR 2 ) 3 ] - anion are formed, respectively. The formation of this oxidation state of Sc is also indicated by the eight-line EPR spectra arising from the I=7/2 45 Sc nucleus. The Sc(NR 2 ) 3 reduction differs from Ln(NR 2 ) 3 reactions (Ln=Y and lanthanides) in that it occurs under N 2 without formation of isolable reduced dinitrogen species. [K(18-c-6)][Sc(NR 2 ) 3 ] reacts with CO 2 to produce an oxalate complex, {K 2 (18-c-6) 3 }{[(R 2 N) 3 Sc] 2 (μ-C 2 O 4 -κ 1 O:κ 1 O'')}, and a CO 2 - radical anion complex, [(R 2 N) 3 Sc(μ-OCO-κ 1 O:κ 1 O')K(18-c-6)] n . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Redox chemistry of nickel(II) complexes supported by a series of noninnocent β-diketiminate ligands.
Takaichi, June; Morimoto, Yuma; Ohkubo, Kei; Shimokawa, Chizu; Hojo, Takayuki; Mori, Seiji; Asahara, Haruyasu; Sugimoto, Hideki; Fujieda, Nobutaka; Nishiwaki, Nagatoshi; Fukuzumi, Shunichi; Itoh, Shinobu
2014-06-16
Nickel complexes of a series of β-diketiminate ligands ((R)L(-), deprotonated form of 2-substituted N-[3-(phenylamino)allylidene]aniline derivatives (R)LH, R = Me, H, Br, CN, and NO2) have been synthesized and structurally characterized. One-electron oxidation of the neutral complexes [Ni(II)((R)L(-))2] by AgSbF6 or [Ru(III)(bpy)3](PF6)3 (bpy = 2,2'-bipyridine) gave the corresponding metastable cationic complexes, which exhibit an EPR spectrum due to a doublet species (S = 1/2) and a characteristic absorption band in near IR region ascribable to a ligand-to-ligand intervalence charge-transfer (LLIVCT) transition. DFT calculations have indicated that the divalent oxidation state of nickel ion (Ni(II)) is retained, whereas one of the β-diketiminate ligands is oxidized to give formally a mixed-valence complex, [Ni(II)((R)L(-))((R)L(•))](+). Thus, the doublet spin state of the oxidized cationic complex can be explained by taking account of the antiferromagnetic interaction between the high-spin nickel(II) ion (S = 1) and the organic radical (S = 1/2) of supporting ligand. A single-crystal structure of one of the cationic complexes (R = H) has been successfully determined to show that both ligands in the cationic complex are structurally equivalent. On the basis of theoretical analysis of the LLIVCT band and DFT calculations as well as the crystal structure, the mixed-valence complexes have been assigned to Robin-Day class III species, where the radical spin is equally delocalized between the two ligands to give the cationic complex, which is best described as [Ni(II)((R)L(0.5•-))2](+). One-electron reduction of the neutral complexes with decamethylcobaltocene gave the anionic complexes when the ligand has the electron-withdrawing substituent (R = CN, NO2, Br). The generated anionic complexes exhibited EPR spectra due to a doublet species (S = 1/2) but showed no LLIVCT band in the near-IR region. Thus, the reduced complexes are best described as the d(9) nickel(I) complexes supported by two anionic β-diketiminate ligands, [Ni(I)((R)L(-))2](-). This conclusion was also supported by DFT calculations. Substituent effects on the electronic structures of the three oxidation states (neutral, cationic, and anionic) of the complexes are systematically evaluated on the basis of DFT calculations.
Tipikin, Dmitriy S.; Swarts, Steven G.; Sidabras, Jason W.; Trompier, François; Swartz, Harold M.
2016-01-01
Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation–reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable sulfur-based radicals and/or alkyl radicals generated during the radiation event and are converted to the more stable o-semiquinone anion-radicals. From this understanding of the oxidation–reduction properties of the RIS, it may be possible to regenerate the unstable RIS2 following its decay through treatment of nail clippings. However, the treatment used to recover the RIS2 also has the ability to recover an interfering, mechanically-induced signal (MIS) formed when the nail is clipped. Therefore, to use the recovered (regenerated) RIS2 to increase the detection limits and precision of the RIS measurements and, therefore, the dose estimates calculated from the RIS signal amplitudes, will require the application of methods to differentiate the RIS2 from the recovered MIS signal. PMID:27522053
Kamogawa, Erisa; Sueishi, Yoshimi
2014-03-01
Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zhang, Weiyi; Yuan, Jiayin
2016-07-01
Herein, the synthesis of a series of poly(4-alkyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid)s is reported either via straightforward free radical polymerization of their corresponding ionic liquid monomers or via anion metathesis of the polymer precursors bearing halide as counter anion. The ionic liquid monomers are first prepared via N-alkylation reaction of commercially available 1-vinyl-1,2,4-triazole with alkyl iodides, followed by anion metathesis with targeted fluorinated anions. The thermal properties and solubilities of these poly(ionic liquid)s have been systematically investigated. Interestingly, it is found that the poly(4-ethyl-1-vinyl-1,2,4-triazolium) poly(ionic liquid) exhibited an improved loading capacity of transition metal ions in comparison with its imidazolium counterpart. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polymerization Initiated at the Sidewalls of Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Tour, James M.; Hudson, Jared L.
2011-01-01
A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.
Multiple free-radical scavenging (MULTIS) capacity in cattle serum.
Sueishi, Yoshimi; Kamogawa, Erisa; Kimura, Anna; Kitahara, Go; Satoh, Hiroyuki; Asanuma, Taketoshi; Oowada, Shigeru
2017-01-01
Multiple free-radical scavenging (MULTIS) activity in cattle and human sera was evaluated with electron spin resonance spectroscopy. Scavenging rates against six active species, namely hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen were quantified. The difference in the electron spin resonance signal intensity in the presence and absence of the serum was converted into the scavenging rates. Comparative MULTIS measurements were made in sera from eight beef cattle, three fetal calves and fifteen healthy human volunteers. Further, we determined the MULTIS value of albumin, the most abundant component in serum. MULTIS values in cattle sera indicated higher scavenging activity against most free radical species tested than human sera. In particular, cattle serum scavenging activities against superoxide and methyl radical were higher than human serum by 2.6 and 3.7 fold, respectively. In cattle serum, albumin appears to play a dominant role in MULTIS activity, but in human serum that is not the case. Previous data indicated that the abundance of uric acid in bovine blood is nearly 80% less than humans; however, this difference does not explain the deviation in MULTIS profile.
NASA Technical Reports Server (NTRS)
Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.
2012-01-01
The A 1B1 <-1A0 excitation into the dipole-bound state of the cyanomethyl anion (CH2CN??) has been hypothesized as the carrier for one di use interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study we are employing the use of proven quartic force elds and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for X 1A0 CH2CN?? in order to assist in laboratory studies and astronomical observations. Keywords: Astrochemistry, ISM: molecular anions, Quartic force elds, Rotational constants, Vibrational frequencies
NASA Astrophysics Data System (ADS)
Gafurov, M. R.; Biktagirov, T. B.; Mamin, G. V.; Shurtakova, D. V.; Klimashina, E. S.; Putlyaev, V. I.; Orlinskii, S. B.
2016-03-01
The effect of codoping of hydroxyapatite (HAP) nanocrystals with average sizes of 35 ± 15 nm during "wet" synthesis by CO 3 2- carbonate anions and Mn2+ cations on relaxation characteristics (for the times of electron spin-spin relaxation) of the NO 3 2- nitrate radical anion has been studied. By the example of HAP, it has been demonstrated that the electron paramagnetic resonance (EPR) is an efficient method for studying anion-cation (co)doping of nanoscale particles. It has been shown experimentally and by quantummechanical calculations that simultaneous introduction of several ions can be energetically more favorable than their separate inclusion. Possible codoping models have been proposed, and their energy parameters have been calculated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mooney, Ciarán R. S.; Parkes, Michael A.; Zhang, Lijuan
2014-05-28
Using a combination of photoelectron spectroscopy measurements and quantum chemistry calculations, we have identified competing electron emission processes that contribute to the 350–315 nm photoelectron spectra of the deprotonated green fluorescent protein chromophore anion, p-hydroxybenzylidene-2,3-dimethylimidazolinone. As well as direct electron detachment from S{sub 0}, we observe resonant excitation of the 2{sup 1}ππ* state of the anion followed by autodetachment. The experimental photoelectron spectra are found to be significantly broader than photoelectron spectrum calculated using the Franck-Condon method and we attribute this to rapid (∼10 fs) vibrational decoherence, or intramolecular vibrational energy redistribution, within the neutral radical.
Antioxidant activity from encapsulated Cinnamaldehyde-Chitosan
NASA Astrophysics Data System (ADS)
Ariestiani, Bonita; Purbowatingrum; Ngadiwiyana; Ismiyarto; Fachriyah, Enny; Nurani, Khikmah
2018-05-01
Cinnamaldehyde compound is a powerful antioxidant agent that can effectively combat the free radicals referred to superoxide anions and hydroxy radicals, as well as other free radicals in in vitro testing. An antioxidant is an electron donor or reductant. antioxidants are also compounds that can inhibit oxidation reactions by binding to free radicals and highly reactive molecules. As a result, cell damage will be inhibited. However, the use of this compound still provides unsatisfactory results due to its degradation during the absorption process. The solution offered to solve the problem is by encapsulated it within chitosan nanoparticles that serve to protect the bioactive compound from degradation, increases of solubility and delivery of a bioactive compound to the target site by using freeze-drying technique. The value of encapsulation efficiency (EE) of cinnamaldyhde which encapsulated within chitosan nanoparticles is about 74,389% also antioxidant activity test showed that cinnamaldehyde encapsulated by nanochitosan could inhibit free radicals of 223.44 in IC50.
NASA Astrophysics Data System (ADS)
Hamlaoui, Ikram; Bencheraiet, Reguia; Bensegueni, Rafik; Bencharif, Mustapha
2018-03-01
In this study, the antioxidant capacity of three chalcone derivatives was evaluated by DPPH free radical scavenging. Experimental data showed low antioxidant activity (IC50±SD) of these molecules in comparison with BHT. The mechanism of DPPH radical scavenging elucidated by means of density functional theory (DFT) calculations. The tested compounds and their corresponding radicals and anions were optimized using B3LYP functional with 6-31G (d,p) basis set in the gas phase. The C-PCM model was used to perform solvent medium calculations. On the basis of theoretical calculations, it was shown that HAT mechanism was predominant in the gas phase, whereas SET-PT and SPLET mechanisms were favored in the presence of the solvent. Moreover, the HOMO orbitals and spin density distribution was evaluated to predict the probable sites for free radical attack.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belokoneva, E. L., E-mail: elbel@geol.msu.ru; Dimitrova, O. V.
A new lead-sodium borosilicate (Pb{sub 4.8}Na{sub 1.2})[Si{sub 8}(Si{sub 1.2}B{sub 0.8})O{sub 25}] (a = 9.5752 and c = 42.565 Angstrom-Sign ; space group R3-barc) is synthesized under hydrothermal conditions, and its crystal structure is determined without preliminary knowledge of the chemical formula. The anionic radical of a new type is a double layer in which one of the three independent Si-tetrahedra contains an isomorphous boron admixture. Its topological relationship with the radicals in the structures of benitoite and langasite, as well as in the structures of lead silicates barisilite and hyttsjoeite, is found based on the block consisting of an octahedronmore » and six tetrahedra. This allows one to consider that the new layer is derived from the hyttsjoeite layer by the replacement of the octahedron with two tetrahedra and the increase of the silicon fraction. Although lead atoms are located between the layers in the intersheet space, they form relatively strong bonds with silicon-oxygen layers. This structural type is a collector of heavy metals.« less
Process for separating and recovering an anionic dye from an aqueous solution
Rogers, Robin; Horwitz, E. Philip; Bond, Andrew H.
1998-01-01
A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution.
Theoretical study on physicochemical properties of curcumin
NASA Astrophysics Data System (ADS)
Shen, Liang; Ji, Hong-Fang
2007-07-01
Curcumin is a yellow-orange pigment, which has attracted considerable attention due to its wide spectrum of biological and pharmacological activities. In spite of much effort devoted on curcumin, there still exist some open questions concerning its fundamental physicochemical properties. The present study suggests that the DFT and TD-DFT calculations are useful to answer these questions. Firstly, the thermodynamic as well as spectral parameters support that curcumin exists predominantly in enol form in solution. Secondly, the calculated absorption spectra of curcumin anions provides direct evidence that the lowest p Ka of curcumin corresponds to the dissociation of enolic proton, which not only reconciles the controversy on this topic, but also has important implications on the proton-transfer/dissociation-associated radical-scavenging mechanisms of curcumin.
Design and Synthesis of Network-Forming Triblock Copolymers Using Tapered Block Interfaces
Kuan, Wei-Fan; Roy, Raghunath; Rong, Lixia; Hsiao, Benjamin S.; Epps, Thomas H.
2012-01-01
We report a strategy for generating novel dual-tapered poly(isoprene-b-isoprene/styrene-b-styrene-b-styrene/methyl methacrylate-b-methyl methacrylate) [P(I-IS-S-SM-M)] triblock copolymers that combines anionic polymerization, atom transfer radical polymerization (ATRP), and Huisgen 1,3-dipolar cycloaddition click chemistry. The tapered interfaces between blocks were synthesized via a semi-batch feed using programmable syringe pumps. This strategy allows us to manipulate the transition region between copolymer blocks in triblock copolymers providing control over the interfacial interactions in our nanoscale phase-separated materials independent of molecular weight and block constituents. Additionally, we show the ability to retain a desirous and complex multiply-continuous network structure (alternating gyroid) in our dual-tapered triblock material. PMID:23066522
Estimates of electronic coupling for excess electron transfer in DNA
NASA Astrophysics Data System (ADS)
Voityuk, Alexander A.
2005-07-01
Electronic coupling Vda is one of the key parameters that determine the rate of charge transfer through DNA. While there have been several computational studies of Vda for hole transfer, estimates of electronic couplings for excess electron transfer (ET) in DNA remain unavailable. In the paper, an efficient strategy is established for calculating the ET matrix elements between base pairs in a π stack. Two approaches are considered. First, we employ the diabatic-state (DS) method in which donor and acceptor are represented with radical anions of the canonical base pairs adenine-thymine (AT) and guanine-cytosine (GC). In this approach, similar values of Vda are obtained with the standard 6-31G* and extended 6-31++G** basis sets. Second, the electronic couplings are derived from lowest unoccupied molecular orbitals (LUMOs) of neutral systems by using the generalized Mulliken-Hush or fragment charge methods. Because the radical-anion states of AT and GC are well reproduced by LUMOs of the neutral base pairs calculated without diffuse functions, the estimated values of Vda are in good agreement with the couplings obtained for radical-anion states using the DS method. However, when the calculation of a neutral stack is carried out with diffuse functions, LUMOs of the system exhibit the dipole-bound character and cannot be used for estimating electronic couplings. Our calculations suggest that the ET matrix elements Vda for models containing intrastrand thymine and cytosine bases are essentially larger than the couplings in complexes with interstrand pyrimidine bases. The matrix elements for excess electron transfer are found to be considerably smaller than the corresponding values for hole transfer and to be very responsive to structural changes in a DNA stack.
Hwang, Eun-Sun; Thi, Nhuan Do
2014-01-01
Laver is one of the most consumed edible red algae seaweeds in the genus Porphyra. Laver is primarily prepared in the form of dried, roasted, and seasoned products. We investigated the total polyphenol and flavonoid contents of laver products, and evaluated the in vitro antioxidant properties of solvent extracts from commercially processed laver products. Significant differences in the concentration of phenolic compounds were found among differently processed laver. The total phenolic content for laver extracts ranged from 10.81 mg gallic acid equivalent (GAE)/g extract to 32.14 mg GAE/g extract, depending on extraction solvent and temperature. Laver extracts contained very few flavonoids (0.55 mg catechin equivalent/g extracts to 1.75 mg catechin equivalent/g extracts). 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), hydroxyl radical, and superoxide anion scavenging assays were used to determine the radical scavenging capacities of laver extracts. These assays revealed that the processing method and extraction condition affected the antioxidant potentials of laver. Antioxidant activity of dried laver, roasted laver, and seasoned laver increased in a concentration-dependent manner (100~1,000 μg/mL). The radical scavenging activities of 37°C and 100°C water extracts were lower than that of a 37°C 70% ethanol extract. The highest radical scavenging capacity was observed in the 37°C 70% ethanol extracts of dried laver, roasted laver, and seasoned laver. Overall, these results support that notion that laver contains bioactive compounds, such as polyphenols and flavonoids, which may have a positive effect on health. PMID:24772408
Hwang, Eun-Sun; Thi, Nhuan Do
2014-01-01
Laver is one of the most consumed edible red algae seaweeds in the genus Porphyra. Laver is primarily prepared in the form of dried, roasted, and seasoned products. We investigated the total polyphenol and flavonoid contents of laver products, and evaluated the in vitro antioxidant properties of solvent extracts from commercially processed laver products. Significant differences in the concentration of phenolic compounds were found among differently processed laver. The total phenolic content for laver extracts ranged from 10.81 mg gallic acid equivalent (GAE)/g extract to 32.14 mg GAE/g extract, depending on extraction solvent and temperature. Laver extracts contained very few flavonoids (0.55 mg catechin equivalent/g extracts to 1.75 mg catechin equivalent/g extracts). 2,2-Diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid (ABTS), hydroxyl radical, and superoxide anion scavenging assays were used to determine the radical scavenging capacities of laver extracts. These assays revealed that the processing method and extraction condition affected the antioxidant potentials of laver. Antioxidant activity of dried laver, roasted laver, and seasoned laver increased in a concentration-dependent manner (100~1,000 μg/mL). The radical scavenging activities of 37°C and 100°C water extracts were lower than that of a 37°C 70% ethanol extract. The highest radical scavenging capacity was observed in the 37°C 70% ethanol extracts of dried laver, roasted laver, and seasoned laver. Overall, these results support that notion that laver contains bioactive compounds, such as polyphenols and flavonoids, which may have a positive effect on health.
NASA Astrophysics Data System (ADS)
Ziajka, J.; Pasiuk-Bronikowska, W.
In this work attempts were made to elucidate the monoterpenic alcohol inhibition of the S(IV) autoxidation by comparing the inhibiting activity of cis-verbenol (C 10H 15OH), myrtenol (C 10H 15OH) and nopol (C 11H 17OH) with that of ethanol (C 2H 5OH) and 2-propanol (C 3H 7OH). Results of laboratory experiments on the kinetics of S(IV) autoxidation in the presence of these alcohols were interpreted using the equation derived by Alyea and Bäckström (J. Am. Chem. Soc. 51 (1929) 90), brought into relationship with the actual mechanistic knowledge on the reactivity of the inhibitors with respect to sulphate radicals. The rate constants for the reaction: alc+SO 4·- (+O 2)→SO 42-+H ++HO 2+ald involving cis-verbenol and myrtenol have been determined as equal to, respectively, 5.4×10 9 and 4.2×10 9 M-1 s-1. These results were obtained under the assumption that the main chain termination is due to simultaneous scavenging SO 5·- radical anions by Fe II and SO 4·- radical anions by an alcohol. In the case of nopol the rough estimate gave for the rate constant of the latter reaction a value of 9.0×10 9 M-1 s-1 burdened with an error caused by the sulphoxy radical induced autoxidation of nopol. The studied airborne compounds of biological origin were shown to be potentially significant modifiers of the acidity formation in clouds and a sink for sulphoxy radicals participating in further transformations of these compounds.
Process for separating and recovering an anionic dye from an aqueous solution
Rogers, R.; Horwitz, E.P.; Bond, A.H.
1998-01-13
A solid/liquid phase process for the separation and recovery of an anionic dye from an aqueous solution is disclosed. The solid phase comprises separation particles having surface-bonded poly(ethylene glycol) groups, whereas the aqueous solution from which the anionic dye molecules are separated contains a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt. After contact between the aqueous solution and separation particles, the anionic dye is bound to the particles. The bound anionic dye molecules are freed from the separation particles by contacting the anionic dye-bound particles with an aqueous solution that does not contain a poly(ethylene glycol) liquid/liquid biphase-forming amount of a dissolved lyotropic salt to form an aqueous anionic dye solution whose anionic dye concentration is preferably higher than that of the initial dye-containing solution. 7 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Porte, Nathan T.; Martinez, Jose F.; Hedström, Svante
A major goal of artificial photosynthesis research is photosensitizing highly reducing metal centers using as much as possible of the solar spectrum reaching Earth's surface. The radical anions and dianions of rylenediimide (RDI) dyes, which absorb at wavelengths as long as 950 nm, are powerful photoreductants with excited state oxidation potentials that rival or exceed those of organometallic chromophores. These dyes have been previously incorporated into all-organic donor–acceptor systems, but have not yet been shown to reduce organometallic centers. This study describes a set of dyads in which perylenediimide (PDI) or naphthalenediimide (NDI) chromophores are attached to Re(bpy)(CO) 3 throughmore » either the bipyridine ligand or more directly to the Re center via a pyridine ligand. The chromophores are reduced with a mild reducing agent, after which excitation with long-wavelength red or near-infrared light leads to reduction of the Re complex. The kinetics of electron transfer from the photoexcited anions to the Re complex are monitored using transient visible/near-IR and mid-IR spectroscopy, complemented by theoretical spectroscopic assignments. The photo-driven charge shift from the reduced PDI or NDI to the complex occurs in picoseconds regardless of whether PDI or NDI is attached to the bipyridine or to the Re center, but back electron transfer is found to be three orders of magnitude slower with the chromophore attached to the Re center. These results will inform the design of future catalytic systems that incorporate RDI anions as chromophores.« less
La Porte, Nathan T.; Martinez, Jose F.; Hedström, Svante; ...
2017-02-28
A major goal of artificial photosynthesis research is photosensitizing highly reducing metal centers using as much as possible of the solar spectrum reaching Earth's surface. The radical anions and dianions of rylenediimide (RDI) dyes, which absorb at wavelengths as long as 950 nm, are powerful photoreductants with excited state oxidation potentials that rival or exceed those of organometallic chromophores. These dyes have been previously incorporated into all-organic donor–acceptor systems, but have not yet been shown to reduce organometallic centers. This study describes a set of dyads in which perylenediimide (PDI) or naphthalenediimide (NDI) chromophores are attached to Re(bpy)(CO) 3 throughmore » either the bipyridine ligand or more directly to the Re center via a pyridine ligand. The chromophores are reduced with a mild reducing agent, after which excitation with long-wavelength red or near-infrared light leads to reduction of the Re complex. The kinetics of electron transfer from the photoexcited anions to the Re complex are monitored using transient visible/near-IR and mid-IR spectroscopy, complemented by theoretical spectroscopic assignments. The photo-driven charge shift from the reduced PDI or NDI to the complex occurs in picoseconds regardless of whether PDI or NDI is attached to the bipyridine or to the Re center, but back electron transfer is found to be three orders of magnitude slower with the chromophore attached to the Re center. These results will inform the design of future catalytic systems that incorporate RDI anions as chromophores.« less
Wei, Taotao; Sun, Handong; Zhao, Xingyu; Hou, Jingwu; Hou, Aijun; Zhao, Qinshi; Xin, Wenjuan
2002-03-08
Pistafolia A is a novel gallotannin isolated from the leaf extract of Pistacia weinmannifolia. In the present investigation, the ability of Pistafolia A to scavenge reactive oxygen species including hydroxyl radicals and superoxide anion was measured by ESR spin trapping technique. The inhibition effect on iron-induced lipid peroxidaiton in liposomes was studied. The protective effects of Pistafolia A against oxidative neuronal cell damage and apoptosis induced by peroxynitrite were also assessed. The results showed that Pistafolia A could scavenge both hydroxyl radicals and superoxide anion dose-dependently and inhibit lipid peroxidation effectively. In cerebellar granule cells pretreated with Pistafolia A, peroxynitrite-induced oxidative neuronal damage and apoptosis were prevented markedly. The antioxidant capacity of Pistafolia A was much more potent then that of the water-soluble analog of vitamin E, Trolox. The results suggested that Pistafolia A might be used as an effective natural antioxidant for the prevention and cure of neuronal diseases associated with the production of peroxynitrite and related reactive oxygen species.
NASA Astrophysics Data System (ADS)
Lei, Fengcai; Liu, Wei; Sun, Yongfu; Xu, Jiaqi; Liu, Katong; Liang, Liang; Yao, Tao; Pan, Bicai; Wei, Shiqiang; Xie, Yi
2016-09-01
Ultrathin metal layers can be highly active carbon dioxide electroreduction catalysts, but may also be prone to oxidation. Here we construct a model of graphene confined ultrathin layers of highly reactive metals, taking the synthetic highly reactive tin quantum sheets confined in graphene as an example. The higher electrochemical active area ensures 9 times larger carbon dioxide adsorption capacity relative to bulk tin, while the highly-conductive graphene favours rate-determining electron transfer from carbon dioxide to its radical anion. The lowered tin-tin coordination numbers, revealed by X-ray absorption fine structure spectroscopy, enable tin quantum sheets confined in graphene to efficiently stabilize the carbon dioxide radical anion, verified by 0.13 volts lowered potential of hydroxyl ion adsorption compared with bulk tin. Hence, the tin quantum sheets confined in graphene show enhanced electrocatalytic activity and stability. This work may provide a promising lead for designing efficient and robust catalysts for electrolytic fuel synthesis.
Xu, Junyuan; Kan, Yuhe; Huang, Rui; Zhang, Bingsen; Wang, Bolun; Wu, Kuang-Hsu; Lin, Yangming; Sun, Xiaoyan; Li, Qingfeng; Centi, Gabriele; Su, Dangsheng
2016-05-23
Carbon nanotubes (CNTs) are functionalized with nitrogen atoms for reduction of carbon dioxide (CO2 ). The investigation explores the origin of the catalyst's activity and the role of nitrogen chemical states therein. The catalysts show excellent performances, with about 90 % current efficiency for CO formation and stability over 60 hours. The Tafel analyses and density functional theory calculations suggest that the reduction of CO2 proceeds through an initial rate-determining transfer of one electron to CO2 , which leads to the formation of carbon dioxide radical anion (CO2 (.-) ). The initial reduction barrier is too high on pristine CNTs, resulting in a very high overpotentials at which the hydrogen evolution reaction dominates over CO2 reduction. The doped nitrogen atoms stabilize the radical anion, thereby lowering the initial reduction barrier and improving the intrinsic activity. The most efficient nitrogen chemical state for this reaction is quaternary nitrogen, followed by pyridinic and pyrrolic nitrogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Active-oxygen scavenging activity of plant extracts.
Masaki, H; Sakaki, S; Atsumi, T; Sakurai, H
1995-01-01
To find antioxidative compounds present in plants, 65 types of plant extract were tested using the neotetrazolium method for evidence of superoxide anion-scavenging effects and 7 plant extracts were selected for further investigation. The activity of active-oxygen scavengers such as superoxide anion radicals, hydroxyl radicals, singlet oxygens and lipid peroxides in the 7 plant extracts (Aeseclus hippocastanum L., Hamamelis virginiana L. Polygonum cuspidatum Sieb., Quercus robur L., Rosemarinous officinalis L., Salvia officinalis L. and Sanguisorba officinalis L.) was examined in detail by both ESR spin-trapping and malondialdehyde generation. Furthermore, the active-oxygen scavenging activity of these plant extracts was evaluated using a murine dermal fibroblast culture system. Both Aeseclus hippocastanum L. and Hamamelis virginia L. were found to have strong active-oxygen scavenging activity of and protective activity against cell damage induced by active oxygen. Both Aeseclus hippocastanum L. and Hamamelis virginiana L. are proposed as potent plant extracts with potential application as anti-aging or anti-wrinkle material for the skin.
Le Caër, Sophie; Ortiz, Daniel; Marignier, Jean-Louis; Schmidhammer, Uli; Belloni, Jacqueline; Mostafavi, Mehran
2016-01-07
The behavior of carbonates is critical for a detailed understanding of aging phenomena in Li-ion batteries. Here we study the first reaction stages of propylene carbonate (PC), a cyclical carbonate, by picosecond pulse radiolysis. An absorption band with a maximum around 1360 nm is observed at 20 ps after the electron pulse and is shifted to 1310 nm after 50 ps. This band presents the features of a solvated electron absorption band, the solvation lasting up to 50 ps. Surprisingly, in this polar solvent, the solvated electron follows an ultrafast decay and disappears with a half time of 360 ps. This is attributed to the formation of a radical anion PC(-•). The yield of the solvated electron is low, suggesting that the radical anions are mainly directly produced from presolvated electrons. These results demonstrate that the initial electron transfers mechanisms are strongly different in linear compared with cyclical carbonates.
Kim, Sun Min; Yoo, Ho Sung; Hosono, Hideo; Yang, Jung Woon; Kim, Sung Wng
2015-01-01
The selective synthesis of different products from the same starting materials in water, which is the most abundant solvent in nature, is a crucial issue as it maximizes the utilization of materials. Realizing such reactions for ketones is of considerable importance because numerous organic functionalities can be obtained via nucleophilic addition reactions. Herein, we report chemoselective reduction and oxidation reactions of 1,2-diketones in water, which initiates anionic electron transfer from the inorganic electride [Ca24Al28O64]4+·4e−, through controlling the pathway of the electrons to substrates. The generation of different radical species for transient intermediates was the key process required to control the reaction selectivity, which was achieved by reacting the anionic electrons with either diketones or O2, leading to the formation of ketyl dianion and superoxide radicals in the reduction and oxidation reactions, respectively. This methodology that utilizes electrides may provide an alternative to the pulse radiolysis of water in synthetic chemistry. PMID:26020413
Electrogenerated chemiluminescence. 59. Rhenium complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, M.M.; Debad, J.D.; Bard, A.J.
Re(L)(CO){sub 3}Cl complexes (where L is 1,10-phenanthroline, 2,2`-bipyridine, or a phenanthroline or bipyridine derivative containing methyl groups) are photoluminescent in fluid solution at room temperature. In acetonitrile solutions, these complexes display one chemically reversible one-electron reduction process and one chemically irreversible oxidation process. {lambda}{sub max} for the luminescence is dependent on the nature of L, and a linear relationship between {lambda}{sub max} and the difference in electrode potentials for oxidation and reduction is evident. Electrogenerated chemiluminescence (ECL) was observed in acetonitrile solutions of these complexes (Bu{sub 4}NPF{sub 6} as electrolyte) by stepping the potential of a Pt disk working electrodemore » between potentials sufficient to form the radical anionic and cationic species. The relative amount of light produced during the anodic and cathodic pulses was dependent on the potential limits and pulse duration. ECL was also generated in the presence of coreactants, i.e., with tri-n-propylamine upon stepping the potential sufficiently positive to form the deprotonated tri-n-propylamine radical and the cationic rhenium(II) species Re{sup II}(L)(CO){sub 3}Cl{sup +}. When S{sub 2}O{sub 8}{sup 2-} was present in solution, ECL was also observed for all of the complexes upon stepping to potentials sufficient to form (Re{sup I}(L)(CO){sub 3}Cl){sup -} and the strong oxidant SO{sub 4}{sup .-}. 44 refs., 8 figs.« less
Campisi, Agata; Bonfanti, Roberta; Raciti, Giuseppina; Amodeo, Andrea; Mastrojeni, Silvana; Ragusa, Salvatore; Iauk, Liliana
2014-01-01
Berberis aetnensis C. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress. PMID:25177720
Campisi, Agata; Acquaviva, Rosaria; Bonfanti, Roberta; Raciti, Giuseppina; Amodeo, Andrea; Mastrojeni, Silvana; Ragusa, Salvatore; Iauk, Liliana
2014-01-01
Berberis aetnensis C. Presl (Berberidaceae) is a bushy-spiny shrub common on Mount Etna (Sicily). We demonstrated that the alkaloid extract of roots of B. aetnensis C. Presl contains prevalently berberine and berbamine, possesses antimicrobial properties, and was able to counteract the upregulation evoked by glutamate of tissue transglutaminase in primary rat astroglial cell cultures. Until now, there are no reports regarding antioxidant properties of B. aetnensis C. Presl collected in Sicily. Air-dried, powdered roots of B. aetnensis C. Presl were extracted, identified, and quantified by HPLC. We assessed in cellular free system its effect on superoxide anion, radicals scavenging activity of antioxidants against free radicals like the 1,1-diphenyl-2-picrylhydrazyl radical, and the inhibition of xanthine oxidase activity. In primary rat astroglial cell cultures, exposed to glutamate, we evaluated the effect of the extract on glutathione levels and on intracellular production of reactive oxygen species generated by glutamate. The alkaloid extract of B. aetnensis C. Presl inhibited superoxide anion, restored to control values, the decrease of GSH levels, and the production of reactive oxygen species. Potent antioxidant activities of the alkaloid extract of roots of B. aetnensis C. Presl may be one of the mechanisms by which the extract is effective against health disorders associated to oxidative stress.
