Sample records for radical esr signals

  1. Persistent free radical ESR signals in marine bivalve tissues. [Electron Spin Resonance (ESR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlorn, R.J.; Mendez, A.T.; Higashi, R.

    1992-08-01

    Freeze-dried homogenates of the oyster Crassostrea rhizophorae collected from waters in Puerto Rico near urban and industrial sites as well as at relatively pristine locations yielded electron spin resonance (ESR) spectra characteristic of free radicals as well as spectral components of transition metal ions, dominated by manganese. The magnitudes of these ESR signals and the concentrations of trace elements (determined by X-ray fluorescence) varied considerably among oyster samples, masking any potential correlation with polluted waters. Laboratory studies were initiated to identify the factors controlling the magnitudes of the tissue free radical ESR signals. Another mollusc, Mytilus californianus collected at themore » Bodega Marine laboratory in northern California, was fractionated into goneds and remaining tissue. Freeze-dried homogenates of both fractions exhibited ESR signals that increased gradually with time. ESR signals were observed in freeze-dried perchloric acid (PCA) precipitates of the homogenates, delipidated PCA precipitates, and in chloroform extracts of these precipitates. Acid hydrolysis to degrade proteins to amino acids produced a residue, which yielded much larger ESR free radical signals after freeze-drying. Freshly thawed homogenates of Crassostrea rhizophorae also exhibited ESR signals. A laboratory model of copper stress in Crassostrea rhizophorae was developed to study the effect of this transition metal on dssue free radicals. Preliminary results suggested that sublethal copper exposure had little effect on tissue fire radicals, except possibly for a signal enhancement in an oyster fraction that was enriched in kidney granules. Since kidney granules are known to accumulate heavy metals in mussels and probably other marine bivalves, this signal enhancement may prove to be an indicator of free radical processes associated with heavy metal deposition in molluscs.« less

  2. Persistent free radical ESR signals in marine bivalve tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehlorn, R.J.; Mendez, A.T.; Higashi, R.

    1992-08-01

    Freeze-dried homogenates of the oyster Crassostrea rhizophorae collected from waters in Puerto Rico near urban and industrial sites as well as at relatively pristine locations yielded electron spin resonance (ESR) spectra characteristic of free radicals as well as spectral components of transition metal ions, dominated by manganese. The magnitudes of these ESR signals and the concentrations of trace elements (determined by X-ray fluorescence) varied considerably among oyster samples, masking any potential correlation with polluted waters. Laboratory studies were initiated to identify the factors controlling the magnitudes of the tissue free radical ESR signals. Another mollusc, Mytilus californianus collected at themore » Bodega Marine laboratory in northern California, was fractionated into goneds and remaining tissue. Freeze-dried homogenates of both fractions exhibited ESR signals that increased gradually with time. ESR signals were observed in freeze-dried perchloric acid (PCA) precipitates of the homogenates, delipidated PCA precipitates, and in chloroform extracts of these precipitates. Acid hydrolysis to degrade proteins to amino acids produced a residue, which yielded much larger ESR free radical signals after freeze-drying. Freshly thawed homogenates of Crassostrea rhizophorae also exhibited ESR signals. A laboratory model of copper stress in Crassostrea rhizophorae was developed to study the effect of this transition metal on dssue free radicals. Preliminary results suggested that sublethal copper exposure had little effect on tissue fire radicals, except possibly for a signal enhancement in an oyster fraction that was enriched in kidney granules. Since kidney granules are known to accumulate heavy metals in mussels and probably other marine bivalves, this signal enhancement may prove to be an indicator of free radical processes associated with heavy metal deposition in molluscs.« less

  3. Oxidation of spin-traps by chlorine dioxide (ClO2) radical in aqueous solutions: first ESR evidence of formation of new nitroxide radicals.

    PubMed

    Ozawa, T; Miura, Y; Ueda, J

    1996-01-01

    The reactivities of the chlorine dioxide (ClO2), which is a stable free radical towards some water-soluble spin-traps were investigated in aqueous solutions by an electron spin resonance (ESR) spectroscopy. The ClO2 radical was generated from the redox reaction of Ti3+ with potassium chlorate (KClO3) in aqueous solutions. When one of the spin-traps, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), was included in the Ti3+-KClO3 reaction system, ESR spectrum due to the ClO2 radical completely disappeared and a new ESR spectrum [aN(1) = 0.72 mT, aH(2) = 0.41 mT], which is different from that of DMPO-ClO2 adduct, was observed. The ESR parameters of this new ESR signal was identical to those of 5,5-dimethylpyrrolidone-(2)-oxyl-(1) (DMPOX), suggesting the radical species giving the new ESR spectrum is assignable to DMPOX. The similar ESR spectrum consisting of a triplet [aN(1) = 0.69 mT] was observed when the derivative of DMPO, 3,3,5,5-tetramethyl-1-pyrroline N-oxide (M4PO) was included in the Ti3+-KClO3 reaction system. This radical species is attributed to the oxidation product of M4PO, 3,3,5,5-tetramethylpyrrolidone-(2)-oxyl-(1) (M4POX). When another nitrone spin-trap, alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN) was used as a spin-trap, the ESR signal intensity due to the ClO2 radical decreased and a new ESR signal consisting of a triplet [aN(1) = 0.76 mT] was observed. The similar ESR spectrum was observed when N-t-butyl-alpha- nitrone (PBN) was used as a spin-trap. This ESR parameter [a(N)(1) = 0.85 mT] was identical to the oxidation product of PBN, PBNX. Thus, the new ESR signal observed from POBN may be assigned to the oxidation product of POBN, POBNX. These results suggest that the ClO2, radical does not form the stable spin adducts with nitrone spin-traps, but oxidizes these spin-traps to give the corresponding nitroxyl radicals. On the other hand, nitroso spin-traps, 5,5-dibromo-4-nitrosobenzenesulfonate (DBNBS), and 2-methyl-2-nitrosopropane (MNP) did not trap the ClO2 radical. This result indicates that an unpaired electron of the ClO2 radical is localized on oxygen atom, because nitroso spin-traps cannot form the stable spin adduct with oxygen-centered radical.

  4. Hepatic reduction of carbamoyl-PROXYL in ferric nitrilotriacetate induced iron overloaded mice: an in vivo ESR study.

    PubMed

    Morales, Noppawan Phumala; Yamaguchi, Yumiko; Murakami, Kimiyo; Kosem, Nuttavut; Utsumi, Hideo

    2012-01-01

    Reduction of a nitroxyl radical, carbamoyl-PROXYL in association of free radical production and hepatic glutathione (GSH) was investigated in iron overloaded mice using an in vivo L-band electron spin resonance (ESR) spectrometer. Significant increases in hepatic iron, lipid peroxidation and decrease in hepatic GSH were observed in mice intraperitoneally (i.p.) administrated with ferric nitrilotriacetate (Fe(III)-NTA, a total 45 µmol/mouse over a period of 3 weeks). Free radical production in iron overloaded mice was evidenced by significantly enhanced rate constant of ESR signal decay of carbamoyl-PROXYL, which was slightly reduced by treatment with iron chelator, deferoxamine. Moreover, the rate constant of ESR signal decay was negatively correlated with hepatic GSH level (r=-0.586, p<0.001). On the other hand, hepatic GSH-depletion (>80%) in mice through daily i.p. injection and drinking water supplementation of L-buthionine-[S,R]-sulfoximine (BSO) significantly retarded ESR signal decay, while there were no changes in serum aspartate aminotransferase and liver thiobarbituric acid-reactive substances levels. In conclusion, GSH plays two distinguish roles on ESR signal decay of carbamoyl-PROXYL, as an antioxidant and as a reducing agent, dependently on its concentration. Therefore, it should be taken into account in the interpretation of free radical production in each specific experimental setting.

  5. An electron spin resonance study of gamma-ray irradiated ginseng.

    PubMed

    Nakamura, Hideo; Ukai, Mitsuko; Shimoyama, Yuhei

    2006-03-13

    Using electron spin resonance (ESR) spectroscopy, we revealed the presence of four radical species in gamma-ray irradiated ginseng (Agaliaceae). Before irradiation, the representative ESR spectrum of ginseng is composed of a sextet centered at g = 2.0, a sharp singlet at the same g-value, and a singlet at about g = 4.0. The first one is attributable to a hyperfine (hf) signal of Mn2+ ion (hf constant: 7.4 mT). The second one is due to an organic free radical. The third one is originated from Fe3+. Upon gamma-ray irradiation, a new ESR (the fourth) signal was detectable in the vicinity of g = 2.0 region. The progressive saturation behaviors of the ESR signals at various microwave power levels were indicative of different relaxation time for those radicals. The anisotropic ESR spectra were detected by the angular rotation of the sample tube. This is due to the existence of anisotropic microcrystalline in the ginseng powder sample.

  6. An electron spin resonance study of γ-ray irradiated ginseng

    NASA Astrophysics Data System (ADS)

    Nakamura, Hideo; Ukai, Mitsuko; Shimoyama, Yuhei

    2006-03-01

    Using electron spin resonance (ESR) spectroscopy, we revealed the presence of four radical species in γ-ray irradiated ginseng ( Agaliaceae). Before irradiation, the representative ESR spectrum of ginseng is composed of a sextet centered at g = 2.0, a sharp singlet at the same g-value, and a singlet at about g = 4.0. The first one is attributable to a hyperfine (hf) signal of Mn 2+ ion (hf constant: 7.4 mT). The second one is due to an organic free radical. The third one is originated from Fe 3+. Upon γ-ray irradiation, a new ESR (the fourth) signal was detectable in the vicinity of g = 2.0 region. The progressive saturation behaviors of the ESR signals at various microwave power levels were indicative of different relaxation time for those radicals. The anisotropic ESR spectra were detected by the angular rotation of the sample tube. This is due to the existence of anisotropic microcrystalline in the ginseng powder sample.

  7. An ESR protocol based on relaxation phenomena of irradiated Japanese pepper

    NASA Astrophysics Data System (ADS)

    Ukai, Mitsuko; Nakamura, Hideo; Shimoyama, Yuhei

    2006-03-01

    We found various free radicals in a commercially available pepper in Japan before and after irradiation using electron spin resonance (ESR) spectroscopy. The typical ESR spectrum of the pepper consists of a sextet centered at g = 2.0, a singlet at the same g-value and a singlet at g = 4.0. Upon gamma ray irradiation, a new pair of signals appeared in the pepper. The progressive saturation behavior (PSB) at various microwave power levels indicated quite different relaxation behaviors of those radicals. Namely, the peak intensity of the organic free radical component decreases in a monotonic fashion, whereas the Mn 2+ and Fe 3+ ESR signals substantially keep constant. This reflects the evidence of three independent radicals in the pepper before irradiation. The PSB of the pair peaks as induced by irradiation possessed quite different PSB from that of the free radical located at g = 2.0. We proposed a new protocol for the ESR detection of irradiated foods by the PSB method at different microwave power levels. This would call for a major modification of the CEN protocol in European Union.

  8. ESR studies on the thermal decomposition of trimethylamine oxide to formaldehyde and dimethylamine in jumbo squid (Dosidicus gigas) extract.

    PubMed

    Zhu, Junli; Jia, Jia; Li, Xuepeng; Dong, Liangliang; Li, Jianrong

    2013-12-15

    The effects of ferrous iron, heating temperature and different additives on the decomposition of trimethylamine oxide (TMAO) to formaldehyde (FA) and dimethylamine (DMA) and generation of free radicals in jumbo squid (Dosidicus gigas) extract during heating were evaluated by electron spin resonance (ESR). The thermal decomposition of TMAO to TMA, DMA and FA and free radical signals was observed in squid extract, whereas no DMA, FA and free radical signals were detected in cod extract or in aqueous TMAO solution in vitro at high temperatures. Significant increase in levels of DMA, FA and radicals intensity were observed in squid extract and TMAO solution in the presence of ferrous iron with increasing temperature. Hydrogen peroxide stimulated the production of DMA, FA and ESR signals in squid extract, while citric acid, trisodium citrate, calcium chloride, tea polyphenols and resveratrol had the opposite effect. Similar ESR spectra of six peaks regarded as amminium radical were detected in the squid extract and TMAO-iron(II) solution, suggesting that the amminium radical was involved in the decomposition of TMAO. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. ESR analysis of natural and gamma irradiated coriander (Coriandrum sativum L.) seeds

    NASA Astrophysics Data System (ADS)

    Sezer, M. Özgür; Kaplan, Necati; Sayin, Ulku

    2017-12-01

    Electron spin resonance (ESR) is a powerful technique to detect radicals trapped in cellulosic food products and has been suggested as a useful method for identification of irradiated herbal foodstuffs. Coriander spice which has important medicinal properties was investigated using ESR spectroscopy. Radicals in natural and irradiated coriander samples were determined at room temperature. ESR spectra of natural sample were characterized by a single central signal with ? value and gamma irradiation produced satellite peaks attributed to cellulose-like radical which is used as a marker for detection of irradiated cellulosic plant products. The spectroscopic splitting values of radicals were determined. Dose dependency and stability of this center were analyzed by dose response and kinetic measurements. The reported results about activation energy, thermal life time and dose response relationship of the cellulose-like radical accurately prove that ESR can be used for identification of irradiated coriander spice seeds.

  10. ESR and TL studies of irradiated Anatolian laurel leaf (Laurus nobilis L.)

    NASA Astrophysics Data System (ADS)

    Tepe Çam, Semra; Aydaş, Canan; Engin, Birol; Rabia Yüce, Ülkü; Aydın, Talat; Polat, Mustafa

    2012-06-01

    Laurel leaf (Laurus nobilis L.) samples that originated from Turkey were analyzed by electron spin resonance (ESR) and thermoluminescence (TL) techniques before and after γ-irradiation. Unirradiated (control) laurel leaf samples exhibit a weak ESR singlet centered at g=2.0020. Besides this central signal were two weak satellite signals situated about 3 mT left and right to it in radiation-induced spectra. The dose-response curve of the radiation-induced ESR signal at g=2.0187 (the left satellite signal) was found to be described well by a power function. Variation of the left satellite ESR signal intensity of irradiated samples at room temperature with time in a long term showed that cellulosic free radicals responsible for the ESR spectrum of laurel leaves were not stable but detectable even after 100 days. Annealing studies at four different temperatures were used to determine the kinetic behavior and activation energy of the radiation-induced cellulosic free radicals responsible from the left satellite signal (g=2.0187) in laurel leaves. TL measurements of the polymineral dust isolated from the laurel leaf samples allowed distinguishing between irradiated and unirradiated samples.

  11. Radical production from the interaction of ozone and PUFA as demonstrated by electron spin resonance spin-trapping techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, W.A.; Prier, D.G.; Church, D.F.

    1981-02-01

    There is considerable evidence that indicates that a fraction of the damage caused by ozone to cellular systems involves radical-mediated reactions. The most direct method for probing the mechanism by which ozone reacts with target molecules such as polyunsaturated fatty acids involves the use of electron spin resonance. In 1968, Goldstein et al. reported that ESR signals were observed when 40 ppM ozone in air is bubbled through linoleic acid. We have repeated this experiment and have performed several experiments modified from this design; in none of these do we observe ESR signals. We have studied the reaction of ozonemore » with PUFA at -78/sup 0/C using spin traps. Spin traps themselves react with ozone, but the following protocol avoids that reaction. (1) Ozone in air or oxygen-free ozone is allowed to bubble through the sample in Freon-11 in an ESR tube at -78/sup 0/C; no ESR absorption is observed. (2) Unreacted ozone is flushed out with argon or nitrogen. (3) The spin trap in Freon-11 is added to give a 0.1 M solution, still at -78/sup 0/C; no ESR signal is observed. (4) The tube is allowed to warm slowly. At about -45/sup 0/C, the ESR spectra of spin adducts appear. Using this method with methyl linoleate we observe spin adducts of alkoxy radicals and also a signal that is consistent with a carbon radical with one ..cap alpha..-H. We hypothesize that an intermediate is formed from the reaction of ozone with PUFA that is stable at -78/sup 0/Cbut decomposes to form radicals at about -45/sup 0/C. We tentatively identify the intermediate as a trioxide on the basis of analogies and its temperature profile for decomposition to radicals. It appears reasonable to suggest that the reaction(s) responsible for the production of radicals under these low-temperature conditions also occurs at room temperature. Although the low-temperature intermediate cannot be observed at ambient temperatures, radicals from it could be responsible for the effects on autoxidation that are induced by ozone.« less

  12. Evaluation of absorbed dose in irradiated sugar-containing plant material (peony roots) by an ESR method

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2015-12-01

    The relationship between electron spin resonance (ESR) signal intensity of irradiated plant materials and sugar content was investigated by spectral analysis using peony roots. A weak background signal near g=2.005 was observed in the roots. After a 10 kGy irradiation, the ESR line broadened and the intensity increased, and the spectral characteristics were similar to a typical spectrum of irradiated food containing crystalline sugars. The free radical concentration was nearly stable 30 days after irradiation. The spectrum of peony root 30 days after irradiation was simulated using the summation of the intensities of six assumed components: radical signals derived from (a) sucrose, (b) glucose, (c) fructose, (d) cellulose, (e) the background signal near g=2.005 and (f) unidentified component. The simulated spectra using the six components were in agreement with the observed sample spectra. The intensity of sucrose radical signal in irradiated samples increased proportionally up to 20 kGy. In addition, the intensity of sucrose radical signals was strongly correlated with the sucrose contents of the samples. The results showed that the radiation sensitivity of sucrose in peony roots was influenced little by other plant constituents. There was also a good correlation between the total area of the spectra and the sucrose content, because the sucrose content was higher than that of other sugars in the samples. In peony roots, estimation of the absorbed dose from the ESR signal intensity may be possible by a calibration method based on the sucrose content.

  13. Electron spin resonance of particulate soot samples from automobiles to help environmental studies.

    PubMed

    Yamanaka, C; Matsuda, T; Ikeya, M

    2005-02-01

    The application of electron spin resonance (ESR) was studied for diesel soot samples and suspended particulate matter (SPM) from automobile engines. Soot samples or diesel exhaust particles (DEP) were recovered at various points: in the exhaust pipe of a diesel engine, at the dust sampler of a highway tunnel (standard DEP), on the soundproofing wall alongside a heavy traffic road, and on the filters of a dust sampler for SPM. The diesel soot samples apparently showed two ESR spectra: one was a broad spectrum at g=2.1 with a line width of ca. 80-120 mT and the other was a sharp signal of a carbon radical at g=2.003 with a line width of 0.4 mT. Annealing experiments with a DEP sample at 250 degrees C revealed drastic enhancement of the sharp ESR signal, which suggested a thermal process of carbonization of remnant organics. An oximetric study by ESR showed an enhancement of the broad signal in the diesel soot sample as well as in the sharp ESR signal. Therefore, the main part of the broad ESR signal would be attributed to carbon radicals, which form a different configuration, probably closely interacting aggregates. Enhancement of the sharp ESR signal was not observed in the standard DEP sample under vacuum condition, which suggested less adsorption sites on the surface of DEP samples.

