Cold and intense OH radical beam sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploenes, Ludger; Meerakker, Sebastiaan Y. T. van de; Haas, Dominik
2016-05-15
We present the design and performance of two supersonic radical beam sources: a conventional pinhole-discharge source and a dielectric barrier discharge (DBD) source, both based on the Nijmegen pulsed valve. Both designs have been characterized by discharging water molecules seeded in the rare gases Ar, Kr, or Xe. The resulting OH radicals have been detected by laser-induced fluorescence. The measured OH densities are (3.0 ± 0.6) × 10{sup 11} cm{sup -3} and (1.0 ± 0.5) × 10{sup 11} cm{sup -3} for the pinhole-discharge and DBD sources, respectively. The beam profiles for both radical sources show a relative longitudinal velocity spreadmore » of about 10%. The absolute rotational ground state population of the OH beam generated from the pinhole-discharge source has been determined to be more than 98%. The DBD source even produces a rotationally colder OH beam with a population of the ground state exceeding 99%. For the DBD source, addition of O{sub 2} molecules to the gas mixture increases the OH beam density by a factor of about 2.5, improves the DBD valve stability, and allows to tune the mean velocity of the radical beam.« less
Hexapole-selected supersonic beams of reactive radicals: CF3, SiF3, SH, CH, and C2H
NASA Astrophysics Data System (ADS)
Weibel, Michael A.; Hain, Toby D.; Curtiss, Thomas J.
1998-02-01
A supersonic corona discharge source was used to produce molecular beams of plasma particles. Neutral, polar components of the plasma mixture were selectively focused by an electrostatic hexapole, thereby "simplifying" the chemical and rotational state composition of the beam. Careful choice of a radical precursor, combined with control of discharge and hexapole voltage allowed the production of pure beams of CF3, SiF3, and SH (purity typically better than 90%), with no noticeable signal arising from undissociated precursor, ions, or other radicals. Focused beams from a hydrocarbon plasma contained a radical mixture of predominantly CH and C2H. Radical beams were characterized by rotationally and translationally cold temperatures (typically TR<20 K and TS<20 K, respectively) and high intensities (typically 1011-1012cm-2 s-1). Simulated focusing spectra using classical trajectory calculations showed generally good agreement with the experimental data, leading to the first experimental measurement of the permanent electric dipole moment of SiF3 (μ=1.2±0.1 D).
Simultaneous interrogation of interferometric and Bragg grating sensors
NASA Astrophysics Data System (ADS)
Brady, G.; Kalli, K.; Webb, D. J.; Jackson, D. A.; Reekie, L.; Archambault, J. L.
1995-06-01
We propose a new method for the simultaneous interrogation of conventional two-beam interferometers and Bragg grating sensors. The technique employs an unbalanced Mach-Zehnder interferometer illuminated by a single low-coherence source, which acts as a wavelength-tunable source for the grating and as a path-matched filter for the Fizeau interferometer, thus providing a high phase resolution output for each sensor. The grating sensor demonstrates a dynamic strain resolution of \\similar 0.05 mu 3 / \\radical Hz \\end-radical at 20 Hz, while the interferometric phase resolution is better than 1mrad/ \\radical Hz \\end-radical at 20 Hz, corresponding to an rms mirror displacement of 0.08 nm.
NASA Astrophysics Data System (ADS)
Cunge, G.; Bodart, P.; Brihoum, M.; Boulard, F.; Chevolleau, T.; Sadeghi, N.
2012-04-01
This paper reviews recent progress in the development of time-resolved diagnostics to probe high-density pulsed plasma sources. We focus on time-resolved measurements of radicals' densities in the afterglow of pulsed discharges to provide useful information on production and loss mechanisms of free radicals. We show that broad-band absorption spectroscopy in the ultraviolet and vacuum ultraviolet spectral domain and threshold ionization modulated beam mass spectrometry are powerful techniques for the determination of the time variation of the radicals' densities in pulsed plasmas. The combination of these complementary techniques allows detection of most of the reactive species present in industrial etching plasmas, giving insights into the physico-chemistry reactions involving these species. As an example, we discuss briefly the radicals' kinetics in the afterglow of a SiCl4/Cl2/Ar discharge.
Kr-86 Ion-Beam Irradiation of Hydrated DNA: Free Radical and Unaltered Base Yields
Becker, David; Adhikary, Amitava; Tetteh, Smedley T.; Bull, Arthur W.; Sevilla, Michael D.
2012-01-01
This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields. PMID:23106211
Kr-86 ion-beam irradiation of hydrated DNA: free radical and unaltered base yields.
Becker, David; Adhikary, Amitava; Tetteh, Smedley T; Bull, Arthur W; Sevilla, Michael D
2012-12-01
This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields.
NASA Astrophysics Data System (ADS)
Chen, Shang; Kondo, Hiroki; Ishikawa, Kenji; Takeda, Keigo; Sekine, Makoto; Kano, Hiroyuki; Den, Shoji; Hori, Masaru
2011-01-01
For an innovation of molecular-beam-epitaxial (MBE) growth of gallium nitride (GaN), the measurements of absolute densities of N, H, and NH3 at the remote region of the radical source excited by plasmas have become absolutely imperative. By vacuum ultraviolet absorption spectroscopy (VUVAS) at a relatively low pressure of about 1 Pa, we obtained a N atom density of 9×1012 cm-3 for a pure nitrogen gas used, a H atom density of 7×1012 cm-3 for a gas composition of 80% hydrogen mixed with nitrogen gas were measured. The maximum density 2×1013 cm-3 of NH3 was measured by quadruple mass spectrometry (QMS) at H2/(N2+H2)=60%. Moreover, we found that N atom density was considerably affected by processing history, where the characteristic instability was observed during the pure nitrogen plasma discharge sequentially after the hydrogen-containing plasma discharge. These results indicate imply the importance of establishing radical-based processes to control precisely the absolute densities of N, H, and NH3 at the remote region of the radical source.
Photodissociation dynamics and spectroscopy of free radical combustion intermediates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osborn, David Lewis
1996-12-01
The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(E T), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculationsmore » are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.« less
Sevilla, Michael D.; Becker, David; Kumar, Anil; Adhikary, Amitava
2016-01-01
The focus of our laboratory’s investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ−) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre−), and aqueous (or, solvated) electrons (eaq−)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species. PMID:27695205
NASA Astrophysics Data System (ADS)
Sevilla, Michael D.; Becker, David; Kumar, Anil; Adhikary, Amitava
2016-11-01
The focus of our laboratory's investigation is to study the direct-type DNA damage mechanisms resulting from γ-ray and ion-beam radiation-induced free radical processes in DNA which lead to molecular damage important to cellular survival. This work compares the results of low LET (γ-) and high LET (ion-beam) radiation to develop a chemical track structure model for ion-beam radiation damage to DNA. Recent studies on protonation states of cytosine cation radicals in the N1-substituted cytosine derivatives in their ground state and 5-methylcytosine cation radicals in ground as well as in excited state are described. Our results exhibit a radical signature of excitations in 5-methylcytosine cation radical. Moreover, our recent theoretical studies elucidate the role of electron-induced reactions (low energy electrons (LEE), presolvated electrons (epre-), and aqueous (or, solvated) electrons (eaq-)). Finally DFT calculations of the ionization potentials of various sugar radicals show the relative reactivity of these species.
NASA Astrophysics Data System (ADS)
Penetrante, B. M.
1993-08-01
The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.
Lawrie, S R; Faircloth, D C; Letchford, A P; Perkins, M; Whitehead, M O; Wood, T; Gabor, C; Back, J
2014-02-01
The ISIS pulsed spallation neutron and muon facility at the Rutherford Appleton Laboratory (RAL) in the UK uses a Penning surface plasma negative hydrogen ion source. Upgrade options for the ISIS accelerator system demand a higher current, lower emittance beam with longer pulse lengths from the injector. The Front End Test Stand is being constructed at RAL to meet the upgrade requirements using a modified ISIS ion source. A new 10% duty cycle 25 kV pulsed extraction power supply has been commissioned and the first meter of 3 MeV radio frequency quadrupole has been delivered. Simultaneously, a Vessel for Extraction and Source Plasma Analyses is under construction in a new laboratory at RAL. The detailed measurements of the plasma and extracted beam characteristics will allow a radical overhaul of the transport optics, potentially yielding a simpler source configuration with greater output and lifetime.
Nicolaisen, Marianne; Müller, Stig; Patel, Hitendra R H; Hanssen, Tove Aminda
2014-12-01
To assess patients' symptoms, quality of life and satisfaction with information three to four years after radical prostatectomy, radical external beam radiotherapy and postoperative radiotherapy and to analyse differences between treatment groups and the relationship between disease-specific, health-related and overall quality of life and satisfaction with information. Radical prostate cancer treatments are associated with changes in quality of life. Differences between patients undergoing different treatments in symptoms and quality of life have been reported, but there are limited long-term data comparing radical prostatectomy with radical external beam radiotherapy and postoperative radiotherapy. A cross-sectional survey design was used. The study sample included 143 men treated with radical prostatectomy and/or radical external beam radiotherapy. Quality of life was measured using the 12-item Short Form Health Survey and the 50-item Expanded Prostate Cancer Index Composite Instrument. Questions assessing overall Quality of life and satisfaction with information were included. Descriptive statistics and interference statistical methods were applied to analyse the data. Radical external beam radiotherapy was associated with less urinary incontinence and better urinary function. There were no differences between the groups for disease-specific quality of life sum scores. Sexual quality of life was reported very low in all groups. Disease-specific quality of life and health-related quality of life were associated with overall quality of life. Patients having undergone surgery were more satisfied with information, and there was a positive correlation between quality of life and patient satisfaction. Pretreatment information and patient education lead to better quality of life and satisfaction. This study indicates a need for structured, pretreatment information and follow-up for all men going through radical prostate cancer treatment. Long-term quality of life effects should be considered when planning follow-up and information for men after radical prostate cancer treatment. Structured and organised information/education may increase preparedness for symptoms and bother after the treatment, improve symptom management strategies and result in improved quality of life. © 2014 John Wiley & Sons Ltd.
Radiobiological study by using laser-driven proton beams
NASA Astrophysics Data System (ADS)
Yogo, A.; Sato, K.; Nishikino, M.; Mori, M.; Teshima, T.; Numasaki, H.; Murakami, M.; Demizu, Y.; Akagi, S.; Nagayama, S.; Ogura, K.; Sagisaka, A.; Orimo, S.; Nishiuchi, M.; Pirozhkov, A. S.; Ikegami, M.; Tampo, M.; Sakaki, H.; Suzuki, M.; Daito, I.; Oishi, Y.; Sugiyama, H.; Kiriyama, H.; Okada, H.; Kanazawa, S.; Kondo, S.; Shimomura, T.; Nakai, Y.; Tanoue, M.; Sugiyama, H.; Sasao, H.; Wakai, D.; Kawachi, T.; Nishimura, H.; Bolton, P. R.; Daido, H.
2009-07-01
Particle acceleration driven by high-intensity laser systems is widely attracting interest as a potential alternative to conventional ion acceleration, including ion accelerator applications to tumor therapy. Recent works have shown that a high intensity laser pulse can produce single proton bunches of a high current and a short pulse duration. This unique feature of laser-ion acceleration can lead to progress in the development of novel ion sources. However, there has been no experimental study of the biological effects of laser-driven ion beams. We describe in this report the first demonstrated irradiation effect of laser-accelerated protons on human lung cancer cells. In-vitro A549 cells are irradiated with a proton dose of 20 Gy, resulting in a distinct formation of γ-H2AX foci as an indicator of DNA double-strand breaks. This is a pioneering result that points to future investigations of the radiobiological effects of laser-driven ion beams. The laser-driven ion beam is apotential excitation source for time-resolved determination of hydroxyl (OH) radical yield, which will explore relationship between the fundamental chemical reactions of radiation effects and consequent biological processes.
NASA Astrophysics Data System (ADS)
Haneda, K.
2016-04-01
The purpose of this study was to estimate an impact on radical effect in the proton beams using a combined approach with physical data and gel data. The study used two dosimeters: ionization chambers and polymer gel dosimeters. Polymer gel dosimeters have specific advantages when compared to other dosimeters. They can measure chemical reaction and they are at the same time a phantom that can map in three dimensions continuously and easily. First, a depth-dose curve for a 210 MeV proton beam measured using an ionization chamber and a gel dosimeter. Second, the spatial distribution of the physical dose was calculated by Monte Carlo code system PHITS: To verify of the accuracy of Monte Carlo calculation, and the calculation results were compared with experimental data of the ionization chamber. Last, to evaluate of the rate of the radical effect against the physical dose. The simulation results were compared with the measured depth-dose distribution and showed good agreement. The spatial distribution of a gel dose with threshold LET value of proton beam was calculated by the same simulation code. Then, the relative distribution of the radical effect was calculated from the physical dose and gel dose. The relative distribution of the radical effect was calculated at each depth as the quotient of relative dose obtained using physical and gel dose. The agreement between the relative distributions of the gel dosimeter and Radical effect was good at the proton beams.
Discovery of interstellar ketenyl (HCCO), a surprisingly abundant radical
NASA Astrophysics Data System (ADS)
Agúndez, Marcelino; Cernicharo, José; Guélin, Michel
2015-05-01
We conducted radioastronomical observations of 9 dark clouds with the IRAM 30 m telescope. We present the first identification in space of the ketenyl radical (HCCO) toward the starless core Lupus-1A and the molecular cloud L483 and the detection of the related molecules ketene (H2CCO) and acetaldehyde (CH3CHO) in these two sources and 3 additional dark clouds. We also report the detection of the formyl radical (HCO) in the 9 targeted sources and of propylene (CH2CHCH3) in 4 of the observed sources, which significantly extends the number of dark clouds where these molecules are known to be present. We have derived a beam-averaged column density of HCCO of ~5 × 1011 cm-2 in both Lupus-1A and L483, which means that the ketenyl radical is just ~10 times less abundant than ketene in these sources. The non-negligible abundance of HCCO found implies that there must be a powerful formation mechanism able to counterbalance the efficient destruction of this radical through reactions with neutral atoms. The column densities derived for HCO, (0.5-2.7) ×1012 cm-2, and CH2CHCH3, (1.9-4-2) ×1013 cm-2, are remarkably uniform across the sources where these species are detected, confirming their ubiquity in dark clouds. Gas phase chemical models of cold dark clouds can reproduce the observed abundances of HCO, but cannot explain the presence of HCCO in Lupus-1A and L483 and the high abundances derived for propylene. The chemistry of cold dark clouds needs to be revised in light of these new observational results. Based on observations carried out with the IRAM 30 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany) and IGN (Spain).Tables 3-6 are available in electronic form at http://www.aanda.org
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Ina T.; Zhou Jie; Fisher, Ellen R.
2006-07-01
Ion energy distribution (IED) measurements are reported for ions in the plasma molecular beam source of the imaging of radicals interacting with surfaces (IRIS) apparatus. The IEDs and relative intensities of nascent ions in C{sub 3}F{sub 8} and C{sub 4}F{sub 8} plasma molecular beams were measured using a Hiden PSM003 mass spectrometer mounted on the IRIS main chamber. The IEDs are complex and multimodal, with mean ion energies ranging from 29 to 92 eV. Integrated IEDs provided relative ion intensities as a function of applied rf power and source pressure. Generally, higher applied rf powers and lower source pressures resultedmore » in increased ion intensities and mean ion energies. Most significantly, a comparison to CF{sub 2} surface interaction measurements previously made in our laboratories reveals that mean ion energies are directly and linearly correlated to CF{sub 2} surface production in these systems.« less
Buras, Zachary J; Chu, Te-Chun; Jamal, Adeel; Yee, Nathan W; Middaugh, Joshua E; Green, William H
2018-05-16
The C9H11 potential energy surface (PES) was experimentally and theoretically explored because it is a relatively simple, prototypical alkylaromatic radical system. Although the C9H11 PES has already been extensively studied both experimentally (under single-collision and thermal conditions) and theoretically, new insights were made in this work by taking a new experimental approach: flash photolysis combined with time-resolved molecular beam mass spectrometry (MBMS) and visible laser absorbance. The C9H11 PES was experimentally accessed by photolytic generation of the phenyl radical and subsequent reaction with excess propene (C6H5 + C3H6). The overall kinetics of C6H5 + C3H6 was measured using laser absorbance with high time-resolution from 300 to 700 K and was found to be in agreement with earlier measurements over a lower temperature range. Five major product channels of C6H5 + C3H6 were observed with MBMS at 600 and 700 K, four of which were expected: hydrogen (H)-abstraction (measured by the stable benzene, C6H6, product), methyl radical (CH3)-loss (styrene detected), H-loss (phenylpropene isomers detected) and radical adduct stabilization. The fifth, unexpected product observed was the benzyl radical, which was rationalized by the inclusion of a previously unreported pathway on the C9H11 PES: aromatic-catalysed 1,2-H-migration and subsequent resonance stabilized radical (RSR, benzyl radical in this case) formation. The current theoretical understanding of the C9H11 PES was supported (including the aromatic-catalyzed pathway) by quantitative comparisons between modelled and experimental MBMS results. At 700 K, the branching to styrene + CH3 was 2-4 times greater than that of any other product channel, while benzyl radical + C2H4 from the aromatic-catalyzed pathway accounted for ∼10% of the branching. Single-collision conditions were also simulated on the updated PES to explain why previous crossed molecular beam experiments did not see evidence of the aromatic-catalyzed pathway. This experimentally validated knowledge of the C9H11 PES was added to the database of the open-source Reaction Mechanism Generator (RMG), which was then used to generalize the findings on the C9H11 PES to a slightly more complicated alkylaromatic system.
Park, Sejoon; Yoo, Seung Hwa; Kang, Ha Ri; Jo, Seong Mu; Joh, Han-Ik; Lee, Sungho
2016-01-01
An electron beam was irradiated on polyacrylonitrile (PAN) fibers prior to thermal stabilization. The electron-beam irradiation effectively shortened the thermal stabilization process by one fourth compared with the conventional thermal stabilization process. A comprehensive mechanistic study was conducted regarding this shortening of the thermal stabilization by electron-beam irradiation. Various species of chain radicals were produced in PAN fibers by electron-beam irradiation and existed for a relatively long duration, as observed by electron spin resonance spectroscopy. Subsequently, these radicals were gradually oxidized to peroxy radicals in the presence of oxygen under storage or heating. We found that these peroxy radicals (CO) enabled such an effective shortcut of thermal stabilization by acting as intermolecular cross-linking and partial aromatization points in the low temperature range (100–130 °C) and as earlier initiation seeds of successive cyclization reactions in the next temperature range (>130–140 °C) of thermal stabilization. Finally, even at a low irradiation dose (200 kGy), followed by a short heat treatment (230 °C for 30 min), the PAN fibers were sufficiently stabilized to produce carbon fibers with tensile strength and modulus of 2.3 and 216 GPa, respectively, after carbonization. PMID:27349719
The Patient Burden of Bladder Outlet Obstruction after Prostate Cancer Treatment.
Liberman, Daniel; Jarosek, Stephanie; Virnig, Beth A; Chu, Haitao; Elliott, Sean P
2016-05-01
Bladder outlet obstruction after prostate cancer therapy imposes a significant burden on health and quality of life in men. Our objective was to describe the burden of bladder outlet obstruction after prostate cancer therapy by detailing the type of procedures performed and how often those procedures were repeated in men with recurrent bladder outlet obstruction. Using SEER (Surveillance, Epidemiology and End Results)-Medicare linked data from 1992 to 2007 with followup through 2009 we identified 12,676 men who underwent at least 1 bladder outlet obstruction procedure after prostate cancer therapy, including external beam radiotherapy in 3,994, brachytherapy in 1,485, brachytherapy plus external beam radiotherapy in 1,847, radical prostatectomy in 4,736, radical prostatectomy plus external beam radiotherapy in 369 and cryotherapy in 245. Histogram, incidence rates and Cox proportional hazards models with repeat events analysis were done to describe the burden of repeat bladder outlet obstruction treatments stratified by prostate cancer therapy type. We describe the type of bladder outlet obstruction surgery grouped by level of invasiveness. At a median followup of 8.8 years 44.6% of men underwent 2 or more bladder outlet obstruction procedures. Compared to men who underwent radical prostatectomy those treated with brachytherapy and brachytherapy plus external beam radiotherapy were at increased adjusted risk for repeat bladder outlet obstruction treatment (HR 1.2 and 1.32, respectively, each p <0.05). After stricture incision the men treated with radical prostatectomy or radical prostatectomy plus external beam radiotherapy were most likely to undergo dilation at a rate of 34.7% to 35.0%. Stricture resection/ablation was more common after brachytherapy, external beam radiotherapy or brachytherapy plus external beam radiotherapy at a rate of 28.9% to 41.2%. Almost half of the men with bladder outlet obstruction after prostate cancer therapy undergo more than 1 procedure. Furthermore men with bladder outlet obstruction after radiotherapy undergo more invasive endoscopic therapies and are at higher risk for multiple treatments than men with bladder outlet obstruction after radical prostatectomy. Copyright © 2016 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graves, David Barry; Oehrlein, Gottlieb
2014-09-01
Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge based with regard to low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify and quantify the mechanisms by whichmore » low and atmospheric pressure plasma deactivates endotoxic biomolecules. Additionally, we wanted to understand the mechanism by which atmospheric pressure plasmas (APP) modify surfaces and how these modifications depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish this. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of representative biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic biomolecule changes. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) accompanied these biological effects. One of the most important findings in this work is the significant radical-induced deactivation and surface modification can occur with minimal etching. However, if radical fluxes and corresponding etch rates are relatively high, for example at atmospheric pressure, endotoxic biomolecule film inactivation may require near-complete removal of the film. These findings motivated further work at atmospheric pressure using several types of low temperature plasma sources, for which radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. For these conditions we demonstrated the importance of environmental interactions when atmospheric pressure plasma sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complexity of reactions of reactive species with the atmosphere which determines the composition of reactive fluxes and atomistic changes of biomolecules. Overall, this work clarified a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to more systematically study the interaction of plasma with bio-molecules. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled to combine atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will be helpful in many future studies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oehrlein, Gottlieb S.; Seog, Joonil; Graves, David
2014-09-24
Low temperature plasma (LTP) treatment of biological tissue is a promising path toward sterilization of bacteria due to its versatility and ability to operate under well-controlled and relatively mild conditions. The present collaborative research of an interdisciplinary team of investigators at University of Maryland, College Park (UMD), and University of California, Berkeley (UCB) focused on establishing our knowledge on low temperature plasma-induced chemical modifications in biomolecules that result in inactivation due to various plasma species, including ions, reactive radicals, and UV/VUV photons. The overall goals of the project were to identify the mechanisms by which low and atmospheric pressure plasmamore » (APP) deactivates endotoxic biomolecules. Additionally, we wanted to understand how deactivation processes depend on the interaction of APP with the environment. Various low pressure plasma sources, a vacuum beam system and several atmospheric pressure plasma sources were used to accomplish these objectives. In our work we elucidated for the first time the role of ions, VUV photons and radicals in biological deactivation of model endotoxic biomolecules, both in a UHV beam system and an inductively coupled, low pressure plasma system, and established the associated atomistic modifications in biomolecules. While we showed that both ions and VUV photons can be very efficient in deactivation of biomolecules, significant etching and/or deep modification (~200 nm) were accompanied by these biological effects. One of the most important findings in this work is that the significant deactivation and surface modification can occur with minimal etching using radical species. However, if radical fluxes and corresponding etch rates are relatively high, for example, at atmospheric pressure, inactivation of endotoxic biomolecule film may require near-complete removal of the film. These findings motivated further work at atmospheric pressure using several types of low temperature plasma sources with modified geometry where radical induced interactions generally dominate due to short mean free paths of ions and VUV photons. In these conditions we demonstrated the importance of environmental interactions of plasma species when APP sources are used to modify biomolecules. This is evident from both gas phase characterization data and in-situ surface characterization of treated biomolecules. Environmental interactions can produce unexpected outcomes due to the complex reactions of reactive species with the atmosphere which determine the composition of reactive fluxes and atomistic changes in biomolecules. Overall, this work elucidated a richer spectrum of scientific opportunities and challenges for the field of low temperature plasma-biomolecule surface interactions than initially anticipated, in particular, for plasma sources operating at atmospheric pressure. The insights produced in this work, e.g. demonstration of the importance of environmental interactions, are generally important for applications of APP to materials modifications. Thus one major contributions of this research has been the establishment of methodologies to study the interaction of plasma with bio-molecules in a systemic and rigorous manner. In particular, our studies of atmospheric pressure plasma sources using very well-defined experimental conditions enabled us to correlate atomistic surface modifications of biomolecules with changes in their biological function. The clarification of the role of ions, VUV photons and radicals in deactivation of biomolecules during low pressure and atmospheric pressure plasma-biomolecule interaction has broad implications, e.g. for the emerging field of plasma medicine. The development of methods to detect the effects of plasma treatment on immune-active biomolecules will lay a fundamental foundation to enhance our understanding of the effect of plasma on biological systems. be helpful in many future studies.« less
NASA Astrophysics Data System (ADS)
Gourier, Didier; Binet, Laurent; Gonzalez, Victor; Vezin, Hervé; Touati, Nadia; Calligaro, Thomas
2018-01-01
Analytical techniques using proton beams with energy in the MeV range are commonly used to study archeological artefact and artistic objects. However ion beams can induce alteration of fragile materials, which is notably the case of easel paintings, limiting the use of these techniques. We used continuous wave EPR and pulse EPR spectroscopy to reveal the effect of 3 MeV proton irradiation on lead carbonates, which were extensively employed as white pigments from the antiquity to the 20th century. Two kinds of paramagnetic centers were identified in cerussite (PbCO3): the first one is CO3- radicals formed by hole trapping by CO32- ions, and the second one is NO32- radical resulting from electron trapping by NO3- impurities. Hydrocerussite (2PbCO3·Pb(OH)2) is the most darkened material under proton beam, however it exhibits no NO32- radicals and 20 times less CO3- radicals than cerussite. Consequently these paramagnetic centers are not directly responsible for the darkening of lead-white pigments. We proposed that their higher instability in hydrocerussite might be at the origin of the formation of color centers in this material.
NASA Technical Reports Server (NTRS)
Lee, Long C.; Srivastava, Santosh K.
1990-01-01
Electron-impact ionization and electron attachment cross sections of radicals and excited molecules were measured using an apparatus that consists of an electron beam, a molecular beam and a laser beam. The information obtained is needed for the pulse power applications in the areas of high power gaseous discharge switches, high energy lasers, particle beam experiments, and electromagnetic pulse systems. The basic data needed for the development of optically-controlled discharge switches were also investigated. Transient current pulses induced by laser irradiation of discharge media were observed and applied for the study of electron-molecule reaction kinetics in gaseous discharges.
Zappalà, G; Motta, V; Tuccitto, N; Vitale, S; Torrisi, A; Licciardello, A
2015-12-15
Secondary ion mass spectrometry (SIMS) with polyatomic primary ions provides a successful tool for molecular depth profiling of polymer systems, relevant in many technological applications. Widespread C60 sources, however, cause in some polymers extensive damage with loss of molecular information along depth. We study a method, based on the use of a radical scavenger, for inhibiting ion-beam-induced reactions causing sample damage. Layered polystyrene sulfonate and polyacrylic acid based polyelectrolyte films, behaving differently towards C60 beam-induced damage, were selected and prepared as model systems. They were depth profiled by means of time-of-flight (TOF)-SIMS in dual beam mode, using fullerene ions for sputtering. Nitric oxide was introduced into the analysis chamber as a radical scavenger. The effect of sample cooling combined with NO-dosing on the quality of depth profiles was explored. NO-dosing during C60-SIMS depth profiling of >1 micrometer-thick multilayered polyelectrolytes allows detection, along depth, of characteristic fragments from systems otherwise damaged by C60 bombardment, and increases sputtering yield by more than one order of magnitude. By contrast, NO has little influence on those layers that are well profiled with C60 alone. Such leveling effect, more pronounced at low temperature, leads to a dramatic improvement of profile quality, with a clear definition of interfaces. NO-dosing provides a tool for extending the applicability, in SIMS depth profiling, of the widely spread fullerene ion sources. In view of the acceptable erosion rates on inorganics, obtainable with C60, the method could be of relevance also in connection with the 3D-imaging of hybrid polymer/inorganic systems. Copyright © 2015 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singha, Subhash; Mohanty, Bedangadas; Netrakanti, Pawan Kumar
We compiled the experimentally measured p-bar/p ratio at midrapidity in p+p collisions from {radical}(s)=23 to 7000 GeV and compared it to various mechanisms of baryon production as implemented in the pythia, phojet, and Heavy Ion Jet Interaction Generator (HIJING)/B-B models. For the models studied with default settings, phojet has the best agreement with the measurements, pythia gives a higher value for {radical}(s)<200 GeV, and the ratios from HIJING/B-B are consistently lower for all the {radical}(s) studied. A comparison of the data to different mechanisms of baryon production as implemented in pythia shows that through a suitable tuning of the suppressionmore » of diquark-antidiquark pair production in the color field relative to quark-antiquark production and allowing the diquarks to split according to the popcorn scheme, a fairly reasonable description of the measured p-bar/p ratio for {radical}(s)<200 GeV is given. A comparison of the beam energy dependence of the p-bar/p ratio in p+p and nucleus-nucleus (A + A) collisions at midrapidity shows that the baryon production is significantly more for A + A collisions relative to p+p collisions for {radical}(s)<200 GeV. We also carry out a phenomenological fit to the y{sub beam} dependence of the p-bar/p ratio.« less
NASA Astrophysics Data System (ADS)
Willems, Gert; Benedikt, Jan; von Keudell, Achim
2016-09-01
A thorough understanding and good control of produced neutral and charged species by cold atmospheric plasmas is essential for potential environmental and/or bio-medical applications. In this study we use the COST reference micro plasma jet (µ-APPJ), which is a radio-frequency capacitive coupled plasma source with 1 mm electrode distance, which has been operated in helium-water vapour mixture and has been studied as a potential source of hydroxyl radicals and hydrogen peroxide molecules. The water vapour concentration was up to 1.2%. Molecular Beam mass spectrometry is used as diagnostic tool. An absolute calibration of hydrogen peroxide was conducted using a double bubbler concept, because the ionization cross section for hydrogen peroxide is not available. Additionally the effluent chemistry was investigated by use of a 0D and 2D model. Absolute densities of hydrogen peroxide and hydroxyl radicals from atmospheric plasma will be presented. Their dependency on water vapour concentration in the carrier gas as well as distance to target have been investigated. The measured density is between 5E-13 cm-3 (2.4ppm) and 1.5E-14 cm-3 (7.2ppm) for both hydrogen peroxide molecules and hydroxyl radicals. The achieved results are in good agreement with other experiments.
Atomic precision etch using a low-electron temperature plasma
NASA Astrophysics Data System (ADS)
Dorf, L.; Wang, J.-C.; Rauf, S.; Zhang, Y.; Agarwal, A.; Kenney, J.; Ramaswamy, K.; Collins, K.
2016-03-01
Sub-nm precision is increasingly being required of many critical plasma etching processes in the semiconductor industry. Accurate control over ion energy and ion/radical composition is needed during plasma processing to meet these stringent requirements. Described in this work is a new plasma etch system which has been designed with the requirements of atomic precision plasma processing in mind. In this system, an electron sheet beam parallel to the substrate surface produces a plasma with an order of magnitude lower electron temperature Te (~ 0.3 eV) and ion energy Ei (< 3 eV without applied bias) compared to conventional radio-frequency (RF) plasma technologies. Electron beam plasmas are characterized by higher ion-to-radical fraction compared to RF plasmas, so a separate radical source is used to provide accurate control over relative ion and radical concentrations. Another important element in this plasma system is low frequency RF bias capability which allows control of ion energy in the 2-50 eV range. Presented in this work are the results of etching of a variety of materials and structures performed in this system. In addition to high selectivity and low controllable etch rate, an important requirement of atomic precision etch processes is no (or minimal) damage to the remaining material surface. It has traditionally not been possible to avoid damage in RF plasma processing systems, even during atomic layer etch. The experiments for Si etch in Cl2 based plasmas in the aforementioned etch system show that damage can be minimized if the ion energy is kept below 10 eV. Layer-by-layer etch of Si is also demonstrated in this etch system using electrical and gas pulsing.
A Compact, Tunable Near-UV Source for Quantitative Microgravity Combustion Diagnostics
NASA Technical Reports Server (NTRS)
Peterson, K. A.; Oh, D. B.
1999-01-01
There is a need for improved optical diagnostic methods for use in microgravity combustion research. Spectroscopic methods with fast time response that can provide absolute concentrations and concentration profiles of important chemical species in flames are needed to facilitate the understanding of combustion kinetics in microgravity. Although a variety of sophisticated laser-based diagnostics (such as planar laser induced fluorescence, degenerate four wave mixing and coherent Raman methods) have been applied to the study of combustion in laboratory flames, the instrumentation associated with these methods is not well suited to microgravity drop tower or space station platforms. Important attributes of diagnostic systems for such applications include compact size, low power consumption, ruggedness, and reliability. We describe a diode laser-based near-UV source designed with the constraints of microgravity research in mind. Coherent light near 420 nm is generated by frequency doubling in a nonlinear crystal. This light source is single mode with a very narrow bandwidth suitable for gas phase diagnostics, can be tuned over several 1/cm and can be wavelength modulated at up to MHz frequencies. We demonstrate the usefulness of this source for combustion diagnostics by measuring CH radical concentration profiles in an atmospheric pressure laboratory flame. The radical concentrations are measured using wavelength modulation spectroscopy (WMS) to obtain the line-of-sight integrated absorption for different paths through the flame. Laser induced fluorescence (LIF) measurements are also demonstrated with this instrument, showing the feasibility of simultaneous WMS absorption and LIF measurements with the same light source. LIF detection perpendicular to the laser beam can be used to map relative species densities along the line-of-sight while the integrated absorption available through WMS provides a mathematical constraint on the extraction of quantitative information from the LIF data. Combining absorption with LIF - especially if the measurements are made simultaneously with the same excitation beam - may allow elimination of geometrical factors and effects of intensity fluctuations (common difficulties with the analysis of LIF data) from the analysis.
Balucani, Nadia; Casavecchia, Piergiorgio
2006-12-01
We have investigated gas-phase reactions of N((2)D) with the most abundant hydrocarbons in the atmosphere of Titan by the crossed molecular beam technique. In all cases, molecular products containing a novel CN bond are formed, thus suggesting possible routes of formation of gas-phase nitriles in the atmosphere of Titan and primordial Earth. The same approach has been recently extended to the study of radical-radical reactions, such as the reaction of atomic oxygen with the CH(3) and C(3)H(5) radicals. Products other than those already considered in the modeling of planetary atmospheres and interstellar medium have been identified.
Thin film phase diagram of iron nitrides grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Gölden, D.; Hildebrandt, E.; Alff, L.
2017-01-01
A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.
Conceptual Design of Electron-Beam Generated Plasma Tools
NASA Astrophysics Data System (ADS)
Agarwal, Ankur; Rauf, Shahid; Dorf, Leonid; Collins, Ken; Boris, David; Walton, Scott
2015-09-01
Realization of the next generation of high-density nanostructured devices is predicated on etching features with atomic layer resolution, no damage and high selectivity. High energy electron beams generate plasmas with unique features that make them attractive for applications requiring monolayer precision. In these plasmas, high energy beam electrons ionize the background gas and the resultant daughter electrons cool to low temperatures via collisions with gas molecules and lack of any accelerating fields. For example, an electron temperature of <0.6 eV with densities comparable to conventional plasma sources can be obtained in molecular gases. The chemistry in such plasmas can significantly differ from RF plasmas as the ions/radicals are produced primarily by beam electrons rather than those in the tail of a low energy distribution. In this work, we will discuss the conceptual design of an electron beam based plasma processing system. Plasma properties will be discussed for Ar, Ar/N2, and O2 plasmas using a computational plasma model, and comparisons made to experiments. The fluid plasma model is coupled to a Monte Carlo kinetic model for beam electrons which considers gas phase collisions and the effect of electric and magnetic fields on electron motion. The impact of critical operating parameters such as magnetic field, beam energy, and gas pressure on plasma characteristics in electron-beam plasma processing systems will be discussed. Partially supported by the NRL base program.
NASA Astrophysics Data System (ADS)
Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F. C.; Geske, M.; Taha, A.; Pelzer, K.; Schlögl, R.
2006-05-01
A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000°C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100μm sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10ms. A detection time resolution of up to 20ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N2 and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N2 to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250°C on a Pt catalyst are presented. The detection of CH3• radicals is successfully demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horn, R.; Ihmann, K.; Ihmann, J.
2006-05-15
A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecularmore » beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.« less
Laser Studies of Gas Phase Radical Reactions.
1989-01-01
synchronised chopper ( Rofin 7500) to block the laser beam on alternate shots to allow background subtraction. Signal due to scattered laser light was...synchronised chopper ( Rofin 7500) to block the laser beam on alternate shots to allow background subtraction. Signal due to scattered laser light was...Cassufication) (U) Laser Studies of Gas Phase Radical Reactions ,ERSRP4AL UTHOR($) I3a. TYPE Of REPORT 13b. TIME COVERtD 14 D T8?’F JPORT (Year, Maonlth, Da
Electron beam controlled covalent attachment of small organic molecules to graphene
NASA Astrophysics Data System (ADS)
Markevich, Alexander; Kurasch, Simon; Lehtinen, Ossi; Reimer, Oliver; Feng, Xinliang; Müllen, Klaus; Turchanin, Andrey; Khlobystov, Andrei N.; Kaiser, Ute; Besley, Elena
2016-01-01
The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography.The electron beam induced functionalization of graphene through the formation of covalent bonds between free radicals of polyaromatic molecules and C&z.dbd;C bonds of pristine graphene surface has been explored using first principles calculations and high-resolution transmission electron microscopy. We show that the energetically strongest attachment of the radicals occurs along the armchair direction in graphene to carbon atoms residing in different graphene sub-lattices. The radicals tend to assume vertical position on graphene substrate irrespective of direction of the bonding and the initial configuration. The ``standing up'' molecules, covalently anchored to graphene, exhibit two types of oscillatory motion - bending and twisting - caused by the presence of acoustic phonons in graphene and dispersion attraction to the substrate. The theoretically derived mechanisms are confirmed by near atomic resolution imaging of individual perchlorocoronene (C24Cl12) molecules on graphene. Our results facilitate the understanding of controlled functionalization of graphene employing electron irradiation as well as mechanisms of attachment of impurities via the processing of graphene nanoelectronic devices by electron beam lithography. Electronic supplementary information (ESI) available: A table showing the calculated binding energies and magnetic moments for all studied molecular radicals; details of samples preparation and characterization; time series of TEM images showing transformations of a C24Cl12 molecule on graphene under electron irradiation. See DOI: 10.1039/c5nr07539d
Pulsed Electron Beam Water Radiolysis for Sub-Microsecond Hydroxyl Radical Protein Footprinting
Watson, Caroline; Janik, Ireneusz; Zhuang, Tiandi; Charvátová, Olga; Woods, Robert J.; Sharp, Joshua S.
2009-01-01
Hydroxyl radical footprinting is a valuable technique for studying protein structure, but care must be taken to ensure that the protein does not unfold during the labeling process due to oxidative damage. Footprinting methods based on sub-microsecond laser photolysis of peroxide that complete the labeling process faster than the protein can unfold have been recently described; however, the mere presence of large amounts of hydrogen peroxide can also cause uncontrolled oxidation and minor conformational changes. We have developed a novel method for sub-microsecond hydroxyl radical protein footprinting using a pulsed electron beam from a 2 MeV Van de Graaff electron accelerator to generate a high concentration of hydroxyl radicals by radiolysis of water. The amount of oxidation can be controlled by buffer composition, pulsewidth, dose, and dissolved nitrous oxide gas in the sample. Our results with ubiquitin and β-lactoglobulin A demonstrate that one sub-microsecond electron beam pulse produces extensive protein surface modifications. Highly reactive residues that are buried within the protein structure are not oxidized, indicating that the protein retains its folded structure during the labeling process. Time-resolved spectroscopy indicates that the major part of protein oxidation is complete in a timescale shorter than that of large scale protein motions. PMID:19265387
VUV Photoionisation of hydrocarbon radicals
NASA Astrophysics Data System (ADS)
Alcaraz, C.; Noller, Bastian; Hemberger, Patrick; Fischer, Ingo; Gans, Bérenger; Boyé-Peronne, Séverine; Douin, Stéphane; Gauyacq, Dolorès; Soldi-Lose, Héloïse; Garcia, Gustavo
2008-09-01
Hydrocarbon radicals CxHy are constituents of various planetary atmospheres, in particular Titan, as a result of the methane photochemistry induced by the solar radiation. They contribute to the neutral chemistry, but are also important for the ionosphere through their photoionisation leading to their cations CxHy +. These cations are also produced by ion-molecule reactions starting from the reaction of the primary ions CH4 + and CH3 + which are created in the non-dissociative and dissociative photoionisation of CH4. This work aims at caracterizing the VUV photoionisation of small hydrocarbon radicals as a function of photon energy. The objective is to provide laboratory data for modelers on the spectroscopy, the thermochemistry, and the reactivity of the radicals and their cations. The hydrocarbon radicals are much less caracterized than stable molecules since they have to be produced in situ in the laboratory experiment. We have adapted at Orsay [1-3] a pyrolysis source (Figure 1) well suited to produce cold beams of hydrocarbon radicals to our experimental setups. Available now at Orsay, we have two new sources of VUV radiation, complementary in terms of tunability and resolution, that can be used for these studies. The first one is the DESIRS beamline [4] at the new french synchrotron, SOLEIL. The second one is the VUV laser developped at the Centre Laser de l'Université Paris-Sud (CLUPS) [5]. At SOLEIL, a photoelectron-photoion coincidence spectrometer is used to monitor the photoionisation on a large photon energy range. At the CLUPS, a pulsedfield ionisation (PFI-ZEKE) spectrometer allows studies at higher resolution on selected photon energies. The first results obtained with these new setups will be presented. References [1] Fischer, I., Schussler, T., Deyerl, H.J., Elhanine, M. & Alcaraz, C., Photoionization and dissociative photoionization of the allyl radical, C3H5. Int. J. Mass Spectrom., 261 (2-3), 227-233 (2007) [2] Schüßler, T., Roth, W., Gerber, T., Alcaraz, C. & Fischer, I., The vacuum ultraviolet photochemistry of radicals: C3H3 and C2H5. Phys. Chem. Chem. Phys., 7 (5), 819-825 (2005) [3] Schüßler, T., Deyerl, H. J., Dummler, S., Fischer, I., Alcaraz, C. & Elhanine, M., The vacuum ultraviolet photochemistry of the allyl radical investigated using synchrotron radiation J. Chem. Phys., 118 (20), 9077-80 (2003) [4] DESIRS, http://www.synchrotronsoleil. fr/portal/page/portal/Recherche/LignesLumiere/ DESIRS [5] CLUPS, http://www.clups.u-psud.fr/
Irradiation of aqueous solutions with high-energy electrons results in the formation of the aqueous electron, hydrogen radical, H-, and the hydroxyl radical, OH-. These reactive transient species initiate chemical reactions capable of destroying organic compounds in aqueous solut...
Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays.
Hao, Yumeng; Bohon, Jen; Hulscher, Ryan; Rappé, Mollie C; Gupta, Sayan; Adilakshmi, Tadepalli; Woodson, Sarah A
2018-06-01
RNA footprinting by hydroxyl radical cleavage provides 'snapshots' of RNA tertiary structure or protein interactions that bury the RNA backbone. Generation of hydroxyl radicals with a high-flux synchrotron X-ray beam provides analysis on a short timescale (5-100 msec), which enables the structures of folding intermediates or other transient conformational states to be determined in biochemical solutions or cells. This article provides protocols for using synchrotron beamlines for hydroxyl radical footprinting. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.
Li, Jie; Li, Guo-feng; Wu, Yan; Wang, Ning-hui; Huang, Qiu-nan
2004-01-01
Positive DC corona discharge is formed with needle-plate electrode configuration, in which the water vapor is ejected though the needle points. The purpose is to increase the numbers of the water-based radicals, ionize the water molecule and improve the desulfuration efficiency of pulsed corona reactor. The water ions were determined by four stages molecular beam mass spectrometer and diagnose the water-based radicals by emission spectrograph. A conclusion on formation of ions and radicals with DC corona discharges can be drawn.
Fung, Mitchell; Bowsher, John G; Van Citters, Douglas W
2018-06-01
Ultra-high molecular weight polyethylene (UHMWPE) is the current gold standard for bearing materials used in total joint arthroplasty. High-dose radiation is commonly used to crosslink UHMWPE, thereby improving its wear resistance. A subsequent remelting step eliminates trapped residual free radicals to promote oxidative stability on the shelf, and to prevent material degradation over the long term. Assessment of clinically retrieved, highly crosslinked UHMWPE devices shows signs of unanticipated oxidation occurring in vivo, despite the absence of free radicals prior to implantation. These findings warrant further investigation into possible factors impacting this phenomenon along with its clinical implications. The overall objective of this work is to quantify the influence of irradiation dose and source on UHMWPE's oxidative stability, along with the effects of oxidation on the ultimate mechanical properties, including strength, ductility, and toughness. The results showed a strong positive correlation between maximum oxidation and initial transvinylene content. Critical oxidation levels in the context of mechanical property loss were determined for e-beam and gamma treatments at various radiation doses. Further, it was shown that critical oxidation was more dependent on radiation dose and less dependent on source. If in vivo oxidation persists in these devices, this can potentially lead to mechanical failure (e.g. fatigue damage) as observed in terminally gamma-sterilized devices. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of hydrogen radical on decomposition of chlorosilane source gases
NASA Astrophysics Data System (ADS)
Sumiya, Masatomo; Akizuki, Tomohiro; Itaka, Kenji; Kubota, Makoto; Tsubouchi, Kenta; Ishigaki, Takamasa; Koinuma, Hideomi
2013-06-01
The effect of hydrogen radical on production of Si from chlorosilane sources has been studied. We used hydrogen radical generated from pulsed thermal plasma to decompose SiHCl3 and SiCl4. Hydrogen radical was effective for lowering the temperature to produce Si from SiHCl3. SiCl4 source, which was chemically stable and by-product in Siemens process, was decomposed effectively by hydrogen radical. The decomposition of SiCl4 was consistent with the thermo-dynamical calculation predicting that the use of hydrogen radical could drastically enhance the yield of Si production rather than case of H2 gas.
Oxidative capacity of the Mexico City atmosphere - Part 1: A radical source perspective
NASA Astrophysics Data System (ADS)
Volkamer, R.; Sheehy, P.; Molina, L. T.; Molina, M. J.
2010-07-01
A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time-resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; the MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10-25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: Oxygenated VOC other than HCHO about 33%; HCHO and O3 photolysis each about 20%; O3/alkene reactions and HONO photolysis each about 12%, other sources <3%. Nitryl chloride photolysis could potentially contribute ~15% additional radicals, while NO2* + water makes - if any - a very small contribution (~2%). The peak radical production of ~7.5 107 molec cm-3 s-1 is found already at 10:00 a.m., i.e., more than 2.5 h before solar noon. O3/alkene reactions are indirectly responsible for ~33% of these radicals. Our measurements and analysis comprise a database that enables testing of the representation of radical sources and radical chain reactions in photochemical models. Since the photochemical processing of pollutants in the MCMA is radical limited, our analysis identifies the drivers for ozone and SOA formation. We conclude that reductions in VOC emissions provide an efficient opportunity to reduce peak concentrations of these secondary pollutants, because (1) about 70% of radical production is linked to VOC precursors; (2) lowering the VOC/NOx ratio has the further benefit of reducing the radical re-cycling efficiency from radical chain reactions (chemical amplification of radical sources); (3) a positive feedback is identified: lowering the rate of radical production from organic precursors also reduces that from inorganic precursors, like ozone, as pollution export from the MCMA caps the amount of ozone that accumulates at a lower rate inside the MCMA. Continued VOC reductions will in the future result in decreasing peak concentrations of ozone and SOA in the MCMA.
Oxidative capacity of the Mexico City atmosphere - Part 1: A radical source perspective
NASA Astrophysics Data System (ADS)
Volkamer, R.; Sheehy, P. M.; Molina, L. T.; Molina, M. J.
2007-04-01
A detailed analysis of OH, HO2 and RO2 radical sources is presented for the near field photochemical regime inside the Mexico City Metropolitan Area (MCMA). During spring of 2003 (MCMA-2003 field campaign) an extensive set of measurements was collected to quantify time resolved ROx (sum of OH, HO2, RO2) radical production rates from day- and nighttime radical sources. The Master Chemical Mechanism (MCMv3.1) was constrained by measurements of (1) concentration time-profiles of photosensitive radical precursors, i.e., nitrous acid (HONO), formaldehyde (HCHO), ozone (O3), glyoxal (CHOCHO), and other oxygenated volatile organic compounds (OVOCs); (2) respective photolysis-frequencies (J-values); (3) concentration time-profiles of alkanes, alkenes, and aromatic VOCs (103 compound are treated) and oxidants, i.e., OH- and NO3 radicals, O3; and (4) NO, NO2, meteorological and other parameters. The ROx production rate was calculated directly from these observations; MCM was used to estimate further ROx production from unconstrained sources, and express overall ROx production as OH-equivalents (i.e., taking into account the propagation efficiencies of RO2 and HO2 radicals into OH radicals). Daytime radical production is found to be about 10-25 times higher than at night; it does not track the abundance of sunlight. 12-h average daytime contributions of individual sources are: HCHO and O3 photolysis, each about 20%; O3/alkene reactions and HONO photolysis, each about 15%; unmeasured sources about 30%. While the direct contribution of O3/alkene reactions appears to be moderately small, source-apportionment of ambient HCHO and HONO identifies O3/alkene reactions as being largely responsible for jump-starting photochemistry about one hour after sunrise. The peak radical production is found to be higher than in any other urban influenced environment studied to date; further, differences exist in the timing of radical production. Our measurements and analysis comprise a database that enables testing of the representation of radical sources in photochemical models. Since the photochemical processing of pollutants is radical-limited in the MCMA, our analysis identifies the drivers for such processing. Three pathways are identified by which reductions in VOC emissions induce reductions in peak concentrations of secondary pollutants, such as O3 and secondary organic aerosol (SOA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Yuli; Zou Xubo; Guo Guangcan
We investigate the economical Gaussian cloning of coherent states with the known phase, which produces M copies from N input replica and can be implemented with degenerate parametric amplifiers and beam splitters.The achievable fidelity of single copy is given by 2M{radical}(N)/[{radical}(N)(M-1)+{radical}((1+N)(M{sup 2}+N))], which is bigger than the optimal fidelity of the universal Gaussian cloning. The cloning machine presented here works without ancillary optical modes and can be regarded as the continuous variable generalization of the economical cloning machine for qudits.
NASA Astrophysics Data System (ADS)
Vel Leitner, N. Karpel; Guilbault, I.; Legube, B.
2003-05-01
Electron beam irradiation of aqueous solutions of EDTA, EDDA NN‧, NTA, IDA and Cu-EDTA was performed in the presence of scavengers for the hydroxyl radicals (methanol) or for the solvated electrons (hydrogen peroxide). Experiments showed that for each molecule, the G-value decreases as the radiation dose increases from 1 to 25 kGy, and for EDTA, when the initial concentration decreases from 10 to 0.1 mmol l-1. At pH 8 and for 5 kGy, the G-values of NTA, IDA, EDTA and EDDA NN‧ removal ascribed to OHrad radicals are, respectively, 0.06, 0.06, 0.15 and 0.20 μmol J-1, whereas for the solvated electrons the G-values were, respectively, 0.01, 0.01, 0.06 and 0.04 μmol J-1. The rate constants of hydroxyl radicals and solvated electrons were determined by comparison with one competitor. For each active species (hydroxyl radical or solvated electron), the reactivity is connected to the number of nitrogen atoms and acetate groups. The rate constants of OHrad radicals are above 1010 and 8.6×109 l mol-1 s-1 for EDDA NN‧ and EDTA, respectively, 2.1×109 l mol-1 s-1 for IDA and 6.1×108 l mol-1 s-1 for NTA. The reactivity of solvated electrons is smaller and the rate constants are in the range 1.9×106-3.7×106 l mol-1 s-1 for NTA, IDA and EDDA NN‧ and equal 1.4×107 l mol-1 s-1 for EDTA. The reactivity of the complex Cu-EDTA towards OHrad does not differ to a large extent from EDTA whereas with e-aq the reactivity of Cu-EDTA is better than EDTA since ke-/Cu-EDTA reaches 2.2×109 l mol-1 s-1. It follows that when both active entities (OHrad and e-aq) are involved in the electron beam irradiation process, the removal of free aminopolycarboxylic acids is mainly due to OHrad radicals. However, the complex Cu-EDTA is concerned by both e-aq and OHrad radicals.
Modeling and measurement of hydrogen radical densities of in situ plasma-based Sn cleaning source
NASA Astrophysics Data System (ADS)
Elg, Daniel T.; Panici, Gianluca A.; Peck, Jason A.; Srivastava, Shailendra N.; Ruzic, David N.
2017-04-01
Extreme ultraviolet (EUV) lithography sources expel Sn debris. This debris deposits on the collector optic used to focus the EUV light, lowering its reflectivity and EUV throughput to the wafer. Consequently, the collector must be cleaned, causing source downtime. To solve this, a hydrogen plasma source was developed to clean the collector in situ by using the collector as an antenna to create a hydrogen plasma and create H radicals, which etch Sn as SnH4. This technique has been shown to remove Sn from a 300-mm-diameter stainless steel dummy collector. The H radical density is of key importance in Sn etching. The effects of power, pressure, and flow on radical density are explored. A catalytic probe has been used to measure radical density, and a zero-dimensional model is used to provide the fundamental science behind radical creation and predict radical densities. Model predictions and experimental measurements are in good agreement. The trends observed in radical density, contrasted with measured Sn removal rates, show that radical density is not the limiting factor in this etching system; other factors, such as SnH4 redeposition and energetic ion bombardment, must be more fully understood in order to predict removal rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carroll, M; Alqathami, M; Blencowe, A
Purpose Previous studies have reported an under-response of PRESAGE in a proton beam as a Result of the extremely high LET in the distal end of the spread out Bragg peak (SOBP). This work is a preliminary investigation to quantify the effect of the formulation, specifically the concentration of halocarbon radical initiator relative to leuco dye, on radical recombination resulting in LET dependence. Methods The traditional PRESAGE formulation developed by Heuris Pharma was altered to constitute radical initiator concentrations of 5, 15, and 30% (low, medium, and high) by weight with all other components balanced to maintain proportionality. Chloroform wasmore » specifically examined in this study and all dosimeters were made in-house. Cylindrical PRESAGE dosimeters (3.5cm diameter and 6cm length) were made for each formulation and irradiated by a 200-MeV proton beam to 500 cGy across a 2cm SOBP. Dosimeters were read out using the DMOS optical-CT scanner. The dose distributions were analyzed and dose profiles were used to compare the relative dose response to find the stability across the high-LET region of the SOBP. LET dependence was measured by the variation to ion chamber measurements for the final 25% of the SOBP (∼0.5cm) prior to the distal-90 of each profile. Results Relative to ion chamber data, all PRESAGE dosimeters showed an under-response at the distal end of the SOBP. The medium concentration formulation matched most closely with an average 8.3% under-response closely followed by the low concentration at 12.2% and then the high concentration at 22.8%. In all three cases, the highest points of discrepancy were in the distal most regions. Conclusion The radical initiator concentration in PRESAGE can be tailored to reduce the LET dependence in a proton beam. This warrants further study to quantify comprehensively the effect of concentration of different halocarbon radical initiators on LET dependency. Grant number 5RO1CA100835.« less
NASA Technical Reports Server (NTRS)
Misra, Prabhakar; She, Yong-Bo; Zhu, Xin-Ming; King, Michael
1997-01-01
Combustion studies under both normal gravity and microgravity conditions depend a great deal on the availability and quality of the diagnostic systems used for such investigations. Microgravity phenomena are specially susceptible to even small perturbations and therefore non-intrusive diagnostic techniques are of paramount importance for successful understanding of reduced-gravity combustion phenomena. Several non-intrusive diagnostic techniques are available for probing and delineating normal as well as reduced gravity combustion processes, such as Rayleigh scattering, Raman scattering, Mie scattering, velocimetry, interferometric and Schlieren techniques, emission and laser-induced fluorescence (LIF) spectroscopy. Our approach is to use the LIF technique as a non-intrusive diagnostic tool for the study of combustion-associated free radicals and use the concomitant optogalvanic transitions to accomplish precise calibration of the laser wavelengths used for recording the excitation spectra of transient molecular species. In attempting to perform spectroscopic measurements on chemical intermediates, we have used conventional laser sources as well as new and novel platforms employing rare-earth doped solid-state lasers. Conventional (commercially available) sources of tunable UV laser radiation are extremely cumbersome and energy-consuming devices that are not very suitable for either in-space or in-flight (or microgravity drop tower) experiments. Traditional LIF sources of tunable UV laser radiation involve in addition to a pump laser (usually a Nd:YAG laser with an attached frequency-doubling stage), a tunable dye laser. In turn, the dye laser has to be provided with a dye circulation system and a subsequent stage for frequency-doubling of the dye laser radiation, together with a servo-tuning system (termed the 'Autotracker') to follow the wavelength changes and also an optical system (called the 'Frequency Separator') for separation of the emanating visible and UV beams. In contrast to this approach, we have devised an alternate arrangement for recording LIF excitation spectra of free radicals (following appropriate precursor fragmentation) that utilizes a tunable rare-earth doped solid state laser system with direct UV pumping. We have designed a compact and portable tunable UV laser system incorporating features necessary for both in-space and in-flight spectroscopy experiments. For the purpose of LIF excitation, we have developed an all-solid-state tunable UV laser that employs direct pumping of the solid-state UV-active medium employing UV harmonics from a Nd:YAG laser. An optical scheme with counterpropagating photolysis and excitation beams focused by suitable lenses into a reaction vacuum chamber was employed.
Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf
2017-11-13
A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Radical Sources in the Uintah Basin during 2013 Winter Ozone Episodes
NASA Astrophysics Data System (ADS)
Roberts, J. M.; Yuan, B.; Veres, P. R.; Warneke, C.; De Gouw, J. A.; Geiger, F.; Brown, S. S.; Edwards, P. M.; Wild, R.; Min, K.; Bates, T. S.; Quinn, P.; Banta, R. M.; Zamora, R. J.; McLaren, R.; Young, C.; Kercher, J. P.; Thornton, J. A.; Williams, E. J.
2013-12-01
Winter time O3 in excess of the NAAQS, 75 ppbv, has been observed in several geographic basins in Wyoming and Utah that are heavily impacted by emissions from oil and gas operations. The timing and circumstances of these high O3 events imply that radical sources such as HONO, HCHO, and perhaps ClNO2 are significant relative to the traditional O3-photolysis channel. Here we present data from the 2013 Uintah Basin Winter Ozone Study (UBWOS) that show that HONO and HCHO were the major sources of radicals during O3 episodes. This result stands in contrast to the results obtained in more typical urban atmospheres, such as the CalNEx 2010 measurements in Pasadena, where O3 photolysis was found to be the major radical source. The precise contribution of each radical source during UBWOS 2013 awaits further work on the fluxes to and from snow surfaces, and verification of HONO measurement techniques. Such a coupling of radical and NOx sources complicates the traditional NOx vs.VOC paradigm in which one or the other quantity determines the best O3 control strategy. This amplifies the need for a quantitative understanding of NOx to HONO conversion mechanisms.
Energy Beam Highways Through the Skies
NASA Technical Reports Server (NTRS)
Myrabo, Leik N.
1996-01-01
The emergence of Energy Beam Flight Transportation Systems could dramatically change the way we travel in the 21st Century. A framework for formulating 'Highways of Light' and the top level architectures that invoke radically new Space Power Grid infrastructure, are introduced. Basically, such flight systems, hereafter called Lightcraft, would employ off-board energy beam sources (either laser or microwave) to energize on-board dependent 'motors' -- instead of the traditional autonomous 'engines' with their on-board energy sources (e.g., chemical fuels). Extreme reductions in vehicle dry mass appear feasible with the use of off-board power and a high degree of on-board artificial intelligence. Such vehicles may no longer need airports for refueling (since they require no propellant), and could possibly pick up travelers at their homes -- before motoring over to one of many local boost stations, for the flight out. With off-board power, hyper-energetic acceleration performance and boost-glide trajectories become feasible. Hypersonic MS airbreathing propulsion can enable boosts up to twice escape velocity, which will cut trip times to the moon down to 5.5 hours. The predominant technological, environmental and social factors that will result from such transportation systems will be stressed. This presentation first introduces the remote source siting options for the space power system infrastructure, and then provides three representative laser/microwave Lightcraft options (derived from historical Case Studies): i.e., 'Acorn', 'Toy Top', and 'Disc.' Next the gamut of combined-cycle engine options developed for these Lightcraft are examined -- to illuminate the 'emerging technologies' that must be harnessed to produce flight hardware. Needed proof-of concept experiments are identified, along with the Macro-Level Issues that can springboard these revolutionary concepts into hardware reality.
Missing Peroxy Radical Sources within a Summertime Ponderosa Pine Forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, G. M.; Cantrell, Chris; Kim, S.
2014-05-13
Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptvmore » and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Peroxy radical sinks are unlikely to be overestimated, suggesting missing sources. A close comparison of model results with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within the forest, and we conclude that a similar mechanism may underlie many such anomalous findings.« less
Missing Peroxy Radical Sources Within a Rural Forest Canopy
NASA Technical Reports Server (NTRS)
Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.;
2013-01-01
Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rondeau, G.D.
1989-01-01
Magnetically insulated diodes (MIDs) are of interest as ion sources for inertial confinement fusion. The authors examined several issues that are of concern with MIDs, including ion turn-on delay and anode plasma production, and diode impedance history and particle current scaling with the applied magnetic field and gas spacing. The LION pulsed power generator (1.5 MV, 4 {Omega}, 40 ns pulse length) was used to power an extractor geometry magnetically insulated (radical magnetic field) ion beam diode. The diode was studied with three anode configurations. In the first, with epoxy-filled-groove (epoxy) anodes, scaling of the ion and electron currents withmore » the gap and the magnetic field was examined. He found that the observed ion current is consistent with a diode model that has been successful with barrel geometry MIDs. The electron leakage current scaled proportionally to 1/Bd{sup 2}, where d is the anode-cathode gap spacing and B is the magnetic field strength. Studies of ion beam propagation in vacuum showed that space charge non-neutrality near the magnetic field coils caused the beam to expand initially. Later in the ion pulse (20 to 30 ns), the beam expansion became much less severe. The second anode configuration utilized an electron collector protruding above an epoxy anode surface. With the collector, he observed less bremsstrahlung across the active anode region. The last anode configuration studied was the exploding metal film active anode plasma source (EMFAAPS). Current from the accelerator was directed by an electron collector or a plasma opening switch through a thin aluminum film, which exploded to form the anode plasma.« less
von Keudell, Achim; Corbella, Carles
2017-01-01
The interaction of plasmas with surfaces is dominated by synergistic effects between incident ions and radicals. Film growth is accelerated by the ions, providing adsorption sites for incoming radicals. Chemical etching is accelerated by incident ions when chemical etching products are removed from the surface by ion sputtering. The latter is the essence of anisotropic etching in microelectronics, as elucidated by the seminal paper of Coburn and Winters [J. Appl. Phys. 50, 3189 (1979)]. However, ion-radical-synergisms play also an important role in a multitude of other systems, which are described in this article: (1) hydrocarbon thin film growth from methyl radicals and hydrogen atoms; (2) hydrocarbon thin film etching by ions and reactive neutrals; (3) plasma inactivation of bacteria; (4) plasma treatment of polymers; and (5) oxidation mechanisms during reactive magnetron sputtering of metal targets. All these mechanisms are unraveled by using a particle beam experiment to mimic the plasma–surface interface with the advantage of being able to control the species fluxes independently. It clearly shows that the mechanisms in action that had been described by Coburn and Winters [J. Appl. Phys. 50, 3189 (1979)] are ubiquitous. PMID:29104360
Roy, Catherine; Foudi, Fatah; Charton, Jeanne; Jung, Michel; Lang, Hervé; Saussine, Christian; Jacqmin, Didier
2013-04-01
The aim of this retrospective study was to determine the respective accuracies of three types of functional MRI sequences-diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE) MRI, and 3D (1)H-MR spectroscopy (MRS)-in the depiction of local prostate cancer recurrence after two different initial therapy options. From a cohort of 83 patients with suspicion of local recurrence based on prostate-specific antigen (PSA) kinetics who were imaged on a 3-T MRI unit using an identical protocol including the three functional sequences with an endorectal coil, we selected 60 patients (group A, 28 patients who underwent radical prostatectomy; group B, 32 patients who underwent external-beam radiation) who had local recurrence ascertained on the basis of a transrectal ultrasound-guided biopsy results and a reduction in PSA level after salvage therapy. All patients presented with a local relapse. Sensitivity with T2-weighted MRI and 3D (1)H-MRS sequences was 57% and 53%, respectively, for group A and 71% and 78%, respectively, for group B. DCE-MRI alone showed a sensitivity of 100% and 96%, respectively, for groups A and B. DWI alone had a higher sensitivity for group B (96%) than for group A (71%). The combination of T2-weighted imaging plus DWI plus DCE-MRI provided a sensitivity as high as 100% in group B. The performance of functional imaging sequences for detecting recurrence is different after radical prostatectomy and external-beam radiotherapy. DCE-MRI is a valid and efficient tool to detect prostate cancer recurrence in radical prostatectomy as well as in external-beam radiotherapy. The combination of DCE-MRI and DWI is highly efficient after radiation therapy. Three-dimensional (1)H-MRS needs to be improved. Even though it is not accurate enough, T2-weighted imaging remains essential for the morphologic analysis of the area.
Crossed Molecular Beam Studies and Dynamics of Decomposition of Chemically Activated Radicals
DOE R&D Accomplishments Database
Lee, Y. T.
1973-09-01
The power of the crossed molecular beams method in the investigation of the dynamics of chemical reactions lies mainly in the direct observation of the consequences of single collisions of well controlled reactant molecules. The primary experimental observations which provide information on reaction dynamics are the measurements of angular and velocity distributions of reaction products.
Immobilization of bacterial proteases on water-solved polymer by means of electron beam
NASA Astrophysics Data System (ADS)
Gonchar, A. M.; Auslender, V. L.
1996-12-01
Possibility of electron beam usage for proteases' immobilization on 1,4-polyalkylene oxide (1,4-PAO) was studied to obtain biologically active complex for multi-purpose usage. It is shown that immobilization of Bacillus Subtilis protease takes place due to free-radical linking of enzyme and carrier with formation of mycellium-like structures. Immobilization improves heat resistance of enzyme up to 60°C without substrate and up to 80°C in presence of substrate, widens range of pH activity in comparison with non-immobilized forms. Immobilized proteases do not contain peroxides or long-live radicals. Our results permitted to create technologies for production of medical and veterinary preparations, active components for wool washing agents and leather fabrication technology.
NASA Astrophysics Data System (ADS)
Hu, N.; Green, S. A.
2012-12-01
Smoke near the source of biomass burning contains high concentrations of reactive compounds, with NO and CH3CHO concentrations four to six orders of magnitude higher than those in the ambient atmosphere. Tobacco smoke represents a special case of biomass burning that is quite reproducible in the lab and may elucidate early processes in smoke from other sources. The origins, identities, and reactions of radical species in tobacco smoke are not well understood, despite decades of study on the concentrations and toxicities of the relatively stable compounds in smoke. We propose that reactions of NO2 and aldehydes are a primary source for transient free radicals in tobacco smoke, which contrasts with the long-surmised mechanism of reaction between NO2 and dienes. The objective of this study was to investigate the sources, sinks and cycling of acetyl radical in tobacco smoke. Experimentally, the production of acetyl radical was demonstrated both in tobacco smoke and in a simplified mixture of air combined with NO and acetaldehyde, both of which are significant components of smoke. Acetyl radicals were trapped from the gas phase using 3-amino-2, 2, 5, 5-tetramethyl-proxyl (3AP) on solid support to form stable 3AP adducts for later analysis by high performance liquid chromatography (HPLC), mass spectrometry/tandem mass spectrometry (MS-MS/MS) and liquid chromatography-mass spectrometry (LC-MS). The dynamic nature of radical cycling in smoke makes it impossible to define a fixed concentration of radical species; 2.15×e13-3.18×e14 molecules/cm3 of acetyl radicals were measured from different cigarette samples and smoking conditions. Matlab was employed to simulate reactions of NO, NO2, O2, and a simplified set of organic compounds known to be present in smoke, with a special emphasis on acetaldehyde and the acetyl radical. The NO2/acetaldehyde mechanism initiates a cascade of chain reactions, which accounts for the most prevalent known carbon-centered radicals found in tobacco smoke, and pathways for formation of OH and peroxyl species. Tobacco smoke provides a new perspective of radical generation in a relatively well-defined biomass burning process.
Physical factors influence for biologic systems
NASA Astrophysics Data System (ADS)
Piruzyan, L. A.
2005-08-01
Physical methods are widely spread in diagnostics and therapy of different pathologies, especially in oncology. The application of lasers occurred to be the perspective approach for combined methods application in medicine. Our work is devoted to investigation of thermal effect of focused laser beam in the model of Garding-Passi melanoma and also to the study of free radicals activity after the radiation with non-focused laser beam. The histologic alterations correlated with theoretical calculations of temperature distribution in irradiated tissue for energies 30-60 J attracted our interest. The values of maximal temperatures in depths of tissue for energies 30-60 J were carried out. In the model of permanent magnetic field (PMF) effect for mice ascites sarcoma 37 we have showed the linear dependence of tumor growth inhibition from the period of PMF treatment. Simultaneously we investigated PMF influence for free radical"s (FR) concentrations in mice organs and tissues and potentially appearing questions of PMF effect for biopotential in connection with FR formation. We have also studied the alterations of K, Na and Ca ions concentrations in ascetic fluids after animal"s PMF treatment. We revealed some reasons of biopotential generation and concluded that biopotential is not the result of specific ions gradient only but its generation can be followed by free radicals states appearance and occurrence of semi-conductivity in biostructures.
Using polarized muons as ultrasensitive spin labels in free radical chemistry
NASA Astrophysics Data System (ADS)
McKenzie, Iain; Roduner, Emil
2009-08-01
In a chemical sense, the positive muon is a light proton. It is obtained at the ports of accelerators in beams with a spin polarization of 100%, which makes it a highly sensitive probe of matter. The muonium atom is a light hydrogen isotope, nine times lighter than H, with a muon as its nucleus. It reacts the same way as H, and by addition to double bonds it is implemented in free radicals in which the muon serves as a fully polarized spin label. It is reviewed here how the muon can be used to obtain information about muonium and radical reaction rates, radical structure, dynamics, and local environments. It can even tell us what a fragrance molecule does in a shampoo.
NASA Astrophysics Data System (ADS)
Furuyama, Kohta; Yamanaka, Kazuyuki; Higurashi, Eiji; Suga, Tadatomo
2018-02-01
Indium is a commonly used metal for sealing, bonding, and soldering due to its good malleability and ductility even at cryogenic temperatures. The effects of hydrogen radical treatment on indium surface oxide removal were evaluated by the spreading ratio test of indium balls (diameter, 300 µm purity, 99.99%). It was found that hydrogen radical treatment longer than 20 s at temperatures higher than 170 °C results in successful surface oxide removal. X-ray photoelectron spectroscopy analysis was carried out to study the re-oxidation behavior after treatment, and it was found that hydrogen radical treatment slows down the re-oxidation of indium compared with surface oxide removal realized by physical bombardment with an argon fast atom beam.
Radiotherapy using a laser proton accelerator
NASA Astrophysics Data System (ADS)
Murakami, Masao; Hishikawa, Yoshio; Miyajima, Satoshi; Okazaki, Yoshiko; Sutherland, Kenneth L.; Abe, Mitsuyuki; Bulanov, Sergei V.; Daido, Hiroyuki; Esirkepov, Timur Zh.; Koga, James; Yamagiwa, Mitsuru; Tajima, Toshiki
2008-06-01
Laser acceleration promises innovation in particle beam therapy of cancer where an ultra-compact accelerator system for cancer beam therapy can become affordable to a broad range of patients. This is not feasible without the introduction of a technology that is radically different from the conventional accelerator-based approach. Because of its compactness and other novel characteristics, the laser acceleration method provides many enhanced capabilities
PRODUCTS OF THE GAS-PHASE REACTIONS OF 1,3-BUTADIENE WITH OH AND NO3 RADICALS. (R825252)
1,3-Butadiene is emitted into the atmosphere from a number of sources
including combustion sources and is listed in the United States as a hazardous
air pollutant. In the atmosphere, 1,3-butadiene reacts with OH radicals,
NO3 radicals, and O3 ...
Free radicals: properties, sources, targets, and their implication in various diseases.
Phaniendra, Alugoju; Jestadi, Dinesh Babu; Periyasamy, Latha
2015-01-01
Free radicals and other oxidants have gained importance in the field of biology due to their central role in various physiological conditions as well as their implication in a diverse range of diseases. The free radicals, both the reactive oxygen species (ROS) and reactive nitrogen species (RNS), are derived from both endogenous sources (mitochondria, peroxisomes, endoplasmic reticulum, phagocytic cells etc.) and exogenous sources (pollution, alcohol, tobacco smoke, heavy metals, transition metals, industrial solvents, pesticides, certain drugs like halothane, paracetamol, and radiation). Free radicals can adversely affect various important classes of biological molecules such as nucleic acids, lipids, and proteins, thereby altering the normal redox status leading to increased oxidative stress. The free radicals induced oxidative stress has been reported to be involved in several diseased conditions such as diabetes mellitus, neurodegenerative disorders (Parkinson's disease-PD, Alzheimer's disease-AD and Multiple sclerosis-MS), cardiovascular diseases (atherosclerosis and hypertension), respiratory diseases (asthma), cataract development, rheumatoid arthritis and in various cancers (colorectal, prostate, breast, lung, bladder cancers). This review deals with chemistry, formation and sources, and molecular targets of free radicals and it provides a brief overview on the pathogenesis of various diseased conditions caused by ROS/RNS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Aaron W.; Ryazanov, Mikhail; Sullivan, Erin N.
2016-07-14
The photodissociation dynamics of the methyl perthiyl radical (CH{sub 3}SS) have been investigated using fast-beam coincidence translational spectroscopy. Methyl perthiyl radicals were produced by photodetachment of the CH{sub 3}SS{sup −} anion followed by photodissociation at 248 nm (5.0 eV) and 193 nm (6.4 eV). Photofragment mass distributions and translational energy distributions were measured at each dissociation wavelength. Experimental results show S atom loss as the dominant (96%) dissociation channel at 248 nm with a near parallel, anisotropic angular distribution and translational energy peaking near the maximal energy available to ground state CH{sub 3}S and S fragments, indicating that the dissociationmore » occurs along a repulsive excited state. At 193 nm, S atom loss remains the major fragmentation channel, although S{sub 2} loss becomes more competitive and constitutes 32% of the fragmentation. The translational energy distributions for both channels are very broad at this wavelength, suggesting the formation of the S{sub 2} and S atom products in several excited electronic states.« less
Radiation-induced effects in the electron-beam irradiation of dietary flavonoids
NASA Astrophysics Data System (ADS)
Tamba, M.; Torreggiani, A.
2004-09-01
The harmful effects of oxidative processes in living organisms can be reduced by the dietary intake of flavonoids, a class of phenolic compounds ubiquitous in plants and widely found in a number of fruits, vegetables and beverages. Many fruits and vegetables are treated by irradiation to solve preservation problems and a radical-induced degradation of nutrients, including polyphenols, may occur. The free radical chemistry of two abundant flavonoids in food, catechin and quercetin, have been investigated by using pulse radiolysis technique. The central role of the phenoxyl-type radical and the strong influence of the state of protonation of the compounds on the pathway of formation and decay of the corresponding oxidized radicals has been evidenced from the spectral properties and chemical reactivity of the radicals derived from the attack of several oxidizing species ( ṡOH, N 3ṡ SO 4-ṡ).
NASA Astrophysics Data System (ADS)
Smith, Clare L.; Ankers, Elizabeth; Best, Stephen P.; Gagliardi, Frank; Katahira, Kai; Tsunei, Yseu; Tominaga, Takahiro; Geso, Moshi
2017-12-01
The suitability of IRGANOX®1076 in paraffin wax as a near-tissue equivalent radiation dosimeter was investigated for various radiotherapy beam types; kV and MV X-rays, electrons and protons over clinically-relevant doses (2 -20 Gy). The radical formed upon exposure to ionising radiations was measured by Electron Paramagnetic Resonance (EPR) spectroscopy, and the single peak signal obtained for solid solutions of IRGANOX®1076 in wax is attributed to the phenoxyl radical obtained by net loss of H•. Irradiation of solid IRGANOX®1076 gives a doublet consistent with the formation of the phenol cation radical, obtained by electron loss. Solid solutions of IRGANOX®1076 in paraffin wax give a linear dose response for all types of radiations examined, which was energy independent for MV, electron and proton beams, and energy-dependent for kV X-ray irradiation. Reliable dose measurements were obtained with exposures as low as 2 Gy, and comparisons with alanine wax-pellets containing the same amount of dosimeter material (w/w) gave similar responses for all beam types investigated. Post-irradiation measurements (up to 77 days for proton irradiation for samples stored in the dark and at room temperature) indicate good signal stability with minimal signal fading (between 1.6 to 3.8%). Relative to alanine dosimeters, solid solutions of IRGANOX®1076 in wax give EPR signals with better sensitivity at low dose and do not significantly change with the orientation of the sample. Solid solutions of IRGANOX®1076 are ideal for applications in radiotherapy dosimetry for X-rays and charged particles, as IRGANOX®1076 is relatively cheap, can easily and reproducibly prepared in wax and be moulded to different shapes.
NASA Astrophysics Data System (ADS)
Semsang, Nuananong; Yu, LiangDeng
2013-07-01
Low-energy ion beam bombardment has been used to mutate a wide variety of plant species. To explore the indirect effects of low-energy ion beam on biological damage due to the free radical production in plant cells, the increase in antioxidant enzyme activities and lipid peroxidation level was investigated in ion-bombarded rice seeds. Local rice seeds were bombarded with nitrogen or argon ion beams at energies of 29-60 keV and ion fluences of 1 × 1016 ions cm-2. The activities of the antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), glutathione reductase (GR), glutathione S-transferase (GST) and lipid peroxidation level were assayed in the germinated rice seeds after ion bombardment. The results showed most of the enzyme activities and lipid peroxidation levels in both the argon and nitrogen bombarded samples were higher than those in the natural control. N-ion bombardment could induce higher levels of antioxidant enzyme activities in the rice samples than the Ar-ion bombardment. Additional effects due to the vacuum condition were found to affect activities of some antioxidant enzymes and lipid peroxidation level. This study demonstrates that ion beam bombardment and vacuum condition could induce the antioxidant enzyme activity and lipid peroxidation level which might be due to free radical production in the bombarded rice seeds.
Young, Cora J; Washenfelder, Rebecca A; Roberts, James M; Mielke, Levi H; Osthoff, Hans D; Tsai, Catalina; Pikelnaya, Olga; Stutz, Jochen; Veres, Patrick R; Cochran, Anthony K; VandenBoer, Trevor C; Flynn, James; Grossberg, Nicole; Haman, Christine L; Lefer, Barry; Stark, Harald; Graus, Martin; de Gouw, Joost; Gilman, Jessica B; Kuster, William C; Brown, Steven S
2012-10-16
Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.
NASA Astrophysics Data System (ADS)
Kortyna, A.; Lesko, D. M. B.; Nesbitt, D. J.
2018-05-01
The combination of a pulsed supersonic slit-discharge source and single-mode difference frequency direct absorption infrared spectroscopy permit first high resolution infrared study of the iodomethyl (CH2I) radical, with the CH2I radical species generated in a slit jet Ne/He discharge and cooled to 16 K in the supersonic expansion. Dual laser beam detection and collisional collimation in the slit expansion yield sub-Doppler linewidths (60 MHz), an absolute frequency calibration of 13 MHz, and absorbance sensitivities within a factor of two of the shot-noise limit. Fully rovibrationally resolved direct absorption spectra of the CH2 symmetric stretch mode (ν2) are obtained and fitted to a Watson asymmetric top Hamiltonian with electron spin-rotation coupling, providing precision rotational constants and spin-rotation tensor elements for the vibrationally excited state. Analysis of the asymmetric top rotational constants confirms a vibrationally averaged planar geometry in both the ground- and first-excited vibrational levels. Sub-Doppler resolution permits additional nuclear spin hyperfine structures to be observed, with splittings in excellent agreement with microwave measurements on the ground state. Spectroscopic data on CH2I facilitate systematic comparison with previous studies of halogen-substituted methyl radicals, with the periodic trends strongly correlated with the electronegativity of the halogen atom. Interestingly, we do not observe any asymmetric CH2 stretch transitions, despite S/N ≈ 25:1 on strongest lines in the corresponding symmetric CH2 stretch manifold. This dramatic reversal of the more typical 3:1 antisymmetric/symmetric CH2 stretch intensity ratio signals a vibrational transition moment poorly described by simple "bond-dipole" models. Instead, the data suggest that this anomalous intensity ratio arises from "charge sloshing" dynamics in the highly polar carbon-iodine bond, as supported by ab initio electron differential density plots and indeed consistent with observations in other halomethyl radicals and protonated cluster ions.
Theory of beam plasma discharge
NASA Technical Reports Server (NTRS)
Papadopoulos, K.
1982-01-01
The general theory of beam plasma discharge (BPD) is discussed in relation to space and laboratory beam injection situations. An important concept introduced is that even when beam plasma instabilities are excited, there are two regime of BPD with radically different observational properties. They are described here as BPD with either classical or anomalous energy depositions. For high pressures or low altitudes, the classical is expected to dominate. For high altitudes and laboratory experiments, where the axial system size is less than lambda sub en, no BPD will be triggered unless the unstable waves are near the ambient plasma frequency and their amplitudes at saturation are large enough to create suprathermal tails by collapsing.
Yang, Tao; Muzangwa, Lloyd; Kaiser, Ralf I; Jamal, Adeel; Morokuma, Keiji
2015-09-07
Crossed molecular beam experiments and electronic structure calculations on the reaction of the meta-tolyl radical with vinylacetylene were conducted to probe the formation of methyl-substituted naphthalene isomers. We present the compelling evidence that under single collision conditions 1- and 2-methylnaphthalene can be formed without an entrance barrier via indirect scattering dynamics through a bimolecular collision of two non-PAH reactants: the meta-tolyl radical and vinylacetylene. The electronic structure calculations, conducted at the UCCSD(T)-F12b/cc-pVDZ//UM06-2x/cc-pVTZ + ZPE(UM06-2x/cc-pVTZ) level of theory, reveal that this reaction is initiated by the barrierless addition of the meta-tolyl radical to the terminal vinyl carbon (C1) of vinylacetylene, via a van-der-Waals complex implying that this mechanism can play a key role in forming methyl-substituted PAHs in low temperature extreme environments such as the low temperature interstellar medium and hydrocarbon-rich atmospheres of planets and their moons in the outer solar system. The reaction mechanism, proposed from the C11H11 potential energy surface, involves a sequence of isomerizations involving hydrogen transfer and ring closure, followed by hydrogen dissociation, which eventually leads to 1- and 2-methylnaphthalene in an overall exoergic process.
Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul
1999-01-01
A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Fang; Beames, Joseph M.; Lester, Marsha I., E-mail: milester@sas.upenn.edu
2014-12-21
Ozonolysis of alkenes, a principle non-photolytic source of atmospheric OH radicals, proceeds through unimolecular decay of energized carbonyl oxide intermediates, known as Criegee intermediates. In this work, cold dimethyl-substituted Criegee intermediates are vibrationally activated in the CH stretch overtone region to drive the 1,4 hydrogen transfer reaction that leads to OH radical products. IR excitation of (CH{sub 3}){sub 2}COO reveals the vibrational states with sufficient oscillator strength, coupling to the reaction coordinate, and energy to surmount the effective barrier (≤ 16.0 kcal mol{sup −1}) to reaction. Insight on the dissociation dynamics is gleaned from homogeneous broadening of the spectral features,more » indicative of rapid intramolecular vibrational energy redistribution and/or reaction, as well as the quantum state distribution of the OH X{sup 2}Π (v = 0) products. The experimental results are compared with complementary electronic structure calculations, which provide the IR absorption spectrum and geometric changes along the intrinsic reaction coordinate. Additional theoretical analysis reveals the vibrational modes and couplings that permit (CH{sub 3}){sub 2}COO to access to the transition state region for reaction. The experimental and theoretical results are compared with an analogous recent study of the IR activation of syn-CH{sub 3}CHOO and its unimolecular decay to OH products [F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science 345, 1596 (2014)].« less
NASA Astrophysics Data System (ADS)
Colby, Eric R.; Len, L. K.
Most particle accelerators today are expensive devices found only in the largest laboratories, industries, and hospitals. Using techniques developed nearly a century ago, the limiting performance of these accelerators is often traceable to material limitations, power source capabilities, and the cost tolerance of the application. Advanced accelerator concepts aim to increase the gradient of accelerators by orders of magnitude, using new power sources (e.g. lasers and relativistic beams) and new materials (e.g. dielectrics, metamaterials, and plasmas). Worldwide, research in this area has grown steadily in intensity since the 1980s, resulting in demonstrations of accelerating gradients that are orders of magnitude higher than for conventional techniques. While research is still in the early stages, these techniques have begun to demonstrate the potential to radically change accelerators, making them much more compact, and extending the reach of these tools of science into the angstrom and attosecond realms. Maturation of these techniques into robust, engineered devices will require sustained interdisciplinary, collaborative R&D and coherent use of test infrastructure worldwide. The outcome can potentially transform how accelerators are used.
NASA Astrophysics Data System (ADS)
Colby, Eric R.; Len, L. K.
Most particle accelerators today are expensive devices found only in the largest laboratories, industries, and hospitals. Using techniques developed nearly a century ago, the limiting performance of these accelerators is often traceable to material limitations, power source capabilities, and the cost tolerance of the application. Advanced accelerator conceptsa aim to increase the gradient of accelerators by orders of magnitude, using new power sources (e.g. lasers and relativistic beams) and new materials (e.g. dielectrics, metamaterials, and plasmas). Worldwide, research in this area has grown steadily in intensity since the 1980s, resulting in demonstrations of accelerating gradients that are orders of magnitude higher than for conventional techniques. While research is still in the early stages, these techniques have begun to demonstrate the potential to radically change accelerators, making them much more compact, and extending the reach of these tools of science into the angstrom and attosecond realms. Maturation of these techniques into robust, engineered devices will require sustained interdisciplinary, collaborative R&D and coherent use of test infrastructure worldwide. The outcome can potentially transform how accelerators are used.
Electron beams in research and technology
NASA Astrophysics Data System (ADS)
Mehnert, R.
1995-11-01
Fast electrons lose their energy by inelastic collisions with electrons of target molecules forming secondary electrons and excited molecules. Coulomb interaction of secondary electrons with valence electrons of neighboring molecules leads to the formation of radical cations, thermalized electrons, excited molecular states and radicals. The primary reactive species initiate chemical reactions in the materials irradiated. Polymer modifications using accelerated electrons such as cross-linking of cable insulation, tubes, pipes and moldings, vulcanization of elastomers, grafting of polymer surfaces, processing of foamed plastics and heat shrinkable materials have gained wide industrial acceptance. A steadily growing electron beam technology is curing of paints, lacquers, printing inks and functional coatings. Electron beam processing offers high productivity, the possibility to treat the materials at normal temperature and pressure, excellent process control and clean production conditions. On an industrial scale the most important application of fast electrons is curing of 100% reactive monomer/prepolymer systems. Mainly acrylates and epoxides are used to formulate functional coatings on substrates such as paper, foil, wood, fibre board and high pressure laminates. A survey is given about the reaction mechanism of curing, the characterization of cured coatings, and of some industrial application.
NASA Astrophysics Data System (ADS)
Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; Kapralov, Michail; Timoshenko, Gennady N.; Rozanov, Alexei; Krasavin, Eugene; Di Mauro, Ernesto
2016-11-01
Formamide (NH2CHO) has been irradiated in condensed phase at 273 K by 11B-boron beams in the presence of powdered meteorites of the chondrite and stony-iron types. Relative to the controls (no radiation or no catalysis), a variegate panel of compounds was observed, including purine and pyrimidine nucleobases (uracil, cytosine, adenine, and guanine), nucleobase analogues, heterocycles, and carboxylic acids involved in metabolic pathways. The presence of amino imidazole carbonitrile (AICN), 4,6-diamino purine (4,6-DAP) and 2,4-diamino pyrimidine (2,4-DAPy) among the observed products suggests the occurrence of an unified mechanism based on the generation of radical cyanide species (•CN). These observations contribute to outline plausible prebiotic scenarios involving 11B-boron as energy source.
NASA Astrophysics Data System (ADS)
Vogt, J.
This document is part of Part 3 of Subvolume D `Asymmetric Top Molecules' of Volume 29 `Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II `Molecules and Radicals'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alqathami, M; Lee, H; Ibbott, G
Purpose: To develop and evaluate novel radiochromic films for quality assurance in radiotherapy dosimetry. Materials and Methods: Novel radiochromic film compositions were formulated using leuco crystal violet (LCV) as a reporting system and tetrabromoethane as a free radical source. The film matrix used consisted of polyurethane polymer mixed with dibutyl phthalate plasticizer (20 wt%). The concentration of the radical initiator was kept constant at 10 wt% and the concentration of the LCV dye varied (1 and 2 wt%). To ensure uniform thickness of the film, its precursors were sandwiched between two pieces of glass separated by a 1 mm gapmore » between during the curing process. The films were cut into pieces and were irradiated with a 6 MV X-ray beam to selected doses. The change in optical density was measured using a flatbed scanner and a spectrophotometer. Results: The results showed that all film formulations exhibited a linear response with dose and an absorption maximum at ∼ 590 nm. The formulation with 2 wt% LCV was ∼ 30% more sensitive to dose than the formulation with 1 wt% LCV. Both films were very deformable. In addition, the radiochromic response of the film was found to bleach over a short period of time (few weeks) allowing the film to be reused for dose verification measurements. Conclusion: Both film formulations displayed excellent sensitivity and linearity to radiation dose and thus can be used for the 2D dosimetry of clinical megavoltage and kilovoltage X-ray beams. In addition, the thickness of the film could easily be increased allowing for their potential use as a deformable bolus material. However, thicker films would need more optimization of the manufacturing procedure to ensure consistent material uniformity and sensitivity are recommended.« less
Focused electron and ion beam systems
Leung, Ka-Ngo; Reijonen, Jani; Persaud, Arun; Ji, Qing; Jiang, Ximan
2004-07-27
An electron beam system is based on a plasma generator in a plasma ion source with an accelerator column. The electrons are extracted from a plasma cathode in a plasma ion source, e.g. a multicusp plasma ion source. The beam can be scanned in both the x and y directions, and the system can be operated with multiple beamlets. A compact focused ion or electron beam system has a plasma ion source and an all-electrostatic beam acceleration and focusing column. The ion source is a small chamber with the plasma produced by radio-frequency (RF) induction discharge. The RF antenna is wound outside the chamber and connected to an RF supply. Ions or electrons can be extracted from the source. A multi-beam system has several sources of different species and an electron beam source.
Towards mechanistic representations of SOA from BVOC + NO3 reactions
Monoterpene reaction with nitrate radicals is a significant source of organic aerosol in the southeast United States. This source of organic aerosol represents an anthropogenic control on biogenic organic aerosol since nitrate radicals result from NOx emissions and are generally ...
Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source
Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige
2009-01-01
We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928
NASA Technical Reports Server (NTRS)
Pellett, G. L.; Adams, B. R.
1983-01-01
A performance evaluation is conducted for a molecular beam/mass spectrometer (MB/MS) system, as applied to a 1-30 torr microwave-discharge flow reactor (MWFR) used in the formation of the methylperoxy radical and a study of its subsequent destruction in the presence or absence of NO(x). The modulated MB/MS system is four-staged and differentially pumped. The results obtained by the MWFR study is illustrative of overall system performance, including digital waveform analysis; significant improvements over previous designs are noted in attainable S/N ratio, detection limit, and accuracy.
Dissociative electron attachment to C{sub 2}F{sub 5} radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haughey, Sean A.; Field, Thomas A.; Langer, Judith
Dissociative electron attachment to the reactive C{sub 2}F{sub 5} molecular radical has been investigated with two complimentary experimental methods; a single collision beam experiment and a new flowing afterglow Langmuir probe technique. The beam results show that F{sup -} is formed close to zero electron energy in dissociative electron attachment to C{sub 2}F{sub 5}. The afterglow measurements also show that F{sup -} is formed in collisions between electrons and C{sub 2}F{sub 5} molecules with rate constants of 3.7 Multiplication-Sign 10{sup -9} cm{sup 3} s{sup -1} to 4.7 Multiplication-Sign 10{sup -9} cm{sup 3} s{sup -1} at temperatures of 300-600 K. Themore » rate constant increases slowly with increasing temperature, but the rise observed is smaller than the experimental uncertainty of 35%.« less
Quality of life outcomes following treatment for localized prostate cancer: is there a clear winner?
Parker, Walter R; Montgomery, Jeffery S; Wood, David P
2009-05-01
The majority of men treated for localized prostate cancer are cured of their disease. As a result, it is important to discuss long-term quality of life (QoL) expectations when counseling patients regarding treatment options. The varying QoL outcomes for radical prostatectomy, external beam radiotherapy, brachytherapy, and cryotherapy will be reviewed. Robotic and radical prostatectomy has similar outcomes with significant initial worsening of urinary continence and sexual function. External beam radiation has less impact on continence and sexual function but noteworthy bowel toxicity. Brachytherapy results in the most irritative urinary symptoms, with decreased sexual and bowel QoL as well. Cryotherapy greatly reduces sexual function. Every patient has unique pretreatment variables, priorities, and preferences. It is crucial to fully explain the range of oncologic and QoL implications when counseling patients regarding treatment for localized prostate cancer.
Radioactive iodine-125 implantation for cancer of the prostate.
Nag, S
1985-01-01
Localized cancer of the prostate can be treated by radical prostatectomy, external beam irradiation, or radioactive implantation with similar survival results. Radical prostatectomy, however, almost universally results in impotency, although a new, nerve-sparing procedure may preserve potency in B1 patients. External beam irradiation radiates a large volume of tissue with significant rectal and bladder morbidity, 23-47% risk of impotency, and requires prolonged treatment (6-8 weeks). Radioactive implantation may be done suprapubically or transperineally using iodine-125, gold-198, or radon-222 permanent implantation techniques and iridium-192 or radium-226 removable implantation techniques. Interstitial iodine-125 implantation is frequently employed since it is a short procedure and limits the morbidity to a 7% incidence of impotency, 20% urinary complications, and 5% rectal complications. The overall 5-year survival of patients with iodine-125 is 79%, the survival rate decreasing with increasing T or N stage or increasing grade of tumor.
Generalized expression for optical source fields
NASA Astrophysics Data System (ADS)
Kamacıoğlu, Canan; Baykal, Yahya
2012-09-01
A generalized optical beam expression is developed that presents the majority of the existing optical source fields such as Bessel, Laguerre-Gaussian, dark hollow, bottle, super Gaussian, Lorentz, super-Lorentz, flat-topped, Hermite-sinusoidal-Gaussian, sinusoidal-Gaussian, annular, Gauss-Legendre, vortex, also their higher order modes with their truncated, elegant and elliptical versions. Source intensity profiles derived from the generalized optical source beam fields are checked to match the intensity profiles of many individual known beam types. Source intensities for several interesting beam combinations are presented. Our generalized optical source beam field expression can be used to examine both the source characteristics and the propagation properties of many different optical beams in a single formulation.
Schroeck, Florian Rudolf; Jacobs, Bruce L; Bhayani, Sam B; Nguyen, Paul L; Penson, David; Hu, Jim
2017-11-01
Some of the high costs of robot-assisted radical prostatectomy (RARP), intensity-modulated radiotherapy (IMRT), and proton beam therapy may be offset by better outcomes or less resource use during the treatment episode. To systematically review the literature to identify the key economic trade-offs implicit in a particular treatment choice for prostate cancer. We systematically reviewed the literature according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) statement and protocol. We searched Medline, Embase, and Web of Science for articles published between January 2001 and July 2016, which compared the treatment costs of RARP, IMRT, or proton beam therapy to the standard treatment. We identified 37, nine, and three studies, respectively. RARP is costlier than radical retropubic prostatectomy for hospitals and payers. However, RARP has the potential for a moderate cost advantage for payers and society over a longer time horizon when optimal cancer and quality-of-life outcomes are achieved. IMRT is more expensive from a payer's perspective compared with three-dimensional conformal radiotherapy, but also more cost effective when defined by an incremental cost effectiveness ratio <$50 000 per quality-adjusted life year. Proton beam therapy is costlier than IMRT and its cost effectiveness remains unclear given the limited comparative data on outcomes. Using the Grades of Recommendation, Assessment, Development and Evaluation approach, the quality of evidence was low for RARP and IMRT, and very low for proton beam therapy. Treatment with new versus traditional technologies is costlier. However, given the low quality of evidence and the inconsistencies across studies, the precise difference in costs remains unclear. Attempts to estimate whether this increased cost is worth the expense are hampered by the uncertainty surrounding improvements in outcomes, such as cancer control and side effects of treatment. If the new technologies can consistently achieve better outcomes, then they may be cost effective. We review the cost and cost effectiveness of robot-assisted radical prostatectomy, intensity-modulated radiotherapy, and proton beam therapy in prostate cancer treatment. These technologies are costlier than their traditional counterparts. It remains unclear whether their use is associated with improved cure and reduced morbidity, and whether the increased cost is worth the expense. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hata, Masaharu; Miyanaga, Naoto; Tokuuye, Koichi
Purpose: To present outcomes of bladder-preserving therapy with proton beam irradiation in patients with invasive bladder cancer. Methods and Materials: Twenty-five patients with transitional cell carcinoma of the urinary bladder, cT2-3N0M0, underwent transurethral resection of bladder tumor(s), followed by pelvic X-ray irradiation combined with intra-arterial chemotherapy with methotrexate and cisplatin. Upon completion of these treatments, patients were evaluated by transurethral resection biopsy. Patients with no residual tumor received proton irradiation boost to the primary sites, whereas patients demonstrating residual tumors underwent radical cystectomy. Results: Of 25 patients, 23 (92%) were free of residual tumor at the time of re-evaluation; consequently,more » proton beam therapy was applied. The remaining 2 patients presenting with residual tumors underwent radical cystectomy. Of the 23 patients treated with proton beam therapy, 9 experienced recurrence at the median follow-up time of 4.8 years: local recurrences and distant metastases in 6 and 2 patients, respectively, and both situations in 1. The 5-year overall, disease-free, and cause-specific survival rates were 60%, 50%, and 80%, respectively. The 5-year local control and bladder-preservation rates were 73% and 96%, respectively, in the patients treated with proton beam therapy. Therapy-related toxicities of Grade 3-4 were observed in 9 patients: hematologic toxicities in 6, pulmonary thrombosis in 1, and hemorrhagic cystitis in 2. Conclusions: The present bladder-preserving regimen for invasive bladder cancer was feasible and effective. Proton beam therapy might improve local control and facilitate bladder preservation.« less
NASA Astrophysics Data System (ADS)
Demaison, J.
This document is part of Part 1 of Subvolume D 'Asymmetric Top Molecules' of Volume 29 'Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II 'Molecules and Radicals'.
Deterministic Nanopatterning of Diamond Using Electron Beams.
Bishop, James; Fronzi, Marco; Elbadawi, Christopher; Nikam, Vikram; Pritchard, Joshua; Fröch, Johannes E; Duong, Ngoc My Hanh; Ford, Michael J; Aharonovich, Igor; Lobo, Charlene J; Toth, Milos
2018-03-27
Diamond is an ideal material for a broad range of current and emerging applications in tribology, quantum photonics, high-power electronics, and sensing. However, top-down processing is very challenging due to its extreme chemical and physical properties. Gas-mediated electron beam-induced etching (EBIE) has recently emerged as a minimally invasive, facile means to dry etch and pattern diamond at the nanoscale using oxidizing precursor gases such as O 2 and H 2 O. Here we explain the roles of oxygen and hydrogen in the etch process and show that oxygen gives rise to rapid, isotropic etching, while the addition of hydrogen gives rise to anisotropic etching and the formation of topographic surface patterns. We identify the etch reaction pathways and show that the anisotropy is caused by preferential passivation of specific crystal planes. The anisotropy can be controlled by the partial pressure of hydrogen and by using a remote RF plasma source to radicalize the precursor gas. It can be used to manipulate the geometries of topographic surface patterns as well as nano- and microstructures fabricated by EBIE. Our findings constitute a comprehensive explanation of the anisotropic etch process and advance present understanding of electron-surface interactions.
Sugahara, Shintaro; Ueda, Yuto; Fukuhara, Kumiko; Kamamuta, Yuki; Matsuda, Yasushi; Murata, Tatsuro; Kuroda, Yasuhiro; Kabata, Kiyotaka; Ono, Masateru; Igoshi, Keiji; Yasuda, Shin
2015-11-01
Yacon (Smallanthus sonchifolius), a native Andean plant, has been cultivated as a crop and locally used as a traditional folk medicine for the people suffering from diabetes and digestive/renal disorders. However, the medicinal properties of this plant and its processed foods have not been completely established. This study investigates the potent antioxidative effects of herbal tea leaves from yacon in different free radical models and a ferric reducing model. A hot-water extract exhibited the highest yield of total polyphenol and scavenging effect on 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical among four extracts prepared with hot water, methanol, ethanol, and ethylacetate. In addition, a higher reducing power of the hot-water extract was similarly demonstrated among these extracts. Varying concentrations of the hot-water extract resulted in different scavenging activities in four synthetic free radical models: DPPH radical (EC50 28.1 μg/mL), 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) cation radical (EC50 23.7 μg/mL), galvinoxyl radical (EC50 3.06 μg/mL), and chlorpromazine cation radical (EC50 475 μg/mL). The yacon tea-leaf extract further demonstrated superoxide anion (O2(-)) radical scavenging effects in the phenazine methosulfate-NADH-nitroblue tetrazolium (EC50 64.5 μg/mL) and xanthine oxidase assay systems (EC50 20.7 μg/mL). Subsequently, incubating human neutrophilic cells in the presence of the tea-leaf extract could suppress the cellular O2(-) radical generation (IC50 65.7 μg/mL) in a phorbol 12-myristate 13-acetate-activated cell model. These results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. Yacon has been considered to be a potent alternative food source for patients who require a dietary cure in regional area, while the leaf part has been provided and consumed as an herbal tea in local markets. We demonstrated here potent antioxidative effects of the tea leaves from yacon in different free radical assays, reducing power assay, and cellular superoxide anion radical generation assay. Results support yacon tea leaves may be a good source of natural antioxidants for preventing O2(-) radical-mediated disorders. © 2015 Institute of Food Technologists®
Aravindakumar, Charuvila T; Schuchmann, Man Nien; Rao, Balijepalli S; von Sonntag, Justus; von Sonntag, Clemens
2003-01-21
The reactions of SO4.- with 2'-deoxycytidine 1a and cytidine 1b lead to very different intermediates (base radicals with 1a, sugar radicals with 1b). The present study provides spectral and kinetic data for the various intermediates by pulse radiolysis as well as information on final product yields (free cytosine). Taking these and literature data into account allows us to substantiate but also modify in essential aspects the current mechanistic concept (H. Catterall, M. J. Davies and B. C. Gilbert, J. Chem. Soc., Perkin Trans. 2, 1992, 1379). SO4.- radicals have been generated radiolytically in the reaction of peroxodisulfate with the hydrated electron (and the H. atom). In the reaction of SO4.- with 1a (k = 1.6 x 10(9) dm3 mol-1 s-1), a transient (lambda max = 400 nm, shifted to 450 nm at pH 3) is observed. This absorption is due to two intermediates. The major component (lambda max approximately 385 nm) does not react with O2 and has been attributed to an N-centered radical 4a formed upon sulfate release and deprotonation at nitrogen. The minor component, rapidly wiped out by O2, must be due to C-centered OH-adduct radical(s) 6a and/or 7a suggested to be formed by a water-induced nucleophilic replacement. These radicals decay by second-order kinetics. Free cytosine is only formed in low yields (G = 0.14 x 10(-7) mol J-1 upon electron-beam irradiation). In contrast, 1b gives rise to an intermediate absorbing at lambda max = 530 nm (shifted to 600 nm in acid solution) which rapidly decays (k = 6 x 10(4) s-1). In the presence of O2, the decay is much faster (k approximately 1.3 x 10(9) dm3 mol-1 s-1) indicating that this species must be a C-centered radical. This has been attributed to the C(5)-yl radical 8 formed upon the reaction of the C(2')-OH group with the cytidine SO4(.-)-adduct radical 2b. This reaction competes very effectively with the corresponding reaction of water and the release of sulfate and a proton generating the N-centered radical. Upon the decay of 8, sugar radical 11 is formed with the release of cytosine. The latter is formed with a G value of 2.8 x 10(-7) mol J-1 (85% of primary SO4.-) at high dose rates (electron beam irradiation). At low dose rates (gamma-radiolysis) its yield is increased to 7 x 10(-7) mol J-1 due to a chain reaction involving peroxodisulfate and reducing free radicals. Phosphate buffer prevents the formation of the sugar radical at the SO4(.-)-adduct stage by enhancing the rate of sulfate release by deprotonation of 2b and also by speeding up the decay of the C(5)-yl radical into another (base) radical. Cytosine release in cytidine is mechanistically related to strand breakage in poly(C). Literature data on the effect of dioxygen on strand breakage yields in poly(C) induced by SO4.- (suppressed) and upon photoionisation (unaltered) lead us to conclude that in poly(C) and also in the present system free radical cations are not involved to a major extent. This conclusion modifies an essential aspect of the current mechanistic concept.
Mass spectrometer with electron source for reducing space charge effects in sample beam
Houk, Robert S.; Praphairaksit, Narong
2003-10-14
A mass spectrometer includes an ion source which generates a beam including positive ions, a sampling interface which extracts a portion of the beam from the ion source to form a sample beam that travels along a path and has an excess of positive ions over at least part of the path, thereby causing space charge effects to occur in the sample beam due to the excess of positive ions in the sample beam, an electron source which adds electrons to the sample beam to reduce space charge repulsion between the positive ions in the sample beam, thereby reducing the space charge effects in the sample beam and producing a sample beam having reduced space charge effects, and a mass analyzer which analyzes the sample beam having reduced space charge effects.
NASA Astrophysics Data System (ADS)
Moradi, Christopher P.; Douberly, Gary E.; Tabor, Daniel P.; Sibert, Edwin
2016-06-01
The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite (CH3(CH2)3ONO) and i-butyl nitrite (CH3CH(CH3)CH2ONO) precursors, respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the C-H stretching region. In addition to three vibrations of n-propyl previously measured in an Ar matrix, we observe many unreported bands between 2800 and 3150 wn, which we attribute to propyl radicals. The C-H stretching modes observed above 2960 wn for both radicals are in excellent agreement with anharmonic frequencies computed using VPT2. Between 2800 and 2960 wn, however, the spectra of n-propyl and i-propyl radicals become quite congested and difficult to assign due to the presence of multiple anharmonic resonances. Computations employing a local mode Hamiltonian reveal the origin of the spectral congestion to be strong coupling between the high frequency C-H stretching modes and the lower frequency bending/scissoring motions. The only significant local coupling is between stretches and bends on the same CH2/CH3 group.
Compact Superconducting Radio-frequency Accelerators and Innovative RF Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kephart, Robert; Chattopadhyay, Swaapan; Milton, Stephen
2015-04-10
We will present several new technical and design breakthroughs that enable the creation of a new class of compact linear electron accelerators for industrial purposes. Use of Superconducting Radio-Frequency (SRF) cavities allow accelerators less than 1.5 M in length to create electron beams beyond 10 MeV and with average beam powers measured in 10’s of KW. These machines can have the capability to vary the output energy dynamically to produce brehmstrahlung x-rays of varying spectral coverage for applications such as rapid scanning of moving cargo for security purposes. Such compact accelerators will also be cost effective for many existing andmore » new industrial applications. Examples include radiation crosslinking of plastics and rubbers, creation of pure materials with surface properties radically altered from the bulk, modification of bulk or surface optical properties of materials, sterilization of medical instruments animal solid or liquid waste, and destruction of organic compounds in industrial waste water effluents. Small enough to be located on a mobile platform, such accelerators will enable new remediation methods for chemical and biological spills and/or in-situ crosslinking of materials. We will describe one current design under development at Fermilab including plans for prototype and value-engineering to reduce costs. We will also describe development of new nano-structured field-emitter arrays as sources of electrons, new methods for fabricating and cooling superconducting RF cavities, and a new novel RF power source based on magnetrons with full phase and amplitude control.« less
Low-energy beam transport studies supporting the spallation neutron source 1-MW beam operation.
Han, B X; Kalvas, T; Tarvainen, O; Welton, R F; Murray, S N; Pennisi, T R; Santana, M; Stockli, M P
2012-02-01
The H(-) injector consisting of a cesium enhanced RF-driven ion source and a 2-lens electrostatic low-energy beam transport (LEBT) system supports the spallation neutron source 1 MW beam operation with ∼38 mA beam current in the linac at 60 Hz with a pulse length of up to ∼1.0 ms. In this work, two important issues associated with the low-energy beam transport are discussed: (1) inconsistent dependence of the post-radio frequency quadrupole accelerator beam current on the ion source tilt angle and (2) high power beam losses on the LEBT electrodes under some off-nominal conditions compromising their reliability.
Orhalmi, J; Vreský, B; Holéczy, P; Jackanin, S; Biath, P
2009-06-01
A major source of morbidity after abdominoperineal resection (APR) after neoadjuvant external beam pelvic radiation are perineal wound complications. Wound complications are common for 25-66% of patients overall. There are many of procedures provided to reconstruct the perineal defect after APR e.g. primary closure, secondary closure, superior gluteal artery flap and vertical rectus abdominus myocutaneous (VRAM) flap. Our purpose was to describe the effect of VRAM flap on reconstruction of perineal wound. VRAM flaps are ideally suited to bring nonirradiated tissue into defect associated with radical surgical extirpation procedures and irradiated fields. This flap, distally based in the deep inferior epigastric vessels, provides several distinct advantages. It is well perfused by the robust dominant pedicle and the deep inferior epigastric artery and vein. In addition, this flap provides adequate muscle bulk to obliterate pelvic dead space. The skin island can be used for resurfacing the perineal region, including the vaginal wall, and provides versatility for all patterns of resection. VRAM flap provides very good aesthetic and functional results, is technically relatively simple and radically decreases wound complications rate. The additional possibility is pull-through the flap transpelvically intraabdominally instead of pull-through via subcutaneous channel, especially with females.
Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation.
Eyyuboğlu, Halil T; Voelz, David; Xiao, Xifeng
2013-11-20
Scintillation aspects of truncated Bessel beams propagated through atmospheric turbulence are investigated using a numerical wave optics random phase screen simulation method. On-axis, aperture averaged scintillation and scintillation relative to a classical Gaussian beam of equal source power and scintillation per unit received power are evaluated. It is found that in almost all circumstances studied, the zeroth-order Bessel beam will deliver the lowest scintillation. Low aperture averaged scintillation levels are also observed for the fourth-order Bessel beam truncated by a narrower source window. When assessed relative to the scintillation of a Gaussian beam of equal source power, Bessel beams generally have less scintillation, particularly at small receiver aperture sizes and small beam orders. Upon including in this relative performance measure the criteria of per unit received power, this advantageous position of Bessel beams mostly disappears, but zeroth- and first-order Bessel beams continue to offer some advantage for relatively smaller aperture sizes, larger source powers, larger source plane dimensions, and intermediate propagation lengths.
Sugimoto, Mikio; Takegami, Misa; Suzukamo, Yoshimi; Fukuhara, Shunichi; Kakehi, Yoshiyuki
2008-06-01
To evaluate health related quality of life (HRQOL) using the Medical Outcomes Study 8-items Short Form Health Survey (SF-8) questionnaire in Japanese patients with early prostate cancer. A cross-sectional analysis was done in 457 patients with prostate cancer treated with radical prostatectomy, external beam radiotherapy, brachytherapy, androgen deprivation therapy, and watchful waiting or a combination these therapies. General HRQOL was measured using the Japanese version of the SF-8 questionnaire and disease-specific HRQOL was assessed using the Japanese version of the Extended Prostate Cancer Index Composite. The external beam radiotherapy group reported significantly lower values for the physical health component summary score (PCS) in comparison to the radical prostatectomy and brachytherapy groups (P < 0.05). In the analysis of both the PCS and the mental health component summary score (MCS) over time after treatment, higher scores with time were found in the radical prostatectomy group. No significant change over time after androgen deprivation therapy in the PCS was found. In contrast, the MCS was found to deteriorate in the early period, showing a significant increase over time. SF-8 in combination with the Extended Prostate Cancer Index Composite has shown to be a helpful tool in the HRQOL assessment of Japanese patients treated for localized prostate cancer.
Multidisciplinary therapy for patients with locally oligo-recurrent pelvic malignancies.