Piech, Krzysztof; Bally, Thomas; Ichino, Takatoshi; Stanton, John
2014-02-07
The electronic and vibrational absorption spectra of the radical anion and cation of p-benzoquinone (PBQ) in an Ar matrix between 500 and 40,000 cm(-1) are presented and discussed in detail. Of particular interest is the radical cation, which shows very unusual spectroscopic features that can be understood in terms of vibronic coupling between the ground and a very low-lying excited state. The infrared spectrum of PBQ˙(+) exhibits a very conspicuous and complicated pattern of features above 1900 cm(-1) that is due to this electronic transition, and offers an unusually vivid demonstration of the effects of vibronic coupling in what would usually be a relatively simple region of the electromagnetic spectrum associated only with vibrational transitions. As expected, the intensities of most of the IR transitions leading to levels that couple the ground to the very low-lying first excited state of PBQ˙(+) increase by large factors upon ionization, due to "intensity borrowing" from the D0 → D1 electronic transition. A notable exception is the antisymmetric C=O stretching vibration, which contributes significantly to the vibronic coupling, but has nevertheless quite small intensity in the cation spectrum. This surprising feature is rationalized on the basis of a simple perturbation analysis.
Li, D Q; Zhao, J; Li, S P
2014-06-06
Xanthine oxidase (XO) can catalyze hypoxanthine and xanthine to generate uric acid and reactive oxygen species (ROS), including superoxide anion radical (O₂(•-)) and hydrogen peroxide. XO inhibitors and free radical scavengers are beneficial to the treatment of gout and many related diseases. In the present study, an on-line high-performance liquid chromatography (HPLC) coupled with post-column dual-bioactivity assay was established and successfully applied to simultaneously screening of XO inhibitors and free radical scavengers from a complex mixture, Oroxylum indicum extract. The integrated system of HPLC separation, bioactivity screening and mass spectrometry identification was proved to be simple and effective for rapid and sensitive screening of individual bioactive compounds in complex mixtures. Copyright © 2014 Elsevier B.V. All rights reserved.
Anionic polymerization of p-(2,2'-diphenylethyl)styrene and applications to graft copolymers.
Huang, Minglu; Han, Bingyong; Lu, Jianmin; Yang, Wantai; Fu, Zhifeng
2017-01-01
Well-controlled anionic polymerization of an initiator-functionalized monomer, p -(2,2'-diphenylethyl)styrene (DPES), was achieved for the first time. The polymerization was performed in a mixed solvent of cyclohexane and tetrahydrofuran (THF) at 40 °C with n -BuLi as initiator. When the volume ratio of cyclohexane to THF was 20, the anionic polymerization of DPES showed living polymerization characteristics, and well-defined block copolymer PDPES- b -PS was successfully synthesized. Furthermore, radical polymerization of methyl methacrylate in the presence of PDPES effectively afforded a graft copolymer composed of a polystyrene backbone and poly(methyl methacrylate) branches. The designation of analogous monomers and polymers was of great significance to synthesize a variety of sophisticated copolymer and functionalize polymer materials.
NASA Astrophysics Data System (ADS)
Dimić, Dušan S.; Milenković, Dejan A.; Marković, Jasmina M. Dimitrić; Marković, Zoran S.
2018-05-01
The antiradical potency of catecholamines (dopamine, epinephrine, norepinephrine, L-DOPA), metabolites of dopamine (homovanillic acid, 3-methoxytyramine and 3,4-dihydroxyphenylacetic acid) and catechol towards substituted methylperoxy radicals is investigated. The thermodynamic parameters, together with the kinetic approach, are used to determine the most probable mechanism of action. The natural bond orbital and quantum theory of atoms in molecules are utilised to explain the highest reactivity of trichloromethylperoxy radical. The preferred mechanism is dependent both on the thermodynamic and kinetic parameters . The number of chlorine atoms on radical, the presence of intra-molecular hydrogen bond and number of hydroxy groups attached to the aromatic ring significantly influence the mechanism. The results suggest that sequential proton loss electron transfer (SPLET) is the most probable for reaction with methylperoxy and hydrogen atom transfer (HAT) for reaction with trichloromethylperoxy radicals, with a gradual transition between SPLET and HAT for other two radicals. Due to the significant deprotonation of molecules containing the carboxyl group, the respective anions are also investigated. The HAT and SPLET mechanisms are highly competitive in reaction with MP radical, while the dominant mechanism towards chlorinated radicals is HAT. The reactions in methanol and benzene are also discussed.
Pavlov, Julius; Braida, Washington; Ogundipe, Adebayo; O'Connor, Gregory; Attygalle, Athula B
2009-10-01
The presence of a peak centered near m/z 2862, observed for the first time for the caged dodecatungstate radical-anion, [W12O41]-*, enables distinguishing WO2 from WO3 by Laser Desorption Ionization mass spectrometry (LDI-MS). In addition to WO2, laser irradiation of dry deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate also produce the [W12O41]-. In contrast, spectra recorded from deposits made from aqueous Na2WO4, sodium metatungstate, and WO3, or non-aqueous calcium and lead orthotungstate, and ammonium paratungstate, failed to show the m/z 2862 peak cluster. These observations support the hypothesis that polycondensation reactions to form [W12O41]-* occur solely in the presence of water. Although dry spots are irradiated for ionization, the solvent used for sample preparation plays an important role on the chemical composition endowed to ions detected. For example, the m/z 2862 peak seen from deposits made from aqueous ammonium paratungstate, and calcium and lead orthotungstate, is absent in the spectra recorded either from pristine deposits or those derived from solutions made with organic solvents such as acetonitrile or ethanol.
Konarev, Dmitri V; Kuzmin, Alexey V; Khasanov, Salavat S; Fatalov, Alexey M; Yudanova, Evgenia I; Lyubovskaya, Rimma N
2018-04-14
Reduction methods for the preparation of coordination complexes of titanium(IV) and indium(III) phthalocyanines (Pc) with organic dyes such as indigo, thioindigo, and squarylium dye III (SQ) have been developed, which allow one to obtain crystalline {cryptand(K + )}{(cis-indigo-O,O) 2- Ti IV (Pc 2- )}(Cl - )⋅C 6 H 4 Cl 2 (1), {cryptand(K + )}{(cis-thioindigo-O,O) 2- In III (Pc 2- )} - ⋅C 6 H 4 Cl 2 (2), and {cryptand(K + )}{[(SQ) 2 -O,O] 2- In III (Pc 2- )} - ⋅3.5 C 6 H 4 Cl 2 (3) complexes. The formation of these complexes is accompanied by the reduction of the starting dyes to the anionic state. Transition of trans-indigo or trans-thioindigo to the cis conformation in 1 and 2 provides coordination of both carbonyl oxygen atoms of the dye to Ti IV Pc or In III Pc. SQ is reduced to the radical anion state and forms unusual diamagnetic singly bonded (SQ - ) 2 dimers in 3. These dimers have two closely positioned carbonyl oxygen atoms coordinated to In III Pc. Dianionic Pc 2- macrocycles have been found in 1-3. The complexes contain two chromophore molecules at one metal center. However, their optical spectra are defined mainly by absorption bands of the metal phthalocyanines. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Min; Maragani, Satyanarayana; Huang, Liyi; Jeon, Seaho; Canteenwala, Taizoon; Hamblin, Michael R.; Chiang, Long Y.
2013-01-01
We report a novel class of highly water-soluble decacationic methano[60]fullerene decaiodides C60[>M(C3N6+C3)2]-(I−)10[1-(I−)10] capable of co-producing singlet oxygen (Type-II) and highly reactive hydroxyl radicals, formed from superoxide radicals in Type-I photosensitizing reactions, upon illumination at both UVA and white light wavelengths. The O2-·-production efficiency of 1-(I−)10 was confirmed by using an O2-·-reactive bis(2,4-dinitrobenzenesulfonyl)tetrafluorofluorescein probe and correlated to the photoinduced electron-transfer event going from iodide anions to C360∗[>M(C3N6+C3)2] leading to C60-·[>M(C3N6+C3)2]. Incorporation of a defined number (ten) of quaternary ammonium cationic charges per C60 in 1 was aimed to enhance its ability to target pathogenic Gram-positive and Gram-negative bacterial cells. We used the well-characterized malonato[60]fullerene diester mono-adduct C60[>M(t-Bu)2] as the starting fullerene derivative to provide a better synthetic route to C60[>M(C3N6+C3)2] via transesterification reaction under trifluoroacetic acid catalyzed conditions. These compounds may be used as effective photosensitizers and nano-PDT drugs for photoinactivation of pathogens. PMID:23474903
Fang, Ming; Farnaby, Joy H; Ziller, Joseph W; Bates, Jefferson E; Furche, Filipp; Evans, William J
2012-04-11
Deep-blue solutions of Y(2+) formed from Y(NR(2))(3) (R = SiMe(3)) and excess potassium in the presence of 18-crown-6 at -45 °C under vacuum in diethyl ether react with CO at -78 °C to form colorless crystals of the (CO)(1-) radical complex, {[(R(2)N)(3)Y(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 1. The polymeric structure contains trigonal bipyramidal [(R(2)N)(3)Y(μ-CO)(2)](2-) units with axial (CO)(1-) ligands linked by [K(2)(18-crown-6)(2)](2+) dications. Byproducts such as the ynediolate, [(R(2)N)(3)Y](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 2, in which two (CO)(1-) anions are coupled to form (OC≡CO)(2-), and the insertion/rearrangement product, {(R(2)N)(2)Y[OC(═CH(2))Si(Me(2))NSiMe(3)]}[K(18-crown-6)], 3, are common in these reactions that give variable results depending on the specific reaction conditions. The CO reduction in the presence of THF forms a solvated variant of 2, the ynediolate [(R(2)N)(3)Y](2)(μ-OC≡CO)[K(18-crown-6)(THF)(2)](2), 2a. CO(2) reacts analogously with Y(2+) to form the (CO(2))(1-) radical complex, {[(R(2)N)(3)Y(μ-CO(2))(2)][K(2)(18-crown-6)(2)]}(n), 4, that has a structure similar to that of 1. Analogous (CO)(1-) and (OC≡CO)(2-) complexes of lutetium were isolated using Lu(NR(2))(3)/K/18-crown-6: {[(R(2)N)(3)Lu(μ-CO)(2)][K(2)(18-crown-6)(2)]}(n), 5, [(R(2)N)(3)Lu](2)(μ-OC≡CO){[K(18-crown-6)](2)(18-crown-6)}, 6, and [(R(2)N)(3)Lu](2)(μ-OC≡CO)[K(18-crown-6)(Et(2)O)(2)](2), 6a. © 2012 American Chemical Society
Chemical properties which control selectivity and efficacy of aromatic N-oxide bioreductive drugs.
Wardman, P.; Priyadarsini, K. I.; Dennis, M. F.; Everett, S. A.; Naylor, M. A.; Patel, K. B.; Stratford, I. J.; Stratford, M. R.; Tracy, M.
1996-01-01
Pulse radiolysis was used to generate radicals from one electron reduction of 1,2,4-benzotriazine-1,4-dioxides (derivatives of tirapazamine), and of imidazo [1,2-a]quinoxaline-4-oxides (analogues of RB90740), which have selective toxicity towards hypoxic cells. Radicals from the mono N-oxides (from the latter compounds) react with oxygen approximately 10-40 times faster than does the tirapazamine radical. Radicals from the tirapazamine analogues studied react with oxygen up to approximately 10 times slower than tirapazamine radicals. The quinoxaline N-oxide radicals are involved in prototropic equilibria with pK(a) values (5.5 to 7.4) spanning that reported for tirapazamine (6.0). Generation of radicals radiolytically in the presence of H donors (formate, 2-propanol, deoxyribose) indicate a chain reaction ascribed to H abstraction by the drug radical. The protonated drug radical is much more reactive than the radical anion (H abstraction rate constant approximately equal to 10(2) - 10(3) dm3 mol-1 s-1). Chain termination is ascribed to drug radical-radical reactions, i.e. radical stability in anoxia, with rate constants 2k approximately equal to 1 x 10(7) to 2 x 10(8) dm3 mol-1 s-1 at pH approximately 7.4. Estimates of the reduction potentials of the drug-radical couples in water at pH 7 for two of the mono-N-oxides were in the range-0.7 to 0.8 V vs NHE at pH 7. PMID:8763850
Highly Dynamic Anion-Quadrupole Networks in Proteins.
Kapoor, Karan; Duff, Michael R; Upadhyay, Amit; Bucci, Joel C; Saxton, Arnold M; Hinde, Robert J; Howell, Elizabeth E; Baudry, Jerome
2016-11-01
The dynamics of anion-quadrupole (or anion-π) interactions formed between negatively charged (Asp/Glu) and aromatic (Phe) side chains are for the first time computationally characterized in RmlC (Protein Data Bank entry 1EP0 ), a homodimeric epimerase. Empirical force field-based molecular dynamics simulations predict anion-quadrupole pairs and triplets (anion-anion-π and anion-π-π) are formed by the protein during the simulated trajectory, which suggests that the anion-quadrupole interactions may provide a significant contribution to the overall stability of the protein, with an average of -1.6 kcal/mol per pair. Some anion-π interactions are predicted to form during the trajectory, extending the number of anion-quadrupole interactions beyond those predicted from crystal structure analysis. At the same time, some anion-π pairs observed in the crystal structure exhibit marginal stability. Overall, most anion-π interactions alternate between an "on" state, with significantly stabilizing energies, and an "off" state, with marginal or null stabilizing energies. The way proteins possibly compensate for transient loss of anion-quadrupole interactions is characterized in the RmlC aspartate 84-phenylalanine 112 anion-quadrupole pair observed in the crystal structure. A double-mutant cycle analysis of the thermal stability suggests a possible loss of anion-π interactions compensated by variations of hydration of the residues and formation of compensating electrostatic interactions. These results suggest that near-planar anion-quadrupole pairs can exist, sometimes transiently, which may play a role in maintaining the structural stability and function of the protein, in an otherwise very dynamic interplay of a nonbonded interaction network as well as solvent effects.
Pirker, Katharina Franziska; Goodman, Bernard Albert
2010-12-01
In order to provide some insight into the chemical basis for the antioxidant behaviour of bitter tea, the Chinese medicinal beverage derived from leaves of Ilex kudincha or Ilex latifolia, free radicals generated during the oxidation of aqueous extracts of dried leaves have been investigated by electron paramagnetic resonance (EPR) spectroscopy. With both beverages, the major components in the EPR spectra after accelerated autoxidation under alkaline conditions or oxidation with the superoxide anion radical were comparable to those derived from reactions of caffeoylquinic acids. Thus these reaction products have sufficient stability for biological activity, and the present results suggest that such molecules contribute appreciably to the antioxidant chemistry of these beverages.
NASA Astrophysics Data System (ADS)
Araujo, M. T. De; Carneiro, J. W. De M.; Taranto, A. G.
The PCM/COSMO approach was employed to calculate the relative stability of radicals derived from the antimalarial artemisinin. The calculations were performed in polar (water) and apolar (THF) solvent at the density functional level [B3LYP/6-31g(d)]. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. Replacement of oxygen atoms by CH2 unities was found to decrease the relative stability of the anionic radical intermediates. The degree of destabilization is reduced in the presence of solvent, being less in water than in THF. The dipole moment and the corresponding solvation free energies of these species modulate this effect. Derivatives with inverted stereochemistry are more stable than those with the artemisinin-like stereochemistry, although the solvent attenuates this stabilization effect. As was found in the in vacuo calculations, the radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.
Pyrene-based dyad and triad leading to a reversible chemical and redox optical and magnetic switch.
Franco, Carlos; Mas-Torrent, Marta; Caballero, Antonio; Espinosa, Arturo; Molina, Pedro; Veciana, Jaume; Rovira, Concepció
2015-03-27
Two new pyrene-polychlorotriphenylmethyl (PTM) dyads and triads have been synthesized and characterized by optical, magnetic, and electrochemical methods. The interplay between the different electronic states of the PTM moiety in the dyads and triads and the optical and magnetic properties of the molecules have been studied. The electronic spectra of the radicals 5(.) and 6(.) show the intramolecular charge-transfer transition at around 700 nm due to the acceptor character of the PTM radical. In the diamagnetic protonated derivatives 3 and 4 the fluorescence due to the pyrene is maintained, whereas in the radicals 5(.) and 6(.) and the corresponding anions 5(-) and 6(-) there is a clear quenching of the fluorescence, which is more efficient in the case of radicals. The redox activity of PTM radicals that are easily reduced to the corresponding carbanion has been exploited to fabricate electrochemical switches with optical and magnetic response. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Photoredox Catalysis: The Need to Elucidate the Photochemical Mechanism.
Marchini, Marianna; Bergamini, Giacomo; Cozzi, Pier Giorgio; Ceroni, Paola; Balzani, Vincenzo
2017-10-09
The photocatalytic mechanism reported in a recent Communication to produce the radical anion of pyrenes postulates a highly endergonic electron transfer process. An analysis of the thermodynamics is reported together with the proposal of an alternative thermodynamically feasible mechanism. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Abrahim, Noor Nazirahanie; Kanthimathi, M S; Abdul-Aziz, Azlina
2012-11-15
Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment.
2012-01-01
Background Breast cancer is the most common form of cancer and the focus on finding chemotherapeutic agents have recently shifted to natural products. Piper betle is a medicinal plant with various biological activities. However, not much data is available on the anti-cancer effects of P. betle on breast cancer. Due to the current interest in the potential effects of antioxidants from natural products in breast cancer treatment, we investigated the antioxidant activities of the leaves of P. betle and its inhibitory effect on the proliferation of the breast cancer cell line, MCF-7. Methods The leaves of P. betle were extracted with solvents of varying polarities (water, methanol, ethyl acetate and hexane) and their phenolic and flavonoid content were determined using colorimetric assays. Phenolic composition was characterized using HPLC. Antioxidant activities were measured using FRAP, DPPH, superoxide anion, nitric oxide and hyroxyl radical scavenging assays. Biological activities of the extracts were analysed using MTT assay and antioxidant enzyme (catalase, superoxide dismutase, glutathione peroxidase) assays in MCF-7 cells. Results Overall, the ethyl acetate extract showed the highest ferric reducing activity and radical scavenging activities against DPPH, superoxide anion and nitric oxide radicals. This extract also contained the highest phenolic content implying the potential contribution of phenolics towards the antioxidant activities. HPLC analyses revealed the presence of catechin, morin and quercetin in the leaves. The ethyl acetate extract also showed the highest inhibitory effect against the proliferation of MCF-7 cells (IC50=65 μg/ml). Treatment of MCF-7 cells with the plant extract increased activities of catalase and superoxide dismutase. Conclusions Ethyl acetate is the optimal solvent for the extraction of compounds with antioxidant and anti-proliferative activities. The increased activities of catalase and superoxide dismutase in the treated cells could alter the antioxidant defense system, potentially contributing towards the anti-proliferative effect. There is great potential for the ethyl acetate extract of P. betle leaf as a source of natural antioxidants and to be developed as therapeutics in cancer treatment. PMID:23153283
Baumgartner, Thomas; Jäkle, Frieder; Rulkens, Ron; Zech, Gernot; Lough, Alan J; Manners, Ian
2002-08-28
To obtain mechanistic insight, detailed studies of the intriguing "spontaneous" ambient temperature ring-opening polymerization (ROP) of tin-bridged [1]ferrocenophanes Fe(eta-C(5)H(4))(2)SnR(2) 3a (R = t-Bu) and 3b (R = Mes) in solution have been performed. The investigations explored the influence of non-nucleophilic additives such as radicals and radical traps, neutral and anionic nucleophiles, Lewis acids, protic species, and other cationic electrophiles. Significantly, two novel methodologies and mechanisms for the ROP of strained [1]ferrocenophanes are proposed based on this study. First, as the addition of amine nucleophiles such as pyridine was found to strongly accelerate the polymerization rate in solution, a new nucleophilicallyassisted ROP methodology was proposed. This operates at ambient temperature in solution even in the presence of chlorosilanes but, unlike the anionic polymerization of ferrocenophanes, does not involve cyclopentadienyl anions. Second, the addition of small quantities of the electrophilic species H(+) and Bu(3)Sn(+) was found to lead to a cationic ROP process. These studies suggest that the "spontaneous" ROP of tin-bridged [1]ferrocenophanes may be a consequence of the presence of spurious, trace quantities of Lewis basic or acidic impurities. The new ROP mechanisms reported are likely to be of general significance for the ROP of other metallocenophanes (e.g., for thermal ROP in the melt) and for other metallacycles containing group 14 elements.
Cao, Ying; Zhang, Song-Chen; Zhang, Min; Shen, Guang-Bin; Zhu, Xiao-Qing
2013-07-19
A series of 69 polar olefins with various typical structures (X) were synthesized and the thermodynamic affinities (defined in terms of the molar enthalpy changes or the standard redox potentials in this work) of the polar olefins obtaining hydride anions, hydrogen atoms, and electrons, the thermodynamic affinities of the radical anions of the polar olefins (X(•-)) obtaining protons and hydrogen atoms, and the thermodynamic affinities of the hydrogen adducts of the polar olefins (XH(•)) obtaining electrons in acetonitrile were determined using titration calorimetry and electrochemical methods. The pure C═C π-bond heterolytic and homolytic dissociation energies of the polar olefins (X) in acetonitrile and the pure C═C π-bond homolytic dissociation energies of the radical anions of the polar olefins (X(•-)) in acetonitrile were estimated. The remote substituent effects on the six thermodynamic affinities of the polar olefins and their related reaction intermediates were examined using the Hammett linear free-energy relationships; the results show that the Hammett linear free-energy relationships all hold in the six chemical and electrochemical processes. The information disclosed in this work could not only supply a gap of the chemical thermodynamics of olefins as one class of very important organic unsaturated compounds but also strongly promote the fast development of the chemistry and applications of olefins.
Sanders, S P; Zweier, J L; Kuppusamy, P; Harrison, S J; Bassett, D J; Gabrielson, E W; Sylvester, J T
1993-01-01
Free radical generation by hyperoxic endothelial cells was studied using electron paramagnetic resonance (EPR) spectroscopy and the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). Studies were performed to determine the radical species produced, whether mitochondrial electron transport was involved, and the effect of the radical generation on cell mortality. Sheep pulmonary microvascular endothelial cell suspensions exposed to 100% O2 for 30 min exhibited prominent DMPO-OH and, occasionally, additional smaller DMPO-R signals thought to arise from the trapping of superoxide anion (O2-.), hydroxyl (.OH), and alkyl (.R) radicals. Superoxide dismutase (SOD) quenched both signals suggesting that the observed radicals were derived from O2-.. Studies with deferoxamine suggested that the generation of .R occurred secondary to the formation of .OH from O2-. via an iron-mediated Fenton reaction. Blocking mitochondrial electron transport with rotenone (20 microM) markedly decreased radical generation. Cell mortality increased slightly in oxygen-exposed cells. This increase was not significantly altered by SOD or deferoxamine, nor was it different from the mortality observed in air-exposed cells. These results suggest that endothelial cells exposed to hyperoxia for 30 min produce free radicals via mitochondrial electron transport, but under the conditions of these experiments, this radical generation did not appear cause cell death. PMID:8380815
Repair Activity of trans-Resveratrol toward 2'-Deoxyguanosine Radicals.
Cheng, Xing; An, Ping; Li, Shujin; Zhou, Liping
2018-04-26
In the present study, the repair activity of trans-resveratrol toward 2'-deoxyguanosine (dGuo) radicals in polar and nonpolar solvents was studied using density functional theory. The hydrogen transfer/proton coupled electron transfer and single electron transfer (SET) mechanisms between trans-resveratrol and dGuo-radicals were considered. Taking into consideration the molar fraction of neutral trans-resveratrol (ROH) and anionic trans-resveratrol (RO - ), the overall rate constants for repairing dGuo-radicals by trans-resveratrol are 9.94 × 10 8 and 2.01 × 10 9 dm 3 mol -1 s -1 in polar and nonpolar solvents, respectively, and the overall rate constant of repairing cation radical (dGuo •+ ) by trans-resveratrol via an SET mechanism is 7.17 × 10 9 dm 3 mol -1 s -1 . The repair activity of RO - toward dGuo-radicals is better than that of ROH, but the repair activity of ROH toward dGuo •+ is better than that of RO - . Unfortunately, neither ROH nor RO - can repair the 2'-deoxyribose radicals of dGuo. It can therefore be concluded that trans-resveratrol is an effective antioxidant for repairing base radicals of dGuo and dGuo •+ . The study can help us understand the repair activity of trans-resveratrol toward dGuo radicals.
MCD spectroscopy and TD-DFT calculations of low symmetry subnaphthalocyanine analogs.
Mack, John; Otaki, Tatsuya; Durfee, William S; Kobayashi, Nagao; Stillman, Martin J
2014-07-01
Magnetic circular dichroism (MCD) spectroscopy and time-dependent density functional theory (TD-DFT) calculations are used to analyze the electronic structure and optical properties of low-symmetry subnaphthalocyanine analogs with AAB and ABB structures formed during mixed condensations of tetrafluorophthalonitrile and 2,3-naphthalenedicarbonitrile. The results demonstrate that trends observed in the properties of phthalocyanine analogs can be used to fine tune the optical properties so that the Q(0,0) bands lie in the red region, in a manner that does not significantly destabilize the highest occupied molecular orbital (HOMO) energy relative to that of the parent subphthalocyanine ligand. Attempts to study the spectroscopy of anion radical species proved unsuccessful, since they proved to be unstable. Copyright © 2014 Elsevier Inc. All rights reserved.
The crystal structure of a cyanobacterial water-soluble carotenoid binding protein.
Kerfeld, Cheryl A; Sawaya, Michael R; Brahmandam, Vishnu; Cascio, Duilio; Ho, Kwok Ki; Trevithick-Sutton, Colleen C; Krogmann, David W; Yeates, Todd O
2003-01-01
Carotenoids undergo a wide range of photochemical reactions in animal, plant, and microbial systems. In photosynthetic organisms, in addition to light harvesting, they perform an essential role in protecting against light-induced damage by quenching singlet oxygen, superoxide anion radicals, or triplet-state chlorophyll. We have determined the crystal structure of a water-soluble orange carotenoid protein (OCP) isolated from the cyanobacterium Arthrospira maxima at a resolution of 2.1 A. OCP forms a homodimer with one carotenoid molecule per monomer. The carotenoid binding site is lined by a striking number of methionine residues. The structure reveals several possible ways in which the protein environment influences the spectral properties of the pigment and provides insight into how the OCP carries out its putative functions in photoprotection.
Operando X-ray absorption and EPR evidence for a single electron redox process in copper catalysis
Lu, Qingquan; Zhang, Jian; Peng, Pan; ...
2015-05-26
An unprecedented single electron redox process in copper catalysis is confirmed using operando X-ray absorption and EPR spectroscopies. The oxidation state of the copper species in the interaction between Cu(II) and a sulfinic acid at room temperature, and the accurate characterization of the formed Cu(I) are clearly shown using operando X-ray absorption and EPR evidence. Further investigation of anion effects on Cu(II) discloses that bromine ions can dramatically increase the rate of the redox process. Moreover, it is proven that the sulfinic acids are converted into sulfonyl radicals, which can be trapped by 2-arylacrylic acids and various valuable β-keto sulfonesmore » are synthesized with good to excellent yields under mild conditions.« less
Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.
Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek
2012-09-01
Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.
Wei, Xiaoliang; Xu, Wu; Huang, Jinhua; Zhang, Lu; Walter, Eric; Lawrence, Chad; Vijayakumar, M; Henderson, Wesley A; Liu, Tianbiao; Cosimbescu, Lelia; Li, Bin; Sprenkle, Vincent; Wang, Wei
2015-07-20
Nonaqueous redox flow batteries hold the promise of achieving higher energy density because of the broader voltage window than aqueous systems, but their current performance is limited by low redox material concentration, cell efficiency, cycling stability, and current density. We report a new nonaqueous all-organic flow battery based on high concentrations of redox materials, which shows significant, comprehensive improvement in flow battery performance. A mechanistic electron spin resonance study reveals that the choice of supporting electrolytes greatly affects the chemical stability of the charged radical species especially the negative side radical anion, which dominates the cycling stability of these flow cells. This finding not only increases our fundamental understanding of performance degradation in flow batteries using radical-based redox species, but also offers insights toward rational electrolyte optimization for improving the cycling stability of these flow batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enhanced degradation of benzene by percarbonate activated with Fe(II)-glutamate complex.
Fu, Xiaori; Gu, Xiaogang; Lu, Shuguang; Miao, Zhouwei; Xu, Minhui; Zhang, Xiang; Danish, Muhammad; Cui, Hang; Farooq, Usman; Qiu, Zhaofu; Sui, Qian
2016-04-01
Effective degradation of benzene was achieved in sodium percarbonate (SPC)/Fe(II)-Glu system. The presence of glutamate (Glu) could enhance the regeneration of Fe(III) to Fe(II), which ensures the benzene degradation efficiency at wider pH range and eliminate the influence of HCO3 (-) in low concentration. Meanwhile, the significant scavenging effects of high HCO3 (-) concentration could also be overcome by increasing the Glu/SPC/Fe(II)/benzene molar ratio. Free radical probe compound tests, free radical scavenger tests, and electron paramagnetic resonance (EPR) analysis were conducted to explore the reaction mechanism for benzene degradation, in which hydroxyl radical (HO•) and superoxide anion radical (O2 (•-)) were confirmed as the predominant species responsible for benzene degradation. In addition, the results obtained in actual groundwater test strongly indicated that SPC/Fe(II)-Glu system is applicable for the remediation of benzene-contaminated groundwater in practice.
Degradation of n-butylparaben and 4- tert-octylphenol in H 2O 2/UV system
NASA Astrophysics Data System (ADS)
BŁędzka, Dorota; Gryglik, Dorota; Olak, Magdalena; Gębicki, Jerzy L.; Miller, Jacek S.
2010-04-01
The degradation of two endocrine disrupting compounds: n-butylparaben (BP) and 4- tert-octylphenol (OP) in the H 2O 2/UV system was studied. The effect of operating variables: initial hydrogen peroxide concentration, initial substrate concentration, pH of the reaction solution and photon fluency rate of radiation at 254 nm on reaction rate was investigated. The influence of hydroxyl radical scavengers, humic acid and nitrate anion on reaction course was also studied. A very weak scavenging effect during BP degradation was observed indicating reactions different from hydroxyl radical oxidation. The second-order rate constants of BP and OP with OH radicals were estimated to be 4.8×10 9 and 4.2×10 9 M -1 s -1, respectively. For BP the rate constant equal to 2.0×10 10 M -1 s -1was also determined using water radiolysis as a source of hydroxyl radicals.
Process for removing sulfate anions from waste water
Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.
1997-01-01
A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.
Formation and identification of borane radical anions isolated in solid argon
NASA Astrophysics Data System (ADS)
Lin, Meng-Yeh; Huang, Tzu-Ping; Chin, Chih-Hao; Wu, Yu-Jong
2018-02-01
The infrared (IR) spectrum of borane(3) anions (BH3-) isolated in solid Ar was recorded; two vibrational modes were observed at 2259.4 and 606.6 cm-1, which were assigned to the BH2 stretching (ν3) and out-of-plane large-amplitude (ν2) modes, respectively. These anions were produced by the electron bombardment of an Ar matrix sample containing a small proportion of B2H6 and H2 during matrix deposition or by the photolysis of single-bridged-B2H5- in an Ar matrix with the selected ultraviolet light. The band positions, relative intensity ratios, isotopic splitting pattern, and isotopic shift ratios of the observed IR features of BH3- are generally in good agreement with those predicted by the B2PLYP/aug-cc-pVTZ method.
Hirshberg, Daniel; Sharon, Daniel; Afri, Michal; Lavi, Ronit; Frimer, Aryeh A; Metoki, Noa; Eliaz, Noam; Kwak, Won-Jin; Sun, Yang-Kook; Aurbach, Doron
2018-04-04
Using UV-vis spectroscopy in conjunction with various electrochemical techniques, we have developed a new effective operando methodology for investigating the oxygen reduction reactions (ORRs) and their mechanisms in nonaqueous solutions. We can follow the in situ formation and presence of superoxide moieties during ORR as a function of solvent, cations, anions, and additives in the solution. Thus, using operando UV-vis spectroscopy, we found evidence for the formation of superoxide radical anions during oxygen reduction in LiTFSI/diglyme electrolyte solutions. Nitro blue tetrazolium (NBT) was used to indicate the presence of superoxide moieties based on its unique spectral response. Indeed, the spectral response of NBT containing solutions undergoing ORR could provide a direct indication for the level of association of the Li cations with the electrolyte anions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glaser, R.; Streitwieser, A.
1989-09-13
Geometries and relative energies of stationary structures of several conformers of geometrical isomers of NO s-trans-configured acetaldoxime are reported. The calculated energies and geometries agree well with comparable experimental data. Effects of the theoretical model on the NO band lengths are discussed for formaldoxime. The theoretical results suggest that the regiochemistry of enolate equivalents of oxyimines in dissociating solvents is due to the thermodynamic syn preference of the anions. Syn/anti isomerization of the anions (E{sub a} < 26 kcal mol{sup {minus}1}) is rapid even at low temperatures. In contrast, the anti preference of the radicals of acetaldoxime indicates that themore » formation of the syn products in oxidative coupling reactions of the anions of oxime ethers is a kinetic effect.« less
Molecular and physiological strategies to increase aluminum resistance in plants.