  14. Iron-chelating agents never suppress Fenton reaction but participate in quenching spin-trapped radicals.

    PubMed

    Li, Linxiang; Abe, Yoshihiro; Kanagawa, Kiyotada; Shoji, Tomoko; Mashino, Tadahiko; Mochizuki, Masataka; Tanaka, Miho; Miyata, Naoki

    2007-09-19

    Hydroxyl radical formation by Fenton reaction in the presence of an iron-chelating agent such as EDTA was traced by two different assay methods; an electron spin resonance (ESR) spin-trapping method with 5,5-dimethyl-1-pyrroline N-oxide (DMPO), and high Performance liquid chromatography (HPLC)-fluorescence detection with terephthalic acid (TPA), a fluorescent probe for hydroxyl radicals. From the ESR spin-trapping measurement, it was observed that EDTA seemed to suppress hydroxyl radical formation with the increase of its concentration. On the other hand, hydroxyl radical formation by Fenton reaction was not affected by EDTA monitored by HPLC assay. Similar inconsistent effects of other iron-chelating agents such as nitrylotriacetic acid (NTA), diethylenetriamine penta acetic acid (DTPA), oxalate and citrate were also observed. On the addition of EDTA solution to the reaction mixture 10 min after the Fenton reaction started, when hydroxyl radical formation should have almost ceased but the ESR signal of DMPO-OH radicals could be detected, it was observed that the DMPO-OH* signal disappeared rapidly. With the simultaneous addition of Fe(II) solution and EDTA after the Fenton reaction ceased, the DMPO-OH* signal disappeared more rapidly. The results indicated that these chelating agents should enhance the quenching of [DMPO-OH]* radicals by Fe(II), but they did not suppress Fenton reaction by forming chelates with iron ions.

  15. ESR study of molecular orientation and dynamics of nitronyl nitroxide radicals in CLPOT 1D nanochannels.

    PubMed

    Kobayashi, Hirokazu; Morinaga, Yuka; Fujimori, Etsuko; Asaji, Tetsuo

    2014-07-10

    New inclusion compounds (ICs) were prepared using the organic 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) as a nanosized template and nitronyl nitroxide (NN) radicals such as phenylnitronylnitroxide (PhNN) and p-nitrophenylnitronylnitroxide (p-NPNN). ESR measurements below 255 K for the CLPOT ICs diluted with spacer molecules gave rigid limit spectra similar to that for PhNN molecules in a glassy ethanol matrix at low temperature, which suggests isolation of the radical molecules. ESR measurements for them in the range of 290-400 K gave a modulated quintet ESR signal, which suggested uniaxial rotational diffusion of NN radicals in the nanochannels approximately around the principal y-axis of the g-tensors. In the ESR measurements to 430 K for the [(CLPOT)2-(p-NPNN)0.07] IC without spacers, the broader line width than the case in dilution was observed by inter-radical dipolar interaction. In every case, the rotational diffusion activation energies of NN radicals in the CLPOT nanochannels were several times larger than those of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical derivatives (4-X-TEMPO) in CLPOT nanochannels. This is expected due to the larger molecular size of NN radicals than 4-X-TEMPO or stronger interaction between NN radicals and the surrounding host or guest molecules.

  16. Detection of organic free radicals in irradiated Foeniculi fructus by electron spin resonance spectroscopy.

    PubMed

    Yamaoki, Rumi; Tsujino, Toshiaki; Kimura, Shojiro; Mino, Yoshiki; Ohta, Masatoshi

    2009-01-01

    Foeniculi fructus were irradiated with an electron beam and organic free radicals were detected by electron spin resonance (ESR) spectroscopy for the purpose of identifying radio-disinfected and sterilized herbal drugs. An ESR single-line spectrum near g = 2.005 was observed in the sample before irradiation. After irradiation, the intensity of the signal near g = 2.005 increased. In addition, two subsignals derived from cellulose radicals were observed approximately 3 mT to either side of the main signal, at g = 2.023 and g = 1.987. The intensity of the subsignal at g = 2.023 was proportional to the absorbed dose of radiation. The decrease in intensity of the signals was considerable 2 weeks after irradiation, and continued to decrease steadily thereafter. Among the signals, the fading of the subsignal at g = 2.023 was relatively small. The intensity of the subsignal at g = 2.023 was detectable for over 1 year in the sample that had been irradiated to the level of disinfection and sterilization. Therefore, organic free radicals in irradiated Foeniculi fructus can be measured rapidly and with high sensitivity by ESR spectroscopy. The stable signal at g = 2.023 is a promising indicator of the detection of irradiated herbal drugs.

  17. ESR dosimetry for atomic bomb survivors and radiologic technologists

    NASA Astrophysics Data System (ADS)

    Tatsumi-Miyajima, Junko

    1987-06-01

    An individual absorbed dose for atomic bomb (A-bomb) survivors and radiologic technologists has been estimated using a new personal dosimetry. This dosimetry is based on the electron spin resonance (ESR) spectroscopy of the CO 33- radicals, which are produced in their teeth by radiation. Measurements were carried out to study the characteristics of the dosimetry; the ESR signals of the CO 33- radicals were stable and increased linearly with the radiation dose. In the evaluation of the absorbed dose, the ESR signals were considered to be a function of photon energy. The absorbed doses in ten cases of A-bomb victims and eight cases of radiologic technologists were determined. For A-bomb survivors, the adsorbed doses, which were estimated using the ESR dosimetry, were consistent with the ones obtained using the calculations of the tissue dose in air of A-bomb, and also with the ones obtained using the chromosome measurements. For radiologic technologists, the absorbed doses, which were estimated using the ESR dosimetry, agreed with the ones calculated using the information on the occupational history and conditions. The advantages of this method are that the absorbed dose can be directly estimated by measuring the ESR signals obtained from the teeth of persons, who are exposed to radiation. Therefore, the ESR dosimetry is useful to estimate the accidental exposure and the long term cumulative dose.

  18. Electron spin resonance measurement of radical scavenging activity of Aronia melanocarpa fruit juice.

    PubMed

    Valcheva-Kuzmanova, Stefka; Blagović, Branka; Valić, Srećko

    2012-04-01

    The fruits of Aronia melanocarpa (Michx.) Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ). The method used was electron spin resonance (ESR) spectroscopy. The galvinoxyl free radical was used as a scavenging object. AMFJ was added to the galvinoxyl free radical solution. The measure of the radical scavenging activity was the decrease of signal intensity. AMFJ showed a potent antiradical activity causing a strong and rapid decrease of signal intensity as a function of time and juice concentration. This effect of AMFJ was probably due to the activity of its phenolic constituents. The ESR measurements in this study showed a pronounced radical scavenging effect of AMFJ, an important mechanism of its antioxidant activity.

  19. [Status of the development of electron spin resonance measurement for the detection of irradiated food].

    PubMed

    Helle, N; Linke, B; Mager, M; Schreiber, G; Bögl, K W

    1992-09-01

    Electron spin resonance spectroscopy can be used for the detection of irradiation of various groups of foodstuffs. The results of ESR-measurements on irradiated meat and fish and fresh fruit, as well as dried fruit, spices and nuts as performed by the food irradiation laboratory of the German Federal Health Office are summarized in this report. For the detection of irradiated meat and fish, we examined the bones. Using the results from 10 different animal bones, we were able to develop an official method according to the German law section 35 LMBG. A similar routine method for fish will be established in 1992 (at the moment, an intercomparison with German food control laboratories is in progress). Irradiated dried fruit can be identified easily, because unirradiated samples give no ESR-spectra, while irradiated fruit show a partially resolved spectrum, which is caused by radiation induced sugar radicals. Interestingly, the structure of the resulting spectra is not identical for all irradiated species of fruit. We found three different types of ESR-spectra for irradiated dried fruit. Irradiated nutshells show an ESR-spectrum which reveals two additional lines (from cellulose-radicals) beside the main signal, while unirradiated samples show only the main signal. An official method for identifying irradiated nuts will be proposed in 1992. Irradiation specific ESR-signals of the cellulose radical were not only found for nutshells but also for fresh fruit and some spices, while most of the irradiated spices and herbs could not be identified by ESR-measurements.

  20. Thermoluminescence, ESR and x-ray diffraction studies of CaSO4 : Dy phosphor subjected to post preparation high temperature thermal treatment

    NASA Astrophysics Data System (ADS)

    Bakshi, A. K.; Patwe, S. J.; Bhide, M. K.; Sanyal, B.; Natarajan, V.; Tyagi, A. K.; Kher, R. K.

    2008-01-01

    Thermoluminescence (TL), electron spin resonance (ESR) and x ray diffraction studies of CaSO4 : Dy phosphor subjected to post preparation high temperature treatment were carried out. Analysis of the TL glow curve indicated that the dosimetric glow peak at 240 °C reduces, whereas the low temperature satellite peak increases with the increase in the annealing temperature in the range 650-1000 °C. The influence of the annealing atmosphere on the TL glow curve structure was also observed. Reduction of the photoluminescence intensity of the annealed phosphor indicated that the environment of Dy3+ ions might have undergone some change due to high temperature treatment. Reduction in the ESR signal intensity corresponding to O_{3}^{-} and SO_{3}^{-} radicals was observed initially with the increase in the annealing temperaure; subsequently their intensity increased with temperature. Signals due to the SO_{4}^{-} radical vanished, when the phosphor was annealed beyond 800 °C. A signal corresponding to SH2- radicals was also observed in the ESR spectra for samples subjected to annealing in the temperature regime 800-1000 °C. XRD of the in situ annealed phosphor showed a change in the unit cell parameters. An endothermic peak at 860 °C in the DTA spectrum was observed.

  1. Electron spin resonance measurement of radical scavenging activity of Aronia melanocarpa fruit juice

    PubMed Central

    Valcheva-Kuzmanova, Stefka; Blagović, Branka; Valić, Srećko

    2012-01-01

    Background: The fruits of Aronia melanocarpa (Michx.) Elliot contain large amounts of phenolic substances, mainly procyanidins, anthocyanins and other flavonoids, and phenolic acids. The ability of phenolic substances to act as antioxidants has been well established. Objective: In this study, we investigated the radical scavenging activity of A. melanocarpa fruit juice (AMFJ). Materials and Methods: The method used was electron spin resonance (ESR) spectroscopy. The galvinoxyl free radical was used as a scavenging object. AMFJ was added to the galvinoxyl free radical solution. The measure of the radical scavenging activity was the decrease of signal intensity. Results: AMFJ showed a potent antiradical activity causing a strong and rapid decrease of signal intensity as a function of time and juice concentration. This effect of AMFJ was probably due to the activity of its phenolic constituents. Conclusion: The ESR measurements in this study showed a pronounced radical scavenging effect of AMFJ, an important mechanism of its antioxidant activity. PMID:22701293

  2. The ESR signals in silk fibroin and wool keratin under both the effect of UV-irradiation and without any external effects and the formation of free radicals.

    PubMed

    Mamedov, Sh V; Aktas, B; Cantürk, M; Aksakal, B; Alekperov, V; Bülbül, F; Yilgin, R; Aslanov, R B

    2002-08-01

    ESR studies have been done on natural and UV-irradiated silk fibroins and wool keratins at the temperature range of -196 degrees C to 20 C. The intensities of ESR signals obtained from the irradiated samples at -196 C remarkably increase with respect to those of natural samples. While the signals mainly consist of triplet peaks at -196 C. a doublet arises around the room temperatures. For the first time, at room temperature without any external effect the complicated ESR spectra of fibrous proteins (wool keratin and silk fibroin) whose components are as follows have been observed: (1) (for white wool keratin) a central doublet with deltaHm = 1.1 mT and g = 2.0075; deltaHm = 5mT and g = 2.1911; (2) a wide peak with deltaHm approximately 66 mT and g approximately 2.1575; (3) the 'sulfur' peak given in the literature with deltaHm = 2.2 mT and g = 2.0218; (4) the signal with deltaHm = 0.6 mT and g = 2.0065, and for silk fibroin, (a) a very wide signal with deltaHm approximately 70 mT and g approximately 2.084; (b) a very sharp signal with deltaHm approximately 1.1 mT and g approximately 2.01; and (c) relatively narrower signal with deltaHm approximately 5 mT and g approximately 2.336. It has been shown by recombination kinetic method that 30-50% of the free radicals formed by UV-irradiation do not undergo recombination up to 220 degrees C and 15 degrees C for silk libroin and wool keratin, respectively, even they keep their concentration constant for long period of time (weeks, months, even longer). In this article, considering above-mentioned results, the mechanism of signals observed in natural wool keratin and silk fibroin without any external effects is examined. We can briefly explain the role of the subject of the article, by considering fibrous proteins and some applications of the reactions by free radical occurring in these proteins tinder the effects of different factors in medicine and biology and the important role of oxidation and the other kinds of degradations on these processes. as well as the significant applications of ESR investigations on comprehending the processes by free radical.

  3. ESR study of photoinduced free radicals by visible light in hair and the effects of ascorbic acid (vitamin C).

    PubMed

    Chikvaidze, E; Khachatryan, I

    2011-08-01

    The ESR spectra of melanin's free radicals in natural black and red hair have been investigated. It is shown that the ESR spectrum of black hair is slightly asymmetric singlet with g=2.0037 and ΔH=0.5 mTl. The ESR spectrum of red hair with g=2.0053 differs from the spectrum of black hair. Using the method of saturation was shown that ESR spectrum of red hair represents a superposition of two signals: a singlet, relating to the black hair, and a triplet from red hair's pheomelanin. Under the influence of visible light (blue with λ(max) =450 nm, green with λ(max) =510 nm and red with λ(max) =650 nm) in both types of hair (black and red), the photoinduced free radicals appear, which indicates an increase in the intensity of already existing ESR spectrum of hair. It should be noted that the ESR spectra of red hair from various donors are different. The antioxidant ascorbic acid (vitamin C) has the different effect on the photoinduced free radicals. In particular, in the case of black hair, the concentration of photoinduced free radicals is slightly reduced, whereas in red hair, the disappearance of the triplet in the spectrum is observed, and at the same time, the spectrum becomes a singlet, the intensity of which increases sharply. It is assumed that the antioxidants, effective for black hair, may be ineffective for red hair and vice versa. Therefore, in each, specific case is necessary to investigate the effectiveness of an antioxidant separately. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  4. The use of ESR spectroscopy for the identification and dose assessment of irradiated pink shrimp (Parapenaeus longirostris) from Turkey

    NASA Astrophysics Data System (ADS)

    Aydaş, Canan; Tepe Çam, Semra; Engin, Birol; Aydın, Talat; Polat, Mustafa

    2013-03-01

    Turkish pink shrimp (Parapenaeus longirostris) samples were studied by electron spin resonance (ESR) spectroscopy for identification and dose assessment purposes. In this work, the calcified shells of shrimps were used as a sample material. Before irradiation, all shrimp shell samples exhibit one weak ESR singlet with a g-factor of 2.0047. After irradiation, all samples exhibit two asymmetric ESR signal components centered at g-values of 2.0013 and 1.9959. The dose-response curves of the samples exposed to gamma radiations were found to be described well by a single saturation exponential function. Variation of ESR signal intensity of irradiated samples at room and-20 °C temperatures with time in a long-term showed that free radicals responsible from the ESR spectrum of shrimp shells were not stable but still detectable after 87 days. Also, the kinetic behavior of signal at g=2.0013 was studied and the additive dose method was used to evaluate the dose in the product.

  5. Determination of dosimetric and kinetic features of gamma irradiated solid calcium ascorbate dihydrate using ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Tuner, H.

    2013-01-01

    Effects of gamma radiation on solid calcium ascorbate dihydrate were studied using electron spin resonance (ESR) spectroscopy. Irradiated samples were found to present two specific ESR lines with shoulder at low and high magnetic field sides. Structural and kinetic features of the radicalic species responsible for experimental ESR spectrum were explored through the variations of the signal intensities with applied microwave power, variable temperature, high-temperature annealing and room temperature storage time studies. Dosimetric potential of the sample was also determined using spectrum area and measured signal intensity measurements. It was concluded that three radicals with different spectroscopic and kinetic features were produced upon gamma irradiation.

  6. Effects of packaging environments on free radicals in gamma-irradiated UHMWPE resin powder blend with vitamin E.

    PubMed

    Ridley, M D; Jahan, M S

    2009-03-15

    Ultra-high molecular weight polyethylene (UHMWPE) powder (GUR 1020) was blended with high concentration (20%) of vitamin E (alpha-Tocopherol (alpha-T)) for direct detection of alpha-T radicals in presence of PE radicals. Samples were gamma-irradiated in sealed packages filled with N(2), or in open air. Free radicals were measured in open air environment for 71 days using electron spin resonance (ESR) technique. When irradiated in air, both alpha-T and alpha-T-resin produced identical ESR signals characteristics of tochopheroxyl radicals (alpha-T-O(*)), suggesting that PE radicals are quenched by alpha-T. There was no indication of growth of oxygen-induced radicals (OIR) either. However, when alpha-T-resin was irradiated in N(2), presence of both PE and alpha-T radicals were evident in the ESR spectra. And, OIR were produced by the same samples when they were subsequently exposed to air (for 71 days). Oxidation data recorded 85 days after postirradiation aging in air using Fourier transform infra-red (FTIR) spectroscopy, however, did not show any measurable difference between samples irradiated in N(2) and air.

  7. E. S. R. determination of atomic hydrogen distribution in oxy-fuel flames burning at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bregeon, B.G.; Kadirgan, M.A.N.; Lamy, C.

    1981-01-01

    The authors have derived an experimental technique, using ESR spectroscopy, that allows this determination. A quartz burner equipped with an appropriate cooling system is placed directly in the ESR cavity. We obtained the hydrogen resonance signal and studied its variation for different positions of the flame inside the cavity. Hydrogen concentrations cannot be calculated directly from experimental data; hence we proceed indirectly to deconvoluate the resonance signal. This allows us to overcome the present severe handicap in obtaining atomic hydrogen concentrations in oxy-fuel flames from ESR measurements. Data obtained in this work, after temperature correction, give us the axial distributionmore » of hydrogen radicals for different oxy-propane and hydrogen-oxygen flames. These results show clearly that for all flames, the hydrogen radical concentration is maximum in a zone immediately above the inner cone. 13 refs.« less

  8. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  9. Detection and identification of 1-methylethyl and methyl radicals generated by irradiating tea tree (Melaleuca alternifolia) oil with visible light (436 nm) in the presence of flavin mononucleotide and ferrous ion.