Sole, Claudio V; Calvo, Felipe A; de Sierra, Pedro Alvarez; Herranz, Rafael; Gonzalez-Bayon, Luis; García-Sabrido, Jose Luis
2014-07-01
To analyze prognostic factors and long-term outcomes in patients with locally recurrent pelvic cancer (LRPC) treated with a multidisciplinary approach. From January 1995 to December 2011, 81 patients [rectal (47 %); gynecologic (39 %); retroperitoneal sarcoma (14 %)] underwent extended surgery [multiorgan (58 %), bone (35 %), vascular (9 %), soft tissue (63 %)] and intraoperative electron beam radiation therapy (IOERT) to treat recurrent tumors in the pelvic region. Thirty-five patients (43 %) received external beam radiotherapy (EBRT). Survival was estimated using the Kaplan-Meier method, and risk factors were identified using univariate and multivariate analysis. Median follow-up was 39 months (6-189 months); the 1- 3- and 5-year rates of locoregional control (LRC) were 83, 53, and 41 %, respectively. Univariate Cox proportional hazard analysis revealed worse LRC in patients who did not receive integrated EBRT as rescue treatment of pelvic recurrence (p = 0.003) or underwent non-radical resection (p = 0.01). In the multivariate analysis EBRT, non-radical resection, and tumor fragmentation retained significance (p = 0.002, p = 0.004, and p = 0.05, respectively). Radical resection, absence of tumor fragmentation and addition of EBRT for rescue are associated with improved LRC in patients with LRPC. Our results suggest that this group can benefit from EBRT combined with extended surgical resection and IOERT.
Beam property measurement of a 300-kV ion source test stand for a 1-MV electrostatic accelerator
NASA Astrophysics Data System (ADS)
Park, Sae-Hoon; Kim, Dae-Il; Kim, Yu-Seok
2016-09-01
The KOMAC (Korea Multi-purpose Accelerator Complex) has been developing a 300-kV ion source test stand for a 1-MV electrostatic accelerator for industrial purposes. A RF ion source was operated at 200 MHz with its matching circuit. The beam profile and emittance were measured behind an accelerating column to confirm the beam property from the RF ion source. The beam profile was measured at the end of the accelerating tube and at the beam dump by using a beam profile monitor (BPM) and wire scanner. An Allison-type emittance scanner was installed behind the beam profile monitor (BPM) to measure the beam density in phase space. The measurement results for the beam profile and emittance are presented in this paper.
Beam wander of dark hollow, flat-topped and annular beams
NASA Astrophysics Data System (ADS)
Eyyuboğlu, H. T.; Çil, C. Z.
2008-11-01
Benefiting from the earlier derivations for the Gaussian beam, we formulate beam wander for dark hollow (DH) and flat-topped (FT) beams, also covering the annular Gaussian (AG) beam as a special case. Via graphical illustrations, beam wander variations of these beams are analyzed and compared among themselves and to the fundamental Gaussian beam against changes in propagation length, amplitude factor, source size, wavelength of operation, inner and outer scales of turbulence. These comparisons show that in relation to the fundamental Gaussian beam, DH and FT beams will exhibit less beam wander, particularly at small primary beam source sizes, lower amplitude factors of the secondary beam and higher beam orders. Furthermore, DH and FT beams will continue to preserve this advantageous position all throughout the considered range of wavelengths, inner and outer scales of turbulence. FT beams, in particular, are observed to have the smallest beam wander values among all, up to certain source sizes.
C2H4ArF2 1,2-Difluoroethane - argon (1/1)
NASA Astrophysics Data System (ADS)
Demaison, J.
This document is part of Part 1 of Subvolume D 'Asymmetric Top Molecules' of Volume 29 'Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II 'Molecules and Radicals'.
C2H4ArF2 1,1-Difluoroethane - argon (1/1)
NASA Astrophysics Data System (ADS)
Demaison, J.
This document is part of Part 1 of Subvolume D 'Asymmetric Top Molecules' of Volume 29 'Molecular Constants Mostly from Microwave, Molecular Beam, and Sub-Doppler Laser Spectroscopy' of Landolt-Börnstein - Group II 'Molecules and Radicals'.
Additional chain-branching pathways in the low-temperature oxidation of branched alkanes
Wang, Zhandong; Zhang, Lidong; Moshammer, Kai; ...
2015-12-31
Chain-branching reactions represent a general motif in chemistry, encountered in atmospheric chemistry, combustion, polymerization, and photochemistry; the nature and amount of radicals generated by chain-branching are decisive for the reaction progress, its energy signature, and the time towards its completion. In this study, experimental evidence for two new types of chain-branching reactions is presented, based upon detection of highly oxidized multifunctional molecules (HOM) formed during the gas-phase low-temperature oxidation of a branched alkane under conditions relevant to combustion. The oxidation of 2,5-dimethylhexane (DMH) in a jet-stirred reactor (JSR) was studied using synchrotron vacuum ultra-violet photoionization molecular beam mass spectrometry (SVUV-PI-MBMS).more » Specifically, species with four and five oxygen atoms were probed, having molecular formulas of C 8H 14O 4 (e.g., diketo-hydroperoxide/keto-hydroperoxy cyclic ether) and C 8H 16O 5 (e.g., keto-dihydroperoxide/dihydroperoxy cyclic ether), respectively. The formation of C 8H 16O 5 species involves alternative isomerization of OOQOOH radicals via intramolecular H-atom migration, followed by third O 2 addition, intramolecular isomerization, and OH release; C 8H 14O 4 species are proposed to result from subsequent reactions of C 8H 16O 5 species. The mechanistic pathways involving these species are related to those proposed as a source of low-volatility highly oxygenated species in Earth's troposphere. At the higher temperatures relevant to auto-ignition, they can result in a net increase of hydroxyl radical production, so these are additional radical chain-branching pathways for ignition. Furthermore, the results presented herein extend the conceptual basis of reaction mechanisms used to predict the reaction behavior of ignition, and have implications on atmospheric gas-phase chemistry and the oxidative stability of organic substances.« less
NASA Astrophysics Data System (ADS)
Maurizio, R.; Fantz, U.; Bonomo, F.; Serianni, G.
2016-06-01
The beam properties of the BATMAN negative ion source, which is the prototype of one module of the source for the ITER neutral beam injection system, are characterised by means of three diagnostic techniques: beam emission spectroscopy (BES), the experimental calorimeter mini-STRIKE and a copper calorimeter. The main beam parameters—beam divergence, homogeneity and top-bottom asymmetries—are studied in different operational scenarios: with different magnetic filter field setups, source settings and with different gases (hydrogen or deuterium). Among all dependences, the influence of the magnetic field configuration on the beam and the evolution of the beam features during some conditioning days are investigated in detail. Data show that the stronger the filter field in the beam region, the higher the beam top-bottom asymmetry—likely a v× B effect. During the conditioning of the source, such vertical beam asymmetry increases as well, suggesting an inhomogeneous H -production at the first grid of the extraction system.
Positive and negative ion beam merging system for neutral beam production
Leung, Ka-Ngo; Reijonen, Jani
2005-12-13
The positive and negative ion beam merging system extracts positive and negative ions of the same species and of the same energy from two separate ion sources. The positive and negative ions from both sources pass through a bending magnetic field region between the pole faces of an electromagnet. Since the positive and negative ions come from mirror image positions on opposite sides of a beam axis, and the positive and negative ions are identical, the trajectories will be symmetrical and the positive and negative ion beams will merge into a single neutral beam as they leave the pole face of the electromagnet. The ion sources are preferably multicusp plasma ion sources. The ion sources may include a multi-aperture extraction system for increasing ion current from the sources.
Scintillation screen applications in a vacuum arc ion source with composite hydride cathode
NASA Astrophysics Data System (ADS)
Wang, X. H.; Tuo, X. G.; Yang, Z.; Peng, Y. F.; Li, J.; Lv, H. Y.; Li, J. H.; Long, J. D.
2018-05-01
Vacuum arc ion source with composite hydride cathode was developed to produce intense ion beams which can be applied in particle accelerator injections. Beam profile and beam composition are two fundamental parameters of the beam for the vacuum arc ion source in such specific applications. An aluminum-coated scintillation screen with an ICCD camera readout was used to show the space-time distribution of the beam directly. A simple magnetic analysis assembly with the scintillation screen shows the beam composition information of this kind ion source. Some physical and technical issues are discussed and analyzed in the text.
Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...
Effect of beam types on the scintillations: a review
NASA Astrophysics Data System (ADS)
Baykal, Yahya; Eyyuboglu, Halil T.; Cai, Yangjian
2009-02-01
When different incidences are launched in atmospheric turbulence, it is known that the intensity fluctuations exhibit different characteristics. In this paper we review our work done in the evaluations of the scintillation index of general beam types when such optical beams propagate in horizontal atmospheric links in the weak fluctuations regime. Variation of scintillation indices versus the source and medium parameters are examined for flat-topped-Gaussian, cosh- Gaussian, cos-Gaussian, annular, elliptical Gaussian, circular (i.e., stigmatic) and elliptical (i.e., astigmatic) dark hollow, lowest order Bessel-Gaussian and laser array beams. For flat-topped-Gaussian beam, scintillation is larger than the single Gaussian beam scintillation, when the source sizes are much less than the Fresnel zone but becomes smaller for source sizes much larger than the Fresnel zone. Cosh-Gaussian beam has lower on-axis scintillations at smaller source sizes and longer propagation distances as compared to Gaussian beams where focusing imposes more reduction on the cosh- Gaussian beam scintillations than that of the Gaussian beam. Intensity fluctuations of a cos-Gaussian beam show favorable behaviour against a Gaussian beam at lower propagation lengths. At longer propagation lengths, annular beam becomes advantageous. In focused cases, the scintillation index of annular beam is lower than the scintillation index of Gaussian and cos-Gaussian beams starting at earlier propagation distances. Cos-Gaussian beams are advantages at relatively large source sizes while the reverse is valid for annular beams. Scintillations of a stigmatic or astigmatic dark hollow beam can be smaller when compared to stigmatic or astigmatic Gaussian, annular and flat-topped beams under conditions that are closely related to the beam parameters. Intensity fluctuation of an elliptical Gaussian beam can also be smaller than a circular Gaussian beam depending on the propagation length and the ratio of the beam waist size along the long axis to that along the short axis (i.e., astigmatism). Comparing against the fundamental Gaussian beam on equal source size and equal power basis, it is observed that the scintillation index of the lowest order Bessel-Gaussian beam is lower at large source sizes and large width parameters. However, for excessively large width parameters and beyond certain propagation lengths, the advantage of the lowest order Bessel-Gaussian beam seems to be lost. Compared to Gaussian beam, laser array beam exhibits less scintillations at long propagation ranges and at some midrange radial displacement parameters. When compared among themselves, laser array beams tend to have reduced scintillations for larger number of beamlets, longer wavelengths, midrange radial displacement parameters, intermediate Gaussian source sizes, larger inner scales and smaller outer scales of turbulence. The number of beamlets used does not seem to be so effective in this improvement of the scintillations.
Matsuo, Y; Kihara, T; Ikeda, M; Ninomiya, M; Onodera, H; Kogure, K
1995-11-01
A growing body of experimental data indicate that oxygen radicals may mediate the brain injury during ischemia-reperfusion. One potential source of oxygen radicals is activated neutrophils. To study the role of neutrophils in radical production during cerebral ischemia-reperfusion, we evaluated the effects of depletion of circulating neutrophils by administration of an anti-neutrophil monoclonal antibody (RP3) on radical formation in rats with 1-h middle cerebral artery (MCA) occlusion. In the present study, we employed a new electron spin resonance method coupled with brain microdialysis. The method uses the endogenous ascorbyl radical (AR) concentration as a marker of oxygen radicals and requires no spin-trapping agents. In the vehicle controls, extracellular AR decreased during MCA occlusion. After reperfusion, AR significantly increased at 30 min and 1 h, returned to near basal level until 2 h, and increased again at 24 h after reperfusion. In the rats treated with RP3, AR decreased during MCA occlusion to the same extent as in the vehicle control. However, RP3 treatment completely inhibited the increase in extracellular AR after reperfusion. RP3 treatment exerted no effect on the changes in extracellular ascorbate or tissue PO2 throughout the experimental period. In conclusion, neutrophils are a major source of oxygen radicals during reperfusion after focal cerebral ischemia.
Electron-beam generated porous dextran gels: experimental and quantum chemical studies.
Naumov, Sergej; Knolle, Wolfgang; Becher, Jana; Schnabelrauch, Matthias; Reichelt, Senta
2014-06-01
The aim of this work was to investigate the reaction mechanism of electron-beam generated macroporous dextran cryogels by quantum chemical calculation and electron paramagnetic resonance measurements. Electron-beam radiation was used to initiate the cross-linking reaction of methacrylated dextran in semifrozen aqueous solutions. The pore morphology of the resulting cryogels was visualized by scanning electron microscopy. Quantum chemical calculations and electron paramagnetic resonance studies provided information on the most probable reaction pathway and the chain growth radicals. The most probable reaction pathway was a ring opening reaction and the addition of a C-atom to the double-bond of the methacrylated dextran molecule. First detailed quantum chemical calculation on the reaction mechanism of electron-beam initiated cross-linking reaction of methacrylated dextran are presented.
High brilliance negative ion and neutral beam source
Compton, Robert N.
1991-01-01
A high brilliance mass selected (Z-selected) negative ion and neutral beam source having good energy resolution. The source is based upon laser resonance ionization of atoms or molecules in a small gaseous medium followed by charge exchange through an alkali oven. The source is capable of producing microampere beams of an extremely wide variety of negative ions, and milliampere beams when operated in the pulsed mode.
Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers
NASA Astrophysics Data System (ADS)
Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong
2018-04-01
The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.
NASA Technical Reports Server (NTRS)
2008-01-01
The Ion Beam Propulsion Study was a joint high-level study between the Applied Physics Laboratory operated by NASA and ASRC Aerospace at Kennedy Space Center, Florida, and Berkeley Scientific, Berkeley, California. The results were promising and suggested that work should continue if future funding becomes available. The application of ion thrusters for spacecraft propulsion is limited to quite modest ion sources with similarly modest ion beam parameters because of the mass penalty associated with the ion source and its power supply system. Also, the ion source technology has not been able to provide very high-power ion beams. Small ion beam propulsion systems were used with considerable success. Ion propulsion systems brought into practice use an onboard ion source to form an energetic ion beam, typically Xe+ ions, as the propellant. Such systems were used for steering and correction of telecommunication satellites and as the main thruster for the Deep Space 1 demonstration mission. In recent years, "giant" ion sources were developed for the controlled-fusion research effort worldwide, with beam parameters many orders of magnitude greater than the tiny ones of conventional space thruster application. The advent of such huge ion beam sources and the need for advanced propulsion systems for exploration of the solar system suggest a fresh look at ion beam propulsion, now with the giant fusion sources in mind.
Casavecchia, P; Balucani, N; Cartechini, L; Capozza, G; Bergeat, A; Volpi, G G
2001-01-01
The dynamics of some elementary reactions of N(2D), C(3P,1D) and CN(X2 sigma +) of importance in combustion have been investigated by using the crossed molecular beam scattering method with mass spectrometric detection. The novel capability of producing intense, continuous beams of the radical reagents by a radio-frequency discharge beam source was exploited. From angular and velocity distribution measurements obtained in the laboratory frame, primary reaction products have been identified and their angular and translational energy distributions in the center-of-mass system, as well as branching ratios, have been derived. The dominant N/H exchange channel has been examined in the reaction N(2D) + CH4, which is found to lead to H + CH2NH (methylenimine) and H + CH3N (methylnitrene); no H2 elimination is observed. In the reaction N(2D) + H2O the N/H exchange channel has been found to occur via two competing pathways leading to HNO + H and HON + H, while formation of NO + H2 is negligible. Formation of H + H2CCCH (propargyl) is the dominant pathway, at low collision energy (Ec), of the C(3P) + C2H4 reaction, while at high Ec formation of the less stable C3H3 isomers (cyclopropenyl and/or propyn-1-yl) also occurs; the H2 elimination channel is negligible. The H elimination channel has also been found to be the dominant pathway in the C(3P,1D) + CH3CCH reaction leading to C4H3 isomers and, again, no H2 elimination has been observed to occur. In contrast, both H and H2 elimination, leading in comparable ratio to C3H + H and C3(X1 sigma g+) + H2(X1 sigma g+), respectively, have been observed in the reaction C(3P) + C2H2(X1 sigma g+). The occurrence of the spin-forbidden molecular pathway in this reaction, never detected before, has been rationalized by invoking the occurrence of intersystem crossing between triplet and singlet manifolds of the C3H2 potential energy surfaces. The reaction CN(X2 sigma +) + C2H2 has been found to lead to internally excited HCCCN (cyanoacetylene) + H. For all the reactions the dynamics have been discussed in the light of recent theoretical calculations on the relevant potential energy surfaces. Previous, lower resolution studies on C and CN reactions carried out using pulsed beams are noted. Finally, throughout the paper the relevance of these results to combustion chemistry is considered.
Peroxy Radical Measurements during the IRRONIC Field Project by C2H6 - NO Chemical Amplification
NASA Astrophysics Data System (ADS)
Wood, E. C. D.; Kundu, S.; Deming, B.; Lew, M.; Stevens, P. S.; Sklaveniti, S.; Dusanter, S.
2015-12-01
We present measurements of total peroxy radicals (HO2 + RO2) during the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC) field project in Bloomington, Indiana during July 2015. Peroxy radicals were measured by chemical amplification using ethane and nitric oxide in dual PFA reaction chambers, and the amplification product NO2 was quantified by cavity attenuated phase shift spectroscopy. On sunny days mid-day peroxy radical mixing ratios were typically between 20 and 70 ppt and were well correlated with "HO2*" measured by the Indiana University Laser-Induced Fluorescence with Fluorescence Assay by Gas Expansion (IU-FAGE) instrument. The ratio of total peroxy radicals (UMass) to the IU-FAGE HO2* measurements was greater than two. We also describe results from an informal intercomparison of the two instruments' calibration sources, which are based on acetone photolysis (UMass) and water photolysis (IU). In addition to sampling the IU calibration source in "amplification" mode, the UMass instrument also separately quantified the HO2 mixing ratio in the IU calibration gas by reaction with excess NO and subsequent quantification of the NO2 produced.
Particle correlations in p- anti p interactions at radical s = 1800 and 630 GeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
Preliminary results on Bose-Einstein correlations and two particle pseudorapidity correlations in p{bar p} interactions at {radical}s = 1800 and 630 GeV are presented. Data were collected with a minimum- bias'' trigger with the Collider Detector at Fermilab. The size of the particle emitting source, measured via Bose-Einstein interference at {radical}s =1800 GeV, is of the order of 1 fm. The observed short-range pseudorapidity correlations, compared to lower energy data, do not show any significant energy dependence. 10 refs., 5 figs.
Effects of ionizing radiations on a pharmaceutical compound, chloramphenicol
NASA Astrophysics Data System (ADS)
Varshney, L.; Patel, K. M.
1994-05-01
Chloramphenicol, a broad spectrum antibiotic, has been irradiated using Cobalt-60 γ radiation and electron beam at graded radiation doses upto 100 kGy. Several degradation products and free radicals are formed on irradiation. Purity, degradation products, free radicals, discolouration, crystallinity, solubility and entropy of radiation processing have been investigated. Aqueous solutions undergo extensive radiolysis even at low doses. Physico-chemical, microbiological and toxicological tests do not show significant degradation at sterilization dose. High performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), UV-spectrophotometry, diffuse reflectance spectroscopy (DRS) and electron spin resonance spectroscopy (ESR) techniques were employed for the investigations.
Microsecond Electron Beam Source with Electron Energy Up to 400 Kev and Plasma Anode
NASA Astrophysics Data System (ADS)
Abdullin, É. N.; Basov, G. F.; Shershnev, S.
2017-12-01
A new high-power source of electrons with plasma anode for producing high-current microsecond electron beams with electron energy up to 400 keV has been developed, manufactured, and put in operation. To increase the cross section and pulse current duration of the beam, a multipoint explosive emission cathode is used in the electron beam source, and the beam is formed in an applied external guiding magnetic field. The Marx generator with vacuum insulation is used as a high-voltage source. Electron beams with electron energy up to 300-400 keV, current of 5-15 kA, duration of 1.5-3 μs, energy up to 4 kJ, and cross section up to 150 cm2 have been produced. The operating modes of the electron beam source are realized in which the applied voltage is influenced weakly on the current. The possibility of source application for melting of metal surfaces is demonstrated.
NASA Technical Reports Server (NTRS)
1991-01-01
The object was to conduct large scale simulations of electron beams injected into space. The study of active injection of electron beams from spacecraft is important since it provides valuable insight into beam-plasma interactions and the development of current systems in the ionosphere. However, the beam injection itself is not simple, being constrained by the ability of the spacecraft to draw return current from the ambient plasma. The generation of these return currents is dependent on several factors, including the density of the ambient plasma relative to the beam density, the presence of neutrals around the spacecraft, the configuration of the spacecraft, and the motion of the spacecraft through the plasma. Two dimensional particle simulations with collisional processes included are used to show how these different and often coupled processes can be utilized to enhance beam propagation from the spacecraft. To understand the radical expansion of mechanism of an electron beam from a highly charged spacecraft, two dimensional particle in cell simulations were conducted for a high density electron beam injected parallel to magnetic fields from an isolated equipotential conductor into a cold background plasma. The simulations indicate that charge buildup at the beam stagnation point causes the beam to expand radially to the beam electron gyroradius.
Silze, Alexandra; Ritter, Erik; Zschornack, Günter; Schwan, Andreas; Ullmann, Falk
2010-02-01
We have characterized ion beams extracted from the Dresden EBIS-A, a compact room-temperature electron beam ion source (EBIS) with a permanent magnet system for electron beam compression, using a pepper-pot emittance meter. The EBIS-A is the precursor to the Dresden EBIS-SC in which the permanent magnets have been replaced by superconducting solenoids for the use of the source in high-ion-current applications such as heavy-ion cancer therapy. Beam emittance and brightness values were calculated from data sets acquired for a variety of source parameters, in leaky as well as pulsed ion extraction mode. With box shaped pulses of C(4+) ions at an energy of 39 keV root mean square emittances of 1-4 mm mrad and a brightness of 10 nA mm(-2) mrad(-2) were achieved. The results meet the expectations for high quality ion beams generated by an electron beam ion source.
NASA Astrophysics Data System (ADS)
Tan, Zhaofeng; Lu, Keding; Ma, Xuefei; Birger, Bohn; Broch, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Li, Xin; Liu, Yuhan; Novelli, Anna; Rohrer, Franz; Shao, Min; Wang, Haichao; Wu, Yusheng; Zeng, Limin; Kiendler-Scharr, Astrid; Wahner, Andreas; Zhang, Yuanhang
2017-04-01
A comprehensive field campaign was carried out in winter 2016 in Huairou, a small town located 60 km northeast of Beijing downtown. Concentrations of OH, HO2and RO2 radicals were measured by a laser induced fluorescence instrument. Radical concentrations were smaller than during summer because of reduced solar radiation. Maximum hourly averaged OH, HO2 and RO2 radical concentrations were (3±2)×106cm-3, (8±6)×107 cm-3 and (7±5)×107 cm-3, respectively. Chemical modulation measurements were applied on a few days showing no significant OH interference for different chemical conditions. HONO and HCHO photolysis were found to be the most important primary source of ROx radicals. OH reactivity, the inverse of the OH radical lifetime, was also measured by a laser-photolysis and laser induced fluorescence instrument. In general, CO and NOx were the dominated OH reactants which contributed more than half of the total OH reactivity. The relative high OH concentrations in polluted episode enabled a fast oxidation of fresh emitted pollutants and the formation of secondary products. The observed radical concentrations were compared with the results from a chemical box model. The model is capable of reproducing radical concentrations in the moderate NOx conditions but has difficulty in both the low and high NOx regimes. The underestimation of RO2 radical concentrations in the high NOx conditions indicate a missing RO2 source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-04-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1996-03-01
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for radioactive ion beam (RIB) applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, inmore » principle, overcome this handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility, now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article. {copyright} {ital 1996 American Institute of Physics.}« less
ERIC Educational Resources Information Center
Gilbert, George L., Ed.; And Others
1980-01-01
Presents a demonstration of the effect of alkyl free radical stability on the rate of free radical halogenation of hydrocarbons. The arenes toluene, ethylbenzene and comene are photobrominated comparatively, using an overhead projector both to provide a light source for the chemical reaction and to project the results on a screen. (CS)
REACTION OF PERFLUOROALKYL RADICALS WITH MOLECULAR HYDROGEN,
reactions with D2 and HD) in which R is some free radical. The discussion below is developed with those systems in mind in which R is a perfluoroalkyl ...photolysis of the appropriate perfluoroketone was used as the radical source. Recently an investigation was made of the reaction, with R = C2F5 and C3F7
Kolmogorov, A; Atoian, G; Davydenko, V; Ivanov, A; Ritter, J; Stupishin, N; Zelenski, A
2014-02-01
The RHIC polarized H(-) ion source had been successfully upgraded to higher intensity and polarization by using a very high brightness fast atomic beam source developed at BINP, Novosibirsk. In this source the proton beam is extracted by a four-grid multi-aperture ion optical system and neutralized in the H2 gas cell downstream from the grids. The proton beam is extracted from plasma emitter with a low transverse ion temperature of ∼0.2 eV which is formed by plasma jet expansion from the arc plasma generator. The multi-hole grids are spherically shaped to produce "geometrical" beam focusing. Proton beam formation and transport of atomic beam were experimentally studied at test bench.
A Multicusp Ion Source for Radioactive Ion Beams
NASA Astrophysics Data System (ADS)
Wutte, D.; Freedman, S.; Gough, R.; Lee, Y.; Leitner, M.; Leung, K. N.; Lyneis, C.; Picard, D. S.; Sun, L.; Williams, M. D.; Xie, Z. Q.
1997-05-01
In order to produce a radioactive ion beam of (14)O+, a 10-cm-diameter, 13.56 MHz radio frequency (rf) driven multicusp ion source is now being developed at Lawrence Berkeley National Laboratory. In this paper we describe the specific ion source design and the basic ion source characteristics using Ar, Xe and a 90types of measurements have been performed: extractable ion current, ion species distributions, gas efficiency, axial energy spread and ion beam emittance measurements. The source can generate ion current densities of approximately 60 mA/cm2 . In addition the design of the ion beam extraction/transport system for the actual experimental setup for the radioactive beam line will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haeberli, W.
1981-04-01
This paper presents a survey of methods, commonly in use or under development, to produce beams of polarized negative ions for injection into accelerators. A short summary recalls how the hyperfine interaction is used to obtain nuclear polarization in beams of atoms. Atomic-beam sources for light ions are discussed. If the best presently known techniques are incorporated in all stages of the source, polarized H/sup -/ and D/sup -/ beams in excess of 10 ..mu..A can probably be achieved. Production of polarized ions from fast (keV) beams of polarized atoms is treated separately for atoms in the H(25) excited statemore » (Lamb-Shift source) and atoms in the H(1S) ground state. The negative ion beam from Lamb-Shift sources has reached a plateau just above 1 ..mu..A, but this beam current is adequate for many applications and the somewhat lower beam current is compensated by other desirable characteristics. Sources using fast polarized ground state atoms are in a stage of intense development. The next sections summarize production of polarized heavy ions by the atomic beam method, which is well established, and by optical pumping, which has recently been demonstrated to yield very large nuclear polarization. A short discussion of proposed ion sources for polarized /sup 3/He/sup -/ ions is followed by some concluding remarks.« less
New ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; In, Sang-Ryul
2012-02-01
The neutral beam injection system (NBI-1) of the KSTAR tokamak can accommodate three ion sources; however, it is currently equipped with only one prototype ion source. In the 2010 and 2011 KSTAR campaigns, this ion source supplied deuterium neutral beam power of 0.7-1.6 MW to the KSTAR plasma with a beam energy of 70-100 keV. A new ion source will be prepared for the 2012 KSTAR campaign with a much advanced performance compared with the previous one. The newly designed ion source has a very large transparency (∼56%) without deteriorating the beam optics, which is designed to deliver a 2 MW injection power of deuterium beams at 100 keV. The plasma generator of the ion source is of a horizontally cusped bucket type, and the whole inner wall, except the cathode filaments and plasma grid side, functions as an anode. The accelerator assembly consists of four multi-circular aperture grids made of copper and four electrode flanges made of aluminum alloy. The electrodes are insulated using PEEK. The ion source will be completed and tested in 2011.
HO2 measurements at atmospheric concentrations using a chemical ionization mass spectrometry
NASA Astrophysics Data System (ADS)
Albrecht, S.; Novelli, A.; Hofzumahaus, A.; Kang, S.; Baker, Y.; Mentel, T. F.; Fuchs, H.
2017-12-01
Correct and precise measurements of atmospheric radical species are necessary for a better understanding of the oxidative capacity of the atmosphere. Due to the reactivity of radicals, and their consequent low concentrations, direct measurements of these species are particularly challenging and have been proven in the past to be affected by interfering species. Here we present a chemical ionization source coupled to an APi-HR-TOF-MS (Aerodyne Research Inc.), which has a limit of detection for HO2 radicals well below its atmospheric concentrations ( 1 x 108 molecules cm-3). The instrument was calibrated with a well-established and characterized HO2 calibration source in use for the laser induced fluorescence instrument in the Forschungszentrum Jülich. Within the source, a well characterized amount of HO2 radicals is produced after photolysis of water by a mercury lamp. In addition, several experiments were performed in the atmosphere simulation chamber SAPHIR at the Forschungszentrum Jülich to test for potential interferences. Measurements of HO2 radicals were concurrently detected by a laser induced fluorescence instrument allowing for the comparison of measurements within the two different and independent techniques for various atmospheric conditions regarding concentrations of O3, NOx and VOCs. Results from the intercomparison together with the calibration procedure of the instrument and laboratory characterization will be presented.
NASA Astrophysics Data System (ADS)
Waring, Michael S.; Wells, J. Raymond
2015-04-01
Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with D-limonene, and also with OH, which reacted with D-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and D-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.
Winkelmann, Tim; Cee, Rainer; Haberer, Thomas; Naas, Bernd; Peters, Andreas; Schreiner, Jochen
2014-02-01
The clinical operation at the Heidelberg Ion Beam Therapy Center (HIT) started in November 2009; since then more than 1600 patients have been treated. In a 24/7 operation scheme two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce protons and carbon ions. The modification of the low energy beam transport line and the integration of a third ion source into the therapy facility will be shown. In the last year we implemented a new extraction system at all three sources to enhance the lifetime of extraction parts and reduce preventive and corrective maintenance. The new four-electrode-design provides electron suppression as well as lower beam emittance. Unwanted beam sputtering effects which typically lead to contamination of the insulator ceramics and subsequent high-voltage break-downs are minimized by the beam guidance of the new extraction system. By this measure the service interval can be increased significantly. As a side effect, the beam emittance can be reduced allowing a less challenging working point for the ion sources without reducing the effective beam performance. This paper gives also an outlook to further enhancements at the HIT ion source testbench.
Atmospheric Hydroxyl Radical Production from Electronically Excited NO2 and H2O
NASA Astrophysics Data System (ADS)
Li, Shuping; Matthews, Jamie; Sinha, Amitabha
2008-03-01
Hydroxyl radicals are often called the “detergent” of the atmosphere because they control the atmosphere’s capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.
Atmospheric hydroxyl radical production from electronically excited NO2 and H2O.
Li, Shuping; Matthews, Jamie; Sinha, Amitabha
2008-03-21
Hydroxyl radicals are often called the "detergent" of the atmosphere because they control the atmosphere's capacity to cleanse itself of pollutants. Here, we show that the reaction of electronically excited nitrogen dioxide with water can be an important source of tropospheric hydroxyl radicals. Using measured rate data, along with available solar flux and atmospheric mixing ratios, we demonstrate that the tropospheric hydroxyl contribution from this source can be a substantial fraction (50%) of that from the traditional O(1D) + H2O reaction in the boundary-layer region for high solar zenith angles. Inclusion of this chemistry is expected to affect modeling of urban air quality, where the interactions of sunlight with emitted NOx species, volatile organic compounds, and hydroxyl radicals are central in determining the rate of ozone formation.
75 FR 52756 - Government-Owned Inventions; Availability for Licensing
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-27
... for evaluation of chemical species having unpaired electrons such as free radicals and transition.... Durnin J, Micheli J Jr, Eberly JH. Diffraction-free beams. Phys Rev Lett. 1987 Apr 13;58(15):1499-1501. 2... quantify pharmaco-kinetics and metabolic degradation kinetics of bioactive and redox sensitive free...
Studies on Beam Formation in an Atomic Beam Source
NASA Astrophysics Data System (ADS)
Nass, A.; Stancari, M.; Steffens, E.
2009-08-01
Atomic beam sources (ABS) are widely used workhorses producing polarized atomic beams for polarized gas targets and polarized ion sources. Although they have been used for decades the understanding of the beam formation processes is crude. Models were used more or less successfully to describe the measured intensity and beam parameters. ABS's are also foreseen for future experiments, such as PAX [1]. An increase of intensity at a high polarization would be beneficial. A direct simulation Monte-Carlo method (DSMC) [2] was used to describe the beam formation of a hydrogen or deuterium beam in an ABS. For the first time a simulation of a supersonic gas expansion on a molecular level for this application was performed. Beam profile and Time-of-Flight measurements confirmed the simulation results. Furthermore a new method of beam formation was tested, the Carrier Jet method [3], based on an expanded beam surrounded by an over-expanded carrier jet.
Planned Experiments on the Princeton Advanced Test Stand
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.
2010-11-01
The Princeton Advanced Test Stand (PATS) device is an experimental facility based on the STS-100 high voltage test stand transferred from LBNL. It consists of a multicusp RF ion source, a pulsed extraction system capable of forming high-perveance 100keV ion beams, and a large six-foot-long vacuum with convenient access for beam diagnostics. This results in a flexible system for studying high perveance ion beams relevant to NDCX-I/II, including experiments on beam neutralization by ferroelectric plasma sources (FEPS) being developed at PPPL. Research on PATS will concern the basic physics of beam-plasma interactions, such as the effects of volume neutralization on beam emittance, as well as optimizing technology of the FEPS. PATS combines the advantage of an ion beam source and a large-volume plasma source in a chamber with ample access for diagnostics, resulting in a robust setup for investigating and improving relevant aspects of neutralized drift. There are also plans for running the ion source with strongly electro-negative gases such as chlorine, making it possible to extract positive or negative ion beams.
Experimental Analysis of Pseudospark Sourced Electron Beam
NASA Astrophysics Data System (ADS)
Kumar, Niraj; Pal, U. N.; Verma, D. K.; Prajapati, J.; Kumar, M.; Meena, B. L.; Tyagi, M. S.; Srivastava, V.
2011-12-01
The pseudospark (PS) discharge has been shown to be a promising source of high brightness, high intensity electron beam pulses. The PS discharge sourced electron beam has potential applications in plasma filled microwave sources where normal material cathode cannot be used. Analysis of the electron beam profile has been done experimentally for different applied voltages. The investigation has been carried out at different axial and radial location inside the drift space in argon atmosphere. This paper represents experimentally found axial and radial variation of the beam current inside the drift tube of PS discharge based plasma cathode electron (PCE) gun. With the help of current density estimation the focusing and defocusing point of electron beam in axial direction can be analyzed.
NASA Technical Reports Server (NTRS)
Anderson, David T.; Davis, Scott; Zwier, Timothy S.; Nesbitt, David J.
1996-01-01
A novel pulsed, slit supersonic discharge source is described for generating intense jet-cooled densities of radicals (greater than 10(exp 12)/cu cm) and molecular ions (greater than 10(exp 10)/cu cm) under long absorption path (80 cm), supersonically cooled conditions. The design confines the discharge region upstream of the supersonic expansion orifice to achieve efficient rotational cooling down to 30 K or less. The collisionally collimated velocity distribution in the slit discharge geometry yields sub-Doppler spectral linewidths, which for open-shell radicals reveals spin-rotation splittings and broadening due to nuclear hyperfine structure. Application of the slit source for high-resolution, direct IR laser absorption spectroscopy in discharges is demonstrated on species such as OH, H3O(+) and N2H(+).
Tunable pulsed narrow bandwidth light source
Powers, Peter E.; Kulp, Thomas J.
2002-01-01
A tunable pulsed narrow bandwidth light source and a method of operating a light source are provided. The light source includes a pump laser, first and second non-linear optical crystals, a tunable filter, and light pulse directing optics. The method includes the steps of operating the pump laser to generate a pulsed pump beam characterized by a nanosecond pulse duration and arranging the light pulse directing optics so as to (i) split the pulsed pump beam into primary and secondary pump beams; (ii) direct the primary pump beam through an input face of the first non-linear optical crystal such that a primary output beam exits from an output face of the first non-linear optical crystal; (iii) direct the primary output beam through the tunable filter to generate a sculpted seed beam; and direct the sculpted seed beam and the secondary pump beam through an input face of the second non-linear optical crystal such that a secondary output beam characterized by at least one spectral bandwidth on the order of about 0.1 cm.sup.-1 and below exits from an output face of the second non-linear optical crystal.
Janhsen, Benjamin; Studer, Armido
2017-11-17
Radical trifluoromethylation of aryl N,N-dimethyl hydrazones using TBAI as an initiator and Togni's reagent as a trifluoromethyl radical source is described. Cascades proceed via electron-catalysis; this approach is generally more applicable to hydrazone perfluoroalkylation using perfluoroalkyl iodides as the radical precursors in combination with a base under visible-light initiation.
Large area multiarc ion beam source {open_quote}MAIS{close_quote}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelko, V.; Giese, H.; Schalk, S.
1996-12-31
A pulsed large area intense ion beam source is described, in which the ion emitting plasma is built up by an array of individual discharge units, homogeneously distributed over the surface of a common discharge electrode. A particularly advantageous feature of the source is that for plasma generation and subsequent acceleration of the ions only one common energy supply is necessary. This allows to simplify the source design and provides inherent synchronization of plasma production and ion extraction. The homogeneity of the plasma density was found to be superior to plasma sources using plasma expanders. Originally conceived for the productionmore » of proton beams, the source can easily be modified for the production of beams composed of carbon and metal ions or mixed ion species. Results of investigations of the source performance for the production of a proton beam are presented. The maximum beam current achieved to date is of the order of 100 A, with a particle kinetic energy of 15 - 30 keV and a pulse length in the range of 10 {mu}s.« less
Beam brilliance investigation of high current ion beams at GSI heavy ion accelerator facility.
Adonin, A A; Hollinger, R
2014-02-01
In this work the emittance measurements of high current Ta-beam provided by VARIS (Vacuum Arc Ion Source) ion source are presented. Beam brilliance as a function of beam aperture at various extraction conditions is investigated. Influence of electrostatic ion beam compression in post acceleration gap on the beam quality is discussed. Use of different extraction systems (single aperture, 7 holes, and 13 holes) in order to achieve more peaked beam core is considered. The possible ways to increase the beam brilliance are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, Sara L; Andreozzi, Jacqueline M; Pogue, Brian W
Purpose: The irradiation of photodynamic agents with radiotherapy beams has been demonstrated to enhance tumor killing in various studies, and one proposed mechanism is the optical fluence of Cherenkov emission activating the photosensitizer. This mechanism is explored in Monte Carlo simulations of fluence as well as laboratory measurements of fluence and radical oxygen species. Methods: Simulations were completed using GAMOS/GEANT4 with a 6 MV photon beam in tissue. The effects of blood vessel diameter, blood oxygen saturation, and beam size were examined, recording spectral fluence. Experiments were carried out in solutions of photosensitizer and phantoms. Results: Cherenkov produced by amore » 100×100um{sup 2} 6 MV beam resulted in fluence of less than 1 nJ/cm{sup 2}/Gy per 1 nm wavelength. At this microscopic level, differences in absorption of blood and water in the tissue affected the fluence spectrum, but variation in blood oxygenation had little effect. Light in tissue resulting from larger (10mm ×10mm) 6 MV beams had greater fluence due to light transport and elastic scattering of optical photons, but this transport process also resulted in higher absorption shifts. Therefore, the spectrum produced by a microscopic beam was weighted more heavily in UV/blue wavelengths than the spectrum at the macroscopic level. At the macroscopic level, the total fluence available for absorption by Verteporfin (BPD) in tissue approached uJ/cm{sup 2} for a high radiation dose, indicating that photodynamic activation seems unlikely. Tissue phantom confirmation of these light levels supported this observation, and photosensitization measurements with a radical oxygen species reporter are ongoing. Conclusion: Simulations demonstrated that fluence produced by Cherenkov in tissue by 6 MV photon beams at typical radiotherapy doses appears insufficient to activate photosensitizers to the level required for threshold effects, yet this disagrees with published biological experiments. Experimental validation in tissue phantoms and cell studies are ongoing to clarify this discrepancy. Funding from NIH grant R01CA109558.« less
Studies of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Küchler, D.
2016-02-15
The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a waymore » to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.« less
Toivanen, V; Küchler, D
2016-02-01
The 14.5 GHz GTS-LHC Electron Cyclotron Resonance Ion Source (ECRIS) provides multiply charged heavy ion beams for the CERN experimental program. The GTS-LHC beam formation has been studied extensively with lead, argon, and xenon beams with varied beam extraction conditions using the ion optical code IBSimu. The simulation model predicts self-consistently the formation of triangular and hollow beam structures which are often associated with ECRIS ion beams, as well as beam loss patterns which match the observed beam induced markings in the extraction region. These studies provide a better understanding of the properties of the extracted beams and a way to diagnose the extraction system performance and limitations, which is otherwise challenging due to the lack of direct diagnostics in this region and the limited availability of the ion source for development work.
Status of the 1 MeV Accelerator Design for ITER NBI
NASA Astrophysics Data System (ADS)
Kuriyama, M.; Boilson, D.; Hemsworth, R.; Svensson, L.; Graceffa, J.; Schunke, B.; Decamps, H.; Tanaka, M.; Bonicelli, T.; Masiello, A.; Bigi, M.; Chitarin, G.; Luchetta, A.; Marcuzzi, D.; Pasqualotto, R.; Pomaro, N.; Serianni, G.; Sonato, P.; Toigo, V.; Zaccaria, P.; Kraus, W.; Franzen, P.; Heinemann, B.; Inoue, T.; Watanabe, K.; Kashiwagi, M.; Taniguchi, M.; Tobari, H.; De Esch, H.
2011-09-01
The beam source of neutral beam heating/current drive system for ITER is needed to accelerate the negative ion beam of 40A with D- at 1 MeV for 3600 sec. In order to realize the beam source, design and R&D works are being developed in many institutions under the coordination of ITER organization. The development of the key issues of the ion source including source plasma uniformity, suppression of co-extracted electron in D beam operation and also after the long beam duration time of over a few 100 sec, is progressed mainly in IPP with the facilities of BATMAN, MANITU and RADI. In the near future, ELISE, that will be tested the half size of the ITER ion source, will start the operation in 2011, and then SPIDER, which demonstrates negative ion production and extraction with the same size and same structure as the ITER ion source, will start the operation in 2014 as part of the NBTF. The development of the accelerator is progressed mainly in JAEA with the MeV test facility, and also the computer simulation of beam optics also developed in JAEA, CEA and RFX. The full ITER heating and current drive beam performance will be demonstrated in MITICA, which will start operation in 2016 as part of the NBTF.
Are mitochondria a permanent source of reactive oxygen species?
Staniek, K; Nohl, H
2000-11-20
The observation that in isolated mitochondria electrons may leak out of the respiratory chain to form superoxide radicals (O(2)(radical-)) has prompted the assumption that O(2)(radical-) formation is a compulsory by-product of respiration. Since mitochondrial O(2)(radical-) formation under homeostatic conditions could not be demonstrated in situ so far, conclusions drawn from isolated mitochondria must be considered with precaution. The present study reveals a link between electron deviation from the respiratory chain to oxygen and the coupling state in the presence of antimycin A. Another important factor is the analytical system applied for the detection of activated oxygen species. Due to the presence of superoxide dismutase in mitochondria, O(2)(radical-) release cannot be realistically determined in intact mitochondria. We therefore followed the release of the stable dismutation product H(2)O(2) by comparing most frequently used H(2)O(2) detection methods. The possible interaction of the detection systems with the respiratory chain was avoided by a recently developed method, which was compared with conventional methods. Irrespective of the methods applied, the substrates used for respiration and the state of respiration established, intact mitochondria could not be made to release H(2)O(2) from dismutating O(2)(radical-). Although regular mitochondrial respiration is unlikely to supply single electrons for O(2)(radical-) formation our study does not exclude the possibility of the respiratory chain becoming a radical source under certain conditions.
High-intensity polarized H- ion source for the RHIC SPIN physics
NASA Astrophysics Data System (ADS)
Zelenski, A.; Atoian, G.; Raparia, D.; Ritter, J.; Kolmogorov, A.; Davydenko, V.
2017-08-01
A novel polarization technique had been successfully implemented for the RHIC polarized H- ion source upgrade to higher intensity and polarization. In this technique a proton beam inside the high magnetic field solenoid is produced by ionization of the atomic hydrogen beam (from external source) in the He-gas ionizer cell. Further proton polarization is produced in the process of polarized electron capture from the optically-pumped Rb vapour. The use of high-brightness primary beam and large cross-sections of charge-exchange cross-sections resulted in production of high intensity H- ion beam of 85% polarization. High beam brightness and polarization resulted in 75% polarization at 23 GeV out of AGS and 60-65% beam polarization at 100-250 GeV colliding beams in RHIC. The status of un-polarized magnetron type (Cs-vapour loaded) BNL source is also discussed.
Bogdan Neculaes, V.; Zou, Yun; Zavodszky, Peter; Inzinna, Louis; Zhang, Xi; Conway, Kenneth; Caiafa, Antonio; Frutschy, Kristopher; Waters, William; De Man, Bruno
2014-01-01
A novel electron beam focusing scheme for medical X-ray sources is described in this paper. Most vacuum based medical X-ray sources today employ a tungsten filament operated in temperature limited regime, with electrostatic focusing tabs for limited range beam optics. This paper presents the electron beam optics designed for the first distributed X-ray source in the world for Computed Tomography (CT) applications. This distributed source includes 32 electron beamlets in a common vacuum chamber, with 32 circular dispenser cathodes operated in space charge limited regime, where the initial circular beam is transformed into an elliptical beam before being collected at the anode. The electron beam optics designed and validated here are at the heart of the first Inverse Geometry CT system, with potential benefits in terms of improved image quality and dramatic X-ray dose reduction for the patient. PMID:24826066
Oxidation mechanism of Penicillium digitatum spores through neutral oxygen radicals
NASA Astrophysics Data System (ADS)
Hashizume, Hiroshi; Ohta, Takayuki; Takeda, Keigo; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi
2014-01-01
To investigate the inactivation process of Penicillium digitatum spores through neutral oxygen species, the spores were treated with an atmospheric-pressure oxygen radical source and observed in-situ using a fluorescent confocal-laser microscope. The treated spores were stained with two fluorescent dyes, 1,1‧-dioctadecyl-3,3,Y,3‧-tetramethylindocarbocyanine perchlorate (DiI) and diphenyl-1-pyrenylphosphine (DPPP). The intracellular organelles as well as the cell membranes in the spores treated with the oxygen radical source were stained with DiI without a major morphological change of the membranes. DPPP staining revealed that the organelles were oxidized by the oxygen radical treatment. These results suggest that neutral oxygen species, especially atomic oxygen, induce a minor structural change or functional inhibition of cell membranes, which leads to the oxidation of the intracellular organelles through the penetration of reactive oxygen species into the cell.
Quantitative inactivation-mechanisms of P. digitatum and A. niger spores based on atomic oxygen dose
NASA Astrophysics Data System (ADS)
Ito, Masafumi; Hashizume, Hiroshi; Ohta, Takayuki; Hori, Masaru
2014-10-01
We have investigated inactivation mechanisms of Penicillium digitatum and Asperguills niger spores using atmospheric-pressure radical source quantitatively. The radical source was specially developed for supplying only neutral radicals without charged species and UV-light emissions. Reactive oxygen radical densities such as grand-state oxygen atoms, excited-state oxygen molecules and ozone were measured using VUV and UV absorption spectroscopies. The measurements and the treatments of spores were carried out in an Ar-purged chamber for eliminating the influences of OH, NOx and so on. The results revealed that the inactivation of spores can be explained by atomic-oxygen dose under the conditions employing neutral ROS irradiations. On the basis of the dose, we have observed the changes of intracellular organelles and membrane functions using TEM, SEM and confocal- laser fluorescent microscopy. From these results, we discuss the detail inactivation-mechanisms quantitatively based on atomic-oxygen dose.
Matsugo, S; Yan, L J; Han, D; Packer, L
1995-01-05
We have developed a new molecular probe, N,N'-bis(2-hydroxyperoxy-2-methyoxyethyl)-1,4,5,8-naphthalen e-tetra-carboxylic- diimide (NP-III), that specifically generates hydroxyl radical upon irradiation with longer wavelength ultraviolet light (UVA). Hydroxyl radicals are generated only upon irradiation, thus NP-III is a new controllable hydroxyl radical source. Apolipoprotein (apo-B) of human low density lipoprotein (LDL), and bovine serum alubumin (BSA), were irradiated with UVA in the presence of NP-III and their oxidation was evaluated by two independent methods: assay of protein carbonyl groups and gel electrophoresis. NP-III oxidized apo-B and BSA in a time- and concentration-dependent manner. The results demonstrate that NP-III is a controllable, precise, and potentially tagetable source of hydroxyl radicals with which to induce protein oxidation.
Ion energy spread and current measurements of the rf-driven multicusp ion source
NASA Astrophysics Data System (ADS)
Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.
1997-03-01
Axial energy spread and useful beam current of positive ion beams have been carried out using a radio frequency (rf)-driven multicusp ion source. Operating the source with a 13.56 MHz induction discharge, the axial energy spread is found to be approximately 3.2 eV. The extractable beam current of the rf-driven source is found to be comparable to that of filament-discharge sources. With a 0.6 mm diameter extraction aperture, a positive hydrogen ion beam current density of 80 mA/cm2 can be obtained at a rf input power of 2.5 kW. The expected source lifetime is much longer than that of filament discharges.
Kinetics and characterization of radiation-induced grafting of styrene on fluoropolymers
NASA Astrophysics Data System (ADS)
Guilmeau, I.; Esnouf, S.; Betz, N.; Le Moël, A.
1997-08-01
Grafting of styrene solution onto poly(ethylene-co-tetrafluoroethylene) (ETFE) was carried out by the pre-irradiation method. ETFE films were irradiated by 1.5 MeV electron beams in air. The influence of grafting temperature (50 to 80°C) has been investigated. It was found that the saturation grafting yield and the initial rate follow an Arrhenius law. The volume grafting yields were measured by FTIR spectroscopy in transmission and by weighing and the 'surface' grafting yields by FTIR-ATR. The results showed that grafting reaction is not monomer diffusion controlled in 30 μm film, nevertheless heterogeneities are revealed. By in-situ ESR, the decay of peroxy radicals was recorded under various heating and grafting conditions. These experiments suggest that the peroxy radicals react rapidly with monomer, but do not initiate the grafting process. The propagating radicals were not detectable, which may indicate that polystyrene chains are very long.
Photodissociation dynamics of the 2-propyl radical, C{sub 3}H{sub 7}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noller, Bastian; Fischer, Ingo
2007-04-14
The photodissociation of 2-propyl leading to propene+H was investigated with nanosecond time resolution. A supersonic beam of isolated 2-propyl radicals was produced by pyrolysis of 2-bromopopane. The kinetic energy release of the H-atom photofragment was monitored as a function of excitation wavelength by photofragment Doppler spectroscopy via the Lyman-{alpha} transition. The loss of hydrogen atoms after excitation proceeds in {alpha} position to the radical center with a rate constant of 5.8x10{sup 7} s{sup -1} at 254 nm. Approximately 20% of the excess energy is deposited as translation in the H-atom photofragment. In contrast 1-propyl does not lose H atoms tomore » a significant extent. The experimental results are compared to simple Rice-Ramsperger-Kassel-Marcus calculations. The possible reaction pathways are examined in hybrid density functional theory calculations.« less
Inductively generated streaming plasma ion source
Glidden, Steven C.; Sanders, Howard D.; Greenly, John B.
2006-07-25
A novel pulsed, neutralized ion beam source is provided. The source uses pulsed inductive breakdown of neutral gas, and magnetic acceleration and control of the resulting plasma, to form a beam. The beam supplies ions for applications requiring excellent control of ion species, low remittance, high current density, and spatial uniformity.
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS.
Thomae, R; Conradie, J; Fourie, D; Mira, J; Nemulodi, F; Kuechler, D; Toivanen, V
2016-02-01
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the results of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.
CANCELLED Microwave Ion Source and Beam Injection for anAccelerator-Driven Neut ron Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vainionpaa, J.H.; Gough, R.; Hoff, M.
2007-02-27
An over-dense microwave driven ion source capable of producing deuterium (or hydrogen) beams at 100-200 mA/cm{sup 2} and with atomic fraction > 90% was designed and tested with an electrostatic low energy beam transport section (LEBT). This ion source was incorporated into the design of an Accelerator Driven Neutron Source (ADNS). The other key components in the ADNS include a 6 MeV RFQ accelerator, a beam bending and scanning system, and a deuterium gas target. In this design a 40 mA D{sup +} beam is produced from a 6 mm diameter aperture using a 60 kV extraction voltage. The LEBTmore » section consists of 5 electrodes arranged to form 2 Einzel lenses that focus the beam into the RFQ entrance. To create the ECR condition, 2 induction coils are used to create {approx} 875 Gauss on axis inside the source chamber. To prevent HV breakdown in the LEBT a magnetic field clamp is necessary to minimize the field in this region. Matching of the microwave power from the waveguide to the plasma is done by an autotuner. They observed significant improvement of the beam quality after installing a boron nitride liner inside the ion source. The measured emittance data are compared with PBGUNS simulations.« less
Plasma formed ion beam projection lithography system
Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran
2002-01-01
A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.
Effect of electron beam irradiation on the viscosity of carboxymethylcellulose solution
NASA Astrophysics Data System (ADS)
Choi, Jong-il; Lee, Hee-Sub; Kim, Jae-Hun; Lee, Kwang-Won; Chung, Young-Jin; Byun, Myung-Woo; Lee, Ju-Woon
2008-12-01
In this study, the effects of an electron beam irradiation on the viscosity of a carboxymethylcellulose (CMC) solution were investigated. The viscosity of the CMC solution was decreased with an increase in the irradiation dose. Interestingly, the extent of the degradation of the CMC was found to decrease with an increase of the CMC concentration in the solution. The change of the average molar mass confirmed the decrease in the viscosity due to the degradation of the polymer. The energy of the electron beam also affected the degradation of the CMC. Lower degradation of the CMC was obtained with a decreasing electron beam energy due to its lower penetration. Addition of vitamin C as a radical scavenger to the solution and an irradiation at -70 °C were shown to be moderately effective in preventing a decrease in the viscosity of the solution by irradiation.
Propagation properties of cylindrical sinc Gaussian beam
NASA Astrophysics Data System (ADS)
Eyyuboğlu, Halil T.; Bayraktar, Mert
2016-09-01
We investigate the propagation properties of cylindrical sinc Gaussian beam in turbulent atmosphere. Since an analytic solution is hardly derivable, the study is carried out with the aid of random phase screens. Evolutions of the beam intensity profile, beam size and kurtosis parameter are analysed. It is found that on the source plane, cylindrical sinc Gaussian beam has a dark hollow appearance, where the side lobes also start to emerge with increase in width parameter and Gaussian source size. During propagation, beams with small width and Gaussian source size exhibit off-axis behaviour, losing the dark hollow shape, accumulating the intensity asymmetrically on one side, whereas those with large width and Gaussian source size retain dark hollow appearance even at long propagation distances. It is seen that the beams with large widths expand more in beam size than the ones with small widths. The structure constant values chosen do not seem to alter this situation. The kurtosis parameters of the beams having small widths are seen to be larger than the ones with the small widths. Again the choice of the structure constant does not change this trend.
Production of high current proton beams using complex H-rich molecules at GSI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adonin, A., E-mail: a.adonin@gsi.de; Barth, W.; Heymach, F.
2016-02-15
In this contribution, the concept of production of intense proton beams using molecular heavy ion beams from an ion source is described, as well as the indisputable advantages of this technique for operation of the GSI linear accelerator. The results of experimental investigations, including mass-spectra analysis and beam emittance measurements, with different ion beams (CH{sub 3}{sup +},C{sub 2}H{sub 4}{sup +},C{sub 3}H{sub 7}{sup +}) using various gaseous and liquid substances (methane, ethane, propane, isobutane, and iodoethane) at the ion source are summarized. Further steps to improve the ion source and injector performance with molecular beams are depicted.