Inostroza-Blancheteau, Claudio; Rengel, Zed; Alberdi, Miren; de la Luz Mora, María; Aquea, Felipe; Arce-Johnson, Patricio; Reyes-Díaz, Marjorie
2012-03-01
Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsis thaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.
Method of separating short half-life radionuclides from a mixture of radionuclides
Bray, Lane A.; Ryan, Jack L.
1999-01-01
The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.
Method of separating short half-life radionuclides from a mixture of radionuclides
Bray, L.A.; Ryan, J.L.
1999-03-23
The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.
Severino, Joyce Ferreira; Goodman, Bernard A; Kay, Christopher W M; Stolze, Klaus; Tunega, Daniel; Reichenauer, Thomas G; Pirker, Katharina F
2009-04-15
Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and (-)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O(2)(-)) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O(2)(-) oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O(2)(-) oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.
Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira
2016-12-01
Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order k HI ≅ k HP > k HS . Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.
Ostrakhovich, E A; Ilich-Stoianovich, O; Afanas'ev, I B
2001-01-01
Infrared pulse laser therapy was studied for its impact on the production of active forms of oxygen and nitrogen by neutrophils from patients with rheumatoid arthritis (RA). The authors determined the non-activated and PMA-activated production of superoxide anion-radical, peroxynitrite, peripheral neurophilic NAD.PH-oxidase and superoxide dismutase activities, and the red blood cell concentrations of reduced glutathione. Before therapy, non-activation RA neurophilic production of superoxide was much higher than in donors. Laser therapy made this parameter normal. Similarly, neutrophilic peroxynitrite production (defined by dihydrorhodamine oxidation) in RA patients was 1.7 times higher than the normal values. IF-laser therapy decreased peroxynitrite production to the values observed in donors. It is important that the therapy caused increased SOD activity (that was lower in RA patients prior to therapy) up to apparently control values. Thus, IF-laser therapy has a certain antioxidative effect by increasing SOD activity in RA patients' blood cells and reducing the production of highly reactive oxygen and nitrogen forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, M.S.; Forman, A.; Hanson, L.K.
Optical, ESR, ENDOR, and redox characteristics of anion and cation radicals of bacteriochlorophyll b (BChl) and bacteriopheophytin b (BPh) have been obtained in nonaqueous solvents. The radicals exhibit properties similar to those of BChl a derivatives, as expected from extended Huckel and Pariser-Parr-Pople MO calculations. The electronic configurations of the radicals have been assigned on the basis of the MO calculations and by analogy with BChl a and BPh a results. Oxidized reaction centers of Rhodopseudomonas viridis do not display the ..sqrt..2 narrowing of the ESR line width nor the 50% decrease in ENDOR splittings expected for a symmetric cationmore » dimer, when compared to BChl b/sup +/. Nonetheless, computer simulations indicate that a dimeric model for P960, the primary donor of R. viridis, can be rationalized by imposing a torsional angle on ring IV different from that found in crystals of Chl a, i.e., P960 may be a dimer with a twist. Comparison of the resolved ESR spectra and ENDOR splittings of the primary acceptor (I/sup -/) of R. viridis with in-vitro results indicates that I/sup -/ is a monomeric anion. Optical and redox data favor BPh over BChl as the primary acceptor. These results allow a description of the electronic profile of the species which evolve within a picosecond time domain in the primary conversion of light into chemical energy at approx. 1000 nm.« less
Lucigenin-dependent chemiluminescence in articular chondrocytes.
Rathakrishnan, C; Tiku, M L
1993-08-01
We were recently able to measure intracellular levels of hydrogen peroxide within normal articular chondrocytes using the trapped indicator 2',7'-dichlorofluorescein diacetate. Further studies have shown that stimulated chondrocytes produce luminol-dependent chemiluminescence, suggesting that these cells produce hydrogen peroxide and singlet oxygen. In the present study, we have investigated the lucigenin-dependent chemiluminescence response in normal articular chondrocytes. Chondrocytes either in suspension or adhered to cover slips showed lucigenin-dependent chemiluminescence. There was a dose-dependent increase in chemiluminescence response when chondrocytes were incubated with soluble stimuli like phorbol-myristate-acetate, concanavalin A, and f-met-leu-phe. Catalase and the metabolic inhibitor, sodium azide, which inhibits the enzyme myeloperoxidase, had no inhibitory effect on lucigenin-dependent chemiluminescence production. Only the antioxidant, superoxide dismutase, prevented lucigenin-dependent chemiluminescence, indicating that this assay measures the production of superoxide anions by chondrocytes. We confirmed that chondrocytes release superoxide radicals using the biochemical assay of ferricytochrome c reduction. Since cartilage tissue is semi-transparent, we were able to measure chemiluminescence response in live cartilage tissue, showing that chondrocytes which are embedded within the matrix can also generate superoxide anion radicals. Reactive oxygen intermediates have been shown to play a significant role in the degradation of matrix in arthritis. Our previous and present studies suggest that oxygen radicals produced by chondrocytes may be an important mechanism by which chondrocytes induce cartilage matrix degradation.
Application of AOPs for Removal of Stable Cyanide Compounds
NASA Astrophysics Data System (ADS)
Tsybikova, B.
2017-11-01
The main kinetic regularities of the photochemical oxidation of stable cyanide compounds (exemplified by hexacyanoferrates) by combined treatments involving direct photolysis and persulfate (oxidative system UV/S2O8 2-) and direct photolysis and hydrogen peroxide (oxidative system UV/H2O2) were studied. The possibility to perform oxidation processes within a wide pH range was shown. Based on to the energy efficiency, the rate of reaction and duration of the treatment, the considered oxidative systems can be arranged in the following order: {UV/S2O8 2-}>{UV/H2O2}>{UV}. The enhanced efficiency of hexacyanoferrates’ degradation by the combined system {UV/S2O8 2-} is due to the high oxidative capacity of sulfate anion radicals SO4 -· formed as a result of persulfate photolysis and its further disproportionation by Fe3+ and Fe2+ released through the decomposition of [Fe(CN)6]3-. Furthermore, the formation of ·OH radicals as a result of SO4 -· reacting with water also contributes to the enhanced oxidation efficiency. The combined method of {UV/S2O8 2-} treatment could be applied for the treatment of cyanide-containing wastewater and recycled water of different industries.
Rivera-Portalatin, Nilka M; Vera-Serrano, José L; Prokai-Tatrai, Katalin; Prokai, Laszlo
2007-01-01
Ortho-quinones formed from catechol estrogens are considered prooxidants due to the production of superoxide radical anions through redox cycling via semiquinones. Para-quinols have been identified as novel metabolites of and as the major products of hydroxyl-radical scavenging by estrogens. Cycling of these compounds has also been discovered, because they are converted back to the parent estrogen via reductive aromatization in vitro and in vivo. We hypothesized that, unlike ortho-quinones, para-quinols do not induce oxidative stress due to this cycling. Like the estrogen itself, the 17beta-estradiol-derived para-quinol (10beta,17beta-dihydroxyestra-1,4-diene-3-one) did not induce oxidative stress, as the rate of hydrogen peroxide production during the incubations of the compounds in various tissue homogenates was not significantly different from that of the control experiments performed without the addition of a test compound. We also confirmed that the estrogen metabolite estra-1,5(10)-dien-3,4,17-trione (estrone 3,4-quinone) was a profound prooxidant due to redox cycling, especially in uterine tissue. Therefore, we concluded that para-quinols do not induce oxidative stress.
Rivera-Portalatin, Nilka M.; Vera-Serrano, José L.; Prokai-Tatrai, Katalin; Prokai, Laszlo
2009-01-01
Ortho-quinones formed from catechol estrogens are considered prooxidants due to the production of superoxide radical anions through redox cycling via semiquinones. Para-quinols have been identified as novel metabolites of and as the major products of hydroxyl-radical scavenging by estrogens. Cycling of these compounds has also been discovered, because they are converted back to the parent estrogen via reductive aromatization in vitro and in vivo. We hypothesized that, unlike ortho-quinones, para-quinols do not induce oxidative stress due to this cycling. Like the estrogen itself, the 17β-estradiol-derived para-quinol (10β,17β-dihydroxyestra-1,4-diene-3-one) did not induce oxidative stress, as the rate of hydrogen peroxide production during the incubations of the compounds in various tissue homogenates was not significantly different from that of the control experiments performed without the addition of a test compound. We also confirmed that the estrogen metabolite estra-1,5(10)-dien-3,4,17-trione (estrone 3,4-quinone) was a profound prooxidant due to redox cycling, especially in uterine tissue. Therefore, we concluded that para-quinols do not induce oxidative stress. PMID:17582759
Huberty, Wayne; Tong, Xiaowei; Balamurugan, Sreelatha; Deville, Kyle; Russo, Paul S; Zhang, Donghui
2016-03-01
A labeled green fluorescent polystyrene sulfonate (LNaPSS) has been synthesized using atom transfer radical polymerization of a styrene sulfonate monomer with a fluorescent co-monomer, fluorescein thiocyanate-vinyl aniline. As a result this 100 % sulfonated polymer contains no hydrophobic patches along the chain backbone besides the fluorescent marker itself. The concentration of the fluorescent monomer was kept low to maintain the characteristic properties of the anionic polyelectrolyte, LNaPSS. ATRP conditions facilitated the production of polymers spanning a range of molecular weights from 35,000 to 175,000 in gram-scale batches with polydispersity indices of 1.01-1.24. Molecular weight increased with the monomer to initiator ratio. Gel permeation chromatography results show a unimodal distribution, and the polymer structure was also confirmed by (1)H NMR and FT-IR spectroscopy. Fluorescence spectroscopy confirmed covalent bonding of fluorescein isothiocyanate to the polymer, indicating that the polymer is suitable as a probe in fluorescence microscopy. To demonstrate this ability, the polymer was used to locate structural features in salt crystals formed during drying, as in the evaporation of sea mist. A second application to probe diffusion studies is also demonstrated.
Hybrid super electron donors - preparation and reactivity.
Garnier, Jean; Thomson, Douglas W; Zhou, Shengze; Jolly, Phillip I; Berlouis, Leonard E A; Murphy, John A
2012-01-01
Neutral organic electron donors, featuring pyridinylidene-imidazolylidene, pyridinylidene-benzimidazolylidene and imidazolylidene-benzimidazolylidene linkages are reported. The pyridinylidene-benzimidazolylidene and imidazolylidene-benzimidazolylidene hybrid systems were designed to be the first super electron donors to convert iodoarenes to aryl radicals at room temperature, and indeed both show evidence for significant aryl radical formation at room temperature. The stronger pyridinylidene-imidazolylidene donor converts iodoarenes to aryl anions efficiently under appropriate conditions (3 equiv of donor). The presence of excess sodium hydride base has a very important and selective effect on some of these electron-transfer reactions, and a rationale for this is proposed.
Synthesis of nanostructured materials in inverse miniemulsions and their applications.
Cao, Zhihai; Ziener, Ulrich
2013-11-07
Polymeric nanogels, inorganic nanoparticles, and organic-inorganic hybrid nanoparticles can be prepared via the inverse miniemulsion technique. Hydrophilic functional cargos, such as proteins, DNA, and macromolecular fluoresceins, may be conveniently encapsulated in these nanostructured materials. In this review, the progress of inverse miniemulsions since 2000 is summarized on the basis of the types of reactions carried out in inverse miniemulsions, including conventional free radical polymerization, controlled/living radical polymerization, polycondensation, polyaddition, anionic polymerization, catalytic oxidation reaction, sol-gel process, and precipitation reaction of inorganic precursors. In addition, the applications of the nanostructured materials synthesized in inverse miniemulsions are also reviewed.
NASA Technical Reports Server (NTRS)
Tseng, S.-S.; Chang, S.
1975-01-01
Electron spin resonance (ESR) spectroscopy provided evidence for formation of hydroxyl radicals during ultraviolet photolysis (254 nm) at -170 C of H2O adsorbed on silica gel or of silica gel alone. The carboxyl radical was observed when CO or CO2 or a mixture of CO and CO2 adsorbed on silica gel at -170 C was irradiated. The ESR signals of these radicals slowly disappeared when the irradiated samples were warmed to room temperature. However, reirradiation of CO or CO2, or the mixture CO and CO2 on silica gel at room temperature then produced a new species, the carbon dioxide anion radical, which slowly decayed and was identical with that produced by direct photolysis of formic acid adsorbed on silica gel. The primary photochemical process may involve formation of hydrogen and hydroxyl radicals. Subsequent reactions of these radicals with adsorbed CO or CO2 or both yield carboxyl radicals, CO2H, the precursors of formic acid. These results confirm the formation of formic acid under simulated Martian conditions and provide a mechanistic basis for gauging the potential importance of gas-solid photochemistry for chemical evolution on other extraterrestrial bodies, on the primitive earth, and on dust grains in the interstellar medium.
Malinowska, Joanna; Oleszek, Wieslaw; Stochmal, Anna; Olas, Beata
2013-04-01
The mechanism action of the polyphenol-rich extracts from berries of Aronia melanocarpa (black chokeberry) and from grape seeds in the defence against homocysteine (Hcy) and its derivatives action in blood platelets is still unknown. In this study, the influence of the aronia extract and grape seeds extract (GSE) on the platelet adhesion to collagen and fibrinogen and the platelet aggregation during a model of hyperhomocysteinemia was investigated. The aim of our study in vitro was also to investigate superoxide anion radicals (O₂⁻•) production after incubation of platelets with Hcy, HTL and the aronia extract and GSE during a model of hyperhomocysteinemia (induced by reduced form of homocysteine at final dose of 100 μM) and the most reactive form of Hcy--its cyclic thioester, homocysteine thiolactone (HTL, 1 μM). Moreover, the additional aim of our study was also to establish and compare the influence of the aronia extract, GSE and resveratrol (3,4',5-trihydroxystilben), a phenolic compound, which has been supposed to be beneficial for the prevention of cardiovascular events, on selected steps of platelet activation. The effects of tested extracts on adhesion of blood platelets to collagen and fibrinogen were determined according to Tuszynski and Murphy. The platelet aggregation was determined by turbidimetry method using a Chrono-log Lumi-aggregometer. We have observed that HTL, like its precursor-Hcy stimulated the generation of O₂⁻• (measured by the superoxide dismutase-inhibitable reduction of cytochrome c) in platelets and caused an augmentation of the platelet adhesion and aggregation induced by the strong physiological agonist-thrombin. Our present results in vitro also demonstrated that the aronia extract and grape seeds extract reduced the toxicity action of Hcy and HTL on blood platelet adhesion to collagen and fibrinogen, the platelet aggregation and superoxide anion radicals production in platelets, suggesting its potential protective effects on hemostasis during hyperhomocysteinemia. In the comparative studies, the aronia extract was found to be more effective antiplatelet factors, than GSE or resveratrol during a model of hyperhomocysteinemia. It gives hopes for development of diet supplements, which may be important during hyperhomocysteinemia.
NASA Astrophysics Data System (ADS)
Venâncio, Mateus F.; Rocha, Willian R.
2015-10-01
Ab initio molecular dynamics simulations were used to investigate the early chemical events involved in the dynamics of nitric oxide (NOrad), nitrosonium cation (NO+) and nitroxide anion (NO-) in aqueous solution. The NO+ ion is very reactive in aqueous solution having a lifetime of ∼4 × 10-13 s, which is shorter than the value of 3 × 10-10 s predicted experimentally. The NO+ reacts generating the nitrous acid as an intermediate and the NO2- ion as the final product. The dynamics of NOrad revealed the reversibly formation of a transient anion radical species HONOrad -.
Mixed Valence in Conjugated Anion Radicals. Solution and Solid State Studies
1991-05-24
voltammetry was performed using a BAS-100 electrochemical analyzer. Bulk electrolyses were performed with a Princeton Applied Research (PAR) model 173...extracted with several small portions of CH 2 CI 2. The combined organic layers are then washed once again with water . After drying over Na2 SO4 the
Synthesis and polymerization of vinyl triazolium ionic liquids
Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian
2018-05-15
Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.
NASA Astrophysics Data System (ADS)
Tani, Atsushi; Fukui, Satoshi; Ikawa, Satoshi; Kitano, Katsuhisa
2015-10-01
We investigated fatty acid oxidation by atmospheric-pressure nonthermal helium plasma using linoleic acid, an unsaturated fatty acid, together with evaluating active species induced in liquids. If the ambient gas contains oxygen, direct plasma such as plasma jets coming into contact with the liquid surface supplies various active species, such as singlet oxygen, ozone, and superoxide anion radicals, to the liquid. The direct plasma easily oxidizes linoleic acid, indicating that fatty acid oxidation will occur in the direct plasma. In contrast, afterglow flow, where the plasma is terminated in a glass tube and does not touch the surface of the liquid sample, supplies mainly superoxide anion radicals. The fact that there was no clear observation of linoleic acid oxidation using the afterglow reveals that it may not affect lipids, even in an atmosphere containing oxygen. The afterglow flow can potentially be used for the sterilization of aqueous solutions using the reduced pH method, in medical and dental applications, because it provides bactericidal activity in the aqueous solution despite containing a smaller amount of active species.
NASA Astrophysics Data System (ADS)
Rosokha, S. V.; Newton, M. D.; Head-Gordon, M.; Kochi, J. K.
2006-05-01
The paramagnetic [1:1] encounter complex (TCNE)2-rad is established as the important precursor in the kinetics and mechanism of electron-transfer for the self-exchange between tetracyanoethylene acceptor ( TCNE) and its radical-anion as the donor. Spectroscopic observation of the dimeric complex (TCNE)2-rad by its intervalence absorption band at the solvent-dependent wavelength of λIV ˜ 1500 nm facilitates the application of Mulliken-Hush theory which reveals the significant electronic interaction extant between the pair of cofacial TCNE moieties with the sizable coupling of HDA = 1000 cm -1. The transient existence of such an encounter complex provides the critical link in the electron-transfer kinetics by lowering the classical Marcus reorganization barrier by the amount of HDA in this strongly adiabatic system. Ab initio quantum-mechanical methods as applied to independent theoretical computations of both the reorganization energy ( λ) and the electronic coupling element ( HDA) confirm the essential correctness of the Mulliken-Hush formalism for fast electron transfer via strongly coupled donor/acceptor encounter complexes.
Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72
NASA Astrophysics Data System (ADS)
Feng, Yongqiang; Wang, Taishan; Wu, Jingyi; Feng, Lai; Xiang, Junfeng; Ma, Yihan; Zhang, Zhuxia; Jiang, Li; Shu, Chunying; Wang, Chunru
2013-07-01
We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed.We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed. Electronic supplementary information (ESI) available: Experimental details, HPLC chromatogram, and DFT calculations. CCDC 917712. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr01739g
Theoretical study on the spectroscopic properties of CO3(*-).nH2O clusters: extrapolation to bulk.
Pathak, Arup K; Mukherjee, Tulsi; Maity, Dilip K
2008-10-24
Vertical detachment energies (VDE) and UV/Vis absorption spectra of hydrated carbonate radical anion clusters, CO(3)(*-).nH(2)O (n=1-8), are determined by means of ab initio electronic structure theory. The VDE values of the hydrated clusters are calculated with second-order Moller-Plesset perturbation (MP2) and coupled cluster theory using the 6-311++G(d,p) set of basis functions. The bulk VDE value of an aqueous carbonate radical anion solution is predicted to be 10.6 eV from the calculated weighted average VDE values of the CO(3)(*-).nH(2)O clusters. UV/Vis absorption spectra of the hydrated clusters are calculated by means of time-dependent density functional theory using the Becke three-parameter nonlocal exchange and the Lee-Yang-Parr nonlocal correlation functional (B3LYP). The simulated UV/Vis spectrum of the CO(3)(*-).8H(2)O cluster is in excellent agreement with the reported experimental spectrum for CO(3)(*-) (aq), obtained based on pulse radiolysis experiments.
Vibrational Mode-Specific Autodetachment and Coupling of CH2CN-
NASA Astrophysics Data System (ADS)
Lyle, Justin; Mabbs, Richard
2017-06-01
The Cyanomethyl Anion, CH_{2}CN-, and neutral radical have been studied extensively, with several findings of autodetachment about the totally symmetric transition, as well as high resolution experiments revealing symmetrically forbidden and weak vibrational features. We report photoelectron spectra using the Velocity-Mapped Imaging Technique in 1-2 \\wn increments over a range of 13460 to 15384 \\wn that has not been previously examined. These spectra include excitation of the ground state cyanomethyl anion into the direct detachment thresholds of previously reported vibrational modes for the neutral radical. Significant variations from Franck-Condon behavior were observed in the branching ratios for resolved vibrational features for excitation in the vicinity of the thresholds involving the νb{3} and νb{5} modes. These are consistent with autodetachment from rovibrational levels of a dipole bound state acting as a resonance in the detachment continuum. The autodetachment channels involve single changes in vibrational quantum number, consistent with the vibrational propensity rule but in some cases reveal relaxation to a different vibrational mode indicating coupling between the modes and/or a breakdown of the normal mode approximation.
Jiang, Shengjuan; Wang, Yuliang; Zhang, Xiaolong
2016-07-01
Hericium erinaceus (H. erinaceus) is a source of exogenous antioxidants that has been traditionally used in China for the prevention and treatment of oxidative stress-associated disease. In the present study, the bioactive compounds of H. erinaceus were extracted with the following eight representative reagents: n-Hexane, xylene, chloroform, anhydrous ether, ethyl acetate, acetone, anhydrous ethanol and distilled water. The in vitro antioxidant activities were also evaluated. All of the extracted compounds exhibited reducing power and scavenging activity against 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion free radicals. In addition, the antioxidant capacities varied with the used chemical reagents and exhibited dose-dependent effects. Extracts from anhydrous ethanol, chloroform and acetone were capable of inhibiting lipid peroxidation. The anhydrous ethanol extracts were observed to have significant levels of antioxidant compounds since they had a strong reducing power, high scavenging rates against DPPH and superoxide anion-free radicals (>90%), and high inhibition rates on lipid peroxidation (>60%). The present study will provide reference data for the antioxidant applications of H. erinaceus in pharmaceutical use and disease prevention.
JIANG, SHENGJUAN; WANG, YULIANG; ZHANG, XIAOLONG
2016-01-01
Hericium erinaceus (H. erinaceus) is a source of exogenous antioxidants that has been traditionally used in China for the prevention and treatment of oxidative stress-associated disease. In the present study, the bioactive compounds of H. erinaceus were extracted with the following eight representative reagents: n-Hexane, xylene, chloroform, anhydrous ether, ethyl acetate, acetone, anhydrous ethanol and distilled water. The in vitro antioxidant activities were also evaluated. All of the extracted compounds exhibited reducing power and scavenging activity against 1-diphenyl-2-picrylhydrazyl (DPPH) and superoxide anion free radicals. In addition, the antioxidant capacities varied with the used chemical reagents and exhibited dose-dependent effects. Extracts from anhydrous ethanol, chloroform and acetone were capable of inhibiting lipid peroxidation. The anhydrous ethanol extracts were observed to have significant levels of antioxidant compounds since they had a strong reducing power, high scavenging rates against DPPH and superoxide anion-free radicals (>90%), and high inhibition rates on lipid peroxidation (>60%). The present study will provide reference data for the antioxidant applications of H. erinaceus in pharmaceutical use and disease prevention. PMID:27347087
Mishra, Jhili; Swain, Jitendriya; Mishra, Ashok Kumar
2018-05-16
A detailed photophysical study of fisetin in a Tween20 : cholesterol (1 : 1) niosome membrane has been carried out. Fisetin is found to partition well into the Tween20 : cholesterol (1 : 1) niosome membrane at low temperature (Kp = 2.7 × 104 M-1 at 10 °C). Cetylpyridinium chloride quenching study confirms the location of fisetin molecules in the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. The emission from the prototropic forms of fisetin (neutral form, excited state anion, ground state anion and phototautomer form) is found to sensitively reflect the local heterogeneities in Tween20 : cholesterol (1 : 1) niosome membrane. The shift in anionic emission maximum with variation in temperature shows the sensitivity of fisetin towards water accessibility at the interfacial domain of Tween20 : cholesterol (1 : 1) niosome membrane. Zeta potential value confirms that there is no role of surface charge in the multiple prototropism of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane. The microviscosity changes with temperature, as reflected in fluorescence anisotropy values of fisetin phototautomeric species FT*, give information about the temperature-induced changes in the motional resistance offered by the interfacial domain of the niosomal membrane to small molecules. A temperature-dependent fluorescence lifetime study confirms the distribution of FT* in the two different sites of niosomal interfacial domain, i.e. water-deficient inner site and water-accessible outer site. This heterogeneity in distribution of FT* is further confirmed through time-resolved fluorescence anisotropy decay resulting in two different rotational time constants (faster component of ∼1.04 ns originates from water-accessible outer site and slower component of ∼16.50 ns originates from water-deficient inner site). The interfacial location of fisetin in Tween20 : cholesterol (1 : 1) niosome membrane has an important implication with regards to antioxidant activity as confirmed from a DPPH radical scavenging study.
Plasma Jet (V)UV-Radiation Impact on Biologically Relevant Liquids and Cell Suspension
NASA Astrophysics Data System (ADS)
Tresp, H.; Bussiahn, R.; Bundscherer, L.; Monden, A.; Hammer, M. U.; Masur, K.; Weltmann, K.-D.; Woedtke, Th. V.; Reuter, S.
2014-10-01
In this study the generation of radicals in plasma treated liquids has been investigated. To quantify the contribution of plasma vacuum ultraviolet (VUV) and ultraviolet (UV) radiation on the species investigated, three cases have been studied: UV of plasma jet only, UV and VUV of plasma jet combined, and the plasma effluent including all reactive components. The emitted VUV has been observed by optical emission spectroscopy and its effect on radical formation in liquids has been analyzed by electron spin resonance spectroscopy. Radicals have been determined in ultrapure water (dH2O), as well as in more complex, biorelevant solutions like phosphate buffered saline (PBS) solution, and two different cell culture media. Various compositions lead to different reactive species formation, e.g. in PBS superoxide anion and hydroxyl radicals have been detected, in cell suspension also glutathione thiyl radicals have been found. This study highlights that UV has no impact on radical generation, whereas VUV is relevant for producing radicals. VUV treatment of dH2O generates one third of the radical concentration produced by plasma-effluent treatment. It is relevant for plasma medicine because although plasma sources are operated in open air atmosphere, still VUV can lead to formation of biorelevant radicals. This work is funded by German Federal Ministry of Education a Research (BMBF) (Grant # 03Z2DN12+11).
de Francisco, Lizziane; Pinto, Diana; Rosseto, Hélen; Toledo, Lucas; Santos, Rafaela; Tobaldini-Valério, Flávia; Svidzinski, Terezinha; Bruschi, Marcos; Sarmento, Bruno; Oliveira, M Beatriz P P; Rodrigues, Francisca
2018-03-01
Propolis is a natural adhesive resinous compound produced by honeybees to protect hives from bacteria and fungi, being extremely expensive for food industry. During propolis production, a resinous by-product is formed. This resinous waste is currently undervalued and underexploited. Accordingly, in this study the proximate physical and chemical quality, as well as the antioxidant activity, radical scavenging activity and cell viability of this by-product were evaluated and compared with propolis in order to boost new applications in food and pharmaceutical industries. The results revealed that the by-product meets the physical and chemical quality standards expected and showed that the propolis waste contains similar amounts of total phenolic content (TPC) and total flavonoid content (TFC) to propolis. Also, a good scavenging activity against reactive oxygen and nitrogen species (ROS and RNS, respectively) determined by the assays of superoxide anion radical (O 2 - ), hydrogen peroxide (H 2 O 2 ), hypochlorous acid (HOCl), nitric oxide (NO) and peroxyl radical (ROO) were determined. Linear positive correlations were established between the TPC of both samples and the antioxidant activity evaluated by three different methods (DPPH, ABTS and FRAP assays). The extracts were also screened for cell viability assays in two different intestinal cell lines (HT29-MTX and Caco-2), showing a viability concentration-dependent. Similarly, the Artemia salina assay, used to assess toxicity, demonstrated the concentration influence on results. Finally, the antifungal activity against ATCC species of Candida was demonstrated. These results suggest that propolis by-product can be used as a new rich source of bioactive compounds for different areas, such as food or pharmaceutical. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kawakami, M; Okabe, E
1998-03-01
The ryanodine receptor Ca2+ channel (RyRC) constitutes the Ca2+-release pathway in sarcoplasmic reticulum (SR) of cardiac muscle. A direct mechanical and a Ca2+-triggered mechanism (Ca2+-induced Ca2+ release) have been proposed to explain the in situ activation of Ca2+ release in cardiac muscle. A variety of chemical oxidants have been shown to activate RyRC; however, the role of modification induced by oxygen-derived free radicals in pathological states of the muscle remains to be elucidated. It has been hypothesized that oxygen-derived free radicals initiate Ca2+-mediated functional changes in or damage to cardiac muscle by acting on the SR and promoting an increase in Ca2+ release. We confirmed that superoxide anion radical (O2-) generated from hypoxanthine-xanthine oxidase reaction decreases calmodulin content and increases 45Ca2+ efflux from the heavy fraction of canine cardiac SR vesicles; hypoxanthine-xanthine oxidase also decreases Ca2+ free within the intravesicular space of the SR with no effect on Ca2+-ATPase activity. Current fluctuations through single Ca2+-release channels have been monitored after incorporation into planar phospholipid bilayers. We demonstrate that activation of the channel by O2- is dependent of the presence of calmodulin and identified calmodulin as a functional mediator of O2--triggered Ca2+ release through the RyRC. For the first time, we show that O2- stimulates Ca2+ release from heavy SR vesicles and suggest the importance of accessory proteins such as calmodulin in modulating the effect of O2-. The decreased calmodulin content induced by oxygen-derived free radicals, especially O2-, is a likely mechanism of accumulation of cytosolic Ca2+ (due to increased Ca2+ release from SR) after reperfusion of the ischemic heart.
Lin, Ching Yeh; Coote, Michelle L; Gennaro, Armando; Matyjaszewski, Krzysztof
2008-09-24
High-level ab initio molecular orbital calculations are used to study the thermodynamics and electrochemistry relevant to the mechanism of atom transfer radical polymerization (ATRP). Homolytic bond dissociation energies (BDEs) and standard reduction potentials (SRPs) are reported for a series of alkyl halides (R-X; R = CH 2CN, CH(CH 3)CN, C(CH 3) 2CN, CH 2COOC 2H 5, CH(CH 3)COOCH 3, C(CH 3) 2COOCH 3, C(CH 3) 2COOC 2H 5, CH 2Ph, CH(CH 3)Ph, CH(CH 3)Cl, CH(CH 3)OCOCH 3, CH(Ph)COOCH 3, SO 2Ph, Ph; X = Cl, Br, I) both in the gas phase and in two common organic solvents, acetonitrile and dimethylformamide. The SRPs of the corresponding alkyl radicals, R (*), are also examined. The computational results are in a very good agreement with the experimental data. For all alkyl halides examined, it is found that, in the solution phase, one-electron reduction results in the fragmentation of the R-X bond to the corresponding alkyl radical and halide anion; hence it may be concluded that a hypothetical outer-sphere electron transfer (OSET) in ATRP should occur via concerted dissociative electron transfer rather than a two-step process with radical anion intermediates. Both the homolytic and heterolytic reactions are favored by electron-withdrawing substituents and/or those that stabilize the product alkyl radical, which explains why monomers such as acrylonitrile and styrene require less active ATRP catalysts than vinyl chloride and vinyl acetate. The rate constant of the hypothetical OSET reaction between bromoacetonitrile and Cu (I)/TPMA complex was estimated using Marcus theory for the electron-transfer processes. The estimated rate constant k OSET = approximately 10 (-11) M (-1) s (-1) is significantly smaller than the experimentally measured activation rate constant ( k ISET = approximately 82 M (-1) s (-1) at 25 degrees C in acetonitrile) for the concerted atom transfer mechanism (inner-sphere electron transfer, ISET), implying that the ISET mechanism is preferred. For monomers bearing electron-withdrawing groups, the one-electron reduction of the propagating alkyl radical to the carbanion is thermodynamically and kinetically favored over the one-electron reduction of the corresponding alkyl halide unless the monomer bears strong radical-stabilizing groups. Thus, for monomers such as acrylates, catalysts favoring ISET over OSET are required in order to avoid chain-breaking side reactions.
NASA Astrophysics Data System (ADS)
Swoboda, F.; Solar, S.