    PubMed

    Mori, H-M; Iwahashi, H

    2013-08-01

    Here, we determined the electron spin resonance (ESR) spectra of standard reaction mixtures (I) containing 25 μM flavin mononucleotide (FMN), 0.018% tea tree (Melaleuca alternifolia) oil, 1.9 M acetonitrile, 20 mM phosphate buffer (pH 7.4), 0.1 M α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (4-POBN), and 1.0 mM FeSO₄(NH₄)₂SO₄ irradiated with 436 nm visible light (7.8 J/cm²). Prominent ESR signals (αN = 1.58 mT and αHβ = 0.26 mT) were detected, suggesting that free radicals form in the standard reaction. In order to know whether singlet oxygen (¹O₂) is involved in the radical formation or not, ESR measurement was performed for the standard D₂O reaction mixture (I) which contained 25 μM FMN, 0.0036% tea tree oil, 1.9 M acetonitrile-d3, 20 mM phosphate buffer (pH 7.4), 0.1 M 4-POBN and 1.0 mM FeSO₄ in D₂O. The ESR peak height of the standard D₂O reaction increased to 169 ± 24% of the control. Thus, ¹O₂ seems to be involved in the formation of the radicals because D₂O increases the lifetime of singlet oxygen. High-performance liquid chromatography-ESR-mass spectrometry analyses detected 1-methylethyl and methyl radicals in the standard reaction. The radicals appear to form through the reaction of ferrous ion with α-terpinene endoperoxide (ascaridole), which generated from the reaction of α-terpinene with ¹O₂. The 1-methylethyl and methyl radicals may exert a pro-oxidant effect under these conditions.

  10. Photochemical synthesis of simple organic free radicals on simulated planetary surfaces - An ESR study

    NASA Technical Reports Server (NTRS)

    Tseng, S.-S.; Chang, S.

    1975-01-01

    Electron spin resonance (ESR) spectroscopy provided evidence for formation of hydroxyl radicals during ultraviolet photolysis (254 nm) at -170 C of H2O adsorbed on silica gel or of silica gel alone. The carboxyl radical was observed when CO or CO2 or a mixture of CO and CO2 adsorbed on silica gel at -170 C was irradiated. The ESR signals of these radicals slowly disappeared when the irradiated samples were warmed to room temperature. However, reirradiation of CO or CO2, or the mixture CO and CO2 on silica gel at room temperature then produced a new species, the carbon dioxide anion radical, which slowly decayed and was identical with that produced by direct photolysis of formic acid adsorbed on silica gel. The primary photochemical process may involve formation of hydrogen and hydroxyl radicals. Subsequent reactions of these radicals with adsorbed CO or CO2 or both yield carboxyl radicals, CO2H, the precursors of formic acid. These results confirm the formation of formic acid under simulated Martian conditions and provide a mechanistic basis for gauging the potential importance of gas-solid photochemistry for chemical evolution on other extraterrestrial bodies, on the primitive earth, and on dust grains in the interstellar medium.

  11. The anomalous esr dating signal intensity observed for human remains from the namu burial site on the island of Taumako, Solomon islands

    NASA Astrophysics Data System (ADS)

    Dennison, K. J.; Oduwole, A. D.; Sales, K. D.

    Bone and tooth specimens taken from human remains ca -100 years old in the Namu burial site. Taumako, Solomon Islands, show intense electron spin resonance (ESR) dating signals that are partially saturated. A comparison with laboratory y-irradiated modern tooth samples suggests that the specimens had received a total dose of ca 20 kGy. Techniques other than ESR spectroscopy indicate that there is a negligible internal radiation dose. A study of the thermal generation of the so-called alanine radical signal in these specimens and in laboratory γ-irradiated modern samples shows that the signal grows at similar rates in both cases. From these data, the Taumako specimens are estimated to have received their radiation dose about 26 years ago.

  12. Microfluidic channel flow cell for simultaneous cryoelectrochemical electron spin resonance.

    PubMed

    Wain, Andrew J; Compton, Richard G; Le Roux, Rudolph; Matthews, Sinead; Fisher, Adrian C

    2007-03-01

    A novel microfluidic electrochemical channel flow cell has been constructed for in situ operation in a cylindrical TE011 resonant ESR cavity under variable temperature conditions. The cell has a U-tube configuration, consisting of an inlet and outlet channel which run parallel and contain evaporated gold film working, pseudo-reference, and counter electrodes. This geometry was employed to permit use in conjunction with variable temperature apparatus which does not allow a flow-through approach. The cell is characterized qualitatively and quantitatively using the one-electron reduction of p-bromonitrobenzene in acetonitrile at room temperature as a model system, and the ESR signal-flow rate response is validated by use of three-dimensional digital simulation of the concentration profile for a stable electrogenerated radical species under hydrodynamic conditions. The cell is then used to obtain ESR spectra for a number of radical species in acetonitrile at 233 K, including the radical anions of m- and p-iodonitrobenzene, o-bromonitrobenzene, and m-nitrobenzyl chloride, the latter three being unstable at room temperature. Spectra are also presented for the radical anion of 2-chloranthraquinone and the crystal violet radical, which display improved resolution at low temperatures.

  13. The effect of simulated low earth orbit radiation on polyimides (UV degradation study)

    NASA Technical Reports Server (NTRS)

    Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1995-01-01

    UV degradation of polyimide films in air and vacuum were studied using UV-visible, ESR, FTIR, and XPS spectroscopies. The UV-visible spectra of polyimide films showed a blue shift in the absorption compared to Kapton. This behavior was attributed to the presence of bulky groups and kinks along the polymer chains which disrupt the formation of a charge transfer complex. The UV-visible spectra showed also that UV irradiation of polyimides result extensively in surface degradation, leaving the bulk of the polymer intact. ESR spectra of polyimides irradiated in vacuum revealed the formation of stable carbon-centered radicals which give a singlet ESR spectrum, while polyimides irradiated in air produced an asymmetric signal shifted to a lower magnetic field, with a higher g value and line width. This signal was attributed to oxygen-cenetered radicals of peroxy and/or alkoxy type. The rate of radical formation in air was two fold higher than for vacuum irradiation, and reached a plateau after a short time. This suggests a continuous depletion of radicals on the surface via an ablative degradation process. FTIR, XPS, and weight loss studies supported this postulate. An XPS study of the surface indicated a substantial increase in the surface oxidation after irradiation in air. The sharp increase in the C-O binding energy peak relative to the C-C peak was believed to be associated with an aromatic ring opening reaction.

  14. Characterization of lipid oxidation process of beef during repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy.

    PubMed

    Chen, Qingmin; Xie, Yunfei; Xi, Jinzhong; Guo, Yahui; Qian, He; Cheng, Yuliang; Chen, Yi; Yao, Weirong

    2018-03-15

    In this study, electron spin resonance (ESR) and Raman spectroscopy were applied to characterize lipid oxidation of beef during repeated freeze-thaw (RFT). Besides the conventional indexes including peroxide values (PV), thiobarbituric acid-reactive substances (TBARS) and acid values (AV) were evaluated, the radical and molecular structure changes were also measured by ESR and Raman spectroscopy. The results showed that PV, TBARS and AV were increased (P<0.05) after RFT. This suggested that lipid oxidation was occurred during RFT. With the increase of radical signal intensity, lower oxidation stability was presented by ESR. Raman intensity of ν(CC) stretching region (1655cm -1 ) was decreased during RFT. Furthermore, lower Raman intensity ratio of I 1655 /I 1442 , I 1655 /I 1745 that determine total unsaturation was also observed. Significant correlations (p<0.01) were obtained among conventional methods, ESR and Raman spectroscopy. Our result has proved that ESR and Raman spectroscopy showed great potential in characterizing lipid oxidation process of beef during RFT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Investigation of radiation-induced free radicals and luminescence properties in fresh pomegranate fruits.

    PubMed

    Shahbaz, Hafiz M; Akram, Kashif; Ahn, Jae-Jun; Kwon, Joong-Ho

    2013-05-01

    Radiation-induced free radicals and luminescence properties were investigated in γ-irradiated (0-3 kGy) pomegranate ( Punica granatum L.) fruits. Photostimulated luminescence (PSL) analysis showed limited applicability, and only 3 kGy-irradiated pomegranates showed positive PSL values (>5000 PCs). Thermoluminescence (TL) glow curve features, such as intensity and the presence of maximum glow peak in radiation-specific temperature range (150-250 °C), provided definite proof of irradiation, and the TL ratios (TL1/TL2) also confirmed the reliability of TL results. Scanning electron microscopy energy dispersive X-ray (SEM-EDX) analysis of the separated minerals showed that feldspar and quartz minerals were responsible for the luminescence properties. Radiation-induced cellulose radicals were detected in the seeds and rinds by ESR analysis. The ESR results were better in freeze-dried samples than in alcohol-extracted ones. A positive correlation was found between the ESR and TL signal intensities and irradiation doses; however, the most promising detection of the irradiation status was possible through TL analysis.

  16. Electron spin resonance detection of oxygen radicals released by UVA-irradiated human fibroblasts

    NASA Astrophysics Data System (ADS)

    Souchard, J. P.; Pierlot, G.; Barbacanne, M. A.; Charveron, M.; Bonafé, J.-L.; Nepveu, F.

    1999-01-01

    This work reports the electron spin resonance (ESR) detection of oxygenated radicals (OR) released by cultured human fibroblasts after UVA (365 nm) exposure. 5,5-dimethyl-pyrroline-N-oxide (DMPO) was used as spin trap. After a UVA irradiation of one hour, followed by a latent period of at least 45 min., and an incubation time of 30 min. in a trapping medium containing DMPO, glucose, Na^+, K+ and Ca2+ an ESR signal was recorded. By contrast, an ESR signal was produced after only 15 min. incubation when calcium ionophore A23187 was used. Although the ESR signal was characteristic of the hydroxyl adduct DMPO-OH, the use of catalase and superoxide dismutase (SOD) revealed that UVA stimulated fibroblasts released the superoxide anion O2- in the medium. SOD, vitamin C and (+)-catechin inhibited the release of superoxide generated by human fibroblasts stimulated with A23187 calcium ionophore at 5 units/ml, 10-5 M and 2× 10-4 M, respectively. Dans ce travail nous présentons la détection par résonance de spin électronique (RSE) de radicaux oxygénés (RO) libérés par des fibroblastes humains en culture après irradiation aux UVA (365 nm). Le 5,5-diméthyl-1-pyrroline-N-oxyde (DMPO) a été utilisé comme piégeur de spin. Après une irradiation aux UVA d'une heure, suivie d'une période de latence d'au moins 45 min. et d'une incubation de 30 min. dans un milieu de piégeage composé de DMPO, glucose, Na^+, K+ et Ca2+, un signal RPE est enregistré. L'ionophore calcique A23187 entraîne l'apparition d'un signal RPE après seulement 15 min. d'incubation. Bien que le signal RPE obtenu corresponde à l'adduit DMPO-OH du radical hydroxyle, l'utilisation de catalase et de superoxyde dismutase (SOD) a révélé que les fibroblastes libéraient l'anion superoxyde dans le milieu de culture. Sur ce modèle cellulaire la SOD, la vitamine C et la (+) catéchine inhibent la production du radical superoxyde aux concentrations respectivement de 5 unités/ml, 10-5 M et 2× 10-4M.

  17. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    PubMed

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  18. Solid State Photochemical Generation of Triplet Phenoxy-Phenoxy Radical Pairs

    DTIC Science & Technology

    1990-04-01

    of diphenyl oxalate . Tert-butylated bis-aryloxalat s show good radical pair stability, with triplet ESR signals surviving days at room temperature in...between the geminate phenoxyl radicals. The comparable breadth of the spectra for diphenyl carbonate and the oxalates implies a similar interaction strength...ferromagnetic coupling that may be achieved in geminate pairs generated from a diphenyl oxalate vs. a diphenyl carbonate. In addition, we see similar

  19. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures

    PubMed Central

    Wang, Ying; Hougaard, Anni B.; Paulander, Wilhelm; Skibsted, Leif H.

    2015-01-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. PMID:26150471

  20. Catalase Expression Is Modulated by Vancomycin and Ciprofloxacin and Influences the Formation of Free Radicals in Staphylococcus aureus Cultures.

    PubMed

    Wang, Ying; Hougaard, Anni B; Paulander, Wilhelm; Skibsted, Leif H; Ingmer, Hanne; Andersen, Mogens L

    2015-09-01

    Detection of free radicals in biological systems is challenging due to their short half-lives. We have applied electron spin resonance (ESR) spectroscopy combined with spin traps using the probes PBN (N-tert-butyl-α-phenylnitrone) and DMPO (5,5-dimethyl-1-pyrroline N-oxide) to assess free radical formation in the human pathogen Staphylococcus aureus treated with a bactericidal antibiotic, vancomycin or ciprofloxacin. While we were unable to detect ESR signals in bacterial cells, hydroxyl radicals were observed in the supernatant of bacterial cell cultures. Surprisingly, the strongest signal was detected in broth medium without bacterial cells present and it was mitigated by iron chelation or by addition of catalase, which catalyzes the decomposition of hydrogen peroxide to water and oxygen. This suggests that the signal originates from hydroxyl radicals formed by the Fenton reaction, in which iron is oxidized by hydrogen peroxide. Previously, hydroxyl radicals have been proposed to be generated within bacterial cells in response to bactericidal antibiotics. We found that when S. aureus was exposed to vancomycin or ciprofloxacin, hydroxyl radical formation in the broth was indeed increased compared to the level seen with untreated bacterial cells. However, S. aureus cells express catalase, and the antibiotic-mediated increase in hydroxyl radical formation was correlated with reduced katA expression and catalase activity in the presence of either antibiotic. Therefore, our results show that in S. aureus, bactericidal antibiotics modulate catalase expression, which in turn influences the formation of free radicals in the surrounding broth medium. If similar regulation is found in other bacterial species, it might explain why bactericidal antibiotics are perceived as inducing formation of free radicals. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. ESR identification of gamma-irradiated albendazole

    NASA Astrophysics Data System (ADS)

    Çolak, Seyda

    2010-01-01

    The use of ionizing radiation for sterilization of pharmaceuticals is a well-established technology. In the present work, the spectroscopic and kinetic features of the radicals induced in gamma-irradiated solid albendazole samples is investigated at different temperatures in the dose range of 3-34 kGy by electron spin resonance (ESR) spectroscopy. Irradiation with gamma radiation produced two different radical species in albendazole. They were fairly stable at room temperature but relatively unstable above room temperature, giving rise to an unresolved ESR spectrum consisting of three resonance peaks centered at g=2.0057. Decay activation energies of the contributing radical species were calculated to be 47.8 (±13.5) and 50.5 (±9.7) kJ/mol using the signal intensity decay data derived from annealing studies performed at high temperatures. A linear function of the applied dose was found to best describe the experimental dose-response data. Albendazole does not present the characteristics of good dosimetric materials. However, the discrimination of irradiated albendazole from its unirradiated form was possible even 6 months after storage in normal conditions. Based on these findings, it is concluded that albendazole and albendazole-containing drugs can be safely sterilized by gamma radiation and that ESR spectroscopy could be successfully used as a potential technique for monitoring their radiosterilization.

  2. The importance of pre-annealing treatment for ESR dating of mollusc shells: A key study for İsmil in Konya closed Basin/Turkey

    NASA Astrophysics Data System (ADS)

    Ekici, Gamze; Sayin, Ulku; Aydin, Hulya; Isik, Mesut; Kapan, Sevinc; Demir, Ahmet; Engin, Birol; Delikan, Arif; Orhan, Hukmu; Biyik, Recep; Ozmen, Ayhan

    2018-02-01

    In this study, Electron Spin Resonance (ESR) spectroscopy is used to determine the geological ages of fossil mollusc shells systematically collected from two different geological splitting at İsmil Location (37.72769° N, 33.17781° E) in eastern part of Konya. According to the assessment of obtained ESR ages, the importance of pre-annealing treatment emphasize in the case of g=2.0007 dating signal is overlapped with the other signals arisen from short lived radicals that cause the wrong age calculation. To overcome this problem, the samples are pre-annealed at 180°C for 16 minutes and, in this case ESR ages are re-calculated for g=1.9973 dating signal. Dose response curves are obtained using 1.9973 signals after pre-annealing treatments for each samples. ESR ages of samples are obtained in the range of 138 ± 38 ka and 132 ± 30 ka (Upper Pleistocene) according to the Early Uranium Uptake model and the results are in good agreement with the estimated ages from stratigraphic and paleontological correlation by geologists. Thus, it is suggested that especially in the case of 2.0007 dating signal cannot been used due to superimposition case, the signal with 1.9973 g value can be used for dating after pre-annealing treatment. The results reports the first ESR ages on shells collected from İsmil Location and highlight the importance of pre-annealing treatment. This study is supported by TUBITAK 114Y237 research project.

  3. Simple method for quantification of gadolinium magnetic resonance imaging contrast agents using ESR spectroscopy.

    PubMed

    Takeshita, Keizo; Kinoshita, Shota; Okazaki, Shoko

    2012-01-01

    To develop an estimation method of gadolinium magnetic resonance imaging (MRI) contrast agents, the effect of concentration of Gd compounds on the ESR spectrum of nitroxyl radical was examined. A solution of either 4-oxo-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPONE) or 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPOL) was mixed with a solution of Gd compound and the ESR spectrum was recorded. Increased concentration of gadolinium-diethylenetriamine pentaacetic acid chelate (Gd-DTPA), an MRI contrast agent, increased the peak-to-peak line widths of ESR spectra of the nitroxyl radicals, in accordance with a decrease of their signal heights. A linear relationship was observed between concentration of Gd-DTPA and line width of ESR signal, up to approximately 50 mmol/L Gd-DTPA, with a high correlation coefficient. Response of TEMPONE was 1.4-times higher than that of TEMPOL as evaluated from the slopes of the lines. The response was slightly different among Gd compounds; the slopes of calibration curves for acua[N,N-bis[2-[(carboxymethyl)[(methylcarbamoyl)methyl]amino]ethyl]glycinato(3-)]gadolinium hydrate (Gd-DTPA-BMA) (6.22 μT·L/mmol) and gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelate (Gd-DOTA) (6.62 μT·L/mmol) were steeper than the slope for Gd-DTPA (5.45 μT·L/mmol), whereas the slope for gadolinium chloride (4.94 μT·L/mmol) was less steep than that for Gd-DTPA. This method is simple to apply. The results indicate that this method is useful for rough estimation of the concentration of Gd contrast agents if calibration is carried out with each standard compound. It was also found that the plot of the reciprocal square root of signal height against concentrations of contrast agents could be useful for the estimation if a constant volume of sample solution is taken and measured at the same position in the ESR cavity every time.

  4. l-Tryptophan Radical Cation Electron Spin Resonance Studies: Connecting Solution-derived Hyperfine Coupling Constants with Protein Spectral Interpretations

    PubMed Central

    Connor, Henry D.; Sturgeon, Bradley E.; Mottley, Carolyn; Sipe, Herbert J.; Mason, Ronald P.