Rotationally inelastic scattering of methyl radicals with Ar and N{sub 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tkáč, Ondřej; Orr-Ewing, Andrew J., E-mail: a.orr-ewing@bristol.ac.uk; Ma, Qianli
2015-01-07
The rotationally inelastic scattering of methyl radical with Ar and N{sub 2} is examined at collision energies of 330 ± 25 cm{sup −1} and 425 ± 50 cm{sup −1}, respectively. Differential cross sections (DCSs) were measured for different final n′ rotational levels (up to n′ = 5) of the methyl radicals, averaged over k′ sub-levels, using a crossed molecular beam machine with velocity map imaging. For Ar as a collision partner, we present a newly constructed ab initio potential energy surface and quantum mechanical scattering calculations of state-resolved DCSs. These computed DCSs agree well with the measurements. The DCSs formore » both Ar and N{sub 2} collision partners are strongly forward peaked for all spectroscopic lines measured. For scattering angles below 60°, the theoretical CD{sub 3}–Ar DCSs show diffraction oscillations that become less pronounced as n′ increases, but these oscillations are not resolved experimentally. Comparisons are drawn with our recently reported DCSs for scattering of methyl radicals with He atoms.« less
Exotic X-ray Sources from Intermediate Energy Electron Beams
NASA Astrophysics Data System (ADS)
Chouffani, K.; Wells, D.; Harmon, F.; Jones, J. L.; Lancaster, G.
2003-08-01
High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, "novel" x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic "structure" of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR).
Greenly, John B.
1997-01-01
An improved pulsed ion beam source having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center.
Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies
NASA Astrophysics Data System (ADS)
Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; Hong, Hawoong; Marks, Laurence D.; Fong, Dillon D.
2018-03-01
A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. The high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO3 oxide perovskites containing elements from both the metalorganic source and a traditional effusion cell.
Negative ion source development at the cooler synchrotron COSY/Jülich
NASA Astrophysics Data System (ADS)
Felden, O.; Gebel, R.; Maier, R.; Prasuhn, D.
2013-02-01
The Nuclear Physics Institute at the Forschungszentrum Jülich, a member of the Helmholtz Association, conducts experimental and theoretical basic research in the field of hadron, particle, and nuclear physics. It operates the cooler synchrotron COSY, an accelerator and storage ring, which provides unpolarized and polarized proton and deuteron beams with beam momenta of up to 3.7 GeV/c. Main activities of the accelerator division are the design and construction of the high energy storage ring HESR, a synchrotron and part of the international FAIR project, and the operation and development of COSY with injector cyclotron and ion sources. Filament driven volume sources and a charge exchange colliding beams source, based on a nuclear polarized atomic beam source, provide unpolarized and polarized H- or D- routinely for more than 6500 hours/year. Within the Helmholtz Association's initiative Accelerator Research and Development, ARD, the existing sources at COSY, as well as new sources for future programs, are investigated and developed. The paper reports about these plans, improved pulsed beams from the volume sources and the preparation of a source for the ELENA project at CERN.
Excited-state dissociation dynamics of phenol studied by a new time-resolved technique
NASA Astrophysics Data System (ADS)
Lin, Yen-Cheng; Lee, Chin; Lee, Shih-Huang; Lee, Yin-Yu; Lee, Yuan T.; Tseng, Chien-Ming; Ni, Chi-Kung
2018-02-01
Phenol is an important model molecule for the theoretical and experimental investigation of dissociation in the multistate potential energy surfaces. Recent theoretical calculations [X. Xu et al., J. Am. Chem. Soc. 136, 16378 (2014)] suggest that the phenoxyl radical produced in both the X and A states from the O-H bond fission in phenol can contribute substantially to the slow component of photofragment translational energy distribution. However, current experimental techniques struggle to separate the contributions from different dissociation pathways. A new type of time-resolved pump-probe experiment is described that enables the selection of the products generated from a specific time window after molecules are excited by a pump laser pulse and can quantitatively characterize the translational energy distribution and branching ratio of each dissociation pathway. This method modifies conventional photofragment translational spectroscopy by reducing the acceptance angles of the detection region and changing the interaction region of the pump laser beam and the molecular beam along the molecular beam axis. The translational energy distributions and branching ratios of the phenoxyl radicals produced in the X, A, and B states from the photodissociation of phenol at 213 and 193 nm are reported. Unlike other techniques, this method has no interference from the undissociated hot molecules. It can ultimately become a standard pump-probe technique for the study of large molecule photodissociation in multistates.
ION SOURCE WITH SPACE CHARGE NEUTRALIZATION
Flowers, J.W.; Luce, J.S.; Stirling, W.L.
1963-01-22
This patent relates to a space charge neutralized ion source in which a refluxing gas-fed arc discharge is provided between a cathode and a gas-fed anode to provide ions. An electron gun directs a controlled, monoenergetic electron beam through the discharge. A space charge neutralization is effected in the ion source and accelerating gap by oscillating low energy electrons, and a space charge neutralization of the source exit beam is effected by the monoenergetic electron beam beyond the source exit end. The neutralized beam may be accelerated to any desired energy at densities well above the limitation imposed by Langmuir-Child' s law. (AEC)
[Treatment of localized prostate cancer].
Vallancien, Guy; Cathelineau, Xavier; Rozet, François; Barret, Eric
2008-05-01
Treatments for localized prostate cancer include radical prostatectomy, brachytherapy, conformal external beam irradiation, and focused ultrasound. This paper describes the oncologic and functional results of each approach. The treatment choice depends on the patient's general status and on the results of biopsy and imaging studies. Watchful waiting and hormone therapy are other options for elderly patients.
Novel cryogenic sources for liquid droplet and solid filament beams
NASA Astrophysics Data System (ADS)
Grams, Michael P.
Two novel atomic and molecular beam sources have been created and tested consisting first of a superfluid helium liquid jet, and secondly a solid filament of argon. The superfluid helium apparatus is the second of its kind in the world and uses a modified liquid helium cryostat to inject a cylindrical stream of superfluid helium into vacuum through glass capillary nozzles with diameters on the order of one micron created on-site at Arizona State University. The superfluid beam is an entirely new way to study superfluid behavior, and has many new applications such as superfluid beam-surface scattering, beam-beam scattering, and boundary-free study of superfluidity. The solid beam of argon is another novel beam source created by flowing argon gas through a capillary 50 microns in diameter which is clamped by a small copper plate to a copper block kept at liquid nitrogen temperature. The gas subsequently cools and solidifies plugging the capillary. Upon heating, the solid plug melts and liquid argon exits the capillary and immediately freezes by evaporative cooling. The solid filaments may find application as wall-less cryogenic matrices, or targets for laser plasma sources of extreme UV and soft x-ray sources.
NASA Astrophysics Data System (ADS)
Pikulin, Alexander; Bityurin, Nikita; Sokolov, Viktor I.
2015-12-01
Diffusion-assisted direct laser writing (DA-DLW) by multiphoton polymerization has been recently shown to be one of the most promising methods for the high-resolution 3D nanofabrication [I. Sakellari, et al., ACS Nano 6, 2302 (2012)]. The improvement of the writing spatial resolution has been observed under certain conditions when the mobile radical quencher (polymerization inhibitor) is added to the photosensitive composition. In this work, we present a theoretical study of this method, focusing on the resolution capabilities and optimal writing parameters. The laser beam absorption in the polymerizable composition causes the localized depletion of the quencher molecules. If the quencher depletion is balanced by its diffusion from the outside of the focal volume, the quasi-stationary non-equillibrium concentration spatial profile with zero minimum can be obtained. The polymer is then effectively formed only in the domain where the quencher is depleted. The spatially-distributed quencher, in this case, has the effect similar to that of the vortex beam in STimulated Emission Microscopy (STED).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pikulin, Alexander, E-mail: pikulin@ufp.appl.sci-nnov.ru; Bityurin, Nikita; Institute of Applied Physics of Russian Academy of Sciences, 46, Ul’yanov Str., Nizhniy Novgorod, 603950
Diffusion-assisted direct laser writing (DA-DLW) by multiphoton polymerization has been recently shown to be one of the most promising methods for the high-resolution 3D nanofabrication [I. Sakellari, et al., ACS Nano 6, 2302 (2012)]. The improvement of the writing spatial resolution has been observed under certain conditions when the mobile radical quencher (polymerization inhibitor) is added to the photosensitive composition. In this work, we present a theoretical study of this method, focusing on the resolution capabilities and optimal writing parameters. The laser beam absorption in the polymerizable composition causes the localized depletion of the quencher molecules. If the quencher depletionmore » is balanced by its diffusion from the outside of the focal volume, the quasi-stationary non-equillibrium concentration spatial profile with zero minimum can be obtained. The polymer is then effectively formed only in the domain where the quencher is depleted. The spatially-distributed quencher, in this case, has the effect similar to that of the vortex beam in STimulated Emission Microscopy (STED)« less
Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer
Dress, William B.; Kisner, Roger A.; Richards, Roger K.
2004-06-01
53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.
40 CFR 261.31 - Hazardous wastes from non-specific sources.
Code of Federal Regulations, 2011 CFR
2011-07-01
... free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon... spent desiccant wastes from the production of certain chlorinated aliphatic hydrocarbons, by free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon chain...
40 CFR 261.31 - Hazardous wastes from non-specific sources.
Code of Federal Regulations, 2010 CFR
2010-07-01
... free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon... spent desiccant wastes from the production of certain chlorinated aliphatic hydrocarbons, by free radical catalyzed processes. These chlorinated aliphatic hydrocarbons are those having carbon chain...
SULFATE RADICAL-BASED ADVANCED OXIDATION PROCESSES- ACS MEETING
This paper will present an overview of sulfate radical-based advanced oxidation technologies for the destruction of environmentally toxic chemicals in wastewater, industrial water, groundwater and sources of water supply. The paper will include fundamental aspects of the generati...
Generation of tunable radially polarized array beams by controllable coherence
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Jipeng; Zhu, Shijun; Li, Zhenhua
2017-05-01
In this paper, a new method for converting a single radial polarization beam into an arbitrary radially polarized array (RPA) beam such as a radial or rectangular symmetry array in the focal plane by modulating a periodic correlation structure is introduced. The realizability conditions for such source and the beam condition for radiation generated by such source are derived. It is illustrated that both the amplitude and the polarization are controllable by means of initial correlation structure and coherence parameter. Furthermore, by designing the source correlation structure, a tunable NUST-shaped RPA beam is demonstrated, which can find widespread applications in micro-nano engineering. Such a method for generation of arbitrary vector array beams is useful in beam shaping and optical tweezers.
Deuteron Beam Source Based on Mather Type Plasma Focus
NASA Astrophysics Data System (ADS)
Lim, L. K.; Yap, S. L.; Wong, C. S.; Zakaullah, M.
2013-04-01
A 3 kJ Mather type plasma focus system filled with deuterium gas is operated at pressure lower than 1 mbar. Operating the plasma focus in a low pressure regime gives a consistent ion beam which can make the plasma focus a reliable ion beam source. In our case, this makes a good deuteron beam source, which can be utilized for neutron generation by coupling a suitable target. This paper reports ion beam measurements obtained at the filling pressure of 0.05-0.5 mbar. Deuteron beam energy is measured by time of flight technique using three biased ion collectors. The ion beam energy variation with the filling pressure is investigated. Deuteron beam of up to 170 keV are obtained with the strongest deuteron beam measured at 0.1 mbar, with an average energy of 80 keV. The total number of deuterons per shot is in the order of 1018 cm-2.
Simulation of a beam rotation system for a spallation source
NASA Astrophysics Data System (ADS)
Reiss, Tibor; Reggiani, Davide; Seidel, Mike; Talanov, Vadim; Wohlmuther, Michael
2015-04-01
With a nominal beam power of nearly 1 MW on target, the Swiss Spallation Neutron Source (SINQ), ranks among the world's most powerful spallation neutron sources. The proton beam transport to the SINQ target is carried out exclusively by means of linear magnetic elements. In the transport line to SINQ the beam is scattered in two meson production targets and as a consequence, at the SINQ target entrance the beam shape can be described by Gaussian distributions in transverse x and y directions with tails cut short by collimators. This leads to a highly nonuniform power distribution inside the SINQ target, giving rise to thermal and mechanical stresses. In view of a future proton beam intensity upgrade, the possibility of homogenizing the beam distribution by means of a fast beam rotation system is currently under investigation. Important aspects which need to be studied are the impact of a rotating proton beam on the resulting neutron spectra, spatial flux distributions and additional—previously not present—proton losses causing unwanted activation of accelerator components. Hence a new source description method was developed for the radiation transport code MCNPX. This new feature makes direct use of the results from the proton beam optics code TURTLE. Its advantage to existing MCNPX source options is that all phase space information and correlations of each primary beam particle computed with TURTLE are preserved and transferred to MCNPX. Simulations of the different beam distributions together with their consequences in terms of neutron production are presented in this publication. Additionally, a detailed description of the coupling method between TURTLE and MCNPX is provided.
Design of the low energy beam transport line for the China spallation neutron source
NASA Astrophysics Data System (ADS)
Li, Jin-Hai; Ouyang, Hua-Fu; Fu, Shi-Nian; Zhang, Hua-Shun; He, Wei
2008-03-01
The design of the China Spallation Neutron Source (CSNS) low-energy beam transport (LEBT) line, which locates between the ion source and the radio-frequency quadrupole (RFQ), has been completed with the TRACE3D code. The design aims at perfect matching, primary chopping, a small emittance growth and sufficient space for beam diagnostics. The line consists of three solenoids, three vacuum chambers, two steering magnets and a pre-chopper. The total length of LEBT is about 1.74 m. This LEBT is designed to transfer 20 mA of H-pulsed beam from the ion source to the RFQ. An induction cavity is adopted as the pre-chopper. The electrostatic octupole steerer is discussed as a candidate. A four-quadrant aperture for beam scraping and beam position monitoring is designed.
Electromagnetic sinc Schell-model beams and their statistical properties.
Mei, Zhangrong; Mao, Yonghua
2014-09-22
A class of electromagnetic sources with sinc Schell-model correlations is introduced. The conditions on source parameters guaranteeing that the source generates a physical beam are derived. The evolution behaviors of statistical properties for the electromagnetic stochastic beams generated by this new source on propagating in free space and in atmosphere turbulence are investigated with the help of the weighted superposition method and by numerical simulations. It is demonstrated that the intensity distributions of such beams exhibit unique features on propagating in free space and produce a double-layer flat-top profile of being shape-invariant in the far field. This feature makes this new beam particularly suitable for some special laser processing applications. The influences of the atmosphere turbulence with a non-Kolmogorov power spectrum on statistical properties of the new beams are analyzed in detail.
Improved design of proton source and low energy beam transport line for European Spallation Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neri, L., E-mail: neri@lns.infn.it; Celona, L.; Gammino, S.
2014-02-15
The design update of the European Spallation Source (ESS) accelerator is almost complete and the construction of the prototype of the microwave discharge ion source able to provide a proton beam current larger than 70 mA to the 3.6 MeV Radio Frequency Quadrupole (RFQ) started. The source named PS-ESS (Proton Source for ESS) was designed with a flexible magnetic system and an extraction system able to merge conservative solutions with significant advances. The ESS injector has taken advantage of recent theoretical updates and new plasma diagnostics tools developed at INFN-LNS (Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare). Themore » design strategy considers the PS-ESS and the low energy beam transport line as a whole, where the proton beam behaves like an almost neutralized non-thermalized plasma. Innovative solutions have been used as hereinafter described. Thermo-mechanical optimization has been performed to withstand the chopped beam and the misaligned focused beam over the RFQ input collimator; the results are reported here.« less
NASA Astrophysics Data System (ADS)
Lesslie, Michael; Osburn, Sandra; Berden, Giel; Oomens, J.; Ryzhov, Victor
2015-06-01
Most of the work on peptide radical cations has involved protons as the source of charge. Nonetheless, using metal ions as charge sources often offers advantages like stabilization of the structure via multidentate coordination and the elimination of the "mobile proton". Moreover, characterization of metal-bound amino acids is of general interest as the interaction of peptide side chains with metal ions in biological systems is known to occur extensively. In the current study, we generate thiyl radicals of cysteine and homocysteine in the gas phase complexed to alkali metal ions. Subsequently, we utilize infrared multiple-photon dissociation (IRMPD) and ion-molecule reactions (IMR) to characterize the structure and reactivity of these radical ions. Our group has worked extensively with the cysteine-based radical cations and anions, characterizing the gas-phase reactivity and rearrangement of the amino acid and several of its derivatives. In a continuation of this work, we are perusing the effects of metal ions as the charge bearing species on the reactivity of the sulfur radical. Our S-nitroso chemistry can easily be used in conjunction with metal ion coordination to produce initial S-based radicals in peptide radical-metal ion complexes. In all cases we have been able to achieve radical formation with significant yield to study reactivity. Ion-molecule reactions of metallated radicals with allyl iodide, dimethyl disulfide, and allyl bromide have all shown decreasing reactivity going down group 1A. Recently, we determined the experimental IR spectra for the homocysteine radical cation with Li+, Na+, and K+ as the charge bearing species at the FELIX facility. For comparison, the protonated IR spectrum of homocysteine has previously been obtained by our group. A preliminary match of the IR spectra has been confirmed. Finally, calculations are underway to determine the bond distances of all the metal adduct structures.
Beam experiments with the Grenoble test electron cyclotron resonance ion source at iThemba LABS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomae, R., E-mail: rthomae@tlabs.ac.za; Conradie, J.; Fourie, D.
2016-02-15
At iThemba Laboratory for Accelerator Based Sciences (iThemba LABS) an electron cyclotron ion source was installed and commissioned. This source is a copy of the Grenoble Test Source (GTS) for the production of highly charged ions. The source is similar to the GTS-LHC at CERN and named GTS2. A collaboration between the Accelerators and Beam Physics Group of CERN and the Accelerator and Engineering Department of iThemba LABS was proposed in which the development of high intensity argon and xenon beams is envisaged. In this paper, we present beam experiments with the GTS2 at iThemba LABS, in which the resultsmore » of continuous wave and afterglow operation of xenon ion beams with oxygen as supporting gases are presented.« less
Very-low-energy-spread ion sources
NASA Astrophysics Data System (ADS)
Lee, Y.
1997-05-01
Ion beams with low axial energy spread are required in many applications such as ion projection lithography, isobaric separation in radioactive ion beam experiments, and ion beam deposition processes. In an ion source, the spread of the axial ion energy is caused by the nonuniformity of the plasma potential distribution along the source axis. Multicusp ion sources are capable of production positive and negative ions with good beam quality and relatively low energy spread. By intorducing a magnetic filter inside the multicusp source chamber, the axial plasma potential distribution is modified and the energy spread of positive hydrogen ions can be reduced to as low as 1 eV. The energy spread measurements of multicusp sources have been conducted by employing three different techniques: an electrostatic energy analyzer at the source exit; a magnetic deflection spectrometer; and a retarding-field energy analyzer for the accelerated beam. These different measurements confirmed tha! t ! the axial energy spread of positive and negative ions generated in the filter-equipped multicusp sources are small. New ion source configurations are now being investigated at LBNL with the purpose of achieving enen lower energy spread (<1eV) and of maximizing source performance such as reliability and lifetime.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Ratnam, C. T.; Haraveen, K. J. S.; Tee, Tiam-Ting; Rahmat, A. R.
2015-10-01
In this study, the effects of electron beam irradiation on the properties of copper(II) oxide when added to low-density polyethylene (LDPE) blends were investigated. It was found that the addition of low loading level of copper(II) oxide (⩽2 phr) to LDPE results in significantly poorer gel content and hot set results. However, the incorporation of higher loading level of copper(II) oxide (⩾3 phr) could slightly increase the degree of crosslinking in all irradiated LDPE composites. This is due to the fact that higher amounts of copper(II) oxide could slightly induce the formation of free radicals in LDPE matrix. Besides, increasing irradiation doses was also found to gradually increase the gel content of LDPE composites by generating higher amounts of free radicals. As a consequence, these higher amounts of free radicals released in the LDPE matrix could significantly increase the degree of crosslinking. The addition of copper(II) oxide could reduce the tensile strength and fracture strain (elongation at break) of LDPE composites because of poorer interfacial adhesion effect between copper(II) oxide particles and LDPE matrix. Meanwhile, increasing irradiation doses on all copper(II) oxide added LDPE composites could marginally increase the tensile strength. In addition, increasing irradiation dose could enhance the thermal stability of LDPE composites by increasing the decomposition temperature. The oxidation induction time (OIT) analysis showed that, because of the crosslinking network in the copper(II) oxide added LDPE composites, oxidation reaction is much delayed.
Passananti, Monica; Temussi, Fabio; Iesce, Maria Rosaria; Mailhot, Gilles; Brigante, Marcello
2013-09-15
In this paper we investigated the degradation of the rivastigmine drug induced by hydroxyl radical in synthetic and natural waters focusing on both reactivity and photoproducts identification. The hydroxyl radical formation rate was quantified by using terephthalic acid as trapping molecule and it was related with the rivastigmine degradation rate. The second order rate constant between hydroxyl radical and rivastigmine was estimated to be ≈ 5.8 × 10(9) M(-1) s(-1). Irradiation of rivastigmine in three natural waters (rain, lake and river) and comparison with degradation rates observed in synthetic solutions using nitrite, nitrate and hydrogen peroxide suggest that, in addition to hydroxyl radical, also nitroderived radicals (NO/NO2) are responsible for the pollutant degradation in natural media. In fact, the evaluated degradation rates in three natural waters are greatly higher than those estimated considering only the reactivity with photogenerated hydroxyl radical. Using nitrites and nitrates as photochemical OH source, the rivastigmine degradation cannot be described considering only the hydroxyl radical reactivity suggesting that NO and NO2 radicals could play a key role during indirect degradation. Moreover main degradation products have been identified by means of HPLC-MS. Hydroxylation of the aromatic ring as well as carbamate and amino chain oxidation were suggested as main reaction mechanisms, but also nitroderived compounds were characterized. Finally polychromatic irradiations of three rivastigmine doped natural waters (rain, river and lake) underlined the role of the indirect degradation that needs to be considered when direct degradation of selected pollutants is negligible under environmental-like conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mechanisms for Covalent Immobilization of Horseradish Peroxidase on Ion-Beam-Treated Polyethylene
Kondyurin, Alexey V.; Naseri, Pourandokht; Tilley, Jennifer M. R.; Nosworthy, Neil J.; Bilek, Marcela M. M.; McKenzie, David R.
2012-01-01
The surface of polyethylene was modified by plasma immersion ion implantation. Structure changes including carbonization and oxidation were observed. High surface energy of the modified polyethylene was attributed to the presence of free radicals on the surface. The surface energy decay with storage time after treatment was explained by a decay of the free radical concentration while the concentration of oxygen-containing groups increased with storage time. Horseradish peroxidase was covalently attached onto the modified surface by the reaction with free radicals. Appropriate blocking agents can block this reaction. All aminoacid residues can take part in the covalent attachment process, providing a universal mechanism of attachment for all proteins. The native conformation of attached protein is retained due to hydrophilic interactions in the interface region. The enzymatic activity of covalently attached protein remained high. The long-term activity of the modified layer to attach protein is explained by stabilisation of unpaired electrons in sp2 carbon structures. A high concentration of free radicals can give multiple covalent bonds to the protein molecule and destroy the native conformation and with it the catalytic activity. The universal mechanism of protein attachment to free radicals could be extended to various methods of radiation damage of polymers. PMID:24278665
Performance of the LANSCE H^- Source and Low Energy Transport at Higher Peak Current
NASA Astrophysics Data System (ADS)
Pillai, Chandra; Stevens, Ralph; Fitzgerald, Daniel; Garnett, Robert; Ingllas, William; Merrill, Frank; Rybarcyk, Larry; Sander, Oscar
1997-05-01
The Los Alamos Neutron Science Center (LANSCE) 800 MeV linac facility uses a multicusp field, surface ion source to produce H^- beam for delivery to the Proton Storage Ring (PSR) and to the Weapon Neutron Research (WNR) areas. The source typically operates at a duty factor of 9.4% delivering a peak current of about 14 mA into the 750 keV LEBT. Each beam macropulse is chopped to create a sequence of 360 ns pulse, each with a 100 ns ``extraction notch'' for injection into PSR. The average current delivered to the short-pulse spallation target is nominally 70μA. One goal of the present PSR upgrade projects is an increase in the average beam current to 200μA. This will be accomplished by a combination of increased repetition rate (to 30 Hz), upgraded PSR bunchers, and a brighter H^- ion source that will produce higher peak current with lower beam emittance. The present ion source and injector system was studied to investigate the beam qualities of the source and the performance of the low energy transpot. The performance of the ion source at higher currents and the change in beam parameters in the low energy transport compared to those in the standard source conditions will be presented.
Electron beam ion source and electron beam ion trap (invited).
Becker, Reinard; Kester, Oliver
2010-02-01
The electron beam ion source (EBIS) and its trap variant [electron beam ion trap (EBIT)] celebrated their 40th and 20th anniversary, respectively, at the EBIS/T Symposium 2007 in Heidelberg. These technologically challenging sources of highly charged ions have seen a broad development in many countries over the last decades. In contrast to most other ion sources the recipe of improvement was not "sorcery" but a clear understanding of the physical laws and obeying the technological constraints. This review will report important achievements of the past as well as promising developments in the future.
Intense steady state electron beam generator
Hershcovitch, A.; Kovarik, V.J.; Prelec, K.
1990-07-17
An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source. 2 figs.
Intense steady state electron beam generator
Hershcovitch, Ady; Kovarik, Vincent J.; Prelec, Krsto
1990-01-01
An intense, steady state, low emittance electron beam generator is formed by operating a hollow cathode discharge plasma source at critical levels in combination with an extraction electrode and a target electrode that are operable to extract a beam of fast primary electrons from the plasma source through a negatively biased grid that is critically operated to repel bulk electrons toward the plasma source while allowing the fast primary electrons to move toward the target in the desired beam that can be successfully transported for relatively large distances, such as one or more meters away from the plasma source.
Review on high current 2.45 GHz electron cyclotron resonance sources (invited).
Gammino, S; Celona, L; Ciavola, G; Maimone, F; Mascali, D
2010-02-01
The suitable source for the production of intense beams for high power accelerators must obey to the request of high brightness, stability, and reliability. The 2.45 GHz off-resonance microwave discharge sources are the ideal device to generate the requested beams, as they produce multimilliampere beams of protons, deuterons, and monocharged ions, remaining stable for several weeks without maintenance. A description of different technical designs will be given, analyzing their strength, and weakness, with regard to the extraction system and low energy beam transport line, as the presence of beam halo is detrimental for the accelerator.
Development of the TFTR neutral beam injection system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prichard, Jr., B. A.
1977-01-01
The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources and a prototype beam line are being developed. The implementation of these beam lines has required the development of several associated pieces of hardware. 200 kV switch tubes for the power supplies are being developed for modulation and regulation of the accelerating supplies. A 90 cm metallic seal gate valve capable of sealing against atmosphere in either direction is being developed formore » separating the torus and beam line vacuum systems. A 70 x 80 cm fast shutter valve is also being developed to limit tritium migration from the torus into the beam line. Internal to the beam line a calorimeter, ion dump and deflection magnet have been designed to handle three beams, and optical diagnostics utilizing the doppler broadening and doppler shift of light emitted from the accelerated beam are being developed. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982.« less
Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies
Andersen, Tassie K.; Cook, Seyoung; Benda, Erika; ...
2018-03-08
A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less
Development of a hybrid molecular beam epitaxy deposition system for in situ surface x-ray studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, Tassie K.; Cook, Seyoung; Benda, Erika
A portable metalorganic gas delivery system designed and constructed to interface with an existing molecular beam epitaxy chamber at beamline 33-ID-E of the Advanced Photon Source is described. This system offers the ability to perform in situ X-ray measurements of complex oxide growth via hybrid molecular beam epitaxy. The performance of the hybrid molecular beam epitaxy system while delivering metalorganic source materials is described. In conclusion, the high-energy X-ray scattering capabilities of the hybrid molecular beam epitaxy system are demonstrated both on oxide films grown solely from the metalorganic source and ABO 3 oxide perovskites containing elements from both themore » metalorganic source and a traditional effusion cell.« less
An ion source module for the Beijing Radioactive Ion-beam Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, B., E-mail: cui@ciae.ac.cn; Huang, Q.; Tang, B.
2014-02-15
An ion source module is developed for Beijing Radioactive Ion-beam Facility. The ion source module is designed to meet the requirements of remote handling. The connection and disconnection of the electricity, cooling and vacuum between the module and peripheral units can be executed without on-site manual work. The primary test of the target ion source has been carried out and a Li{sup +} beam has been extracted. Details of the ion source module and its primary test results are described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Shunji; Katagiri Engineering Co., Ltd., 3-5-34 Shitte Tsurumi-ku, Yokohama 230-0003; Takashima, Seigo
2009-09-01
Atomic radicals such as hydrogen (H) and oxygen (O) play important roles in process plasmas. In a previous study, we developed a system for measuring the absolute density of H, O, nitrogen, and carbon atoms in plasmas using vacuum ultraviolet absorption spectroscopy (VUVAS) with a compact light source using an atmospheric pressure microplasma [microdischarge hollow cathode lamp (MHCL)]. In this study, we developed a monitoring probe for atomic radicals employing the VUVAS with the MHCL. The probe size was 2.7 mm in diameter. Using this probe, only a single port needs to be accessed for radical density measurements. We successfullymore » measured the spatial distribution of the absolute densities of H and O atomic radicals in a radical-based plasma processing system by moving the probe along the radial direction of the chamber. This probe allows convenient analysis of atomic radical densities to be carried out for any type of process plasma at any time. We refer to this probe as a ubiquitous monitoring probe for atomic radicals.« less
Characterizing the Performance of the Princeton Advanced Test Stand Ion Source
NASA Astrophysics Data System (ADS)
Stepanov, A.; Gilson, E. P.; Grisham, L.; Kaganovich, I.; Davidson, R. C.
2012-10-01
The Princeton Advanced Test Stand (PATS) is a compact experimental facility for studying the physics of intense beam-plasma interactions relevant to the Neutralized Drift Compression Experiment - II (NDCX-II). The PATS facility consists of a multicusp RF ion source mounted on a 2 m-long vacuum chamber with numerous ports for diagnostic access. Ar+ beams are extracted from the source plasma with three-electrode (accel-decel) extraction optics. The RF power and extraction voltage (30 - 100 kV) are pulsed to produce 100 μsec duration beams at 0.5 Hz with excellent shot-to-shot repeatability. Diagnostics include Faraday cups, a double-slit emittance scanner, and scintillator imaging. This work reports measurements of beam parameters for a range of beam energies (30 - 50 keV) and currents to characterize the behavior of the ion source and extraction optics. Emittance scanner data is used to calculate the beam trace-space distribution and corresponding transverse emittance. If the plasma density is changing during a beam pulse, time-resolved emittance scanner data has been taken to study the corresponding evolution of the beam trace-space distribution.
NASA Astrophysics Data System (ADS)
Aza, E.; Schiesko, L.; Wimmer, C.; Wünderlich, D.; Fantz, U.
2017-08-01
The properties of the negative hydrogen ion beam produced by the scaled prototype ITER NBI source at the BATMAN testbed were investigated by means of two beam diagnostics: Beam Emission Spectroscopy (BES) and a calorimeter. Two modifications to the prototype were applied. The first was the installation of a second Cs oven at the bottom part of the backplate in addition to the standard one at the upper part of the backplate varying the Cs evaporation asymmetry inside the source. The second consisted in the replacement of the cylindrical driver with a larger racetrack-shaped RF driver and placing a single Cs oven in a central position at the backplate of the driver. The resulting beam characteristics are discussed and compared with those obtained with the previous source design. The position of the Cs oven and the different driver size and geometry appear not to influence the beam profile and the beam deflection for a well-conditioned source.
NASA Astrophysics Data System (ADS)
Zhao, L.; Boehmer, H.; Edrich, D.; Heidbrink, W.; McWilliams, R.; Zimmerman, D.; Leneman, D.
2003-10-01
To study fast-ion transport, a 3-cm diameter, 17 MHZ, ˜80W, ˜3 mA argon source launches ˜500 eV ions in the LArge Plasma Device (LAPD). The beam is diagnosed with a gridded analyzer and, on a test stand at Irvine, laser-induced fluorescence (LIF). Neutral scattering is important near the source. The measured beam energy can be more than 100 eV larger than the accelerating voltage applied to the extraction grids. In LAPD the profile of the pulsed ion beam is measured at various axial locations between z=0.3-6.0 m from the source. When the beam velocity is parallel to the solenoidal field (0^o) evidence of peristaltic focusing, beam attenuation, and radial scattering is observed. At an angle of 22^o with respect to the field the beam follows the expected helical trajectory. Three meters axially from the source strong attenuation and elongation of the beam in the direction of the gyro-angle are observed. The data are compared with classical Coulomb and neutral scattering theory.
Space environment simulation and sensor calibration facility
NASA Astrophysics Data System (ADS)
Engelhart, Daniel P.; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V.; McGarity, John; Holeman, Ernest
2018-02-01
The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.
Space environment simulation and sensor calibration facility.
Engelhart, Daniel P; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V; McGarity, John; Holeman, Ernest
2018-02-01
The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.
Kim, Hyun-Joo; Choi, Jong-il; Kim, Duk-Jin; Kim, Jae-Hun; Soo Chun, Byeong; Hyun Ahn, Dong; Sun Yook, Hong; Byun, Myung-Woo; Kim, Mi-Jung; Shin, Myung-Gon; Lee, Ju-Woon
2009-01-01
Although the byproduct from Hizikia fusiformis industry had many nutrients, it is being wasted. In this study, the physiological activities of cooking drip extracts from H. fusiformis (CDHF) were determined to investigate the effect of a gamma and an electron beam irradiations. DPPH radical scavenging activity and tyrosinase and ACE inhibition effects of the gamma and electron beam irradiated CDHF extracts were increased with increasing irradiation dose. These were reasoned by the increase in the content of the total polyphenolic compound of CDHF by the gamma and electron beam irradiation. There were no differences for the radiation types. These results show that ionizing radiation could be used for enhancing the functional activity of CDHF which is a major by-product in Hizikia fusiformis processing, in various applications.
Study on depth profile of heavy ion irradiation effects in poly(tetrafluoroethylene-co-ethylene)
NASA Astrophysics Data System (ADS)
Gowa, Tomoko; Shiotsu, Tomoyuki; Urakawa, Tatsuya; Oka, Toshitaka; Murakami, Takeshi; Oshima, Akihiro; Hama, Yoshimasa; Washio, Masakazu
2011-02-01
High linear energy transfer (LET) heavy ion beams were used to irradiate poly(tetrafluoroethylene-co-ethylene) (ETFE) under vacuum and in air. The irradiation effects in ETFE as a function of the depth were precisely evaluated by analyzing each of the films of the irradiated samples, which were made of stacked ETFE films. It was indicated that conjugated double bonds were generated by heavy ion beam irradiation, and their amounts showed the Bragg-curve-like distributions. Also, it was suggested that higher LET beams would induce radical formation in high density and longer conjugated C=C double bonds could be generated by the second-order reactions. Moreover, for samples irradiated in air, C=O was produced correlating to the yield of oxygen molecules diffusing from the sample surface.
Gerasimov, Gennady
2016-09-01
The efficiency of the electron beam treatment of industrial flue gases for the removal of sulfur and nitrogen oxides was investigated as applied to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) using methods of mathematical modeling. The proposed kinetic model of the process includes mechanism of PCDD/Fs decomposition caused by their interaction with OH radicals generated in the flue gases under the electron beam (EB) irradiation as well as PCDD/Fs formation from unburned aromatic compounds. The model allows to predict the main features of the process, which are observed in pilot plant installations, as well as to evaluate the process efficiency. The results of calculations are compared with the available experimental data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nanowire growth by an electron beam induced massive phase transformation
Sood, Shantanu; Kisslinger, Kim; Gouma, Perena
2014-11-15
Tungsten trioxide nanowires of a high aspect ratio have been synthesized in-situ in a TEM under an electron beam of current density 14A/cm² due to a massive polymorphic reaction. Sol-gel processed pseudocubic phase nanocrystals of tungsten trioxide were seen to rapidly transform to one dimensional monoclinic phase configurations, and this reaction was independent of the substrate on which the material was deposited. The mechanism of the self-catalyzed polymorphic transition and accompanying radical shape change is a typical characteristic of metastable to stable phase transformations in nanostructured polymorphic metal oxides. A heuristic model is used to confirm the metastable to stablemore » growth mechanism. The findings are important to the control electron beam deposition of nanowires for functional applications starting from colloidal precursors.« less
Wang, Liying; Ding, Long; Wang, Ying; Zhang, Yan; Liu, Jingbo
2015-02-16
Corn gluten meal, a corn processing industry by-product, is a good source for the preparation of bioactive peptides due to its special amino acid composition. In the present study, the in vitro and cellular free radical scavenging activities of corn peptide fractions (CPFs) were investigated. Results indicated that CPF1 (molecular weight less than 1 kDa) and CPF2 (molecular weight between 1 and 3 kDa) exhibited good hydroxyl radical, superoxide anion radical and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonicacid) diammonium salt (ABTS) radical scavenging activity and oxygen radical absorbance capacity (ORAC). Meanwhile, the in vitro radical scavenging activity of CPF1 was slightly higher than that of CPF2. Both CPF1 and CPF2 also exhibited significant cytoprotective effects and intracellular reactive oxygen species scavenging activity in Caco-2 cells exposed to hydrogen peroxide (H2O2). The amino acid composition analysis revealed that the CPF were rich in hydrophobic amino acids, which comprised of more than 45% of total amino acids. An antioxidant peptide sequence of Tyr-Phe-Cys-Leu-Thr (YFCLT) was identified from CPF1 using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI TOF/TOF MS). The YFCLT exhibited excellent ABTS radical scavenging activity with a 50% effective concentration (EC50) value of 37.63 µM, which was much lower than that of Trolox. In conclusion, corn gluten meal might be a good source to prepare antioxidant peptides.
BATMAN beam properties characterization by the beam emission spectroscopy diagnostic
NASA Astrophysics Data System (ADS)
Bonomo, F.; Ruf, B.; Barbisan, M.; Cristofaro, S.; Schiesko, L.; Fantz, U.; Franzen, P.; Pasqualotto, R.; Riedl, R.; Serianni, G.; Wünderlich, D.
2015-04-01
The ITER neutral beam heating systems are based on the production and acceleration of negative ions (H/D) up to 1 MV. The requirements for the beam properties are strict: a low core beam divergence (< 0.4 °) together with a low source pressure (≤ 0.3 Pa) would permit to reduce the ion losses along the beamline, keeping the stripping particle losses below 30%. However, the attainment of such beam properties is not straightforward. At IPP, the negative ion source testbed BATMAN (BAvarian Test MAchine for Negative ions) allows for deepening the knowledge of the determination of the beam properties. One of the diagnostics routinely used to this purpose is the Beam Emission Spectroscopy (BES): the Hα light emitted in the beam is detected and the corresponding spectra are evaluated to estimate the beam divergence and the stripping losses. The BES number of lines of sight in BATMAN has been recently increased: five horizontal lines of sight providing a vertical profile of the beam permit to characterize the negative ion beam properties in relation to the source parameters. Different methods of Hα spectra analysis are here taken into account and compared for the estimation of the beam divergence and the amount of stripping. In particular, to thoroughly study the effect of the space charge compensation on the beam divergence, an additional hydrogen injection line has been added in the tank, which allows for setting different background pressure values (one order of magnitude, from about 0.04 Pa up to the source pressure) in the beam drift region.
NASA Astrophysics Data System (ADS)
Geddes, Cameron G. R.; Rykovanov, Sergey; Matlis, Nicholas H.; Steinke, Sven; Vay, Jean-Luc; Esarey, Eric H.; Ludewigt, Bernhard; Nakamura, Kei; Quiter, Brian J.; Schroeder, Carl B.; Toth, Csaba; Leemans, Wim P.
2015-05-01
Near-monoenergetic photon sources at MeV energies offer improved sensitivity at greatly reduced dose for active interrogation, and new capabilities in treaty verification, nondestructive assay of spent nuclear fuel and emergency response. Thomson (also referred to as Compton) scattering sources are an established method to produce appropriate photon beams. Applications are however restricted by the size of the required high-energy electron linac, scattering (photon production) system, and shielding for disposal of the high energy electron beam. Laser-plasma accelerators (LPAs) produce GeV electron beams in centimeters, using the plasma wave driven by the radiation pressure of an intense laser. Recent LPA experiments are presented which have greatly improved beam quality and efficiency, rendering them appropriate for compact high-quality photon sources based on Thomson scattering. Designs for MeV photon sources utilizing the unique properties of LPAs are presented. It is shown that control of the scattering laser, including plasma guiding, can increase photon production efficiency. This reduces scattering laser size and/or electron beam current requirements to scale compatible with the LPA. Lastly, the plasma structure can decelerate the electron beam after photon production, reducing the size of shielding required for beam disposal. Together, these techniques provide a path to a compact photon source system.
NASA Astrophysics Data System (ADS)
Whalley, Lisa; Stone, Daniel; Sharp, Thomas; Garraway, Shani; Bannan, Thomas; Percival, Carl; Hopkins, James; Holmes, Rachel; Hamilton, Jacqui; Lee, James; Laufs, Sebastian; Kleffmann, Jörg; Heard, Dwayne
2014-05-01
With greater than 50 % of the global population residing in urban conurbations, poor urban air quality has a demonstrable effect on human health. OH and HO2 radicals, (collectively termed HOx) together with RO2 radicals, mediate virtually all of the oxidative chemistry in the atmosphere, being responsible for the transformation of primary emissions into secondary pollutants such as NO2, O3 and particulates. Here we present measurements of OH, HO2, partially speciated RO2 (distinguishing smaller alkane related RO2 from larger alkane/alkene/aromatic related RO2), ClNO2 and OH reactivity measurements taken during the ClearfLo campaign in central London in the summer of 2012. Comparison with calculations from a detailed box model utilising the Master Chemical Mechanism v3.2 tested our ability to reproduce radical levels, and enabled detailed radical budgets to be determined, highlighting for example the important role of the photolysis of nitrous acid (HONO) and carbonyl species as radical sources. Speciation of RO2 enabled the break-down of ozone production from different classes of VOCs to be calculated directly and compared with model calculations. Summertime observations of radicals have helped to identify that increases in photolytic sources of radicals on warm, sunny days can significantly increase local ozone concentrations leading to exceedances of EU air quality recommendations of 60 ppbV. The photolytic breakdown of ClNO2 to Cl atoms can more than double radical concentrations in the early morning; although the integrated increase in radical concentrations over a 24 hr period in model runs when ClNO2 photolysis is included is more modest. On average we calculate just under a 1 ppb increase in ozone due to the presence of ClNO2 in London air. OH reactivity was found to be greatest during morning and evening rush hours. Good agreement between the modelled OH reactivity and observations could be achieved when reactivity associated with model generated photo-oxidation products was considered in addition to the measured primary OH reactants. Carbonyl species such as formaldehyde, acetaldehyde and acetone have been identified as the VOC class dominating organic OH reactivity. As such, together with the direct radical source contribution by photolysis, these species dominate local ozone production in London. Modelling studies comparing the observed carbonyl concentrations with model predictions suggest that over 50% of the total concentration may be directly emitted and, hence, London's in-situ chemistry may be considered to contribute significantly to the ozone levels observed.
NASA Astrophysics Data System (ADS)
Gauduel, Y. A.
2017-02-01
The initial distribution of energy deposition triggered by the interaction of ionizing radiations (far UV and X rays, electron, proton and accelerated ions) with molecular targets or integrated biological systems is often decisive for the spatio-temporal behavior of radiation effects that take place on several orders of magnitude. This contribution deals with an interdisciplinary approach that concerns cutting-edge advances on primary radiation events, considering the potentialities of innovating strategies based on ultrafast laser science, from femtosecond photon sources to laser-driven relativistic particles acceleration. Recent advances of powerful TW laser sources (~ 1019 Wcm-2) and laser-plasma interactions providing ultrashort relativistic particle beams in the energy domain 2.5-150 MeV open exciting opportunities for the development of high-energy radiation femtochemistry (HERF). Early radiation damages being dependent on the survival probability of secondary electrons and radial distribution of short-lived radicals inside ionization clusters, a thorough knowledge of these processes involves the real-time probing of primary events in the temporal range 10-14-10-11 s. In the framework of a closed synergy between low-energy radiation femtochemistry (LERF) and the emerging domain of HERF, the paper focuses on early phenomena that occur in the prethermal regime of low-energy secondary electrons, considering very short-lived quantum effects in aqueous environments. A high dose-rate delivered by femtosecond electron beam (~ 1011-1013 Gy s-1) can be used to investigate early radiation processes in native ionization tracks, down to 10-12 s and 10-9 m. We explain how this breakthrough favours the innovating development of real-time nanodosimetry in biologically relevant environments and open new perspectives for spatio-temporal radiation biophysics. The emerging domain of HERF would provide guidance for understanding the specific bioeffects of ultrashort particle bunches. This domain represents also a prerequisite for the control of in vitro and in vivo irradiation at ultrahigh dose-rates or the investigation of ultrafast dose-fractionating phenomena.
Alligood, Bridget W; Womack, Caroline C; Straus, Daniel B; Blase, Frances R; Butler, Laurie J
2011-05-21
The dissociation dynamics of methoxysulfinyl radicals generated from the photodissociation of CH(3)OS(O)Cl at 248 nm is investigated using both a crossed laser-molecular beam scattering apparatus and a velocity map imaging apparatus. There is evidence of only a single photodissociation channel of the precursor: S-Cl fission to produce Cl atoms and CH(3)OSO radicals. Some of the vibrationally excited CH(3)OSO radicals undergo subsequent dissociation to CH(3) + SO(2). The velocities of the detected CH(3) and SO(2) products show that the dissociation occurs via a transition state having a substantial barrier beyond the endoergicity; appropriately, the distribution of velocities imparted to these momentum-matched products is fit by a broad recoil kinetic energy distribution extending out to 24 kcal/mol in translational energy. Using 200 eV electron bombardment detection, we also detect the CH(3)OSO radicals that have too little internal energy to dissociate. These radicals are observed both at the parent CH(3)OSO(+) ion as well as at the CH(3)(+) and SO(2)(+) daughter ions; they are distinguished by virtue of the velocity imparted in the original photolytic step. The detected velocities of the stable radicals are roughly consistent with the calculated barriers (both at the CCSD(T) and G3B3 levels of theory) for the dissociation of CH(3)OSO to CH(3) + SO(2) when we account for the partitioning of internal energy between rotation and vibration as the CH(3)OSOCl precursor dissociates. © 2011 American Institute of Physics.
Theriot, Jordan C.; Ryan, Matthew D.; French, Tracy A.; Pearson, Ryan M.; Miyake, Garret M.
2016-01-01
A standardized technique for atom transfer radical polymerization of vinyl monomers using perylene as a visible-light photocatalyst is presented. The procedure is performed under an inert atmosphere using air- and water-exclusion techniques. The outcome of the polymerization is affected by the ratios of monomer, initiator, and catalyst used as well as the reaction concentration, solvent, and nature of the light source. Temporal control over the polymerization can be exercised by turning the visible light source off and on. Low dispersities of the resultant polymers as well as the ability to chain-extend to form block copolymers suggest control over the polymerization, while chain end-group analysis provides evidence supporting an atom-transfer radical polymerization mechanism. PMID:27166728
Electron beam pumped semiconductor laser
NASA Technical Reports Server (NTRS)
Hug, William F. (Inventor); Reid, Ray D. (Inventor)
2009-01-01
Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nigg, D.W.; Mitchell, H.E.; Harker, Y.D.
Therapeutically-useful epithermal-neutron beams for BNCT are currently generated by nuclear reactors. Various accelerator-based neutron sources for BNCT have been proposed and some low intensity prototypes of such sources, generally featuring the use of proton beams and beryllium or lithium targets have been constructed. This paper describes an alternate approach to the realization of a clinically useful accelerator-based source of epithermal neutrons for BNCT that reconciles the often conflicting objectives of target cooling, neutron beam intensity, and neutron beam spectral purity via a two stage photoneutron production process.
An evaluation of differences due to changing source directivity in room acoustic computer modeling
NASA Astrophysics Data System (ADS)
Vigeant, Michelle C.; Wang, Lily M.
2004-05-01
This project examines the effects of changing source directivity in room acoustic computer models on objective parameters and subjective perception. Acoustic parameters and auralizations calculated from omnidirectional versus directional sources were compared. Three realistic directional sources were used, measured in a limited number of octave bands from a piano, singing voice, and violin. A highly directional source that beams only within a sixteenth-tant of a sphere was also tested. Objectively, there were differences of 5% or more in reverberation time (RT) between the realistic directional and omnidirectional sources. Between the beaming directional and omnidirectional sources, differences in clarity were close to the just-noticeable-difference (jnd) criterion of 1 dB. Subjectively, participants had great difficulty distinguishing between the realistic and omnidirectional sources; very few could discern the differences in RTs. However, a larger percentage (32% vs 20%) could differentiate between the beaming and omnidirectional sources, as well as the respective differences in clarity. Further studies of the objective results from different beaming sources have been pursued. The direction of the beaming source in the room is changed, as well as the beamwidth. The objective results are analyzed to determine if differences fall within the jnd of sound-pressure level, RT, and clarity.
Progress in the development of an H{sup −} ion source for cyclotrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Etoh, H., E-mail: Hrh-Etoh@shi.co.jp; Aoki, Y.; Mitsubori, H.
2015-04-08
A multi-cusp DC H{sup −} ion source has been developed for cyclotrons in medical use. Beam optics of the H{sup −} ion beam is studied using a 2D beam trajectory code. The simulation results are compared with the experimental results obtained in the Mark I source, which has produced up to 16 mA H{sup −} ion beams. The optimum extraction voltages show good agreement between the calculation and the experimental results. A new ion source, Mark II source, is designed to achieve the next goal of producing an H{sup −} beam of 20 mA. The magnetic field configurations and the plasma electrodemore » design are optimized for Cs-seeded operation. Primary electron trajectory simulation shows that primary electrons are confined well and the magnetic filter prevents the primary electrons from entering into the extraction region.« less
Kinetic energy offsets for multicharged ions from an electron beam ion source.
Kulkarni, D D; Ahl, C D; Shore, A M; Miller, A J; Harriss, J E; Sosolik, C E; Marler, J P
2017-08-01
Using a retarding field analyzer, we have measured offsets between the nominal and measured kinetic energy of multicharged ions extracted from an electron beam ion source (EBIS). By varying source parameters, a shift in ion kinetic energy was attributed to the trapping potential produced by the space charge of the electron beam within the EBIS. The space charge of the electron beam depends on its charge density, which in turn depends on the amount of negative charge (electron beam current) and its velocity (electron beam energy). The electron beam current and electron beam energy were both varied to obtain electron beams of varying space charge and these were related to the observed kinetic energy offsets for Ar 4+ and Ar 8+ ion beams. Knowledge of these offsets is important for studies that seek to utilize slow, i.e., low kinetic energy, multicharged ions to exploit their high potential energies for processes such as surface modification. In addition, we show that these offsets can be utilized to estimate the effective radius of the electron beam inside the trap.
Optimization of Compton Source Performance through Electron Beam Shaping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyzhenkov, Alexander; Yampolsky, Nikolai
2016-09-26
We investigate a novel scheme for significantly increasing the brightness of x-ray light sources based on inverse Compton scattering (ICS) - scattering laser pulses off relativistic electron beams. The brightness of ICS sources is limited by the electron beam quality since electrons traveling at different angles, and/or having different energies, produce photons with different energies. Therefore, the spectral brightness of the source is defined by the 6d electron phase space shape and size, as well as laser beam parameters. The peak brightness of the ICS source can be maximized then if the electron phase space is transformed in a waymore » so that all electrons scatter off the x-ray photons of same frequency in the same direction, arriving to the observer at the same time. We describe the x-ray photon beam quality through the Wigner function (6d photon phase space distribution) and derive it for the ICS source when the electron and laser rms matrices are arbitrary.« less
Greenly, J.B.
1997-08-12
An improved pulsed ion beam source is disclosed having a new biasing circuit for the fast magnetic field. This circuit provides for an initial negative bias for the field created by the fast coils in the ion beam source which pre-ionize the gas in the source, ionize the gas and deliver the gas to the proper position in the accelerating gap between the anode and cathode assemblies in the ion beam source. The initial negative bias improves the interaction between the location of the nulls in the composite magnetic field in the ion beam source and the position of the gas for pre-ionization and ionization into the plasma as well as final positioning of the plasma in the accelerating gap. Improvements to the construction of the flux excluders in the anode assembly are also accomplished by fabricating them as layered structures with a high melting point, low conductivity material on the outsides with a high conductivity material in the center. 12 figs.
NASA Astrophysics Data System (ADS)
Long, Tao; Clement, Stephen W. J.; Bao, Zemin; Wang, Peizhi; Tian, Di; Liu, Dunyi
2018-03-01
A high spatial resolution and high brightness ion beam from a cold cathode duoplasmatron source and primary ion optics are presented and applied to in-situ analysis of micro-scale geological material with complex structural and chemical features. The magnetic field in the source as well as the influence of relative permeability of magnetic materials on source performance was simulated using COMSOL to confirm the magnetic field strength of the source. Based on SIMION simulation, a high brightness and high spatial resolution negative ion optical system has been developed to achieve Critical (Gaussian) illumination mode. The ion source and primary column are installed on a new Time-of-Flight secondary ion mass spectrometer for analysis of geological samples. The diameter of the ion beam was measured by the knife-edge method and a scanning electron microscope (SEM). Results show that an O2- beam of ca. 5 μm diameter with a beam intensity of ∼5 nA and an O- beam of ca. 5 μm diameter with a beam intensity of ∼50 nA were obtained, respectively. This design will open new possibilities for in-situ elemental and isotopic analysis in geological studies.
Molecular beam studies of stratospheric photochemistry
NASA Astrophysics Data System (ADS)
Moore, Teresa Anne
1998-12-01
Photochemistry of chlorine oxide containing species plays a major role in stratospheric ozone depletion. This thesis discusses two photodissociation studies of the key molecules ClONO2 and ClOOCl which were previously thought to only produce Cl-atom (ozone depleting) products at wavelengths relevant to the stratosphere. The development of a molecular beam source of ClOOCl and the photodissociation dynamics of the model system Cl2O are also discussed. In the first chapter, the photochemistry of ClONO2 is examined at 308 nm using the technique of photofragment translational spectroscopy. Two primary decomposition pathways, leading to Cl + NO3 and ClO + NO2, were observed, with a lower limit of 0.33 for the relative yield of ClO. The angular distributions for both channels were anisotropic, indicating that the dissociation occurs within a rotational period. Chapter two revisits the photodissociation dynamics of Cl2O at 248 and 308 nm, on which we had previously reported preliminary findings. At 248 nm, three distinct dissociation pathways leading to Cl + ClO products were resolved. At 308 nm, the angular distribution was slightly more isotropic that previously reported, leaving open the possibility that Cl2O excited at 308 nm lives longer than a rotational period. Chapter three describes the development and optimization of a molecular beam source of ClOOCl. We utilized pulsed laser photolysis of ClA2O to generate ClO radicals, and cooled the cell to promote three body recombination to form ClOOCl. The principal components in the beam were Cl2, Cl2O, and ClOOCl. In the fourth chapter, the photodissociation dynamics of ClOOCl are investigated at 248 and 308 nm. We observed multiple dissociation pathways which produced ClO + ClO and 2Cl + O2 products. The relative Cl:ClO product yields are 1.0:0.13 and 1.0:0.20 for ClOOCl photolysis at 248 and 308 nm, respectively. The upper limit for the relative yield of the ClO + ClO channel was 0.19 at 248 nm and 0.31 at 308 nm. These results substantially confirm the current assumption but decrease somewhat the efficiency of the ClOOCl ozone-depleting catalytic cycle. At 248 nm, ClOOCl photolysis exhibited novel dissociation dynamics which appeared to depend on the symmetry of the excited state.
rf improvements for Spallation Neutron Source H- ion source.
Kang, Y W; Fuja, R; Goulding, R H; Hardek, T; Lee, S-W; McCarthy, M P; Piller, M C; Shin, K; Stockli, M P; Welton, R F
2010-02-01
The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering approximately 38 mA H(-) beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.
Source of polarized ions for the JINR accelerator complex
NASA Astrophysics Data System (ADS)
Belov, A. S.; Donets, D. E.; Fimushkin, V. V.; Kovalenko, A. D.; Kutuzova, L. V.; Prokofichev, Yu V.; Shutov, V. B.; Turbabin, A. V.; Zubets, V. N.
2017-12-01
The JINR atomic beam type polarized ion source is described. Results of tests of the plasma ionizer with a storage cell and of tuning of high frequency transition units are presented. The source was installed in a linac injector hall of NUCLOTRON in May 2016. The source has been commissioned and used in the NUCLOTRON runs in 2016 and February - March 2017. Polarized and unpolarized deuteron beams were produced as well as polarized protons for acceleration in the NUCLOTRON. Polarized deuteron beam with pulsed current up to 2 mA has been produced. Deuteron beam polarization of 0.6-0.9 of theoretical values for different modes of high frequency transition units operation has been measured with the NUCLOTRON ring internal polarimeter for the accelerated deuteron and proton beams.