1999-09-01
The radiolytic degradation of 4-hydroxybenzoic acid ethyl ester (4-HBAEE) and 4-hydroxybenzoate (4-HBA) and the subsequent product formation in N 2O-saturated and aerated solutions has been studied as a function of dose. The rate constants of OH • radicals with the substrates are k(OH •+4-HBAEE)=7.5×10 9 dm 3 mol -1 s -1 and k(OH • +4-HBA)=6.7×10 9 dm 3 mol -1 s -1. Irradiation of 5×10 -4 mol dm -3 aqueous solutions (N 2O, pH 6.0) of 4-HBA leads to the products 3,4-dihydroxybenzoic acid (3,4-DHBA) and hydroquinone (HQ). In the case of 4-HBAEE neither hydroxylation nor decarboxylation products are observable. The predominating reaction pathway with 4-HBAEE is water elimination from the primarily formed dihydroxycyclohexadienyl radicals. By pulse radiolysis a protonation equilibrium of these transients with pK=8.0 could be determined. The protonated OH •-adducts (λ max=385 nm, ɛ=300 m 2 mol -1) decay with k=7×10 4 s -1, the radical anions (λ max=425 nm, ɛ=240 m 2 mol -1) with k=4×10 5 s -1, yielding phenoxyl radicals λ max 405 nm, ɛ=160 m 2 mol -1 and 425 nm, ɛ=175 m 2 mol -1, 2 k=3.6×10 8 dm 3 mol -1 s -1, which do not form phenolic compounds. With 4-HBA OH •-adducts water splitting at pH 6 is very slow, k=4×10 3 s -1, therefore second order decay reactions can compete. At pH 10, where base catalysed water elimination takes place, no hydroxylation products are observable either. In aerated solutions dihydroxy-compounds are formed with both substrates, due to the fast addition of oxygen to the OH •-adducts. In the case of 4-HBA 68% of the OH • radicals result in 3,4-dihydroxyderivatives; for 4-HBAEE these are only 25%. The decarboxylation product hydroquinone is generated only from 4-HBA, its yield corresponds to 18% of the OH • radicals. Comparison of the initial degradation yields demonstrates 4-HBAEE to be 1.6 times more stable towards radiation, for a 50% decomposition of the ester a 2.3 times higher dose as for 4-HBA is required. The low rate of hydroxylation, the lack of decarboxylation products and the remarkable resistance to radiation of the ester of 4-hydroxybenzoic acid is of importance in respect to chemical changes in irradiated fruits and vegetables.
In vitro antioxidant potential of dicliptera roxburghiana
2013-01-01
Background Stress caused by free radicals accumulation result into many hazardous diseases. A number of investigations are focusing to find out the plant oriented natural antioxidant moieties. The basic aim of this research was to investigate the antioxidant potential, total Phenolic and flavonoids contents and photochemical screening of the crude methanol extract and its derived various fractions Dicliptera roxburghiana of Acanthaceae family. Methods Crude methanol extract of aerial parts of Dicliptera roxburghiana (DRME) was partitioned in to n-hexane (DRHF), chloroform (DRCF), ethyl acetate (DREF), n-butanol (DRBF) and the remaining soluble portion as residual aqueous fraction (DRAF). We evaluated the antioxidant activities of the extract and various fractions through different analytical methods such as DPPH, superoxide anion, ABTS, H2O2, hydroxyl radical and phosphomolybdate radical inhibition. In vitro lipid peroxidation and reducing power of the plant was also analyzed. Total flavonoid and phenolic contents of the extract and all fractions were also quantified. Plant was also subjected for preliminary phytochemical screening to confirm the presence or absence of various constituents in the plant. Results Phytochemical screening confirmed the presence of flavonoids, phenolics, tannins, alkaloids, saponins, terpenoids and coumarines. Quantitative analysis revealed the maximum amount of total phenolic and flavonoid contents in DRME while lowest in DRHF. Methanol extract, DREF, DRCF and DRBF exhibited promising antioxidant potential for DPPH, ABTS, H2O2, phosphomolybdate, superoxide anion and hydroxyl radical scavenging capabilities, while these were not appreciable for DRHF and DRAF. All fractions except DRHF and DRAF possess strong reducing power ability and showed appreciable lipid peroxidation inhibition. Conclusion These research investigations revealed that Dicliptera roxburghiana is a potent source of natural antioxidants. Hence the plant can be used for management of different stress and anxiety related ailments. PMID:23777321
Antioxidant and cytoprotective properties of D-tagatose in cultured murine hepatocytes.
Paterna, J C; Boess, F; Stäubli, A; Boelsterli, U A
1998-01-01
D-Tagatose is a zero-energy producing ketohexose that is a powerful cytoprotective agent against chemically induced cell injury. To further explore the underlying mechanisms of cytoprotection, we investigated the effects of D-tagatose on both the generation of superoxide anion radicals and the consequences of oxidative stress driven by prooxidant compounds in intact cells. Primary cultures of hepatocytes derived from male C57BL/6 mice were exposed to the redox cycling drug nitrofurantoin (NFT). Lethal cell injury induced by 300 microM NFT was completely prevented by high concentrations (20 mM) of D-tagatose, whereas equimolar concentrations of glucose, mannitol, or xylose were ineffective. The extent of NFT-induced intracellular superoxide anion radical formation was not altered by D-tagatose, indicating that the ketohexose did not inhibit the reductive bioactivation of NFT. However, the NFT-induced decline of the intracellular GSH content was largely prevented by D-tagatose. The sugar also afforded complete protection against NFT toxicity in hepatocytes that had been chemically depleted of GSH. Furthermore, the ketohexose fully protected from increases in both membrane lipid peroxidation and protein carbonyl formation. In addition, D-tagatose completely prevented oxidative cell injury inflicted by toxic iron overload with ferric nitrilotriacetate (100 microM). In contrast, D-tagatose did not protect against lethal cell injury induced by tert-butyl hydroperoxide, a prooxidant which acts by hydroxyl radical-independent mechanisms and which is partitioned in the lipid bilayer. These results indicate that D-tagatose, which is a weak iron chelator, can antagonize the iron-dependent toxic consequences of intracellular oxidative stress in hepatocytes. The antioxidant properties of D-tagatose may result from sequestering the redox-active iron, thereby protecting more critical targets from the damaging potential of hydroxyl radical.
Molecular architecture requirements for polymer-grafted lignin superplasticizers.
Gupta, Chetali; Sverdlove, Madeline J; Washburn, Newell R
2015-04-07
Superplasticizers are a class of anionic polymer dispersants used to inhibit aggregation in hydraulic cement, lowering the yield stress of cement pastes to improve workability and reduce water requirements. The plant-derived biopolymer lignin is commonly used as a low-cost/low-performance plasticizer, but attempts to improve its effects on cement rheology through copolymerization with synthetic monomers have not led to significant improvements. Here we demonstrate that kraft lignin can form the basis for high-performance superplasticizers in hydraulic cement, but the molecular architecture must be based on a lignin core with a synthetic-polymer corona that can be produced via controlled radical polymerization. Using slump tests of ordinary Portland cement pastes, we show that polyacrylamide-grafted lignin prepared via reversible addition-fragmentation chain transfer polymerization can reduce the yield stress of cement paste to similar levels as a leading commercial polycarboxylate ether superplasticizer at concentrations ten-fold lower, although the lignin material produced via controlled radical polymerization does not appear to reduce the dynamic viscosity of cement paste as effectively as the polycarboxylate superplasticizer, despite having a similar affinity for the individual mineral components of ordinary Portland cement. In contrast, polyacrylamide copolymerized with a methacrylated kraft lignin via conventional free radical polymerization having a similar overall composition did not reduce the yield stress or the viscosity of cement pastes. While further work is required to elucidate the mechanism of this effect, these results indicate that controlling the architecture of polymer-grafted lignin can significantly enhance its performance as a superplasticizer for cement.
Sen, Saikat; De, Biplab; Devanna, N; Chakraborty, Raja
2013-03-01
The objective of the present study was to determine the total phenolic and total flavonoid contents, and to evaluate the antioxidant potential of different leaf extracts of Meyna spinosa Roxb. ex Link, a traditional medicinal plant of India. Free radical scavenging and antioxidant potential of the methanol, ethyl acetate, and petroleum ether extracts of Meyna spinosa leaves were investigated using several in vitro and ex vivo assays, including the 2, 2-diphenyl-picrylhydrazyl radical scavenging, superoxide anion scavenging, hydroxyl radical scavenging, nitric oxide radical scavenging, hydrogen peroxide scavenging activity, metal chelating assay, and reducing power ability method. Total antioxidant activity of the extracts was estimated by the ferric thiocyanate method. Inhibition assay of lipid peroxidation and oxidative hemolysis were also performed to confirm the protective effect of the extracts. Total phenolic and total flavonoid contents of the extracts were estimated using standard chemical assay procedures. Methanol extracts showed the highest polyphenolic content and possessed the better antioxidant activity than the other two extracts. Total phenolic and total flavonoid contents in the methanol extract were (90.08 ± 0.44) mg gallic acid equivalents/g and (58.50 ± 0.09) mg quercetin equivalents/g, respectively. The IC50 of the methanol extract in the DPPH(·), superoxide anion, hydroxyl radical, nitric oxide radical, hydrogen peroxide scavenging activity and metal chelating assays were (16.4 ± 0.41), (35.9 ± 0.19), (24.1 ± 0.33), (23.7 ± 0.09), (126.8 ± 2.92), and (117.2 ± 1.01) μg·mL(-1), respectively. The methanol extract showed potent reducing power ability, total antioxidant activity, and significantly inhibit lipid peroxidation and oxidative hemolysis which was similar to that of standards. The results indicated a direct correlation between the antioxidant activity and the polyphenolic content of the extracts, which may the foremost contributors to the antioxidant activity of the plant. The present study confirmed that the methanol extract of Meyna spinosa leaves is a potential source of natural antioxidants. Copyright © 2013 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Mishra, Om P.; Popov, Anatoliy V.; Pietrofesa, Ralph A.; Christofidou-Solomidou, Melpo
2017-01-01
Background Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. Methods The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3′-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3′-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton 1H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO− and radiation. Purine base chlorination by ClO− and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Results: Chloride anions (Cl−) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by 1H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO− or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO− generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl•) and dichloro radical anions (Cl2−•)), which were trapped by SDG and its structural analog dopamine. Conclusion We demonstrate that γ-radiation induces the generation of ACS in physiological solutions. SDG treatment scavenged ACS and prevented ACS-induced DNA damage and chlorination of 2-aminopurine. This study identified a novel and unique mechanism of SDG radioprotection, through ACS scavenging, and supports the potential usefulness of SDG as a radioprotector and mitigator for radiation exposure as part of cancer therapy or accidental exposure. PMID:27261092
Mishra, Om P; Popov, Anatoliy V; Pietrofesa, Ralph A; Christofidou-Solomidou, Melpo
2016-09-01
Secoisolariciresinol diglucoside (SDG), the main lignan in whole grain flaxseed, is a potent antioxidant and free radical scavenger with known radioprotective properties. However, the exact mechanism of SDG radioprotection is not well understood. The current study identified a novel mechanism of DNA radioprotection by SDG in physiological solutions by scavenging active chlorine species (ACS) and reducing chlorinated nucleobases. The ACS scavenging activity of SDG was determined using two highly specific fluoroprobes: hypochlorite-specific 3'-(p-aminophenyl) fluorescein (APF) and hydroxyl radical-sensitive 3'-(p-hydroxyphenyl) fluorescein (HPF). Dopamine, an SDG structural analog, was used for proton (1)H NMR studies to trap primary ACS radicals. Taurine N-chlorination was determined to demonstrate radiation-induced generation of hypochlorite, a secondary ACS. DNA protection was assessed by determining the extent of DNA fragmentation and plasmid DNA relaxation following exposure to ClO(-) and radiation. Purine base chlorination by ClO(-) and γ-radiation was determined by using 2-aminopurine (2-AP), a fluorescent analog of 6-aminopurine. Chloride anions (Cl(-)) consumed >90% of hydroxyl radicals in physiological solutions produced by γ-radiation resulting in ACS formation, which was detected by (1)H NMR. Importantly, SDG scavenged hypochlorite- and γ-radiation-induced ACS. In addition, SDG blunted ACS-induced fragmentation of calf thymus DNA and plasmid DNA relaxation. SDG treatment before or after ACS exposure decreased the ClO(-) or γ-radiation-induced chlorination of 2-AP. Exposure to γ-radiation resulted in increased taurine chlorination, indicative of ClO(-) generation. NMR studies revealed formation of primary ACS radicals (chlorine atoms (Cl) and dichloro radical anions (Cl2¯)), which were trapped by SDG and its structural analog dopamine. We demonstrate that γ-radiation induces the generation of ACS in physiological solutions. SDG treatment scavenged ACS and prevented ACS-induced DNA damage and chlorination of 2-aminopurine. This study identified a novel and unique mechanism of SDG radioprotection, through ACS scavenging, and supports the potential usefulness of SDG as a radioprotector and mitigator for radiation exposure as part of cancer therapy or accidental exposure. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Karioti, Anastasia; Hadjipavlou-Litina, Dimitra; Mensah, Merlin L K; Fleischer, Theophilus C; Skaltsa, Helen
2004-12-29
The chemical composition of the essential oils obtained from the leaves, the barks of the stem and the root, as well as from the fresh and dried fruits of Xylopia aethiopica, growing in Ghana, was investigated by gas chromatography/mass spectrometry analyses. Kovats indices, mass spectra, and standard compounds were used to identify a total of 93 individual compounds. The monoterpene hydrocarbons formed the main portion in all studied samples. beta-Pinene was predominant in all cases, while trans-m-mentha-1(7),8-diene was the main compound in the essential oils of the leaves and the barks of roots and stems. Their potential antioxidant activity was also investigated and found to be significant in scavenging superoxide anion radical.
Vašková, J; Fejerčáková, A; Mojžišová, G; Vaško, L; Patlevič, P
2015-01-01
Antioxidant, anti-inflammatory and venoconstrictor properties have been attributed to extracts from Aesculus hippocastanum. These unusual and diverse properties may be possibly basically linked with ability to scavenge free radicals. The scavenging capacity of dry horse chestnut extract of and escin have been investigated in vitro against superoxide anion radicals, hydroxyl radicals, nitrites and peroxynitrite. In general, the activity of the whole extract against superoxide radicals did not exceed 15% at pH 7.4, but the highest inhibition (46.11%) was recorded against hydroxyl radicals at a concentration of 100 µg.ml-1; however, the activity against other radicals was lower. Escin demonstrated a better ability to counteract nitric oxide oxidation products, nitrites. However, the efficiency of the whole extract completely disappeared as the concentration increased. Both extracts showed very low activity towards peroxynitrite. Escin was even able to induce peroxynitrite formation at the lower concentrations used. Whole extract showed better antiradical properties compared to its main active ingredient, escin, probably due to potential synergistic interaction with a mixture of compounds present in the plant extract. These findings can be the basis of both the presentation of side-effects and the persistence of disease in spite of ongoing treatment.
Scavenger and antioxidant properties of prenylflavones isolated from Artocarpus heterophyllus.
Ko, F N; Cheng, Z J; Lin, C N; Teng, C M
1998-07-15
The antioxidant properties of prenylflavones, isolated from Artocarpus heterophyllus Lam., was evaluated in this study. Among them, artocarpine, artocarpetin, artocarpetin A, and cycloheterophyllin diacetate and peracetate had no effect on iron-induced lipid peroxidation in rat brain homogenate. They also did not scavenge the stable free radical 1,1-diphenyl-2-picrylhydrazyl. In contrast, cycloheterophyllin and artonins A and B inhibited iron-induced lipid peroxidation in rat brain homogenate and scavenged 1,1-diphenyl-2-picrylhydrazyl. They also scavenged peroxyl radicals and hydroxyl radicals that were generated by 2,2'-azobis(2-amidinopropane) dihydrochloride and the Fe3+-ascorbate-EDTA-H2O2 system, respectively. However, they did not inhibit xanthine oxidase activity or scavenge superoxide anion, hydrogen peroxide, carbon radical, or peroxyl radicals derived from 2,2'-azobis(2,4-dimethylvaleronitrile) in hexane. Moreover, cycloheterophyllin and artonins A and B inhibited copper-catalyzed oxidation of human low-density lipoprotein, as measured by fluorescence intensity, thiobarbituric acid-reactive substance and conjugated-diene formations and electrophoretic mobility. It is concluded that cycloheterophyllin and artonins A and B serve as powerful antioxidants against lipid peroxidation when biomembranes are exposed to oxygen radicals.
SAC-CI methodology applied to molecular spectroscopy and photo-biology
NASA Astrophysics Data System (ADS)
Hasegawa, J.; Miyahara, T.; Nakashima, H.; Nakatsuji, H.
2012-06-01
The SAC-CI method was applied to the spectroscopy of radical cations and anions of various organic molecules. It was also applied to photo-biology, in particular, to elucidate the bio-molecular color-tuning mechanism of human visions and to the circular dichroism spectroscopy that is used to understand the helical structures of DNA and RNA.
NASA Astrophysics Data System (ADS)
Li, Kunhao
The discovery of the dramatic in vitro antimalarial activity of 2-iodo-L-histidine and 2-fluoro-L-histidine, as well as their in vivo limitations, has prompted a systematic search for novel 2-substituted imidazoles and bioimidazoles as agents against human malaria. Previous research has shown that the regioselective alkyl free radical substitution on imidazoles and bioimidazoles could serve as a simple and efficient route to a wide variety of 2-alkylimidazoles. In this research, this methodology was successfully extended to include alkyl radicals substituted with various functional groups such as amide or ester. While this novel methodology should be of some synthetic utility when tertiary radicals are used, poorer yields are usually encountered in the cases of primary radicals. In the second part of this dissertation, a series of novel ligands containing multiple ortho-bis(organothio) groups were synthesized and their coordination and network forming properties were studied in the context of crystalline organic-inorganic hybrid extended networks. For the syntheses of HRTTs [2,3,6,7,10,11-hexakis(alkylthio)triphenylenes], a simpler, safer and higher yielding one-pot process was developed. Quenching the hexa-anions (formed when sodium methylthiolate was refluxed with hexabromotriphenylene) with alkyl halides or acid chlorides afforded HRTTs. This newly developed process was also successfully expanded to the pyrene system. In the syntheses of unsymmetrically substituted triphenlyenes, it was shown for the first time that the oxidative cyclization process is applicable to thioether containing systems, pointing to a novel strategy for the preparation of this type of unsymmetrically substituted triphenlyenes. Treating these novel ligands with various metal salts [i.e. bismuth(III) chloride and bismuth(III) bromide] under carefully controlled conditions resulted in a series of air-stable semiconductive coordination networks. Their single crystal structures were determined by X-ray diffraction and properties such as semiconductivity and solution processability, as well as the structure-property relationship, were also studied. As a reasonable extension of this research, two phenylacetylene-based thioether containing ligands L1 and L2, were prepared. Similar to the triphenylene-based ligands, they also formed semiconductive extended networks with bismuth(III) bromide. The preparation of HArTTs [2,3,6,7,10,11-hexakis-(arylthio)triphenlyenes] and a series of crystalline extended networks based on the coordination of these ligands and various silver salts are reported in Chapter 5.
Kirk, Benjamin B; Harman, David G; Kenttämaa, Hilkka I; Trevitt, Adam J; Blanksby, Stephen J
2012-12-28
The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium)phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me(3)N(+))C(6)H(4)˙ + O(2)] = 2.8 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 4.9%; k(2)[((-)O(2)C)C(6)H(4)˙ + O(2)] = 5.4 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matz, Dallas L.; Schalnat, Matthew C.; Pemberton, Jeanne E.
The reaction between small organic molecules and low work function metals is of interest in organometallic, astronomical, and optoelectronic device chemistry. Here, thin, solid-state, amorphous benzene and pyridine films are reacted with Ca at 30 K under ultrahigh vacuum with the reaction progress monitored by Raman spectroscopy. Although both films react with Ca to produce product species identifiable by their vibrational spectroscopic signatures, benzene is less reactive with Ca than pyridine. Benzene reacts by electron transfer from Ca to benzene producing multiple species including the phenyl radical anion, the phenyl radical, and the benzyne diradical. Pyridine initially reacts along amore » similar electron transfer pathway as indicated by the presence of the corresponding pyridyl radical and pyridyne diradical species, but these pyridyl radicals are less stable and subject to further ring-opening reactions that lead to a complex array of smaller molecule reaction products and ultimately amorphous carbon. The elucidation of this reaction pathway provides insight into the reactions of aromatics with Ca that are relevant in the areas of catalysis, astrochemistry, and organic optoelectronics.« less
The role of oxidative stress in the metabolic syndrome.
Whaley-Connell, Adam; McCullough, Peter A; Sowers, James R
2011-01-01
Loss of reduction-oxidation (redox) homeostasis and generation of excess free oxygen radicals play an important role in the pathogenesis of diabetes, hypertension, and consequent cardiovascular disease. Reactive oxygen species are integral in routine in physiologic mechanisms. However, loss of redox homeostasis contributes to proinflammatory and profibrotic pathways that promote impairments in insulin metabolic signaling, reduced endothelial-mediated vasorelaxation, and associated cardiovascular and renal structural and functional abnormalities. Redox control of metabolic function is a dynamic process with reversible pro- and anti-free radical processes. Labile iron is necessary for the catalysis of superoxide anion, hydrogen peroxide, and the generation of the damaging hydroxyl radical. Acute hypoxia and cellular damage in cardiovascular tissue liberate larger amounts of cytosolic and extracellular iron that is poorly liganded; thus, large increases in the generation of oxygen free radicals are possible, causing tissue damage. The understanding of iron and the imbalance of redox homeostasis within the vasculature is integral in hypertension and progression of metabolic dysregulation that contributes to insulin resistance, endothelial dysfunction, and cardiovascular and kidney disease.
Protective effects of astaxanthin from Paracoccus carotinifaciens on murine gastric ulcer models.
Murata, Kenta; Oyagi, Atsushi; Takahira, Dai; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Ishibashi, Takashi; Hara, Hideaki
2012-08-01
The purpose of this study was to investigate the effect of astaxanthin extracted from Paracoccus carotinifaciens on gastric mucosal damage in murine gastric ulcer models. Mice were pretreated with astaxanthin for 1 h before ulcer induction. Gastric ulcers were induced in mice by oral administration of hydrochloride (HCl)/ethanol or acidified aspirin. The effect of astaxanthin on lipid peroxidation in murine stomach homogenates was also evaluated by measuring the level of thiobarbituric acid reactive substance (TBARS). The free radical scavenging activities of astaxanthin were also measured by electron spin resonance (ESR) measurements. Astaxanthin significantly decreased the extent of HCl/ethanol- and acidified aspirin-induced gastric ulcers. Astaxanthin also decreased the level of TBARS. The ESR measurement showed that astaxanthin had radical scavenging activities against the 1,1-diphenyl-2-picrylhydrazyl radical and the superoxide anion radical. These results suggest that astaxanthin has antioxidant properties and exerts a protective effect against ulcer formation in murine models. Copyright © 2011 John Wiley & Sons, Ltd.
Antioxidant and neurosedative properties of polyphenols and iridoids from Lippia alba.
Hennebelle, Thierry; Sahpaz, Sevser; Gressier, Bernard; Joseph, Henry; Bailleul, François
2008-02-01
The neurosedative and antioxidative properties of some major compounds isolated from a citral chemotype of Lippia alba were investigated. Binding assays were performed on two CNS inhibitory targets: benzodiazepine and GABA(A) receptors. The most active compound was luteolin-7-diglucuronide, with half maximal inhibitory concentrations (IC(50)) of 101 and 40 microm, respectively. Fifteen compounds isolated from Lippia alba were tested for their radical scavenging capacities against DPPH. Four of the major compounds (verbascoside, calceolarioside E, luteolin-7-diglucuronide and theveside) were also tested for their antioxidant activity against superoxide radical-anion in cell-free (hypoxanthine-xanthine oxidase) and cellular (PMA-stimulated neutrophil granulocytes) systems.
Sung, Jooyoung; Nowak-Król, Agnieszka; Schlosser, Felix; Fimmel, Benjamin; Kim, Woojae; Kim, Dongho; Würthner, Frank
2016-07-27
We have elucidated excimer-mediated intramolecular electron transfer in cofacially stacked PBIs tethered by two phenylene-butadiynylene loops. The electron transfer between energetically equivalent PBIs is revealed by the simultaneous observation of the PBI radical anion and cation bands in the transient absorption spectra. The fluorescence decay time of the excimer states is in good agreement with the rise time of PBI radical bands in transient absorption spectra suggesting that the electron transfer dynamics proceed via the excimer state. We can conclude that the excimer state effectuates the efficient charge transfer in the cofacially stacked PBI dimer.
Li, Bin; Yu, Bo; Zhou, Feng
2013-02-12
Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Xiaoliang; Xu, Wu; Huang, Jinhua
Nonaqueous redox flow batteries hold the promise to achieve higher energy density ascribed to the broader voltage window than their aqueous counterparts, but their current performance is limited by low redox material concentration, poor cell efficiency, and inferior cycling stability. We report a new nonaqueous total-organic flow battery based on high concentrations of 9-fluorenone as negative and 2,5-di-tert-butyl-1-methoxy-4-[2’-methoxyethoxy]benzene as positive redox materials. The supporting electrolytes are found to greatly affect the cycling stability of flow cells through varying chemical stabilities of the charged radical species, especially the 9-fluorenone radical anions, as confirmed by electron spin resonance. Such an electrolyte optimizationmore » sheds light on mechanistic understandings of capacity fading in flow batteries employing organic radical-based redox materials and demonstrates that rational design of supporting electrolyte is vital for stable cyclability.« less
Role of water and carbonates in photocatalytic transformation of CO{sub 2} to CH{sub 4} on titania.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.
Using the electron paramagnetic resonance technique, we have elucidated the multiple roles of water and carbonates in the overall photocatalytic reduction of carbon dioxide to methane over titania nanoparticles. The formation of H atoms (reduction product) and {center_dot}OH radicals (oxidation product) from water, and CO{sub 3}{sup -} radical anions (oxidation product) from carbonates, was detected in CO{sub 2}-saturated titania aqueous dispersion under UV illumination. Additionally, methoxyl, {center_dot}OCH{sub 3}, and methyl, {center_dot}CH{sub 3}, radicals were identified as reaction intermediates. The two-electron, one-proton reaction proposed as an initial step in the reduction of CO{sub 2} on the surface of TiO{sub 2} ismore » supported by the results of first-principles calculations.« less
Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dimitrijevic, Nada; Vijayan, Baiju K.; Poluektov, Oleg G.
Using the electron paramagnetic resonance technique, we have elucidated the multiple roles of water and carbonates in the overall photocatalytic reduction of carbon dioxide to methane over titania nanoparticles. The formation of H atoms (reduction product) and {sm_bullet}OH radicals (oxidation product) from water, and CO{sub 3}{sup -} radical anions (oxidation product) from carbonates, was detected in CO{sub 2}-saturated titania aqueous dispersion under UV illumination. Additionally, methoxyl, {sm_bullet}OCH{sub 3}, and methyl, {sm_bullet}CH{sub 3}, radicals were identified as reaction intermediates. The two-electron, one-proton reaction proposed as an initial step in the reduction of CO{sub 2}, on the surface of TiO{sub 2}, ismore » supported by the results of first-principles calculations.« less
Location of Bromide Ions in Tetragonal Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.
1998-01-01
Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.
Locations of Bromide Ions in Tetragonal Lysozyme Crystals
NASA Technical Reports Server (NTRS)
Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.
1998-01-01
Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.
Interstellar dehydrogenated PAH anions: vibrational spectra
NASA Astrophysics Data System (ADS)
Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor
2018-03-01
Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.
NASA Astrophysics Data System (ADS)
Fortenberry, Ryan C.; Crawford, T. Daniel; Lee, Timothy J.
2013-01-01
The A\\ ^1B_1 \\leftarrow \\tilde{X}\\ ^1A^{\\prime } excitation into the dipole-bound state of the cyanomethyl anion (CH2CN-) has been hypothesized as the carrier for one diffuse interstellar band. However, this particular molecular system has not been detected in the interstellar medium even though the related cyanomethyl radical and the isoelectronic ketenimine molecule have been found. In this study, we are employing the use of proven quartic force fields and second-order vibrational perturbation theory to compute accurate spectroscopic constants and fundamental vibrational frequencies for \\tilde{X}\\ ^1A^{\\prime } CH2CN- in order to assist in laboratory studies and astronomical observations.
Pyromellitamide aggregates and their response to anion stimuli.
Webb, James E A; Crossley, Maxwell J; Turner, Peter; Thordarson, Pall
2007-06-06
The N,N',N'',N'''-1,2,4,5-tetra(ethylhexanoate) pyromellitamide is found to be capable of both intermolecular aggregation and binding to small anions. It is synthesized by aminolysis of pyromellitic anhydride with ethanolamine, followed by a reaction with hexanoyl chloride. The single-crystal X-ray structure of the pyromellitamide shows that it forms one-dimensional columnar stacks through an intermolecular hydrogen-bonding network. It also forms self-assembled gels in nonpolar solvents, presumably by a hydrogen-bonding network similar to the solid-state structure as shown by IR and XRD studies. Aggregation by intermolecular hydrogen bonding of the pyromellitamide is also observed by NMR and IR in solution. Fitting of NMR dilution data for pyromellitamide in d6-acetone to a cooperative aggregation model gave KE=232 M-1 and positive cooperativity of aggregation (rho=0.22). The pyromellitamide binds to a range of small anions with the binding strength decreasing in the order chloride>acetate>bromide>nitrate approximately iodide. The data indicate that the pyromellitamide binds two anions and that it displays negative cooperativity. The intermolecular aggregation of the pyromellitamide can also be altered using small anion stimuli; anion addition to preformed self-assembled pyromellitamide gels causes their collapse. The kinetics of anion-induced gel collapse are qualitatively correlated to the binding affinities of the same anions in solution. The cooperative anion binding properties and the sensitivity of the self-assembled gels formed by pyromellitamide toward anions could be useful in the development of sensors and switching/releasing devices.
Singh, S; Dryhurst, G
1990-11-01
The neurodegenerative properties of the serotonergic neurotoxin 5,6-dihydroxytryptamine (5,6-DHT) are widely believed to result from its autoxidation in the central nervous system. The autoxidation chemistry of 5,6-DHT has been studied in aqueous solution at pH 7.2. The reaction is initiated by direct oxidation of the indolamine by molecular oxygen with resultant formation of the corresponding o-quinone 1 and H2O2. A rapid nucleophilic attack by 5,6-DHT on 1 leads to 2,7'-bis(5,6-dihydroxytryptamine) (6) which is more rapidly autoxidized than 5,6-DHT to give the corresponding diquinone 7 along with 2 mol of H2O2. The accumulation of 6 in the reaction solution during the autoxidation of 5,6-DHT despite its more rapid autoxidation indicates that diquinone 7 chemically oxidizes 5,6-DHT (2 mol) to quinone 1 so that an autocatalytic cycle is established. The H2O2 formed as a byproduct of these autoxidation reactions can undergo Fenton chemistry catalyzed by trace transition metal ion contaminants with resultant formation of the hydroxyl radical, HO., which directly oxidizes 5,6-DHT to a radical intermediate (9a/9b). This radical is directly attacked by O2 to yield quinone 1 and superoxide radical anion, O2.-, which further facilitates Fenton chemistry by reducing, inter alia, Fe3+ to Fe2+. A minor side reaction of 1 with water leads to formation of at least two trihydroxytryptamines. Diquinone 7 ultimately reacts with 6, 5,6-DHT, and perhaps trihydroxytryptamines, leading via a sequence of coupling and oxidation reactions to a black indolic melanin polymer. Enzymes such as tyrosinase, ceruloplasmin, and peroxidase and rat brain mitochondria catalyze the oxidation of 5,6-DHT to form dimer 7 and, ultimately, indolic melanin. The role of the autoxidation and the enzyme-mediated and mitochondria-promoted oxidations of 5,6-DHT in expressing the neurodegenerative properties of the indolamine are discussed.