    2009-01-01

    Fast-flow electron spin resonance (ESR) spectroscopy has been used to detect a free radical formed from the reaction of l-tryptophan with Ce4+ in an acidic aqueous environment. Computer simulations of the ESR spectra from l-tryptophan and several isotopically modified forms strongly support the conclusion that the l-tryptophan radical cation has been detected by ESR for the first time. The hyperfine coupling constants (HFCs) determined from the well-resolved isotropic ESR spectra support experimental and computational efforts to understand l-tryptophan's role in protein catalysis of oxidation-reduction processes. l-tryptophan HFCs facilitated the simulation of fast-flow ESR spectra of free radicals from two related compounds, tryptamine and 3-methylindole. Analysis of these three compounds' β-methylene hydrogen HFC data along with equivalent l-tyrosine data has led to a new computational method that can distinguish between these two amino acid free radicals in proteins without dependence on isotope labeling, electron nuclear double resonance or high-field ESR. This approach also produces geometric parameters (dihedral angles for the β-methylene hydrogens) which should facilitate protein site assignment of observed l-tryptophan radicals as has been done for l-tyrosine radicals. PMID:18433127

  5. Cooking processes increase bioactive compounds in organic and conventional green beans.

    PubMed

    Lima, Giuseppina Pace Pereira; Costa, Sergio Marques; Monaco, Kamila de Almeida; Uliana, Maira Rodrigues; Fernandez, Roberto Morato; Correa, Camila Renata; Vianello, Fabio; Cisneros-Zevallos, Luis; Minatel, Igor Otavio

    2017-12-01

    The influence of cooking methods on chlorophyl, carotenoids, polyamines, polyphenols contents and antioxidant capacity were analyzed in organic and conventional green beans. The initial raw material had a higher content of chlorophyl and total phenolics in conventional green beans, whereas organic cultive favored flavonoid content and antioxidant capacity. Polyamines and carotenoids were similar for the two crop systems. After the cooking process, carotenoids (β-carotene, lutein and zeaxanthin) increased. Microwave heating favored the enhancement of some polar compounds, whereas pressure cooking favored carotenoids. When we used the estimation of the radical scavenging activity by electron spin resonance (ESR) spectroscopy, a reduction of the DPPH radical signal in the presence of green bean extracts was observed, regardless of the mode of cultivation. The highest reduction of the ESR signal ocurred for microwave cooking in organic and conventional green beans, indicating a higher availability of antioxidants with this type of heat treatment.

  6. Mechanisms for •O2‑ and •OH production on flowerlike BiVO4 photocatalysis based on Electron Spin Resonance

    NASA Astrophysics Data System (ADS)

    Xu, Xuan; Sun, Yaofang; Fan, Zihong; Zhao, Deqiang; Xiong, Shimin; Zhang, Bingyao; Zhou, Shiyu; Liu, Guotao

    2018-03-01

    Many studies have focused on the use of BiVO4 as a photocatalyst, but few have investigated the production of free radicals during the photocatalytic process. Following synthesis of flowerlike BiVO4 and characterization by X-ray diffraction (XRD), Raman spectroscopy, Scanning electron microscopy (SEM) Scanning electron microscopy (EDX), UV-Vis and XPS, we successfully prepared BiVO4. Then we used electron spin resonance (ESR) to determine the production and degradation of individual active free radicals, including the superoxide radical (•O2‑) and the hydroxyl radical (•OH). In the first experiment, we used ESR to detect the signals of free radicals (•O2‑ and •OH) under varying oxygen conditions. The results shown that in addition to production by •O2‑, •OH could also be produced by oxidation of h+ to OH‑. In the next experiment, we detected •OH under varying pH to identify the result of the first experiment, and found that signal intensities increased with increasing pH, indicating the mechanism for •OH production. Finally, we conducted a trapping experiment to examine free radical degradation mechanisms. We identified •OH and h+ as the main active free radicals and showed the complete production about •OH. These results improve current knowledge of free radical production mechanisms, which can be used to enhance the photocatalytic performance of BiVO4.

  7. Demonstration of the production of oxygen-centered free radicals during electrolysis using E.S.R. spin-trapping techniques: effects on cardiac function in the isolated rat heart.

    PubMed

    Lecour, S; Baouali, A B; Maupoil, V; Chahine, R; Abadie, C; Javouhey-Donzel, A; Rochette, L; Nadeau, R

    1998-03-01

    The present study was designed to identify the free radicals generated during the electrolysis of the solution used to perfuse isolated rat heart Langendorff preparations. The high reactivity and very short half-life of oxygen free radicals make their detection and identification difficult. A diamagnetic organic molecule (spin trap) can be used to react with a specific radical to produce a more stable secondary radical or "spin adduct" detected by electron spin resonance (ESR). Isovolumic left ventricular systolic pressure (LVSP) and left ventricular end diastolic pressure (LVEDP) were measured by a fluid-filled latex balloon inserted into the left ventricle. The coronary flow was measured by effluent collection. Electrolysis was performed with constant currents of 0.5, 1, 1.5, 3, 5, 7.5, and 10 mA generated by a Grass stimulator and applied to the perfusion solution for 1 min. A group of experiments was done using a 1.5 mA current and a Krebs-Henseleit (K-H) solution containing free radical scavengers (superoxide dismutase (SOD): 100 IU/ml or mannitol: 50 mM). Heart function rapidly declined in hearts perfused with K-H buffer that had been electrolyzed for 1 min. The addition of mannitol (50 mM) to the perfusion solution had no effect on baseline cardiac function before electrolysis while SOD (100 IU/ml) increased the coronary flow. However, SOD was more effective than the mannitol in protecting the heart against decreased of cardiac function, 5 min after the end of electrolysis. Samples of the K-H medium subjected to electrolysis were collected in cuvettes containing a final concentration of 125 mM 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and analyzed by spectroscopy. The ESR spectrum consisted of a quartet signal (hyperfine couplings aN = aH = 14.9 G) originating from the hydroxyl adduct signal, DMPO-OH. The intensity of the DMPO-OH signal remained stable during the 60 s of electrolysis and the quantity of free radicals induced by electrolysis was directly proportional to the intensity of the current. The addition of mannitol and SOD to the perfusate scavenged the hydroxyl radicals present in the solution, suggesting that both hydroxyl and superoxide radicals were formed during electrolysis.

  8. Investigation of radiosterilization feasibility of sulfamethoxazole by ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Çolak, Şeyda

    2017-12-01

    In the present study, the spectroscopic features of the radiolytic intermediates that were produced in gamma-irradiated (5, 10, 25 and 50 kGy) sulfamethoxazole (SMX) have been investigated by electron spin resonance (ESR) spectroscopy and the radiation sterilization feasibility of SMX by ionizing radiation was examined. Gamma-irradiated SMX exhibited a complex ESR spectrum consisting of 13 resonance lines where spectral parameters for the central resonance line were found to be g = 2.0062 and ΔHpp = 0.6 mT. The radiation yield of SMX was calculated to be relatively low (G = 0.1) by ESR spectroscopy and no meaningful difference was observed in the comparison of unirradiated and 50 kGy gamma irradiated SMX by the Fourier transform infrared (FT-IR) technique, confirming that SMX is a radioresistive material. Although SMX could not be accepted to be a good dosimetric material, the identification of irradiated SMX from the unirradiated sample was possible even for the low absorbed radiation doses and for a relatively long time (three months) after the irradiation process. Decay activation energy of the radical species, which is mostly responsible for the central intense resonance line, is calculated to be 45.15 kJ/mol by using the signal intensity decay data derived from annealing studies. Four radical species with different spectroscopic properties were accepted to be responsible for the ESR spectra of gamma-irradiated SMX, by simulation calculations. It is concluded that SMX and SMX-containing drugs can be sterilized by gamma radiation and ESR spectroscopy is an appropriate technique for the characterization of these induced radical intermediates during the gamma irradiation process of SMX. Toxicology tests should also be done for its safe usage.

  9. Detection of irradiated chicken by ESR spectroscopy of bone

    NASA Astrophysics Data System (ADS)

    Duarte, C. L.; Villavicencio, A. L. C. H.; Del Mastro, N. L.; Wiendl, F. M.

    1995-02-01

    Ionizing radiation has been used to treat poultry to remove harmful microorganisms, mainly Salmonella, which contaminates chicken, goose and other fresh and frozen poultry. This microorganism is sensitive to low dose radiation. Thus, irradiating these foods with doses between 1 to 7 kGy results in a large reduction of bacteria. Since it is necessary to determine whether irradiation has occurred and to what extend, this work studied the signal produced by ionizing radiation within the hard crystalline matrix of chicken's bone to establish a control method. Chicken's drumsticks were irradiated and bones separated from flesh were lyophilized and milled. ESR spectrum was then obtained. The ESR signal increased linearly with dose over the range 0.25 to 8.0 kGy. Free radicals evaluated during 30 days after irradiation showed stable in this period.

  10. The effect of gamma irradiation on curcumin component of Curcuma domestica

    NASA Astrophysics Data System (ADS)

    Chosdu, R.; Erizal; Iriawan, T.; Hilmy, N.

    1995-02-01

    The effect of gamma irradiation on curcumin component of Curcuma domestica rhizome were investigated. Pure curcumin, sliced and powdered rhizome with 10% of moisture content were irradiated at 0, 10, 30 and 50 kGy (dose rate of 6 kGy/h). Curcumin content was analysed using HPLC method and ESR spectra. Results show that free radicals are already present in unirradiated rhizome. Gamma irradiation at the doses of 10, 30 and 50 kGy induced the free radicals formation of pure curcumin and Curcuma domestica rhizome. The ESR spectra of irradiated rhizome gave a very similar spectra to the signal of irradiated pure curcumin. The percentage of free radicals intensity from pure curcumin was very stable at room temperature up to 670 hours of storage. However, the percentage intensity of free radicals in the irradiated rhizome were decay during storage. Irradiation treatment and storage time did not give a significant change on curcumin content, water activity, pH and moisture content of rhizome investigated.

  11. Efficient radical cation stabilization of PANI-ZnO and PANI-ZnO-GO composites and its optical activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathavan, T., E-mail: tjmathavan@gmail.com; Divya, A.; Benial, A. Milton Franklin

    2016-05-23

    Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.

  12. Efficient radical cation stabilization of PANI-ZnO and PANI-ZnO-GO composites and its optical activity

    NASA Astrophysics Data System (ADS)

    Mathavan, T.; Divya, A.; Archana, J.; Ramasubbu, A.; Benial, A. Milton Franklin; Jothirajan, M. A.

    2016-05-01

    Polyaniline (PANI) and its composites PANI-ZnO (Zinc oxide) and PANI-ZnO-GO (Graphene oxide) were successfully constructed. These materials were characterized by electron spin resonance (ESR) technique and ultraviolet visible spectrometry. The parameters such as line width, g-factor and spin concentration were deduced from ESR spectra, from the results the radical cation stabilization of PANI, PANI-ZnO and PANI-ZnO-GO composites were compared by the polaron and bipolaron formation. The absorption features obtained in the UV absorption spectra reveal the band gap of these modified PANI composites and also predicted the information of increasing and decreasing features of signal intensity and spin concentration.

  13. An improved method of measuring tropospheric NO2, NO3, HO2, and RO2 by Matrix Isolation and Electronic Spin Resonance (MIESR)

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The MIESR method consists of two steps (1) collection of the radicals present in the ambient air at 77K in a polycrystalline D2O matrix and (2) identification and quantification of the different radicals in the laboratory by Electron Spin Resonance spectroscopy. In step (1), the sampling efficiency for sampling NO2 and RO2 was determined to be greater than or equal to 95 percent, with a measured accuracy of plus or minus 5 percent. In step (2), after collection, the samples are maintained at 77 K and spectra are recorded in the laboratory using a standard 9.5 GHz ESR system (Varian E-line). About 50 individual scans of each spectrum are recorded and digitally averaged in order to improve the signal-to-noise ratio. The ESR-spectra are analyzed with a recently developed numerical procedure which was demonstrated to allow speciation of NO2, NO3, HO2, CH3C(O)O2, and the sum of the alkylperoxy radicals. The detection limit is 5ppt for HO2, RO2, and NO2 and 3ppt for NO3 due to its narrower ESR-linewidth.

  14. Improvement of the ESR detection of irradiated food containing cellulose employing a simple extraction method

    NASA Astrophysics Data System (ADS)

    Delincée, Henry; Soika, Christiane

    2002-03-01

    Fruit may be irradiated at rather low doses, below 1 kGy in combination treatments or for quarantine purposes. To improve the ESR detection sensitivity of irradiated fruit de Jesus et al. (Int. J. Food Sci. Technol. 34 (1999) 173.) proposed extracting the fruit pulp with 80% ethanol and measuring the residue with ESR using low power (0.25 mW) for detection of 'cellulosic' radicals. An improvement in ESR sensitivity using the extraction procedure could be confirmed in this paper for strawberries and papayas. In most cases, a radiation dose of 0.5 kGy could be detected in both fruits even after 2-3 weeks storage. In addition, some herbs and spices were also tested, but only for a few of them the ESR detection of the 'cellulosic' signal was improved by previous alcoholic extraction. As an alternative to ESR measurements, other detection methods like DNA Comet Assay and thermoluminescence were also tested.

  15. Antioxidant effects of water- and lipid-soluble nitroxide radicals in liposomes.

    PubMed

    Cimato, Alejandra N; Piehl, Lidia L; Facorro, Graciela B; Torti, Horacio B; Hager, Alfredo A

    2004-12-15

    Liposomes are today useful tools in different fields of science and technology. A lack of stability due to lipid peroxidation is the main problem in the extension of the use of these formulations. Recent investigative works have reported the protective effects of stable nitroxide radicals against oxidative processes in different media and under different stress conditions. Our group has focused its attention on the natural aging of liposomes and the protection provided by the water- and lipid-soluble nitroxide radicals 2,2,6,6-tetramethylpiperdine-1-oxyl (TEMPO) and doxylstearic acids (5-DSA, 12-DSA, and 16-DSA), respectively. Unilamellar liposomes were incubated under air atmosphere at 37 degrees C, both in the absence and in the presence of these radicals. Conjugated dienes, lipid hydroperoxides, TBARS, membrane fluidity, and nitroxide ESR signal intensity were followed as a function of time. Our results demonstrated that doxylstearic acids were more efficient than TEMPO in retarding lipid peroxidation at all the concentrations tested. The inhibition percentages, depending on the total nitroxide concentration, were not proportional to the lipid-water partition coefficient. Furthermore, time-course ESR signals showed a slower decrease for doxylstearic acids than for TEMPO. No significant differences were found among 5-DSA, 12-DSA, and 16-DSA. We concluded that the nitroxide radical efficiency as antioxidant directly depends on both nitroxide concentration and lipophilicity.

  16. Effect of hydrogen pressure on free radicals in direct coal liquefaction/coprocessing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seehra, M.S.; Ibrahim, M.M.

    1995-12-31

    The objective of this study was to investigate the coprocessing of coal with waste tires and commingled plastics and to characterize the relevant catalysts, using high pressure/high temperature in-situ ESR (Electron Spin Resonance) spectroscopy. The recent results from high pressure ESR spectroscopy are emphasized. During this period, considerable progress was made in developing the high pressure capabilities in in-situ ESR spectroscopy and new results carried out in 1000 psi of H{sub 2}gas are presented. In these experiments, sapphire tubes were used to contain the high pressures at temperatures up to 500{degrees}C. Results of the experiments carried out under 1000 psimore » of H{sub 2} are compared with those under 1000 psi of non-interacting argon and with the earlier experiments in flowing H{sub 2} gas where the volatiles are removed by the flowing gas. In these experiments, the free radical density N of the Blind Canyon coal was measured at each temperature and pressure by double integration of the ESR signal and calibrating it against a standard. The details of the experimental apparatus and procedures have been described in earlier publications.« less

  17. Methemoglobin formation from butylated hydroxyanisole and oxyhemoglobin. Comparison with butylated hydroxytoluene and p-hydroxyanisole.

    PubMed

    Stolze, K; Nohl, H

    1992-01-01

    The widely used food additives butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) react with oxyhemoglobin, thereby forming methemoglobin. The reaction rates were measured using visible spectroscopy, and second order rate constants were established for BHA and compared with p-hydroxyanisole. Using ESR we investigated the involvement of free radical reaction intermediates. The expected one-electron oxidation product of BHA and BHT, the phenoxyl radical, could only be detected with pure 3-t-butyl-4-hydroxyanisole and oxyhemoglobin. With the commercial mixture of 2- and 3-t-butyl-4-hydroxyanisole a very strong ESR signal of a secondary free radical species was observed, similar to the one observed earlier with p-hydroxyanisole and dependent on the presence of free thiol groups, so that we assumed the intermediate existence of a perferryl species, the MetHb-H2O2 adduct. In a second series of experiments we investigated the reactivity of this postulated intermediate with BHA and BHT, starting with a pure MetHb/H2O2-phenol mixture in a stopped-flow apparatus linked to the ESR spectrometer, detecting the expected phenoxyl radicals from BHA and p-hydroxyanisole. Due to the low solubility and decreased reactivity of BHT only traces of phenoxyl type radical were found together with a high concentration of unreacted perferryl species. The reactivity of BHA, BHT and p-hydroxyanisole with free thiol groups is demonstrated by an increased reaction rate in the presence of the thiol group blocking substance NEM.

  18. Electron spin polarization (CIDEP) investigation of the interaction of reactive free radicals with polynitroxyl stable free radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turro, N.J.; Khudyakov, I.V.; Dwyer, D.W.

    1993-10-14

    Time-resolved electron spin resonance (TR ESR) was employed to investigate the polarized ESR (CIDEP) spectra produced by interaction of mono- and polynitroxyls with reactive free radicals (r[sup [number sign

  19. Study of L-aspartic acid for its possible use as a dosimeter in the interval of 3.4-20 kGy at different irradiation temperatures

    NASA Astrophysics Data System (ADS)

    Meléndez-López, Adriana; Negrón-Mendoza, Alicia; Gómez-Vidales, Virginia; Uribe, Roberto M.; Ramos-Bernal, Sergio

    2014-11-01

    Certain commercial applications of radiation processing increase the efficiency of chemical reactions at low temperatures to decrease the free radicals in the bulk material and avoid the synergistic effects of heat. Such applications have motivated the search for a reliable, low-temperature dosimeter for use under the conditions of the irradiation process. For this purpose, polycrystalline samples of L-aspartic acid (2-aminobutanedioic acid) were irradiated with gamma rays at low temperatures and doses in the kiloGray range (3.4-64 kGy). The potential use of the aspartic acid system as a chemical dosimeter is based on the formation of stable free radicals when the amino acid is exposed to ionizing radiation. These radicals can be studied and quantified using electron spin resonance (ESR). The response curves at different temperatures show that the intensity of the ESR spectra (the five characteristic lines) depends on the dose received. The response of the dosimeter increases with increasing temperature, and this relationship is linear up to 20 kGy at 298 K. The decay characteristics show that the change in the ESR signal over time is low and reproducible. In addition, the L-aspartic acid dosimeter is easy to handle and has low cost.