Charge neutralization apparatus for ion implantation system
Leung, Ka-Ngo; Kunkel, Wulf B.; Williams, Malcom D.; McKenna, Charles M.
1992-01-01
Methods and apparatus for neutralization of a workpiece such as a semiconductor wafer in a system wherein a beam of positive ions is applied to the workpiece. The apparatus includes an electron source for generating an electron beam and a magnetic assembly for generating a magnetic field for guiding the electron beam to the workpiece. The electron beam path preferably includes a first section between the electron source and the ion beam and a second section which is coincident with the ion beam. The magnetic assembly generates an axial component of magnetic field along the electron beam path. The magnetic assembly also generates a transverse component of the magnetic field in an elbow region between the first and second sections of the electron beam path. The electron source preferably includes a large area lanthanum hexaboride cathode and an extraction grid positioned in close proximity to the cathode. The apparatus provides a high current, low energy electron beam for neutralizing charge buildup on the workpiece.
NASA Astrophysics Data System (ADS)
Deka, A. J.; Bharathi, P.; Pandya, K.; Bandyopadhyay, M.; Bhuyan, M.; Yadav, R. K.; Tyagi, H.; Gahlaut, A.; Chakraborty, A.
2018-01-01
The Doppler Shift Spectroscopy (DSS) diagnostic is in the conceptual stage to estimate beam divergence, stripping losses, and beam uniformity of the 100 keV hydrogen Diagnostics Neutral Beam of International Thermonuclear Experimental Reactor. This DSS diagnostic is used to measure the above-mentioned parameters with an error of less than 10%. To aid the design calculations and to establish a methodology for estimation of the beam divergence, DSS measurements were carried out on the existing prototype ion source RF Operated Beam Source in India for Negative ion Research. Emissions of the fast-excited neutrals that are generated from the extracted negative ions were collected in the target tank, and the line broadening of these emissions were used for estimating beam divergence. The observed broadening is a convolution of broadenings due to beam divergence, collection optics, voltage ripple, beam focusing, and instrumental broadening. Hence, for estimating the beam divergence from the observed line broadening, a systematic line profile analysis was performed. To minimize the error in the divergence measurements, a study on error propagation in the beam divergence measurements was carried out and the error was estimated. The measurements of beam divergence were done at a constant RF power of 50 kW and a source pressure of 0.6 Pa by varying the extraction voltage from 4 kV to10 kV and the acceleration voltage from 10 kV to 15 kV. These measurements were then compared with the calorimetric divergence, and the results seemed to agree within 10%. A minimum beam divergence of ˜3° was obtained when the source was operated at an extraction voltage of ˜5 kV and at a ˜10 kV acceleration voltage, i.e., at a total applied voltage of 15 kV. This is in agreement with the values reported in experiments carried out on similar sources elsewhere.
The R&D progress of 4 MW EAST-NBI high current ion source.
Xie, Yahong; Hu, Chundong; Liu, Sheng; Xu, Yongjian; Liang, Lizhen; Xie, Yuanlai; Sheng, Peng; Jiang, Caichao; Liu, Zhimin
2014-02-01
A high current ion source, which consists of the multi-cusp bucket plasma generator and tetrode accelerator with multi-slot apertures, is developed and tested for the Experimental Advanced Superconducting Tokamak neutral beam injector. Three ion sources are tested on the test bed with arc power of 80 kW, beam voltage of 80 keV, and beam power of 4 MW. The arc regulation technology with Langmuir probes is employed for the long pulse operation of ion source, and the long pulse beam of 50 keV @ 15.5 A @ 100 s and 80 keV @ 52A @ 1s are extracted, respectively.
Design of a compact all-permanent magnet ECR ion source injector for ReA at the MSU NSCL
NASA Astrophysics Data System (ADS)
Pham, Alfonse N.; Leitner, Daniela; Glennon, Patrick; Ottarson, Jack; Lawton, Don; Portillo, Mauricio; Machicoane, Guillaume; Wenstrom, John; Lajoie, Andrew
2016-06-01
The design of a compact all-permanent magnet electron cyclotron resonance (ECR) ion source injector for the ReAccelerator Facility (ReA) at the Michigan State University (MSU) National Superconducting Cyclotron Laboratory (NSCL) is currently being carried out. The ECR ion source injector will complement the electron beam ion trap (EBIT) charge breeder as an off-line stable ion beam injector for the ReA linac. The objective of the ECR ion source injector is to provide continuous-wave beams of heavy ions from hydrogen to masses up to 136Xe within the ReA charge-to-mass ratio (Q / A) operational range from 0.2 to 0.5. The ECR ion source will be mounted on a high-voltage platform that can be adjusted to obtain the required 12 keV/u injection energy into a room temperature radio-frequency quadrupole (RFQ) for further acceleration. The beam line consists of a 30 kV tetrode extraction system, mass analyzing section, and optical matching section for injection into the existing ReA low energy beam transport (LEBT) line. The design of the ECR ion source and the associated beam line are discussed.
Preliminary result of rapid solenoid for controlling heavy-ion beam parameters of laser ion source
Okamura, M.; Sekine, M.; Ikeda, S.; ...
2015-03-13
To realize a heavy ion inertial fusion driver, we have studied a possibility of laser ion source (LIS). A LIS can provide high current high brightness heavy ion beams, however it was difficult to manipulate the beam parameters. To overcome the issue, we employed a pulsed solenoid in the plasma drift section and investigated the effect of the solenoid field on singly charged iron beams. The rapid ramping magnetic field could enhance limited time slice of the current and simultaneously the beam emittance changed accordingly. This approach may also useful to realize an ion source for HIF power plant.
Jang, Su-Chan; Choi, Jong-Ho
2014-11-21
The gas-phase radical-radical reaction dynamics of ground-state atomic oxygen O((3)P) with vinyl radicals C2H3 has been studied by combining the results of vacuum-ultraviolet laser-induced fluorescence spectroscopy in a crossed beam configuration with ab initio calculations. The two radical reactants O((3)P) and C2H3 were produced by photolysis of NO2 and supersonic flash pyrolysis of C2H3I, respectively. Doppler profile analysis of the kinetic energy release of the nascent H-atom products from the title reaction O((3)P) + C2H3→ H((2)S) + CH2CO (ketene) revealed that the average translational energy of the products and the average fraction of the total available energy were 7.03 ± 0.30 kcal mol(-1) and 7.2%. The empirical data combined with CBS-QB3 level ab initio theory and statistical calculations demonstrated that the title oxygen-hydrogen exchange reaction is a major reaction channel, through an addition-elimination mechanism involving the formation of a short-lived, dynamical complex on the doublet potential energy surface. On the basis of systematic comparison with several exchange reactions of hydrocarbon radicals, the observed kinetic energy release can be explained in terms of the weak impulse at the moment of decomposition in the loose transition state with a product-like geometry and a small reverse barrier along the exit channel.
NASA Technical Reports Server (NTRS)
Mohan, H.; SHARDANAND
1975-01-01
The chemistry and physics of the gaseous OH free radical as it applies to interstellar space, planetary atmospheres, and the sun is presented. Topics considered are: (1) rotational-vibrational transitions; (2) dissociation and ionization processes; (3) spectral characteristics.
Research in atmospheric chemistry and transport
NASA Technical Reports Server (NTRS)
Yung, Y. L.
1982-01-01
The carbon monoxide cycle was studied by incorporating the known CO sources and sinks in a tracer model which used the winds generated by a general circulation model. The photochemical production and loss terms, which depended on OH radical concentrations, were calculated in an interactive fashion. Comparison of the computed global distribution and seasonal variations of CO with observations was used to yield constraints on the distribution and magnitude of the sources and sinks of CO, and the abundance of OH radicals in the troposphere.
Puganen, Anna; Kallio, Heikki P; Schaich, Karen M; Suomela, Jukka-Pekka; Yang, Baoru
2018-04-04
The potential for using extracts of press residues from black, green, red, and white currants and from sea buckthorn berries as sources of antioxidants for foods use was investigated. Press residues were extracted with ethanol in four consecutive extractions, and total Folin-Ciocalteu (F-C) reactive material and authentic phenolic compounds were determined. Radical quenching capability and mechanisms were determined from total peroxyl radical-trapping antioxidant capacity (TRAP) and oxygen radical absorbance capacity (ORAC) assays and from diphenylpicrylhydrazyl (DPPH) kinetics, respectively; specific activities were normalized to F-C reactive concentrations. Levels of total F-C reactive materials in press residue extracts were higher than in many fruits and showed significant radical quenching activity. Black currant had the highest authentic phenol content and ORAC, TRAP, and DPPH reactivity. Sea buckthorn grown in northern Finland showed extremely high total specific DPPH reactivity. These results suggest that berry press residues offer attractive value-added products that can provide antioxidants for use in stabilizing and fortifying foods.
Patton, Gail Y.; Torgerson, Darrel D.
1987-01-01
An alignment reference device provides a collimated laser beam that minimizes angular deviations therein. A laser beam source outputs the beam into a single mode optical fiber. The output end of the optical fiber acts as a source of radiant energy and is positioned at the focal point of a lens system where the focal point is positioned within the lens. The output beam reflects off a mirror back to the lens that produces a collimated beam.
RF Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.
2003-10-01
Highly ionized plasmas are being employed as a medium for charge neutralizing heavy ion beams in order to focus to a small spot size. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 0-10 gauss. The goal is to operate the source at pressures 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Recently, pulsed operation of the source has enabled operation at pressures in the 10-6 Torr range with densities of 10^11 cm-3. Near 100% ionization has been achieved. The source has been integrated with NTX and is being used in the experiments. The plasma is approximately 10 cm in length in the direction of the beam propagation. Modifications to the source will be presented that increase its length in the direction of beam propagation.
A combined thermal dissociation and electron impact ionization source for RIB generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alton, G.D.; Williams, C.
1995-12-31
The probability for simultaneously dissociating and efficiently ionizing the individual atomic constituents of molecular feed materials with conventional, hot-cathode, electron-impact ion sources is low and consequently, the ion beams from these sources often appear as mixtures of several molecular sideband beams. This fragmentation process leads to dilution of the intensity of the species of interest for RIB applications where beam intensity is at a premium. We have conceived an ion source that combines the excellent molecular dissociation properties of a thermal dissociator and the high ionization efficiency characteristics of an electron impact ionization source that will, in principle, overcome thismore » handicap. The source concept will be evaluated as a potential candidate for use for RIB generation at the Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory. The design features and principles of operation of the source are described in this article.« less
A Penning sputter ion source with very low energy spread
NASA Astrophysics Data System (ADS)
Nouri, Z.; Li, R.; Holt, R. A.; Rosner, S. D.
2010-03-01
We have developed a version of the Frankfurt Penning ion source that produces ion beams with very low energy spreads of ˜3 eV, while operating in a new discharge mode characterized by very high pressure, low voltage, and high current. The extracted ions also comprise substantial metastable and doubly charged species. Detailed studies of the operating parameters of the source showed that careful adjustment of the magnetic field and gas pressure is critical to achieving optimum performance. We used a laser-fluorescence method of energy analysis to characterize the properties of the extracted ion beam with a resolving power of 1×10 4, and to measure the absolute ion beam energy to an accuracy of 4 eV in order to provide some insight into the distribution of plasma potential within the ion source. This characterization method is widely applicable to accelerator beams, though not universal. The low energy spread, coupled with the ability to produce intense ion beams from almost any gas or conducting solid, make this source very useful for high-resolution spectroscopic measurements on fast-ion beams.
The benzylperoxyl radical as a source of hydroxyl and phenyl radicals.
Sander, Wolfram; Roy, Saonli; Bravo-Rodriguez, Kenny; Grote, Dirk; Sanchez-Garcia, Elsa
2014-09-26
The benzyl radical (1) is a key intermediate in the combustion and tropospheric oxidation of toluene. Because of its relevance, the reaction of 1 with molecular oxygen was investigated by matrix-isolation IR and EPR spectroscopy as well as computational methods. The primary reaction product of 1 and O2 is the benzylperoxyl radical (2), which exists in several conformers that can easily interconvert even at cryogenic temperatures. Photolysis of radical 2 at 365 nm results in a formal [1,3]-H migration and subsequent cleavage of the O-O bond to produce a hydrogen-bonded complex between the hydroxyl radical and benzaldehyde (4). Prolonged photolysis produces the benzoyl radical (5) and water, which finally yield the phenyl radical (7), CO, and H2O. Thus, via a sequence of exothermic reactions 1 is transformed into radicals of even higher reactivity, such as OH and 7. Our results have implications for the development of models for the highly complicated process of combustion of aromatic compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Montgomery, Robert M. (Inventor)
2006-01-01
An optical profile determining apparatus includes an optical detector and an optical source. The optical source generates a transmit beam including a plurality of wavelengths, and generates a reference beam including the plurality of wavelengths. Optical elements direct the transmit beam to a target, direct a resulting reflected transmit beam back from the target to the optical detector, and combine the reference beam with the reflected transmit beam so that a profile of the target is based upon fringe contrast produced by the plurality of wavelengths in the reference beam and the plurality of wavelengths in the reflected transmit beam.
NASA Astrophysics Data System (ADS)
Harbaoui, Imen; Besbes, Hatem; Chafra, Moez
Innovation in the field of nuclear imaging is necessarily followed by a radical change in the detection principle. The gas detector Micromegas (Mesh Micro Structure Gaseous) could be an interesting option, thanks to the stability and robustness of such a detector. Thus, it was necessary to study the implementation of the detector enclosure in composite materials. The focus of the present study was the robustness and gamma rays transparency of a set of composites. The studied composites were reinforced with vegetable fibers (alfa), and synthetic fibers. The mechanical properties of all composites specimen were evaluated by three-point bending test, whereas, gamma ray transparency was evaluated by the exposition of composites specimen to a mono-energetic gamma ray beam emitted by a Technetium 99-m source. Findings revealed that the biocomposite materials using alfa fiber and Polymethyl Methacrylate matrix are very promising as long as they present good robustness and high gamma ray transparency in diagnostic range.
Dual-pulse laser ignition of ethylene-air mixtures in a supersonic combustor.
Yang, Leichao; An, Bin; Liang, Jianhan; Li, Xipeng; Wang, Zhenguo
2018-04-02
To reduce the energy of an individual laser pulse, dual-pulse laser ignitions (LIs) at various pulse intervals were investigated in a Mach 2.92 scramjet engine fueled with ethylene. For comparison, experiments on a single-pulse LI were also performed. Schlieren visualization and high-speed photography were employed to observe the ignition processes simultaneously. The results indicate that the energy of an individual laser pulse can be reduced by half via a dual-pulse LI method as compared with a single-pulse LI with the same total energy. The reduction of the individual laser pulse energy degrades the requirements on the laser source and the beam delivery system, which facilitates the practical application of LI in hypersonic vehicles. A pulse interval shorter than 40 μs is suggested for dual-pulse LI in the present study. Because of the intense heat loss and radical dissipation in high-speed flows, the pulse interval for dual-pulse LI should be short enough to narrow the spatial distribution of the initial flame kernel.
Kohri, Shunji; Fujii, Hirotada; Oowada, Shigeru; Endoh, Nobuyuki; Sueishi, Yoshimi; Kusakabe, Miku; Shimmei, Masashi; Kotake, Yashige
2009-03-15
A new method is proposed for the evaluation of oxygen radical absorbance capacity (ORAC). The current fluorescence-based ORAC assay (ORAC-FL) is an indirect method that monitors the antioxidant's ability to protect the fluorescent probe from free radical-mediated damage, and an azo-radical initiator, AAPH (2,2-azobis(2-amidinopropane) dihydrochloride), has been used as a thermal free radical source. The new ORAC assay employs a short in situ photolysis of AAPH to generate free radicals. The electron paramagnetic resonance (EPR) spin trapping method was employed to identify and quantify AAPH radicals. In the presence of antioxidant, the level of AAPH radicals was decreased, and ORAC-EPR values were calculated following a simple kinetic formulation. Alkyl-oxy radical was identified as the sole decomposition product from AAPH; therefore, we concluded that ORAC-FL is the assay equivalent to alkyl-oxy radical scavenging capacity measurement. ORAC-EPR results for several antioxidants and human serum indicated that the overall tendency is in agreement with ORAC-FL, but absolute values showed significant discrepancies. ORAC-EPR is a rapid and simple method that is especially suitable for thermally labile biological specimens because the sample heating is not required for free radical production.
Operating characteristics of a new ion source for KSTAR neutral beam injection system.
Kim, Tae-Seong; Jeong, Seung Ho; Chang, Doo-Hee; Lee, Kwang Won; In, Sang-Ryul
2014-02-01
A new positive ion source for the Korea Superconducting Tokamak Advanced Research neutral beam injection (KSTAR NBI-1) system was designed, fabricated, and assembled in 2011. The characteristics of the arc discharge and beam extraction were investigated using hydrogen and helium gas to find the optimum operating parameters of the arc power, filament voltage, gas pressure, extracting voltage, accelerating voltage, and decelerating voltage at the neutral beam test stand at the Korea Atomic Energy Research Institute in 2012. Based on the optimum operating condition, the new ion source was then conditioned, and performance tests were primarily finished. The accelerator system with enlarged apertures can extract a maximum 65 A ion beam with a beam energy of 100 keV. The arc efficiency and optimum beam perveance, at which the beam divergence is at a minimum, are estimated to be 1.0 A/kW and 2.5 uP, respectively. The beam extraction tests show that the design goal of delivering a 2 MW deuterium neutral beam into the KSTAR Tokamak plasma is achievable.
Modeling of a Compact Terahertz Source based on the Two-Stream Instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svimonishvili, Tengiz
2016-05-17
THz radiation straddles the microwave and infrared bands of the electromagnetic spectrum, thus combining the penetrating power of lower-frequency waves and imaging capabilities of higher-energy infrared radiation. THz radiation is employed in various elds such as cancer research, biology, agriculture, homeland security, and environmental monitoring. Conventional vacuum electronic sources of THz radiation (e.g., fast- and slow-wave devices) either require very small structures or are bulky and expensive to operate. Optical sources necessitate cryogenic cooling and are presently capable of producing milliwatt levels of power at THz frequencies. We propose a millimeter and sub-millimeter wave source based on a well-known phenomenonmore » called the two-stream instability. The two-beam source relies on lowenergy and low-current electron beams for operation. Also, it is compact, simple in design, and does not contain expensive parts that require complex machining and precise alignment. In this dissertation, we perform 2-D particle-in-cell (PIC) simulations of the interaction region of the two-beam source. The interaction region consists of a beam pipe of radius ra and two electron beams of radius rb co-propagating and interacting inside the pipe. The simulations involve the interaction of unmodulated (no initial energy modulation) and modulated (energy-modulated, seeded at a given frequency) electron beams. In addition, both cold (monoenergetic) and warm (Gaussian) beams are treated.« less
Negative ion beam injection apparatus with magnetic shield and electron removal means
Anderson, Oscar A.; Chan, Chun F.; Leung, Ka-Ngo
1994-01-01
A negative ion source is constructed to produce H.sup.- ions without using Cesium. A high percentage of secondary electrons that typically accompany the extracted H.sup.- are trapped and eliminated from the beam by permanent magnets in the initial stage of acceleration. Penetration of the magnetic field from the permanent magnets into the ion source is minimized. This reduces the destructive effect the magnetic field could have on negative ion production and extraction from the source. A beam expansion section in the extractor results in a strongly converged final beam.
High throughput laser processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harley, Gabriel; Pass, Thomas; Cousins, Peter John
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
NOx Removal from Flue Gases Using Non-Thermal Plasma
NASA Astrophysics Data System (ADS)
Takaki, Koichi
Air pollution caused by gas emission of pollutants produced from a wide range of sources including coal, oil and gas burning power plants, diesel engines, paper mills, steel and chemical production plants must be reduced drastically and urgently, as mandated by recent worldwide nation legislation which recently are being reinforced increasingly by international agreements. Non-thermal plasma in which the mean energy of electrons is substantially higher than that of the gas offer advantages in reducing energy required to remove the pollutants. The electrical energy supplied into the discharge is used preferentially to create energetic electrons which are then used to produce radicals by dissociation and ionization of the carrier gas in which the pollutants are present. These radicals are used to decompose the pollutants. There are two technologically promising techniques for generating non-thermal plasmas in atmospheric gas pressure containing the pollutants, namely electron beam irradiation and electrical discharge techniques. Both techniques are undergoing intensive and continuous development worldwide. This is done to reduce the energy requirement for pollutant removal, and therefore the associated cost, as well as to obtain a better understanding of the physical and chemical processes involved in reducing the pollutants. In the present paper only electrical discharge techniques for NOx removal from flue gases and exhaust emissions are reviewed. This paper summarizes the chemical reactions responsible for the removal of the major polluting constituents of NO and NO2 encountered in the flue gases.
NASA Astrophysics Data System (ADS)
Aseev, D. G.; Batoeva, A. A.
2014-01-01
It is shown experimentally that hydrogen peroxide is the source of OH-radicals at low-pressure hydrodynamic cavitation. Major preconditions for the intensification of oxidative destruction processes in organic pollutants with an added cavitation stimulus are determined.
Inverse compton light source: a compact design proposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deitrick, Kirsten Elizabeth
In the last decade, there has been an increasing demand for a compact Inverse Compton Light Source (ICLS) which is capable of producing high-quality X-rays by colliding an electron beam and a high-quality laser. It is only in recent years when both SRF and laser technology have advanced enough that compact sources can approach the quality found at large installations such as the Advanced Photon Source at Argonne National Laboratory. Previously, X-ray sources were either high flux and brilliance at a large facility or many orders of magnitude lesser when produced by a bremsstrahlung source. A recent compact source wasmore » constructed by Lyncean Technologies using a storage ring to produce the electron beam used to scatter the incident laser beam. By instead using a linear accelerator system for the electron beam, a significant increase in X-ray beam quality is possible, though even subsequent designs also featuring a storage ring offer improvement. Preceding the linear accelerator with an SRF reentrant gun allows for an extremely small transverse emittance, increasing the brilliance of the resulting X-ray source. In order to achieve sufficiently small emittances, optimization was done regarding both the geometry of the gun and the initial electron bunch distribution produced off the cathode. Using double-spoke SRF cavities to comprise the linear accelerator allows for an electron beam of reasonable size to be focused at the interaction point, while preserving the low emittance that was generated by the gun. An aggressive final focusing section following the electron beam's exit from the accelerator produces the small spot size at the interaction point which results in an X-ray beam of high flux and brilliance. Taking all of these advancements together, a world class compact X-ray source has been designed. It is anticipated that this source would far outperform the conventional bremsstrahlung and many other compact ICLSs, while coming closer to performing at the levels found at large facilities than ever before. The design process, including the development between subsequent iterations, is presented here in detail, with the simulation results for this groundbreaking X-ray source.« less
Impacts of cloud water droplets on the OH production rate from peroxide photolysis.
Martins-Costa, M T C; Anglada, J M; Francisco, J S; Ruiz-López, Manuel F
2017-12-06
Understanding the difference between observed and modeled concentrations of HO x radicals in the troposphere is a current major issue in atmospheric chemistry. It is widely believed that existing atmospheric models miss a source of such radicals and several potential new sources have been proposed. In recent years, interest has increased on the role played by cloud droplets and organic aerosols. Computer modeling of ozone photolysis, for instance, has shown that atmospheric aqueous interfaces accelerate the associated OH production rate by as much as 3-4 orders of magnitude. Since methylhydroperoxide is a main source and sink of HO x radicals, especially at low NO x concentrations, it is fundamental to assess what is the influence of clouds on its chemistry and photochemistry. In this study, computer simulations for the photolysis of methylhydroperoxide at the air-water interface have been carried out showing that the OH production rate is severely enhanced, reaching a comparable level to ozone photolysis.
Goulas, Vlassios; Papoti, Vassiliki T; Exarchou, Vassiliki; Tsimidou, Maria Z; Gerothanassis, Ioannis P
2010-03-24
The contribution of flavonoids to the overall radical scavenging activity of olive leaf polar extracts, known to be good sources of oleuropein related compounds, was examined. Off line and on line HPLC-DPPH(*) assays were employed, whereas flavonoid content was estimated colorimetrically. Individual flavonoid composition was first assessed by RP-HPLC coupled with diode array and fluorescence detectors and verified by LC-MS detection system. Olive leaf was found a robust source of flavonoids regardless sampling parameters (olive cultivar, leaf age or sampling date). Total flavonoids accounted for the 13-27% of the total radical scavenging activity assessed using the on line protocol. Luteolin 7-O-glucoside was one of the dominant scavengers (8-25%). Taking into consideration frequency of appearance the contribution of luteolin (3-13%) was considered important, too. Our findings support that olive leaf, except for oleuropein and related compounds, is also a stable source of bioactive flavonoids.
Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam
NASA Astrophysics Data System (ADS)
Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.
2018-04-01
We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.
Improved alternating gradient transport and focusing of neutral molecules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalnins, Juris; Lambertson, Glen; Gould, Harvey
2001-12-02
Polar molecules, in strong-field seeking states, can be transported and focused by an alternating sequence of electric field gradients that focus in one transverse direction while defocusing in the other. We show by calculation and numerical simulation, how one may greatly improve the alternating gradient transport and focusing of molecules. We use a new optimized multipole lens design, a FODO lattice beam transport line, and lenses to match the beam transport line to the beam source and the final focus. We derive analytic expressions for the potentials, fields, and gradients that may be used to design these lenses. We describemore » a simple lens optimization procedure and derive the equations of motion for tracking molecules through a beam transport line. As an example, we model a straight beamline that transports a 560 m/s jet-source beam of methyl fluoride molecules 15 m from its source and focuses it to 2 mm diameter. We calculate the beam transport line acceptance and transmission, for a beam with velocity spread, and estimate the transmitted intensity for specified source conditions. Possible applications are discussed.« less
Optimization of ion-atomic beam source for deposition of GaN ultrathin films.
Mach, Jindřich; Šamořil, Tomáš; Kolíbal, Miroslav; Zlámal, Jakub; Voborny, Stanislav; Bartošík, Miroslav; Šikola, Tomáš
2014-08-01
We describe the optimization and application of an ion-atomic beam source for ion-beam-assisted deposition of ultrathin films in ultrahigh vacuum. The device combines an effusion cell and electron-impact ion beam source to produce ultra-low energy (20-200 eV) ion beams and thermal atomic beams simultaneously. The source was equipped with a focusing system of electrostatic electrodes increasing the maximum nitrogen ion current density in the beam of a diameter of ≈15 mm by one order of magnitude (j ≈ 1000 nA/cm(2)). Hence, a successful growth of GaN ultrathin films on Si(111) 7 × 7 substrate surfaces at reasonable times and temperatures significantly lower (RT, 300 °C) than in conventional metalorganic chemical vapor deposition technologies (≈1000 °C) was achieved. The chemical composition of these films was characterized in situ by X-ray Photoelectron Spectroscopy and morphology ex situ using Scanning Electron Microscopy. It has been shown that the morphology of GaN layers strongly depends on the relative Ga-N bond concentration in the layers.
Physics and applications of positron beams in an integrated PET/MR.
Watson, Charles C; Eriksson, Lars; Kolb, Armin
2013-02-07
In PET/MR systems having the PET component within the uniform magnetic field interior to the MR, positron beams can be injected into the PET field of view (FOV) from unshielded emission sources external to it, as a consequence of the action of the Lorentz force on the transverse components of the positron's velocity. Such beams may be as small as a few millimeters in diameter, but extend 50 cm or more axially without appreciable divergence. Larger beams form 'phantoms' of annihilations in air that can be easily imaged, and that are essentially free of γ-ray attenuation and scatter effects, providing a unique tool for characterizing PET systems and reconstruction algorithms. Thin targets intersecting these beams can produce intense annihilation sources having the thickness of a sheet of paper, which are very useful for high resolution measurements, and difficult to achieve with conventional sources. Targeted beams can provide other point, line and surface sources for various applications, all without the need to have radioactivity within the FOV. In this paper we discuss the physical characteristics of positron beams in air and present examples of their applications.
Negative ion source with low temperature transverse divergence optical system
Whealton, John H.; Stirling, William L.
1986-01-01
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
Negative ion source with low temperature transverse divergence optical system
Whealton, J.H.; Stirling, W.L.
1985-03-04
A negative ion source is provided which has extremely low transverse divergence as a result of a unique ion focusing system in which the focal line of an ion beam emanating from an elongated, concave converter surface is outside of the ion exit slit of the source and the path of the exiting ions. The beam source operates with a minimum ion temperature which makes possible a sharply focused (extremely low transverse divergence) ribbon like negative ion beam.
NASA Astrophysics Data System (ADS)
Wongkrongsak, Soraya; Tangthong, Theeranan; Pasanphan, Wanvimol
2016-01-01
The research proposes a novel water-soluble silk fibroin nanoparticles (WSSF-NPs) created by electron beam irradiation. In this report, we demonstrate the effects of electron beam irradiation doses ranging from 1 to 30 kGy on the molecular weight (MW), nanostructure formation, antioxidant activity and reducing power of the WSSF-NPs. Electron beam-induced degradation of SF causing MW reduction from 250 to 37 kDa. Chemical characteristic functions of SF still remained after exposing to electron beam. The WSSF-NPs with the MW of 37 kDa exhibited spherical morphology with a nanoscaled size of 40 nm. Antioxidant activities and reducing powers were investigated using 2,2-diphenyl-1-picrylhryl free radical (DPPH•) scavenging activity and ferric reducing antioxidant power (FRAP) assays, respectively. The WSSF-NPs showed greater antioxidant activity and reducing power than non-irradiated SF. By increasing their antioxidant and reducing power efficiencies, WSSF-NPs potentially created gold nanocolloid. WSSF-NPs produced by electron beam irradiation would be a great merit for the uses as a natural antioxidant additive and a green reducing agent in biomedical, cosmetic and food applications.
UV + V UV double-resonance studies of autoionizing Rydberg states of the hydroxyl radical
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Amy M.; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu
2016-05-14
The hydroxyl radical (OH) is a key oxidant in atmospheric and combustion chemistry. Recently, a sensitive and state-selective ionization method has been developed for detection of the OH radical that utilizes UV excitation on the A{sup 2}Σ{sup +}–X{sup 2}Π transition followed by fixed 118 nm vacuum ultraviolet (VUV) radiation to access autoionizing Rydberg states [J. M. Beames et al., J. Chem. Phys. 134, 241102 (2011)]. The present study uses tunable VUV radiation generated by four-wave mixing to examine the origin of the enhanced ionization efficiency observed for OH radicals prepared in specific A{sup 2}Σ{sup +} intermediate levels. The enhancement ismore » shown to arise from resonant excitation to distinct rotational and fine structure levels of two newly identified {sup 2}Π Rydberg states with an A{sup 3}Π cationic core and a 3d electron followed by ionization. Spectroscopic constants are derived and effects due to uncoupling of the Rydberg electron are revealed for the OH {sup 2}Π Rydberg states. The linewidths indicate a Rydberg state lifetime due to autoionization on the order of a picosecond.« less
Formation of Benzene in the Interstellar Medium
NASA Technical Reports Server (NTRS)
Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.; Crim, F. Fleming (Editor)
2010-01-01
Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block-the aromatic benzene molecule-has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3- butadiene, C2H + H2CCHCHCH2 --> C6H6, + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadlene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium.
Formation of benzene in the interstellar medium
Jones, Brant M.; Zhang, Fangtong; Kaiser, Ralf I.; Jamal, Adeel; Mebel, Alexander M.; Cordiner, Martin A.; Charnley, Steven B.
2011-01-01
Polycyclic aromatic hydrocarbons and related species have been suggested to play a key role in the astrochemical evolution of the interstellar medium, but the formation mechanism of even their simplest building block—the aromatic benzene molecule—has remained elusive for decades. Here we demonstrate in crossed molecular beam experiments combined with electronic structure and statistical calculations that benzene (C6H6) can be synthesized via the barrierless, exoergic reaction of the ethynyl radical and 1,3-butadiene, C2H + H2CCHCHCH2 → C6H6 + H, under single collision conditions. This reaction portrays the simplest representative of a reaction class in which aromatic molecules with a benzene core can be formed from acyclic precursors via barrierless reactions of ethynyl radicals with substituted 1,3-butadiene molecules. Unique gas-grain astrochemical models imply that this low-temperature route controls the synthesis of the very first aromatic ring from acyclic precursors in cold molecular clouds, such as in the Taurus Molecular Cloud. Rapid, subsequent barrierless reactions of benzene with ethynyl radicals can lead to naphthalene-like structures thus effectively propagating the ethynyl-radical mediated formation of aromatic molecules in the interstellar medium. PMID:21187430
Metal Complexes and Free Radical Toxins Produced by Pfiesteria piscicida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller,P.; Beauchesne, K.; Huncik, K.
2007-01-01
Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile inmore » purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.« less
Metal Complexes And Free Radical Toxins Produced By Pfiesteria Piscicida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moeller, P.D.R.; Beauchesne, K.R.; Huncik, K.M.
2009-06-03
Metal-containing organic toxins produced by Pfiesteria piscicida were characterized, for the first time, by corroborating data obtained from five distinct instrumental methods: nuclear magnetic resonance spectroscopy (NMR), inductively coupled plasma mass spectrometry (ICPMS), liquid chromatography particle beam glow discharge mass spectrometry (LC/PB-GDMS), electron paramagnetic resonance spectroscopy (EPR), and X-ray absorption spectroscopy (XAS). The high toxicity of the metal-containing toxins is due to metal-mediated free radical production. This mode of activity explains the toxicity of Pfiesteria, as well as previously reported difficulty in observing the molecular target, due to the ephemeral nature of radical species. The toxins are highly labile inmore » purified form, maintaining activity for only 2-5 days before all activity is lost. The multiple toxin congeners in active extracts are also susceptible to decomposition in the presence of white light, pH variations, and prolonged heat. These findings represent the first formal isolation and characterization of a radical forming toxic organic-ligated metal complex isolated from estuarine/marine dinoflagellates. These findings add to an increased understanding regarding the active role of metals interacting with biological systems in the estuarine environment, as well as their links and implications to human health.« less
Nonequilibrium combustion effects in supersonic streams
NASA Technical Reports Server (NTRS)
Jensen, R. M.; Bryce, C. A.; Reese, B. A.
1972-01-01
This research program is a theoretical and experimental investigation of the effect of nonequilibrium conditions upon the performance of combustors employing supersonic flows. Calculations and experiments are made regarding the effects on the ignition of hydrogen of the nonequilibrium species (free radicals, atoms, water vapor, etc.) obtained using vitiated air. Results of this investigation show that the nonequilibrium free-radical content from a supersonic vitiated air source will cause early ignition of the hydrogen. An analysis of heated air expended from a high temperature source to test section conditions also indicates that there is sufficient free radical content in the incoming flow to cause early ignition. Water vapor, an inherent contaminant in the generation of vitiated air, was found to reduce the ignition delay period under the experimental conditions considered.
High-flux beam source of fast neutral helium.
Fahey, D W; Schearer, L D; Parks, W F
1978-04-01
A high-flux beam source of fast neutral helium has been constructed by extending the designs of previous authors. The source is a dc or pulsed electric discharge in an expanding gas nozzle. The beam produced has a flux on the order of 10(15) atoms/s sr and a mean velocity on the order of 10(7) cm/s. The composition of the beam has been determined by the use of particle detectors and by the observation of the excitation of certain target gases. An upper bound of 3.7 x 10(-5) has been estimated for the He(2(3)S(1))/He((1)S(0))beam density ratio and a value of 0.2 found for the He(+)/He(1(1)S(0)) beam density ratio.
NASA Astrophysics Data System (ADS)
Bartolomei, V.; Gomez Alvarez, E.; Glor, M.; Gligorovski, S.; Temime-Roussel, B.; Quivet, E.; Strekowski, R.; Zetzsch, C.; Held, A. B.; Wortham, H.
2013-12-01
Hydroxyl radical (OH) is one of the most important oxidant species in the atmosphere controlling its self-oxidizing capacity. The main sources of OH radicals are photolysis of ozone and photolysis of nitrous acid (HONO), among the others. In the indoor air, the ozonolysis of alkenes has been suggested as the main OH formation pathway. The possibility for OH formation through photolytic pathways in the indoor environment has been, up to now, ignored (Gómez Alvarez et al., 2012). Models and indirect measurements to the present time predicted concentrations of OH radicals in the order of 104 -105 cm-3. Recently, by direct measurements we have detected high OH radical concentrations of 1.8 106 cm-3 in a classroom in Marseille and we demonstrated that its main source is the photolysis of HONO (Gómez Alvarez et al., 2013). The concentrations of HONO are quite high indoors, reaching levels in the order of a few tens of ppbV (Gómez Alvarez et al., 2013). This is mainly due to 1) direct combustion sources and 2) heterogeneous reactions of NO2 on the numerous surfaces present in the indoor environment. HONO levels of 30 ppb were measured in a previous campaign carried out in Bayreuth in July 2012 as direct emissions from the combustion of a candle. The combination between so high concentrations of HONO and higher than expected light transmissions indoors (or indoor artificial lighting) could have a significant impact on the OH concentrations indoors which could feasibly become considerably higher than we measured in our school campaign (Gomez Alvarez et al., 2013). In order to evaluate these upper limits under combustion conditions in the indoor environment, we have carried out a campaign in the LOTASC chamber (Bayreuth, Germany). For this aim, the exhaust fumes from the burning of a commonly used domestic candle have been introduced in the chamber. The chamber was irradiated under well research indoor lighting conditions. A thorough characterization of light intensities and span (wavelength distribution) indoors have been performed, which had been identified as a clear flaw in our knowledge restricting the advancement of indoor air quality models. OH concentration levels have been determined using d9-butanol as tracer, using the OH clock determination procedure by PTR-MS-TOF. The OH radical concentration was investigated using different light intensities representative from indoor conditions, both natural and artificial and also different levels of RH. The PSS model has been performed in order to evaluate the contribution of different sources to the OH radical concentrations indoors under these conditions. The obtained results from the PSS model clearly indicate that the main source of OH radical indoors under combustion conditions is the photolysis of HONO under typical indoor irradiation conditions. REFERENCES Gómez Alvarez E, Wortham H, Strekowski R, Zetzsch C, Gligorovski S (2012) Atmospheric photo-sensitized heterogeneous and multiphase reactions: From outdoors to indoors, Environ. Sci. Technol. 46, 1955-1963. Gómez Alvarez, E.; Amedro, D.; Afif, C. ; Gligorovski, S.; Schoemacker , C.; Fittschen, C. ; Doussin, J. F.; Wortham, H. (2013) Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid. Proc. Natl. Acad. Sci. USA Accepted.
Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang
2014-06-02
All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.
Wang, T; Yang, Z; Dong, P; long, J D; He, X Z; Wang, X; Zhang, K Z; Zhang, L W
2012-06-01
The cold-cathode Penning ion gauge (PIG) type ion source has been used for generation of negative hydrogen (H(-)) ions as the internal ion source of a compact cyclotron. A novel method called electrical shielding box dc beam measurement is described in this paper, and the beam intensity was measured under dc extraction inside an electrical shielding box. The results of the trajectory simulation and dc H(-) beam extraction measurement were presented. The effect of gas flow rate, magnetic field strength, arc current, and extraction voltage were also discussed. In conclusion, the dc H(-) beam current of about 4 mA from the PIG ion source with the puller voltage of 40 kV and arc current of 1.31 A was extrapolated from the measurement at low extraction dc voltages.
Rapid Optical Shutter, Chopper, Modulator and Deflector
NASA Technical Reports Server (NTRS)
Danehy, Paul M. (Inventor)
2017-01-01
An optical device with a light source and a detector is provided. A digital micromirror device positioned between the detector and the light source may deflect light beams projected from the light source. An aperture in front of the detector may block an incoming light beam from the detector when the incoming light beam is incident on the detector outside of a passable incident range and including an aperture opening configured to pass the incoming light beam to the detector when the incoming light beam is incident on the detector within a passable incident range. The digital micromirror device may rotate between a first position causing the light beam to pass through the aperture opening and a second position causing the light beam to be blocked by the aperture. The optical device may be configured to operate as a shutter, chopper, modulator and/or deflector.
Bessel-Gauss beams as rigorous solutions of the Helmholtz equation.
April, Alexandre
2011-10-01
The study of the nonparaxial propagation of optical beams has received considerable attention. In particular, the so-called complex-source/sink model can be used to describe strongly focused beams near the beam waist, but this method has not yet been applied to the Bessel-Gauss (BG) beam. In this paper, the complex-source/sink solution for the nonparaxial BG beam is expressed as a superposition of nonparaxial elegant Laguerre-Gaussian beams. This provides a direct way to write the explicit expression for a tightly focused BG beam that is an exact solution of the Helmholtz equation. It reduces correctly to the paraxial BG beam, the nonparaxial Gaussian beam, and the Bessel beam in the appropriate limits. The analytical expression can be used to calculate the field of a BG beam near its waist, and it may be useful in investigating the features of BG beams under tight focusing conditions.
Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.
Kondo, K; Kanesue, T; Tamura, J; Okamura, M
2010-02-01
Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.
NASA Astrophysics Data System (ADS)
Neri, L.; Celona, L.; Gammino, S.; Miraglia, A.; Leonardi, O.; Castro, G.; Torrisi, G.; Mascali, D.; Mazzaglia, M.; Allegra, L.; Amato, A.; Calabrese, G.; Caruso, A.; Chines, F.; Gallo, G.; Longhitano, A.; Manno, G.; Marletta, S.; Maugeri, A.; Passarello, S.; Pastore, G.; Seminara, A.; Spartà, A.; Vinciguerra, S.
2017-07-01
At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS) the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) started in November 2016. Beam stability at high current intensity is one of the most important parameter for the first steps of the ongoing commissioning. Promising results were obtained since the first source start with a 6 mm diameter extraction hole. The increase of the extraction hole to 8 mm allowed improving PS-ESS performances and obtaining the values required by the ESS accelerator. In this work, extracted beam current characteristics together with Doppler shift and emittance measurements are presented, as well as the description of the next phases before the installation at ESS in Lund.
Compact Gamma-Beam Source for Nuclear Security Technologies
NASA Astrophysics Data System (ADS)
Gladkikh, P.; Urakawa, J.
2015-10-01
A compact gamma-beam source dedicated to the development of the nuclear security technologies by use of the nuclear resonance fluorescence is described. Besides, such source is a very promising tool for novel technologies of the express cargoes inspection to prevent nuclear terrorism. Gamma-beam with the quanta energies from 0.3MeV to 7.2MeV is generated in the Compton scattering of the "green" laser photons on the electron beam with energies from 90MeV to 430MeV. The characteristic property of the proposed gammabeam source is a narrow spectrum (less than 1%) at high average gamma-yield (of 1013γ/s) due to special operation mode.
Modeling of an Adjustable Beam Solid State Light Project
NASA Technical Reports Server (NTRS)
Clark, Toni
2015-01-01
This proposal is for the development of a computational model of a prototype variable beam light source using optical modeling software, Zemax Optics Studio. The variable beam light source would be designed to generate flood, spot, and directional beam patterns, while maintaining the same average power usage. The optical model would demonstrate the possibility of such a light source and its ability to address several issues: commonality of design, human task variability, and light source design process improvements. An adaptive lighting solution that utilizes the same electronics footprint and power constraints while addressing variability of lighting needed for the range of exploration tasks can save costs and allow for the development of common avionics for lighting controls.
Benchmarking of Touschek Beam Lifetime Calculations for the Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, A.; Yang, B.
2017-06-25
Particle loss from Touschek scattering is one of the most significant issues faced by present and future synchrotron light source storage rings. For example, the predicted, Touschek-dominated beam lifetime for the Advanced Photon Source (APS) Upgrade lattice in 48-bunch, 200-mA timing mode is only ~ 2 h. In order to understand the reliability of the predicted lifetime, a series of measurements with various beam parameters was performed on the present APS storage ring. This paper first describes the entire process of beam lifetime measurement, then compares measured lifetime with the calculated one by applying the measured beam parameters. The resultsmore » show very good agreement.« less
A Compact, High-Flux Cold Atom Beam Source
NASA Technical Reports Server (NTRS)
Kellogg, James R.; Kohel, James M.; Thompson, Robert J.; Aveline, David C.; Yu, Nan; Schlippert, Dennis
2012-01-01
The performance of cold atom experiments relying on three-dimensional magneto-optical trap techniques can be greatly enhanced by employing a highflux cold atom beam to obtain high atom loading rates while maintaining low background pressures in the UHV MOT (ultra-high vacuum magneto-optical trap) regions. Several techniques exist for generating slow beams of cold atoms. However, one of the technically simplest approaches is a two-dimensional (2D) MOT. Such an atom source typically employs at least two orthogonal trapping beams, plus an additional longitudinal "push" beam to yield maximum atomic flux. A 2D atom source was created with angled trapping collimators that not only traps atoms in two orthogonal directions, but also provides a longitudinal pushing component that eliminates the need for an additional push beam. This development reduces the overall package size, which in turn, makes the 2D trap simpler, and requires less total optical power. The atom source is more compact than a previously published effort, and has greater than an order of magnitude improved loading performance.
Construction of the Helsinki University of Technology (HUT) pulsed positron beam
NASA Astrophysics Data System (ADS)
Fallström, K.; Laine, T.
1999-08-01
We are constructing a pulsed positron beam facility for lifetime measurements in thin surface layers. Our beam system comprises a 22Na positron source and a tungsten foil moderator followed by a prebuncher and a chopper. A double-drift buncher will compress the beam into 120-ps pulses at the target. The end energy of the positron beam can be adjusted between 3 keV and 30 keV by changing the potential of the source end of the beam. The bunching electronics and most of the beam guiding magnets are also floating at the high voltage. The sample is at ground potential to facilitate variable temperature measurements. With a test source of 6 mCi 22Na we get a prebunched beam intensity of 4×10 3 positrons per second in 1.5-ns wide pulses (the bunching frequency is 33.33 MHz). We are currently testing the chopper and the following buncher stages and building the final accelerator/decelerator system.
Photoacoustic effect generated by moving optical sources: Motion in one dimension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Wenyu; Diebold, Gerald J.
2016-03-28
Although the photoacoustic effect is typically generated by pulsed or amplitude modulated optical beams, it is clear from examination of the wave equation for pressure that motion of an optical source in space will result in the production of sound as well. Here, the properties of the photoacoustic effect generated by moving sources in one dimension are investigated. The cases of a moving Gaussian beam, an oscillating delta function source, and an accelerating Gaussian optical sources are reported. The salient feature of one-dimensional sources in the linear acoustic limit is that the amplitude of the beam increases in time withoutmore » bound.« less
Laser ion source for high brightness heavy ion beam
Okamura, M.
2016-09-01
A laser ion source is known as a high current high charge state heavy ion source. But, we place great emphasis on the capability to realize a high brightness ion source. A laser ion source has a pinpoint small volume where materials are ionized and can achieve quite uniform low temperature ion beam. Those features may enable us to realize very small emittance beams. Furthermore, a low charge state high brightness laser ion source was successfully commissioned in Brookhaven National Laboratory in 2014. Now most of all the solid based heavy ions are being provided from the laser ion sourcemore » for regular operation.« less
rf improvements for Spallation Neutron Source H- ion sourcea)
NASA Astrophysics Data System (ADS)
Kang, Y. W.; Fuja, R.; Goulding, R. H.; Hardek, T.; Lee, S.-W.; McCarthy, M. P.; Piller, M. C.; Shin, K.; Stockli, M. P.; Welton, R. F.
2010-02-01
The Spallation Neutron Source at Oak Ridge National Laboratory is ramping up the accelerated proton beam power to 1.4 MW and just reached 1 MW. The rf-driven multicusp ion source that originates from the Lawrence Berkeley National Laboratory has been delivering ˜38 mA H- beam in the linac at 60 Hz, 0.9 ms. To improve availability, a rf-driven external antenna multicusp ion source with a water-cooled ceramic aluminum nitride (AlN) plasma chamber is developed. Computer modeling and simulations have been made to analyze and optimize the rf performance of the new ion source. Operational statistics and test runs with up to 56 mA medium energy beam transport beam current identify the 2 MHz rf system as a limiting factor in the system availability and beam production. Plasma ignition system is under development by using a separate 13 MHz system. To improve the availability of the rf power system with easier maintenance, we tested a 70 kV isolation transformer for the 80 kW, 6% duty cycle 2 MHz amplifier to power the ion source from a grounded solid-state amplifier.
Wu, Q; Ma, H Y; Yang, Y; Sun, L T; Zhang, X Z; Zhang, Z M; Zhao, H Y; He, Y; Zhao, H W
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
NASA Astrophysics Data System (ADS)
Wu, Q.; Ma, H. Y.; Yang, Y.; Sun, L. T.; Zhang, X. Z.; Zhang, Z. M.; Zhao, H. Y.; He, Y.; Zhao, H. W.
2016-02-01
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimum width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.
An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy.
Cao, Yun; Li, Jia Qing; Sun, Liang Ting; Zhang, Xue Zhen; Feng, Yu Cheng; Wang, Hui; Ma, Bao Hua; Li, Xi Xia
2014-02-01
A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C(5+) ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C(5+) ion beam was got when work gas was CH4 while about 262 eμA of C(5+) ion beam was obtained when work gas was C2H2 gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.
Photochemical hydroxyl radical (OH) production was measured in several natural waters to investigate the importance of colored dissolved organic matter (CDOM) and iron-CDOM complexes as sources of OH. High rates of OH photoproduction in highly colored, iron-rich, acidic waters a...
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grishman, L.; Kolchin, P.; Davidson, R. C.
2002-01-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length of approximately 0.1-2 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures of approximately 10-6 torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1. Electron densities in the range of 108 - 1011 per cubic centimeter have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source.
Absolute photoionization cross-section of the methyl radical.
Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T
2008-10-02
The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.
Jeynes, J C G; Merchant, M J; Spindler, A; Wera, A-C; Kirkby, K J
2014-11-07
Gold nanoparticles (GNPs) have been shown to sensitize cancer cells to x-ray radiation, particularly at kV energies where photoelectric interactions dominate and the high atomic number of gold makes a large difference to x-ray absorption. Protons have a high cross-section for gold at a large range of relevant clinical energies, and so potentially could be used with GNPs for increased therapeutic effect.Here, we investigate the contribution of secondary electron emission to cancer cell radiosensitization and investigate how this parameter is affected by proton energy and a free radical scavenger. We simulate the emission from a realistic cell phantom containing GNPs after traversal by protons and x-rays with different energies. We find that with a range of proton energies (1-250 MeV) there is a small increase in secondaries compared to a much larger increase with x-rays. Secondary electrons are known to produce toxic free radicals. Using a cancer cell line in vitro we find that a free radical scavenger has no protective effect on cells containing GNPs irradiated with 3 MeV protons, while it does protect against cells irradiated with x-rays. We conclude that GNP generated free radicals are a major cause of radiosensitization and that there is likely to be much less dose enhancement effect with clinical proton beams compared to x-rays.
NASA Astrophysics Data System (ADS)
Park, Jeung Hun; Schneider, Nicholas; Bau, Haim; Kodambaka, Suneel; Ross, Frances
2015-03-01
We studied the kinetic transition from compact nanoparticle to dendritic morphology during electron beam-induced Au deposition using in situ liquid cell-based transmission electron microcopy. Radiolysis of water by electrons generates radicals and molecular species. Hydrated electrons and hydrogen and hydroxide radicals can act as reducing agents and initiate the reduction of the water-soluble precursor, HAuCl4, resulting in the precipitation of Au as nanostructures. We tracked nucleation, growth, and morphological transition of Au from movies recorded in situ, as a function of irradiated dose and liquid thickness. We identified several distinct regimes that depend on the irradiation time: (1) nucleation; (2) linear volumetric growth; (3) formation of dendritic structures; (4) coalescence and dissolution. A diffusion and reaction model for the radiolytic species and metal ions in the confined geometry of the irradiated volume is used to understand the nucleation sites and morphological transitions. We finally describe how nanoparticles can be made to grow in a stepwise manner by switching the supply of Au ions on and off electrochemically, and discuss possibilities for creating more complex nanostructures. This research was partially funded by the National Science Foundation (DMR-1310639, CMMI-1129722, and CBET-1066573).
NASA Astrophysics Data System (ADS)
Solovov, V. A.; Vozdvizhenskiy, M. O.; Matysh, Y. S.
2017-03-01
Objectives. To evaluate the clinical efficacy of high-intensity focused ultrasound ablation (HIFU) for local recurrence of prostate cancer after external beam radiotherapy (EBRT) and radical prostatectomy (RPE). Materials and Methods: During 2007-2013 years 47 patients with local recurrence of prostate cancer after EBRT and RPE undertook HIFU therapy on the system "Ablaterm» (EDAP, France). Relapse arose after an average of 2 years after EBRT and RPE. Median follow-up after HIFU therapy was 38 (12-60) months. The mean age was 68.5 ± 5.8 years. The median PSA level before HIFU - 15.4 (7-48) ng / mL. Results: In 34 patients (72.3%) at six months after treatment the median PSA was 0.4 (0-3.2) ng / mL, in 48 months - 0.9 (0.4-7.5) ng / mL. In 13 patients (27.7%) at 6 months was observed progression of the disease. In general, after a 5-year follow-up 72.3% of the patients had no data for the progression and recurrence. Conclusion: HIFU therapy in patients with local recurrence of prostate cancer after EBRT and RPE is minimally invasive and effective technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C.T.
Linear and nonlinear photochemistries of 1,4-diazabicyclo(2.2.2)octane (DABCO) are investigated at room temperature by using ArF (193 nm) and KrF (248 nm) lasers. With an unfocused beam geometry, DABCO vapor displays a strong fluorescence when excited at 248 nm, but it shows no detectable emission with 193-nm excitation. The linear photochemistry quantum yield for DABCO is determined as phi/sub p/(248nm) approx. 0.1 and phi/sub p/(193 nm) approx. 0.3. The main stable photochemical products are analyzed as C/sub 2/H/sub 4/ and C/sub 2/H/sub 2/ for 248- and 193-nm excitation, respectively. When focused beam excitation is used, both ArF and KrF lasers dissociatemore » DABCO molecules and give three strong radical emissions of CN*(B vector /sup 2/..sigma.. ..-->.. X vector /sup 2/ ..sigma../sup +/), CH*(A vector /sup 2/..delta.. ..-->.. X vector /sup 2/II), and C/sub 2/*(D vector /sup 3/II/sub g/ ..-->.. a vector /sup 3/II/sub u/). The time behavior, the laser power dependence, and the sample pressure dependence of these emissive radicals are examined. The possible mechanisms for the Rydberg state photochemistry of DABCO are discussed.« less
Emittance studies of the 2.45 GHz permanent magnet ECR ion source
NASA Astrophysics Data System (ADS)
Zelenak, A.; Bogomolov, S. L.; Yazvitsky, N. Yu.
2004-05-01
During the past several years different types of permanent magnet 2.45 GHz (electron cyclotron resonance) ion sources were developed for production of singly charged ions. Ion sources of this type are used in the first stage of DRIBs project, and are planned to be used in the MASHA mass separator. The emittance of the beam provided by the source is one of the important parameters for these applications. An emittance scanner composed from a set of parallel slits and rotary wire beam profile monitor was used for the studying of the beam emittance characteristics. The emittance of helium and argon ion beams was measured with different shapes of the plasma electrode for several ion source parameters: microwave power, source potential, plasma aperture-puller aperture gap distance, gas pressure. The results of measurements are compared with previous simulations of ion optics.
Spatial light modulators for full cross-connections in optical networks
NASA Technical Reports Server (NTRS)
Juday, Richard D. (Inventor)
2004-01-01
A polarization-independent optical switch is disclosed for switching at least one incoming beam from at least one input source to at least one output drain. The switch includes a polarizing beam splitter to split each of the at least one incoming beam into a first input beam and a second input beam, wherein the first input beam and the second input beams are independently polarized; a wave plate optically coupled to the second input beam for converting the polarization of the second input beam to an appropriately polarized second input beam; a beam combiner optically coupled to the first input beam and the modified second input beam, wherein the beam combiner accepts the first input beam and the modified second input beam to produce a combined beam; the combined beam is invariant to the polarization state of the input source's polarization; and a controllable spatial light modulator optically coupled to the combined beam, wherein the combined beam is diffracted by the controllable spatial light modulator to place light at a plurality of output locations.
The modification at CSNS ion source
NASA Astrophysics Data System (ADS)
Liu, S.; Ouyang, H.; Huang, T.; Xiao, Y.; Cao, X.; Lv, Y.; Xue, K.; Chen, W.
2017-08-01
The commissioning of CSNS front end has been finished. Above 15 mA beam intensity is obtained at the end of RFQ. For CSNS ion source, it is a type of penning surface plasma ion source, similar to ISIS ion source. To improve the operation stability and reduce spark rate, some modifications have been performed, including Penning field, extraction optics and post acceleration. PBGUNS is applied to optimize beam extraction. The co-extraction electrons are considered at PBGUNS simulation and various extracted structure are simulated aiming to make the beam through the extracted electrode without loss. The stability of ion source is improved further.