Sasipriya, Gopalakrishnan; Siddhuraju, Perumal
2012-08-01
The present study is proposed to determine the antioxidant activity of raw and processed samples of underutilized legumes, Entada scandens seed kernel and Canavalia gladiata seeds. The indigenous processing methods like dry heating, autoclaving and soaking followed by autoclaving in different solutions (plain water, ash, sugar and sodium bicarbonate) were adopted to seed samples. All other processing methods than dry heat showed significant reduction in phenolics (2.9-63%), tannins (26-100%) and flavonoids (14-67%). However, in processed samples of E. scandens, the hydroxyl radical scavenging activity and β-carotene bleaching inhibition activity were increased, whereas, 2,2-azinobis (3-ethyl benzothiazoline-6-sulfonic acid) diammonium salt (ABTS·(+)), ferric reducing antioxidant power (FRAP), metal chelating and superoxide anion scavenging activity were similar to unprocessed ones. In contrary, except dry heating in C. gladiata, all other processing methods significantly (P<0.05) reduced the 2,2'-diphenyl-1-picryl-hydrazyl (DPPH·) (20-35%), ABTS·(+) (22-75%), FRAP (34-74%), metal chelating (30-41%), superoxide anion radical scavenging (8-80%), hydroxyl radical scavenging (20-40%) and β-carotene bleaching inhibition activity (15-69%). In addition, the sample extracts of raw and dry heated samples protected DNA damage at 10 μg. All processing methods in E. scandens and dry heating in C. gladiata would be a suitable method for adopting in domestic or industrial processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Güder, Aytaç; Korkmaz, Halil
2012-01-01
The study was aimed at evaluating the antioxidant activity of hydroalcoholic solution extracts of Urtica dioica L. (UD), Malva neglecta Wallr. (MN) plants and their mixture. In this study, flower (UDF), root (UDR), seed (UDS) and leaf (UDL) parts of UD and flower (MNF) and leaf (MNL) parts of MN were used. The antioxidant properties of hydroalcoholic extracts and their mixture were evaluated using different antioxidant tests such as total antioxidant activity, reducing power, superoxide anion radical scavenging, hydrogen peroxide scavenging, free radical scavenging, and metal chelating activity for comparison. In addition, total phenolic compounds in the extracts of both plants were determined as catechin equivalent. The various antioxidant activities were compared to natural and synthetic standard antioxidants such as BHA, BHT and α-tocopherol. According to FTC method, the both extracts exhibited strong total antioxidant activity. At the concentration of 100 μg/mL, Hydroalcoholic extracts of UDS, UDR, UDF, UDL, MNF, MNL, and UD-MN showed 81.7%, 79.8%, 78.3%, 76.4%, 77.3%, 74.1%, and 80.7%, respectively. Comparable, 100 μg/mL of standard antioxidants BHA, BHT and α-tocopherol exhibited 66.2%, 70.6%, and 50.1% inhibition on peroxidation of linoleic acid emulsion, respectively. In addition, UD-MN showed strong superoxide anion radical scavenging activity comparable with UDR, UDF, UDL, MNF, and MNL. Based on the findings, plants mixture was commonly found to have synergistically higher antioxidant activity.
Güder, Aytaç; Korkmaz, Halil
2012-01-01
The study was aimed at evaluating the antioxidant activity of hydroalcoholic solution extracts of Urtica dioica L. (UD), Malva neglecta Wallr. (MN) plants and their mixture. In this study, flower (UDF), root (UDR), seed (UDS) and leaf (UDL) parts of UD and flower (MNF) and leaf (MNL) parts of MN were used. The antioxidant properties of hydroalcoholic extracts and their mixture were evaluated using different antioxidant tests such as total antioxidant activity, reducing power, superoxide anion radical scavenging, hydrogen peroxide scavenging, free radical scavenging, and metal chelating activity for comparison. In addition, total phenolic compounds in the extracts of both plants were determined as catechin equivalent. The various antioxidant activities were compared to natural and synthetic standard antioxidants such as BHA, BHT and α-tocopherol. According to FTC method, the both extracts exhibited strong total antioxidant activity. At the concentration of 100 μg/mL, Hydroalcoholic extracts of UDS, UDR, UDF, UDL, MNF, MNL, and UD-MN showed 81.7%, 79.8%, 78.3%, 76.4%, 77.3%, 74.1%, and 80.7%, respectively. Comparable, 100 μg/mL of standard antioxidants BHA, BHT and α-tocopherol exhibited 66.2%, 70.6%, and 50.1% inhibition on peroxidation of linoleic acid emulsion, respectively. In addition, UD-MN showed strong superoxide anion radical scavenging activity comparable with UDR, UDF, UDL, MNF, and MNL. Based on the findings, plants mixture was commonly found to have synergistically higher antioxidant activity. PMID:24250519
Cationic polymer brush-modified cellulose nanocrystals for high-affinity virus binding
NASA Astrophysics Data System (ADS)
Rosilo, Henna; McKee, Jason R.; Kontturi, Eero; Koho, Tiia; Hytönen, Vesa P.; Ikkala, Olli; Kostiainen, Mauri A.
2014-09-01
Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications.Surfaces capable of high-affinity binding of biomolecules are required in several biotechnological applications, such as purification, transfection, and sensing. Therein, the rod-shaped, colloidal cellulose nanocrystals (CNCs) are appealing due to their large surface area available for functionalization. In order to exploit electrostatic binding, their intrinsically anionic surfaces have to be cationized as biological supramolecules are predominantly anionic. Here we present a facile way to prepare cationic CNCs by surface-initiated atom-transfer radical polymerization of poly(N,N-dimethylaminoethyl methacrylate) and subsequent quaternization of the polymer pendant amino groups. The cationic polymer brush-modified CNCs maintained excellent dispersibility and colloidal stability in water and showed a ζ-potential of +38 mV. Dynamic light scattering and electron microscopy showed that the modified CNCs electrostatically bind cowpea chlorotic mottle virus and norovirus-like particles with high affinity. Addition of only a few weight percent of the modified CNCs in water dispersions sufficed to fully bind the virus capsids to form micrometer-sized assemblies. This enabled the concentration and extraction of the virus particles from solution by low-speed centrifugation. These results show the feasibility of the modified CNCs in virus binding and concentrating, and pave the way for their use as transduction enhancers for viral delivery applications. Electronic supplementary information (ESI) available: CNC surface chain fraction and degree of substitution after BriBBr modification, NMR spectra of the SI-ATRP reaction mixture at 0 and 120 min, conversion of the DMAEMA monomer during SI-ATRP, DLS size distribution profiles of CNCs and CNC-g-P(QDMAEMA), TEM images of NoV-VLPs and their complexes with CNC-g-P(QDMAEMA) at 0 mM NaCl. See DOI: 10.1039/c4nr03584d
Hitzenberger, Jakob Felix; Dammann, Claudia; Lang, Nina; Lungerich, Dominik; García-Iglesias, Miguel; Bottari, Giovanni; Torres, Tomás; Jux, Norbert; Drewello, Thomas
2016-02-21
A protocol is developed for the coordination of the formate anion (HCOO(-)) to neutral metalloporphyrins (Pors) and -phthalocyanines (Pcs) containing divalent metals as a means to improve their ion formation in electrospray ionization (ESI). This method is particularly useful when the oxidation of the neutral metallomacrocycle fails. While focusing on Zn(II)Pors and Zn(II)Pcs, we show that formate is also readily attached to Mn(II), Mg(II) and Co(II)Pcs. However, for the Co(II)Pc secondary reactions can be observed. Upon collision-induced dissociation (CID), Zn(II)Por/Pc·formate supramolecular complexes can undergo the loss of CO2 in combination with transfer of a hydride anion (H(-)) to the zinc metal center. Further dissociation leads to electron transfer and hydrogen atom loss, generating a route to the radical anion of the Zn(II)Por/Pc without the need for electrochemical reduction, although the Zn(II)Por/Pc may have a too low electron affinity to allow electron transfer directly from the formate anion. In addition to single Por molecules, multi Por arrays were successfully analyzed by this method. In this case, multiple addition of formate occurs, giving rise to multiply charged species. In these multi Por arrays, complexation of the formate anion occurs by two surrounding Por units (sandwich). Therefore, the maximum attainment of formate anions in these arrays corresponds to the number of such sandwich complexes rather than the number of porphyrin moieties. The same bonding motif leads to dimers of the composition [(Zn(II)Por/Pc)2·HCOO](-). In these, the formate anion can act as a structural probe, allowing the distinction of isomeric ions with the formate bridging two macrocycles or being attached to a dimer of directly connected macrocycles.
Serafim, Karla G G; Navarro, Suelen A; Zarpelon, Ana C; Pinho-Ribeiro, Felipe A; Fattori, Victor; Cunha, Thiago M; Alves-Filho, Jose C; Cunha, Fernando Q; Casagrande, Rubia; Verri, Waldiceu A
2015-11-01
Bosentan is a mixed endothelin receptor antagonist widely used to treat patients with pulmonary arterial hypertension, and the emerging literature suggests bosentan as a potent anti-inflammatory drug. Superoxide anion is produced in large amounts during inflammation, stimulates cytokine production, and thus contributes to inflammation and pain. However, it remains to be determined whether endothelin contributes to the inflammatory response triggered by the superoxide anion. The present study investigated the effects of bosentan in a mouse model of inflammation and pain induced by potassium superoxide, a superoxide anion donor. Male Swiss mice were treated with bosentan (10-100 mg/kg) by oral gavage, 1 h before potassium superoxide injection, and the inflammatory response was evaluated locally and at spinal cord (L4-L6) levels. Bosentan (100 mg/kg) inhibited superoxide anion-induced mechanical and thermal hyperalgesia, overt pain-like behavior (abdominal writhings, paw flinching, and licking), paw edema, myeloperoxidase activity (neutrophil marker) in the paw skin, and leukocyte recruitment in the peritoneal cavity. Bosentan also inhibited superoxide anion-induced interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) production, while it enhanced IL-10 production in the paw skin and spinal cord. Bosentan inhibited the reduction of antioxidant capacity (reduced glutathione, ferric reducing antioxidant power, and ABTS radical scavenging ability) induced by the superoxide anion. Finally, we demonstrated that intraplantar injection of potassium superoxide induces the mRNA expression of prepro-endothelin-1 in the paw skin and spinal cord. In conclusion, our results demonstrated that superoxide anion-induced inflammation, pain, cytokine production, and oxidative stress depend on endothelin; therefore, these responses are amenable to bosentan treatment.
Anionic pH-Sensitive Lipoplexes.
Mignet, Nathalie; Scherman, Daniel
2017-01-01
To provide long circulating nanoparticles able to carry a gene to tumors, we have designed anionic pegylated lipoplexes which are pH sensitive. Anionic pegylated lipoplexes have been prepared from the combined formulation of cationic lipoplexes and pegylated anionic liposomes. The neutralization of the particle surface charge as a function of the pH was monitored by light scattering in order to determine the ratio between anionic and cationic lipids that would give pH sensitive complexes. This ratio has been optimized to form particles sensitive to pH change in the range 5.5-6.5. Compaction of DNA into these newly formed anionic complexes is checked by DNA accessibility to picogreen. The transfection efficiency and pH sensitive property of these formulations has been shown in vitro using bafilomycin, a vacuolar H + -ATPase inhibitor.
Li, Chun Guang; Karagiannis, Joanna; Rand, Michael J
1999-01-01
A sustained tone was produced in rat isolated anococcygeus muscles with guanethidine and clonidine and relaxant responses were elicited by electrical stimulation of its nitrergic nerves and by the three redox forms of nitrogen monoxide.The nitroxyl anion (NO−) was donated by dissociation of Angeli's salt; the free radical (NO•) was from an aqueous solution of nitric oxide gas; the nitrosonium cation (NO+) was donated by dissociation of nitrosonium tetrafluoroborate.The concentrations producing approximately 50% relaxations of the anococcygeus muscle were 0.3 μM for Angeli's salt (nitroxyl), 0.5 μM for NO• and 100 μM for nitrosonium tetrafluoroborate. Nitrergic nerve stimulation at 1 Hz for 10 s produced equivalent relaxant responses.The superoxide generator pyrogallol (100 μM) had no effect on responses to nitrergic nerve stimulation or Angeli's salt but significantly reduced responses to NO• and nitrosonium tetrafluoroborate.The NO• scavenger carboxy-PTIO (100 μM) had no effect on responses to nitrergic nerve stimulation or Angeli's salt but significantly reduced responses to NO• and nitrosonium tetrafluoroborate.Hydroxocobalamin (30 μM) had no significant effect on responses to the nitrergic transmitter, enhanced the response to Angeli's salt, and significantly reduced responses to NO• and nitrosonium tetrafluoroborate.The findings suggest that the nitroxyl anion donated by Angeli's salt is a better candidate than NO• to serve as the nitrergic transmitter in the rat anococcygeus muscle, although it still does not behave exactly like the transmitter. PMID:10433488
Unusual structures of MgF5- superhalogen anion
NASA Astrophysics Data System (ADS)
Anusiewicz, Iwona; Skurski, Piotr
2007-05-01
The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.
Skotnicki, Konrad; De la Fuente, Julio R; Cañete, Álvaro; Berrios, Eduardo; Bobrowski, Krzysztof
2018-04-12
The absorption-spectral and kinetic behaviors of radical ions and neutral hydrogenated radicals of seven 3-styryl-quinoxalin-2(1 H)-one (3-SQ) derivatives, one without substituents in the styryl moiety, four others with electron-donating (R = -CH 3 , -OCH 3 , and -N(CH 3 ) 2 ) or electron-withdrawing (R = -OCF 3 ) substituents in the para position in their benzene ring, and remaining two with double methoxy substituents (-OCH 3 ), however, at different positions (meta/para and ortho/meta) have been studied by UV-vis spectrophotometric pulse radiolysis in neat acetonitrile saturated with argon (Ar) and oxygen (O 2 ) and in 2-propanol saturated with Ar, at room temperature. In acetonitrile solutions, the radical anions (4R-SQ •- ) are characterized by two absorption maxima located at λ max = 470-490 nm and λ max = 510-540 nm, with the respective molar absorption coefficients ε 470-490 = 8500-13 100 M -1 cm -1 and ε 510-540 = 6100-10 300 M -1 cm -1 , depending on the substituent (R). All 4R-SQ •- decay in acetonitrile via first-order kinetics, with the rate constants in the range (1.2-1.5) × 10 6 s -1 . In 2-propanol solutions, they decay predominantly through protonation by the solvent, forming neutral hydrogenated radicals (4R-SQH • ), which are characterized by weak absorption bands with λ max = 480-490 nm. Being oxygen-insensitive, the radical cations (4R-SQ •+ ) are characterized by a strong absorption with λ max = 450-630 nm, depending on the substituent (R). They are formed in a charge-transfer reaction between a radical cation derived from acetonitrile (ACN •+ ) and substituted 3-styryl-quinoxalin-2-one derivatives (4R-SQ) with a pseudo-first-order rate constant k = (2.7-4.7) × 10 5 s -1 measured in solutions containing 0.1 mM 4R-3-SQ. The Hammett equation plot gave a very small negative slope (ρ = -0.08), indicating a very weak influence of the substituents in the benzene ring on the rate of charge-transfer reaction. The decay of 4R-SQ •+ in Ar-saturated acetonitrile solutions occurs with a pseudo-first-order rate constant k = (1.6-6.2) × 10 4 s -1 and, in principle, is not affected by the presence of O 2 , suggesting charge-spin delocalization over the whole 3-SQ molecule. Most of the radiolytically generated transient spectra are reasonably well-reproduced by semiempirical PM3-ZINDO/S (for 4R-SQ •- ) and density functional theory quantum mechanics calculations employing M06-2x hybrid functional together with the def2-TZVP basis set (for 4R-SQ •+ ).
Scheurer, Marco; Godejohann, Markus; Wick, Arne; Happel, Oliver; Ternes, Thomas A; Brauch, Heinz-Jürgen; Ruck, Wolfgang K L; Lange, Frank Thomas
2012-05-01
The two artificial sweeteners cyclamate (CYC) and acesulfame (ACE) have been detected in wastewater and drinking water treatment plants. As in both facilities ozonation might be applied, it is important to find out if undesired oxidation products (OPs) are formed. For the separation and detection of the OPs, several analytical techniques, including nuclear magnetic resonance experiments, were applied. In order to distinguish between direct ozone reaction and a radical mechanism, experiments were carried out at different pH values with and without scavenging OH radicals. Kinetic experiments were used for confirmation that the OPs are formed during short ozone contact time applied in waterworks. Samples from a waterworks using bank filtrate as raw water were analyzed in order to prove that the identified OPs are formed in real and full-scale ozone applications. In the case of CYC, oxidation mainly occurs at the carbon atom, where the sulfonamide moiety is bound to the cyclohexyl ring. Consequently, amidosulfonic acid and cyclohexanone are formed as main OPs of CYC. When ozone reacts at another carbon atom of the ring a keto moiety is introduced into the CYC molecule. Acetic acid and the product ACE OP170, an anionic compound with m/z=170 and an aldehyde hydrate moiety, were identified as the main OPs for ACE. The observed reaction products suggest an ozone reaction according to the Criegee mechanism due to the presence of a C=C double bond. ACE OP170 was also detected after the ozonation unit of a full-scale drinking water treatment plant which uses surface water-influenced bank filtrate as raw water. Acesulfame can be expected to be found in anthropogenic-influenced raw water used for drinking water production. However, when ACE OP170 is formed during ozonation, it is not expected to cause any problem for drinking water suppliers, because the primary findings suggest its removal in subsequent treatment steps, such as activated carbon filters.
Brasholz, Malte
2017-08-21
Donation welcome: Recent developments in visible-light photocatalysis allow the utilization of increasingly negative reduction potentials. Successive energy and electron transfer with polycyclic aromatic hydrocarbons enables the catalytic formation of strongly reducing arene radical anions, classical stoichiometric reagents for one-electron reduction in organic synthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martínez-Cifuentes, Maximiliano; Weiss-López, Boris; Araya-Maturana, Ramiro
2016-12-02
In this work, a computational study of a series of N -substitued-4-piperidones curcumin analogues is presented. The molecular structure of the neutral molecules and their radical anions, as well as their reactivity, are investigated. N -substituents include methyl and benzyl groups, while substituents on the aromatic rings cover electron-donor and electron-acceptor groups. Substitutions at the nitrogen atom do not significantly affect the geometry and frontier molecular orbitals (FMO) energies of these molecules. On the other hand, substituents on the aromatic rings modify the distribution of FMO. In addition, they influence the capability of these molecules to attach an additional electron, which was studied through adiabatic (AEA) and vertical electron affinities (VEA), as well as vertical detachment energy (VDE). To study electrophilic properties of these structures, local reactivity indices, such as Fukui ( f ⁺) and Parr ( P ⁺) functions, were calculated, and show the influence of the aromatic rings substituents on the reactivity of α,β-unsaturated ketones towards nucleophilic attack. This study has potential implications for the design of curcumin analogues based on a 4-piperidone core with desired reactivity.
Strategies for generating peptide radical cations via ion/ion reactions.
Gilbert, Joshua D; Fisher, Christine M; Bu, Jiexun; Prentice, Boone M; Redwine, James G; McLuckey, Scott A
2015-02-01
Several approaches for the generation of peptide radical cations using ion/ion reactions coupled with either collision induced dissociation (CID) or ultraviolet photo dissociation (UVPD) are described here. Ion/ion reactions are used to generate electrostatic or covalent complexes comprised of a peptide and a radical reagent. The radical site of the reagent can be generated multiple ways. Reagents containing a carbon-iodine (C-I) bond are subjected to UVPD with 266-nm photons, which selectively cleaves the C-I bond homolytically. Alternatively, reagents containing azo functionalities are collisionally activated to yield radical sites on either side of the azo group. Both of these methods generate an initial radical site on the reagent, which then abstracts a hydrogen from the peptide while the peptide and reagent are held together by either electrostatic interactions or a covalent linkage. These methods are demonstrated via ion/ion reactions between the model peptide RARARAA (doubly protonated) and various distonic anionic radical reagents. The radical site abstracts a hydrogen atom from the peptide, while the charge site abstracts a proton. The net result is the conversion of a doubly protonated peptide to a peptide radical cation. The peptide radical cations have been fragmented via CID and the resulting product ion mass spectra are compared to the control CID spectrum of the singly protonated, even-electron species. This work is then extended to bradykinin, a more broadly studied peptide, for comparison with other radical peptide generation methods. The work presented here provides novel methods for generating peptide radical cations in the gas phase through ion/ion reaction complexes that do not require modification of the peptide in solution or generation of non-covalent complexes in the electrospray process. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lai-Sheng, E-mail: Lai-Sheng-Wang@brown.edu
2015-07-28
Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent developmentmore » in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, E.; Taylor, K.; Kornblatt, J.A.
1986-03-01
Rapid mixing of ferrocytochrome c peroxidase (cyt c peroxidase(II)) and ferricytochrome c (cyt c(III)) results in the reduction of cyt c(III) by cyt c peroxidase(II). In 10 mM phosphate, pH 7.0, the rate of decay of cyt c peroxidase(II) and the rate of accumulation of cyt c(II) give equal first-order rate constants. Equivalent results are obtained by pulse radiolysis using isopropanol radical as the reducing agent. This rate is independent of the initial cyt c(III):cyt c peroxidase(II) ratios. These results are consistent with unimolecular electron transfer occurring within a cyt c(III)-cyt c peroxidase(II) complex. When cyt c is replaced bymore » porphyrin cyt c (iron-free cyt c), a complex still forms with cyt c peroxidase. On radiolysis intracomplex electron transfer occurs from the porphyrin cyt c anion radical to cyt c peroxidase(III). This large rate increase suggest that the barrier for intracomplex electron transfer is large. Finally, the authors have briefly investigated how the cyt c peroxidase(II) ..-->.. cyt c(III) rate depends on the primary structure of cyt c(III). They find the reactivity order to be as follows: yeast > horse > tuna.« less
Ozone Promotes Chloropicrin Formation by Oxidizing Amines to Nitro Compounds.
McCurry, Daniel L; Quay, Amanda N; Mitch, William A
2016-02-02
Chloropicrin formation has been associated with ozonation followed by chlorination, but the reaction pathway and precursors have been poorly characterized. Experiments with methylamine demonstrated that ozonation converts methylamine to nitromethane at ∼100% yield. Subsequent chlorination converts nitromethane to chloropicrin at ∼50% yield under the conditions evaluated. Similarly high yields from other primary amines were limited to those with functional groups on the β-carbon (e.g., the carboxylic acid in glycine) that facilitate carbon-carbon bond cleavage to release nitromethyl anion. Secondary amines featuring these reactive primary amines as functional groups (e.g., secondary N-methylamines) formed chloropicrin at high yields, likely by facile dealkylation to release the primary nitro compound. Chloropicrin yields from tertiary amines were low. Natural water experiments, including derivatization to transform primary and secondary amines to less reactive carbamate functional groups, indicated that primary and secondary amines were the dominant chloropicrin precursors during ozonation/chlorination. Ozonation followed by chlorination of the primary amine side chain of lysine demonstrated low yields (∼0.2%) of chloropicrin, but high yields (∼17%) of dichloronitrolysine, a halonitroalkane structural analogue to chloropicrin. However, chloropicrin yields increased and dichloronitrolysine yields decreased in the absence of hydroxyl radical scavengers, suggesting that future research should characterize the potential occurrence of such halonitroalkane analogues relative to natural radical scavenger (e.g., carbonate) concentrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan, Lele; Manbeck, Gerald F.; Kowalczyk, Marta
Ruthenium complexes with proton-responsive ligands [Ru(tpy)(nDHBP)(NCCH 3)](CF 3SO 3) 2 (tpy = 2,2':6',2"-terpyridine; nDHBP = n,n'-dihydroxy-2,2'-bipyridine, n = 4 or 6) were examined in this study for reductive chemistry and as catalysts for CO 2 reduction. Electrochemical reduction of [Ru(tpy)(nDHBP)(NCCH 3)] 2+ generates deprotonated species through interligand electron transfer in which the initially formed tpy radical anion reacts with a proton source to produce singly and doubly deprotonated complexes that are identical to those obtained by base titration. A third reduction (i.e., reduction of [Ru(tpy)(nDHBP–2H +)] 0) triggers catalysis of CO 2 reduction; however, the catalytic efficiency is strikingly lowermore » than that of unsubstituted [Ru(tpy)(bpy)(NCCH 3)] 2+ (bpy = 2,2'-bipyridine). Cyclic voltammetry, bulk electrolysis, and spectroelectrochemical infrared experiments suggest the reactivity of CO 2 at both the Ru center and the deprotonated quinone-type ligand. Lastly, the Ru carbonyl formed by the intermediacy of a metallocarboxylic acid is stable against reduction, and mass spectrometry analysis of this product indicates the presence of two carbonates formed by the reaction of DHBP–2H + with CO 2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Zhengbo; Hou, Gao-Lei; Yang, Zheng
Three short-lived, anionic intermediates, ISO 3 –, IS 2O 3 –, and IS 2O 4 –, are detected during reactions between ozone and aqueous iodine/sulfur oxides microdroplets. These species may play an important role in ozone-driven inorganic aerosol formation; however their chemical properties remain largely unknown. This is the issue addressed in this work using negative ion photoelectron spectroscopy (NIPES) and ab-initio modeling. The NIPE spectra reveal that all of the three anionic species are characterized by high adiabatic detachment energies (ADEs) - 4.62 ± 0.10, 4.52 ± 0.10, and 4.60 ± 0.10 eV for ISO 3 –, IS 2Omore » 3 –, and IS 2O 4 –, respectively. Vibrational progressions with frequencies assigned to the S–O symmetric stretching modes are also discernable in the ground state transition features. Density functional theory (DFT) calculations show the presence of several low-lying isomers involving different bonding scenarios. Further analysis based on high level CCSD(T) calculations reveal that the lowest energy structures are characterized by formation of I–S and S–S bonds and can be structurally viewed as SO3 linked with I, IS, and ISO for ISO 3 –, IS 2O 3 –, and IS 2O 4 –, respectively. The calculated ADEs and vertical detachment energies (VDEs) are in excellent agreement with the experimental results, further supporting the identified minimum energy structures. The obtained intrinsic molecular properties of these anionic intermediates and neutral radicals should be useful to help understand their photochemical reactions in the atmosphere.« less
‘Umpolung’ Reactivity in Semiaqueous Amide and Peptide Synthesis
Shen, Bo; Makley, Dawn M.; Johnston, Jeffrey N.
2010-01-01
The amide functional group is one of Nature’s key functional and structural elements, most notably within peptides. Amides are also key intermediates in the preparation of a diverse range of therapeutic small molecules. Its construction using available methods focuses principally upon dehydrative approaches, although oxidative and radical-based methods are representative alternatives. During the carbon-nitrogen bond forming step in most every example, the carbon and nitrogen bear electrophilic and nucleophilic character, respectively. Here we show that activation of amines and nitroalkanes with an electrophilic iodine source in wet THF can lead directly to amide products. Preliminary observations support a mechanistic construct in which reactant polarity is reversed (umpolung) during C-N bond formation relative to traditional approaches. The use of nitroalkanes as acyl anion equivalents provides a conceptually innovative approach to amide and peptide synthesis, and one that might ultimately provide for efficient peptide synthesis that is fully reliant on enantioselective methods. PMID:20577205
NASA Astrophysics Data System (ADS)
Firdausiah, Syadza; Hasbullah, S. A.; Yamin, B. M.
2018-03-01
Some bis(thiourea) compounds have been reported to posses excellent performance in pharmaceutical and environmental fields because of their ability to form chelating complexes with various anions and metal ions. Structurally for carbonyl thiourea derivatives, to become a chelating agent, it must adopt cis-configuration. In the present study, four new bis(thiourea) derivatives namely N,N’-bis(o-fluorobenzamidothiocarbonyl)hydrazine (1), N,N’- bis(o-chloro-benzamidothiocarbonyl)hydrazine (2), N,N’-bis(o-nitrobenzamidothiocarbonyl)-hydrazine (3), and N,N’-bis(o-methylbenzamidothiocarbonyl)hydrazine (4) were successfully synthesized and characterized by CHNS microelemental analysis, FTIR, UV-Vis, and 1H and 13C NMR spectroscopy. However chemical crystallography study showed that both thiourea moieties in compound (2) and (3) adopt trans geometry. Therefore they are potential monodentate ligand with two active moieties. DPPH radical scavenging experiment showed that compound (1), (2), and (4) exhibited higher antioxidant activity than ascorbic acid (Vitamin C).
Manumycin A Is a Potent Inhibitor of Mammalian Thioredoxin Reductase-1 (TrxR-1).
Tuladhar, Anupama; Rein, Kathleen S
2018-04-12
The anticancer effect of manumycin A (Man A) has been attributed to the inhibition of farnesyl transferase (FTase), an enzyme that is responsible for post-translational modification of Ras proteins. However, we have discovered that Man A inhibits mammalian cytosolic thioredoxin reductase 1 (TrxR-1) in a time-dependent manner, with an IC 50 of 272 nM with preincubation and 1586 nM without preincubation. The inhibition of TrxR-1 by Man A is irreversible and is the result of a covalent interaction between Man A and TrxR-1. Evidence presented herein demonstrates that Man A forms a Michael adduct with the selenocysteine residue, which is located in the C-terminal redox center of TrxR-1. Inhibitors of TrxR-1, which act through this mechanism, convert TrxR-1 into a SecTRAP, which utilizes NADPH to reduce oxygen to superoxide radical anion (O 2 -• ).
Photochemistry of the α-Al 2O 3-PETN interface
Tsyshevsky, Roman V.; Zverev, Anton; Mitrofanov, Anatoly; ...
2016-02-29
Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al 2O 3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C 5H 8N 4O 12) and a wide band gap aluminum oxide (α-Al 2O 3) substrate. The first principles modeling is used to deconstruct and interpret the α-Al 2O 3-PETN absorption spectrum that has distinct peaks attributed to surface F 0-centers and surfacePETN transitions. We predict the low energy α-Al 2O 3 F 0-centerPETN transition, producing the excited triplet state, and α-Al 2O 3 F- 0-centerPETN charge transfer, generating the PETN anion radical. This impliesmore » that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN at the interface. As a result, the feasible mechanism of the photodecomposition is proposed.« less
Lo, Po-Kam; Lau, Kai-Chung
2014-04-03
The ionization energy (IE), electron affinity (EA), and heats of formation (ΔH°f0/ΔH°f298) for cyclopentadienyl radical, cation, and anion, C5H5/C5H5(+)/C5H5(-), have been calculated by wave function-based ab initio CCSDT/CBS approach, which involves approximation to complete basis set (CBS) limit at coupled-cluster level with up to full triple excitations (CCSDT). The zero-point vibrational energy correction, core-valence electronic correction, scalar relativistic effect, and higher-order corrections beyond the CCSD(T) wave function are included in these calculations. The allylic [C5H5((2)A2)] and dienylic [C5H5((2)B1)] forms of cyclopentadienyl radical are considered: the ground state structure exists in the dienyl form and it is about 30 meV more stable than the allylic structure. Both structures are lying closely and are interconvertible along the normal mode of b2 in-plane vibration. The CCSDT/CBS predictions (in eV) for IE[C5H5(+)((3)A1')←C5H5((2)B1)] = 8.443, IE[C5H5(+)((1)A1)←C5H5((2)B1)] = 8.634 and EA[C5H5(-)((1)A1')←C5H5((2)B1)] = 1.785 are consistent with the respective experimental values of 8.4268 ± 0.0005, 8.6170 ± 0.0005, and 1.808 ± 0.006, obtained from photoelectron spectroscopic measurements. The ΔH°f0/ΔH°f298's (in kJ/mol) for C5H5/C5H5(+)/C5H5(-) have also been predicted by the CCSDT/CBS method: ΔH°f0/ΔH°f298[C5H5((2)B1)] = 283.6/272.0, ΔH°f0/ΔH°f298[C5H5(+)((3)A1')] = 1098.2/1086.9, ΔH°f0/ΔH°f298[C5H5(+)((1)A1)] = 1116.6/1106.0, and ΔH°f0/ΔH°f298[C5H5(-)((1)A1')] = 111.4/100.0. The comparisons between the CCSDT/CBS predictions and the experimental values suggest that the CCSDT/CBS procedure is capable of predicting reliable IE(C5H5)'s and EA(C5H5) with uncertainties of ± 17 and ± 23 meV, respectively.
Li, Lu-jun; Yu, Li-juan; Li, Yan-ci; Liu, Meng-yuan; Wu, Zheng-zhi
2015-04-01
This study was carried out to evaluate the anti-inflammatory and free radical scavenging activities of flavans from flex centrochinensis S. Y. Hu in vitro and their structure-activity relationship. LPS-stimulated RAW 264.7 macrophage was used as inflammatory model. MTT assay for cell availability, Griess reaction for nitric oxide (NO) production, the content of TNF-alpha, IL-1beta, IL-6 and PGE, were detected with ELISA kits; DPPH, superoxide anion and hydroxyl free radicals scavenging activities were also investigated. According to the result, all flavans tested exhibited anti-inflammatory effect in different levels. Among them, compounds 1, 3, 4 and 6 showed potent anti-inflammatory effect through the inhibition of NO, TNF-alpha, IL-lp and IL-6, of which 1 was the most effective inhibitor, however, 2 and 5 were relatively weak or inactive. The order of free radical scavenging activities was similar to that of anti-inflammatory activities. Therefore, these results suggest that 3, 4 and 6, especially of 1, were,in part responsible for the anti-inflammatory and free radical scavenging activity of Ilex centrochinensis. Hydroxyl group at 4'-position of B-ring plays an important role in the anti-inflammatory and free radical scavenging capacities.