  20. Radical Recombination Kinetics: An Experiment in Physical Organic Chemistry.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1980-01-01

    Describes a student kinetic experiment involving second order kinetics as well as displaying photochromism using a wide variety of techniques from both physical and organic chemistry. Describes measurement of (1) the rate of the recombination reaction; (2) the extinction coefficient; and (3) the ESR spectrometer signal. (Author/JN)

  1. An electron spin resonance study for real-time detection of ascorbyl free radicals after addition of dimethyl sulfoxide in murine hippocampus or plasma during kainic acid-induced seizures.

    PubMed

    Matsumoto, Shigekiyo; Shingu, Chihiro; Koga, Hironori; Hagiwara, Satoshi; Iwasaka, Hideo; Noguchi, Takayuki; Yokoi, Isao

    2010-07-01

    Electron spin resonance (ESR)-silent ascorbate solutions generate a detectable, likely concentration-dependent signal of ascorbyl free radicals (AFR) immediately upon addition of a molar excess of dimethyl sulfoxide (DMSO). We aimed to perform quantitative ESR analysis of AFR in real time after addition of DMSO (AFR/DMSO) to evaluate ascorbate concentrations in fresh hippocampus or plasma following systemic administration of kainate in mice. Use of a special tissue-type quartz cell allowed immediate detection of AFR/DMSO ESR spectra in fresh tissues from mice. AFR/DMSO content was increased significantly in fresh hippocampus or plasma obtained during kainate-induced seizures of mice, reaching maximum levels at 90 min after intraperitoneal administration of 50 mg/kg kainic acid. This suggests that oxidative injury of the hippocampus resulted from the accumulation of large amounts of ascorbic acid in the brain after kainic acid administration. AFR/DMSO content measured on an ESR spectrometer can be used for real-time evaluation of ascorbate content in fresh tissue. Due to the simplicity, good performance, low cost and real-time monitoring of ascorbate, this method may be applied to clinical research and treatment in the future.

  2. Aluminum stress increases carbon-centered radicals in soybean roots.

    PubMed

    Abo, Mitsuru; Yonehara, Hiroki; Yoshimura, Etsuro

    2010-10-15

    The formation of radical species was examined in roots of soybean seedlings exposed to aluminum (Al). Electron spin resonance (ESR) spectra of root homogenates with the spin-trapping reagent 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) indicated the presence of carbon-centered radicals in plants not exposed to Al. Plants exposed to 50 microM Al showed a similar spectrum, with increased signal intensity. These radicals were likely produced through a H-atom abstraction reaction by hydroxyl (*OH) radicals, the synthesis of which was initiated by the formation of superoxide (O2*-) anions. The increased production of the carbon-centered radicals may be responsible for the lipid peroxidation in Al-treated roots. Copyright (c) 2010 Elsevier GmbH. All rights reserved.

  3. IN VIVO EVIDENCE OF FREE RADICAL FORMATION AFTER ASBESTOS INSTILLATION: AN ESR SPIN TRAPPING INVESTIGATION

    EPA Science Inventory


    It has been postulated that the in vivo toxicity of asbestos results from its catalysis of free radical generation. We examined in vivo radical production using electron spin resonance (ESR) coupled with the spin trap alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone (4-POBN); 180 d...

  4. Examination of gamma-irradiated fruits and vegetables by electron spin resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Desrosiers, Marc F.; McLaughlin, William L.

    The ESR spectra of the seeds, pits, shells, and skins of a variety of irradiated fruits and vegetables were measured. All spectra, control and irradiated, contained a single resonance with a g-factor of 2.00. Additional resonances due to Mn 2+ were observed for the drupelets of blackberries and red raspberries. An unusual radiation-induced radical was observed for irradiated mango seed; however, the signal decayed completely within a few days. It was concluded that only in a few specialized cases could the ESR resonances observed be suitable for postirradiation monitoring or dosimetry.

  5. Detection of prior irradiation of dried fruits by electron spin resonance (ESR)

    NASA Astrophysics Data System (ADS)

    Esteves, M. P.; Andrade, M. E.; Empis, J.

    1999-08-01

    Dried almonds, raisins, dates and pistachio were irradiated using either gamma radiation or electron beam, at an average absorbed dose of 5 kGy. To detect the previous irradiation different parts of the dried fruits were analyzed by ESR spectroscopy: almonds: skin; raisins: dried pulp; dates: dried pulp and stone; pistachio: nutshell. Analyses were carried out 2-3 months and 6 months after irradiation. A series of signals tentatively described as "cellulose-like", "sugar-like" and "complex" radical were observed, and some slight differences between spectra from samples irradiated with gamma rays and electrons were evident.

  6. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field

    NASA Astrophysics Data System (ADS)

    Thurber, Kent R.; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J. R.

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants.

  7. Characteristics of the spin-trapping reaction of a free radical derived from AAPH: further development of the ORAC-ESR assay.

    PubMed

    Nakajima, A; Matsuda, E; Masuda, Y; Sameshima, H; Ikenoue, T

    2012-06-01

    The characteristics of the spin-trapping reaction in the oxygen radical absorbance capacity (ORAC)-electron spin resonance (ESR) assay were examined, focusing on the kind of spin traps. 2,2-Azobis(2-amidinopropane) dihydrochloride (AAPH) was used as a free radical initiator. The spin adducts of the AAPH-derived free radical were assigned as those of the alkoxyl radical, RO· (R=H(2)N(HN)C-C(CH(3))(2)). Among the spin traps tested, 5,5-dimethyl-1-pyrroline N-oxide (DMPO), 5,5-dimethyl-4-phenyl-1-pyrroline N-oxide (4PDMPO), 5-(2,2-dimethyl-1,3-propoxycyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), and 5-diethoxyphosphoryl-5-methyl-1-pyrroline N-oxide (DEPMPO) were applicable to the ORAC-ESR assay. Optimal formation of spin-trapped radical adduct was observed with 1 mM AAPH, 10 mM spin trap, and 5 s UV irradiation. The calibration curve (the Stern-Volmer's plot) for each spin trap showed good linearity, and their slopes, k (SB)/k (ST), were estimated to be 87.7±2.3, 267±15, 228±9, and 213±16 for DMPO, 4PDMPO, CYPMPO, and DEPMPO, respectively. Though the k (SB)/k (ST) values for selected biosubstances varied with various spin traps, their ratios to Trolox (the relative ORAC values) were almost the same for all spin traps tested. The ORAC-ESR assay also had a very good reproducibility. The ORAC-ESR assay was conducted under stoichiometric experimental conditions. The present results demonstrate the superiority of the ORAC-ESR assay.

  8. The study of gamma irradiation effects on poly (glycolic acid)

    NASA Astrophysics Data System (ADS)

    Rao Nakka, Rajeswara; Rao Thumu, Venkatappa; Reddy SVS, Ramana; Rao Buddhiraju, Sanjeeva

    2015-05-01

    We have investigated the effects of gamma irradiation on chemical structure, thermal and morphological properties of biodegradable semi-crystalline poly (glycolic acid) (PGA). PGA samples were subjected to irradiation treatment using a 60Co gamma source with a delivered dose of 30, 60 and 90 kGy, respectively. Gamma irradiation induces cleavage of PGA main chains forming ∼OĊH2 and ĊH2COO∼ radicals in both amorphous and crystalline regions. The free radicals formed in the amorphous region abstract atmospheric oxygen and convert them to peroxy radicals. The peroxy radical causes chain scission at the crystal interface through hydrogen abstraction from methylene groups forming the ∼ĊHCOO∼ (I) radical. Consequently, the observed electron spin resonance (ESR) doublet of irradiated PGA is assigned to (I). The disappearance of the ESR signal above 190°C indicates that free radicals are formed in the amorphous region and decay below the melting temperature of PGA. Fourier transform infrared and optical absorption studies confirm that the ? groups are not influenced by gamma irradiation. Differential scanning calorimetry (DSC) studies showed that the melting temperature of PGA decreased from 212°C to 202°C upon irradiation. Degree of crystallinity increased initially and then decreased with an increase in radiation as per DSC and X-ray diffraction studies. Irradiation produced changes in the physical properties of PGA as well as affecting the morphology of the material.

  9. Radiolysis of carbohydrates as studied by ESR and spin-trapping—II. Glycerol- d8 xylitol, dulcitol, d-sorbitol and d-mannitol

    NASA Astrophysics Data System (ADS)

    Kuwabara, M.; Zhang, Z.-Y.; Inanami, O.; Yoshii, G.

    Studies concerning the radicals produced in glycerol by reactions with OH radicals have been carried out by investigating deuterated glycerol (glycerol-d 8) by spin-trapping with 2-methyl-2-nitrosopropane. Free radicals produced in linear carbohydrates such as xylitol, dulcitol, D-sorbitol and D-mannitol by reactions with OH radicals as well as by direct γ-radiolysis have been also investigated by spin-trapping. The ESR spectra of the spin-trapped radicals were analysed on the basis of the results from ESR and spin-trapping experiments on glycerol and deuterated glycerol, and the formation of three radical species, CHO-CH-, CH 2-CO- and HO-CH-, due to both OH reactions and direct γ-radiolysis was confirmed for all compounds. The presence of a radical, -CO-CH-, was detected for xylitol, D-sorbitol and D-mannitol. General reactions processes induced by OH reactions or γ-radiolysis in the solid state are discussed.

  10. The gamut of alkoxy radicals

    NASA Astrophysics Data System (ADS)

    Box, Harold C.; Budzinski, Edwin E.; Freund, Harold G.

    1984-12-01

    It is shown that various radicals exhibiting diverse ESR and ENDOR spectral characteristics are nonetheless a closely related family of alkoxy radicals. The relationship is established by correlating the g tensor with crystal structure and by relating dihedral angles inferred from proton hyperfine couplings to dihedral angles inferred from the g tensor and crystal structure. The analysis also serves to demonstrate that an ESR absorption observed in x-irradiated single crystals of uridine 5'-monophosphate is due to an alkoxy radical.

  11. In Vivo and In Situ Detection of Macromolecular Free Radicals Using Immuno-Spin Trapping and Molecular Magnetic Resonance Imaging.

    PubMed

    Towner, Rheal A; Smith, Nataliya

    2018-05-20

    In vivo free radical imaging in preclinical models of disease has become a reality. Free radicals have traditionally been characterized by electron spin resonance (ESR) or electron paramagnetic resonance (EPR) spectroscopy coupled with spin trapping. The disadvantage of the ESR/EPR approach is that spin adducts are short-lived due to biological reductive and/or oxidative processes. Immuno-spin trapping (IST) involves the use of an antibody that recognizes macromolecular 5,5-dimethyl-pyrroline-N-oxide (DMPO) spin adducts (anti-DMPO antibody), regardless of the oxidative/reductive state of trapped radical adducts. Recent Advances: The IST approach has been extended to an in vivo application that combines IST with molecular magnetic resonance imaging (mMRI). This combined IST-mMRI approach involves the use of a spin-trapping agent, DMPO, to trap free radicals in disease models, and administration of an mMRI probe, an anti-DMPO probe, which combines an antibody against DMPO-radical adducts and an MRI contrast agent, resulting in targeted free radical adduct detection. The combined IST-mMRI approach has been used in several rodent disease models, including diabetes, amyotrophic lateral sclerosis (ALS), gliomas, and septic encephalopathy. The advantage of this approach is that heterogeneous levels of trapped free radicals can be detected directly in vivo and in situ to pin point where free radicals are formed in different tissues. The approach can also be used to assess therapeutic agents that are either free radical scavengers or generate free radicals. Smaller probe constructs and radical identification approaches are being considered. The focus of this review is on the different applications that have been studied, advantages and limitations, and future directions. Antioxid. Redox Signal. 28, 1404-1415.

  12. Relevance of sunscreen application method, visible light and sunlight intensity to free-radical protection: A study of ex vivo human skin.

    PubMed

    Haywood, Rachel

    2006-01-01

    With the continued rise in skin cancers worldwide there is a need for effective skin protection against sunlight damage. It was shown previously that sunscreens, which claimed UVA protection (SPF 20+), provided limited protection against UV-induced ascorbate radicals in human skin. Here the results of an electron spin resonance (ESR) investigation to irradiate ex vivo human skin with solar-simulated light are reported. The ascorbate radical signal in the majority of skin samples was directly proportional to the irradiance over relevant sunlight intensities (0.9-2.9 mW cm(-2)). Radical production (substratum-corneum) by UV (wavelengths < 400 nm) and visible components (> 400 nm) was approximately 67% and 33% respectively. Ascorbate radicals were in steady state concentration at low irradiance (approximately 1 mW cm(-2) equivalent to UK sunlight), but at higher irradiance (approximately 3 mW cm(-2)) decreased with time, suggesting ascorbate depletion. Radical protection by a four star-rated sunscreen (with UVA protection) was optimal when applied as a thin film (40-60% at 2 mg cm(-2)) but less so when rubbed into the skin (37% at 4 mg cm(-2) and no significant protection at 2 mg cm(-2)), possibly due to cream filling crevices, which reduced film thickness. This study validates ESR determinations of the ascorbate radical for quantitative protection measurements. Visible light contribution to radical production, and loss of protection when sunscreen is rubbed into skin, has implications for sunscreen design and use for the prevention of free-radical damage.

  13. Dynamic nuclear polarization-magnetic resonance imaging at low ESR irradiation frequency for ascorbyl free radicals.

    PubMed

    Ito, Shinji; Hyodo, Fuminori

    2016-02-19

    Highly water-soluble ubiquinone-0 (CoQ0) reacts with ascorbate monoanion (Asc) to mediate the production of ascorbyl free radicals (AFR). Using aqueous reaction mixture of CoQ0 and Asc, we obtained positively enhanced dynamic nuclear polarization (DNP)-magnetic resonance (MR) images of the AFR at low frequency (ranging from 515 to 530 MHz) of electron spin resonance (ESR) irradiation. The shape of the determined DNP spectrum was similar to ESR absorption spectra with doublet spectral peaks. The relative locational relationship of spectral peaks in the DNP spectra between the AFR (520 and 525 MHz), (14)N-labeled carbamoyl-PROXYL ((14)N-CmP) (526.5 MHz), and Oxo63 (522 MHz) was different from that in the X-band ESR spectra, but were similar to that in the 300-MHz ESR spectra. The ratio of DNP enhancement to radical concentration for the AFR was higher than those for (14)N-CmP, Oxo63, and flavin semiquinone radicals. The spectroscopic DNP properties observed for the AFR were essentially the same as those for AFR mediated by pyrroloquinoline quinone. Moreover, we made a success of in vivo DNP-MR imaging of the CoQ0-mediated AFR which was administered by the subcutaneous and oral injections as an imaging probe.

  14. Site-specific detection of radicals on α-lactalbumin after a riboflavin-sensitized reaction, detected by immuno-spin trapping, ESR, and MS.

    PubMed

    Dalsgaard, Trine K; Triquigneaux, Mathilde; Deterding, Leesa; Summers, Fiona; Ranguelova, Kalina; Mortensen, Grith; Mason, Ronald P

    2013-01-16

    Free radicals and other oxidation products were characterized on α-lactalbumin with electron spin resonance (ESR), immuno-spin trapping, and mass spectrometry (MS) after riboflavin-mediated oxidation. Radicals were detected using the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in immuno-spin trapping with both enzyme-linked immunosorbent assay (ELISA) and Western blotting and further characterized with mass spectrometry. A DMPO-trapped radical was identified at His68 and another at one of the tyrosine residues, Tyr50 or Tyr36, respectively, generated by a type II or I mechanism. Not all tyrosyl radicals were trapped, as the secondary oxidation product, 3,4-dihydroxyphenylalanine (DOPA), was detected by mass spectrometry at Tyr18 and Tyr50. A further oxidation of DOPA resulted in the DOPA o-semiquinone radical, which was characterized by ESR. Both surface exposure and the neighboring residues in the local environment of the tertiary structure of α-lactalbumin seem to play a role in the generation of DMPO trapped radicals and secondary oxidation products.

  15. Electron spin resonance. Part two: a diagnostic method in the environmental sciences.

    PubMed

    Rhodes, Christopher J

    2011-01-01

    A review is presented of some of the ways in which electron spin resonance (ESR) spectroscopy may be useful to investigate systems of relevance to the environmental sciences. Specifically considered are: quantititave ESR, photocatalysis for pollution control; sorption and mobility of molecules in zeolites; free radicals produced by mechanical action and by shock waves from explosives; measurement of peroxyl radicals and nitrate radicals in air; determination of particulate matter polyaromatic hydrocarbons (PAH), soot and black carbon in air; estimation of nitrate and nitrite in vegetables and fruit; lipid-peroxidation by solid particles (silica, asbestos, coal dust); ESR of soils and other biogenic substances: formation of soil organic matter carbon capture and sequestration (CCS) and no-till farming; detection of reactive oxygen species in the photosynthetic apparatus of higher plants under light stress; molecular mobility and intracellular glasses in seeds and pollen; molecular mobility in dry cotton; characterisation of the surface of carbon black used for chromatography; ESR dating for archaeology and determining seawater levels; measurement of the quality of tea-leaves by ESR; green-catalysts and catalytic media; studies of petroleum (crude oil); fuels; methane hydrate; fuel cells; photovoltaics; source rocks; kerogen; carbonaceous chondrites to find an ESR-based marker for extraterrestrial origin; samples from the Moon taken on the Apollo 11 and Apollo 12 missions to understand space-weathering; ESR studies of organic matter in regard to oil and gas formation in the North Sea; solvation by ionic liquids as green solvents, ESR in food and nutraceutical research.

  16. Product yield-detected ESR on magnetic field-dependent photoreduction of quinones in SDS micellar solution

    NASA Astrophysics Data System (ADS)

    Okazaki, M.; Sakata, S.; Konaka, R.; Shiga, T.

    1987-06-01

    Transient free radicals in the magnetic field-dependent photoreduction of quinones (menadione or anthraquinone) in a sodium dodecyl sulfate (SDS) micellar solution, were converted to stable nitroxide radicals by the ``spin trapping'' technique with or without the microwave irradiation. Upon irradiating the microwave at 160 mW, the product yield (``spin adduct'' of the alkyl radical generated from SDS molecule) decreased by up to 14% at certain magnetic fields in a resonant manner. Although only one component of the postulated radical pair was converted to the spin adduct, the decrease in the yield as a function of external magnetic field revealed the ESR spectra of both component radicals of the radical pair, i.e., the semiquinone radical and the alkyl radical from SDS. This experiment not only gives the direct evidence for the radical pair model, but also suggests the possibility for this method to be applied in controlling the chemical reactions by the microwave. A simple calculation was made to simulate the observed ``product yield-detected ESR.'' Agreements were achieved semiquantitatively between the observed reductions in the spin adduct yields and those calculated. The estimated exchange interaction between the component radicals in the radical pair of the present systems was lower than 0.3 mT.