NASA Technical Reports Server (NTRS)
Biddle, A.; Stone, N.; Reasoner, D.; Chisholm, W.; Reynolds, J.
1986-01-01
Improved ion source produces beam of ions at any kinetic energy from 1 to 1,000 eV, with little spread in energy or angle. Such ion beams useful in studies of surface properties of materials, surface etching, deposition, and development of plasma-diagnostic instrumentation. Tandemmirror ion source uses electrostatic and magnetic fields to keep electrons in ionization chamber and assure uniform output ion beam having low divergence in energy and angle.
Virtual source for a Mathieu-Gauss beam
NASA Astrophysics Data System (ADS)
Dan, Li; Zhijun, Ren; Suyu, Deng
2017-05-01
We introduce a group of virtual sources for generating 2nth-order even Mathieu-Gauss beams based on the beam superposition. Integral and differential representations are derived for a 2nth-order even Mathieu-Gauss wave and the solution yields a corresponding 2nth-order even paraxial Mathieu-Gauss beam in an appropriate limit. The first three orders of nonparaxial corrections for the on-axis field of the 2nth-order even paraxial Mathieu-Gauss beam are obtained using the integral representation.
SU-F-T-336: A Quick Auto-Planning (QAP) Method for Patient Intensity Modulated Radiotherapy (IMRT)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, J; Zhang, Z; Wang, J
2016-06-15
Purpose: The aim of this study is to develop a quick auto-planning system that permits fast patient IMRT planning with conformal dose to the target without manual field alignment and time-consuming dose distribution optimization. Methods: The planning target volume (PTV) of the source and the target patient were projected to the iso-center plane in certain beameye- view directions to derive the 2D projected shapes. Assuming the target interior was isotropic for each beam direction boundary analysis under polar coordinate was performed to map the source shape boundary to the target shape boundary to derive the source-to-target shape mapping function. Themore » derived shape mapping function was used to morph the source beam aperture to the target beam aperture over all segments in each beam direction. The target beam weights were re-calculated to deliver the same dose to the reference point (iso-center) as the source beam did in the source plan. The approach was tested on two rectum patients (one source patient and one target patient). Results: The IMRT planning time by QAP was 5 seconds on a laptop computer. The dose volume histograms and the dose distribution showed the target patient had the similar PTV dose coverage and OAR dose sparing with the source patient. Conclusion: The QAP system can instantly and automatically finish the IMRT planning without dose optimization.« less
Unexpectedly high indoor hydroxyl radical concentrations associated with nitrous acid
Gómez Alvarez, Elena; Amedro, Damien; Afif, Charbel; Gligorovski, Sasho; Schoemaecker, Coralie; Fittschen, Christa; Doussin, Jean-Francois; Wortham, Henri
2013-01-01
The hydroxyl (OH) radical is the most important oxidant in the atmosphere since it controls its self-oxidizing capacity. The main sources of OH radicals are the photolysis of ozone and the photolysis of nitrous acid (HONO). Due to the attenuation of solar radiation in the indoor environment, the possibility of OH formation through photolytic pathways indoors has been ignored up to now. In the indoor air, the ozonolysis of alkenes has been suggested as an alternative route of OH formation. Models and indirect measurements performed up to now according to this hypothesis suggest concentrations of OH radicals on the order of 104–105 molecules per cubic centimeter. Here, we present direct measurements of significant amounts of OH radicals of up to 1.8⋅106 molecules per cubic centimeter during an experimental campaign carried out in a school classroom in Marseille. This concentration is on the same order of magnitude of outdoor OH levels in the urban scenario. We also show that photolysis of HONO is an important source of OH radicals indoors under certain conditions (i.e., direct solar irradiation inside the room). Additionally, the OH concentrations were found to follow a linear dependence with the product J(HONO)⋅[HONO]. This was also supported by using a simple quasiphotostationary state model on the OH radical budget. These findings force a change in our understanding of indoor air quality because the reactivity linked to OH would involve formation of secondary species through chemical reactions that are potentially more hazardous than the primary pollutants in the indoor air. PMID:23898188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanhemmen, J.J.; Meuling, W.J.A.
1975-01-01
The reactivity of gamma ray induced superoxide radicals and dismutation products (singlet molecular oxygen and hydrogen peroxide) with DNA were studied. Superoxide dismutase, which removes superoxide radicals and inhibits the formation of singlet oxygen, protects biologically active DNA (OX174 RF) against inactivation by ionizing radiation. Catalase, which removes hydrogen peroxide, also protects the DNA. Attempts with various chemical sources of singlet oxygen to determine whether this species inactivates DNA did not yield an unequivocal answer. It was concluded that a combination of the protonated form of the superoxide radical and hydrogen peroxide inactivates DNA. (Author) (GRA)
An electron beam ion trap and source for re-acceleration of rare-isotope ion beams at TRIUMF
NASA Astrophysics Data System (ADS)
Blessenohl, M. A.; Dobrodey, S.; Warnecke, C.; Rosner, M. K.; Graham, L.; Paul, S.; Baumann, T. M.; Hockenbery, Z.; Hubele, R.; Pfeifer, T.; Ames, F.; Dilling, J.; Crespo López-Urrutia, J. R.
2018-05-01
Electron beam driven ionization can produce highly charged ions (HCIs) in a few well-defined charge states. Ideal conditions for this are maximally focused electron beams and an extremely clean vacuum environment. A cryogenic electron beam ion trap fulfills these prerequisites and delivers very pure HCI beams. The Canadian rare isotope facility with electron beam ion source-electron beam ion sources developed at the Max-Planck-Institut für Kernphysik (MPIK) reaches already for a 5 keV electron beam and a current of 1 A with a density in excess of 5000 A/cm2 by means of a 6 T axial magnetic field. Within the trap, the beam quickly generates a dense HCI population, tightly confined by a space-charge potential of the order of 1 keV times the ionic charge state. Emitting HCI bunches of ≈107 ions at up to 100 Hz repetition rate, the device will charge-breed rare-isotope beams with the mass-over-charge ratio required for re-acceleration at the Advanced Rare IsotopE Laboratory (ARIEL) facility at TRIUMF. We present here its design and results from commissioning runs at MPIK, including X-ray diagnostics of the electron beam and charge-breeding process, as well as ion injection and HCI-extraction measurements.
Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator
Ekdahl, Carl
2015-11-17
Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Furthermore, beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and themore » resistive wall instability. The beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.« less
Electron-beam dynamics for an advanced flash-radiography accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl August Jr.
2015-06-22
Beam dynamics issues were assessed for a new linear induction electron accelerator. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in cell (PIC) codes. Beam instabilities investigated included beam breakup (BBU), image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth frommore » beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos will result if the same engineering standards and construction details are upheld.« less
NASA Astrophysics Data System (ADS)
Tuske, O.; Chauvin, N.; Delferriere, O.; Fils, J.; Gauthier, Y.
2018-05-01
The CEA at Saclay is in charge of developing and building the ion source and the low energy line of the proton linac of the FAIR (Facility for Antiproton and Ion Research) accelerator complex located at GSI (Darmstadt) in Germany. The FAIR facility will deliver stable and rare isotope beams covering a huge range of intensities and beam energies for experiments in the fields of atomic physics, plasma physics, nuclear physics, hadron physics, nuclear matter physics, material physics, and biophysics. A significant part of the experimental program at FAIR is dedicated to antiproton physics that requires an ultimate number 7 × 1010 cooled pbar/h. The high-intensity proton beam that is necessary for antiproton production will be delivered by a dedicated 75 mA/70 MeV proton linac. A 2.45 GHz microwave ion source will deliver a 100 mA H+ beam pulsed at 4 Hz with an energy of 95 keV. A 2 solenoids low energy beam transport line allows the injection of the proton beam into the radio frequency quadrupole (RFQ) within an acceptance of 0.3π mm mrad (norm. rms). An electrostatic chopper system located between the second solenoid and the RFQ is used to cut the beam macro-pulse from the source to inject 36 μs long beam pulses into the RFQ. At present time, a Ladder-RFQ is under construction at the University of Frankfurt. This article reports the first beam measurements obtained since mid of 2016. Proton beams have been extracted from the ECR ion source and analyzed just after the extraction column on a dedicated diagnostic chamber. Emittance measurements as well as extracted current and species proportion analysis have been performed in different configurations of ion source parameters, such as magnetic field profile, radio frequency power, gas injection, and puller electrode voltage.
WE-G-BRE-04: Gold Nanoparticle Induced Vasculature Damage for Proton Therapy: Monte Carlo Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Y; Paganetti, H; Schuemann, J
2014-06-15
Purpose: The aim of this work is to investigate the gold nanoparticle (GNP) induced vasculature damage in a proton beam. We compared the results using a clinical proton beam, 6MV photon beam and two kilovoltage photon beams. Methods: Monte Carlo simulations were carried out using TOPAS (TOol for PArticle Simulation) to obtain the spatial dose distribution in close proximity to GNPs up to 20μm distance. The spatial dose distribution was used as an input to calculate the additional dose deposited to the blood vessels. For this study, GNP induced vasculature damage is evaluated for three particle sources (proton beam, MVmore » photon beam and kV photon beam), various treatment depths for each particle source, various GNP uptakes and three different vessel diameters (8μm, 14μm and 20μm). Results: The result shows that for kV photon, GNPs induce more dose in the vessel wall for 150kVp photon source than 250kVp. For proton therapy, GNPs cause more dose in the vessel wall at shallower treatment depths. For 6MV photons, GNPs induce more dose in the vessel wall at deeper treatment depths. For the same GNP concentration and prescribed dose, the additional dose at the inner vessel wall is 30% more than the prescribed dose for the kVp photon source, 15% more for the proton source and only 2% more for the 6MV photon source. In addition, the dose from GNPs deceases sharper for proton therapy than kVp photon therapy as the distance from the vessel inner wall increases. Conclusion: We show in this study that GNPs can potentially be used to enhance radiation therapy by causing vasculature damage using clinical proton beams. The GNP induced damage for proton therapy is less than for the kVp photon source but significantly larger than for the clinical MV photon source.« less
Application and development of ion-source technology for radiation-effects testing of electronics
NASA Astrophysics Data System (ADS)
Kalvas, T.; Javanainen, A.; Kettunen, H.; Koivisto, H.; Tarvainen, O.; Virtanen, A.
2017-09-01
Studies of heavy-ion induced single event effect (SEE) on space electronics are necessary to verify the operation of the components in the harsh radiation environment. These studies are conducted by using high-energy heavy-ion beams to simulate the radiation effects in space. The ion beams are accelerated as so-called ion cocktails, containing several ion beam species with similar mass-to-charge ratio, covering a wide range of linear energy transfer (LET) values also present in space. The use of cocktails enables fast switching between beam species during testing. Production of these high-energy ion cocktails poses challenging requirements to the ion sources because in most laboratories reaching the necessary beam energies requires very high charge state ions. There are two main technologies producing these beams: The electron beam ion source EBIS and the electron cyclotron resonance ion source ECRIS. The EBIS is most suitable for pulsed accelerators, while ECRIS is most suitable for use with cyclotrons, which are the most common accelerators used in these applications. At the Accelerator Laboratory of the University of Jyväskylä (JYFL), radiation effects testing is currently performed using a K130 cyclotron and a 14 GHz ECRIS at a beam energy of 9.3 MeV/u. A new 18 GHz ECRIS, pushing the limits of the normal conducting ECR technology is under development at JYFL. The performances of existing 18 GHz ion sources have been compared, and based on this analysis, a 16.2 MeV/u beam cocktail with 1999 MeV 126Xe44+ being the most challenging component to has been chosen for development at JYFL. The properties of the suggested beam cocktail are introduced and discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, J.A.; Brasseur, G.P.; Zimmerman, P.R.
Using the hydroxyl radical field calibrated to the methyl chloroform observations, the globally averaged release of methane and its spatial and temporal distribution were investigated. Two source function models of the spatial and temporal distribution of the flux of methane to the atmosphere were developed. The first model was based on the assumption that methane is emitted as a proportion of net primary productivity (NPP). With the average hydroxyl radical concentration fixed, the methane source term was computed as {approximately}623 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.3 years. The second model identified source regions for methane frommore » rice paddies, wetlands, enteric fermentation, termites, and biomass burning based on high-resolution land use data. This methane source distribution resulted in an estimate of the global total methane source of {approximately}611 Tg CH{sub 4}, giving an atmospheric lifetime for methane {approximately}8.5 years. The most significant difference between the two models were predictions of methane fluxes over China and South East Asia, the location of most of the world's rice paddies. Using a recent measurement of the reaction rate of hydroxyl radical and methane leads to estimates of the global total methane source for SF1 of {approximately}524 Tg CH{sub 4} giving an atmospheric lifetime of {approximately}10.0 years and for SF2{approximately}514 Tg CH{sub 4} yielding a lifetime of {approximately}10.2 years.« less
Soil HONO Emissions and Its Potential Impact on the Atmospheric Chemistry and Nitrogen Cycle
NASA Astrophysics Data System (ADS)
Su, H.; Chen, C.; Zhang, Q.; Poeschl, U.; Cheng, Y.
2014-12-01
Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. The HONO emissions rates are estimated to be comparable to that of nitric oxide (NO) and could be an important source of atmospheric reactive nitrogen. Fertilized soils appear to be particularly strong sources of HONO. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. A new HONO-DNDC model was developed to simulate the evolution of HONO emissions in agriculture ecosystems. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. Reference: Su, H. et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011.
Nitrolysis of the CN Single Bond and Related Chemistry of Nitro and Nitroso Groups.
1988-03-01
oxime of be 4,5-diphenyl-l-triphenylmethoxy-l,23- triazole (11). It was benzoyl cyanide (Scheme 6), for which radical intermediates hydrolysed by...S-Pnitroxide (a radical scavenger) or benzoyl peroxide (a radical *PhC CCN)- NO2 Ag PhCON--CPh suc)I I source). A partial extension of the overall...two anomethylenenitronate anion. (Attempts to prepare the pathways for fragmentation of the ester (3) (C,.H,0 N.O,): one ketenimine (15) by a
1980-05-01
this purpose it is convenient to classify atmospheric trace species in three groups : (1) source species, (2) radicals, and (3) non - radical species...as shown recently by Harker et al. [1977] and by Davenport [1978]. NON -RADICAL SPECIES: There are two important species in this group whose...as the Charney-Drazin non -acceleration theorem. When critical lines exist somewhere, e.g. near the equator for quasi -stationary waves, the CD theorem
Mechanisms of free radical-induced damage to DNA.
Dizdaroglu, Miral; Jaruga, Pawel
2012-04-01
Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schweizer, W., E-mail: schweizer@physik.uni-frankfurt.de; Ratzinger, U.; Klump, B.
At the University of Frankfurt a high current proton source has been developed and tested for the FRANZ-Project [U. Ratzinger, L. P. Chau, O. Meusel, A. Schempp, K. Volk, M. Heil, F. Käppeler, and R. Stieglitz, “Intense pulsed neutron source FRANZ in the 1–500 keV range,” ICANS-XVIII Proceedings, Dongguan, April 2007, p. 210]. The ion source is a filament driven arc discharge ion source. The new design consists of a plasma generator, equipped with a filter magnet to produce nearly pure proton beams (92 %), and a compact triode extraction system. The beam current density has been enhanced up tomore » 521 mA/cm{sup 2}. Using an emission opening radius of 4 mm, a proton beam current of 240 mA at 50 keV beam energy in continuous wave mode (cw) has been extracted. This paper will present the current status of the proton source including experimental results of detailed investigations of the beam composition in dependence of different plasma parameters. Both, cw and pulsed mode were studied. Furthermore, the performance of the ion source was studied with deuterium as working gas.« less
High current polarized electron source for future eRHIC
NASA Astrophysics Data System (ADS)
Wang, Erdong
2018-05-01
The high current and high bunch charge polarized electron source is essential for cost reduction of Linac-Ring (L-R) eRHIC. In the baseline design, electron beam from multiple guns (probably 4-8) will be combined using deflection plates or accumulate ring. Each gun aims to deliver electron beam with 10 mA average current and 5.3 nC bunch charge. With total 50 mA and 5.3 nC electron beam, this beam combining design could use for generating positron too. The gun has been designed, fabricated and expected to start commissioning by the mid of this year. In this paper, we will present the DC gun design parameters and beam combine schemes. Also, we will describe the details of gun design and the strategies to demonstrate high current high charge polarized electron beam from this source.
Fundamental limits on beam stability at the Advanced Photon Source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decker, G. A.
1998-06-18
Orbit correction is now routinely performed at the few-micron level in the Advanced Photon Source (APS) storage ring. Three diagnostics are presently in use to measure and control both AC and DC orbit motions: broad-band turn-by-turn rf beam position monitors (BPMs), narrow-band switched heterodyne receivers, and photoemission-style x-ray beam position monitors. Each type of diagnostic has its own set of systematic error effects that place limits on the ultimate pointing stability of x-ray beams supplied to users at the APS. Limiting sources of beam motion at present are magnet power supply noise, girder vibration, and thermal timescale vacuum chamber andmore » girder motion. This paper will investigate the present limitations on orbit correction, and will delve into the upgrades necessary to achieve true sub-micron beam stability.« less
Method and apparatus for a multibeam beacon laser assembly for optical communications
NASA Technical Reports Server (NTRS)
Biswas, Abhijit (Inventor); Sanji, Babak (Inventor); Wright, Malcolm W. (Inventor); Page, Norman Alan (Inventor)
2005-01-01
An optical beacon is comprised of a telescope having a primary focal plane or Coud? focal plane, a plurality of fiber coupled laser sources for generating a plurality of beams, a collimator for collimating the plurality of beams, and optics for combining and focusing the plurality of collimated beams onto the primary or Coud? focal plane of the telescope. The telescope propagates the optical beacon, which is arranged into a ring of incoherent plurality of collimated beams. The apparatus further comprises fiber splitters coupled to each laser source to provide at least eight beams from at least four laser sources. The optics comprises a prism assembly, a combiner lens, a focusing lens and a field lens for focusing the plurality of collimated beams onto the primary focal plane or Coud? focal plane of the telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nusinovich, G.S.; Sinitsyn, O.V.
This paper contains a simple analytical theory that allows one to evaluate the effect of transverse nonuniformity of the rf field on the interaction efficiency in various microwave sources driven by linear electron beams. The theory is, first, applied to the systems where the beams of cylindrical symmetry interact with rf fields of microwave circuits having Cartesian geometry. Also, various kinds of microwave devices driven by sheet electron beams (orotrons, clinotrons) are considered. The theory can be used for evaluating the efficiency of novel sources of coherent terahertz radiation.
High throughput solar cell ablation system
Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John
2014-10-14
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
High throughput solar cell ablation system
Harley, Gabriel; Pass, Thomas; Cousins, Peter John; Viatella, John
2012-09-11
A solar cell is formed using a solar cell ablation system. The ablation system includes a single laser source and several laser scanners. The laser scanners include a master laser scanner, with the rest of the laser scanners being slaved to the master laser scanner. A laser beam from the laser source is split into several laser beams, with the laser beams being scanned onto corresponding wafers using the laser scanners in accordance with one or more patterns. The laser beams may be scanned on the wafers using the same or different power levels of the laser source.
Injector Beam Dynamics for a High-Repetition Rate 4th-Generation Light Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papadopoulos, C. F.; Corlett, J.; Emma, P.
2013-05-20
We report on the beam dynamics studies and optimization methods for a high repetition rate (1 MHz) photoinjector based on a VHF normal conducting electron source. The simultaneous goals of beamcompression and reservation of 6-dimensional beam brightness have to be achieved in the injector, in order to accommodate a linac driven FEL light source. For this, a parallel, multiobjective optimization algorithm is used. We discuss the relative merits of different injector design points, as well as the constraints imposed on the beam dynamics by technical considerations such as the high repetition rate.
NASA Astrophysics Data System (ADS)
Han, B. X.; Welton, R. F.; Stockli, M. P.; Luciano, N. P.; Carmichael, J. R.
2008-02-01
Beam simulation codes PBGUNS, SIMION, and LORENTZ-3D were evaluated by modeling the well-diagnosed SNS base line ion source and low energy beam transport (LEBT) system. Then, an investigation was conducted using these codes to assist our ion source and LEBT development effort which is directed at meeting the SNS operational and also the power-upgrade project goals. A high-efficiency H- extraction system as well as magnetic and electrostatic LEBT configurations capable of transporting up to 100mA is studied using these simulation tools.
Polarization Dependent Whispering Gallery Modes in Microspheres
NASA Technical Reports Server (NTRS)
Adamovsky, Grigory (Inventor); Wrbanek, Susan Y. (Inventor)
2016-01-01
A tunable resonant system is provided and includes a microsphere that receives an incident portion of a light beam generated via a light source, the light beam having a fundamental mode, a waveguide medium that transmits the light beam from the light source to the microsphere, and a polarizer disposed in a path of the waveguide between the light source and the microsphere. The incident portion of the light beam creates a fundamental resonance inside the microsphere. A change in a normalized frequency of the wavelength creates a secondary mode in the waveguide and the secondary mode creates a secondary resonance inside the microsphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Q., E-mail: wuq@impcas.ac.cn; Ma, H. Y.; Yang, Y.
Two compact intense 2.45 GHz permanent magnet proton sources and their corresponding low energy beam transport (LEBT) system were developed successfully for China accelerator driven sub-critical system in 2014. Both the proton sources operate at 35 kV potential. The beams extracted from the ion source are transported by the LEBT, which is composed of two identical solenoids, to the 2.1 MeV Radio-Frequency Quadrupole (RFQ). In order to ensure the safety of the superconducting cavities during commissioning, an electrostatic-chopper has been designed and installed in the LEBT line that can chop the continuous wave beam into a pulsed one. The minimummore » width of the pulse is less than 10 μs and the fall/rise time of the chopper is about 20 ns. The performance of the proton source and the LEBT, such as beam current, beam profile, emittance and the impact to RFQ injection will be presented.« less
Final design of thermal diagnostic system in SPIDER ion source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brombin, M., E-mail: matteo.brombin@igi.cnr.it; Dalla Palma, M.; Pasqualotto, R.
The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H{sup −} production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements.more » This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.« less
Final design of thermal diagnostic system in SPIDER ion source
NASA Astrophysics Data System (ADS)
Brombin, M.; Dalla Palma, M.; Pasqualotto, R.; Pomaro, N.
2016-11-01
The prototype radio frequency source of the ITER heating neutral beams will be first tested in SPIDER test facility to optimize H- production, cesium dynamics, and overall plasma characteristics. Several diagnostics will allow to fully characterise the beam in terms of uniformity and divergence and the source, besides supporting a safe and controlled operation. In particular, thermal measurements will be used for beam monitoring and system protection. SPIDER will be instrumented with mineral insulated cable thermocouples, both on the grids, on other components of the beam source, and on the rear side of the beam dump water cooled elements. This paper deals with the final design and the technical specification of the thermal sensor diagnostic for SPIDER. In particular the layout of the diagnostic, together with the sensors distribution in the different components, the cables routing and the conditioning and acquisition cubicles are described.
Status report on the development of a tubular electron beam ion source
NASA Astrophysics Data System (ADS)
Donets, E. D.; Donets, E. E.; Becker, R.; Liljeby, L.; Rensfelt, K.-G.; Beebe, E. N.; Pikin, A. I.
2004-05-01
The theoretical estimations and numerical simulations of tubular electron beams in both beam and reflex mode of source operation as well as the off-axis ion extraction from a tubular electron beam ion source (TEBIS) are presented. Numerical simulations have been done with the use of the IGUN and OPERA-3D codes. Numerical simulations with IGUN code show that the effective electron current can reach more than 100 A with a beam current density of about 300-400 A/cm2 and the electron energy in the region of several KeV with a corresponding increase of the ion output. Off-axis ion extraction from the TEBIS, being the nonaxially symmetric problem, was simulated with OPERA-3D (SCALA) code. The conceptual design and main parameters of new tubular sources which are under consideration at JINR, MSL, and BNL are based on these simulations.
Status of the ion sources developments for the Spiral2 project at GANILa)
NASA Astrophysics Data System (ADS)
Lehérissier, P.; Bajeat, O.; Barué, C.; Canet, C.; Dubois, M.; Dupuis, M.; Flambard, J. L.; Frigot, R.; Jardin, P.; Leboucher, C.; Lemagnen, F.; Maunoury, L.; Osmond, B.; Pacquet, J. Y.; Pichard, A.; Thuillier, T.; Peaucelle, C.
2012-02-01
The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target/ion-source systems (TISSs) are under development at GANIL as the 2.45 GHz electron cyclotron resonance ion source, the surface ionization source, and the oven prototype for heating the uranium carbide target up to 2000 °C. The existing test bench has been upgraded for these developments and a new one, dedicated for the validation of the TISS before mounting in the production module, is under design. Results and current status of these activities are presented.
Electron cyclotron resonance ion sources in use for heavy ion cancer therapy.
Tinschert, K; Iannucci, R; Lang, R
2008-02-01
The use of electron cyclotron resonance (ECR) ion sources for producing ion beams for heavy ion cancer therapy has been established for more than ten years. After the Heavy Ion Medical Accelerator (HIMAC) at Chiba, Japan started therapy of patients with carbon ions in 1994 the first carbon ion beam for patient treatment at the accelerator facility of GSI was delivered in 1997. ECR ion sources are the perfect tool for providing the required ion beams with good stability, high reliability, and easy maintenance after long operating periods. Various investigations were performed at GSI with different combinations of working gas and auxiliary gas to define the optimal beam conditions for an extended use of further ion species for the dedicated Heidelberg Ion Beam Therapy (HIT) facility installed at the Radiological University Hospital Heidelberg, Germany. Commercially available compact all permanent magnet ECR ion sources operated at 14.5 GHz were chosen for this facility. Besides for (12)C(4+) these ion sources are used to provide beams of (1)H(3)(1+), (3)He(1+), and (16)O(6+). The final commissioning at the HIT facility could be finished at the end of 2006.
Observations of Space Charge effects in the Spallation Neutron Source Accumulator Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potts III, Robert E; Cousineau, Sarah M; Holmes, Jeffrey A
2012-01-01
The Spallation Neutron Source accumulator ring was designed to allow independent control of the transverse beam distribution in each plane. However, at high beam intensities, nonlinear space charge forces can strongly influence the final beam distribution and compromise our ability to independently control the transverse distributions. In this study we investigate the evolution of the beam at intensities of up to ~8x10^13 ppp through both simulation and experiment. Specifically, we analyze the evolution of the beam distribution for beams with different transverse aspect ratios and tune splits. We present preliminary results of simulations of our experiments.
Experience with Round Beam Operation at The Advanced Photon Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, A.; Emery, L.; Sajaev, V.
2015-01-01
Very short Touschek lifetime becomes a common issue for next-generation ultra-low emittance storage ring light sources. In order to reach a longer beamlifetime, such amachine often requires operating with a vertical-to-horizontal emittance ratio close to an unity, i.e. a “round beam”. In tests at the APS storage ring, we determined how a round beam can be reached experimentally. Some general issues, such as beam injection, optics measurement and corrections, and orbit correction have been tested also. To demonstrate that a round beam was achieved, the beam size ratio is calibrated using beam lifetime measurement.
Development of a polarized 31Mg+ beam as a spin-1/2 probe for BNMR
NASA Astrophysics Data System (ADS)
Levy, C. D. P.; Pearson, M. R.; Dehn, M. H.; Karner, V. L.; Kiefl, R. F.; Lassen, J.; Li, R.; MacFarlane, W. A.; McFadden, R. M. L.; Morris, G. D.; Stachura, M.; Teigelhöfer, A.; Voss, A.
2016-12-01
A 28 keV beam of 31Mg+ ions was extracted from a uranium carbide, proton-beam-irradiated target coupled to a laser ion source. The ion beam was nuclear-spin polarized by collinear optical pumping on the 2it {S}_{1/2}-2it {P}_{1/2} transition at 280 nm. The polarization was preserved by an extended 1 mT guide field as the beam was transported via electrostatic bends into a 2.5 T longitudinal magnetic field. There the beam was implanted into a single crystal MgO target and the beta decay asymmetry was measured. Both hyperfine ground states were optically pumped with a single frequency light source, using segmentation of the beam energy, which boosted the polarization by approximately 50 % compared to pumping a single ground state. The total decay asymmetry of 0.06 and beam intensity were sufficient to provide a useful spin-1/2 beam for future BNMR experiments. A variant of the method was used previously to optically pump the full Doppler-broadened absorption profile of a beam of 11Be+ with a single-frequency light source.
NASA Astrophysics Data System (ADS)
Zhang, XiaoDong; Wang, ZhengMin; Hu, LiQun
1994-04-01
A low energy neutral lithium beam source with energy about 6 keV and a neutral beam equivalent current of 20 μA/cm2 has been developed in ASIPP in order to measure the density gradient and the fluctuations in the edge plasma of the HT-6M tokamak. In the source, lithium ions are extracted from a solid emitter (β-eucryptite), focused in a two-tube immersion lens, and neutralized in a charge-exchange cell with sodium. This source operates in pulsed mode. The pulse length is adjustable from 10 to 100 ms.
Photoisomerization and photodissociation dynamics of reactive free radicals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bise, Ryan T.
2000-08-01
The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociativemore » $$\\tilde{A}$$ 2A 1 and $$\\tilde{B}$$ 2A 2 states of CH 3S have been investigated. At all photon energies, CH 3 + S( 3P j), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH 3 umbrella mode and the S( 3P j) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N 2 photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C 2V transition state. Resolved vibrational structure of the N 2 photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic transition state. In contrast to the radicals mentioned above, resolved vibrational structure was not observed for the ICNN radical due to extensive fragment rotational excitation, suggesting that intermediate bent states are strongly coupled along the dissociation pathway. The measurements performed in this Thesis have additionally refined the heats of formation and bond dissociation energies of these radicals and have unambiguously confirmed and added to the known electronic spectroscopy.« less
Radiation-induced changes affecting polyester based polyurethane binder
NASA Astrophysics Data System (ADS)
Pierpoint, Sujita Basi
The application of thermoplastic polyurethane elastomers as binders in the high energy explosives particularly when used in weapons presents a significantly complex and challenging problem due to the impact of the aging of this polymer on the useful service life of the explosive. In this work, the effects of radiation on the aging of the polyester based polyurethane were investigated using both electron beam and gamma irradiation at various dose rates in the presence and absence of oxygen. It was found by means of GPC that, in the presence and absence of oxygen, the poly (ester urethane) primarily undergoes cross-linking, by means of a carbon-centered secondary alkyl radical. It was also concluded that the polymer partially undergoes scission of the backbone of the main chain at C-O, N-C, and C-C bonds. Substantial changes in the conditions of irradiation and in dose levels did not affect the cross-linking and scission yields. Experiments were also performed with EPR spectroscopy for the purpose of identifying the initial carbon-centered free radicals and for studying the decay mechanisms of these radicals. It was found that the carbon-centered radical which is produced via C-C scission (primary alkyl radical) is rapidly converted to a long-lived allylic species at higher temperatures; more than 80% radicals are converted to allyl species in 2.5 hours. In the presence of oxygen, the allyl radical undergoes a fast reaction to produce a peroxyl radical; this radical decays with a 1.7 hour half-life by pseudo first-order kinetics to negligible levels in 13 hours. FTIR measurements were conducted to identify the radiation-induced changes to the functional groups in the polyester polyurethane. These measurements show an increase in carbonyl, amine and carboxylic groups as a result of reaction of H atoms with R-C-O·, ·NH-R and R-COO·. The FTIR results also demonstrate the production of the unsaturation resulting from hydrogen atom transfer during intrachain conversion of the primary alkyl radical to the allyl species, prompt trans-vinylene production in tetramethylene units, and hydrogen atom abstraction by alkyl radicals on neighboring chains. The production of unsaturation is substantiated by the EPR studies. Finally, a free radical mechanism is proposed for the production of cross-linking in polyester polyurethane.
Brynteson, Matthew D; Butler, Laurie J
2015-02-07
We present a model which accurately predicts the net speed distributions of products resulting from the unimolecular decomposition of rotationally excited radicals. The radicals are produced photolytically from a halogenated precursor under collision-free conditions so they are not in a thermal distribution of rotational states. The accuracy relies on the radical dissociating with negligible energetic barrier beyond the endoergicity. We test the model predictions using previous velocity map imaging and crossed laser-molecular beam scattering experiments that photolytically generated rotationally excited CD2CD2OH and C3H6OH radicals from brominated precursors; some of those radicals then undergo further dissociation to CD2CD2 + OH and C3H6 + OH, respectively. We model the rotational trajectories of these radicals, with high vibrational and rotational energy, first near their equilibrium geometry, and then by projecting each point during the rotation to the transition state (continuing the rotational dynamics at that geometry). This allows us to accurately predict the recoil velocity imparted in the subsequent dissociation of the radical by calculating the tangential velocities of the CD2CD2/C3H6 and OH fragments at the transition state. The model also gives a prediction for the distribution of angles between the dissociation fragments' velocity vectors and the initial radical's velocity vector. These results are used to generate fits to the previously measured time-of-flight distributions of the dissociation fragments; the fits are excellent. The results demonstrate the importance of considering the precession of the angular velocity vector for a rotating radical. We also show that if the initial angular momentum of the rotating radical lies nearly parallel to a principal axis, the very narrow range of tangential velocities predicted by this model must be convoluted with a J = 0 recoil velocity distribution to achieve a good result. The model relies on measuring the kinetic energy release when the halogenated precursor is photodissociated via a repulsive excited state but does not include any adjustable parameters. Even when different conformers of the photolytic precursor are populated, weighting the prediction by a thermal conformer population gives an accurate prediction for the relative velocity vectors of the fragments from the highly rotationally excited radical intermediates.
Development of a negative ion-based neutral beam injector in Novosibirsk.
Ivanov, A A; Abdrashitov, G F; Anashin, V V; Belchenko, Yu I; Burdakov, A V; Davydenko, V I; Deichuli, P P; Dimov, G I; Dranichnikov, A N; Kapitonov, V A; Kolmogorov, V V; Kondakov, A A; Sanin, A L; Shikhovtsev, I V; Stupishin, N V; Sorokin, A V; Popov, S S; Tiunov, M A; Belov, V P; Gorbovsky, A I; Kobets, V V; Binderbauer, M; Putvinski, S; Smirnov, A; Sevier, L
2014-02-01
A 1000 keV, 5 MW, 1000 s neutral beam injector based on negative ions is being developed in the Budker Institute of Nuclear Physics, Novosibirsk in collaboration with Tri Alpha Energy, Inc. The innovative design of the injector features the spatially separated ion source and an electrostatic accelerator. Plasma or photon neutralizer and energy recuperation of the remaining ion species is employed in the injector to provide an overall energy efficiency of the system as high as 80%. A test stand for the beam acceleration is now under construction. A prototype of the negative ion beam source has been fabricated and installed at the test stand. The prototype ion source is designed to produce 120 keV, 1.5 A beam.
NASA Astrophysics Data System (ADS)
Fan, Yingmin; Wang, Jingwei; Cai, Lei; Mitra, Thomas; Hauschild, Dirk; Zah, Chung-En; Liu, Xingsheng
2018-02-01
High power diode lasers (HPDLs) offer the highest wall-plug efficiency, highest specific power (power-to-weight ratio), arguably the lowest cost and highest reliability among all laser types. However, the poor beam quality of commercially HPDLs is the main bottleneck limiting their direct applications requiring high brightness at least in one dimension. In order to expand the applications of HPDLs, beam shaping and optical design are essential. In this work, we report the recent progresses on maximizing applications of HPDLs by synergizing diode laser light source and beam shaping micro-optics. Successful examples of matching of diode laser light sources and beam shaping micro-optics driving new applications are presented.
Space Optical Communications Using Laser Beams
NASA Technical Reports Server (NTRS)
Goorjian, Peter M. (Inventor)
2017-01-01
A system for communicating between an object in space and a ground station, between objects in space, or between ground stations, includes a telecentric lens. Photodetectors positioned upon a focal plane of the telecentric lens detect an inbound light beam, received from a source, that has passed through the telecentric lens to the focal plane. Lasers positioned upon the focal plane transmit light beams from the focal plane through the telecentric lens to an area that includes the source of the inbound light beam. A processor detect signals from individual photodetectors corresponding to light detected, and selectively signals individual lasers that are close to those photodetectors, resulting in a returning beam that arrives close to the source, and which carries encoded data.
Development of C⁶⁺ laser ion source and RFQ linac for carbon ion radiotherapy.
Sako, T; Yamaguchi, A; Sato, K; Goto, A; Iwai, T; Nayuki, T; Nemoto, K; Kayama, T; Takeuchi, T
2016-02-01
A prototype C(6+) injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
Development of C6+ laser ion source and RFQ linac for carbon ion radiotherapy
NASA Astrophysics Data System (ADS)
Sako, T.; Yamaguchi, A.; Sato, K.; Goto, A.; Iwai, T.; Nayuki, T.; Nemoto, K.; Kayama, T.; Takeuchi, T.
2016-02-01
A prototype C6+ injector using a laser ion source has been developed for a compact synchrotron dedicated to carbon ion radiotherapy. The injector consists of a laser ion source and a 4-vane radio-frequency quadrupole (RFQ) linac. Ion beams are extracted from plasma and directly injected into the RFQ. A solenoid guides the low-energy beams into the RFQ. The RFQ is designed to accelerate high-intensity pulsed beams. A structure of monolithic vanes and cavities is adopted to reduce its power consumption. In beam acceleration tests, a solenoidal magnetic field set between the laser ion source and the RFQ helped increase both the peak currents before and after the RFQ by a factor of 4.
Aging of biogenic secondary organic aerosol via gas-phase OH radical reactions
Donahue, Neil M.; Henry, Kaytlin M.; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Spindler, Christian; Bohn, Birger; Brauers, Theo; Dorn, Hans P.; Fuchs, Hendrik; Tillmann, Ralf; Wahner, Andreas; Saathoff, Harald; Naumann, Karl-Heinz; Möhler, Ottmar; Leisner, Thomas; Müller, Lars; Reinnig, Marc-Christopher; Hoffmann, Thorsten; Salo, Kent; Hallquist, Mattias; Frosch, Mia; Bilde, Merete; Tritscher, Torsten; Barmet, Peter; Praplan, Arnaud P.; DeCarlo, Peter F.; Dommen, Josef; Prévôt, Andre S.H.; Baltensperger, Urs
2012-01-01
The Multiple Chamber Aerosol Chemical Aging Study (MUCHACHAS) tested the hypothesis that hydroxyl radical (OH) aging significantly increases the concentration of first-generation biogenic secondary organic aerosol (SOA). OH is the dominant atmospheric oxidant, and MUCHACHAS employed environmental chambers of very different designs, using multiple OH sources to explore a range of chemical conditions and potential sources of systematic error. We isolated the effect of OH aging, confirming our hypothesis while observing corresponding changes in SOA properties. The mass increases are consistent with an existing gap between global SOA sources and those predicted in models, and can be described by a mechanism suitable for implementation in those models. PMID:22869714
Koivisto, H; Kalvas, T; Tarvainen, O; Komppula, J; Laulainen, J; Kronholm, R; Ranttila, K; Tuunanen, J; Thuillier, T; Xie, D; Machicoane, G
2016-02-01
Several ion source related research and development projects are in progress at the Department of Physics, University of Jyväskylä (JYFL). The work can be divided into investigation of the ion source plasma and development of ion sources, ion beams, and diagnostics. The investigation covers the Electron Cyclotron Resonance Ion Source (ECRIS) plasma instabilities, vacuum ultraviolet (VUV) and visible light emission, photon induced electron emission, and the development of plasma diagnostics. The ion source development covers the work performed for radiofrequency-driven negative ion source, RADIS, beam line upgrade of the JYFL 14 GHz ECRIS, and the development of a new room-temperature-magnet 18 GHz ECRIS, HIISI.
Ion collector design for an energy recovery test proposal with the negative ion source NIO1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Variale, V., E-mail: vincenzo.variale@ba.infn.it; Cavenago, M.; Agostinetti, P.
2016-02-15
Commercial viability of thermonuclear fusion power plants depends also on minimizing the recirculation power used to operate the reactor. The neutral beam injector (NBI) remains one of the most important method for plasma heating and control. For the future fusion power plant project DEMO, a NBI wall plug efficiency at least of 0.45 is required, while efficiency of present NBI project is about 0.25. The D{sup −} beam from a negative ion source is partially neutralized by a gas cell, which leaves more than 40% of energy in residual beams (D{sup −} and D{sup +}), so that an ion beammore » energy recovery system can significantly contribute to optimize efficiency. Recently, the test negative ion source NIO1 (60 keV, 9 beamlets with 15 mA H{sup −} each) has been designed and built at RFX (Padua) for negative ion production efficiency and the beam quality optimization. In this paper, a study proposal to use the NIO1 source also for a beam energy recovery test experiment is presented and a preliminary design of a negative ion beam collector with simulations of beam energy recovery is discussed.« less
NASA Astrophysics Data System (ADS)
Matsumoto, Jun; Kosugi, Naohiro; Imai, Hidekazu; Kajii, Yoshizumi
2005-06-01
An instrument for measuring atmospheric nitrate radical (NO3) and dinitrogen pentoxide (N2O5) has been developed by a thermal conversion/laser-induced fluorescence (TC/LIF) technique. N2O5 is thermally decomposed and converted to NO3, which is measured by laser-induced fluorescence. In situ, fast-response, sensitive measurement of NO3/N2O5 is expected by use of LIF. In detecting NO3, dual-wavelength excitation at 622.96 and 618.81nm was adopted to remove potential interference and to guarantee high selectivity. A high-power dye laser system was used as the source of excitation light. To measure ambient air directly, the NO3 detection cell was placed on the rooftop. The laser beam was guided by an optical fiber into the excitation cell. Transmittance of the laser beam was 80% for a 10m long fiber. To calibrate the instrument, the series of thermal decomposition of N2O5 and the gas phase titration of NO3 by NO were conducted. NO3 reduction by adding NO was also applied to determine accurately the zero points of the detector. After optimization of conditions such as gate timing in photon counting and the settings of the N2O5 converter, the present detection limits of NO3 and N2O5 were determined to be 4 and 6pptv, respectively, for the integration time of 10min (signal-to-noise ratio=1). It was confirmed that the interference of NO2 on N2O5 detection is negligible, but can be significant for NO3 measurement when NO2 concentration is extremely high (>100ppbv ). Measurement of N2O5 in ambient air was made in the urban area of Tokyo, Japan. Observed data demonstrated the capacity of the TC/LIF instrument with a powerful dye laser and a single-path excitation cell for ambient measurements. In this article, we focus on the instrumentation and characterization.
Low energy ion beam dynamics of NANOGAN ECR ion source
NASA Astrophysics Data System (ADS)
Kumar, Sarvesh; Mandal, A.
2016-04-01
A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.
Konovalov, A N; Vikhert, T M; Korshunov, A G; Gorelyshev, S K
1988-01-01
The authors compared the evaluation of the extent of radicalism of removal of craniopharyngiomas of the third ventricle during the operation and in postmortem examination in 17 cases. They found that the transcallosal approach provides greater possibility for radical removal and correct appraisal of the volume of the removed tumor. Growth of connective-tissue fibres of the capsule of the craniopharyngioma into the walls of the third ventricle hinders total removal of the tumor. Other possible sources of recurrences may be microscopie areas of the glial capsule whose fibres grow into the brain matter together with craniopharyngioma epithelial cell complexes, as well as microcraniopharyngiomas growing independently in the depths of the hypophysis which are not related to the removed tumor.
Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere
NASA Technical Reports Server (NTRS)
Wennberg, P. O.; Hanisco, T. F.; Jaegle, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.;
1998-01-01
The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3, in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of 03 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day.This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.
Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere
NASA Technical Reports Server (NTRS)
Wennberg, P. O.; Hanisco, T. F.; Jaegle, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.;
1998-01-01
The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3 in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO, required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production Of O3 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about I part per billion by volume each day. This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCarthy, Michael C., E-mail: mccarthy@cfa.harvard.edu; Martinez, Oscar; Crabtree, Kyle N.
2016-03-28
HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO{sub 2} reaction represents the final step for the production of CO{sub 2} in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be producedmore » almost equally well from either OH + CO or H + CO{sub 2} in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO{sub 2}. Using isotopically labelled precursors, the OH + C{sup 18}O reaction predominately yields HOC{sup 18}O for both isomers, but H{sup 18}OCO is observed as well, typically at the level of 10%-20% that of HOC{sup 18}O; the opposite propensity is found for the {sup 18}OH + CO reaction. DO + C{sup 18}O yields similar ratios between DOC{sup 18}O and D{sup 18}OCO as those found for OH + C{sup 18}O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO{sub 2}, which, at the high pressure of our gas expansion, can readily occur. The large {sup 13}C Fermi-contact term (a{sub F}) for trans- and cis-HO{sup 13}CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.« less
A high brightness proton injector for the Tandetron accelerator at Jožef Stefan Institute
NASA Astrophysics Data System (ADS)
Pelicon, Primož; Podaru, Nicolae C.; Vavpetič, Primož; Jeromel, Luka; Ogrinc Potocnik, Nina; Ondračka, Simon; Gottdang, Andreas; Mous, Dirk J. M.
2014-08-01
Jožef Stefan Institute recently commissioned a high brightness H- ion beam injection system for its existing tandem accelerator facility. Custom developed by High Voltage Engineering Europa, the multicusp ion source has been tuned to deliver at the entrance of the Tandetron™ accelerator H- ion beams with a measured brightness of 17.1 A m-2 rad-2 eV-1 at 170 μA, equivalent to an energy normalized beam emittance of 0.767 π mm mrad MeV1/2. Upgrading the accelerator facility with the new injection system provides two main advantages. First, the high brightness of the new ion source enables the reduction of object slit aperture and the reduction of acceptance angle at the nuclear microprobe, resulting in a reduced beam size at selected beam intensity, which significantly improves the probe resolution for micro-PIXE applications. Secondly, the upgrade strongly enhances the accelerator up-time since H and He beams are produced by independent ion sources, introducing a constant availability of 3He beam for fusion-related research with NRA. The ion beam particle losses and ion beam emittance growth imply that the aforementioned beam brightness is reduced by transport through the ion optical system. To obtain quantitative information on the available brightness at the high-energy side of the accelerator, the proton beam brightness is determined in the nuclear microprobe beamline. Based on the experience obtained during the first months of operation for micro-PIXE applications, further necessary steps are indicated to obtain optimal coupling of the new ion source with the accelerator to increase the normalized high-energy proton beam brightness at the JSI microprobe, currently at 14 A m-2 rad-2 eV-1, with the output current at 18% of its available maximum.
Beam Measurement of 11.424 GHz X-Band Linac for Compton Scattering X-ray Source
NASA Astrophysics Data System (ADS)
Natsui, Takuya; Mori, Azusa; Masuda, Hirotoshi; Uesaka, Mitsuru; Sakamoto, Fumito
2010-11-01
An inverse Compton scattering X-ray source for medical applications, consisting of an X-band (11.424 GHz) linac and Q-switched Nd:YAG laser, is currently being developed at the University of Tokyo. This system uses an X-band 3.5-cell thermionic cathode RF gun for electron beam generation. We can obtain a multi-bunch electron beam with this gun. The beam is accelerated to 30 MeV by a traveling-wave accelerating tube. So far, we have verified stable beam generation (around 2.3 MeV) by using the newly designed RF gun and we have succeeded in beam transportation to a beam dump.
The "Religion of the Child": Korczak's Road to Radical Humanism
ERIC Educational Resources Information Center
Silverman, Marc
2017-01-01
This paper explores the biographical and cultural sources that inspired the decision of Janusz Korczak (Warsaw, 1878; Treblinka, 1942) to make his life's vocation the education of young children from dysfunctional families. This decision emerged out of the radical version of humanism he embraced. His identification of children as the population…
Kiruri, Lucy W; Khachatryan, Lavrent; Dellinger, Barry; Lomnicki, Slawo
2014-02-18
Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼ 2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75-1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed--from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively.
Determining the partial photoionization cross-sections of ethyl radicals.
FitzPatrick, B L; Maienschein-Cline, M; Butler, L J; Lee, S-H; Lin, J J
2007-12-13
Using a crossed laser-molecular beam scattering apparatus, these experiments photodissociate ethyl chloride at 193 nm and detect the Cl and ethyl products, resolved by their center-of-mass recoil velocities, with vacuum ultraviolet photoionization. The data determine the relative partial cross-sections for the photoionization of ethyl radicals to form C2H5+, C2H4+, and C2H3+ at 12.1 and 13.8 eV. The data also determine the internal energy distribution of the ethyl radical prior to photoionization, so we can assess the internal energy dependence of the photoionization cross-sections. The results show that the C2H4++H and C2H3++H2 dissociative photoionization cross-sections strongly depend on the photoionization energy. Calibrating the ethyl radical partial photoionization cross-sections relative to the bandwidth-averaged photoionization cross-section of Cl atoms near 13.8 eV allows us to use these data in conjunction with literature estimates of the Cl atom photoionization cross-sections to put the present bandwidth-averaged cross-sections on an absolute scale. The resulting bandwidth-averaged cross-section for the photoionization of ethyl radicals to C2H5+ near 13.8 eV is 8+/-2 Mb. Comparison of our 12.1 eV data with high-resolution ethyl radical photoionization spectra allows us to roughly put the high-resolution spectrum on the same absolute scale. Thus, one obtains the photoionization cross-section of ethyl radicals to C2H5+ from threshold to 12.1 eV. The data show that the onset of the C2H4++H dissociative photoionization channel is above 12.1 eV; this result offers a simple way to determine whether the signal observed in photoionization experiments on complex mixtures is due to ethyl radicals. We discuss an application of the results for resolving the product branching in the O+allyl bimolecular reaction.
A new multidimensional diagnostic method for measuring the properties of intense ion beams
NASA Astrophysics Data System (ADS)
Yasuike, Kazuhito; Miyamoto, Shuji; Nakai, Sadao
1996-02-01
A new arrayed pinhole camera (APC) diagnostic method for intense ion beams has been developed. The APC diagnostic technique permits the acquisition of the angular divergences and the ion fluxes of high intensity ion beams, in one shot, with a spatial resolution on the source of better than 1 mm and an effective angular divergence resolution of better than 10 mrad. A prototype time integrated APC has been designed and evaluated. The demonstration experiments have been performed on a Reiden-IV, 1 MV and 1 Ω pulsed power machine [1 T W (tera-watt or trillion watts)]. Proton beams of 0.7 MeV, with a pulse duration of ˜50 ns and an ion current density of about 100 A/cm2, were generated in an applied-Br type ion diode source using paraffin-filled grooves. These experimental results show that the APC can measure nonuniformities in the ion beam intensity generated from the ion source and the dependence of beam angular divergence on ion beam intensity.
Focused ion beam source method and apparatus
Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.
2000-01-01
A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohsen, O.; Gonin, I.; Kephart, R.
High-power electron beams are sought-after tools in support to a wide array of societal applications. This paper investigates the production of high-power electron beams by combining a high-current field-emission electron source to a superconducting radio-frequency (SRF) cavity. We especially carry out beam-dynamics simulations that demonstrate the viability of the scheme to formmore » $$\\sim$$ 300 kW average-power electron beam using a 1+1/2-cell SRF gun.« less
Optical microscope using an interferometric source of two-color, two-beam entangled photons
Dress, William B.; Kisner, Roger A.; Richards, Roger K.
2004-07-13
Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.
Acoustics of finite asymmetric exotic beams: Examples of Airy and fractional Bessel beams
NASA Astrophysics Data System (ADS)
Mitri, F. G.
2017-12-01
The purpose of this investigation is to examine the properties of finite asymmetric exotic scalar (acoustic) beams with unusual properties using the angular spectrum decomposition in plane waves. Such beams possess intrinsic uncommon characteristics that make them attractive from the standpoint of particle manipulation, handling and rotation, and possibly other applications in particle clearing and separation. Assuming a specific apodization function at the acoustic source, the angular spectrum function is calculated and used to synthesize the radiated pressure field (i.e., excluding evanescent waves that decay away from the source) in the forward direction of wave motion (i.e., away from the source). Moreover, a generalized hybrid method combining the angular spectrum approach with the multipole expansion formalism in spherical coordinates is developed, which is applicable to any finite beam of arbitrary wavefront. The improved approach allows adequate computation of the resonance scattering, radiation force, and spin torque components on an object of arbitrary shape, located on or off the axis of the incident beam in space. Considering the illustrative example of a viscous fluid sphere submerged in a non-viscous liquid and illuminated by finite asymmetric beams such as the Airy and the Bessel vortex beam with fractional order, numerical computations for the scattering, radiation force, and torque components are performed with an emphasis on the distance from the source, the arbitrary location of the particle ,and the asymmetric nature of the incident field. Moreover, beamforming calculations are presented with supplementary animations for the pressure field distribution in space, with an emphasis on the intrinsic properties of the selected beams. The numerical predictions illustrate the scattering, radiation force, and spin torque properties depending on the beam parameters and the distance separating the sphere from the source. This study provides a generalized hybrid method to analyze quantitatively the scattering, radiation force, and spin torque by any finite asymmetric (or symmetric) acoustic beam with potential applications in various fields of applied physics (such as beam-forming, imaging, and mechanical effects of asymmetric sound beams).
Development of a MeV proton beam irradiation system.
Park, Bum-Sik; Cho, Yong-Sub; Hong, In-Seok
2008-02-01
A proton beam irradiation system for the application of the MeV class proton beam, such as an implantation for a power semiconductor device and a smart-cut technology for a semiconductor production process, has been developed. This system consists of a negative ion source, an Einzel lens for a low energy beam transport, accelerating tubes, a gas stripper, a Cockroft-Walton high voltage power supply with 1 MV, a vacuum pumping system, and a high pressure insulating gas system. The negative hydrogen ion source is based on TRIUMF's design. Following the tandem accelerator, a pair of magnets is installed for raster scanning of the MeV proton beam to obtain a uniform irradiation pattern on the target. The system is 7 m long from the ion source to the target and is optimized for the proton beam irradiation. The details of the system development will be described.
Positron Beam Characteristics at NEPOMUC Upgrade
NASA Astrophysics Data System (ADS)
Hugenschmidt, C.; Ceeh, H.; Gigl, T.; Lippert, F.; Piochacz, C.; Reiner, M.; Schreckenbach, K.; Vohburger, S.; Weber, J.; Zimnik, S.
2014-04-01
In 2012, the new neutron induced positron source NEPOMUC upgrade was put into operation at FRMII. Major changes have been made to the source which consists of a neutron-γ-converter out of Cd and a Pt foil structure for electron positron pair production and positron moderation. The new design leads to an improvement of both intensity and brightness of the mono-energetic positron beam. In addition, the application of highly enriched 113Cd as neutron-γ-converter extends the lifetime of the positron source to 25 years. A new switching and remoderation device has been installed in order to allow toggling from the high-intensity primary beam to a brightness enhanced remoderated positron beam. At present, an intensity of more than 109 moderated positrons per second is achieved at NEPOMUC upgrade. The main characteristics are presented which comprise positron yield and beam profile of both the primary and the remoderated positron beam.
A vacuum spark ion source: High charge state metal ion beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yushkov, G. Yu., E-mail: gyushkov@mail.ru; Nikolaev, A. G.; Frolova, V. P.
2016-02-15
High ion charge state is often important in ion beam physics, among other reasons for the very practical purpose that it leads to proportionately higher ion beam energy for fixed accelerating voltage. The ion charge state of metal ion beams can be increased by replacing a vacuum arc ion source by a vacuum spark ion source. Since the voltage between anode and cathode remains high in a spark discharge compared to the vacuum arc, higher metal ion charge states are generated which can then be extracted as an ion beam. The use of a spark of pulse duration less thanmore » 10 μs and with current up to 10 kA allows the production of ion beams with current of several amperes at a pulse repetition rate of up to 5 pps. We have demonstrated the formation of high charge state heavy ions (bismuth) of up to 15 + and a mean ion charge state of more than 10 +. The physics and techniques of our vacuum spark ion source are described.« less
Toivanen, V; Bellodi, G; Dimov, V; Küchler, D; Lombardi, A M; Maintrot, M
2016-02-01
Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT) section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.
Bright focused ion beam sources based on laser-cooled atoms
McClelland, J. J.; Steele, A. V.; Knuffman, B.; Twedt, K. A.; Schwarzkopf, A.; Wilson, T. M.
2016-01-01
Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of the industry standard Ga+ liquid metal ion source. In this review we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future. PMID:27239245
Bright focused ion beam sources based on laser-cooled atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
McClelland, J. J.; Wilson, T. M.; Steele, A. V.