Li, Weiguang; Ge, Changhui; Yang, Liu; Wang, Ruixue; Lu, Yiming; Gao, Yan; Li, Zhihui; Wu, Yonghong; Zheng, Xiaofei; Wang, Zhaoyan; Zhang, Chenggang
2016-01-01
The bacterial protein flagellin is the known agonist of Toll-like receptor 5 (TLR5). It has been reported that CBLB502, a novel agonist of TLR5 derived from Salmonella flagellin, could reduce radiation toxicity in mouse and primate models, protect mice from dermatitis and oral mucositis caused by radiation, inhibit acute renal ischemic failure, and inhibit the growth of A549 lung cancer cell. The property of CBLB502 is able to bind to TLR5 and activates NF-κB signaling. In this study, we investigated the antioxidant potential and free radicals scavenging properties of CBLB502 in vitro. Interestingly, we found that CBLB502 has a direct and distinct antioxidant capacity and can efficiently scavenge a variety of free radicals, including superoxide anion, hydroxyl radical, and ABTS cation (ABTS(+)). Through wave scanning and kinetic evaluation of scavenging ABTS(+), we found that the ABTS(+) scavenging process of CBLB502 is relatively slow, and the ABTS(+) scavenging activity of CBLB502 has a consistently kinetics characteristics. In conclusion, our results suggested that CBLB502 has antioxidant and scavenging free radicals activities in vitro. It is implied that CBLB502 might partially promote the beneficial protective effect through its scavenging free radicals. Copyright © 2015. Published by Elsevier B.V.
Preliminary studies on the activities of spin traps as scavengers of free radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogunbiyi, P.O.; Washington, I.
1991-03-15
The spin trapping agents, N-t-Butyl-a-phenyl-nitrone (PBN) and 5,5-Dimethyl-1-pyroline-N-oxide (DMPO) have been used to investigate the primary free radicals involved in various tissue injuries. Also, PBN and DMPO can provide some protection against free radical-induced lung injuries. However, their therapeutic potentials as free radical scavengers remained unexamined. In this study, the effects of PBN and DMPO on guinea pig lung microsomal lipid peroxidation were investigated using thiobarbituric acid-reactive substance assay. Superoxide anions (O{sup 2}{minus}) were generated in an enzymatic and a non-enzymatic system. PBN and DMPO each, significantly inhibited NADPH-stimulated lipid peroxidation irrespective of the presence of Fe{sup 3+}. Cytochrome cmore » reduction by the enzymatic and nitro blue tetrazolium reduction by the non-enzymatic O{sup 2}{minus} generating systems were both inhibited by PBN and DMPO as well as superoxide dismutase and dimethyl sulfoxide when compared with the controls. The spin traps exhibited lower potencies in these systems than the reference compounds, SOD and DMSO, which are well established as O{sup 2}{minus} and hydroxyl radical scavengers respectively. Results demonstrate the free radical scavenging properties of PBN and DMPO. This is an indication of their possible usefulness as antioxidants.« less
Yang, Yi; Lu, Xinglin; Jiang, Jin; Ma, Jun; Liu, Guanqi; Cao, Ying; Liu, Weili; Li, Juan; Pang, Suyan; Kong, Xiujuan; Luo, Congwei
2017-07-01
The frequent detection of sulfamethoxazole (SMX) in wastewater and surface waters gives rise of concerns about their ecotoxicological effects and potential risks to induce antibacterial resistant genes. UV/hydrogen peroxide (UV/H 2 O 2 ) and UV/persulfate (UV/PDS) advanced oxidation processes have been demonstrated to be effective for the elimination of SMX, but there is still a need for a deeper understanding of product formations. In this study, we identified and compared the transformation products of SMX in UV, UV/H 2 O 2 and UV/PDS processes. Because of the electrophilic nature of SO 4 - , the second-order rate constant for the reaction of sulfate radical (SO 4 - ) with the anionic form of SMX was higher than that with the neutral form, while hydroxyl radical (OH) exhibited comparable reactivity to both forms. The direct photolysis of SMX predominately occurred through cleavage of the NS bond, rearrangement of the isoxazole ring, and hydroxylation mechanisms. Hydroxylation was the dominant pathway for the reaction of OH with SMX. SO 4 - favored attack on NH 2 group of SMX to generate a nitro derivative and dimeric products. The presence of bicarbonate in UV/H 2 O 2 inhibited the formation of hydroxylated products, but promoted the formation of the nitro derivative and the dimeric products. In UV/PDS, bicarbonate increased the formation of the nitro derivative and the dimeric products, but decreased the formation of the hydroxylated dimeric products. The different effect of bicarbonate on transformation products in UV/H 2 O 2 vs. UV/PDS suggested that carbonate radical (CO 3 - ) oxidized SMX through the electron transfer mechanism similar to SO 4 - but with less oxidation capacity. Additionally, SO 4 - and CO 3 - exhibited higher reactivity to the oxazole ring than the isoxazole ring of SMX. Ecotoxicity of transformation products was estimated by ECOSAR program based on the quantitative structure-activity relationship analysis as well as by experiments using Vibrio fischeri, and these results indicated that the oxidation of SO 4 - or CO 3 - with SMX generated more toxic products than those of OH. Copyright © 2017 Elsevier Ltd. All rights reserved.
Madalan, Augustin M; Avarvari, Narcis; Fourmigué, Marc; Clérac, Rodolphe; Chibotaru, Liviu F; Clima, Sergiu; Andruh, Marius
2008-02-04
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.
Wang, Yihai; Xiang, Limin; Wang, Chunhua; Tang, Chao; He, Xiangjiu
2013-01-01
The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE) of mulberry fruit (Morus alba L.) were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG) and glycosylated serum protein (GSP), and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px) in streptozotocin (STZ)-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit. PMID:23936259
Free-radical scavenging activity and antibacterial impact of Greek oregano isolates obtained by SFE.
Stamenic, Marko; Vulic, Jelena; Djilas, Sonja; Misic, Dusan; Tadic, Vanja; Petrovic, Slobodan; Zizovic, Irena
2014-12-15
The antioxidant and antibacterial properties of Greek oregano extracts obtained by fractional supercritical fluid extraction (SFE) with carbon dioxide were investigated and compared with the properties of essential oil obtained by hydrodistillation. According to DPPH, hydroxyl radical and superoxide anion radical scavenging activity assays, the supercritical extracts expressed stronger antioxidant activity comparing to the essential oil. The most effective was the supercritical extract obtained by fractional extraction at 30 MPa and 100°C after the volatile fraction had been extracted at lower pressure. At the same time this extract showed strong antibacterial activity against staphylococci, including MRSA strain, but did not affect Escherichia coli of normal intestinal flora. The essential oil obtained by hydrodistillation showed stronger antibacterial activity against E. coli, Salmonella and Klebsiella pneumoniae, comparing to the supercritical extracts but at the same affected the normal gut flora. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sazonova, E N; Samarina, E Yu; Lebed'ko, O A; Maltseva, I M; Timoshin, S S
2016-05-01
We studied the effects of a synthetic analogue of dermorphin peptide sedatin on DNA synthesis, nucleolar apparatus, and parameters of free radical oxidation in the primary culture of pulmonary fibroblasts under conditions of oxidative stress. Oxidative stress significantly enhanced production of superoxide anion radical in the culture, sufficiently inhibited DNA synthesis in fibroblasts, and reduced the size of cell nuclei and parameters of the nucleolar apparatus. Sedatin prevented accumulation of free radical oxidation products and changes in karyometry parameters induced by oxidative stress. The peptide completely eliminated changes in the parameters of fibroblast nucleolar apparatus and abolished the inhibitory effect of oxidative stress on the number of DNA-synthesizing cells. Pretreatment with non-selective opioid receptor antagonist naloxone hydrochloride partially abolished the effects of sedatin in the primary culture of pulmonary fibroblasts.
Kang, Min-Cheol; Kim, Seo Young; Kim, Yoon Taek; Kim, Eun-A; Lee, Seung-Hong; Ko, Seok-Chun; Wijesinghe, W A J P; Samarakoon, Kalpa W; Kim, Young-Sun; Cho, Jin Hun; Jang, Hyeang-Su; Jeon, You-Jin
2014-01-01
The in vitro and in vivo antioxidant potentials of a polysaccharide isolated from aloe vera gel were investigated. Enzymatic extracts were prepared from aloe vera gel by using ten digestive enzymes including five carbohydrases and five proteases. Among them, the highest yield was obtained with the Viscozyme extract and the same extract showed the best radical scavenging activity. An active polysaccharide was purified from the Viscozyme extract using ethanol-added separation and anion exchange chromatography. Purified aloe vera polysaccharide (APS) strongly scavenged radicals including DPPH, hydroxyl and alkyl radicals. In addition, APS showed a protective effect against AAPH-induced oxidative stress and cell death in Vero cells as well as in the in vivo zebrafish model. In this study, it is proved that both the in vitro and in vivo antioxidant potentials of APS could be further utilized in relevant industrial applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wang, Yihai; Xiang, Limin; Wang, Chunhua; Tang, Chao; He, Xiangjiu
2013-01-01
The antidiabetic and antioxidant activities of the ethyl acetate-soluble extract (MFE) of mulberry fruit (Morus alba L.) were investigated. In vitro, MFE showed potent α-glucosidase inhibitory activity and radical-scavenging activities against DPPH and superoxide anion radicals. In vivo, MFE could significantly decrease fasting blood glucose (FBG) and glycosylated serum protein (GSP), and increase antioxidant enzymatic activities (SOD, CAT, GSH-Px) in streptozotocin (STZ)-induced diabetic mice. Bioactivity-guided fractionation of the MFE led to the isolation of 25 phenolic compounds, and their structures were identified on the basis of MS and NMR data. All the 25 compounds were isolated from mulberry fruit for the first time. Also, the α-glucosidase inhibitory activity and antioxidant activity of the phenolics were evaluated. Potent α-glucosidase inhibitory and radical-scavenging activities of these phenolics suggested that they may be partially responsible for the antidiabetic and antioxidant activities of mulberry fruit.
Nie, Hongyun; Nie, Maiqian; Wang, Lei; Diwu, Zhenjun; Xiao, Ting; Qiao, Qi; Wang, Yan; Jiang, Xin
2018-03-02
The aim of this work was to investigate the effects of secreted extracellular phenazine compounds (PHCs) on the degradation efficiency of alkanes by P. aeruginosa NY3. Under aerobic conditions, the PHCs secreted by P. aeruginosa NY3 initiate the oxidation of alkanes outside cells, in coupling with some reducing agents, such as β-Nicotinamide adenine dinucleotide, reduced disodium salt (NADH) or reduced glutathione (GSH). This reaction might be via free radical reactions similar to Fenton Oxidation Reaction (FOR). P. aeruginosa NY3 secretes pyocyanin (Pyo), 1-hydroxyphenazine (HPE), phenazine-1-carboxylic acid (PCA), and phenazine-1-amide (PCN) simultaneously. The cell-free extracellular fluid containing these four PHCs degrades hexadecane effectively. The observation of Electron Spin Resonance (EPR) signals of superoxide anion radical (O 2 - ), hydroxyl radical (OH) and/or carbon free radicals (R) both in vivo and in vitro suggested the degradation of hexadecane could be via a free radical pathway. Secretion of PHCs has been found to be characteristic of Pseudomonas which is often involved in or related to the degradation of organic pollutants. Our work suggested that certain organic contaminants may be oxidized through ubiquitously extracellular abiotic degradation by the free radicals produced during bio-remediation and bio-treatment. Copyright © 2018. Published by Elsevier Ltd.
Destruction of amphetamine in aqueous solution using gamma irradiation
NASA Astrophysics Data System (ADS)
Alkhuraiji, Turki S.; Ajlouni, Abdul-Wali
2017-10-01
Amphetamine-type stimulants are among the most prevalent and widespread commonly abused drugs. Amphetamine and its derivatives were detected in aquatic environment. This study aimed to demonstrate experimentally the ability of γ-irradiation combined with persulfate anions (S2O82-) to degrade and mineralize the amphetamine in aqueous solution. An initial amphetamine concentration of 125 μM in distilled water was completely degraded by a γ-ray dose of 2.8 kGy. Generation of the sulfate radical (SO4•-) from the fast reaction of added S2O82- with hydrated electrons (eaq-; keaq-/S2O82- = 1.1×1010 M-1 s-1) improved the efficiency of amphetamine degradation and mineralization. A γ-ray dose of 0.667 and 0.350 kGy in the absence and presence of S2O82- anions degraded 90% of the amphetamine, respectively. For γ-ray/free O2 and γ-ray/S2O82- systems, 11.5 and 7 kGy was required for 50% amphetamine mineralization, respectively. Addition of HCO3- anions lowered the amphetamine degradation yield, whereas N2 gas, SO42-, and Cl- anions had a negligible effect.
NASA Astrophysics Data System (ADS)
Nishikawa, H.; Oshio, H.; Higa, M.; Kondo, R.; Kagoshima, S.; Nakao, A.; Sawa, H.; Yasuzuka, S.; Murata, K.
2008-10-01
Physical properties of isostructural β''-(DODHT)2X [DODHT = (l,4-dioxane-2,3-diyldithio)dihydrotetrathiafulvalene; X = PF6, AsF6, and SbF6] at ambient pressure have been compared. The insulating phase of β''-(DODHT)2PF6 salt has already been revealed to be a charge ordering (CO) state by X-ray diffraction study and magnetic behavior. CO in this salt was also confirmed by the observation of satellite reflections in oscillation photograph using synchrotron radiation. Transport property of β''-(DODHT)2SbF6 salt was reinvestigated up to the pressure of 3.7 GPa applied by a cubic anvil apparatus. Although the SbF6 salt turned to be metallic above 2.0 GPa, no superconductivity was observed. In order to examine the anion size dependence of DODHT salts with octahedral anions, we prepared a new DODHT salt, β''-(DODHT)2TaF6, which has the larger counter anion compared with the previous salts. Crystal structure of this salt was isostructural to the other DODHT salts. The electrical and magnetic properties of this salt were similar to those of β''-(DODHT)2SbF6 salt.
Cheng, Ming-Ching; Lin, Li-Yun; Yu, Tung-Hsi; Peng, Robert Y
2008-06-11
Mountain celery seed essential oils (MC-E) contained 109 compounds, including mainly nine kinds of monoterpenoids, 31 kinds of of sesquiterpenoids, and 22 kinds of alcohols. A successive gel column adsorption with solvent fractionation yielded four fractionates. The pentane fractionate revealed potent hypolipidemic but poor antioxidant activities. The ether fractionate exhibited strong hypolipidemic activity in addition to excellent 1,1-diphenyl-2-picrylhydrazyl free radical- and superoxide anion-scavenging capabilities. The third acetone fractionate only showed moderate superoxide anion-scavenging activity. Finally, the fourth methanol fractionate having a rather high content of gamma-selinene, 2-methylpropanal, and Z-9-octadecenamide uniquely revealed very strong superoxide anion-scavenging capability. All MC diets except the MC-E-added diet simultaneously exhibited both significant hypolipidemic and high-density lipoprotein-cholesterol (HDL-C)-elevating capabilities. However, all diets totally failed to affect the hepatic phospholipid levels. Conclusively, the MC-E can be fractionated by such a separation technology to produce products uniquely possessing hypolipidemic and HDL-C-elevating activities.
Zhang, Yaxin; He, Xin; Zeng, Guangming; Chen, Tan; Zhou, Zeyu; Wang, Hongtao; Lu, Wenjing
2015-11-01
The photodegradation of pentachlorophenol (PCP) in a surfactant-containing (single and mixed) complex system using graphene-TiO2 (GT) as catalyst was investigated. The objective was to better understand the behavior of surfactants in a GT catalysis system for its possible use in remediation technology of soil contaminated by hydrophobic organic compounds (HOCs). In a single-surfactant system, surfactant molecules aggregated on GT via hydrogen bonding and electrostatic force; nonideal mixing between nonionic and anionic surfactants rendered GT surface with mixed admicelles in a mixed surfactant system. Both effects helped incorporating PCP molecules into surfactant aggregates on catalyst surface. Hence, the targeted pollutants were rendered easily available to photo-yielded oxidative radicals, and photodegradation efficiency was significantly enhanced. Finally, real soil washing-photocatalysis trials proved that anionic-nonionic mixed surfactant soil washing coupled with graphene-TiO2 photocatalysis can be one promising technology for HOC-polluted soil remediation.
Hassan, H A; Abdel-Aziz, A F
2010-01-01
Oxidative damage to cellular components such as lipids and cell membranes by free radicals and other reactive oxygen species is believed to be associated with the development of degenerative diseases. Fluoride intoxication is associated with oxidative stress and altered anti-oxidant defense mechanism. So the present study was extended to investigate black berry anti-oxidant capacity towards superoxide anion radicals, hydroxyl radicals and nitrite in different organs of fluoride-intoxicated rats. The data indicated that sodium fluoride (10.3mg/kg bw) administration induced oxidative stress as evidenced by elevated levels of lipid peroxidation and nitric oxide in red blood cells, kidney, testis and brain tissues. Moreover, significantly decreased glutathione level, total anti-oxidant capacity and superoxide dismutase activity were observed in the examined tissues. On the other hand, the induced oxidative stress and the alterations in anti-oxidant system were normalized by the oral administration of black berry juice (1.6g/kg bw). Therefore it can be concluded that black berry administration could minimize the toxic effects of fluoride indicating its free radical-scavenging and potent anti-oxidant activities. Published by Elsevier Ltd.
Antioxidant Capacity and Proanthocyanidin Composition of the Bark of Metasequoia glyptostroboides.
Chen, Fengyang; Zhang, Lin; Zong, Shuling; Xu, Shifang; Li, Xiaoyu; Ye, Yiping
2014-01-01
Metasequoia glyptostroboides Hu et Cheng is the only living species in the genus Metasequoia Miki ex Hu et Cheng (Taxodiaceae), which is well known as a "living fossil" species. In the Chinese folk medicine, the leaves and bark of M. glyptostroboides are used as antimicrobic, analgesic, and anti-inflammatory drug for dermatic diseases. This study is the first to report the free radical scavenging capacity, antioxidant activity, and proanthocyanidin composition of the bark of M. glyptostroboides. We observed total of six extracts and fractions, which were easily obtained by water-ethanol extraction and followed by a further separation with D101 resin column chromatography, had significant DPPH radical, superoxide anion radical, and hydroxyl radical scavenging capacity, total antioxidative capacity (T-AOC), lipid peroxidation inhibitory activity, and metal ions chelating capacity. The fraction MGEB, which was obtained by 60% ethanol extraction and followed by a further separation with D101 resin column chromatograph, possessed the highest proanthocyanidin content and the highest free radical scavenging and antioxidant activities. Furthermore, MGEB could significantly protect against CCl4 induced acute liver injury through inhibition of oxidative stress in mice. In addition, ten proanthocyanidins were isolated from MGEB, and six of them were firstly reported from this plant.
NASA Astrophysics Data System (ADS)
Matsuoka, Masanori; Takahashi, Fumiki; Asakura, Yoshiyuki; Jin, Jiye
2016-07-01
The sonochemiluminescence (SCL) behavior of lucigenin (Luc2+) has been studied in aqueous solutions irradiated with 500 kHz ultrasound. Compared with the SCL of a luminol system, a tremendously increased SCL intensity is observed from 50 µM Luc2+ aqueous solution (pH =11) when small amounts of coreactants such as 2-propanol coexist. It is shown that SCL intensity strongly depends on the presence of dissolved gases such as air, O2, N2, and Ar. The highest SCL intensity is obtained in an O2-saturated solution, indicating that molecular oxygen is required to generate SCL. Since SCL intensity is quenched completely in the presence of superoxide dismutase (SOD), an enzyme that can catalyze the disproportionation of O2 •-, the generation of O2 •- in the ultrasonic reaction field is important in the SCL of Luc2+. In this work, the evidence of O2 •- production is examined by a spectrofluorometric method using 2-(2-pyridyl)benzothiazoline as the fluorescent probe. The results indicate that the yield of O2 •- is markedly increased in the O2-saturated solutions when a small amount of 2-propanol coexists, which is consistent with the results of SCL measurements. 2-Propanol in the interfacial region of a cavitation bubble reacts with a hydroxyl radical (•OH) to form a 2-propanol radical, CH3C•(OH)CH3, which can subsequently react with dissolved oxygen to generate O2 •-. The most likely pathways for SCL as well as the spatial distribution of SCL in a microreactor are discussed in this study.
Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions
NASA Astrophysics Data System (ADS)
Weber, J. Mathias; Adams, Christopher L.
2010-06-01
We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.
NASA Astrophysics Data System (ADS)
Wen, Xiang; Zhang, Xiaoshen; Szewczyk, Grzegorz; ElHussien, Ahmed; Huang, Ying-Ying; Sarna, Tadeusz; Hamblin, Michael R.
2018-02-01
Rose Bengal (RB) is a halogenated xanthene dye that has been used to mediate antimicrobial photodynamic inactivation. While highly active against Gram-positive bacteria, RB is largely inactive in killing Gram-negative bacteria. We have discovered that addition of the non-toxic salt potassium iodide (100mM) potentiates green light (540nm)-mediated killing by up to six extra logs with Gramnegative bacteria Escherichia coli and Pseudomonas aeruginosa,Gram-positive methicillin resistant Staphylococcus aureus, and fungal yeast Candida albicans. The mechanism is proposed to be singlet oxygen addition to iodide anion to form peroxyiodide, which decomposes into radicals, finally forms hydrogen peroxide and molecular iodine. The effects of these different bactericidal species can be teased apart by comparing killing in three different scenarios: (1) cells+RB+KI are mixed together then illuminated with green light; (2) cells+RB are centrifuged then KI added then green light; (3) RB+KI+green light then cells added after light. We showed that KI could potentiate RBPDT in a mouse model of skin abrasions infected with bioluminescent P.aeruginosa.
Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid
NASA Astrophysics Data System (ADS)
Shukla, M. K.; Mishra, P. C.
1996-04-01
Electronic absorption and fluorescence spectra of aqueous solutions of two well known antioxidants, uric acid and ascorbic acid (vitamin C), have been studied at different pH. The observed spectra have been interpreted in terms of neutral and anionic forms of the molecules with the help of molecular orbital calculations. The N 3 site of uric acid has been shown to be the most acidic. Fluorescence of uric acid seems to originate from an anion of the molecule in a wide pH range. Around pH 3, both the neutral and anionic forms of ascorbic acid appear to be present in aqueous solutions. In aqueous media, ascorbic acid appears to get converted easily to its dehydro form and this conversion does not seem to be reversible. An anion of dehydroascorbic acid seems to be formed on heating dehydroascorbic acid in aqueous solutions.
A correlated ab initio study of linear carbon-chain radicals CnH (n = 2-7)
NASA Technical Reports Server (NTRS)
Woon, D. E.; Loew, G. H. (Principal Investigator)
1995-01-01
Linear carbon-chain radicals CnH for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2 sigma+ to 2 pi as the chain is extended. For C4H, the 2 sigma+ state was found to lie only 72 cm-1 below the 2 pi state in the estimated complete basis set limit for valence correlation. The C2H- and C3H- anions have also been characterized.
Radiofrequency attenuator and method
Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ
2009-01-20
Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.
Radiofrequency attenuator and method
Warner, Benjamin P [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM; Burrell, Anthony K [Los Alamos, NM; Agrawal, Anoop [Tucson, AZ; Hall, Simon B [Palmerston North, NZ
2009-11-10
Radiofrequency attenuator and method. The attenuator includes a pair of transparent windows. A chamber between the windows is filled with molten salt. Preferred molten salts include quarternary ammonium cations and fluorine-containing anions such as tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.-), hexafluoroarsenate (AsF.sub.6.sup.-), trifluoromethylsulfonate (CF.sub.3SO.sub.3.sup.-), bis(trifluoromethylsulfonyl)imide ((CF.sub.3SO.sub.2).sub.2N.sup.-), bis(perfluoroethylsulfonyl)imide ((CF.sub.3CF.sub.2SO.sub.2).sub.2N.sup.-) and tris(trifluoromethylsulfonyl)methide ((CF.sub.3SO.sub.2).sub.3 C.sup.-). Radicals or radical cations may be added to or electrochemically generated in the molten salt to enhance the RF attenuation.
NASA Astrophysics Data System (ADS)
Andruniow, T.; Pawlikowski, M.
2000-05-01
The electronic structure of the low-energy states of the pyromellitic diahydride (PMDA) anion is investigated in terms of the VWN (Vosco-Wilk-Nusair) the BP (Becke-Perdew) and the B3LYP density functional (DF) methods employed with 6-31G * basis sets. All the methods are shown to reproduce correctly the absorption and resonance Raman spectra in the region corresponding to the low-energy 1 2Au→1 2B3g transition. The discrepancies between the theory and experiment are attributed to a (weak) Dushinsky effect predominately due to a mixing of the ν3=1593 cm -1 and ν4=1342 cm -1 vibrations in the 1 2B3 g state of the PMDA radical.
Lin, Shaoling; Ching, Lai Tsz; Ke, Xinxin; Cheung, Peter Chi Keung
2016-01-01
The composition profile and the antioxidant properties of phenolics in water extracts obtained from the fresh fruiting bodies of 4 common cultivated Asian edible mushrooms-Agrocybe aegerita, Pleurotus ostreatus, P. eryngii, and Pholiota nameko were compared. The water extract from A. aegerita (AaE) had the highest total phenolic content (TPC) at 54.18 ± 0.27 gallic acid equivalents (μmol/L)/mg extract (P < 0.05), as measured by the Folin-Ciocalteu method, and consisted of the largest number (including gallic acid, protocatechuic acid, chlorogenic acid, ferulic acid, and sinapic acid) and total amounts of phenolic acids identified by Fourier transform-ion cyclotron resonance mass spectrometry. The water extract of Ph. nameko was found to have the second-highest TPC (43.55 ± 0.10 gallic acid equivalents [μmol/L]/mg extract), followed by the water extract of P. eryngii and the water extract of P. ostreatus (39.55 ± 0.25 and 39.02 ± 0.30 gallic acid equivalents/mg extract, respectively). The scavenging activities of the water extracts from these mushrooms were evaluated against 2,2-diphenyl-l-(2,4,6-trinitrophenyl) hydrazyl diphenylpicrylhydrazyl (DPPH), superoxide anion radicals, hydroxyl radicals, and hydrogen peroxide. Based on halfmaximal effective concentrations, AaE was more effective in scavenging hydrogen peroxide (<0.05), followed by DPPH (0.51 mg/mL), superoxide anion radicals (0.85 mg/mL) and hydroxyl radicals (5.94 mg/mL), then the other mushroom water extracts. The differences in the half-maximal effective concentrations of individual mushroom water extracts were probably the result of the different numbers and amounts of individual phenolic acids in the extracts. The antioxidant activities of the mushroom water extracts were correlated with their TPC. The strongest antioxidant properties of AaE were consistent with its highest TPC and with the largest number and amount of phenolics identified in the extract. These results indicated that cultivated edible mushrooms could be a potential source of natural antioxidants with free radical scavenging properties for application as a functional food ingredient.
Vibrational Spectroscopy of CO2- Radical Anion in Water
NASA Astrophysics Data System (ADS)
Janik, Ireneusz; Tripathi, G. N. R.
2016-06-01
The reductive conversion of CO2 into industrial products (e.g., oxalic acid, formic acid, and methanol) can occur via aqueous CO2- as a transient intermediate. While the formation, structure and reaction pathways of this radical anion have been modelled for decades using various spectroscopic and theoretical approaches, we present here, for the first time, a vibrational spectroscopic investigation in liquid water, using pulse radiolysis time-resolved resonance Raman spectroscopy for its preparation and observation. Excitation of the radical in resonance with its 235 nm absorption displays a transient Raman band at 1298 wn, attributed to the symmetric CO stretch, which is at 45 wn higher frequency than in inert matrices. Isotopic substitution at C (13CO2-) shifts the frequency downwards by 22 wn which confirms its origin and the assignment. A Raman band of moderate intensity compared to the stronger 1298 wn band also appears at 742 wn, and is assignable to the OCO bending mode. A reasonable resonance enhancement of this mode is possible only in a bent CO2-(C2v/Cs) geometry. These resonance Raman features suggest a strong solute-solvent interaction, the water molecules acting as constituents of the radical structure, rather than exerting a minor solvent perturbation. However, there is no evidence of the non-equivalence (Cs) of the two CO bonds. A surprising resonance Raman feature is the lack of overtones of the symmetric CO stretch, which we interpret due to the detachment of the electron from the CO2- moiety towards the solvation shell. Electron detachment occurs at the energies of 0.28+/-0.03 eV or higher with respect to the zero point energy of the ground electronic state. The issue of acid-base equilibrium of the radical which has been in contention for decades, as reflected in a wide variation in the reported pKa (-0.2 to 3.9), has been resolved. A value of 3.4+/-0.2 measured in this work is consistent with the vibrational properties, bond structure and charge distribution in aqueous CO2-.
Extremes in Oxidizing Power, Acidity, and Basicity
2013-10-01
and extremely difficult to oxidize, with reversible redox potentials calculated up to 5 V above ferrocene /ferricenium. In liquid sulfur dioxide, the...ol, the undecafluorinated anion is oxidized reversibly at 2.43 V above ferrocene /ferricenium (calculated 2.40 V) but the radical is too unstable for...unusually weakly nucleophilic and extremely difficult to oxidize, with reversible redox potentials calculated up to 5 V above ferrocene /ferricenium. In
Toma, Oksana; Mercier, Nicolas; Allain, Magali; Kassiba, Abdel Adi; Bellat, Jean-Pierre; Weber, Guy; Bezverkhyy, Igor
2015-09-21
The zwitterionic bipyridinium carboxylate ligand 1-(4-carboxyphenyl)-4,4'-bipyridinium (hpc1) in the presence of 1,4-benzenedicarboxylate anions (BDC(2-)) and Zn(2+) ions affords three porous coordination polymers (PCPs): [Zn5(hpc1)2(BDC)4(HCO2)2]·2DMF·EtOH·H2O (1), [Zn3(hpc1)(BDC)2(HCO2)(OH)(H2O)]·DMF·EtOH·H2O (2), and [Zn10(hpc1)4(BDC)7(HCO2)2(OH)4(EtOH)2]·3DMF·3H2O (3), with the formate anions resulting from the in situ decomposition of dimethylformamide (DMF) solvent molecules. 1 and 3 are photo- and thermochromic, turning dark green as a result of the formation of bipyridinium radicals, as shown by electron paramagnetic resonance measurements. Particularly, crystals of 3 are very photosensitive, giving an eye-detectable color change upon exposure to the light of the microscope in air within 1-2 min. A very nice and interesting feature is the regular discoloration of crystals from the "edge" to the "core" upon exposition to O2 (reoxidation of organic radicals) due to the diffusion of O2 inside the pores, with this discoloration being slower in an oxygen-poor atmosphere. The formation of organic radicals is explained by an electron transfer from the oxygen atoms of the carboxylate groups to pyridinium cycles. In the structure of 3', [Zn10(hpc1)4(BDC)7(OH)6(H2O)2], resulting from the heating of sample 3 (desolvation and loss of CO molecules due to the decomposition of formate anions), no suitable donor-acceptor interaction is present, and as a consequence, this compound does not exhibit any chromic properties. The presence of permanent porosity in desolvated 1, 2, and 3' is confirmed by methanol adsorption at 25 °C with the adsorbed amount reaching 5 wt % for 1, 10 wt % for 3', and 13 wt % for 2. The incomplete desorption of methanol at 25 °C under vacuum points to strong host-guest interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao -Lei; Chen, Bo; Transue, Wesley J.
2016-04-19
The recent successful synthesis of P 2N 3 –, a planar all-inorganic aromatic molecule, represents a breakthrough in inorganic chemistry, because, like its isolobal counterparts C 5H 5– and cyclo-P 5 –, P 2N 3 – has potential to serve as a new ligand for transition metals and a building block in solid-state molecular architectures. In light of its importance, we report here a negative ion photoelectron spectroscopy (NIPES) and ab initio study of P 2N 3 –, to investigate the electronic structures of P 2N 3 – and its neutral P 2N 3• radical. The adiabatic detachment energy ofmore » P 2N 3 – (electron affinity of P 2N 3•) was determined to be 3.765 ± 0.010 eV, indicating high stability for the P 2N 3 – anion. Ab initio electronic structure calculations reveal five low-lying electronic states in the neutral P 2N 3• radical. Calculation of the Franck-Condon factors (FCFs) for each anion-to-neutral electronic transition and comparison of the resulting simulated NIPE spectrum with the vibrational structure in the observed spectrum allows the first four excited states of P 2N 3• to be determined to lie 6.2, 6.7, 11.5, and 22.8 kcal/mol -1 above the ground state of the radical, which is found to be a 6π-electron, 2A 1, σ state.« less
Biological activities of two macroalgae from Adriatic coast of Montenegro
Kosanić, Marijana; Ranković, Branislav; Stanojković, Tatjana
2014-01-01
In the present investigation the acetone extracts of macroalgae Ulva lactuca and Enteromorpha intestinalis were tested for antioxidant, antimicrobial and cytotoxic potential. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic and flavonoid compounds in extracts. As a result of the study, U. lactuca extract was found to have a better free radical scavenging activity (IC50 = 623.58 μg/ml) than E. intestinalis extract (IC50 = 732.12 μg/ml). Moreover, the tested extracts had effective ferric reducing power and superoxide anion radical scavenging. The total content of phenol in extracts of U. lactuca and E. intestinalis was 58.15 and 40.68 μg PE/mg, while concentrations of flavonoids were 39.58 and 21.74 μg RE/mg, respectively. Furthermore, among the tested species, extracts of U. lactuca showed a better antimicrobial activity with minimum inhibitory concentration values ranging from 0.156 to 5 mg/ml, but it was relatively weak in comparison with standard antibiotics. Bacillus mycoides and Bacillus subtilis were the most susceptible to the tested extracts. Contrary to this Aspergillus flavus, Aspergillus fumigatus and Penicillium purpurescens were the most resistant. Finally, cytotoxic activity of tested extracts was evaluated on four human cancer cell lines. Extract of E. intestinalis expressed the stronger cytotoxic activity towards all tested cell lines with IC50 values ranging from 74.73 to 155.39 μg/ml. PMID:26150743
Highly Oxidizing Surface Radicals in Lunar Dust
NASA Astrophysics Data System (ADS)
Kulahci, I.; Freund, F. T.; Bose, M.; Loftus, D. J.