  17. Free-radical reactions induced by OH-radical attack on cytosine-related compounds: a study by a method combining ESR, spin trapping and HPLC.

    PubMed Central

    Hiraoka, W; Kuwabara, M; Sato, F; Matsuda, A; Ueda, T

    1990-01-01

    Free-radical reactions induced by OH-radical attack on cytosine-related compounds were investigated by a method combining ESR, spin trapping with 2-methyl-2-nitrosopropane and high-performance liquid chromatography (HPLC). Cytidine, 2'-deoxycytidine, cytidine 3'-monophosphate, cytidine 5'-monophosphate, 2'-deoxycytidine 5'-monophosphate and their derivatives, of which 5,6-protons at the base moiety were replaced by deuterons, and polycytidylic acid (poly(C] were employed as samples. OH radicals were generated by X-irradiating an N2O-saturated aqueous solution. Five spin adducts were separated by HPLC. Examination of them by ESR spectroscopy and UV photospectrometry showed that spin adducts assigned to C5 and C6 radicals due to OH addition to the 5,6 double-bond, a deaminated form of the spin adduct derived from a C5 radical due to the cyclization reaction between C5' of the sugar and C6 of the base, and a spin adduct assigned to the C4' radical due to H abstraction by OH radicals were produced. From these results the sites of OH-radical attack and the subsequent radical reactions in cytosine-related compounds were clarified. PMID:2157193

  18. ESR lineshape and {sup 1}H spin-lattice relaxation dispersion in propylene glycol solutions of nitroxide radicals – Joint analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruk, D., E-mail: danuta.kruk@matman.uwm.edu.pl; Hoffmann, S. K.; Goslar, J.

    2013-12-28

    Electron Spin Resonance (ESR) spectroscopy and Nuclear Magnetic Relaxation Dispersion (NMRD) experiments are reported for propylene glycol solutions of the nitroxide radical: 4-oxo-TEMPO-d{sub 16} containing {sup 15}N and {sup 14}N isotopes. The NMRD experiments refer to {sup 1}H spin-lattice relaxation measurements in a broad frequency range (10 kHz–20 MHz). A joint analysis of the ESR and NMRD data is performed. The ESR lineshapes give access to the nitrogen hyperfine tensor components and the rotational correlation time of the paramagnetic molecule. The NMRD data are interpreted in terms of the theory of paramagnetic relaxation enhancement in solutions of nitroxide radicals, recentlymore » presented by Kruk et al. [J. Chem. Phys. 138, 124506 (2013)]. The theory includes the effect of the electron spin relaxation on the {sup 1}H relaxation of the solvent. The {sup 1}H relaxation is caused by dipole-dipole interactions between the electron spin of the radical and the proton spins of the solvent molecules. These interactions are modulated by three dynamic processes: relative translational dynamics of the involved molecules, molecular rotation, and electron spin relaxation. The sensitivity to rotation originates from the non-central positions of the interacting spin in the molecules. The electronic relaxation is assumed to stem from the electron spin–nitrogen spin hyperfine coupling, modulated by rotation of the radical molecule. For the interpretation of the NMRD data, we use the nitrogen hyperfine coupling tensor obtained from ESR and fit the other relevant parameters. The consistency of the unified analysis of ESR and NMRD, evaluated by the agreement between the rotational correlation times obtained from ESR and NMRD, respectively, and the agreement of the translation diffusion coefficients with literature values obtained for pure propylene glycol, is demonstrated to be satisfactory.« less

  19. Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet.

    PubMed

    Lumata, Lloyd L; Martin, Richard; Jindal, Ashish K; Kovacs, Zoltan; Conradi, Mark S; Merritt, Matthew E

    2015-04-01

    We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of (13)C polarization levels using free radicals that span a range of ESR linewidths. A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate (13)C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m(3)/h roots blower. A hyperpolarized (13)C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdiphenylene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state (13)C polarization levels for these samples were determined. (13)C polarization levels close to 50 % were achieved for [1-(13)C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10-20 % (13)C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. At this field strength free radicals with smaller ESR linewidths are still superior for DNP of (13)C as opposed to those with linewidths that exceed that of the (1)H Larmor frequency.

  20. High-frequency electron-spin-resonance measurements on Mn x Mg1-x O (x = 1.0×10-4) and DPPH at very low temperatures

    NASA Astrophysics Data System (ADS)

    Ishikawa, Y.; Ohya, K.; Miura, S.; Fujii, Y.; Mitsudo, S.; Mizusaki, T.; Fukuda, A.; Matsubara, A.; Kikuchi, H.; Asano, T.; Yamamori, H.; Lee, S.; Vasiliev, S.

    2018-03-01

    We have developed a millimeter-wave electron-spin-resonance (ESR) system for very low temperatures (T < 1 K) that can be employed for nuclear-magnetic-resonance measurements by using dynamic nuclear polarization. The system uses a Fabry-Pérot resonator that works in the frequency range of 125 – 130 GHz and covers the temperature range of 0.09 – 6.5 K. We have performed ESR measurements in the frequency around 128 GHz by using Mn x Mg1-x O (x = 1.0 × 10-4) and free-radical samples of 1, 1-diphenyl-2-picrylhydrazyl (DPPH), because these samples have been proposed as field and sensitivity markers. Temperature dependence of the ESR signal intensity for Mn x Mg1-x O shows anomalies originating from magnetic order are found around 3.5 – 4 K. We estimate the sensitivity of the system for ESR detections to be 6 × 1013 spins/G at 5.8 K. Because DPPH shows no observable shift in the magnetic field, we propose it as a useful standard marker for ESR measurements at very low temperatures.

  1. Electron spin resonance spectral analysis of irradiated royal jelly.

    PubMed

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2014-01-15

    The analysis of unpaired electron components in royal jelly was carried out using electron spin resonance (ESR) with the aim to develop a detection method for irradiated royal jelly. The ESR spectrum of royal jelly had natural signals derived from transition metals, including Fe(3+) and Cu(2+), and a signal line near g=2.00. After irradiation, a new splitting asymmetric spectrum with overall spectrum width ca. 10mT at g=2.004 was observed. The intensities of the signals at g=2.004 increased in proportion to the absorbed dose in samples under different storage conditions: fresh frozen royal jelly and dried royal jelly powder at room temperature. The signal intensity of the fresh frozen sample was stable after irradiation. One year after 10kGy irradiation of dried powder, the signal intensity was sevenfold greater than before irradiation, although the intensity continued to steadily decrease with time. This stable radiation-induced radical component was derived from the poorly soluble constituent of royal jelly. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.

    PubMed

    Thurber, Kent R; Le, Thanh-Ngoc; Changcoco, Victor; Brook, David J R

    2018-04-01

    Solid-state dynamic nuclear polarization (DNP) using the cross-effect relies on radical pairs whose electron spin resonance (ESR) frequencies differ by the nuclear magnetic resonance (NMR) frequency. We measure the DNP provided by a new water-soluble verdazyl radical, verdazyl-ribose, under both magic-angle spinning (MAS) and static sample conditions at 9.4 T, and compare it to a nitroxide radical, 4-hydroxy-TEMPO. We find that verdazyl-ribose is an effective radical for cross-effect DNP, with the best relative results for a non-spinning sample. Under non-spinning conditions, verdazyl-ribose provides roughly 2× larger 13 C cross-polarized (CP) NMR signal than the nitroxide, with similar polarization buildup times, at both 29 K and 76 K. With MAS at 7 kHz and 1.5 W microwave power, the verdazyl-ribose does not provide as much DNP as the nitroxide, with the verdazyl providing less NMR signal and a longer polarization buildup time. When the microwave power is decreased to 30 mW with 5 kHz MAS, the two types of radical are comparable, with the verdazyl-doped sample having a larger NMR signal which compensates for its longer polarization buildup time. We also present electron spin relaxation measurements at Q-band (1.2 T) and ESR lineshapes at 1.2 and 9.4 T. Most notably, the verdazyl radical has a longer T 1e than the nitroxide (9.9 ms and 1.3 ms, respectively, at 50 K and 1.2 T). The verdazyl electron spin lineshape is significantly affected by the hyperfine coupling to four 14 N nuclei, even at 9.4 T. We also describe 3000-spin calculations to illustrate the DNP potential of possible radical pairs: verdazyl-verdazyl, verdazyl-nitroxide, or nitroxide-nitroxide pairs. These calculations suggest that the verdazyl radical at 9.4 T has a narrower linewidth than optimal for cross-effect DNP using verdazyl-verdazyl pairs. Because of the hyperfine coupling contribution to the electron spin linewidth, this implies that DNP using the verdazyl radical would improve at lower magnetic field. Another conclusion from the calculations is that a verdazyl-nitroxide bi-radical would be expected to be slightly better for cross-effect DNP than the nitroxide-nitroxide bi-radicals commonly used now, assuming the same spin-spin coupling constants. Published by Elsevier Inc.

  3. Damaging Effect of Low Energy N+ Implantation on Aspergillus niger Spores

    NASA Astrophysics Data System (ADS)

    Wang, Lisheng; Cai, Kezhou; Cheng, Maoji; Chen, Lijuan; Liu, Xuelan; Zhang, Shuqing; Yu, Zengliang

    2007-06-01

    The mutant effects of a keV range nitrogen ion (N+) beam on enzyme-producing probiotics were studied, particularly with regard to the induction in the genome. The electron spin resonance (ESR) results showed that the signal of ESR spectrum existed in both implanted and non-implanted spores, and the yields of free radicals increased in a dose-dependent manner. The ionic etching and dilapidation of cell wall could be observed distinctly through the scanning electron microscope (SEM). The mutagenic effect on genome indicated that N+ implantation could make base mutation. This study provided an insight into the roles low-energy ions might play in inducing mutagenesis of micro-organisms.

  4. Reactive radical-driven bacterial inactivation by hydrogen-peroxide-enhanced plasma-activated-water

    NASA Astrophysics Data System (ADS)

    Wu, Songjie; Zhang, Qian; Ma, Ruonan; Yu, Shuang; Wang, Kaile; Zhang, Jue; Fang, Jing

    2017-08-01

    The combined effects of plasma activated water (PAW) and hydrogen peroxide (H2O2), PAW/HP, in sterilization were investigated in this study. To assess the synergistic effects of PAW/HP, S. aureus was selected as the test microorganism to determine the inactivation efficacy. Also, the DNA/RNA and proteins released by the bacterial suspensions under different conditions were examined to confirm membrane integrity. Additionally, the intracellular pH (pHi) of S. aureus was measured in our study. Electron spin resonance spectroscopy (ESR) was employed to identify the presence of radicals. Finally, the oxidation reduction potential (ORP), conductivity and pH were measured. Our results revealed that the inactivation efficacy of PAW/HP is much greater than that of PAW, while increased H2O2 concentration result in higher inactivation potential. More importantly, as compared with PAW, the much stronger intensity ESR signals and higher ORP in PAW/HP suggests that the inactivation mechanism of the synergistic effects of PAW/HP: more reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially OH and NO radicals, are generated in PAW combined with H2O2 resulting in more deaths of the bacteria.

  5. Degradation of poly(2-hydroxyethyl methacrylate) by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Hill, David J. T.; O'Donnell, James H.; Pomery, Peter J.; Saadat, Giti

    1996-11-01

    Electron Spin Resinance (ESR) spectroscopy has been utilised to examine the effect of high energy radiation on poly(2-hydroxyethyl methacrylate) PHEMA. Radiation chemical yields ( G-values) for radicals were 1.7 and 1.2 for γ-irradiation at 77 K and ambient temperature, respectively. The ESR spectra at 77 and 300 K were simulated. The ESR spectrum at 77 K is a combination of six types of radicals ·CH 3, ·CH 2CH 2OH, COOCHCH 2OH, ·COO-, -CH- and ·CHO. However, after room temperature irradiation, the spectrum is a combination of methacrylate main chain scission radical and -CH-. The high stability of this radical at room temperature indicates the system is very rigid as a result of hydrogen bonding from the inherent side chain structure and radiation induced crosslinking due to labile hydrogen atoms in the side chain.

  6. Direct access to dithiobenzoate RAFT agent fragmentation rate coefficients by ESR spin-trapping.

    PubMed

    Ranieri, Kayte; Delaittre, Guillaume; Barner-Kowollik, Christopher; Junkers, Thomas

    2014-12-01

    The β-scission rate coefficient of tert-butyl radicals fragmenting off the intermediate resulting from their addition to tert-butyl dithiobenzoate-a reversible addition-fragmentation chain transfer (RAFT) agent-is estimated via the recently introduced electron spin resonance (ESR)-trapping methodology as a function of temperature. The newly introduced ESR-trapping methodology is critically evaluated and found to be reliable. At 20 °C, a fragmentation rate coefficient of close to 0.042 s(-1) is observed, whereas the activation parameters for the fragmentation reaction-determined for the first time-read EA = 82 ± 13.3 kJ mol(-1) and A = (1.4 ± 0.25) × 10(13) s(-1) . The ESR spin-trapping methodology thus efficiently probes the stability of the RAFT adduct radical under conditions relevant for the pre-equilibrium of the RAFT process. It particularly indicates that stable RAFT adduct radicals are indeed formed in early stages of the RAFT poly-merization, at least when dithiobenzoates are employed as controlling agents as stipulated by the so-called slow fragmentation theory. By design of the methodology, the obtained fragmentation rate coefficients represent an upper limit. The ESR spin-trapping methodology is thus seen as a suitable tool for evaluating the fragmentation rate coefficients of a wide range of RAFT adduct radicals. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. ESR dosimeter material properties of phenols compound exposed to radiotherapeutic electron beams

    NASA Astrophysics Data System (ADS)

    Gallo, Salvatore; Iacoviello, Giuseppina; Bartolotta, Antonio; Dondi, Daniele; Panzeca, Salvatore; Marrale, Maurizio

    2017-09-01

    There is a need for a sensitive dosimeter using Electron Spin Resonance spectroscopy for use in medical applications, since non-destructive read-out and dose archival could be achieved with this method. This work reports a systematic ESR investigation of IRGANOX ® 1076 exposed to clinical electron beams produced by a LINAC used for radiation therapy treatments. Recently, dosimetric features of this material were investigated for irradiation with 60Co γ -photons and neutrons in both pellet and film shape and have been found promising thanks to their high efficiency of radiation-matter energy transfer and radical stability at room temperature. Here the analysis of the dosimetric features of these ESR dosimeters exposed to clinical electron beams at energies of 7, 10 and 14 MeV, is described in terms of dependence on microwave power and modulation amplitude, response on dose, dependence on beam type, detection limits, and signal stability after irradiation. The analysis of the ESR signal as function of absorbed dose highlights that the response of this material is linear in the dose range investigated (1-13 Gy) and is independent of the beam energy. The minimum detectable dose is found to be smaller than 1 Gy. Comparison of electron stopping power values of these dosimeters with those of water and soft tissue highlights equivalence of the response to electron beams in the energy range considered. The signal intensity was monitored for 40 days after irradiation and for all energies considered and it shows negligible variations in the first 500 h after irradiation whereas after 1100 h the signal decay is only of about 4%. In conclusion, it is found that phenolic compounds possess good dosimetric features which make it useful as a sensitive dosimeter for medical applications.

  8. π to σ Radical Tautomerization in One-Electron Oxidized 1-Methylcytosine and its Analogs

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Bishop, Casandra T.; Wiegand, Tyler J.; Hindi, Ragda M.; Adhikary, Ananya; Sevilla, Michael D.

    2015-01-01

    In this work iminyl σ-radical formation in several one-electron oxidized cytosine analogs including 1-MeC, cidofovir, 2′-deoxycytidine (dCyd), and 2′-deoxycytidine 5′-monophosphate (5′-dCMP) were investigated in homogeneous aqueous (D2O or H2O) glassy solutions at low temperatures employing electron spin resonance (ESR) spectroscopy. Employing density functional theory (DFT) (DFT/B3LYP/6-31G* method), the calculated hyperfine coupling constant (HFCC) values of iminyl σ-radical agree quite well with the experimentally observed ones thus confirming its assignment. ESR and DFT studies show that the cytosine-iminyl σ-radical is a tautomer of the deprotonated cytosine π-cation radical (cytosine π-aminyl radical, C(N4-H)•). Employing 1-MeC samples at various pHs ranging ca. 8 to ca. 11, ESR studies show that the tautomeric equilibrium between C(N4-H)• and the iminyl σ-radical at low temperature is too slow to be established without added base. ESR and DFT studies agree that in the iminyl-σ radical, the unpaired spin is localized to the exocyclic nitrogen (N4) in an in-plane pure p-orbital. This gives rise to an anisotropic nitrogen hyperfine coupling (Azz = 40 G) from N4 and a near isotropic β-nitrogen coupling of 9.7 G from the cytosine ring nitrogen at N3. Iminyl σ-radical should exist in its N3-protonated form as the N3-protonated iminyl σ-radical is stabilized in solution by over 30 kcal/mol (ΔG= −32 kcal/mol) over its conjugate base, the N3-deprotonated form. This is the first observation of an isotropic β-hyperfine ring nitrogen coupling in an N-centered DNA-radical. Our theoretical calculations predict that the cytosine iminyl σ-radical can be formed in dsDNA by a radiation-induced ionization–deprotonation process that is only 10 kcal/mol above the lowest energy path. PMID:26237072

  9. Interpretation of cw-ESR spectra of p-methyl-thio-phenyl-nitronyl nitroxide in a nematic liquid crystalline phase.

    PubMed

    Collauto, Alberto; Zerbetto, Mirco; Brustolon, Marina; Polimeno, Antonino; Caneschi, Andrea; Gatteschi, Dante

    2012-03-07

    In this paper we report on the characterization by continuous wave electron spin resonance spectroscopy (cw-ESR) of a nitronyl nitroxide radical in a nematic phase. A detailed analysis is performed by exploiting an innovative modeling strategy alternative to the usual spectral simulation approach: most of the molecular parameters needed to calculate the spectrum are evaluated a priori and the ESR spectrum is obtained by direct application of the stochastic Liouville equation. Allowing a limited set of fitting parameters it is possible to reproduce satisfactorily ESR spectra in the temperature range 260 K-340 K including the nematic-to-isotropic phase transition (325.1 K). Our results open the way to a more quantitative understanding of the ordering and mobility of nitronyl nitroxide radicals in nanostructured environments.

  10. Electron Spin Resonance (ESR) Studies of Returned Comet Nucleus Samples

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1997-01-01

    Electron Spin Resonance (ESR) studies have been carried out on organic and inorganic free radicals generated by gamma-ray and/or UV-irradiation and trapped in ice matrices. It is suggested that the concentration of these free radicals together with their thermal stability can be used as an accurate built-in geothermometer and radiation probe for returned comet nucleus sample studies. ESR studies have also been carried out on paramagnetic (Mn(2+), Ti(3+), and Fe(3+)) and ferromagnetic (ferric oxide and metallic iron) centers known to be present in terrestrial and extraterrestrial samples. The presence or absence of these magnetic centers coupled with their characteristic ESR lineshape can be used to investigate the shock effects, quenching/cooling rate and oxidation-reduction conditions in the formation and subsequent evolution of returned comet nucleus samples.