2016-03-15
Nanoscale focused ion beams (FIBs) represent one of the most useful tools in nanotechnology, enabling nanofabrication via milling and gas-assisted deposition, microscopy and microanalysis, and selective, spatially resolved doping of materials. Recently, a new type of FIB source has emerged, which uses ionization of laser cooled neutral atoms to produce the ion beam. The extremely cold temperatures attainable with laser cooling (in the range of 100 μK or below) result in a beam of ions with a very small transverse velocity distribution. This corresponds to a source with extremely high brightness that rivals or may even exceed the brightness of themore » industry standard Ga{sup +} liquid metal ion source. In this review, we discuss the context of ion beam technology in which these new ion sources can play a role, their principles of operation, and some examples of recent demonstrations. The field is relatively new, so only a few applications have been demonstrated, most notably low energy ion microscopy with Li ions. Nevertheless, a number of promising new approaches have been proposed and/or demonstrated, suggesting that a rapid evolution of this type of source is likely in the near future.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab
2012-02-15
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profilemore » of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.« less
Lee, Yuna; Park, Yeong-Shin; Jo, Jong-Gab; Yang, J J; Hwang, Y S
2012-02-01
Microwave plasma ion source with rectangular cavity resonator has been examined to improve ion beam current by changing wave launcher type from single-port to double-port. The cavity resonators with double-port and single-port wave launchers are designed to get resonance effect at TE-103 mode and TE-102 mode, respectively. In order to confirm that the cavities are acting as resonator, the microwave power for breakdown is measured and compared with the E-field strength estimated from the HFSS (High Frequency Structure Simulator) simulation. Langmuir probe measurements show that double-port cavity enhances central density of plasma ion source by modifying non-uniform plasma density profile of the single-port cavity. Correspondingly, beam current from the plasma ion source utilizing the double-port resonator is measured to be higher than that utilizing single-port resonator. Moreover, the enhancement in plasma density and ion beam current utilizing the double-port resonator is more pronounced as higher microwave power applied to the plasma ion source. Therefore, the rectangular cavity resonator utilizing the double-port is expected to enhance the performance of plasma ion source in terms of ion beam extraction.
Axial energy spread measurements of an accelerated positive ion beam
NASA Astrophysics Data System (ADS)
Lee, Y.; Gough, R. A.; Kunkel, W. B.; Leung, K. N.; Perkins, L. T.; Pickard, D. S.; Sun, L.; Vujic, J.; Williams, M. D.; Wutte, D.; Mondelli, Alfred A.; Stengl, Gerhard
1997-01-01
A multicusp ion source has been designed for use in ion projection lithography. Longitudinal energy spreads of the extracted positive hydrogen ion beam have been studied using a retarding field energy analyzer. It has been found that the filament-discharge multicusp ion source can deliver a beam with an energy spread less than 3 eV which is required for the ALG-1000 machine. The multicusp ion source can also deliver the current required for the application.
Matsuzaki, Satoshi; Kotake, Yashige; Humphries, Kenneth M
2011-12-20
The mitochondrial electron transport chain (ETC) is a major source of free radical production. However, due to the highly reactive nature of radical species and their short lifetimes, accurate detection and identification of these molecules in biological systems is challenging. The aim of this investigation was to determine the free radical species produced from the mitochondrial ETC by utilizing EPR spin-trapping techniques and the recently commercialized spin-trap, 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). We demonstrate that this spin-trap has the preferential quality of having minimal mitochondrial toxicity at concentrations required for radical detection. In rat heart mitochondria and submitochondrial particles supplied with NADH, the major species detected under physiological pH was a carbon-centered radical adduct, indicated by markedly large hyperfine coupling constant with hydrogen (a(H) > 2.0 mT). In the presence of the ETC inhibitors, the carbon-centered radical formation was increased and exhibited NADH concentration dependency. The same carbon-centered radical could also be produced with the NAD biosynthesis precursor, nicotinamide mononucleotide, in the presence of a catalytic amount of NADH. The results support the conclusion that the observed species is a complex I derived NADH radical. The formation of the NADH radical could be blocked by hydroxyl radical scavengers but not SOD. In vitro experiments confirmed that an NADH-radical is readily formed by hydroxyl radical but not superoxide anion, further implicating hydroxyl radical as an upstream mediator of NADH radical production. These findings demonstrate the identification of a novel mitochondrial radical species with potential physiological significance and highlight the diverse mechanisms and sites of production within the ETC.
H- radio frequency source development at the Spallation Neutron Source.
Welton, R F; Dudnikov, V G; Gawne, K R; Han, B X; Murray, S N; Pennisi, T R; Roseberry, R T; Santana, M; Stockli, M P; Turvey, M W
2012-02-01
The Spallation Neutron Source (SNS) now routinely operates nearly 1 MW of beam power on target with a highly persistent ∼38 mA peak current in the linac and an availability of ∼90%. H(-) beam pulses (∼1 ms, 60 Hz) are produced by a Cs-enhanced, multicusp ion source closely coupled with an electrostatic low energy beam transport (LEBT), which focuses the 65 kV beam into a radio frequency quadrupole accelerator. The source plasma is generated by RF excitation (2 MHz, ∼60 kW) of a copper antenna that has been encased with a thickness of ∼0.7 mm of porcelain enamel and immersed into the plasma chamber. The ion source and LEBT normally have a combined availability of ∼99%. Recent increases in duty-factor and RF power have made antenna failures a leading cause of downtime. This report first identifies the physical mechanism of antenna failure from a statistical inspection of ∼75 antennas which ran at the SNS, scanning electron microscopy studies of antenna surface, and cross sectional cuts and analysis of calorimetric heating measurements. Failure mitigation efforts are then described which include modifying the antenna geometry and our acceptance∕installation criteria. Progress and status of the development of the SNS external antenna source, a long-term solution to the internal antenna problem, are then discussed. Currently, this source is capable of delivering comparable beam currents to the baseline source to the SNS and, an earlier version, has briefly demonstrated unanalyzed currents up to ∼100 mA (1 ms, 60 Hz) on the test stand. In particular, this paper discusses plasma ignition (dc and RF plasma guns), antenna reliability, magnet overheating, and insufficient beam persistence.
Operation Status of the J-PARC Negative Hydrogen Ion Source
NASA Astrophysics Data System (ADS)
Oguri, H.; Ikegami, K.; Ohkoshi, K.; Namekawa, Y.; Ueno, A.
2011-09-01
A cesium-free negative hydrogen ion source driven with a lanthanum hexaboride (LaB6) filament is being operated without any serious trouble for approximately four years in J-PARC. Although the ion source is capable of producing an H- ion current of more than 30 mA, the current is routinely restricted to approximately 16 mA at present for the stable operation of the RFQ linac which has serious discharge problem from September 2008. The beam run is performed during 1 month cycle, which consisted of a 4-5 weeks beam operation and a few days down-period interval. At the recent beam run, approximately 700 h continuous operation was achieved. At every runs, the beam interruption time due to the ion source failure is a few hours, which correspond to the ion source availability of more than 99%. The R&D work is being performed in parallel with the operation in order to enhance the further beam current. As a result, the H- ion current of 61 mA with normalized rms emittance of 0.26 πmm.mrad was obtained by adding a cesium seeding system to a J-PARC test ion source which has the almost same structure with the present J-PARC ion source.
Racial Disparities in the Quality of Prostate Cancer Care
2015-11-01
Treatment Primary treatment was categorized into surgery (open, laparoscopic or robotic -assisted radical prostatectomy), radiotherapy (External Beam...Introduction: For younger men (ឱ years of age) with high risk locally advanced (>stage 2C), active treatment with surgery or radiotherapy appears to...to disease state, or from peer experiences. Feeling like treatments were all about equal, so prefer surgery to have clear pathology report. 7
Goel, Reema; Bitzer, Zachary T; Reilly, Samantha M; Foulds, Jonathan; Muscat, Joshua; Elias, Ryan J; Richie, John P
2018-05-07
Cigarette smoke is a major exogenous source of free radicals, and the resulting oxidative stress is one of the major causes of smoking-caused diseases. Yet, many of the factors that impact free radical delivery from cigarettes remain unclear. In this study, we machine-smoked cigarettes and measured the levels of gas- and particulate-phase radicals by electron paramagnetic resonance (EPR) spectroscopy using standardized smoking regimens (International Organization of Standardization (ISO) and Canadian Intense (CI)), puffing parameters, and tobacco blends. Radical delivery per cigarette was significantly greater in both gas (4-fold) and particulate (6-fold) phases when cigarettes were smoked under the CI protocol compared to the ISO protocol. Total puff volume per cigarette was the major factor with radical production being proportional to total volume, regardless of whether volume differences were achieved by changes in individual puff volume or puff frequency. Changing puff shape (bell vs sharp vs square) or puff duration (1-5 s), without changing volume, had no effect on radical yields. Tobacco variety did have a significant impact on free radical production, with gas-phase radicals highest in reconstituted > burley > oriental > bright tobacco and particulate-phase radicals highest in burley > bright > oriental > reconstituted tobacco. Our findings show that modifiable cigarette design features and measurable user smoking behaviors are key factors determining free radical exposure in smokers.
Second-harmonic generation in shear wave beams with different polarizations
NASA Astrophysics Data System (ADS)
Spratt, Kyle S.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2015-10-01
A coupled pair of nonlinear parabolic equations was derived by Zabolotskaya [1] that model the transverse components of the particle motion in a collimated shear wave beam propagating in an isotropic elastic solid. Like the KZK equation, the parabolic equation for shear wave beams accounts consistently for the leading order effects of diffraction, viscosity and nonlinearity. The nonlinearity includes a cubic nonlinear term that is equivalent to that present in plane shear waves, as well as a quadratic nonlinear term that is unique to diffracting beams. The work by Wochner et al. [2] considered shear wave beams with translational polarizations (linear, circular and elliptical), wherein second-order nonlinear effects vanish and the leading order nonlinear effect is third-harmonic generation by the cubic nonlinearity. The purpose of the current work is to investigate the quadratic nonlinear term present in the parabolic equation for shear wave beams by considering second-harmonic generation in Gaussian beams as a second-order nonlinear effect using standard perturbation theory. In order for second-order nonlinear effects to be present, a broader class of source polarizations must be considered that includes not only the familiar translational polarizations, but also polarizations accounting for stretching, shearing and rotation of the source plane. It is found that the polarization of the second harmonic generated by the quadratic nonlinearity is not necessarily the same as the polarization of the source-frequency beam, and we are able to derive a general analytic solution for second-harmonic generation from a Gaussian source condition that gives explicitly the relationship between the polarization of the source-frequency beam and the polarization of the second harmonic.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, Sebastien B.; Bennett, Christopher J.; Le Picard, Sebastien D.
2011-11-20
We present a joint crossed molecular beam and kinetics investigation combined with electronic structure and statistical calculations on the reaction of the ground-state cyano radical, CN(X {sup 2}{Sigma}{sup +}), with the 1,3-butadiene molecule, H{sub 2}CCHCHCH{sub 2}(X {sup 1} A{sub g}), and its partially deuterated counterparts, H{sub 2}CCDCDCH{sub 2}(X {sup 1} A{sub g}) and D{sub 2}CCHCHCD{sub 2}(X {sup 1} A{sub g}). The crossed beam studies indicate that the reaction proceeds via a long-lived C{sub 5}H{sub 6}N complex, yielding C{sub 5}H{sub 5}N isomer(s) plus atomic hydrogen under single collision conditions as the nascent product(s). Experiments with the partially deuterated 1,3-butadienes indicate thatmore » the atomic hydrogen loss originates from one of the terminal carbon atoms of 1,3-butadiene. A combination of the experimental data with electronic structure calculations suggests that the thermodynamically less favorable 1-cyano-1,3-butadiene isomer represents the dominant reaction product; possible minor contributions of less than a few percent from the aromatic pyridine molecule might be feasible. Low-temperature kinetics studies demonstrate that the overall reaction is very fast from room temperature down to 23 K with rate coefficients close to the gas kinetic limit. This finding, combined with theoretical calculations, indicates that the reaction proceeds on an entrance barrier-less potential energy surface (PES). This combined experimental and theoretical approach represents an important step toward a systematic understanding of the formation of complex, nitrogen-bearing molecules-here on the C{sub 5}H{sub 6}N PES-in low-temperature extraterrestrial environments. These results are compared to the reaction dynamics of D1-ethynyl radicals (C{sub 2}D; X {sup 2}{Sigma}{sup +}) with 1,3-butadiene accessing the isoelectronic C{sub 6}H{sub 7} surface as tackled earlier in our laboratories.« less
Electron Gun and Collector Design for 94 GHz Gyro-amplifiers.
NASA Astrophysics Data System (ADS)
Nguyen, K.; Danly, B.; Levush, B.; Blank, M.; True, D.; Felch, K.; Borchard, P.
1997-05-01
The electrical design of the magnetron injection gun and collector for high average power TE_01 gyro-amplifiers has recently been completed using the EGUN(W.B. Herrmannsfeldt, AIP Conf. Proc. 177, pp. 45-58, 1988.) and DEMEOS(R. True, AIP Conf. Proc. 297, pp. 493-499, 1993.) codes. The gun employs an optimized double-anode geometry and a radical cathode cone angle of 500 to achieve superior beam optics that are relatively insensitive to electrode misalignments and field errors. Perpendicular velocity spread of 1.6% at an perpendicular to axial velocity ratio of 1.52 is obtained for a 6 A, 65 kV beam. The 1.28" diameter collector, which also serves as the output waveguide, has an average power density of < 350 W/cm^2 for a 59 kW average power beam. Details will be presented at the conference.
Coherent Bichromatic Force Deflection of Molecules
NASA Astrophysics Data System (ADS)
Kozyryev, Ivan; Baum, Louis; Aldridge, Leland; Yu, Phelan; Eyler, Edward E.; Doyle, John M.
2018-02-01
We demonstrate the effect of the coherent optical bichromatic force on a molecule, the polar free radical strontium monohydroxide (SrOH). A dual-frequency retroreflected laser beam addressing the X˜2Σ+↔A˜2Π1 /2 electronic transition coherently imparts momentum onto a cryogenic beam of SrOH. This directional photon exchange creates a bichromatic force that transversely deflects the molecules. By adjusting the relative phase between the forward and counterpropagating laser beams we reverse the direction of the applied force. A momentum transfer of 70 ℏk is achieved with minimal loss of molecules to dark states. Modeling of the bichromatic force is performed via direct numerical solution of the time-dependent density matrix and is compared with experimental observations. Our results open the door to further coherent manipulation of molecular motion, including the efficient optical deceleration of diatomic and polyatomic molecules with complex level structures.
Application of electron beam plasma for biopolymers modification
NASA Astrophysics Data System (ADS)
Vasilieva, T. M.
2012-06-01
The effects of the Electron Beam Plasma treatment on natural polysaccharide chitosan were studied experimentally. Low molecular water-soluble products of chitosan and chitooligosaccharides were obtained by treating the original polymers in the Electron Beam Plasma of oxygen and water vapor. The molecular mass of the products varied from 18 kDa to monomeric fragments. The degradation of the original polymers was due to the action of active oxygen particles (atomic and singlet oxygen) and the particles of the water plasmolysis (hydroxyl radicals, hydrogen peroxides). The 95% yield of low molecular weight chitosans was attained by optimizing the treatment conditions. The studies of the antimicrobial activity of low molecular products showed that they strongly inhibit the multiplication of colon bacillus, aurococcus and yeast-like fungi. The EBP-stimulated degradation of polysaccharides and proteins were found to result from breaking β-1,4 glycosidic bounds and peptide bonds, respectively.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal
2015-01-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879
Development of a compact filament-discharge multi-cusp H- ion source.
Jia, XianLu; Zhang, TianJue; Zheng, Xia; Qin, JiuChang
2012-02-01
A 14 MeV medical cyclotron with the external ion source has been designed and is being constructed at China Institute of Atomic Energy. The H(-) ion will be accelerated by this machine and the proton beam will be extracted by carbon strippers in dual opposite direction. The compact multi-cusp H(-) ion source has been developed for the cyclotron. The 79.5 mm long ion source is 48 mm in diameter, which is consisting of a special shape filament, ten columns of permanent magnets providing a multi-cusp field, and a three-electrode extraction system. So far, the 3 mA∕25 keV H(-) beam with an emittance of 0.3 π mm mrad has been obtained from the ion source. The paper gives the design details and the beam test results. Further experimental study is under way and an extracted beam of 5 mA is expected.
Buffer Gas Cooled Molecule Source for Cpmmw Spectroscopy
NASA Astrophysics Data System (ADS)
Zhou, Yan; Grimes, David; Barnum, Timothy J.; Klein, Ethan; Field, Robert W.
2014-06-01
We have built a new molecular beam source that implements 20 K Neon buffer gas cooling for the study of the spectra of small molecules. In particular, laser ablation of BaF2 pellets has been optimized to produce a molecular beam of BaF with a number density more than 100 times greater than what we have previously obtained from a typical Smalley-type photoablation supersonic beam source. Moreover, the forward beam velocity of 150 m/s in our apparatus represents an approximate 10-fold reduction, improving spectroscopic resolution from 500 kHz to better than 50 kHz at 100 GHz in a chirped-pulse millimeter-wave experiment in which resolution is limited by Doppler broadening. Novel improvements in our buffer gas source and advantages for CPmmW spectroscopy studies will be discussed. We thank David Patterson, John Barry, John Doyle, and David DeMille for help in the design of our source.
An all permanent magnet electron cyclotron resonance ion source for heavy ion therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Yun, E-mail: caoyun@impcas.ac.cn; Li, Jia Qing; Sun, Liang Ting
2014-02-15
A high charge state all permanent Electron Cyclotron Resonance ion source, Lanzhou All Permanent ECR ion source no. 3-LAPECR3, has been successfully built at IMP in 2012, which will serve as the ion injector of the Heavy Ion Medical Machine (HIMM) project. As a commercial device, LAPECR3 features a compact structure, small size, and low cost. According to HIMM scenario more than 100 eμA of C{sup 5+} ion beam should be extracted from the ion source, and the beam emittance better than 75 π*mm*mrad. In recent commissioning, about 120 eμA of C{sup 5+} ion beam was got when work gasmore » was CH{sub 4} while about 262 eμA of C{sup 5+} ion beam was obtained when work gas was C{sub 2}H{sub 2} gas. The design and construction of the ion source and its low-energy transportation beam line, and the preliminary commissioning results will be presented in detail in this paper.« less
An optical system to transform the output beam of a quantum cascade laser to be uniform
NASA Astrophysics Data System (ADS)
Jacobson, Jordan M.
Quantum cascade lasers (QCLs) are a candidate for calibration sources in space-based remote sensing applications. However, the output beam from a QCL has some characteris- tics that are undesirable in a calibration source. The output beam from a QCL is polarized, both temporally and spatially coherent, and has a non-uniform bivariate Gaussian prole. These characteristics need to be mitigated before QCLs can be used as calibration sources. This study presents the design and implementation of an optical system that manipulates the output beam from a QCL so that it is spatially and angularly uniform with reduced coherence and polarization. (85 pages).
Emittance Growth in the DARHT-II Linear Induction Accelerator
NASA Astrophysics Data System (ADS)
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; McCuistian, B. Trent; Mostrom, Christopher B.; Schulze, Martin E.; Thoma, Carsten H.
2017-11-01
The Dual-Axis Radiographic Hydrotest (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. Some of the possible causes for the emittance growth in the DARHT LIA have been investigated using particle-in-cell (PIC) codes, and are discussed in this article. The results suggest that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.
Deciphering the role of radical precursors during the Second Texas Air Quality Study.
Olaguer, Eduardo P; Rappenglück, Bernhard; Lefer, Barry; Stutz, Jochen; Dibb, Jack; Griffin, Robert; Brune, William H; Shauck, Maxwell; Buhr, Martin; Jeffries, Harvey; Vizuete, William; Pinto, Joseph P
2009-11-01
The Texas Environmental Research Consortium (TERC) funded significant components of the Second Texas Air Quality Study (TexAQS II), including the TexAQS II Radical and Aerosol Measurement Project (TRAMP) and instrumented flights by a Piper Aztec aircraft. These experiments called attention to the role of short-lived radical sources such as formaldehyde (HCHO) and nitrous acid (HONO) in increasing ozone productivity. TRAMP instruments recorded daytime HCHO pulses as large as 32 parts per billion (ppb) originating from upwind industrial activities in the Houston Ship Channel, where in situ surface monitors detected HCHO peaks as large as 52 ppb. Moreover, Ship Channel petrochemical flares were observed to produce plumes of apparent primary HCHO. In one such combustion plume that was depleted of ozone by large emissions of oxides of nitrogen (NOx), the Piper Aztec measured a ratio of HCHO to carbon monoxide (CO) 3 times that of mobile sources. HCHO from uncounted primary sources or ozonolysis of underestimated olefin emissions could significantly increase ozone productivity in Houston beyond previous expectations. Simulations with the CAMx model show that additional emissions of HCHO from industrial flares or mobile sources can increase peak ozone in Houston by up to 30 ppb. Other findings from TexAQS II include significant concentrations of HONO throughout the day, well in excess of current air quality model predictions, with large nocturnal vertical gradients indicating a surface or near-surface source of HONO, and large concentrations of nighttime radicals (approximately30 parts per trillion [ppt] HO2). HONO may be formed heterogeneously on urban canopy or particulate matter surfaces and may be enhanced by organic aerosol of industrial or motor vehicular origin, such as through conversion of nitric acid (HNO3). Additional HONO sources may increase daytime ozone by more than 10 ppb. Improving the representation of primary and secondary HCHO and HONO in air quality models could enhance the simulated effectiveness of control strategies.
Interleaving lattice for the Argonne Advanced Photon Source linac
NASA Astrophysics Data System (ADS)
Shin, S.; Sun, Y.; Dooling, J.; Borland, M.; Zholents, A.
2018-06-01
To realize and test advanced accelerator concepts and hardware, a beam line is being reconfigured in the linac extension area (LEA) of the Argonne Advanced Photon Source (APS) linac. A photocathode rf gun installed at the beginning of the APS linac will provide a low emittance electron beam into the LEA beam line. The thermionic rf gun beam for the APS storage ring and the photocathode rf gun beam for the LEA beam line will be accelerated through the linac in an interleaved fashion. In this paper, the design studies for interleaving lattice realization in the APS linac is described with the initial experiment result.
Drive beam stabilisation in the CLIC Test Facility 3
NASA Astrophysics Data System (ADS)
Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.
2018-06-01
The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.
Interferometric Quasi-Autocollimator
NASA Technical Reports Server (NTRS)
Turner, Matthew D. (Inventor); Gundlach, Jens H. (Inventor); Schlamminger, Stephan (Inventor); Hagedorn, Charles A. (Inventor)
2014-01-01
Systems and method are disclosed for measuring small angular deflections of a target using weak value amplification. A system includes a beam source, a beam splitter, a target reflecting surface, a photodetector, and a processor. The beam source generates an input beam that is split into first and second beams by the beam splitter. The first and second beams are propagated to the target reflecting surface, at least partially superimposed at the target reflecting surface, and incident to the target reflecting surface normal to the target reflecting surface. The first beam is reflected an additional even number of times during propagation to the photodetector. The second beam is reflected an additional odd number of times during propagation to the photodetector. The first and second beams interfere at the photodetector so as to produce interference patterns. The interference patterns are interpreted to measure angular deflections of the target reflecting surface.
Photonic crystal fiber technology for compact fiber-delivered high-power ultrafast fiber lasers
NASA Astrophysics Data System (ADS)
Triches, Marco; Michieletto, Mattia; Johansen, Mette M.; Jakobsen, Christian; Olesen, Anders S.; Papior, Sidsel R.; Kristensen, Torben; Bondue, Magalie; Weirich, Johannes; Alkeskjold, Thomas T.
2018-02-01
Photonic crystal fiber (PCF) technology has radically impacted the scientific and industrial ultrafast laser market. Reducing platform dimensions are important to decrease cost and footprint while maintaining high optical efficiency. We present our recent work on short 85 μm core ROD-type fiber amplifiers that maintain single-mode performance and excellent beam quality. Robust long-term performance at 100 W average power and 250 kW peak power in 20 ps pulses at 1030 nm wavelength is presented, exceeding 500 h with stable performance in terms of both polarization and power. In addition, we present our recent results on hollow-core ultrafast fiber delivery maintaining high beam quality and polarization purity.
NASA Technical Reports Server (NTRS)
Dalal, Vikram L.; Knox, Ralph; Kandalaft, Nabeeh; Baldwin, Greg
1991-01-01
The growth and properties of a-Si:H films grown using a novel deposition technique, reactive plasma beam epitaxy, are discussed. In this technique, a remote H plasma produced in a microwave-ECR reactor is used to grow a-Si:H films at low pressures. The H ions react with SiH4 introduced near the substrate to produce the film. The flow of SiH4 is pulsed on or off, thereby achieving in-situ annealing of the film during growth by H ions and radicals. The films produced by this technique appear to have good electronic quality, and are more stable than the standard glow discharge films.
NASA Technical Reports Server (NTRS)
Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)
1998-01-01
The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.
NASA Astrophysics Data System (ADS)
Vempaire, D.; Cunge, G.
2009-01-01
Measuring decay rates of radical densities in the afterglow of pulsed plasmas is a powerful approach to determine their gas phase and surface loss kinetics. We show that this measurement can be achieved by absorption spectroscopy with low cost and simple apparatus by using light emitting diodes as a light source. The feasibility is demonstrated by monitoring BCl radicals in pulsed low pressure high-density BCl3 plasmas. It is shown that BCl is lost both in the gas phase by reacting with Cl2 with a cross section of 9 Å2 and in the chamber walls with a sticking coefficient of about 0.3.
Hybrid materials with an increased resistance to hard X-rays using fullerenes as radical sponges.
Pinna, Alessandra; Malfatti, Luca; Piccinini, Massimo; Falcaro, Paolo; Innocenzi, Plinio
2012-07-01
The protection of organic and hybrid organic-inorganic materials from X-ray damage is a fundamental technological issue for broadening the range of applications of these materials. In the present article it is shown that doping hybrid films with fullerenes C(60) gives a significant reduction of damage upon exposure to hard X-rays generated by a synchrotron source. At low X-ray dose the fullerene molecules act as `radical scavengers', considerably reducing the degradation of organic species triggered by radical formation. At higher doses the gradual hydroxylation of the fullerenes converts C(60) into fullerol and a bleaching of the radical sinking properties is observed.
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Sun, L. T.; Guo, J. W.; Lu, W.; Xie, D. Z.; Hitz, D.; Zhang, X. Z.; Yang, Y.
2017-09-01
The superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is a superconducting-magnet-based electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged heavy ion beams. It is one of the best performing ECRISs worldwide and the first superconducting ECRIS built with an innovative magnet to generate a high strength minimum-B field for operation with heating microwaves up to 24-28 GHz. Since its commissioning in 2005, SECRAL has so far produced a good number of continuous wave intensity records of highly charged ion beams, in which recently the beam intensities of 40Ar+ and 129Xe26+ have, for the first time, exceeded 1 emA produced by an ion source. Routine operations commenced in 2007 with the Heavy Ion accelerator Research Facility in Lanzhou (HIRFL), China. Up to June 2017, SECRAL has been providing more than 28,000 hours of highly charged heavy ion beams to the accelerator demonstrating its great capability and reliability. The great achievement of SECRAL is accumulation of numerous technical advancements, such as an innovative magnetic system and an efficient double-frequency (24 +18 GHz ) heating with improved plasma stability. This article reviews the development of SECRAL and production of intense highly charged ion beams by SECRAL focusing on its unique magnet design, source commissioning, performance studies and enhancements, beam quality and long-term operation. SECRAL development and its performance studies representatively reflect the achievements and status of the present ECR ion source, as well as the ECRIS impacts on HIRFL.
NASA Astrophysics Data System (ADS)
Franzen, P.; Gutser, R.; Fantz, U.; Kraus, W.; Falter, H.; Fröschle, M.; Heinemann, B.; McNeely, P.; Nocentini, R.; Riedl, R.; Stäbler, A.; Wünderlich, D.
2011-07-01
The ITER neutral beam system requires a negative hydrogen ion beam of 48 A with an energy of 0.87 MeV, and a negative deuterium beam of 40 A with an energy of 1 MeV. The beam is extracted from a large ion source of dimension 1.9 × 0.9 m2 by an acceleration system consisting of seven grids with 1280 apertures each. Currently, apertures with a diameter of 14 mm in the first grid are foreseen. In 2007, the IPP RF source was chosen as the ITER reference source due to its reduced maintenance compared with arc-driven sources and the successful development at the BATMAN test facility of being equipped with the small IPP prototype RF source ( {\\sim}\\frac{1}{8} of the area of the ITER NBI source). These results, however, were obtained with an extraction system with 8 mm diameter apertures. This paper reports on the comparison of the source performance at BATMAN of an ITER-relevant extraction system equipped with chamfered apertures with a 14 mm diameter and 8 mm diameter aperture extraction system. The most important result is that there is almost no difference in the achieved current density—being consistent with ion trajectory calculations—and the amount of co-extracted electrons. Furthermore, some aspects of the beam optics of both extraction systems are discussed.
Realization of a twin beam source based on four-wave mixing in Cesium
NASA Astrophysics Data System (ADS)
Adenier, G.; Calonico, D.; Micalizio, S.; Samantaray, N.; Degiovanni, I. P.; Berchera, I. Ruo
2016-05-01
Four-wave mixing (4WM) is a known source of intense non-classical twin beams. It can be generated when an intense laser beam (the pump) and a weak laser beam (the seed) overlap in a χ(3) medium (here Cesium vapor), with frequencies close to resonance with atomic transitions. The twin beams generated by 4WM have frequencies naturally close to atomic transitions, and can be intense (gain ≫1) even in the CW pump regime, which is not the case for PDC χ(2) phenomenon in nonlinear crystals. So, 4WM is well suited for atom-light interaction and atom-based quantum-protocols. Here, we present the first realization of a source of 4-wave mixing exploiting D2 line of Cesium atoms.
Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility
NASA Astrophysics Data System (ADS)
Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.
2018-05-01
In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.
Hermite-cosine-Gaussian laser beam and its propagation characteristics in turbulent atmosphere.
Eyyuboğlu, Halil Tanyer
2005-08-01
Hermite-cosine-Gaussian (HcosG) laser beams are studied. The source plane intensity of the HcosG beam is introduced and its dependence on the source parameters is examined. By application of the Fresnel diffraction integral, the average receiver intensity of HcosG beam is formulated for the case of propagation in turbulent atmosphere. The average receiver intensity is seen to reduce appropriately to various special cases. When traveling in turbulence, the HcosG beam initially experiences the merging of neighboring beam lobes, and then a TEM-type cosh-Gaussian beam is formed, temporarily leading to a plain cosh-Gaussian beam. Eventually a pure Gaussian beam results. The numerical evaluation of the normalized beam size along the propagation axis at selected mode indices indicates that relative spreading of higher-order HcosG beam modes is less than that of the lower-order counterparts. Consequently, it is possible at some propagation distances to capture more power by using higher-mode-indexed HcosG beams.
NASA Astrophysics Data System (ADS)
Smargiasso, Nicolas; Quinton, Loic; de Pauw, Edwin
2012-03-01
One of the mechanisms leading to MALDI in-source decay (MALDI ISD) is the transfer of hydrogen radicals to analytes upon laser irradiation. Analytes such as peptides or proteins may undergo ISD and this method can therefore be exploited for top-down sequencing. When performed on peptides, radical-induced ISD results in production of c- and z-ions, as also found in ETD and ECD activation. Here, we describe two new compounds which, when used as MALDI matrices, are able to efficiently induce ISD of peptides and proteins: 2-aminobenzamide and 2-aminobenzoic acid. In-source reduction of the disulfide bridge containing peptide Calcitonin further confirmed the radicalar mechanism of the ISD process. ISD of peptides led, in addition to c- and z-ions, to the generation of a-, x-, and y-ions both in positive and in negative ion modes. Finally, good sequence coverage was obtained for the sequencing of myoglobin (17 kDa protein), confirming the effectiveness of both 2-aminobenzamide and 2-aminobenzoic acid as MALDI ISD matrices.
Smargiasso, Nicolas; Quinton, Loic; De Pauw, Edwin
2012-03-01
One of the mechanisms leading to MALDI in-source decay (MALDI ISD) is the transfer of hydrogen radicals to analytes upon laser irradiation. Analytes such as peptides or proteins may undergo ISD and this method can therefore be exploited for top-down sequencing. When performed on peptides, radical-induced ISD results in production of c- and z-ions, as also found in ETD and ECD activation. Here, we describe two new compounds which, when used as MALDI matrices, are able to efficiently induce ISD of peptides and proteins: 2-aminobenzamide and 2-aminobenzoic acid. In-source reduction of the disulfide bridge containing peptide Calcitonin further confirmed the radicalar mechanism of the ISD process. ISD of peptides led, in addition to c- and z-ions, to the generation of a-, x-, and y-ions both in positive and in negative ion modes. Finally, good sequence coverage was obtained for the sequencing of myoglobin (17 kDa protein), confirming the effectiveness of both 2-aminobenzamide and 2-aminobenzoic acid as MALDI ISD matrices.
NASA Astrophysics Data System (ADS)
Edwards, P. M.; Young, C. J.; Aikin, K.; deGouw, J.; Dubé, W. P.; Geiger, F.; Gilman, J.; Helmig, D.; Holloway, J. S.; Kercher, J.; Lerner, B.; Martin, R.; McLaren, R.; Parrish, D. D.; Peischl, J.; Roberts, J. M.; Ryerson, T. B.; Thornton, J.; Warneke, C.; Williams, E. J.; Brown, S. S.
2013-09-01
The Uintah Basin in northeastern Utah, a region of intense oil and gas extraction, experienced ozone (O3) concentrations above levels harmful to human health for multiple days during the winters of 2009-2010 and 2010-2011. These wintertime O3 pollution episodes occur during cold, stable periods when the ground is snow-covered, and have been linked to emissions from the oil and gas extraction process. The Uintah Basin Winter Ozone Study (UBWOS) was a field intensive in early 2012, whose goal was to address current uncertainties in the chemical and physical processes that drive wintertime O3 production in regions of oil and gas development. Although elevated O3 concentrations were not observed during the winter of 2011-2012, the comprehensive set of observations tests our understanding of O3 photochemistry in this unusual emissions environment. A box model, constrained to the observations and using the near-explicit Master Chemical Mechanism (MCM) v3.2 chemistry scheme, has been used to investigate the sensitivities of O3 production during UBWOS 2012. Simulations identify the O3 production photochemistry to be highly radical limited (with a radical production rate significantly smaller than the NOx emission rate). Production of OH from O3 photolysis (through reaction of O(1D) with water vapor) contributed only 170 pptv day-1, 8% of the total primary radical source on average (primary radicals being those produced from non-radical precursors). Other radical sources, including the photolysis of formaldehyde (HCHO, 52%), nitrous acid (HONO, 26%), and nitryl chloride (ClNO2, 13%) were larger. O3 production was also found to be highly sensitive to aromatic volatile organic compound (VOC) concentrations, due to radical amplification reactions in the oxidation scheme of these species. Radical production was shown to be small in comparison to the emissions of nitrogen oxides (NOx), such that NOx acted as the primary radical sink. Consequently, the system was highly VOC sensitive, despite the much larger mixing ratio of total non-methane hydrocarbons (230 ppbv (2080 ppbC), 6 week average) relative to NOx (5.6 ppbv average). However, the importance of radical sources which are themselves derived from NOx emissions and chemistry, such as ClNO2 and HONO, make the response of the system to changes in NOx emissions uncertain. Model simulations attempting to reproduce conditions expected during snow-covered cold-pool conditions show a significant increase in O3 production, although calculated concentrations do not achieve the highest seen during the 2010-2011 O3 pollution events in the Uintah Basin. These box model simulations provide useful insight into the chemistry controlling winter O3 production in regions of oil and gas extraction.
Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy
NASA Astrophysics Data System (ADS)
Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.
2005-11-01
Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.
Development of a plasma generator for a long pulse ion source for neutral beam injectors.
Watanabe, K; Dairaku, M; Tobari, H; Kashiwagi, M; Inoue, T; Hanada, M; Jeong, S H; Chang, D H; Kim, T S; Kim, B R; Seo, C S; Jin, J T; Lee, K W; In, S R; Oh, B H; Kim, J; Bae, Y S
2011-06-01
A plasma generator for a long pulse H(+)/D(+) ion source has been developed. The plasma generator was designed to produce 65 A H(+)/D(+) beams at an energy of 120 keV from an ion extraction area of 12 cm in width and 45 cm in length. Configuration of the plasma generator is a multi-cusp bucket type with SmCo permanent magnets. Dimension of a plasma chamber is 25 cm in width, 59 cm in length, and 32.5 cm in depth. The plasma generator was designed and fabricated at Japan Atomic Energy Agency. Source plasma generation and beam extraction tests for hydrogen coupling with an accelerator of the KSTAR ion source have been performed at the KSTAR neutral beam test stand under the agreement of Japan-Korea collaborative experiment. Spatial uniformity of the source plasma at the extraction region was measured using Langmuir probes and ±7% of the deviation from an averaged ion saturation current density was obtained. A long pulse test of the plasma generation up to 200 s with an arc discharge power of 70 kW has been successfully demonstrated. The arc discharge power satisfies the requirement of the beam production for the KSTAR NBI. A 70 keV, 41 A, 5 s hydrogen ion beam has been extracted with a high arc efficiency of 0.9 -1.1 A/kW at a beam extraction experiment. A deuteron yield of 77% was measured even at a low beam current density of 73 mA/cm(2). © 2011 American Institute of Physics
NASA Astrophysics Data System (ADS)
Golubev, S. V.; Skalyga, V. A.; Izotov, I. V.; Sidorov, A. V.
2018-01-01
A possibility of an intense deuterium ion beam creation for a compact powerful point-like neutron source is discussed. The fusion takes place due to bombardment of deuterium (or tritium) loaded target by high-current focused deuterium ion beam with energy of 100 keV. The ways of high-current and low emittance ion beam formation from the plasma of quasi-gasdynamic ion source of a new generation based on an electron cyclotron resonance discharge in an open magnetic trap sustained by powerful microwave radiation are investigated.
Intense beams from gases generated by a permanent magnet ECR ion source at PKU.
Ren, H T; Peng, S X; Lu, P N; Yan, S; Zhou, Q F; Zhao, J; Yuan, Z X; Guo, Z Y; Chen, J E
2012-02-01
An electron cyclotron resonance (ECR) ion source is designed for the production of high-current ion beams of various gaseous elements. At the Peking University (PKU), the primary study is focused on developing suitable permanent magnet ECR ion sources (PMECRs) for separated function radio frequency quadrupole (SFRFQ) accelerator and for Peking University Neutron Imaging Facility. Recently, other kinds of high-intensity ion beams are required for new acceleration structure demonstration, simulation of fusion reactor material irradiation, aviation bearing modification, and other applications. So we expanded the ion beam category from O(+), H(+), and D(+) to N(+), Ar(+), and He(+). Up to now, about 120 mA of H(+), 83 mA of D(+), 50 mA of O(+), 63 mA of N(+), 70 mA of Ar(+), and 65 mA of He(+) extracted at 50 kV through a φ 6 mm aperture were produced by the PMECRs at PKU. Their rms emittances are less than 0.2 π mm mrad. Tungsten samples were irradiated by H(+) or He(+) beam extracted from this ion source and H∕He holes and bubbles have been observed on the samples. A method to produce a high intensity H∕He mixed beam to study synergistic effect is developed for nuclear material irradiation. To design a He(+) beam injector for coupled radio frequency quadruple and SFRFQ cavity, He(+) beam transmission experiments were carried out on PKU low energy beam transport test bench and the transmission was less than 50%. It indicated that some electrode modifications must be done to decrease the divergence of He(+) beam.
Radio frequency multicusp ion source development (invited)
NASA Astrophysics Data System (ADS)
Leung, K. N.
1996-03-01
The radio-frequency (rf) driven multicusp source was originally developed for use in the Superconducting Super Collider injector. It has been demonstrated that the source can meet the H- beam current and emittance requirements for this application. By employing a porcelain-coated antenna, a clean plasma discharge with very long-life operation can be achieved. Today, the rf source is used to generate both positive and negative hydrogen ion beams and has been tested in various particle accelerator laboratories throughout the world. Applications of this ion source have been extended to other fields such as ion beam lithography, oil-well logging, ion implantation, accelerator mass spectrometry and medical therapy machines. This paper summarizes the latest rf ion source technology and development at the Lawrence Berkeley National Laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cuomo, J.J.; Rossnagel, S.M.; Kaufman, H.R.
The work presented in this book deals with ion beam processing for basic sputter etching of samples, for sputter deposition of thin films, for the synthesis of material in thin form, and for the modification of the properties of thin films. The ion energy range covered is from a few tens of eV to about 10,000 eV, with primary interest in the range of about 20 to 1-2 keV, where implantation of the incident ion is a minor effect. Of the types of ion sources and devices available, this book examines principally broad beam ion sources, characterized by high fluxesmore » and large work areas. These sources include the ECR ion source, the Kaufman-type single- and multiple-grid sources, gridless sources such as the Hall effect or closed-drift source, and hydrid sources such as the ionized cluster beam system.« less
NASA Technical Reports Server (NTRS)
Bradshaw, John
1990-01-01
The development of a new mid-IR laser source was the primary goal. Backward propagating stimulated D2 Raman frequency down conversion of a commercially available 1.06 micron Nd:YAG laser was shown to generate an efficient source of 1.56 micron radiation with near diffraction limited beam quality. The efficient generation of a 2.9 micron laser source was also achieved using backward propagating CH4 Raman frequency down conversion of the 1.56 micron pump. Slightly higher efficiencies were obtained for frequency down conversion of the 1.06 micron Nd:YAG using the H2 Raman shift yielding a near diffraction limited source in the 200 mJ range at 1.9 micron. Similar conversion efficiencies are anticipated as a result of extending the wavelength coverage of recently available Ti:sapphire pulse laser to not only cover the 740 to 860 nm fundamental wavelength range but also the .95 to 1.15 and 1.06 to 1.33 micron range using D2 and H2, respectively. The anticipated sensitivity of a TP-LIF OH sensor using this mid-IR source would give signal limited detection of 1.4 x 10(exp 5) OH/cu cm under boundary layer conditions and 5.5 x 10(exp 4) OH/cu cm under free troposphere sampling conditions for a five minute signal integration period. This level of performance coupled with the techniques non-perturbing nature and freedom from both interferences and background would allow reliable tropospheric OH measurement to be obtained under virtually any ambient condition of current interest, including interstitial and sampling.
A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications
NASA Astrophysics Data System (ADS)
Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.
2017-10-01
A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.
Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng
2016-11-04
A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.
Magnetic plasma confinement for laser ion source.
Okamura, M; Adeyemi, A; Kanesue, T; Tamura, J; Kondo, K; Dabrowski, R
2010-02-01
A laser ion source (LIS) can easily provide a high current beam. However, it has been difficult to obtain a longer beam pulse while keeping a high current. On occasion, longer beam pulses are required by certain applications. For example, more than 10 micros of beam pulse is required for injecting highly charged beams to a large sized synchrotron. To extend beam pulse width, a solenoid field was applied at the drift space of the LIS at Brookhaven National Laboratory. The solenoid field suppressed the diverging angle of the expanding plasma and the beam pulse was widened. Also, it was observed that the plasma state was conserved after passing through a few hundred gauss of the 480 mm length solenoid field.
Low-energy plasma focus device as an electron beam source.
Khan, Muhammad Zubair; Ling, Yap Seong; Yaqoob, Ibrar; Kumar, Nitturi Naresh; Kuang, Lim Lian; San, Wong Chiow
2014-01-01
A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 10(16)/m(3), respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences.
Rippled beam free electron laser amplifier
Carlsten, Bruce E.
1999-01-01
A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Destler, W.W.; O'Shea, P.G.; Segalov, Z.
1987-04-01
The propagation of intense relativistic electron beams into evacuated nonconducting drift tubes after passage through a localized plasma source has been experimentally studied. Time-integrated photographs of the propagation process have been obtained, as well as quantitative measurements of the propagated beam current and energy.
Neutral particle beam intensity controller
Dagenhart, William K.
1986-01-01
A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.
Operation of large RF sources for H-: Lessons learned at ELISE
NASA Astrophysics Data System (ADS)
Fantz, U.; Wünderlich, D.; Heinemann, B.; Kraus, W.; Riedl, R.
2017-08-01
The goal of the ELISE test facility is to demonstrate that large RF-driven negative ion sources (1 × 1 m2 source area with 360 kW installed RF power) can achieve the parameters required for the ITER beam sources in terms of current densities and beam homogeneity at a filling pressure of 0.3 Pa for pulse lengths of up to one hour. With the experience in operation of the test facility, the beam source inspection and maintenance as well as with the results of the achieved source performance so far, conclusions are drawn for commissioning and operation of the ITER beam sources. Addressed are critical technical RF issues, extrapolations to the required RF power, Cs consumption and Cs ovens, the need of adjusting the magnetic filter field strength as well as the temporal dynamic and spatial asymmetry of the co-extracted electron current. It is proposed to relax the low pressure limit to 0.4 Pa and to replace the fixed electron-to-ion ratio by a power density limit for the extraction grid. This would be highly beneficial for controlling the co-extracted electrons.
Femtosecond laser-electron x-ray source
Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard
2004-04-20
A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.
Yamaoki, Rumi; Tsujino, Toshiaki; Kimura, Shojiro; Mino, Yoshiki; Ohta, Masatoshi
2009-01-01
Foeniculi fructus were irradiated with an electron beam and organic free radicals were detected by electron spin resonance (ESR) spectroscopy for the purpose of identifying radio-disinfected and sterilized herbal drugs. An ESR single-line spectrum near g = 2.005 was observed in the sample before irradiation. After irradiation, the intensity of the signal near g = 2.005 increased. In addition, two subsignals derived from cellulose radicals were observed approximately 3 mT to either side of the main signal, at g = 2.023 and g = 1.987. The intensity of the subsignal at g = 2.023 was proportional to the absorbed dose of radiation. The decrease in intensity of the signals was considerable 2 weeks after irradiation, and continued to decrease steadily thereafter. Among the signals, the fading of the subsignal at g = 2.023 was relatively small. The intensity of the subsignal at g = 2.023 was detectable for over 1 year in the sample that had been irradiated to the level of disinfection and sterilization. Therefore, organic free radicals in irradiated Foeniculi fructus can be measured rapidly and with high sensitivity by ESR spectroscopy. The stable signal at g = 2.023 is a promising indicator of the detection of irradiated herbal drugs.
Next Generation H- Ion Sources for the SNS
NASA Astrophysics Data System (ADS)
Welton, R. F.; Stockli, M. P.; Murray, S. N.; Crisp, D.; Carmichael, J.; Goulding, R. H.; Han, B.; Tarvainen, O.; Pennisi, T.; Santana, M.
2009-03-01
The U.S. Spallation Neutron Source (SNS) is the leading accelerator-based, pulsed neutron-scattering facility, currently in the process of ramping up neutron production. In order to insure meeting operational requirements as well as providing for future facility beam power upgrades, a multifaceted H- ion source development program is ongoing. This work discusses several aspects of this program, specifically the design and first beam measurements of an RF-driven, external antenna H- ion source based on an A1N ceramic plasma chamber, elemental and chromate Cs-systems, and plasma ignition gun. Unanalyzed beam currents of up to ˜100 mA (60 Hz, 1 ms) have been observed and sustained currents >60 mA (60 Hz, 1 ms) have been demonstrated on the test stand. Accelerated beam currents of ˜40 mA have also been demonstrated into the SNS front end. Data are also presented describing the first H- beam extraction experiments from a helicon plasma generator based on the Variable Specific Impulse Magnetoplasma Rocket (VASIMR) engine design.
Zhao, H W; Sun, L T; Zhang, X Z; Guo, X H; Cao, Y; Lu, W; Zhang, Z M; Yuan, P; Song, M T; Zhao, H Y; Jin, T; Shang, Y; Zhan, W L; Wei, B W; Xie, D Z
2008-02-01
There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28 GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. During the commissioning phase at 18 GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5 kW by two 18 GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810 e microA of O(7+), 505 e microA of Xe(20+), 306 e microA of Xe(27+), and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.
NASA Astrophysics Data System (ADS)
Zhao, H. W.; Sun, L. T.; Zhang, X. Z.; Guo, X. H.; Cao, Y.; Lu, W.; Zhang, Z. M.; Yuan, P.; Song, M. T.; Zhao, H. Y.; Jin, T.; Shang, Y.; Zhan, W. L.; Wei, B. W.; Xie, D. Z.
2008-02-01
There has been increasing demand to provide higher beam intensity and high enough beam energy for heavy ion accelerator and some other applications, which has driven electron cyclotron resonance (ECR) ion source to produce higher charge state ions with higher beam intensity. One of development trends for highly charged ECR ion source is to build new generation ECR sources by utilization of superconducting magnet technology. SECRAL (superconducting ECR ion source with advanced design in Lanzhou) was successfully built to produce intense beams of highly charged ion for Heavy Ion Research Facility in Lanzhou (HIRFL). The ion source has been optimized to be operated at 28GHz for its maximum performance. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. An innovative design of SECRAL is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6T at injection, 2.2T at extraction, and a radial sextupole field of 2.0T at plasma chamber wall. During the commissioning phase at 18GHz with a stainless steel chamber, tests with various gases and some metals have been conducted with microwave power less than 3.5kW by two 18GHz rf generators. It demonstrates the performance is very promising. Some record ion beam intensities have been produced, for instance, 810eμA of O7+, 505eμA of Xe20+, 306eμA of Xe27+, and so on. The effect of the magnetic field configuration on the ion source performance has been studied experimentally. SECRAL has been put into operation to provide highly charged ion beams for HIRFL facility since May 2007.
Recent Development of IMP LECR3 Ion Source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Z.M.; Zhao, H.W.; Li, J.Y.
2005-03-15
18GHz microwave has been fed to the LECR3 ion source to produce intense highly charged ion beams although this ion source was designed for 14.5GHz. Then 1.1 emA Ar8+ and 325 e{mu}A Ar11+ were obtained at 18GHz. During the source running for atomic physics experiment, some higher charge state ion beams such as Ar17+ and Ar18+ were detected and have been validated by atomic physics method. Furthermore, a few special gases, e.g. SiH4 and SF6, were tested on LECR3 ion source to produce required ion beams to satisfy the requirements of atomic physics experiments.
Makanjuola, Solomon A; Enujiugha, Victor N; Omoba, Olufunmilayo S; Sanni, David M
2015-11-01
Tea and ginger are plants with high antioxidant potential. Combinations of antioxidants from different sources could also produce synergistic antioxidant effects. This study investigated the influence of solvent on antioxidant content of tea, ginger, and tea + ginger blends. Under the investigated extraction conditions, water was the most effective extraction solvent to maximise peroxide scavenging and iron chelating activity of tea, ginger, and their blends. Aqueous ethanol was the most effective solvent to maximise ABTS radical scavenging activity and ethanol was the best solvent to maximise DPPH radical scavenging activity. A good multivariate regression model that explains the relationship between the total flavonoid content of the extracts and their antioxidant activities was obtained (R2 and Q2 of 0.93 and 0.83, respectively). Extracts of tea-ginger blends exhibited synergistic effects in their ABTS and DPPH radical scavenging activity.
Atmospheric nonequilibrium mini-plasma jet created by a 3D printer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamatsu, Toshihiro, E-mail: toshihiro@plasma.es.titech.ac.jp; Tokyo Institute of Technology, Department of Energy Sciences, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502; Kawano, Hiroaki
2015-07-15
In this study, a small-sized plasma jet source with a 3.7 mm head diameter was created via a 3D printer. The jet’s emission properties and OH radical concentrations (generated by argon, helium, and nitrogen plasmas) were investigated using optical emission spectrometry (OES) and electron spin resonance (ESR). As such, for OES, each individual gas plasma propagates emission lines that derive from gases and ambient air inserted into the measurement system. For the case of ESR, a spin adduct of the OH radical is typically observed for all gas plasma treatment scenarios with a 10 s treatment by helium plasma generatingmore » the largest amount of OH radicals at 110 μM. Therefore, it was confirmed that a plasma jet source made by a 3D printer can generate stable plasmas using each of the aforementioned three gases.« less
Franke, Peter R.; Tabor, Daniel P.; Moradi, Christopher P.; ...
2016-12-13
The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH 3(CH 2) 3ONO] and i-butyl nitrite [(CH 3) 2CHCH 2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm –1. The CH stretching modes observed above 3000 cm –1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm –1, the spectra of n- andmore » i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using “dressed” Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CH n bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH 2/CH 3 group. As a result, spectral simulations using the local mode approach are in excellent agreement with experiment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Peter R.; Tabor, Daniel P.; Moradi, Christopher P.
The n-propyl and i-propyl radicals were generated in the gas phase via pyrolysis of n-butyl nitrite [CH 3(CH 2) 3ONO] and i-butyl nitrite [(CH 3) 2CHCH 2ONO], respectively. Nascent radicals were promptly solvated by a beam of He nanodroplets, and the infrared spectra of the radicals were recorded in the CH stretching region. Several previously unreported bands are observed between 2800 and 3150 cm –1. The CH stretching modes observed above 3000 cm –1 are in excellent agreement with CCSD(T) anharmonic frequencies computed using second-order vibrational perturbation theory. However, between 2800 and 3000 cm –1, the spectra of n- andmore » i-propyl radicals become congested and difficult to assign due to the presence of multiple anharmonic resonance polyads. To model the spectrally congested region, Fermi and Darling-Dennison resonances are treated explicitly using “dressed” Hamiltonians and CCSD(T) quartic force fields in the normal mode representation, and the agreement with experiment is less than satisfactory. Computations employing local mode effective Hamiltonians reveal the origin of the spectral congestion to be strong coupling between the high frequency CH stretching modes and the lower frequency CH n bending/scissoring motions. The most significant coupling is between stretches and bends localized on the same CH 2/CH 3 group. As a result, spectral simulations using the local mode approach are in excellent agreement with experiment.« less
Positron annihilation lifetime and Doppler broadening spectroscopy at the ELBE facility
NASA Astrophysics Data System (ADS)
Wagner, Andreas; Butterling, Maik; Liedke, Maciej O.; Potzger, Kay; Krause-Rehberg, Reinhard
2018-05-01
The Helmholtz-Zentrum Dresden-Rossendorf operates a superconducting linear accelerator for electrons with energies up to 35 MeV and average beam currents up to 1.6 mA with bunch charges up to 120 pC. The electron beam is employed to produce several secondary beams including X-rays from bremsstrahlung production, coherent IR light in a Free Electron Laser, superradiant THz radiation, neutrons, and positrons. The secondary positron beam after moderation feeds the Monoenergetic Positron Source (MePS) where positron annihilation lifetime (PALS) and positron annihilation Doppler-broadening experiments in materials science are performed. The adjustable repetition rate of the continuous-wave electron beams allows matching of the pulse separation to the positron lifetime in the sample under study. The energy of the positron beam can be set between 0.5 keV and 20 keV to perform depth resolved defect spectroscopy and porosity studies especially for thin films. Bulk materials, fluids, gases, and even radioactive samples can be studied at the unique Gamma-induced Positron Source (GiPS) where an intense bremsstrahlung source generates positrons directly inside the material under study. A 22Na-based monoenergetic positron beam serves for offline experiments and additional depth-resolved Doppler-broadening studies complementing both accelerator-based sources.
Asakawa, Daiki
2013-01-01
The matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) of peptides and glycans was studied using an oxidizing chemical, 5-nitrosalicylic acid (5-NSA) as the matrix. The use of 5-NSA for the MALDI-ISD of peptides and glycans promoted fragmentation pathways involving “hydrogen-deficient” radical precursors. Hydrogen abstraction from peptides resulted in the production of a “hydrogen-deficient” peptide radical that contained a radical site on the amide nitrogen in the peptide backbone with subsequent radical-induced cleavage at the Cα–C bonds. Cleavage at the Cα–C bond leads to the production of an a•/x fragment pair and the radical a• ions then undergo further hydrogen abstraction to form a ions after Cα–C bond cleavage. Since the Pro residue does not contain a nitrogen-centered radical site, Cα–C bond cleavage does not occur at this site. Alternatively, the specific cleavage of CO−N bonds leads to a b•/y fragment pair at Xxx−Pro which occurs via hydrogen abstraction from the Cα−H in the Pro residue. In contrast, “hydrogen-deficient” glycan radicals were generated by hydrogen abstraction from hydroxyl groups in glycans. Both glycosidic and cross-ring cleavages occurred as the result of the degradation of “hydrogen-deficient” glycan radicals. Cross-ring cleavage ions are potentially useful in linkage analysis, one of the most critical steps in the characterization of glycans. Moreover, isobaric glycans could be distinguished by structure specific ISD ions, and the molar ratio of glycan isomers in a mixture can be estimated from their fragment ions abundance ratios. MALDI-ISD with 5-NSA could be a useful method for the sequencing of peptides including the location of post-translational modifications, identification and semi-quantitative analysis of mixtures of glycan isomers. PMID:24860709
Truong, Pauline T; Gaul, Catherine A; McDonald, Rachel E; Petersen, Ross B; Jones, Stuart O; Alexander, Abraham S; Lim, Jan T W; Ludgate, Charles
2011-08-01
To evaluate tolerability and compliance to a walking exercise program and its effect on fatigue during and after radical external beam radiation therapy (EBRT) for prostate cancer. A total of 50 subjects with prostate cancer undergoing EBRT over 6 to 8 weeks were prospectively accrued to an exercise intervention group, matched for age and clinical characteristics to 30 subjects in a historical control group who underwent EBRT with no specific exercise intervention. Starting 1 week before EBRT, exercise participants performed moderate-intensity walking targeting 60% to 70% age-predicted maximum heart rate, at least 20 min/d, 3 d/wk over 12 weeks. The Brief Fatigue Inventory was administered at baseline, mid-EBRT (week 3-4), end-EBRT (week 6-8), and 6 months post-EBRT. Of 50, 42 (84%) of exercise participants completed the walking program. There were no cardiovascular complications, musculoskeletal injuries, or other adverse events. A total of 89% subjects reported "Good-Excellent" satisfaction during and up to 6 months post-EBRT. Fatigue in control subjects escalated from baseline to end-EBRT, remaining high at 6 months post-EBRT (P[r] = 0.03). In contrast, mean total fatigue scores in exercise subjects were stable from baseline up to 6 months post-EBRT (P = 0.52). Trends for higher fatigue interference with quality of life were observed in the control group as compared with the exercise group. Moderate-intensity walking exercise during radical EBRT is safe and feasible. The high convenience and satisfaction ratings, in conjunction with the observed fatigue trends, indicate that this activity has the potential to attenuate fatigue and improve quality of life for patients with localized prostate cancer undergoing curative therapy.