2007-12-01
Lunar rocks are generally believed to be very "dry" with little or no evidence for hydroxyl as indicators of traces of dissolved H2O. The absence of hydroxyl, however, is not a sure sign of the absence of dissolved H2O. The reason is that hydroxyl pairs in the structure of host minerals, O3X-OH HO-XO3, with X=Si4+, Al3+ etc., tend to undergo an electronic rearrangement (redox conversion) in the course of which two oxygen anions are oxidized from the 2- to the 1- valence, forming a peroxy link, O3X-OO-XO3, plus an H2 molecule. If the H2 molecules diffuse out (which they are expected to do from lunar rocks and lunar fines over the course of 4 Gyrs), the peroxy links remain as the only "memory" of a former solute H2O content. Hard UV causes peroxy links to dissociate. In the process an electron from a neighboring O2- jumps into the broken peroxy bond. This is equivalent to forming an O-, e.g. a defect electron in the oxygen anion sublattice. Such defect electrons, also known as positive holes or pholes for short, represent highly mobile charge carriers. When trapped at the surface of dust grains, these charge carriers turn into highly reactive, highly oxidizing O- radicals, which are of concern because of their toxicity when lunar dust is inhaled by astronauts. We propose a device to measure the UV-activation of peroxy links by dusting lunar fines onto a polyethylene base plate with Au electrodes sputtered onto both ends and an ammeter connecting the two electrodes. One end of the dust layer will be exposed to the ambient UV radiation, while the remainder will be shaded. During the lunar night no current is expected to flow between the two Au electrodes. During passage through the night-day terminator, a current is expected to flow between the Au electrodes carried by defect electrons activated in the irradiated portion of the dust layer. Such a current would be an indicator that lunar fines and, by implication, lunar rocks contain peroxy links as a memory of a former solute H2O content.
Pawlikowska-Pawlęga, Bożena; Misiak, Lucjan E; Jarosz-Wilkołazka, Anna; Zarzyka, Barbara; Paduch, Roman; Gawron, Antoni; Gruszecki, Wieslaw I
2014-08-01
With application of EPR and (1)H NMR techniques genistein interaction with liposomes formed with egg yolk lecithin and with erythrocyte membranes was assessed. The present study addressed the problem of genistein localization and its effects on lipid membrane fluidity and protein conformation. The range of microscopic techniques was employed to study genistein effects on HeLa cells and human erythrocytes. Moreover, DPPH bioassay, superoxide anion radical test and enzymatic measurements were performed in HeLa cells subjected to genistein. The gathered results from both EPR and NMR techniques indicated strong ordering effect of genistein on the motional freedom of lipids in the head group region and the adjacent hydrophobic zone in liposomal as well as in red blood cell membranes. EPR study of human ghost showed also the changes in the erythrocyte membrane protein conformation. The membrane effects of genistein were correlated with the changes in internal membranes arrangement of HeLa cells as it was noticed using transmission electron microscopic and fluorescent techniques. Scanning electron and light microscopy methods showed that one of the aftermaths of genistein incorporation into membranes was creation of echinocytic form of the red blood cells with reduced diameter. Genistein improved redox status of HeLa cells treated with H2O2 by lowering radicals' level. In conclusion, the capacity of genistein to incorporate, to affect membrane organization and to change its biophysical properties is correlated with the changes inside the cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Meijuan; Chu, W
2012-06-15
A visible-light-mediated C-TiO(2) photocatalytic process (Vis/C-TiO(2)) was employed to degrade antibiotic norfloxacin. The influences of catalyst dosage, initial probe compound concentration and solution pH levels on the decay performance and reaction kinetics were investigated and optimized. Based on the experimental results, an equation was established to predict the observed rate constant under neutral pH. In addition, the decay rate was accelerated under weak alkali in the presence of moderate OH(-) anions. Hydroxyl radical was confirmed to play a major role in the Vis/TiO(2) process, where in the presence of OH quencher and electron acceptor, retardation and improvement were found respectively. Furthermore, an original schematic diagram describing the surface property of C-TiO(2) was built and further verified, in which, NH(4)(+) cations normally served as hole scavengers showed a negligible effect because the adsorbed OH(-) formed a barrier for NH(4)(+) ions to approach the holes, and the F(-) anions presented a significant suppression on norfloxacin decay due to the formation of hydrogen bond (OH⋯F) around the C-TiO(2) surface. Besides, the recycling and sedimentation tests justified that the Vis/C-TiO(2) process is a cost-effective and feasible way for wastewater treatment. Copyright © 2012 Elsevier B.V. All rights reserved.
Tian, Suyang; Hao, Changchun; Xu, Guangkuan; Yang, Juanjuan; Sun, Runguang
2017-10-01
In this study, polysaccharides from Angelica sinensis were extracted using the ultrasound-assisted extraction method. Based on the results of single factor experiments and orthogonal tests, three independent variables-water/raw material ratio, ultrasound time, and ultrasound power-were selected for investigation. Then, we used response surface methodology to optimize the extraction conditions. The experimental data were fitted to a quadratic equation using multiple regression analysis, and the optimal conditions were as follows: water/raw material ratio, 43.31 mL/g; ultrasonic time, 28.06 minutes; power, 396.83 W. Under such conditions, the polysaccharide yield was 21.89±0.21%, which was well matched with the predicted yield. In vitro assays, scavenging activity of superoxide anion radicals, hydroxyl radicals, and 2,2-diphenyl-1-picry-hydrazyl radical showed that polysaccharides had certain antioxidant activities and that hydroxyl radicals have a remarkable scavenging capability. Therefore, these studies provide reference for further research and rational development of A. sinensis polysaccharide. Copyright © 2016. Published by Elsevier B.V.
The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds.
Gülçin, Ilhami
2005-11-01
Water and ethanol crude extracts from black pepper (Piper nigrum) were investigated for their antioxidant and radical scavenging activities in six different assay, namely, total antioxidant activity, reducing power, 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, and metal chelating activities. Both water extract (WEBP) and ethanol extract (EEBP) of black pepper exhibited strong total antioxidant activity. The 75 microg/ml concentration of WEBP and EEBP showed 95.5% and 93.3% inhibition on peroxidation of linoleic acid emulsion, respectively. On the other hand, at the same concentration, standard antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and alpha-tocopherol exhibited 92.1%, 95.0%, and 70.4% inhibition on peroxidation of linoleic acid emulsion, respectively. Also, total phenolic content in both WEBP and EEBP were determined as gallic acid equivalents. The total phenolics content of water and ethanol extracts were determined by the Folin-Ciocalteu procedure and 54.3 and 42.8 microg gallic acid equivalent of phenols was detected in 1 mg WEBP and EEBP.
Giese, Ellen C; Gascon, Jacob; Anzelmo, Gianluca; Barbosa, Aneli M; da Cunha, Mário A Alves; Dekker, Robert F H
2015-01-01
β-D-Glucans are known to present antitumor, anticancer, and anti-inflammatory activities that are influenced by their own antioxidant capacity. The antioxidant activity of botryosphaeran, an exopolysaccharide of the (1 → 3;1 → 6)-β-D-glucan type produced by the Botryosphaeria rhodina MAMB-05 was evaluated and compared to some other β-D-glucans (lasiodiplodan an exocellular (1 → 6)-β-D-glucan from Lasiodiplodia theobromae, laminarin and curdlan), and oligosaccharides, disaccharides, and monosaccharides in a study of scavenging activities of free radicals in-vitro. Botryosphaeran displayed high total antioxidant activity (80%) as well as good scavenging activity against hydroxyl radical (90.6%), superoxide anion (37%), hydrogen peroxide (38%), and nitric oxide radical (90%). No reducing power, metal-chelating capacity or inhibition of lipid peroxidation was observed for these β-D-glucans. The results demonstrated that botryosphaeran exhibited effective antioxidant activity as supported by many different assays, suggesting that this β-D-glucan may serve as a source of a new bioactive compound with effective antioxidant activity. Copyright © 2014 Elsevier B.V. All rights reserved.
Relationship Between Equilibrium Forms of Lysozyme Crystals and Precipitant Anions
NASA Technical Reports Server (NTRS)
Nadarajah, Arunan
1996-01-01
Molecular forces, such as electrostatic, hydrophobic, van der Waals and steric forces, are known to be important in determining protein interactions. These forces are affected by the solution conditions and changing the pH, temperature or the ionic strength of the solution can sharply affect protein interactions. Several investigations of protein crystallization have shown that this process is also strongly dependent on solution conditions. As the ionic strength of the solution is increased, the initially soluble protein may either crystallize or form an amorphous precipitate at high ionic strengths. Studies done on the model protein hen egg white lysozyme have shown that different crystal forms can be easily and reproducibly obtained, depending primarily on the anion used to desolubilize the protein. In this study we employ pyranine to probe the effect of various anions on the water structure. Additionally, lysozyme crystallization was carried out at these conditions and the crystal form was determined by X-ray crystallography. The goal of the study was to understand the physico-chemical basis for the effect of changing the anion concentration on the equilibrium form of lysozyme crystals. It will also verify the hypothesis that the anions, by altering the bulk water structure in the crystallizing solutions, alter the surface energy of the between the crystal faces and the solution and, consequently, the equilibrium form of the crystals.
The Al(I) molecule, Ph2COAl and its anion
NASA Astrophysics Data System (ADS)
Zhang, Xinxing; Eichhorn, Bryan; Schnöckel, Hansgeorg; Bowen, Kit
2016-08-01
We have formed the Al(I)-containing molecule, benzophenone-aluminum, i.e., Ph2COAl, and studied it by conducting density functional theory calculations on both its neutral and anionic forms and by measuring the photoelectron spectrum of its anion. Our calculations identified two nearly iso-energetic anion isomers, (Ph2COAl)-, the vertical detachment energies (VDE) of which are in excellent agreement with our photoelectron spectrum. Natural population analysis (NPA) of Ph2COAl found the Al moiety to be positively charged by +0.81 e, indicating a strongly ionic bond between Al and Ph2CO, i.e., Ph2CO-Al+.
Novakovic, Aleksandra; Karaman, Maja; Kaisarevic, Sonja; Radusin, Tanja; Llic, Nebojsa
2017-01-01
The aim of this work was to study the bioactivity of crude aqueous and ethanolic extracts of Boletus edulis prepared from caps and stipes of wild-growing basidiocarps collected from the Prijepolje region (western Serbia). The bioactivity screening included antioxidant (2,2-diphenyl-l-picrylhydrazyl [DPPH], nitric oxide, super-oxide anion*, and hydroxyl radicals and ferric-reducing antioxidant power) and antiproliferative MTT assays (human breast MCF-7 cancer cell line). In addition, all extracts were primarily characterized by ultraviolet/visible spectrophotometry to determine total phenolic and flavonoid contents. The highest anti-DPPH and anti-hydroxyl radical activity were observed in aqueous B. edulis extract from the caps (half maximal inhibitory concentration [IC50] = 50.97 μg/ mL and 2.05 μg/mL, respectively), whereas the highest anti-nitric oxide radical activity was observed in aqueous B. edulis extract from the stipes (IC50 = 10.74 μg/mL). The ethanolic extract obtained from the mushroom stipe showed higher anti-superoxide anion radical activity (IC50 = 9.84 μg/mL) and ferric-reducing antioxidant power (22.14 mg ascorbic acid equivalents/g dry weight) compared with aqueous extracts. Total phenolic content for all extracts was similar but total flavonoid content was significantly higher in the aqueous B. edulis extract from the caps (4.5 mg quercetin equivalents/g dry weight). All crude extracts showed activity against the MCF-7 cell line, with the ethanolic extract of B. edulis prepared from stipes (IC50 = 56 μg/mL) being the most potent. This is, to our knowledge, the first report of the antiproliferative effects of crude aqueous and ethanolic extracts prepared from caps and stipes of wild-growing basidiocarps of B. edulis on the human breast MCF-7 cancer cell line.
Zhao, Cen; Arroyo-Mora, Luis E; DeCaprio, Anthony P; Sharma, Virender K; Dionysiou, Dionysios D; O'Shea, Kevin E
2014-12-15
Iopamidol, widely employed as iodinated X-ray contrast media (ICM), is readily degraded in a Fe(III)-oxalate photochemical system under UV (350 nm) and visible light (450 nm) irradiation. The degradation is nicely modeled by pseudo first order kinetics. The rates of hydroxyl radical (OH) production for Fe(III)-oxalate/H2O2/UV (350 nm) and Fe(III)-oxalate/H2O2/visible (450 nm) systems were 1.19 ± 0.12 and 0.30 ± 0.01 μM/min, respectively. The steady-state concentration of hydroxyl radical (OH) for the Fe(III)-oxalate/H2O2/UV (350 nm) conditions was 10.88 ± 1.13 × 10(-14) M and 2.7 ± 0.1 × 10(-14) M for the Fe(III)-oxalate/H2O2/visible (450 nm). The rate of superoxide anion radical (O2(-)) production under Fe(III)-oxalate/H2O2/UV (350 nm) was 0.19 ± 0.02 μM/min with a steady-state concentration of 5.43 ± 0.473 × 10(-10) M. Detailed product studies using liquid chromatography coupled to Q-TOF/MS demonstrate both reduction (multiple dehalogenations) and oxidation (aromatic ring and side chains) contribute to the degradation pathways. The reduction processes appear to be initiated by the carbon dioxide anion radical (CO2(-)) while oxidation processes are consistent with OH initiated reaction pathways. Unlike most advanced oxidation processes the Fe(III)-oxalate/H2O2/photochemical system can initiate to both reductive and oxidative degradation processes. The observed reductive dehalogenation is an attractive remediation strategy for halogenated organic compounds as the process can dramatically reduce the formation of the problematic disinfection by-products often associated with oxidative treatment processes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Glomerular disease augments kidney accumulation of synthetic anionic polymers.
Liu, Gary W; Prossnitz, Alexander N; Eng, Diana G; Cheng, Yilong; Subrahmanyam, Nithya; Pippin, Jeffrey W; Lamm, Robert J; Ngambenjawong, Chayanon; Ghandehari, Hamidreza; Shankland, Stuart J; Pun, Suzie H
2018-06-02
Polymeric drug carriers can alter the pharmacokinetics of their drug cargoes, thereby improving drug therapeutic index and reducing side effects. Understanding and controlling polymer properties that drive tissue-specific accumulation is critical in engineering targeted drug delivery systems. For kidney disease applications, targeted drug delivery to renal cells that reside beyond the charge- and size-selective glomerular filtration barrier could have clinical potential. However, there are limited reports on polymer properties that might enhance kidney accumulation. Here, we studied the effects of molecular weight and charge on the in vivo kidney accumulation of polymers in health and disease. We synthesized a panel of well-defined polymers by atom transfer radical polymerization to answer several questions. First, the biodistribution of low molecular weight (23-27 kDa) polymers composed of various ratios of neutral:anionic monomers (1:0, 1:1, 1:4) in normal mice was determined. Then, highly anionic (1:4 monomer ratio) low molecular and high molecular weight (47 kDa) polymers were tested in both normal and experimental focal segmental glomerulosclerosis (FSGS) mice, a model that results in loss of glomerular filtration selectivity. Through these studies, we observed that kidney-specific polymer accumulation increases with anionic monomer content, but not molecular weight; experimental FSGS increases kidney accumulation of anionic polymers; and anionic polymers accumulate predominantly in proximal tubule cells, with some distribution in kidney glomeruli. These findings can be applied to the design of polymeric drug carriers to enhance or mitigate kidney accumulation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ultraslow Phase Transitions in an Anion-Anion Hydrogen-Bonded Ionic Liquid.
Faria, Luiz F O; Lima, Thamires A; Ferreira, Fabio F; Ribeiro, Mauro C C
2018-02-15
A Raman spectroscopy study of 1-ethyl-3-methylimidazolium hydrogen sulfate, [C 2 C 1 im][HSO 4 ], as a function of temperature, has been performed to reveal the role played by anion-anion hydrogen bond on the phase transitions of this ionic liquid. Anion-anion hydrogen bonding implies high viscosity, good glass-forming ability, and also moderate fragility of [C 2 C 1 im][HSO 4 ] in comparison with other ionic liquids. Heating [C 2 C 1 im][HSO 4 ] from the glassy phase results in cold crystallization at ∼245 K. A solid-solid transition (crystal I → crystal II) is barely discernible in calorimetric measurements at typical heating rates, but it is clearly revealed by Raman spectroscopy and X-ray diffraction. Raman spectroscopy indicates that crystal I has extended ([HSO 4 ] - ) n chains of hydrogen-bonded anions but crystal II has not. Raman spectra recorded at isothermal condition show the ultraslow dynamics of cold crystallization, solid-solid transition, and continuous melting of [C 2 C 1 im][HSO 4 ]. A brief comparison is also provided between [C 2 C 1 im][HSO 4 ] and [C 4 C 1 im][HSO 4 ], as Raman spectroscopy shows that the latter does not form the crystalline phase with extended anion-anion chains.
Nagy, Lajos; Kuki, Ákos; Deák, György; Purgel, Mihály; Vékony, Ádám; Zsuga, Miklós; Kéki, Sándor
2016-09-01
The gas-phase interaction of anions including fluoride, chloride, bromide, iodide, ethyl sulfate, chlorate, and nitrate with polyisobutylene (PIB) derivatives was studied using collision-induced dissociation (CID). The gas-phase adducts of anions with PIBs ([PIB + anion](-)) were generated from the electrosprayed solution of PIBs in the presence of the corresponding anions. The so-formed adducts subjected to CID showed a loss of anion at different characteristic collision energies, thus allowing the study of the strength of interaction between the anions and nonpolar PIBs having different end-groups. The values of characteristic collision energies (the energy needed to obtain 50% fragmentation) obtained by CID experiments correlated linearly with the binding enthalpies between the anion and PIB, as determined by density functional theory calculations. In the case of halide ions, the critical energies for dissociation, that is, the binding enthalpies for [PIB + anion](-) adducts, increased in the order of I(-) < Br(-) < Cl(-) < F(-). Furthermore, it was found that the binding enthalpies for the adducts formed with halide ions decreased approximately with the square radius of the halide ion, suggesting that the strength of interaction is mainly determined by the "surface" charge density of the halide ion. In addition, the characteristic collision energy versus the number of isobutylene units revealed a linear dependence.
NASA Astrophysics Data System (ADS)
Matasović, Brunislav; Bonifačić, Marija
2011-06-01
Reductive dehalogenation of 5-bromouracil by aliphatic organic radicals CO2-rad , rad CH 2OH, rad CH(CH 3)OH, and rad CH(CH 3)O - have been studied in oxygen free aqueous solutions in the presence of organic additives: formate, methanol or ethanol. For radicals production 60Co γ-radiolysis was employed and the yield of bromide was measured by means of ion chromatography. Both radical anions have reducing potential negative enough to transfer an electron to BrU producing bromide ion and U rad radical. High yields of bromide have been measured increasing proportional to the concentration of the corresponding organic additives at a constant dose rate. This is characteristic for a chain process where regeneration of radical ions occurs by H-atom abstraction by U rad radical from formate or ethanol. Results with the neutral radicals conformed earlier proposition that the reduction reaction of α-hydroxyalkyl radicals proceeds by the proton-coupled electron transfer mechanism ( Matasović and Bonifačić, 2007). Thus, while both rad CH 2OH and rad CH(CH 3)OH did not react with BrU in water/alcohol solutions, addition of bicarbonate and acetate in mmol dm -3 concentrations, pH 7, brought about chain debromination to occur in the case of rad CH(CH 3)OH radical as reactant. Under the same conditions phosphate buffer, a base with higher bulk proton affinity, failed to have any influence. The results are taken as additional proofs for the specific complex formation of α-hydroxyalkyl radicals with suitable bases which enhances radicals' reduction potential in comparison with only water molecules as proton acceptors. Rate constants for the H-atom abstraction from ethanol and formate by U rad radicals have been estimated to amount to about ≥85 and 1200 dm 3 mol -1 s -1, respectively.
A computational study of anion-modulated cation-π interactions.
Carrazana-García, Jorge A; Rodríguez-Otero, Jesús; Cabaleiro-Lago, Enrique M
2012-05-24
The interaction of anions with cation-π complexes formed by the guanidinium cation and benzene was thoroughly studied by means of computational methods. Potential energy surface scans were performed in order to evaluate the effect of the anion coming closer to the cation-π pair. Several structures of guanidinium-benzene complexes and anion approaching directions were examined. Supermolecule calculations were performed on ternary complexes formed by guanidinium, benzene, and one anion and the interaction energy was decomposed into its different two- and three-body contributions. The interaction energies were further dissected into their electrostatic, exchange, repulsion, polarization and dispersion contributions by means of local molecular orbital energy decomposition analysis. The results confirm that, besides the electrostatic cation-anion attraction, the effect of the anion over the cation-π interaction is mainly due to polarization and can be rationalized following the changes in the anion-π and the nonadditive (three-body) terms of the interaction. When the cation and the anion are on the same side of the π system, the three-body interaction is anticooperative, but when the anion and the cation are on opposite sides of the π system, the three-body interaction is cooperative. As far as we know, this is the first study where this kind of analysis is carried out with a structured cation as guanidinium with a significant biological interest.
NASA Astrophysics Data System (ADS)
Witwicki, Maciej; Jezierska, Julia
2012-06-01
Organic radicals are known to be an indispensable component of the humic acids (HA) structure. In HA two forms of radicals, stable (native) and short-lived (transient), are identified. Importantly, these radical forms can be easily differentiated by electron paramagnetic resonance (EPR) spectroscopy. This article provides a DFT-based insight into the electronic and molecular structure of the native radicals. The molecular models including an increase of the radical aromaticity and the hydrogen bonding between the radical and other functional groups of HA are taken under investigation. In consequence the interesting pieces of information on the structure of the native radical centers in HA are revealed and discussed, especially in terms of differences between the electronic structure of the native and transient forms.
Cortese-Krott, Miriam M.; Kuhnle, Gunter G. C.; Dyson, Alex; Fernandez, Bernadette O.; Grman, Marian; DuMond, Jenna F.; Barrow, Mark P.; McLeod, George; Nakagawa, Hidehiko; Ondrias, Karol; Nagy, Péter; King, S. Bruce; Saavedra, Joseph E.; Keefer, Larry K.; Singer, Mervyn; Kelm, Malte; Butler, Anthony R.; Feelisch, Martin
2015-01-01
Experimental evidence suggests that nitric oxide (NO) and hydrogen sulfide (H2S) signaling pathways are intimately intertwined, with mutual attenuation or potentiation of biological responses in the cardiovascular system and elsewhere. The chemical basis of this interaction is elusive. Moreover, polysulfides recently emerged as potential mediators of H2S/sulfide signaling, but their biosynthesis and relationship to NO remain enigmatic. We sought to characterize the nature, chemical biology, and bioactivity of key reaction products formed in the NO/sulfide system. At physiological pH, we find that NO and sulfide form a network of cascading chemical reactions that generate radical intermediates as well as anionic and uncharged solutes, with accumulation of three major products: nitrosopersulfide (SSNO−), polysulfides, and dinitrososulfite [N-nitrosohydroxylamine-N-sulfonate (SULFI/NO)], each with a distinct chemical biology and in vitro and in vivo bioactivity. SSNO− is resistant to thiols and cyanolysis, efficiently donates both sulfane sulfur and NO, and potently lowers blood pressure. Polysulfides are both intermediates and products of SSNO− synthesis/decomposition, and they also decrease blood pressure and enhance arterial compliance. SULFI/NO is a weak combined NO/nitroxyl donor that releases mainly N2O on decomposition; although it affects blood pressure only mildly, it markedly increases cardiac contractility, and formation of its precursor sulfite likely contributes to NO scavenging. Our results unveil an unexpectedly rich network of coupled chemical reactions between NO and H2S/sulfide, suggesting that the bioactivity of either transmitter is governed by concomitant formation of polysulfides and anionic S/N-hybrid species. This conceptual framework would seem to offer ample opportunities for the modulation of fundamental biological processes governed by redox switching and sulfur trafficking. PMID:26224837
Photoredox Generated Radicals in Csp2-Csp3 Bond Construction
NASA Astrophysics Data System (ADS)
Primer, David Neal
The routine application of Csp3-hybridized nucleophiles in cross-coupling has been an ongoing pursuit in the agrochemical, pharmaceutical, and materials science industries for over 40 years. Unfortunately, despite numerous attempts to circumvent the problems associated with alkyl nucleophiles, application of these reagents in transition metal-catalyzed C-C bond-forming reactions has remained largely restricted. In recent years, many chemists have noted the lack of reliable, turnkey reactions that exist for the installation of Csp3-hybridized centers--reactions that would be useful for delivering molecules with enhanced three-dimensional topology and altered chemical properties. As such, a general method for alkyl nucleophile activation in cross-coupling would offer access to a host of compounds inaccessible by other means. From a mechanistic standpoint, the continued failure of alkylmetallics is inherent to the high energy intermediates associated with a traditional transmetalation. To overcome this problem, we have pioneered an alternate, single-electron pathway involving 1) initial oxidation of an alkylmetallic reagent, 2) oxidative alkyl radical capture at a metal center, and 3) subsequent reduction of the metal center to return its initial oxidation state. This series of steps constitutes a formal transmetalation that avoids the energy-demanding steps that plague a traditional anionic approach. Under this enabling paradigm, a host of alkyl precursors (alkyl-trifluoroborates and -silicates) have been generally used in cross-coupling for the first time. In summary, the synergistic use of an Ir photoredox catalyst and a Ni cross-coupling catalyst to mediate the cross-coupling of (hetero)aryl bromides with diverse alkyl radical precursors will be discussed. Methods for coupling various trifluoroborate classes (alpha-alkoxy, alpha-trifluoromethyl, secondary and tertiary alkyl) will be covered, focusing on their complementarity to traditional protocols. Finally, a discussion of novel silicate radical precursors and their advantages in a single-electron transmetalation regime will be included.
Lapshina, Elena A; Zamaraeva, Maria; Cheshchevik, Vitali T; Olchowik-Grabarek, Ewa; Sekowski, Szymon; Zukowska, Izabela; Golovach, Nina G; Burd, Vasili N; Zavodnik, Ilya B
2015-06-01
The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50 = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50 = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50 = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events. Copyright © 2015 John Wiley & Sons, Ltd.
Quantum information generation, storage and transmission based on nuclear spins
NASA Astrophysics Data System (ADS)
Zaharov, V. V.; Makarov, V. I.
2018-05-01
A new approach to quantum information generation, storage and transmission is proposed. It is shown that quantum information generation and storage using an ensemble of N electron spins encounter unresolvable implementation problems (at least at the present time). As an alternative implementation we discuss two promising radical systems, one with N equivalent nuclear spins and another with N nonequivalent nuclear spins. Detailed analysis shows that only the radical system containing N nonequivalent nuclei is perfectly matched for quantum information generation, storage and transmission. We develop a procedure based on pulsed electron paramagnetic resonance (EPR) and we apply it to the radical system with the set of nonequivalent nuclei. The resulting EPR spectrum contains 2N transition lines, where N is the number of the atoms with the nuclear spin 1/2, and each of these lines may be encoded with a determined qudit sequence. For encoding the EPR lines we propose to submit the radical system to two magnetic pulses in the direction perpendicular to the z axis of the reference frame. As a result, the radical system impulse response may be measured, stored and transmitted through the communications channel. Confirming our development, the ab initio analysis of the system with three anion radicals was done showing matching between the simulations and the theoretical predictions. The developed method may be easily adapted for quantum information generation, storage, processing and transmission in quantum computing and quantum communications applications.
The role of free radicals in traumatic brain injury.
O'Connell, Karen M; Littleton-Kearney, Marguerite T
2013-07-01
Traumatic brain injury (TBI) is a significant cause of death and disability in both the civilian and the military populations. The primary impact causes initial tissue damage, which initiates biochemical cascades, known as secondary injury, that expand the damage. Free radicals are implicated as major contributors to the secondary injury. Our review of recent rodent and human research reveals the prominent role of the free radicals superoxide anion, nitric oxide, and peroxynitrite in secondary brain injury. Much of our current knowledge is based on rodent studies, and the authors identified a gap in the translation of findings from rodent to human TBI. Rodent models are an effective method for elucidating specific mechanisms of free radical-induced injury at the cellular level in a well-controlled environment. However, human TBI does not occur in a vacuum, and variables controlled in the laboratory may affect the injury progression. Additionally, multiple experimental TBI models are accepted in rodent research, and no one model fully reproduces the heterogeneous injury seen in humans. Free radical levels are measured indirectly in human studies based on assumptions from the findings from rodent studies that use direct free radical measurements. Further study in humans should be directed toward large samples to validate the findings in rodent studies. Data obtained from these studies may lead to more targeted treatment to interrupt the secondary injury cascades.
Zhang, Yufeng; Duan, Xiu; Zhuang, Yongliang
2012-11-01
To obtain hydrolysates with high degree of hydrolysis (DH) and scavenging radical activity, tilapia skin gelatin (TSG) was hydrolyzed by properase E and multifect neutral. The optimum hydrolysis condition of each enzyme was determined using the orthogonal experiment, and double-enzyme hydrolysis was further applied. The results showed the tilapia skin gelatin hydrolysate (TSGH) obtained by progressive hydrolysis using multifect neutral and properase E had the highest DH and hydroxyl radical scavenging activity. The IC(50) values of TSGH on scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide anion radical (·O(2)) and hydroxyl radical (·OH) activities were also determined. TSGH was further purified using gel filtration chromatography, ion exchange chromatography, and RP-HPLC. The peptides were identified using nano-LC-ESI mass spectrometry. Finally, two antioxidant peptides were identified and the amino acid sequences were Glu-Gly-Leu (317.33 Da) and Tyr-Gly-Asp-Glu-Tyr (645.21 Da), respectively. The IC(50) values of two peptides on hydroxyl radical scavenging activities were 4.61 μg mL(-1)and 6.45 μg mL(-1), respectively. Therefore, the results demonstrated that the hydrolysates of TSG prepared by multifect neutral and properase E could serve as a source of peptides with high antioxidant activity. It provided a scientific basis for the preparation of antioxidant peptides. Copyright © 2012 Elsevier Inc. All rights reserved.
Degradation of florfenicol in water by UV/Na2S 2O 8 process.
Gao, Yu-Qiong; Gao, Nai-Yun; Deng, Yang; Yin, Da-Qiang; Zhang, Yan-Sen
2015-06-01
UV irradiation-activated sodium persulfate (UV/PS) was studied to degrade florfenicol (FLO), a phenicol antibiotic commonly used in aquaculture, in water. Compared with UV/H2O2 process, UV/PS process achieves a higher FLO degradation efficiency, greater mineralization, and less cost. The quantum yield for direct photolysis of FLO and the second-order rate constant of FLO with sulfate radicals were determined. The effects of various factors, namely PS concentration, anions (NO3 (-), Cl(-), and HCO3 (-)), ferrous ion, and humic acid (HA), on FLO degradation were investigated. The results showed that the pseudo-first-order rate constant increased linearly with increased PS concentration. The tested anions all adversely affected FLO degradation performance with the order of HCO3 (-) > Cl(-) > NO3 (-). Coexisting ferrous ions enhanced FLO degradation at a Fe(2+)/PS molar ratio under 1:1. HA significantly inhibited FLO degradation due to radical scavenging and light-screening effect. Toxicity assessment showed that it is capable of controlling the toxicity for FLO degradation. These findings indicated that UV/PS is a promising technology for water polluted by antibiotics, and the treatment is optimized only after the impacts of water characteristics are carefully considered.
TOPICAL REVIEW: Tetrathiapentalene-based organic conductors
NASA Astrophysics Data System (ADS)
Misaki, Yohji
2009-04-01
The synthesis, structure and properties of tetrathiapentalene-based (TTP) organic conductors are reviewed. Among various TTP-type donors, bis-fused tetrathiafulvalene, 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and its derivatives afford many metallic radical cation salts stable down to low temperatures, regardless of the size and shape of the counter anions. Most BDT-TTP conductors have a β-type donor arrangement with almost uniform stacks. Introduction of appropriate substituents results in molecular packing that differs from the β-type. A vinylogous TTP, 2-(1,3-dithiol-2-ylidene)-5-(2-ethanediylidene-1,3-dithiole)-1,3,4,6-tetrathiapentalene (DTEDT) has yielded an organic superconductor (DTEDT)3Au(CN)2 as well as metallic radical cation salts, regardless of the counter anions. (Thio)pyran analogs of TTP, namely (T)PDT-TTP and its derivatives produce molecular conductors with novel molecular arrangements. A TTP analog with reduced π-electron system 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) has afforded several organic superconductors. Highly conducting molecular metals with unusual oxidation states (+1, +5/3 and neutral) have been developed on the basis of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) derivatives and analogous metal derivatives M(dt)2 (M = Ni, Au).