  11. Development and performance of a 129-GHz dynamic nuclear polarizer in an ultra-wide bore superconducting magnet

    PubMed Central

    Lumata, Lloyd L.; Martin, Richard; Jindal, Ashish K.; Kovacs, Zoltan; Conradi, Mark S.

    2014-01-01

    Objective We sought to build a dynamic nuclear polarization system for operation at 4.6 T (129 GHz) and evaluate its efficiency in terms of 13C polarization levels using free radicals that span a range of ESR linewidths. Materials and methods A liquid helium cryostat was placed in a 4.6 T superconducting magnet with a 150-mm warm bore diameter. A 129-GHz microwave source was used to irradiate 13C enriched samples. Temperatures close to 1 K were achieved using a vacuum pump with a 453-m3/h roots blower. A hyperpolarized 13C nuclear magnetic resonance (NMR) signal was detected using a saddle coil and a Varian VNMRS console operating at 49.208 MHz. Samples doped with free radicals BDPA (1,3-bisdipheny-lene-2-phenylallyl), trityl OX063 (tris{8-carboxyl-2,2,6,6-benzo(1,2-d:4,5-d)-bis(1,3)dithiole-4-yl}methyl sodium salt), galvinoxyl ((2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy), 2,2-diphenylpicrylhydrazyl (DPPH) and 4-oxo-TEMPO (4-Oxo-2,2,6,6-tetramethyl-1-piperidinyloxy) were assayed. Microwave dynamic nuclear polarization (DNP) spectra and solid-state 13C polarization levels for these samples were determined. Results 13C polarization levels close to 50 % were achieved for [1-13C]pyruvic acid at 1.15 K using the narrow electron spin resonance (ESR) linewidth free radicals trityl OX063 and BDPA, while 10–20 % 13C polarizations were achieved using galvinoxyl, DPPH and 4-oxo-TEMPO. Conclusion At this field strength free radicals with smaller ESR linewidths are still superior for DNP of 13C as opposed to those with linewidths that exceed that of the 1H Larmor frequency. PMID:25120071

  12. CIDEP study on the flash photolysis of benzoin included in β-cyclodextrin

    NASA Astrophysics Data System (ADS)

    Kitahama, Yasutaka; Murai, Hisao

    1996-10-01

    The photodissociation reaction of benzoin (Norrish type I) included in a β-cyclodextrin (CD) cavity in the aqueous phase was studied by using time-resolved ESR and Fourier transform ESR methods. The CIDEP (chemically induced dynamic electron polarization) spectra of α-hydroxybenzyl radical and benzoyl radical were carefully investigated in β-CD, in ethanol, in an ethanol/water mixture, and in saturated aqueous solutions. According to these data and the calculations due to an extended Bloch equation, the spin-lattice relaxation time observed in the β-CD system was compared to those in homogeneous solutions. It is concluded that dissociation takes place from the excited triplet state of benzoin and the fragment radicals are easily ejected from the cavity of β-CD to the aqueous phase much faster than the time-resolution (˜ 20 ns) of the present FT-ESR measurement.

  13. ESR study of free radicals in mango

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masahiro; Hussain, Mohammad S.; Morishita, Norio; Ukai, Mitsuko; Kobayashi, Yasuhiko; Shimoyama, Yuhei

    2010-01-01

    An electron spin resonance (ESR) spectroscopic study of radicals induced in irradiated fresh mangoes was performed. Mangoes in the fresh state were irradiated with γ-rays, lyophilized and then crushed into a powder. The ESR spectrum of the powder showed a strong main peak at g = 2.004 and a pair of peaks centered at the main peak. The main peak was detected from both flesh and skin specimens. This peak height gradually decreased during storage following irradiation. On the other hand, the side peaks showed a well-defined dose-response relationship even at 9 days post-irradiation. The side peaks therefore provide a useful means to define the irradiation of fresh mangoes.

  14. Roles of free radicals in type 1 phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates.

    PubMed

    Lin, Tien-Sung; Rajagopalan, Raghavan; Shen, Yuefei; Park, Sungho; Poreddy, Amruta R; Asmelash, Bethel; Karwa, Amolkumar S; Taylor, John-Stephen A

    2013-07-03

    Detailed analyses of the electron spin resonance (ESR) spectra, cell viability, and DNA degradation studies are presented for the photolyzed Type I phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates. The ESR studies provided evidence that copious free radicals can be generated from these N-H, N-S, and S-O containing compounds upon photoirradiation with UV/visible light. The analyses of spectral data allowed us to identify the free radical species. The cell viability studies showed that these agents after exposure to light exert cytotoxicity to kill cancer cells (U937 leukemia cell lines HTC11, KB, and HT29 cell lines) in a dosage- and time-dependent manner. We examined a possible pathway of cell death via DNA degradation by a plasmid cleavage assay for several compounds. The effects of photosensitization with benzophenone in the presence of oxygen were examined. The studies indicate that planar tricyclic amines and sulfenamides tend to form π-electron delocalized aminyl radicals, whereas nonplanar ones tend to yield nitroxide radicals resulting from the recombination of aminyl radicals with oxygen. The ESR studies coupled with the results of cell viability measurements and DNA degradation reveal that planar N-centered radicals can provide higher potency in cell death and allow us to provide some insights on the reaction mechanisms. We also found the formation of azatropylium cations possessing high aromaticity derived from azepines can facilitate secondary electron transfer to form toxic O2(•-) radicals, which can further exert oxidative stress and cause cell death.

  15. ESR dating of submarine hydrothermal activities using barite in sulfide deposition

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.

    2012-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much higher than usual sea water. (5) The decay of 226Ra has to be considered. (6) Major terms of dose rate are the internal alpha dose rate and the external beta and gamma dose rates. (7) The alpha effectiveness, the ratio of forming the radical by internal alpha particles to by beta and gamma rays, was obtained to be 0.043±0.018. (8) The shape of the chimney sample should be considered for gamma ray dose. Examples of dating results for submarine hydrothermal deposits from South Mariana and Okinawa Trough will be presented.

  16. Free radical generation in the brain precedes hyperbaric oxygen-induced convulsions.

    PubMed

    Torbati, D; Church, D F; Keller, J M; Pryor, W A

    1992-01-01

    We tested the hypothesis that hyperbaric oxygenation (HBO) generates free radicals in the brain before the onset of neurological manifestations of central nervous system (CNS) oxygen poisoning. Chronically cannulated, conscious rats were individually placed in a transparent pressure chamber and exposed to (1) 5 atmospheres absolute (ATA) oxygen for 15 min (n = 4); (2) 5 ATA oxygen for 30 min (n = 5), during which no visible convulsions occurred; (3) 5 ATA oxygen for 30 min with recurrent convulsions (n = 6); (4) 5 ATA oxygen until the appearance of the first visible convulsions (n = 5); (5) 4 ATA oxygen for 60 min during which no convulsions occurred (n = 5); and (6) 5 ATA air for 30 min (n = 5, controls). Immediately before compression, 1 mL of 0.1 M of alpha-phenyl-N-tert-butyl nitrone (PBN) was administered intravenously (iv) for spin trapping. At the termination of each experiment, rats were euthanized by pentobarbital iv and decompressed within 1 min. Brains were rapidly removed for preparation of lipid extracts (Folch). The presence of PBN spin adducts in the lipid extracts was examined by electron spin resonance (ESR) spectroscopy. ESR spectra from unconvulsed rats exposed to 5 ATA oxygen for 30 min revealed both oxygen-centered and carbon-centered PBN spin adducts in three of the five brains. One of the five rats in this group showed an ascorbyl signal in the ESR spectrum.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Identification of irradiated peppers by electron spin resonance, thermoluminescence and viscosity

    NASA Astrophysics Data System (ADS)

    Polónia, Isabel; Esteves, M. P.; Andrade, M. E.; Empis, J.

    1995-02-01

    White and black pepper purchased in local retailers were analysed by electron spin resonance (ESR), thermoluminescence (TL) and viscosimetry (VISC) in order to establish a viable method for identifying possibly irradiated peppers. Samples studied were non irradiated or irradiated in a cobalt-60 plant with the absorbed doses of 3, 5, 7 and 10 kGy. Confirming the data found in the literature TL was revealed by our results the best method to identify irradiated peppers. Nevertheless, the dose received by the samples could not be estimated. The ESR signal of irradiated peppers is similar to the spectrum of cellulose radical but very short lived at ambient temperature. The study on the alteration of viscosity of heat-treated alkaline pepper suspensions indicate that VISC is a very promising method for detection of irradiated peppers.

  18. Electron spin resonance study of thermal instability reactions in jet fuels

    NASA Technical Reports Server (NTRS)

    Zeldes, H.; Livingston, R.

    1984-01-01

    Free radicals were studied by electron spin resonance (ESR) using model compounds that are representative of constituents of jet fuels. Radical formation was initiated with peroxides and hydroperoxides by using UV photolysis at and near room temperature and thermal initiation at higher temperatures. Both oxygen free and air saturated systems were studied. N-Dodecane was frequently used as a solvent, and a mixture of n-dodecyl radicals was made with a peroxide initiator in n-dodecane (free of oxygen) thermally at 212 C and photolytically at room temperature. Hydrogen abstraction from the 3,4,5 and 6-positions gives radicals that are sufficiently alike that their spectra are essentially superimposed. The radical formed by abstract of hydrogen from the 2-position gives a different spectrum. ESR parameters for these radicals were measured. The radical formed by abstraction of a primary hydrogen was not observed. Similar radicals are formed from n-decane. A variety of exploratory experiments were carried out with systems that give free radical spectra to which was added small amounts of 2,5-dimethylpyrrole.

  19. ESR, spectroscopic, and quantum-chemical studies on the electronic structures of complexes formed by Cu(I) with radicals (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gritsan, N.P.; Usov, O.M.; Shokhirev, N.V.

    1986-07-01

    The optical and ESR spectra have been examined for complexes of Cu(I) with various radicals, which contain various numbers of Cl/sup -/ ions in the central-atom coordination sphere. The spin-Hamiltonian parameters have been determined for all these radical complexes, and the observed ESR spectra have been compared with those calculated with allowance for second-order effects. The observed values for the isotropic and anisotropic components of the HFI constant from the central ion have been used to estimate the contributions from the 4s and 3d/sup 2//sub z/ orbitals of the copper ion to the unpaired-electron MO. Quantum-chemical calculations have been performedmore » by the INDO method on the electronic structures and geometries of complexes formed by CH/sub 2/OH with Cu(I) for various Cl/sup -/ contents in the coordination sphere. The radical is coordinated by the ..pi.. orbital on the carbon atom, and the stabilities of the radical complexes decrease as the number of Cl/sup -/ ions in the coordination sphere increases. A geometry close to planar for the CuCl/sub 4//sup 3 -/ fragment in a complex containing four Cl/sup -/ ions.« less

  20. Reduction process of nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging: An ESR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meenakumari, V.; Premkumar, S.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM {sup 14}N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of {sup 14}N- labeled nitroxyl radicals in 1 mM concentration ofmore » ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.« less

  1. Reduction process of nitroxyl spin probes used in Overhauser-enhanced magnetic resonance imaging: An ESR study

    NASA Astrophysics Data System (ADS)

    Meenakumari, V.; Jawahar, A.; Premkumar, S.; Benial, A. Milton Franklin

    2016-05-01

    The Electron spin resonance studies on the reduction process of nitroxyl spin probes were carried out for 1mM 14N- labeled nitroxyl radicals in pure water and 1 mM concentration of ascorbic acid as a function of time. The electron spin resonance parameters, such as line width, hyperfine coupling constant, g-factor, signal intensity ratio and rotational correlation time were estimated. The 3-carbamoyl-PROXYL radical has narrowest line width and fast tumbling motion compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO, and 4-acetamido-TEMPO radicals. The half life time and decay rate were estimated for 1mM concentration of 14N- labeled nitroxyl radicals in 1 mM concentration of ascorbic acid. From the results, the 3-carbamoyl-PROXYL has long half life time and high stability compared with 3-carboxy-PROXYL, 4-methoxy-TEMPO and 4-acetamido-TEMPO radicals. Therefore, this study reveals that the 3-carbamoyl-PROXYL radical can act as a good redox sensitive spin probe for Overhauser-enhanced Magnetic Resonance Imaging.

  2. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.

    PubMed

    Lassmann, G; Curtis, J; Liermann, B; Mason, R P; Eling, T E

    1993-01-01

    Using ESR spectroscopy, the ability of enzyme inhibitors to quench protein-derived tyrosyl radicals was studied in two different enzymes, prostaglandin H synthase and ribonucleotide reductase. The prostaglandin H synthase inhibitors indomethacin, eugenol, and MK-410 effectively prevent the formation of tyrosyl radicals during the oxidation of arachidonic acid by prostaglandin H synthase from ram seminal vesicles. A direct reaction with preformed tyrosyl radicals was observed only with eugenol. The other prostaglandin H synthase inhibitors were ineffective. The ribonucleotide reductase inhibitors hydroxyurea and 4-hydroxyanisole, which effectively inactivate the tyrosyl radical in the active site of ribonucleotide reductase present in tumor cells, exhibit a different reactivity with tyrosyl radicals formed by prostaglandin H synthase. Hydroxyurea quenches preformed tyrosyl radicals in prostaglandin H synthase weakly, whereas 4-hydroxyanisole does not quench tyrosyl radicals in prostaglandin H synthase at all. Eugenol, which quenches preformed prostaglandin H synthase-derived tyrosyl radicals, also quenches the tyrosyl radical in ribonucleotide reductase. The results suggest that the reactivity of protein-linked tyrosyl radicals in ribonucleotide reductase and those formed during prostaglandin H synthase catalysis are very different and have unrelated roles in enzyme catalysis.

  3. In situ electrochemical-electron spin resonance investigations of multi-electron redox reaction for organic radical cathodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Qian; Walter, Eric D.; Cosimbescu, Lelia

    2016-02-29

    Organic radical batteries (ORBs) bearing robust radical polymers as energy storage species, are emerging promisingly with durable high energy and power characteristics by unique tunable redox properties. Here we report the development and application of in situ electrochemical-electron spin resonance (ESR) methodologies to identify the charge transfer mechanism of Poly(2,2,6,6- tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) based organic radical composite cathodes in the charge-discharge process of lithium half cells. The in situ experiments allow each electrochemical state to be associated with the chemical state (or environment) of the radical species upon the cell cycling. In situ ESR spectra of the composite cathode demonstratemore » a two-electron redox reaction of PTMA. Moreover, two different local environments of radical species are found in the composite electrode that includes both concentrated and isolated radicals. These two types of radicals show similarities during the redox reaction process while behave quite differently in the non-faradic reaction of ion sorption/desorption on the electrode surface.« less

  4. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping.

    PubMed

    Mason, Ronald Paul

    2016-08-01

    The accurate and sensitive detection of biological free radicals in a reliable manner is required to define the mechanistic roles of such species in biochemistry, medicine and toxicology. Most of the techniques currently available are either not appropriate to detect free radicals in cells and tissues due to sensitivity limitations (electron spin resonance, ESR) or subject to artifacts that make the validity of the results questionable (fluorescent probe-based analysis). The development of the immuno-spin trapping technique overcomes all these difficulties. This technique is based on the reaction of amino acid- and DNA base-derived radicals with the spin trap 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) to form protein- and DNA-DMPO nitroxide radical adducts, respectively. These adducts have limited stability and decay to produce the very stable macromolecule-DMPO-nitrone product. This stable product can be detected by mass spectrometry, NMR or immunochemistry by the use of anti-DMPO nitrone antibodies. The formation of macromolecule-DMPO-nitrone adducts is based on the selective reaction of free radical addition to the spin trap and is thus not subject to artifacts frequently encountered with other methods for free radical detection. The selectivity of spin trapping for free radicals in biological systems has been proven by ESR. Immuno-spin trapping is proving to be a potent, sensitive (a million times higher sensitivity than ESR), and easy (not quantum mechanical) method to detect low levels of macromolecule-derived radicals produced in vitro and in vivo. Anti-DMPO antibodies have been used to determine the distribution of free radicals in cells and tissues and even in living animals. In summary, the invention of the immuno-spin trapping technique has had a major impact on the ability to accurately and sensitively detect biological free radicals and, subsequently, on our understanding of the role of free radicals in biochemistry, medicine and toxicology. Published by Elsevier B.V.

  5. On the time behaviour of the concentration of pyrazinium radical cations in the early stage of the Maillard reaction

    NASA Astrophysics Data System (ADS)

    Stoesser, Reinhard; Klein, Jeannette; Peschke, Simone; Zehl, Andrea; Cämmerer, Bettina; Kroh, Lothar W.

    2007-08-01

    During the early stage of the Maillard reaction pyrazinium radical cations were detected by ESR within the reaction system D-glucose/glycine. The spectra were characterized by completely resolved hyperfine structure. The partial pressure of oxygen and the radical concentrations were measured directly in the reaction mixture by ESR using solutions of the spin probe TEMPOL and of DPPH, respectively. There are quantitative and qualitative relations of the actual concentration of the radical ions to the partial pressure of oxygen, the temperature-time regime and the mechanical mixing of the reaction system. These macroscopic parameters significantly affect both the induction period and the velocity of the time-dependent formation of free radicals. From in situ variations of p(O 2) and p(Ar) including the connected mixing effects caused by the passing the gases through the reaction mixture, steric and chemical effects of the stabilization of the radical ions were established. The determination of suitable and relevant conditions for stabilization and subsequent radical reactions contributes to the elucidation of the macroscopically known antioxidant activity of Maillard products.