NASA Astrophysics Data System (ADS)
Lee, Richard; Chan, Elisa K.; Kosztyla, Robert; Liu, Mitchell; Moiseenko, Vitali
2012-12-01
The relationship between rectal dose distribution and the incidence of late rectal complications following external-beam radiotherapy has been previously studied using dose-volume histograms or dose-surface histograms. However, they do not account for the spatial dose distribution. This study proposes a metric based on both surface dose and distance that can predict the incidence of rectal bleeding in prostate cancer patients treated with radical radiotherapy. One hundred and forty-four patients treated with radical radiotherapy for prostate cancer were prospectively followed to record the incidence of grade ≥2 rectal bleeding. Radiotherapy plans were used to evaluate a dose-distance metric that accounts for the dose and its spatial distribution on the rectal surface, characterized by a logistic weighting function with slope a and inflection point d0. This was compared to the effective dose obtained from dose-surface histograms, characterized by the parameter n which describes sensitivity to hot spots. The log-rank test was used to determine statistically significant (p < 0.05) cut-off values for the dose-distance metric and effective dose that predict for the occurrence of rectal bleeding. For the dose-distance metric, only d0 = 25 and 30 mm combined with a > 5 led to statistical significant cut-offs. For the effective dose metric, only values of n in the range 0.07-0.35 led to statistically significant cut-offs. The proposed dose-distance metric is a predictor of rectal bleeding in prostate cancer patients treated with radiotherapy. Both the dose-distance metric and the effective dose metric indicate that the incidence of grade ≥2 rectal bleeding is sensitive to localized damage to the rectal surface.
Hawkins, Maria A; Brooks, Corrinne; Hansen, Vibeke N; Aitken, Alexandra; Tait, Diana M
2010-06-01
To investigate the potential for reduction in normal tissue irradiation by creating a patient specific planning target volume (PTV) using cone beam computed tomography (CBCT) imaging acquired in the first week of radiotherapy for patients receiving radical radiotherapy. Patients receiving radical RT for carcinoma of the esophagus were investigated. The PTV is defined as CTV(tumor, nodes) plus esophagus outlined 3 to 5 cm cranio-caudally and a 1.5-cm circumferential margin is added (clinical plan). Prefraction CBCT are acquired on Days 1 to 4, then weekly. No correction for setup error made. The images are imported into the planning system. The tumor and esophagus for the length of the PTV are contoured on each CBCT and 5 mm margin is added. A composite volume (PTV1) is created using Week 1 composite CBCT volumes. The same process is repeated using CBCT Week 2 to 6 (PTV2). A new plan is created using PTV1 (adaptive plan). The coverage of the 95% isodose of PTV1 is evaluated on PTV2. Dose-volume histograms (DVH) for lungs, heart, and cord for two plans are compared. A total of 139 CBCT for 14 cases were analyzed. For the adaptive plan the coverage of the 95% prescription isodose for PTV1 = 95.6% +/- 4% and the PTV2 = 96.8% +/- 4.1% (t test, 0.19). Lungs V20 (15.6 Gy vs. 10.2 Gy) and heart mean dose (26.9 Gy vs. 20.7 Gy) were significantly smaller for the adaptive plan. A reduced planning volume can be constructed within the first week of treatment using CBCT. A single plan modification can be performed within the second week of treatment with considerable reduction in organ at risk dose. Copyright 2010 Elsevier Inc. All rights reserved.
Analysis and control of the photon beam position at PLS-II
Ko, J.; Kim, I.-Y.; Kim, C.; Kim, D.-T.; Huang, J.-Y.; Shin, S.
2016-01-01
At third-generation light sources, the photon beam position stability is a critical issue for user experiments. In general, photon beam position monitors are developed to detect the real photon beam position, and the position is controlled by a feedback system in order to maintain the reference photon beam position. At Pohang Light Source II, a photon beam position stability of less than 1 µm r.m.s. was achieved for a user service period in the beamline, where the photon beam position monitor is installed. Nevertheless, a detailed analysis of the photon beam position data was necessary in order to ensure the performance of the photon beam position monitor, since it can suffer from various unknown types of noise, such as background contamination due to upstream or downstream dipole radiation, and undulator gap dependence. This paper reports the results of a start-to-end study of the photon beam position stability and a singular value decomposition analysis to confirm the reliability of the photon beam position data. PMID:26917132
Relativistic electron beam generator
Mooney, L.J.; Hyatt, H.M.
1975-11-11
A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.
Raman beam combining for laser brightness enhancement
Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.
2015-10-27
An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.
Method of Making Large Area Nanostructures
NASA Technical Reports Server (NTRS)
Marks, Alvin M.
1995-01-01
A method which enables the high speed formation of nanostructures on large area surfaces is described. The method uses a super sub-micron beam writer (Supersebter). The Supersebter uses a large area multi-electrode (Spindt type emitter source) to produce multiple electron beams simultaneously scanned to form a pattern on a surface in an electron beam writer. A 100,000 x 100,000 array of electron point sources, demagnified in a long electron beam writer to simultaneously produce 10 billion nano-patterns on a 1 meter squared surface by multi-electron beam impact on a 1 cm squared surface of an insulating material is proposed.
Hybrid III/V silicon photonic source with integrated 1D free-space beam steering.
Doylend, J K; Heck, M J R; Bovington, J T; Peters, J D; Davenport, M L; Coldren, L A; Bowers, J E
2012-10-15
A chip-scale optical source with integrated beam steering is demonstrated. The chip was fabricated using the hybrid silicon platform and incorporates an on-chip laser, waveguide splitter, amplifiers, phase modulators, and surface gratings to comprise an optical phased array with beam steering across a 12° field of view in one axis. Tuning of the phased array is used to achieve 1.8°(steered axis)×0.6°(nonsteered axis) beam width with 7 dB background suppression for arbitrary beam direction within the field of view.
Transport and Non-Invasive Position Detection of Electron Beams from Laser-Plasma Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterhoff, J.; Nakamura, K.; Bakeman, M.
The controlled imaging and transport of ultra-relativistic electrons from laser-plasma accelerators is of crucial importance to further use of these beams, e.g. in high peak-brightness light sources. We present our plans to realize beam transport with miniature permanent quadrupole magnets from the electron source through our THUNDER undulator. Simulation results demonstrate the importance of beam imaging by investigating the generated XUV-photon flux. In addition, first experimental findings of utilizing cavity-based monitors for non-invasive beam-position measurements in a noisy electromagnetic laser-plasma environment are discussed.
Roychowdhury, P; Mishra, L; Kewlani, H; Patil, D S; Mittal, K C
2014-03-01
A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20-40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, -2 to -4 kV, and 0 kV, respectively. The total ion beam current of 30-40 mA is recorded on Faraday cup at 40 keV of beam energy at 600-1000 W of microwave power, 800-1000 G axial magnetic field and (1.2-3.9) × 10(-3) mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.
Response Functions for Neutron Skyshine Analyses
NASA Astrophysics Data System (ADS)
Gui, Ah Auu
Neutron and associated secondary photon line-beam response functions (LBRFs) for point monodirectional neutron sources and related conical line-beam response functions (CBRFs) for azimuthally symmetric neutron sources are generated using the MCNP Monte Carlo code for use in neutron skyshine analyses employing the internal line-beam and integral conical-beam methods. The LBRFs are evaluated at 14 neutron source energies ranging from 0.01 to 14 MeV and at 18 emission angles from 1 to 170 degrees. The CBRFs are evaluated at 13 neutron source energies in the same energy range and at 13 source polar angles (1 to 89 degrees). The response functions are approximated by a three parameter formula that is continuous in source energy and angle using a double linear interpolation scheme. These response function approximations are available for a source-to-detector range up to 2450 m and for the first time, give dose equivalent responses which are required for modern radiological assessments. For the CBRF, ground correction factors for neutrons and photons are calculated and approximated by empirical formulas for use in air-over-ground neutron skyshine problems with azimuthal symmetry. In addition, a simple correction procedure for humidity effects on the neutron skyshine dose is also proposed. The approximate LBRFs are used with the integral line-beam method to analyze four neutron skyshine problems with simple geometries: (1) an open silo, (2) an infinite wall, (3) a roofless rectangular building, and (4) an infinite air medium. In addition, two simple neutron skyshine problems involving an open source silo are analyzed using the integral conical-beam method. The results obtained using the LBRFs and the CBRFs are then compared with MCNP results and results of previous studies.
NASA Astrophysics Data System (ADS)
Tarvainen, O.; Rouleau, G.; Keller, R.; Geros, E.; Stelzer, J.; Ferris, J.
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H- ion beams in a filament-driven discharge. In this kind of an ion source the extracted H- beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H- converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H- ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H- ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H- production (main discharge) in order to further improve the brightness of extracted H- ion beams.
Tarvainen, O; Rouleau, G; Keller, R; Geros, E; Stelzer, J; Ferris, J
2008-02-01
The converter-type negative ion source currently employed at the Los Alamos Neutron Science Center (LANSCE) is based on cesium enhanced surface production of H(-) ion beams in a filament-driven discharge. In this kind of an ion source the extracted H(-) beam current is limited by the achievable plasma density which depends primarily on the electron emission current from the filaments. The emission current can be increased by increasing the filament temperature but, unfortunately, this leads not only to shorter filament lifetime but also to an increase in metal evaporation from the filament, which deposits on the H(-) converter surface and degrades its performance. Therefore, we have started an ion source development project focused on replacing these thermionic cathodes (filaments) of the converter source by a helicon plasma generator capable of producing high-density hydrogen plasmas with low electron energy. In our studies which have so far shown that the plasma density of the surface conversion source can be increased significantly by exciting a helicon wave in the plasma, and we expect to improve the performance of the surface converter H(-) ion source in terms of beam brightness and time between services. The design of this new source and preliminary results are presented, along with a discussion of physical processes relevant for H(-) ion beam production with this novel design. Ultimately, we perceive this approach as an interim step towards our long-term goal, combining a helicon plasma generator with an SNS-type main discharge chamber, which will allow us to individually optimize the plasma properties of the plasma cathode (helicon) and H(-) production (main discharge) in order to further improve the brightness of extracted H(-) ion beams.
for next-gen lithium batteries. Spotlight New ion source dramatically improves radioactive beams for Argonne's CARIBU facility A new Electron Beam Ion Source Charge Breeder operated with Argonne's CARIBU and
DOE Office of Scientific and Technical Information (OSTI.GOV)
BAZILEVSKY,A.MAKDISI,Y.ET AL.
2002-09-09
The Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory (BNL) was commissioned for polarized proton-proton collisions, at the center of mass energy {radical}s = 200 GeV during the run in 2001-2002. The authors have measured the single transverse-spin asymmetry A{sub N} for production of photons, neutral pions, and neutrons at the very forward angle. The asymmetries for the photon and neutral pion sample were consistent with zero within the experimental uncertainties. In contrast, the neutron sample exhibited an unexpectedly large asymmetry. This large asymmetry will be used for the non-destructive polarimeter for polarized proton beams at the collisionmore » points in the RHIC interaction region.« less
Fast wavelength tuning techniques for external cavity lasers
Wysocki, Gerard [Princeton, NJ; Tittel, Frank K [Houston, TX
2011-01-11
An apparatus comprising a laser source configured to emit a light beam along a first path, an optical beam steering component configured to steer the light beam from the first path to a second path at an angle to the first path, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path, wherein the angle determines an external cavity length. Included is an apparatus comprising a laser source configured to emit a light beam along a first path, a beam steering component configured to redirect the light beam to a second path at an angle to the first path, wherein the optical beam steering component is configured to change the angle at a rate of at least about one Kilohertz, and a diffraction grating configured to reflect back at least a portion of the light beam along the second path.
ECR Plasma Source for Heavy Ion Beam Charge Neutralization
NASA Astrophysics Data System (ADS)
Efthimion, P. C.; Gilson, E.; Grisham, L.; Davidson, R. C.; Yu, S.; Logan, B. G.
2002-11-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 - 100 times the ion beam density and at a length ˜ 0.1-0.5 m would be suitable for achieving a high level of charge neutralization. An ECR source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1-10 gauss. The goal is to operate the source at pressures ˜ 10-5 Torr at full ionization. The initial operation of the source has been at pressures of 10-4 - 10-1 Torr. Electron densities in the range of 10^8 - 10^11 cm-3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. At moderate pressures (> 1 mTorr) the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance. The source has recently been configured to operate with 2.45 GHz microwaves with similar results. At the present operating range the source can simulate the plasma produced by photo-ionization in the target chamber.
ECR plasma source for heavy ion beam charge neutralization
NASA Astrophysics Data System (ADS)
Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Kolchin, Pavel; Davidson, Ronald C.; Yu, Simon; Logan, B. Grant
2003-01-01
Highly ionized plasmas are being considered as a medium for charge neutralizing heavy ion beams in order to focus beyond the space-charge limit. Calculations suggest that plasma at a density of 1 100 times the ion beam density and at a length [similar]0.1 2 m would be suitable for achieving a high level of charge neutralization. An Electron Cyclotron Resonance (ECR) source has been built at the Princeton Plasma Physics Laboratory (PPPL) to support a joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The ECR source operates at 13.6 MHz and with solenoid magnetic fields of 1 10 gauss. The goal is to operate the source at pressures [similar]10[minus sign]6 Torr at full ionization. The initial operation of the source has been at pressures of 10[minus sign]4 10[minus sign]1 Torr. Electron densities in the range of 108 to 1011 cm[minus sign]3 have been achieved. Low-pressure operation is important to reduce ion beam ionization. A cusp magnetic field has been installed to improve radial confinement and reduce the field strength on the beam axis. In addition, axial confinement is believed to be important to achieve lower-pressure operation. To further improve breakdown at low pressure, a weak electron source will be placed near the end of the ECR source. This article also describes the wave damping mechanisms. At moderate pressures (> 1 mTorr), the wave damping is collisional, and at low pressures (< 1 mTorr) there is a distinct electron cyclotron resonance.
Inhomogeneous ensembles of radical pairs in chemical compasses
Procopio, Maria; Ritz, Thorsten
2016-01-01
The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity. PMID:27804956
The free radical chemistry of cloud droplets and its impact upon the composition of rain
NASA Technical Reports Server (NTRS)
Chameides, W. L.; Davis, D. D.
1982-01-01
Calculations are presented that simulate the free radical chemistries of the gas phase and aqueous phase within a warm cloud during midday. It is demonstrated that in the presence of midday solar fluxes, the heterogeneous scavenging of OH and HO2 from the gas phase by cloud droplets can represent a major source of free radicals to cloud water, provided the accommodation or sticking coefficient for these species impinging upon water droplets is not less than 0.0001. The aqueous-phase of HO2 radicals are found to be converted to H2O2 by aqueous-phase chemical reactions at a rate that suggests that this mechanism could produce a significant fraction of the H2O2 found in cloud droplets. The rapid oxidation of sulfur species dissolved in cloudwater by this free-radical-produced H2O2 as well as by aqueous-phase OH radicals could conceivably have a significant impact upon the chemical composition of rain.
NASA Astrophysics Data System (ADS)
Zohra Dahmani, Fatima; Okamoto, Yuji; Tsutsumi, Daiki; Ishigaki, Takamasa; Koinuma, Hideomi; Hamzaoui, Saad; Flazi, Samir; Sumiya, Masatomo
2018-05-01
Effect of the hydrogen radical on the reduction of a silicon tetrachloride (SiCl4) source was studied. The hydrogen radicals were generated using a tungsten (W) filament in a generation chamber, and were remotely supplied to another reaction chamber. The density of the hydrogen radical was estimated from the optical transmittance of 600-nm-wavelength light through phosphate glass doped with tungsten oxide (WO3). Lifetime of the hydrogen radical seemed sufficiently long, and its density as supplied to the reaction chamber was estimated to be on the order of 1012 cm‑3. Signal intensity of the peak corresponding to SiCl4 (m/z = 170) detected by quadrupole-mass measurement was confirmed to decrease owing to the reaction with the remotely-supplied hydrogen radical. This indicates the possibility that chemically-stable SiCl4, as one of the by-products of the Siemens process, can be reduced to produce silicon.
Inhomogeneous ensembles of radical pairs in chemical compasses
NASA Astrophysics Data System (ADS)
Procopio, Maria; Ritz, Thorsten
2016-11-01
The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.
NASA Astrophysics Data System (ADS)
Rodrigues, G.; Becker, R.; Hamm, R. W.; Baskaran, R.; Kanjilal, D.; Roy, A.
2014-02-01
The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged 238U40+ (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.
Rodrigues, G; Becker, R; Hamm, R W; Baskaran, R; Kanjilal, D; Roy, A
2014-02-01
The ion current achievable from high intensity ECR sources for highly charged ions is limited by the high space charge. This makes classical extraction systems for the transport and subsequent matching to a radio frequency quadrupole (RFQ) accelerator less efficient. The direct plasma injection (DPI) method developed originally for the laser ion source avoids these problems and uses the combined focusing of the gap between the ion source and the RFQ vanes (or rods) and the focusing of the rf fields from the RFQ penetrating into this gap. For high performance ECR sources that use superconducting solenoids, the stray magnetic field of the source in addition to the DPI scheme provides focusing against the space charge blow-up of the beam. A combined extraction/matching system has been designed for a high performance ECR ion source injecting into an RFQ, allowing a total beam current of 10 mA from the ion source for the production of highly charged (238)U(40+) (1.33 mA) to be injected at an ion source voltage of 60 kV. In this design, the features of IGUN have been used to take into account the rf-focusing of an RFQ channel (without modulation), the electrostatic field between ion source extraction and the RFQ vanes, the magnetic stray field of the ECR superconducting solenoid, and the defocusing space charge of an ion beam. The stray magnetic field is shown to be critical in the case of a matched beam.
. Once in operation, the RFQ, together with its ion source, will act as the birthplace of particle beams for the laboratory's many experiments. "The ion source and RFQ are the beginning of everything ," said Cheng-Yang Tan, the lead physicist on the RFQ project. "They are the source of beam for
Variable Distance Angular Symbology Reader
NASA Technical Reports Server (NTRS)
Schramm, Harry F., Jr. (Inventor); Corder, Eric L. (Inventor)
2006-01-01
A variable distance angular symbology, reader utilizes at least one light source to direct light through a beam splitter and onto a target. A target may be angled relative to the impinging light beam up to and maybe even greater than 45deg. A reflected beam from the target passes through the beam splitter and is preferably directed 90deg relative to the light source through a telecentric lens to a scanner which records an image of the target such as a direct part marking code.
Optical-beam wavefront control based on the atmospheric backscatter signal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banakh, V A; Razenkov, I A; Rostov, A P
2015-02-28
The feasibility of compensating for aberrations of the optical-beam initial wavefront by aperture sounding, based on the atmospheric backscatter signal from an additional laser source with a different wavelength, is experimentally studied. It is shown that the adaptive system based on this principle makes it possible to compensate for distortions of the initial beam wavefront on a surface path in atmosphere. Specifically, the beam divergence decreases, while the level of the detected mean backscatter power from the additional laser source increases. (light scattering)
Nanoparticle-enhanced x-ray therapy for cancer
NASA Astrophysics Data System (ADS)
Letfullin, Renat R.; Rice, Colin E. W.; George, Thomas F.
2016-03-01
Photothermal therapies of nanophotohyperthermia and nanophotothermolysis utilize the light absorptive properties of nanoparticles to create heat and free radicals in a small localized region. Conjugating nanoparticles with various biomolecules allows for targeted delivery to specific tissues or even specific cells, cancerous cells being of particular interest. Previous studies have investigated nanoparticles at visible and infrared wavelengths where surface plasmon resonance leads to unique absorption characteristics. However, issues such as poor penetration depth of the visible light through biological tissues limits the effectiveness of delivery by noninvasive means. In other news, various nanoparticles have been investigated as contrast agents for traditional X-ray procedures, utilizing the strong absorption characteristics of the nanoparticles to enhance contrast of the detected X-ray image. Using X-rays to power photothermal therapies has three main advantages over visiblespectra wavelengths: the high penetration depth of X-rays through biological media makes noninvasive treatments very feasible; the high energy of individual photons means nanoparticles can be heated to desired temperatures with lower beam intensities, or activated to produce the free radicals; and X-ray sources are already common throughout the medical industry, making future implementation on existing equipment possible. This paper uses Lorenz-Mie theory to investigate the light absorption properties of various size gold nanoparticles over photon energies in the 1-100 keV range. These absorption values are then plugged into a thermal model to determine the temperatures reached by the nanoparticles for X-ray exposures of differing time and intensity. The results of these simulations are discussed in relation to the effective implementation of nanophotohyperthermia and nanophotothermolysis treatments.
Microwave plasma source for neutral-beam injection systems
NASA Astrophysics Data System (ADS)
1981-08-01
The overall program is described and the technical and programmatic reasons for the decision to pursue both the RFI and ECH sources into the current hydrogen test stage is discussed. The general characteristics of plasma sources in the parameter regime of interest for neutral beam applications are considered. The operational characteristics, advantages and potential problems of RFI and ECH sources are discussed.
Development of ion source with a washer gun for pulsed neutral beam injection.
Asai, T; Yamaguchi, N; Kajiya, H; Takahashi, T; Imanaka, H; Takase, Y; Ono, Y; Sato, K N
2008-06-01
A new type of economical neutral beam source has been developed by using a single washer gun, pulsed operation, and a simple electrode system. We replaced the conventional hot filaments for arc-discharge-type plasma formation with a single stainless-steel washer gun, eliminating the entire dc power supply for the filaments and the cooling system for the electrodes. Our initial experiments revealed successful beam extraction up to 10 kV and 8.6 A, based on spatial profile measurements of density and temperature in the plasma source. The system also shows the potential to control the beam profile by controlling the plasma parameters in the ion accumulation chamber.
Fisher, G R; Patterson, L H; Gutierrez, P L
1993-09-01
Electron paramagnetic resonance (EPR/ESR) spin trapping studies with DMPO revealed that purified rat liver NAD(P)H (quinone-acceptor) oxidoreductase (QAO) mediated hydroxyl radical formation by a diverse range of quinone-based antitumour agents. However, when MCF-7 S9 cell fraction was the source of QAO, EPR studies distinguished four different interactions by these agents and QAO with respect to hydroxyl radical formation: (i) hydroxyl radical formation by diaziquone (AZQ), menadione, 1AQ; 1,5AQ and 1,8AQ was mediated entirely or partially by QAO in MCF-7 S9 fraction; (ii) hydroxyl radical formation by daunorubicin and Adriamycin was not mediated by QAO in MCF-7 S9 fraction; (iii) hydroxyl radical formation by mitomycin C was stimulated in MCF-7 S9 fraction when QAO was inhibited by dicumarol; (iv) no hydroxyl radical formation was detected for 1,4AQ or mitoxantrone in MCF-7 S9 fraction. This study shows that purified rat liver QAO can mediate hydroxyl radical formation by a variety of diverse quinone antitumour agents. However, QAO did not necessarily contribute to hydroxyl radical formation by these agents in MCF-7 S9 fraction and in the case of mitomycin C, QAO played a protective role against hydroxyl radical formation.
2015-01-01
Environmentally persistent free radicals (EPFRs) are formed by the chemisorption of substituted aromatics on metal oxide surfaces in both combustion sources and superfund sites. The current study reports the dependency of EPFR yields and their persistency on metal loading in particles (0.25, 0.5, 0.75, 1, 2, and 5% CuO/silica). The EPFRs were generated through exposure of particles to three adsorbate vapors at 230 °C: phenol, 2-monochlorophenol (2-MCP), and dichlorobenzene (DCBz). Adsorption resulted in the formation of surface-bound phenoxyl- and semiquinoine-type radicals with characteristic EPR spectra displaying a g value ranging from ∼2.0037 to 2.006. The highest EPFR yield was observed for CuO concentrations between 1 and 3% in relation to MCP and phenol adsorption. However, radical density, which is expressed as the number of radicals per copper atom, was highest at 0.75–1% CuO loading. For 1,2-dichlorobenzene adsorption, radical concentration increased linearly with decreasing copper content. At the same time, a qualitative change in the radicals formed was observed—from semiquinone to chlorophenoxyl radicals. The two longest lifetimes, 25 and 23 h, were observed for phenoxyl-type radicals on 0.5% CuO and chlorophenoxyl-type radicals on 0.75% CuO, respectively. PMID:24437381
Ion source and injection line for high intensity medical cyclotron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, XianLu, E-mail: jiaxl@ciae.ac.cn; Guan, Fengping; Yao, Hongjuan
2014-02-15
A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from themore » extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.« less
Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.
Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz
2010-08-01
The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such as metallurgy and municipal waste incinerators are potential candidates for this technology application.
Seo, Seung-Jun; Jeon, Jae-Kun; Han, Sung-Mi; Kim, Jong-Ki
2017-11-01
The Coulomb nanoradiator (CNR) effect produces the dose enhancement effects from high-Z nanoparticles under irradiation with a high-energy ion beam. To gain insight into the radiation dose and biological significance of the CNR effect, the enhancement of reactive oxygen species (ROS) production from iron oxide or gold NPs (IONs or AuNPs, respectively) in water was investigated using traversing proton beams. The dependence of nanoradiator-enhanced ROS production on the atomic Z value and proton energy was investigated. Two biologically important ROS species were measured using fluorescent probes specific to •OH or [Formula: see text] in a series of water phantoms containing either AuNPs or IONs under irradiation with a 45- or 100-MeV proton beam. The enhanced generation of hydroxyl radicals (•OH) and superoxide anions ([Formula: see text]) was determined to be caused by the dependence on the NP concentration and proton energy. The proton-induced Au or iron oxide nanoradiators exhibited different ROS enhancement rates depending on the proton energy, suggesting that the CNR radiation varied. The curve of the superoxide anion production from the Au-nanoradiator showed strong non-linearity, unlike the linear behavior observed for hydroxyl radical production and the X-ray photoelectric nanoradiator. In addition, the 45-MeV proton-induced Au nanoradiator exhibited an ROS enhancement ratio of 8.54/1.50 ([Formula: see text] / •OH), similar to that of the 100-KeV X-ray photoelectric Au nanoradiator (7.68/1.46). The ROS-based detection of the CNR effect revealed its dependence on the proton beam energy, dose and atomic Z value and provided insight into the low-linear energy transfer (LET) CNR radiation, suggesting that these factors may influence the therapeutic efficacy via chemical reactivities, transport behaviors, and intracellular oxidative stress.
Experimental realization of underdense plasma photocathode wakefield acceleration at FACET
NASA Astrophysics Data System (ADS)
Scherkl, Paul
2017-10-01
Novel electron beam sources from compact plasma accelerator concepts currently mature into the driving technology for next generation high-energy physics and light source facilities. Particularly electron beams of ultra-high brightness could pave the way for major advances for both scientific and commercial applications, but their generation remains tremendously challenging. The presentation outlines the experimental demonstration of the world's first bright electron beam source from spatiotemporally synchronized laser pulses injecting electrons into particle-driven plasma wakefields at FACET. Two distinctive types of operation - laser-triggered density downramp injection (``Plasma Torch'') and underdense plasma photocathode acceleration (``Trojan Horse'') - and their intermediate transitions are characterized and contrasted. Extensive particle-in-cell simulations substantiate the presentation of experimental results. In combination with novel techniques to minimize the beam energy spread, the acceleration scheme presented here promises ultra-high beam quality and brightness.
Emittance Growth in the DARHT-II Linear Induction Accelerator
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.; ...
2017-10-03
The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less
Emittance Growth in the DARHT-II Linear Induction Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ekdahl, Carl; Carlson, Carl A.; Frayer, Daniel K.
The dual-axis radiographic hydrodynamic test (DARHT) facility uses bremsstrahlung radiation source spots produced by the focused electron beams from two linear induction accelerators (LIAs) to radiograph large hydrodynamic experiments driven by high explosives. Radiographic resolution is determined by the size of the source spot, and beam emittance is the ultimate limitation to spot size. On the DARHT-II LIA, we measure an emittance higher than predicted by theoretical simulations, and even though this accelerator produces submillimeter source spots, we are exploring ways to improve the emittance. Some of the possible causes for the discrepancy have been investigated using particle-in-cell codes. Finally,more » the simulations establish that the most likely source of emittance growth is a mismatch of the beam to the magnetic transport, which can cause beam halo.« less
Polyatomic ions from a high current ion implanter driven by a liquid metal ion source.
Pilz, W; Laufer, P; Tajmar, M; Böttger, R; Bischoff, L
2017-12-01
High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi 2 + ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.
Polyatomic ions from a high current ion implanter driven by a liquid metal ion source
NASA Astrophysics Data System (ADS)
Pilz, W.; Laufer, P.; Tajmar, M.; Böttger, R.; Bischoff, L.
2017-12-01
High current liquid metal ion sources are well known and found their first application as field emission electric propulsion thrusters in space technology. The aim of this work is the adaption of such kind of sources in broad ion beam technology. Surface patterning based on self-organized nano-structures on, e.g., semiconductor materials formed by heavy mono- or polyatomic ion irradiation from liquid metal (alloy) ion sources (LMAISs) is a very promising technique. LMAISs are nearly the only type of sources delivering polyatomic ions from about half of the periodic table elements. To overcome the lack of only very small treated areas by applying a focused ion beam equipped with such sources, the technology taken from space propulsion systems was transferred into a large single-end ion implanter. The main component is an ion beam injector based on high current LMAISs combined with suited ion optics allocating ion currents in the μA range in a nearly parallel beam of a few mm in diameter. Different types of LMAIS (needle, porous emitter, and capillary) are presented and characterized. The ion beam injector design is specified as well as the implementation of this module into a 200 kV high current ion implanter operating at the HZDR Ion Beam Center. Finally, the obtained results of large area surface modification of Ge using polyatomic Bi2+ ions at room temperature from a GaBi capillary LMAIS will be presented and discussed.
Improvements of PKU PMECRIS for continuous hundred hours CW proton beam operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, S. X., E-mail: sxpeng@pku.edu.cn; Ren, H. T.; Zhang, T.
2016-02-15
In order to improve the source stability, a long term continuous wave (CW) proton beam experiment has been carried out with Peking University compact permanent magnet 2.45 GHz ECR ion source (PKU PMECRIS). Before such an experiment a lot of improvements and modifications were completed on the source body, the Faraday cup and the PKU ion source test bench. At the beginning of 2015, a continuous operation of PKU PMECRIS for 306 h with more than 50 mA CW beam was carried out after success of many short term tests. No plasma generator failure or high voltage breakdown was observedmore » during that running period and the proton source reliability is near 100%. Total beam availability, which is defined as 35-keV beam-on time divided by elapsed time, was higher than 99% [S. X. Peng et al., Chin. Phys. B 24(7), 075203 (2015)]. A re-inspection was performed after another additional 100 h operation (counting time) and no obvious sign of component failure was observed. Counting the previous source testing time together, this PMECRs longevity is now demonstrated to be greater than 460 h. This paper is mainly concentrated on the improvements for this long term experiment.« less
Operation and development status of the J-PARC ion source
NASA Astrophysics Data System (ADS)
Yamazaki, S.; Ikegami, K.; Ohkoshi, K.; Ueno, A.; Koizumi, I.; Takagi, A.; Oguri, H.
2014-02-01
A cesium-free H- ion source driven with a LaB6 filament is being operated at the Japan Proton Accelerator Research Complex (J-PARC) without any serious trouble since the restoration from the March 2011 earthquake. The H- ion current from the ion source is routinely restricted approximately 19 mA for the lifetime of the filament. In order to increase the beam power at the linac beam operation (January to February 2013), the beam current from the ion source was increased to 22 mA. At this operation, the lifetime of the filament was estimated by the reduction in the filament current. According to the steep reduction in the filament current, the break of the filament was predicted. Although the filament has broken after approximately 10 h from the steep current reduction, the beam operation was restarted approximately 8 h later by the preparation for the exchange of new filament. At the study time for the 3 GeV rapid cycling synchrotron (April 2013), the ion source was operated at approximately 30 mA for 8 days. As a part of the beam current upgrade plan for the J-PARC, the front end test stand consisting of the ion source and the radio frequency quadrupole is under preparation. The RF-driven H- ion source developed for the J-PARC 2nd stage requirements will be tested at this test stand.
Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi
2012-08-01
We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.
Scaling device for photographic images
NASA Technical Reports Server (NTRS)
Rivera, Jorge E. (Inventor); Youngquist, Robert C. (Inventor); Cox, Robert B. (Inventor); Haskell, William D. (Inventor); Stevenson, Charles G. (Inventor)
2005-01-01
A scaling device projects a known optical pattern into the field of view of a camera, which can be employed as a reference scale in a resulting photograph of a remote object, for example. The device comprises an optical beam projector that projects two or more spaced, parallel optical beams onto a surface of a remotely located object to be photographed. The resulting beam spots or lines on the object are spaced from one another by a known, predetermined distance. As a result, the size of other objects or features in the photograph can be determined through comparison of their size to the known distance between the beam spots. Preferably, the device is a small, battery-powered device that can be attached to a camera and employs one or more laser light sources and associated optics to generate the parallel light beams. In a first embodiment of the invention, a single laser light source is employed, but multiple parallel beams are generated thereby through use of beam splitting optics. In another embodiment, multiple individual laser light sources are employed that are mounted in the device parallel to one another to generate the multiple parallel beams.
Radiological implications of top-off operation at national synchrotron light source-II
NASA Astrophysics Data System (ADS)
Job, P. K.; Casey, W. R.
2011-08-01
High current and low emittance have been specified to achieve ultra high brightness in the third generation medium energy Synchrotron Radiation Sources. This leads to the electron beam lifetime limited by Touschek scattering, and after commissioning may settle in at as low as ∼3 h. It may well be less in the early days of operation. At the same time, the intensity stability specified by the user community for the synchrotron beam is 1% or better. Given the anticipated lifetime of the beam, incremental filling called top-off injection at intervals on the order of ∼1 min will be required to maintain this beam stability. It is judged to be impractical to make these incremental fills by closing the beam shutters at each injection. In addition, closing the front end beam shutters during each injection will adversely affect the stability of beamline optics due to thermal cycling. Hence the radiological consequences of injection with front end beam shutters open must be evaluated. This paper summarizes results of radiological analysis carried out for the proposed top-off injection at National Synchrotron Light Source-II (NSLS-II) with beam shutters open.
Upgrade of the beam extraction system of the GTS-LHC electron cyclotron resonance ion source at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toivanen, V., E-mail: ville.aleksi.toivanen@cern.ch; Bellodi, G.; Dimov, V.
2016-02-15
Linac3 is the first accelerator in the heavy ion injector chain of the Large Hadron Collider (LHC), providing multiply charged heavy ion beams for the CERN experimental program. The ion beams are produced with GTS-LHC, a 14.5 GHz electron cyclotron resonance ion source, operated in afterglow mode. Improvement of the GTS-LHC beam formation and beam transport along Linac3 is part of the upgrade program of the injector chain in preparation for the future high luminosity LHC. A mismatch between the ion beam properties in the ion source extraction region and the acceptance of the following Low Energy Beam Transport (LEBT)more » section has been identified as one of the factors limiting the Linac3 performance. The installation of a new focusing element, an einzel lens, into the GTS-LHC extraction region is foreseen as a part of the Linac3 upgrade, as well as a redesign of the first section of the LEBT. Details of the upgrade and results of a beam dynamics study of the extraction region and LEBT modifications will be presented.« less
Update on developments at SNIF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zacks, J., E-mail: jamie.zacks@ccfe.ac.uk; Turner, I.; Day, I.
The Small Negative Ion Facility (SNIF) at CCFE has been undergoing continuous development and enhancement to both improve operational reliability and increase diagnostic capability. SNIF uses a CW 13.56MHz, 5kW RF driven volume source with a 30kV triode accelerator. Improvement and characterisation work includes: Installation of a new “L” type RF matching unit, used to calculate the load on the RF generator. Use of the electron suppressing biased insert as a Langmuir probe under different beam extraction conditions. Measurement of the hydrogen Fulcher molecular spectrum, used to calculate gas temperature in the source. Beam optimisation through parameter scans, using coppermore » target plate and visible cameras, with results compared with AXCEL-INP to provide beam current estimate. Modelling of the beam power density profile on the target plate using ANSYS to estimate beam power and provide another estimate of beam current. This work is described, and has allowed an estimation of the extracted beam current of approximately 6mA (4mA/cm2) at 3.5kW RF power and a source pressure of 0.6Pa.« less
Hydrogen Radicals, Nitrogen Radicals, and the Production of O3 in the Upper Troposphere
NASA Technical Reports Server (NTRS)
Wennberg, P. O.; Hanisco, T. F.; Jaegle, L.; Jacob, D. J.; Hintsa, E. J.; Lanzendorf, E. J.; Anderson, J. G.; Gao, R.-S.; Keim, E. R.; Donnelly, S. G.;
1998-01-01
The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3 in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(sub x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of O3 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day. This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more O3 than expected.
NASA Astrophysics Data System (ADS)
Kobayashi, Tsuyoshi; Hashizume, Hiroshi; Ohta, Takayuki; Ishikawa, Kenji; Hori, Masaru; Ito, Masafumi
2015-09-01
The inactivation of microorganisms using nonequilbrium atmospheric pressure plasmas has been attracted much attention due to the low temperature processing and high speed treatment. In this study, we have inactivated E. coli suspended in solutions with neutral pH using an atmospheric-pressure oxygen radical source which can selectively supply electrically neutral oxygen radicals. E. coli cells were suspended with deionized distilled water (DDW) (pH = 6.8) or phosphate buffered saline (PBS) (pH = 7.4) or Citrate-Na buffer (pH = 6.5). The treated samples were diluted and spread on nutrient agar (Nutrient Broth). They were cultured at 37° C. The inactivation effects of oxygen radicals on those cells in solutions were evaluated by colony-counting method. O2 diluted by Ar gas were employed as a working gas for the radical source. The total gas flow rate and the gas mixture ratio of O2/(Ar + O2) were set at 5 slm and 0.6%, respectively. The distance between the radical exit and the suspension surface were set at 10 mm. As a result, the D values for DDW(pH = 6.8), PBS(pH = 7.4) and Citrate-Na buffer(pH = 6.5) were estimated to be 1.4 min, 0.9 min and 16.8 min respectively. The inactivation rates in DDW, PBS were significantly different from that in Citrate-Na buffer. This work was partly supported by JSPS KAKENHI Grant Number 26286072 and project for promoting Research Center in Meijo University.
Brightness measurement of an electron impact gas ion source for proton beam writing applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, N.; Santhana Raman, P.; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness thatmore » is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.« less
Brightness measurement of an electron impact gas ion source for proton beam writing applications.
Liu, N; Xu, X; Pang, R; Raman, P Santhana; Khursheed, A; van Kan, J A
2016-02-01
We are developing a high brightness nano-aperture electron impact gas ion source, which can create ion beams from a miniature ionization chamber with relatively small virtual source sizes, typically around 100 nm. A prototype source of this kind was designed and successively micro-fabricated using integrated circuit technology. Experiments to measure source brightness were performed inside a field emission scanning electron microscope. The total output current was measured to be between 200 and 300 pA. The highest estimated reduced brightness was found to be comparable to the injecting focused electron beam reduced brightness. This translates into an ion reduced brightness that is significantly better than that of conventional radio frequency ion sources, currently used in single-ended MeV accelerators.
Ogawa, Kazuhiko; Nakamura, Katsumasa; Onishi, Hiroshi; Koizumi, Masahiko; Sasaki, Tomonari; Araya, Masayuki; Miyabe, Yuuki; Otani, Yuuki; Teshima, Teruki
2006-01-01
The influence of age on the patterns and outcomes of external beam radiotherapy for clinically localized prostate cancer patients was examined. The Japanese Patterns of Care Study surveys were used to compare the processes and outcomes of radical external beam radiotherapy in 140 elderly patients (>75 years old) and 304 younger patients (<75 years old). Although the Karnofsky performance status was significantly different between elderly and younger patients, there were no significant differences in disease characteristics such as pretreatment PSA level, differentiation, Gleason combined score and clinical T stage. There were also no significant differences in the treatment characteristics such as CT-based treatment planning, conformal therapy, total radiation doses (both a median of 66.0 Gy) and hormonal therapy usage. Moreover, no significant differences in overall survival, biochemical relapse-free survival and late toxicity rates were observed between elderly and younger patients. Age did not influence the disease characteristics, patterns of external beam radiotherapy, survival and late toxicities for clinically localized prostate cancer patients. Therefore, radiotherapy could represent an important treatment modality for elderly patients as well as for younger ones.
Decomposition of PCBs in transformer oil using an electron beam accelerator
NASA Astrophysics Data System (ADS)
Jung, In-Ha; Lee, Myun-Joo; Mah, Yoon-Jung
2012-07-01
Decomposition of PCBs in commercially used transformer oil used for more than 30 years has been carried out at normal temperature and pressure without any additives using an electron beam accelerator. The experiments were carried out in two ways: batch and continuous pilot plant with 1.5 MeV of energy, a 50 mA current, and 75 kW of power in a commercial scale accelerator. The electron beam irradiation seemed to transform large molecular weight compounds into lower ones, but the impact was considered too small on the physical properties of oil. Residual concentrations of PCBs after irradiation depend on the absorption dose of the electron beam energy, but aliphatic chloride compounds were produced at higher doses of irradiation. As the results from FT-NMR, chloride ions decomposed from the PCBs are likely to react with aliphatic hydro carbon compounds rather than existing as free radical ions in the transformer oil. Since this is a dry process, treated oil can be used as cutting oil or machine oil for heavy equipment without any additional treatments.
An Overview of the NASA Ames Millimeter-Wave Thermal Launch System
NASA Technical Reports Server (NTRS)
Murakami, David
2012-01-01
The Millimeter-Wave Thermal Launch System (MTLS) is a beamed-energy propulsion concept being designed at NASA Ames Research Center. This effort is in response to the NASA Office of the Chief Technologist s announcement of the Ride the Light program. Our objective is to produce a design that goes beyond the feasibility analysis level of previous studies and provides a solid foundation for low cost access to space. The MTLS is designed to place a 500 lb payload into Low Earth Orbit (LEO) two times a day. This frequent launch, small payload niche is well suited for the particular advantages and constraints of beamed-energy propulsion, and has the potential to drastically increase access to space by reducing the cost per kilogram of placing payloads into LEO. This paper summarizes the findings of the MTLS study. The chemical rocket engine is in principle a simple device. It acts by releasing the chemical energy stored in propellants such as hydrogen and oxygen through combustion, then converting that thermal energy into kinetic energy by expansion through a nozzle. As such, it is fundamentally limited by the energy released in combustion reactions and the molecular weight of the products of those reactions. The highest performing conventional propellant combination, liquid oxygen and liquid hydrogen, can produce vacuum specific impulses of around 450 seconds. The design space of current launch vehicles (which tend to be large, multi-stage, and expendable) are defined by these limitations. An entirely new approach may be necessary in order to enable future launch vehicles of radically improved capabilities. Beamed-energy propulsion (BEP) is an alternative approach that bypasses the energy limitations of chemical propulsion. Instead of relying on a chemical reaction as the energy source, it is supplied externally via a beam of electromagnetic energy produced on the ground. In the concept examined in the MTLS, this energy is absorbed by a heat exchanger which then transfers the energy to the propellant. This decouples the energy source from the working fluid, vastly expanding the design space. For example, a launch vehicle could use only water as propellant, making it very safe and easy to handle. However, the most commonly proposed way to take advantage of this decoupling is to use pure hydrogen as the working fluid, which enables specific impulses of around 800 seconds1 if the heat exchanger material can operate at 2200 K. With such a significantly increased Isp, it may be possible to build single-stage to orbit vehicles, with enough mass margins left over to permit lower cost fabrication techniques.
Hirano, Y; Kiyama, S; Fujiwara, Y; Koguchi, H; Sakakita, H
2015-11-01
A high current density (≈3 mA/cm(2)) hydrogen ion beam source operating in an extremely low-energy region (E(ib) ≈ 150-200 eV) has been realized by using a transition to a highly focused state, where the beam is extracted from the ion source chamber through three concave electrodes with nominal focal lengths of ≈350 mm. The transition occurs when the beam energy exceeds a threshold value between 145 and 170 eV. Low-level hysteresis is observed in the transition when E(ib) is being reduced. The radial profiles of the ion beam current density and the low temperature ion current density can be obtained separately using a Faraday cup with a grid in front. The measured profiles confirm that more than a half of the extracted beam ions reaches the target plate with a good focusing profile with a full width at half maximum of ≈3 cm. Estimation of the particle balances in beam ions, the slow ions, and the electrons indicates the possibility that the secondary electron emission from the target plate and electron impact ionization of hydrogen may play roles as particle sources in this extremely low-energy beam after the compensation of beam ion space charge.
Design of a beam emission spectroscopy diagnostic for negative ions radio frequency source SPIDER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaniol, B.; Pasqualotto, R.; Barbisan, M.
2012-04-15
A facility will be built in Padova (Italy) to develop, commission, and optimize the neutral beam injection system for ITER. The full scale prototype negative ion radio frequency source SPIDER, featuring up to 100 kV acceleration voltage, includes a full set of diagnostics, required for safe operation and to measure and optimize the beam performance. Among them, beam emission spectroscopy (BES) will be used to measure the line integrated beam uniformity, divergence, and neutralization losses inside the accelerator (stripping losses). In the absence of the neutralization stage, SPIDER beam is mainly composed by H{sup -} or D{sup -} particles, accordingmore » to the source filling gas. The capability of a spectroscopic diagnostic of an H{sup -} (D{sup -}) beam relies on the interaction of the beam particles with the background gas particles. The BES diagnostic will be able to acquire the H{sub {alpha}} (D{sub {alpha}}) spectrum from up to 40 lines of sight. The system is capable to resolve stripping losses down to 2 keV and to measure beam divergence with an accuracy of about 10%. The design of this diagnostic is reported, with discussion of the layout and its components, together with simulations of the expected performance.« less
Radical Beam Gettering Epitaxy of Zno and Gan
NASA Astrophysics Data System (ADS)
Georgobiani, A. N.; Demin, V. I.; Vorobiev, M. O.; Gruzintsev, A. N.; Hodos, I. I.; Kotljarevsky, M. B.; Kidalov, V. V.; Rogozin, I. V.
2002-11-01
P-type ZnO layers with a hole mobility about 23 cm2/(V s), and a hole concentration about 1015 cm-3 were grown by means of radical-beam gettering epitaxy (the annealing of n-ZnO single crystals in atomic oxygen flux). The effect of native defects on the photoluminescence spectra of the layers was studied. The dominant bands in the spectra peaked at 370.2 and 400 nm. These bands were attributed to the annihilation of exciton localised on neutral Vzn and to electron transitions from the conduction band to singly positively charged Vzn correspondingly. The effect of annealing in atomic nitrogen flux of p-CaN:Mg films on their photoluminescence spectra and on the value of their conductivity were studied. Such annealing leads to appearance of a number of emission bands that peaked at 404.9, 390.8 and 378.9 nm and increases hole concentration from 5 × 1015 to 5 × 1016 cm-3, and the hole mobility from 120 to 150 cm2/(V s). The n-ZnO - p-GaN:Mg electroluminescence heterostructures were obtained. Their spectrum contains bands in the excitonic region of GaN at the wavelength 360.2 nm and in the edge region at wavelengths 378.9 and 390.8 nm.
Analysis of GaN Damage Induced by Cl2/SiCl4/Ar Plasma
NASA Astrophysics Data System (ADS)
Minami, Masaki; Tomiya, Shigetaka; Ishikawa, Kenji; Matsumoto, Ryosuke; Chen, Shang; Fukasawa, Masanaga; Uesawa, Fumikatsu; Sekine, Makoto; Hori, Masaru; Tatsumi, Tetsuya
2011-08-01
GaN-based optical devices are fabricated using a GaN/InGaN/GaN sandwiched structure. The effect of radicals, ions, and UV light on the GaN optical properties during Cl2/SiCl4/Ar plasma etching was evaluated using photoluminescence (PL) analysis. The samples were exposed to plasma (radicals, ions, and UV light) using an inductively coupled plasma (ICP) etching system and a plasma ion beam apparatus that can separate the effects of UV and ions both with and without covering the SiO2 window on the surface. Etching damage in an InGaN single quantum well (SQW) was formed by exposing the sample to plasma. The damage, which decreases PL emission intensity, was generated not only by ion beam irradiation but also by UV light irradiation. PL intensity decreased when the thickness of the upper GaN layer was etched to less than 60 nm. In addition, simultaneous irradiation of UV light and ions slightly increased the degree of damage. There seems to be a synergistic effect between the UV light and the ions. For high-quality GaN-based optoelectronics and power devices, UV light must be controlled during etching processes in addition to the etching profile, selectivity, and ion bombardment damage.
Recent advances in laser-driven neutron sources
NASA Astrophysics Data System (ADS)
Alejo, A.; Ahmed, H.; Green, A.; Mirfayzi, S. R.; Borghesi, M.; Kar, S.
2016-11-01
Due to the limited number and high cost of large-scale neutron facilities, there has been a growing interest in compact accelerator-driven sources. In this context, several potential schemes of laser-driven neutron sources are being intensively studied employing laser-accelerated electron and ion beams. In addition to the potential of delivering neutron beams with high brilliance, directionality and ultra-short burst duration, a laser-driven neutron source would offer further advantages in terms of cost-effectiveness, compactness and radiation confinement by closed-coupled experiments. Some of the recent advances in this field are discussed, showing improvements in the directionality and flux of the laser-driven neutron beams.
Method and Apparatus for Characterizing Pressure Sensors using Modulated Light Beam Pressure
NASA Technical Reports Server (NTRS)
Youngquist, Robert C. (Inventor)
2003-01-01
Embodiments of apparatuses and methods are provided that use light sources instead of sound sources for characterizing and calibrating sensors for measuring small pressures to mitigate many of the problems with using sound sources. In one embodiment an apparatus has a light source for directing a beam of light on a sensing surface of a pressure sensor for exerting a force on the sensing surface. The pressure sensor generates an electrical signal indicative of the force exerted on the sensing surface. A modulator modulates the beam of light. A signal processor is electrically coupled to the pressure sensor for receiving the electrical signal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segal, M. J., E-mail: mattiti@gmail.com; University of Cape Town, Rondebosch, Cape Town 7700; Bark, R. A.
An assembly for a commercial Ga{sup +} liquid metal ion source in combination with an ion transportation and focusing system, a pulse high-voltage quadrupole deflector, and a beam diagnostics system has been constructed in the framework of the iThemba LABS (Cape Town, South Africa)—JINR (Dubna, Russia) collaboration. First, results on Ga{sup +} ion beam commissioning will be presented. Outlook of further experiments for measurements of charge breeding efficiency in the electron string ion source with the use of external injection of Ga{sup +} and Au{sup +} ion beams will be reported as well.
Low-Energy Plasma Focus Device as an Electron Beam Source
Seong Ling, Yap; Naresh Kumar, Nitturi; Lian Kuang, Lim; Chiow San, Wong
2014-01-01
A low-energy plasma focus device was used as an electron beam source. A technique was developed to simultaneously measure the electron beam intensity and energy. The system was operated in Argon filling at an optimum pressure of 1.7 mbar. A Faraday cup was used together with an array of filtered PIN diodes. The beam-target X-rays were registered through X-ray spectrometry. Copper and lead line radiations were registered upon usage as targets. The maximum electron beam charge and density were estimated to be 0.31 μC and 13.5 × 1016/m3, respectively. The average energy of the electron beam was 500 keV. The high flux of the electron beam can be potentially applicable in material sciences. PMID:25544952
Negative ion beam development at Cadarache (invited)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonin, A.; Bucalossi, J.; Desgranges, C.
1996-03-01
Neutral beam injection (NBI) is one of the candidates for plasma heating and current drive in the new generation of large magnetic fusion devices (ITER). In order to produce the required deuterium atom beams with energies of 1 MeV and powers of tens of MW, negative D{sup {minus}} ion beams are required. For this purpose, multiampere D{sup {minus}} beam production and 1 MeV electrostatic acceleration is being studied at Cadarache. The SINGAP experiment, a 1 MeV 0.1 A D{sup {minus}} multisecond beam accelerator facility, has recently started operation. It is equipped with a Pagoda ion source, a multiaperture 60 keVmore » preaccelerator and a 1 MV 120 mA power supply. The particular feature of SINGAP is that the postaccelerator merges the 60 keV beamlets, aiming at accelerating the whole beam to 1 MeV in a single gap. The 1 MV level was obtained in less than 2 weeks, the accumulated voltage on-time of being {approximately}22 min. A second test bed MANTIS, is devoted to the development of multiampere D{sup {minus}} sources. It is capable of driving discharges with current up to 2500 A at arc voltages up to 150 V. A large multicusp source has been tested in pure volume and cesiated operation. With cesium seeding, an accelerated D{sup {minus}} beam current density of up to 5.2 mA/cm{sup 2} (2 A of D{sup {minus}}) was obtained. A modification of the extractor is underway in order to improve this performance. A 3D Monte Carlo code has been developed to simulate the negative ion transport in magnetized plasma sources and optimize magnetic field configuration of the large area D{sup {minus}} sources. {copyright} {ital 1996 American Institute of Physics.}« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoni, V.; Agostinetti, P.; Brombin, M.
2015-04-08
In the framework of the accompanying activity for the development of the two neutral beam injectors for the ITER fusion experiment, an instrumented beam calorimeter is being designed at Consorzio RFX, to be used in the SPIDER test facility (particle energy 100keV; beam current 50A), with the aim of testing beam characteristics and to verify the source proper operation. The main components of the instrumented calorimeter are one-directional carbon-fibre-carbon composite tiles. Some prototype tiles have been used as a small-scale version of the entire calorimeter in the test stand of the neutral beam injectors of the LHD experiment, with themore » aim of characterising the beam features in various operating conditions. The extraction system of the NIFS test stand source was modified, by applying a mask to the first gridded electrode, in order to isolate only a subset of the beamlets, arranged in two 3×5 matrices, resembling the beamlet groups of the ITER beam sources. The present contribution gives a description of the design of the diagnostic system, including the numerical simulations of the expected thermal pattern. Moreover the dedicated thermocouple measurement system is presented. The beamlet monitor was successfully used for a full experimental campaign, during which the main parameters of the source, mainly the arc power and the grid voltages, were varied. This contribution describes the methods of fitting and data analysis applied to the infrared images of the camera to recover the beamlet optics characteristics, in order to quantify the response of the system to different operational conditions. Some results concerning the beamlet features are presented as a function of the source parameters.« less
High flux, beamed neutron sources employing deuteron-rich ion beams from D2O-ice layered targets
NASA Astrophysics Data System (ADS)
Alejo, A.; Krygier, A. G.; Ahmed, H.; Morrison, J. T.; Clarke, R. J.; Fuchs, J.; Green, A.; Green, J. S.; Jung, D.; Kleinschmidt, A.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Notley, M.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.; Freeman, R. R.; Kar, S.
2017-06-01
A forwardly-peaked bright neutron source was produced using a laser-driven, deuteron-rich ion beam in a pitcher-catcher scenario. A proton-free ion source was produced via target normal sheath acceleration from Au foils having a thin layer of D2O ice at the rear side, irradiated by sub-petawatt laser pulses (˜200 J, ˜750 fs) at peak intensity ˜ 2× {10}20 {{W}} {{cm}}-2. The neutrons were preferentially produced in a beam of ˜70° FWHM cone along the ion beam forward direction, with maximum energy up to ˜40 MeV and a peak flux along the axis ˜ 2× {10}9 {{n}} {{sr}}-1 for neutron energy above 2.5 MeV. The experimental data is in good agreement with the simulations carried out for the d(d,n)3He reaction using the deuteron beam produced by the ice-layered target.