Kedzierska, Magdalena; Olas, Beata; Wachowicz, Barbara; Stochmal, Anna; Oleszek, Wieslaw; Jeziorski, Arkadiusz; Piekarski, Janusz; Glowacki, Rafal
2009-10-01
Plant antioxidants protect cells against oxidative stress. Because oxidative stress (measured by different biomarkers) is observed in breast cancer patients, the aim of this study was to establish the effects of a polyphenol-rich extract of Aronia melanocarpa (final concentration of 50 microg/mL, 5 min, 37 degrees C) on superoxide anion radicals (O(2)(-*)) and glutathione (GSH) in platelets from patients with breast cancer and in a healthy group in vitro. Generation of O(2)(-*) in platelets before and after incubation with the extract was measured by cytochrome C reduction. Using HPLC, we determined the level of glutathione in blood platelets. We observed a statistically significant increase of biomarkers of oxidative stress such as O(2)(-*) and a decrease in GSH in platelets from patients with breast cancer compared with the healthy group. We showed that the extract from A. melanocarpa added to blood platelets significantly reduced the production of O(2)(-*) in platelets not only from the healthy group but also from patients with breast cancer. Considering the data presented in this study, we have demonstrated the protective role of the extract from A. melanocarpa in patients with breast cancer in vitro. Georg Thieme Verlag KG Stuttgart-New York.
Suseem, S R; Saral, Mary
2015-07-01
To evaluate the ethyl acetate, methanol and aqueous extracts of dried fruiting bodies of Pleurotus eous for its anti-platelet activity on human volunteer's blood. And also to analyze the free radical scavenging property of the extracts of P.eous by using various in vitro models. Anti-platelet activity of dried fruiting bodies of P.eous was evaluated by in vitro model using blood platelets. Inhibition of platelet aggregation was monitored after pre-incubation of platelets with the crude extracts of mushroom P.eous. Antioxidant activities of extracts of P.eous were evaluated by different in vitro experiments, namely, 1, 1-diphenyl-2-picryl hydrazyl (DPPH), superoxide, hydroxyl radical and lipid peroxide radical models. Crude extracts of mushroom P.eous inhibited platelet aggregation dose-dependently which was induced by adenosine diphosphate (ADP). At a maximum concentration of 10 mg/mL, methanol extract effected 64.02% inhibition of lipid per-oxidation and 50.12% scavenging effect on superoxide anion radical. Aqueous extract of P.eous have shown 69.43% chelating ability on ferrous ions, 24.27% scavenging effect on hydroxyl radical and 49.57% scavenging effect on DPPH radical at 10 mg/mL. Increasing concentrations of the extract were found to cause progressively decreasing of the intensity of absorbance. Anti-platelet effects could be related in part to the polyphenolic compounds present in the extracts. Antioxidant activity results indicated the free radical scavenging property of the extracts of P.eous which might be due to the high content of phenolic compounds and flavonoids.
Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo
2015-02-16
Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.
A Correlated Ab Initio Study of Linear Carbon-Chain Radicals C(sub n)H (n=2-7)
NASA Technical Reports Server (NTRS)
Woon, David E.
1995-01-01
Linear carbon-chain radicals C(sub n) H for n = 2-7 have been studied with correlation consistent valence and core-valence basis sets and the coupled cluster method RCCSD(T). Equilibrium structures, rotational constants, and dipole moments are reported and compared with available experimental data. The ground state of the even-n series changes from 2Sigma(+) to 2Pi as the chain is extended. For C4H, the 2Sigma(+) state was found to lie only 72 cm(exp -1) below the 2Pi state in the estimated complete basis set limit for valence correlation. The C2H(-) and C3H(-) anions have also been characterized.
Coordination Chemistry of Linear Oligopyrrolic Fragments Inspired by Heme Metabolites
NASA Astrophysics Data System (ADS)
Gautam, Ritika
Linear oligopyrroles are degradation products of heme, which is converted in the presence of heme oxygenase to bile pigments, such as biliverdin and bilirubin. These tetrapyrrolic oligopyrroles are ubiquitously present in biological systems and find applications in the fields of catalysis and sensing. These linear tetrapyrrolic scaffolds are further degraded into linear tripyrrolic and dipyrrolic fragments. Although these lower oligopyrroles are abundantly present, their coordination chemistry requires further characterization. This dissertation focuses mainly on two classes of bioinspired linear oligopyrroles, propentdyopent and tripyrrindione, and their transition metal complexes, which present a rich ligand-based redox chemistry. Chapter 1 offers an overview of heme degradation to different classes of linear oligopyrroles and properties of their transition metal complexes. Chapter 2 is focused on the tripyrrin-1,14-dione scaffold of the urinary pigment uroerythrin, which coordinates divalent transition metals palladium and copper with square planar geometry. Specifically, the tripyrrin-1, 14-dione ligand binds Cu(II) and Pd(II) as a dianionic organic radical under ambient conditions. The electrochemical study confirms the presence of ligand based redox chemistry, and one electron oxidation or reduction reactions do not alter the planar geometry around the metal center. The X-Ray analysis and the electron paramagnetic resonance (EPR) studies of the complexes in the solid and solution phase reveals intermolecular interactions between the ligand based unpaired electrons and therefore formation of neutral pi-pi dimers. In Chapter 3, the antioxidant activity and the fluorescence sensor properties of the tripyrrin-1,14-dione ligand in the presence of superoxide are described. We found that the tripyrrindione ligand undergoes one-electron reduction in the presence of the superoxide radical anion (O2•- ) to form highly fluorescent H3TD1•- radical anion, which emits at 635 nm. This reaction also explains the antioxidant properties of the linear tripyrrin-1,14-dione ligand, which acts as a scavenger of O2•-. In Chapter 4, the zinc binding properties of the tripyrrin-1,14-dione ligand are described. The tripyrrolic ligand coordinates as a dianionic ligand with the divalent Zn(II) ion in both organic and aqueous buffered conditions. The complex formed is highly fluorescent with a long wavelength emission band at 648 nm. The X-Ray crystallography analysis indicates the existence of dinuclear complex [Zn(TD1•)(H2O)]2, featuring a distorted square planar geometry around the Zn(II) center. In Chapter 5, the coordination chemistry of the dipyrrin-1,9-dione fragment of propentdyopent ligand is shown with a series of transition metals like (e.g., Co(II), Ni(II), Cu(II) and Zn(II)), which form homoleptic tetrahedral complexes. The spectroscopic and electrochemical characterization confirms that the complexes shows ligand-based redox chemistry and acts as reservoirs for unpaired electrons. Chapter 6 describes the formation of the fluorescent BODIPY complex of propentdyopent ligand. The dipyrrin-1,9-dione scaffold of heme metabolite propendyopent undergoes a one-pot reaction with borontrifluoride etherate in toluene to form a green fluorescent [(pdp)BF2] complex. Spectroscopic studies reveal that the meso-unsubstituted [(pdp)BF2] complex is stable in tetrahydrofuran and has a quantum yield of 0.13. Electrochemical studies confirm that the complex undergoes ligand-based reduction and acts as a host for an unpaired electron.
Self-organizing layers from complex molecular anions
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.; ...
2018-05-14
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
Self-organizing layers from complex molecular anions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warneke, Jonas; McBriarty, Martin E.; Riechers, Shawn L.
The formation of traditional ionic materials occurs principally via joint accumulation of both anions and cations. Here in this paper, we describe a previously unreported phenomenon by which macroscopic liquid-like thin layers with tunable self-organization properties form through accumulation of stable complex ions of one polarity on surfaces. Using a series of highly stable molecular anions we demonstrate a strong influence of the internal charge distribution of the molecular ions, which is usually shielded by counterions, on the properties of the layers. Detailed characterization reveals that the intrinsically unstable layers of anions on surfaces are stabilized by simultaneous accumulation ofmore » neutral molecules from the background environment. Different phases, self-organization mechanisms and optical properties are observed depending on the molecular properties of the deposited anions, the underlying surface and the coadsorbed neutral molecules. This demonstrates rational control of the macroscopic properties (morphology and size of the formed structures) of the newly discovered anion-based layers.« less
Purification Or Organic Acids Using Anion Exchange Chromatography.
Ponnampalam; Elankovan
2001-09-04
Disclosed is a cost-effective method for purifying and acidifying carboxylic acids, including organic acids and amino acids. The method involves removing impurities by allowing the anionic form of the carboxylic acid to bind to an anion exchange column and washing the column. The carboxylic anion is displaced as carboxylic acid by washing the resin with a strong inorganic anion. This method is effective in removing organic carboxylic acids and amino acids from a variety of industrial sources, including fermentation broths, hydrolysates, and waste streams.
Crystal structure of rivastigmine hydrogen tartrate Form I (Exelon®), C 14H 23N 2O 2(C 4H 5O 6)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaduk, James A.; Zhong, Kai; Gindhart, Amy M.
2016-03-08
The crystal structure of rivastigmine hydrogen tartrate has been solved and refined using synchrotron X-ray powder diffraction data, and optimized using density functional techniques. Rivastigmine hydrogen tartrate crystallizes in space groupP2 1(#4) witha= 17.538 34(5),b= 8.326 89(2),c= 7.261 11(2) Å,β= 98.7999(2)°,V= 1047.929(4) Å 3, andZ= 2. The un-ionized end of the hydrogen tartrate anions forms a very strong hydrogen bond with the ionized end of another anion to form a chain. The ammonium group of the rivastigmine cation forms a strong discrete hydrogen bond with the carbonyl oxygen atom of the un-ionized end of the tartrate anion. These hydrogen bondsmore » form a corrugated network in thebc-plane. Both hydroxyl groups of the tartrate anion form intramolecular O–H···O hydrogen bonds. Several C–H···O hydrogen bonds appear to contribute to the crystal energy. The powder pattern is included in the Powder Diffraction File ™as entry 00-064-1501.« less
A high-resolution photoelectron imaging and theoretical study of CP- and C2P-
NASA Astrophysics Data System (ADS)
Czekner, Joseph; Cheung, Ling Fung; Johnson, Eric L.; Fortenberry, Ryan C.; Wang, Lai-Sheng
2018-01-01
The discovery of interstellar anions has been a milestone in astrochemistry. In the search for new interstellar anions, CP- and C2P- are viable candidates since their corresponding neutrals have already been detected astronomically. However, scarce data exist for these negatively charged species. Here we report the electron affinities of CP and C2P along with the vibrational frequencies of their anions using high-resolution photoelectron imaging. These results along with previous spectroscopic data of the neutral species are used further to benchmark very accurate quartic force field quantum chemical methods that are applied to CP, CP-, C2P, and two electronic states of C2P-. The predicted electron affinities, vibrational frequencies, and rotational constants are in excellent agreement with the experimental data. The electron affinities of CP (2.8508 ± 0.0007 eV) and C2P (2.6328 ± 0.0006 eV) are measured accurately and found to be quite high, suggesting that the CP- and C2P- anions are thermodynamically stable and possibly observable. The current study suggests that the combination of high-resolution photoelectron imaging and quantum chemistry can be used to determine accurate molecular constants for exotic radical species of astronomical interest.
A high-resolution photoelectron imaging and theoretical study of CP- and C2P.
Czekner, Joseph; Cheung, Ling Fung; Johnson, Eric L; Fortenberry, Ryan C; Wang, Lai-Sheng
2018-01-28
The discovery of interstellar anions has been a milestone in astrochemistry. In the search for new interstellar anions, CP - and C 2 P - are viable candidates since their corresponding neutrals have already been detected astronomically. However, scarce data exist for these negatively charged species. Here we report the electron affinities of CP and C 2 P along with the vibrational frequencies of their anions using high-resolution photoelectron imaging. These results along with previous spectroscopic data of the neutral species are used further to benchmark very accurate quartic force field quantum chemical methods that are applied to CP, CP - , C 2 P, and two electronic states of C 2 P - . The predicted electron affinities, vibrational frequencies, and rotational constants are in excellent agreement with the experimental data. The electron affinities of CP (2.8508 ± 0.0007 eV) and C 2 P (2.6328 ± 0.0006 eV) are measured accurately and found to be quite high, suggesting that the CP - and C 2 P - anions are thermodynamically stable and possibly observable. The current study suggests that the combination of high-resolution photoelectron imaging and quantum chemistry can be used to determine accurate molecular constants for exotic radical species of astronomical interest.
In vitro antioxidant activity of pet ether extract of black pepper
Singh, Ramnik; Singh, Narinder; Saini, B.S.; Rao, Harwinder Singh
2008-01-01
Objective: To investigate the in vitro antioxidant activity of different fractions (R1, R2 and R3) obtained from pet ether extract of black pepper fruits (Piper nigrum Linn.) Materials and Methods: The fractions R1, R2 and R3 were eluted from pet ether and ethyl acetate in the ratio of 6:4, 5:5 and 4:6, respectively. 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) radical, superoxide anion radical, nitric oxide radical, and hydroxyl radical scavenging assays were carried out to evaluate the antioxidant potential of the extract. Results: The free radical scavenging activity of the different fractions of pet ether extract of P. nigrum (PEPN) increased in a concentration dependent manner. The R3 and R2 fraction of PEPN in 500 µg/ml inhibited the peroxidation of a linoleic acid emulsion by 60.48±3.33% and 58.89±2.51%, respectively. In DPPH free radical scavenging assay, the activity of R3 and R2 were found to be almost similar. The R3 (100µg/ml) fraction of PEPN inhibited 55.68±4.48% nitric oxide radicals generated from sodium nitroprusside, whereas curcumin in the same concentration inhibited 84.27±4.12%. Moreover, PEPN scavenged the superoxide radical generated by the Xanthine/Xanthine oxidase system. The fraction R2 and R3 in the doses of 1000µg/ml inhibited 61.04±5.11% and 63.56±4.17%, respectively. The hydroxyl radical was generated by Fenton's reaction. The amounts of total phenolic compounds were determined and 56.98 µg pyrocatechol phenol equivalents were detected in one mg of R3. Conclusions: P. nigrum could be considered as a potential source of natural antioxidant. PMID:20040947
Zhang, Long; Vogel, Yan Boris; Noble, Benjamin B; Gonçales, Vinicius R; Darwish, Nadim; Brun, Anton Le; Gooding, J Justin; Wallace, Gordon G; Coote, Michelle L; Ciampi, Simone
2016-08-03
This work demonstrates the effect of electrostatic interactions on the electroactivity of a persistent organic free radical. This was achieved by chemisorption of molecules of 4-azido-2,2,6,6-tetramethyl-1-piperdinyloxy (4-azido-TEMPO) onto monolayer-modified Si(100) electrodes using a two-step chemical procedure to preserve the open-shell state and hence the electroactivity of the nitroxide radical. Kinetic and thermodynamic parameters for the surface electrochemical reaction are investigated experimentally and analyzed with the aid of electrochemical digital simulations and quantum-chemical calculations of a theoretical model of the tethered TEMPO system. Interactions between the electrolyte anions and the TEMPO grafted on highly doped, i.e., metallic, electrodes can be tuned to predictably manipulate the oxidizing power of surface nitroxide/oxoammonium redox couple, hence showing the practical importance of the electrostatics on the electrolyte side of the radical monolayer. Conversely, for monolayers prepared on the poorly doped electrodes, the electrostatic interactions between the tethered TEMPO units and the semiconductor-side, i.e., space-charge, become dominant and result in drastic kinetic changes to the electroactivity of the radical monolayer as well as electrochemical nonidealities that can be explained as an increase in the self-interaction "a" parameter that leads to the Frumkin isotherm.
Antioxidant Capacity and Proanthocyanidin Composition of the Bark of Metasequoia glyptostroboides
Chen, Fengyang; Zhang, Lin; Zong, Shuling; Xu, Shifang; Li, Xiaoyu; Ye, Yiping
2014-01-01
Metasequoia glyptostroboides Hu et Cheng is the only living species in the genus Metasequoia Miki ex Hu et Cheng (Taxodiaceae), which is well known as a “living fossil” species. In the Chinese folk medicine, the leaves and bark of M. glyptostroboides are used as antimicrobic, analgesic, and anti-inflammatory drug for dermatic diseases. This study is the first to report the free radical scavenging capacity, antioxidant activity, and proanthocyanidin composition of the bark of M. glyptostroboides. We observed total of six extracts and fractions, which were easily obtained by water-ethanol extraction and followed by a further separation with D101 resin column chromatography, had significant DPPH radical, superoxide anion radical, and hydroxyl radical scavenging capacity, total antioxidative capacity (T-AOC), lipid peroxidation inhibitory activity, and metal ions chelating capacity. The fraction MGEB, which was obtained by 60% ethanol extraction and followed by a further separation with D101 resin column chromatograph, possessed the highest proanthocyanidin content and the highest free radical scavenging and antioxidant activities. Furthermore, MGEB could significantly protect against CCl4 induced acute liver injury through inhibition of oxidative stress in mice. In addition, ten proanthocyanidins were isolated from MGEB, and six of them were firstly reported from this plant. PMID:24772177
Nauser, Thomas; Gebicki, Janusz M
2017-09-18
The principal initial biological targets of free radicals formed under conditions of oxidative stress are the proteins. The most common products of the interaction are carbon-centered alkyl radicals which react rapidly with oxygen to form peroxyl radicals and hydroperoxides. All these species are reactive, capable of propagating the free radical damage to enzymes, nucleic acids, lipids, and endogenous antioxidants, leading finally to the pathologies associated with oxidative stress. The best chance of preventing this chain of damage is in early repair of the protein radicals by antioxidants. Estimate of the effectiveness of the physiologically significant antioxidants requires knowledge of the antioxidant tissue concentrations and rate constants of their reaction with protein radicals. Previous studies by pulse radiolysis have shown that only ascorbate can repair the Trp and Tyr protein radicals before they form peroxyl radicals under physiological concentrations of oxygen. We have now extended this work to other protein C-centered radicals generated by hydroxyl radicals because these and many other free radicals formed under oxidative stress can produce secondary radicals on virtually any amino acid residue. Pulse radiolysis identified two classes of rate constants for reactions of protein radicals with ascorbate, a faster one in the range (9-60) × 10 7 M -1 s -1 and a slow one with a range of (0.5-2) × 10 7 M -1 s -1 . These results show that ascorbate can prevent further reactions of protein radicals only in the few human tissues where its concentration exceeds about 2.5 mM.
Role of PF6- in the radiolytical and electrochemical degradation of propylene carbonate solutions
NASA Astrophysics Data System (ADS)
Ortiz, Daniel; Jimenez Gordon, Isabel; Legand, Solène; Dauvois, Vincent; Baltaze, Jean-Pierre; Marignier, Jean-Louis; Martin, Jean-Frédéric; Belloni, Jacqueline; Mostafavi, Mehran; Le Caër, Sophie
2016-09-01
The behavior under irradiation of neat propylene carbonate (PC), a co-solvent usually used in Li-ion batteries (LIB), and also of Li salt solutions is investigated. The decomposition of neat PC is studied using radiolysis in the pulse and steady state regime and is assigned to the ultrafast formation, in the reducing channel, of the radical anion PCrad - by electron attachment, followed by the ring cleavage, leading to CO. In the oxidative channel, the PC(sbnd H)rad radical is formed, generating CO2. The CO2 and CO yields are both close to the ionization yield of PC. The CO2 and CO productions in LiClO4, LiBF4 and LiN(CF3)2(SO2)2 solutions are similar as in neat PC. In contrast, in LiPF6/PC a strong impact on PC degradation is measured with a doubling of the CO2 yield due to the high reactivity of the electron towards PF6- observed in the picosecond range. A small number of oxide phosphine molecules are detected among the various products of the irradiated solutions, suggesting that most of them, observed in carbonate mixtures used in LIBs, arise from linear rather than from cyclical molecules. The similarity between the degradation by radiolysis or electrolysis highlights the interest of radiolysis as an accelerated aging method.
Laohavisit, Anuphon; Shang, Zhonglin; Rubio, Lourdes; Cuin, Tracey A; Véry, Anne-Aliénor; Wang, Aihua; Mortimer, Jennifer C; Macpherson, Neil; Coxon, Katy M; Battey, Nicholas H; Brownlee, Colin; Park, Ohkmae K; Sentenac, Hervé; Shabala, Sergey; Webb, Alex A R; Davies, Julia M
2012-04-01
Plant cell growth and stress signaling require Ca²⁺ influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH•. In root cells, extracellular OH• activates a plasma membrane Ca²⁺-permeable conductance that permits Ca²⁺ influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca²⁺-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH•-activated Ca²⁺- and K⁺-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca²⁺ in response to OH•. An OH•-activated Ca²⁺ conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca²⁺-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca²⁺ in plants.
Xiao, Yidong; Huang, Qilin; Zheng, Zhaomin; Guan, Han; Liu, Shiyu
2017-06-01
A Cordyceps sinensis exopolysaccharide (EPS)-conjugated selenium nanoparticles (SeNPs) were successfully constructed through the reduction of SeO 3 2- . The EPS-SeNPs were characterized in terms of formation, morphology, size, Se distribution and phase by UV-vis, FT-IR, transmission electron microscopy (TEM), dynamic light scattering (DLS), energy dispersive X-ray (EDX) and wide angle X-ray diffraction (WAXD) measurements. Results revealed that the SeNPs conjugated to EPS were amorphous and could be well dispersed at a size range of 80-125nm. The interactions between the OH groups of EPS and SeNPs substituted for intermolecular interaction in native EPS to form new CO⋯Se bonds, resulting in good dispersion of SeNPs in the EPS matrix. Besides, the EPS-SeNPs at different Se/P ratios exhibited significant scavenging ability on superoxide anion radical (O 2 - ) and ABTS radical cation (ABTS + ) when compared to pure EPS, indicating that the conjugated SeNPs reinforced antioxidant effect of EPS. This work not only provides a simple and efficient way to construct well-dispersed SeNPs in aqueous system, and demonstrates the vital role of the EPS as a biopolymer template for dispersion, stabilization and size control of SeNPs, but also finds the EPS-SeNPs can potentially serve as a good antioxidant towards O 2 - and ABTS + . Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barreto, Wagner J.; Barreto, Sônia R. G.; Ando, Rômulo A.; Santos, Paulo S.; DiMauro, Eduardo; Jorge, Thiago
2008-12-01
The anionic complexes [Cu(L 1-) 3] 1-, L - = dopasemiquinone or L-dopasemiquinone, were prepared and characterized. The complexes are stable in aqueous solution showing intense absorption bands at ca. 605 nm for Cu(II)-L-dopasemiquinone and at ca. 595 nm for Cu(II)-dopasemiquinone in the UV-vis spectra, that can be assigned to intraligand transitions. Noradrenaline and adrenaline, under the same reaction conditions, did not yield Cu-complexes, despite the bands in the UV region showing that noradrenaline and adrenaline were oxidized during the process. The complexes display a resonance Raman effect, and the most enhanced bands involve ring modes and particularly the νCC + νCO stretching mode at ca. 1384 cm -1. The free radical nature of the ligands and the oxidation state of the Cu(II) were confirmed by the EPR spectra that display absorptions assigned to organic radicals with g = 2.0005 and g = 2.0923, and for Cu(II) with g = 2.008 and g = 2.0897 for L-dopasemiquinone and dopasemiquinone, respectively. The possibility that dopamine and L-dopa can form stable and aqueous-soluble copper complexes at neutral pH, whereas noradrenaline and adrenaline cannot, may be important in understanding how Cu(II)-dopamine crosses the cellular membrane as proposed in the literature to explain the role of copper in Wilson disease.
Phthalocyanines And Their Sulfonated Derivatives As Photosensitizers In Photodynamic Therapy.
NASA Astrophysics Data System (ADS)
Riesz, Peter; Krishna, C. Murali
1988-02-01
Photodynamic therapy (PDT) of human tumors with hematoporphyrin derivative (HpD) has achieved encouraging results. However, HpD is a complex mixture whose composition varies in different preparations and with time of storage. The future promise of PDT for cancer treatment depends on the development of new chemically defined sensitizers which absorb more strongly than HpD in the 600-800 nm region. A shift to higher wavelengths is desirable since it allows increased light penetration in human tissues. In vivo, these sensitizers should be non-toxic, localize selectively in tumors and generate cytotoxic species upon illumination with a high quantum yield. These damaging species may be singlet oxygen (1O2) produced by the transfer of energy from the triplet state of the sensitizer to oxygen (Type II) or superoxide anion radicals formed by electron transfer to oxygen or substrate radicals generated by electron or hydrogen transfer directly from the sensitizer (Type I). The recent work of several groups indicating that phthalocyanines and their water soluble derivatives are promising candidates for PDT is reviewed. The photophysics, photochemistry, photosensitized killing of cultured mammalian cells and the use for in vivo photodynamic therapy of phthalocyanines is outlined. Our studies of the post-illumination photohemolysis of human red blood cells as a model system for membrane photomodification sensitized by phthalocyanine sulfonates are consistent with the predominant role of 1O2 as the damaging species.
Fate of the CHBrsub2O radical in air
NASA Technical Reports Server (NTRS)
Bayes, K. D.; Friedl, R. F.
2003-01-01
Trace amounts of bromoform in air have been photolyzed at 266 and 303 nm to form Br atoms and CHBr2 radicals. The Br concentration as a funtion of time is followed by resonance fluorescence. The CHBr2 radicals react with O2 in the air to form peroxy radicals.
Crystal Structures of New Ammonium 5-Aminotetrazolates
Lampl, Martin; Salchner, Robert; Laus, Gerhard; Braun, Doris E.; Kahlenberg, Volker; Wurst, Klaus; Fuhrmann, Gerda; Schottenberger, Herwig; Huppertz, Hubert
2015-01-01
The crystal structures of three salts of anionic 5-aminotetrazole are described. The tetramethylammonium salt (P1‒) forms hydrogen-bonded ribbons of anions which accept weak C–H⋯N contacts from the cations. The cystamine salt (C2/c) shows wave-shaped ribbons of anions linked by hydrogen bonds to screw-shaped dications. The tetramethylguanidine salt (P21/c) exhibits layers of anions hydrogen-bonded to the cations. PMID:26753100
Early identification of the risk for free radical-related diseases in preterm newborns.
Perrone, Serafina; Tataranno, Maria Luisa; Negro, Simona; Longini, Mariangela; Marzocchi, Barbara; Proietti, Fabrizio; Iacoponi, Francesca; Capitani, Serena; Buonocore, Giuseppe
2010-04-01
Despite recent advances in preterm newborns healthcare, perinatal pathologies and disabilities are increasing. Oxidative stress (OS) is determinant for the onset of an unbalance between free radicals (FRs) production and antioxidant systems which plays a key role in pathogenesis of pathologies such as retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), grouped as 'free radical-related diseases' (FRD). This study tests the hypothesis that OS markers levels in cord blood may predict the onset of FRD pathologies. 168 preterm newborns of GA: 24-32weeks (28.09+/-1.99); and BW: 470-2480 gr (1358.11+/-454.09) were consecutively recruited. Markers of potential OS risk (non-protein bound iron, NPBI; basal superoxide anion, BSA; under stimulation superoxide anion, USSA) and markers of OS-related damage (total hydroperoxides, TH; advanced oxidation protein products, AOPP) were assessed in cord blood. Associations between FRD onset and OS markers were checked through inferential analysis (univariate logistic regression). The development of FRD was significantly associated to high cord blood levels of TH, AOPP and NPBI (respectively p=0.000, OR=1.025, 95%CI=1.013-1.038; p=0.014, OR=1.092, 95%CI=1.018-1.172; p=0.007, OR=1.26995%CI=1.066-1.511). Elevated levels of TH, AOPP and, above all, NPBI, in cord blood are associated with increased risk for FRD. OS markers allow the early identification of infants at risk for FRD because of perinatal oxidant exposure. This can be useful in devising strategies to prevent or ameliorate perinatal outcome. 2010 Elsevier Ireland Ltd. All rights reserved.
Guan, Wei; Sun, Gaoge; Yin, Lei; Zhang, Zhenghua; Tian, Shichao
2018-01-01
The oxidation of hypophosphite to phosphate is the key to recover the phosphorus resource from the hypophosphite wastewater. In the present work, Ti4O7/g-C3N4 composites were synthesized at two different temperatures (100 and 160°C) and their performance on photocatalytic oxidation of hypophosphite under visible light irradiation and the corresponding mechanism were evaluated. A hydrolysis method using g-C3N4 and Ti4O7 was applied to synthesize the Ti4O7/g-C3N4 composites with their hybrid structure and morphology confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS). The annealing temperature significantly affected the photocatalytic performance of Ti4O7/g-C3N4 that the 160-Ti4O7/g-C3N4 composite (fabricated at 160°C) showed the highest oxidation efficiency of hypophosphite of 81% and the highest photocatalytic oxidation rate of 0.467 h−1 comparing with the 100-Ti4O7/g-C3N4 composite (fabricated at 100°C) and pure g-C3N4. The enhanced photocatalytic performance of 160-Ti4O7/g-C3N4 could be ascribed to the effective charge separation and enhanced photoabsorption efficiency. Additionally, electron spin resonance (ESR) results showed that hydroxyl radicals and superoxide anion radicals were mainly responsible to the oxidation of hypophosphite with superoxide anion radicals accounting for a more significant contribution. Moreover, Ti4O7/g-C3N4 photocatalysts showed the remarkable stability in the repetitive experiments. PMID:29546041
NASA Astrophysics Data System (ADS)
Guan, Wei; Sun, Gaoge; Yin, Lei; Zhang, Zhenghua; Tian, Shichao
2018-03-01
The oxidation of hypophosphite to phosphate is the key to recover the phosphorus resource from the hypophosphite wastewater. In the present work, Ti4O7/g-C3N4 composites were synthesized at two different temperatures (100 and 160 °C) and their performance on photocatalytic oxidation of hypophosphite under visible light irradiation and the corresponding mechanism were evaluated. A hydrolysis method using g-C3N4 and Ti4O7 was applied to synthesize the Ti4O7/g-C3N4 composites with their hybrid structure and morphology confirmed by XRD, SEM and XPS. The annealing temperature significantly affected the photocatalytic performance of Ti4O7/g-C3N4 that the 160-Ti4O7/g-C3N4 composite (fabricated at 160 °C) showed the highest oxidation efficiency of hypophosphite of 81% and the highest photocatalytic oxidation rate of 0.467 h-1 comparing with the 100-Ti4O7/g-C3N4 composite (fabricated at 100 °C) and pure g-C3N4. The enhanced photocatalytic performance of 160-Ti4O7/g-C3N4 could be ascribed to the effective charge separation and enhanced photoabsorption efficiency. Additionally, electron spin resonance (ESR) results showed that hydroxyl radicals and superoxide anion radicals were mainly responsible to the oxidation of hypophosphite with superoxide anion radicals accounting for a more significant contribution. Moreover, Ti4O7/g-C3N4 photocatalysts showed the remarkable stability in the repetitive experiments.
Guan, Wei; Sun, Gaoge; Yin, Lei; Zhang, Zhenghua; Tian, Shichao
2018-01-01
The oxidation of hypophosphite to phosphate is the key to recover the phosphorus resource from the hypophosphite wastewater. In the present work, Ti 4 O 7 /g-C 3 N 4 composites were synthesized at two different temperatures (100 and 160°C) and their performance on photocatalytic oxidation of hypophosphite under visible light irradiation and the corresponding mechanism were evaluated. A hydrolysis method using g-C 3 N 4 and Ti 4 O 7 was applied to synthesize the Ti 4 O 7 /g-C 3 N 4 composites with their hybrid structure and morphology confirmed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectra (XPS). The annealing temperature significantly affected the photocatalytic performance of Ti 4 O 7 /g-C 3 N 4 that the 160-Ti 4 O 7 /g-C 3 N 4 composite (fabricated at 160°C) showed the highest oxidation efficiency of hypophosphite of 81% and the highest photocatalytic oxidation rate of 0.467 h -1 comparing with the 100-Ti 4 O 7 /g-C 3 N 4 composite (fabricated at 100°C) and pure g-C 3 N 4 . The enhanced photocatalytic performance of 160-Ti 4 O 7 /g-C 3 N 4 could be ascribed to the effective charge separation and enhanced photoabsorption efficiency. Additionally, electron spin resonance (ESR) results showed that hydroxyl radicals and superoxide anion radicals were mainly responsible to the oxidation of hypophosphite with superoxide anion radicals accounting for a more significant contribution. Moreover, Ti 4 O 7 /g-C 3 N 4 photocatalysts showed the remarkable stability in the repetitive experiments.