  6. Serum Hydroxyl Radical Scavenging Capacity as Quantified with Iron-Free Hydroxyl Radical Source

    PubMed Central

    Endo, Nobuyuki; Oowada, Shigeru; Sueishi, Yoshimi; Shimmei, Masashi; Makino, Keisuke; Fujii, Hirotada; Kotake, Yashige

    2009-01-01

    We have developed a simple ESR spin trapping based method for hydroxyl (OH) radical scavenging-capacity determination, using iron-free OH radical source. Instead of the widely used Fenton reaction, a short (typically 5 seconds) in situ UV-photolysis of a dilute hydrogen peroxide aqueous solution was employed to generate reproducible amounts of OH radicals. ESR spin trapping was applied to quantify OH radicals; the decrease in the OH radical level due to the specimen’s scavenging activity was converted into the OH radical scavenging capacity (rate). The validity of the method was confirmed in pure antioxidants, and the agreement with the previous data was satisfactory. In the second half of this work, the new method was applied to the sera of chronic renal failure (CRF) patients. We show for the first time that after hemodialysis, OH radical scavenging capacity of the CRF serum was restored to the level of healthy control. This method is simple and rapid, and the low concentration hydrogen peroxide is the only chemical added to the system, that could eliminate the complexity of iron-involved Fenton reactions or the use of the pulse-radiolysis system. PMID:19794928

  7. ESR Dating Research of Glacial Tills in Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bi, W.; Yi, C.

    2016-12-01

    In recent years, Quaternary Glacial-chronology has been made remarkable progress in the Tibetan Platean(TP) with the development of several numeric dating techniques, such as cosmogenic nuclides(NC), optically stimulated luminescence(OSL) and 14C. In constrast, the dating of Quaternary glacial tills in 100,000 years even more than million-year has been a challenge, just because the techniques has defects themselves and the sediments were stransformed during the geological and geomorphology progress later. Electron Spin Resonance(ESR) has been becoming one of the key methods of Quaternary Glacial-chronology with wide range of dating, expecially for the sample older than 100,000 years up to million-year scale. The accurate measurement of equivalent dose significantly impacts on accuracy and reliability of ESR dating method. Therefore, the study of the mechanisms of resetting processes is fundamental for accurate and reliable ESR dating. To understand the mechanism and characteristics of quartz ESR signal resetting of different samples, a series of laboratory simulation and field observation studies were carried out, which made lots of important breakthrough. But the research in quartz ESR signal of moraines is less and the test of ESR dating method is still in the qualitative investigation. Therefor, we use ESR dating and study on the mechanism and characteristics of quartz ESR signals in tills in the Tibetan Platean. In the adjust method of Modern, the quartz ESR signals in Modern glacial tills represent residual values which can be adjusted signals in the older glacial tills. As a consequence, ESR dating of the quartz in moraines needs to be explored in deep with building models to adjust ages which are measured by ESR dating. Therefore, ESR dating will become the trusted one of the cross dating methods in Quaternary Glacial-chronology with the adjust mothod improving the accuracy of ESR dating ages.

  8. Electron spin resonance of gamma-irradiated poly/ethylene 2,6-naphthalene dicarboxylate/.

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Pezdirtz, G. F.

    1971-01-01

    The two types of radicals trapped in gamma-irradiated PEN 2,6 are identified by ESR as - O - CH - CH2 - O - (radical I) and a radical located on the naphthalene ring (radical II). The concentrations of the radicals in the gross polyer are 10 to 20% of I and 80 to 90% of II. Similar trapped radicals are established in beta-irradiated PET, a structurally related polymer.

  9. Biological effects of cigarette smoke, wood smoke, and the smoke from plastics: the use of electron spin resonance.

    PubMed

    Pryor, W A

    1992-12-01

    This review compares and contrasts the chemistry of cigarette smoke, wood smoke, and the smoke from plastics and building materials that is inhaled by persons trapped in fires. Cigarette smoke produces cancer, emphysema, and other diseases after a delay of years. Acute exposure to smoke in a fire can produce a loss of lung function and death after a delay of days or weeks. Tobacco smoke and the smoke inhaled in a burning building have some similarities from a chemical viewpoint. For example, both contain high concentrations of CO and other combustion products. In addition, both contain high concentrations of free radicals, and our laboratory has studied these free radicals, largely by electron spin resonance (ESR) methods, for about 15 years. This article reviews what is known about the radicals present in these different types of smokes and soots and tars and summarizes the evidence that suggests these radicals could be involved in cigarette-induced pathology and smoke-inhalation deaths. The combustion of all organic materials produces radicals, but (with the exception of the smoke from perfluoropolymers) the radicals that are detected by ESR methods (and thus the radicals that would reach the lungs) are not those that arise in the combustion process. Rather they arise from chemical reactions that occur in the smoke itself. Thus, a knowledge of the chemistry of the smoke is necessary to understand the nature of the radicals formed. Even materials as similar as cigarettes and wood (cellulose) produce smoke that contains radicals with very different lifetimes and chemical characteristics, and mechanistic rationales for this are discussed. Cigarette tar contains a semiquinone radical that is infinitely stable and can be directly observed by ESR. Aqueous extracts of cigarette tar, which contain this radical, reduce oxygen to superoxide and thus produce both hydrogen peroxide and the hydroxyl radical. These solutions both oxidize alpha-1-proteinase inhibitor (a1PI) and nick DNA. Because of the potential role of radicals in smoke-inhalation injury, we suggest that antioxidant therapy (such as use of an inhaler for persons brought out of a burning building) might prove efficacious.

  10. ELECTRON SPIN RESONANCE STUDIES ON PEROXIDE RADICALS IN IRRADIATED POLYPROPYLENE (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, H.; Hellwege, K.-H.; Neudoerfl, P.

    1963-06-01

    Peroxide radicals are formed by oxidation of carbon radicals in irradiated isotactic polypropylene. An interpretation of their ESR spectra is given. The recombination of the peroxide radicals follows a chain reaction mechanism, which is derived from the reversibility of formation of peroxide radicals, the time dependence of their concentration, and from the oxygen consumption of samples containing peroxide radicals. The reactions are discussed in view of the radiation induced oxidative degradation of polypropylene. (auth)

  11. Self-assembled organic radicals on Au(111) surfaces: a combined ToF-SIMS, STM, and ESR study.

    PubMed

    Mannini, Matteo; Sorace, Lorenzo; Gorini, Lapo; Piras, Federica M; Caneschi, Andrea; Magnani, Agnese; Menichetti, Stefano; Gatteschi, Dante

    2007-02-27

    Electron spin resonance (ESR), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and scanning tunneling microscopy (STM) have been used in parallel to characterize the deposition on gold surface of a series of nitronyl nitroxide radicals. These compounds have been specifically synthesized with methyl-thio linking groups suitable to interact with the gold surface to form self-assembled monolayers (SAMs), which can be considered relevant in the research for molecular-based spintronics devices, as suggested in recent papers. The degree of the expected ordering on the surface of these SAMs has been tuned by varying the chemical structure of synthesized radicals. ToF-SIMS has been used to support the evidence of the occurrence of the deposition process. STM has shown the different qualities of the obtained SAMs, with the degree of local order increasing as the degree of freedom of the molecules on the surface is decreased. Finally, ESR has confirmed that the deposition process does not affect the paramagnetic characteristics of radicals and that it affords a complete single-layered coverage of the surface. Further, the absence of angular dependence in the spectra indicates that the small regions of local ordering do not give rise to a long-range order and suggests a quite large mobility of the radical on the surface, probably due to the weak interaction with gold provided by the methyl-thio linking group.

  12. Lipid-derived free radical production in superantigen-induced interstitial pneumonia

    PubMed Central

    Miyakawa, Hisako; Mason, Ronald P.; Jiang, JinJie; Kadiiska, Maria B.

    2009-01-01

    We studied the free radical generation involved in the development of interstitial pneumonia (IP) in an animal model of autoimmune disease. We observed an electron spin resonance (ESR) spectrum of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts detected in the lipid extract of lungs in autoimmune-prone mice after intratracheal instillation of staphylococcal enterotoxin B. The POBN adducts detected by ESR were paralleled by infiltration of macrophages and neutrophils in the bronchoalveolar lavage fluid. To further investigate the mechanism of free radical generation, mice were pretreated with the macrophage toxicant gadolinium chloride, which significantly suppressed the radical generation. Free radical generation was also decreased by pretreatment with the xanthine oxidase (XO) inhibitor allopurinol, the iron chelator Desferal, and the inducible nitric oxide synthase (iNOS) inhibitor 1400W. Histopathologically, these drugs significantly reduced both the cell infiltration to alveolar septal walls and the synthesis of pulmonary collagen fibers. Experiments with NADPH oxidase knockout mice showed that NADPH oxidase did not contribute to lipid radical generation. These results suggest that lipid-derived carbon-centered free radical production is important in the manifestation of IP and that a macrophage toxicant, an XO inhibitor, an iron chelator, and an iNOS inhibitor protect against both radical generation and the manifestation of IP. PMID:19376221

  13. Free radical reaction characteristics of coal low-temperature oxidation and its inhibition method.

    PubMed

    Li, Zenghua; Kong, Biao; Wei, Aizhu; Yang, Yongliang; Zhou, Yinbo; Zhang, Lanzhun

    2016-12-01

    Study on the mechanism of coal spontaneous combustion is significant for controlling fire disasters due to coal spontaneous combustion. The free radical reactions can explain the chemical process of coal at low-temperature oxidation. Electron spin resonance (ESR) spectroscopy was used to measure the change rules of the different sorts and different granularity of coal directly; ESR spectroscopy chart of free radicals following the changes of temperatures was compared by the coal samples applying air and blowing nitrogen, original coal samples, dry coal samples, and demineralized coal samples. The fragmentation process was the key factor of producing and initiating free radical reactions. Oxygen, moisture, and mineral accelerated the free radical reactions. Combination of the free radical reaction mechanism, the mechanical fragmentation leaded to the elevated CO concentration, fracturing of coal pillar was more prone to spontaneous combustion, and spontaneous combustion in goaf accounted for a large proportion of the fire in the mine were explained. The method of added diphenylamine can inhibit the self-oxidation of coal effectively, the action mechanism of diphenylamine was analyzed by free radical chain reaction, and this research can offer new method for the development of new flame retardant.

  14. [Induction of free radicals after dietary exposure by mercury contaminated rice and protective effect of coexisting selenium].

    PubMed

    Ji, Xiu-ling; Cheng, Jin-ping; Wang, Wen-hua; Qu, Li-ya; Zhao, Xiao-xiang; Zhuang, Hui-sheng

    2006-10-01

    Sprague-Dawley rats were reared by environmental mercury contaminated rice to survey the potential health risk of Wanshan mercury mining area. Electron spin resonance (ESR) was introduced to detect the species and the intensities of free radicals, using spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The results showed that the mercury-contaminated rice significantly increased the levels of free radicals and MDA in rat brain at 7 days (p < 0.05). ESR spectrums showed that the principal spin adducts resulted from the trapping of alkyl free radical (alphaH = 22.7 x 10(-4)T +/- 1.6 x 10(-4)T, alphaN = 15.5 x 10(-4)T +/- 0.5 x 10(-4)T), and hydroxyl radical. Levels of free radicals and MDA increased slowly until after 90-day exposure period (83%, 100%). Element correlation analysis showed high correlations of mercury and selenium in the brain of rat fed with Wanshan rice, suggesting that the coexisting selenium in rice exhibited antagonistic effects on both mercury accumulation and toxicity. The slight increases of free radicals in rat brain at 7, 20 and 30-day exposure periods should be related with the scavenger effect of Se.

  15. Measurement of electron paramagnetic resonance using terahertz time-domain spectroscopy.

    PubMed

    Kozuki, Kohei; Nagashima, Takeshi; Hangyo, Masanori

    2011-12-05

    We present a frequency-domain electron spin resonance (ESR) measurement system using terahertz time-domain spectroscopy. A crossed polarizer technique is utilized to increase the sensitivity in detecting weak ESR signals of paramagnets caused by magnetic dipole transitions between magnetic sublevels. We demonstrate the measurements of ESR signal of paramagnetic copper(II) sulfate pentahydrate with uniaxial anisotropy of the g-factor under magnetic fields up to 10 T. The lineshape of the obtained ESR signals agrees well with the theoretical predictions for a powder sample with the uniaxial anisotropy.

  16. Electron Spin Resonance (ESR) studies of returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The most important objective of the Comet Nucleus Sample Returm Mission is to return samples which could reflect formation conditions and evolutionary processes in the early solar nebula. It is expected that the returned samples will consist of fine-grained silicate materials mixed with ices composed of simple molecules such as H2O, NH3, CH4 as well as organics and/or more complex compounds. Because of the exposure to ionizing radiation from cosmic-ray, gamma-ray, and solar wind protons at low temperature, free radicals are expected to be formed and trapped in the solid ice matrices. The kind of trapped radical species together with their concentration and thermal stability can be used as a dosimeter as well as a geothermometer to determine thermal and radiation histories as well as outgassing and other possible alternation effects since the nucleus material was formed. Since free radicals that are known to contain unpaired electrons are all paramagnetic in nature, they can be readily detected and characterized in their native form by the Electron Spin Resonance (ESR) method. In fact, ESR has been shown to be a non-destructive, highly sensitive tool for the detection and characterization of paramagnetic, ferromagnetic, and radiation damage centers in terrestrial and extraterrestrial geological samples. The potential use of ESR as an effective method in the study of returned comet nucleus samples, in particular, in the analysis of fine-grained solid state icy samples is discussed.

  17. ESR Measurement Of Crystallinity In Semicrystalline Polymers

    NASA Technical Reports Server (NTRS)

    Kim, Soon Sam; Tsay, Fun-Dow

    1989-01-01

    Photogenerated free radicals decay at different rates in crystalline and amorphous phases. Degree of crystallinity in polymer having both crystalline and amorphous phases measured indirectly by technique based in part on electron-spin-resonance (ESR) spectroscopy. Accuracy of crystallinity determined by new technique equals or exceeds similar determinations by differential scanning calorimetry, wide-angle x-ray scattering, or measurement of density.

  18. Electron spin resonance (ESR/EPR) of free radicals observed in human red hair: a new, simple empirical method of determination of pheomelanin/eumelanin ratio in hair.

    PubMed

    Chikvaidze, Eduard N; Partskhaladze, Tamar M; Gogoladze, Temur V

    2014-07-01

    The definition of the concentration of pheomelanin in the skin is an issue of great interest because in the case of being influenced by UV radiation, it manifests itself as a prooxidant, causing various skin disorders including melanoma that might help to explain the relatively high incidence of skin cancer among individuals with red hair. The ESR spectra of red hair samples were investigated. It was found that at low microwave power, they are characterized by two types of spectra. Red hair ESR signals result from a superposition of two spectral shapes, a singlet spectrum as a result of the existence of eumelanin and a triplet spectrum as a result of the existence of pheomelanin. At high microwave power, only triplet spectra shape was detected, caused by saturation of the eumelanin singlet. Using different concentration ratios of black to red hair, we measured ESR spectra and plotted the ratio values in each sample against a measured 'g-factor' (experimental). We found that there is a linear relationship between these two parameters. So, it is evident that using these results, the concentration ratio of pheomelanin to eumelanin in a sample of hair can be easily determined by an almost noninvasive method. This can be considered a potential advantage for many practical activities compared with other invasive methods. The concentration dependence curve of pheomelanin (µg/mg) on gexp-factor in an ESR spectrum of hair has been designed, which allows the determination of the amount of pheomelanin in hair of any color. Copyright © 2014 John Wiley & Sons, Ltd.

  19. Protective effects of astaxanthin from Paracoccus carotinifaciens on murine gastric ulcer models.

    PubMed

    Murata, Kenta; Oyagi, Atsushi; Takahira, Dai; Tsuruma, Kazuhiro; Shimazawa, Masamitsu; Ishibashi, Takashi; Hara, Hideaki

    2012-08-01

    The purpose of this study was to investigate the effect of astaxanthin extracted from Paracoccus carotinifaciens on gastric mucosal damage in murine gastric ulcer models. Mice were pretreated with astaxanthin for 1 h before ulcer induction. Gastric ulcers were induced in mice by oral administration of hydrochloride (HCl)/ethanol or acidified aspirin. The effect of astaxanthin on lipid peroxidation in murine stomach homogenates was also evaluated by measuring the level of thiobarbituric acid reactive substance (TBARS). The free radical scavenging activities of astaxanthin were also measured by electron spin resonance (ESR) measurements. Astaxanthin significantly decreased the extent of HCl/ethanol- and acidified aspirin-induced gastric ulcers. Astaxanthin also decreased the level of TBARS. The ESR measurement showed that astaxanthin had radical scavenging activities against the 1,1-diphenyl-2-picrylhydrazyl radical and the superoxide anion radical. These results suggest that astaxanthin has antioxidant properties and exerts a protective effect against ulcer formation in murine models. Copyright © 2011 John Wiley & Sons, Ltd.

  20. Intramolecular Electron Transfer in Bis(tetraalkyl Hydrazine) and Bis(hydrazyl) Radical Cations.

    NASA Astrophysics Data System (ADS)

    Chang, Hao

    A series of multicyclic bis(hydrazine) and bis(diazenium) compounds connected by relatively rigid hydrocarbon frameworks were prepared for the study of intramolecular electron transfer. The thermodynamics of electron removal of these compounds was investigated by cyclic voltammetry. The difference between the first and second oxidation potentials for the 4 sigma-bonded species was found to be larger for the bis(hydrazyl) radical systems than for the bis(hydrazines) by ca. 0.2 V (4.6 kcal/mol). This indicates a greater degree of interaction between the two nitrogen moieties for the hydrazyl systems, which is consistent with a greater degree of electronic coupling (H _{rm AB}) in these systems. The ESR spectra of the 4 sigma -bonded bis(hydrazine) radical cations indicate localized radical cations, which corresponds to slow intramolecular electron transfer on the ESR timescale. Conversely, the ESR spectra of the corresponding bis(hydrazyl) radical cation systems show nitrogen hyperfine splittings of a(4N) of ca. 4.5 G. This indicates that intramolecular electron transfer between the two nitrogen moieties is fast on the ESR timescale; the rate of exchange, k_ {rm ex} was estimated to be well above 1.9 times 10^8 s^{-1}. The contrast in exchange rates is consistent with the large geometry change upon oxidation which is characteristic of hydrazines. The hydrazyls undergo a smaller geometry change upon oxidation, and thus are expected to exhibit smaller inner-sphere reorganization energies. The optical spectra of these radical species was investigated in hopes of observing absorption bands corresponding to intramolecular electron transfer, as predicted by Hush theory. A broad absorption band was observed in the near IR region for the saturated bis(hydrazyl) radical cation system at 1060 nm (9420 cm^{-1} ) in acetonitrile at room temperature, and was accompanied by a narrower band at 1430 nm (6993 cm^ {-1}). The width of this band was estimated to be 545 nm (6496 cm^{-1}). A much higher energy band was observed in the UV/Vis region, at 520 nm (19,230 cm^{-1}) in acetonitrile for the corresponding bis(hydrazine) radical cation. The width of this band was estimated to be 240 nm (7211 cm^{-1}). The difference in the energies of these absorbance bands, E _{rm op}, reflects the different inner-sphere reorganization energies of the hydrazyl and hydrazine systems. Using Hush analysis, the electron coupling, H_{rm AB} , was calculated to be ca. 3.5 kcal/mol for the bis(hydrazyl) radical cation systems; a smaller value of H_{rm AB} of 1 kcal/mol was obtained for the bis(hydrazine) radical cations. This difference in electronic coupling is consistent with the faster rate of electron transfer, as well as the smaller inner-sphere reorganization energy in the bis(hydrazyl) systems.

  1. Production of superoxide in chloroplast thylakoid membranes ESR study with cyclic hydroxylamines of different lipophilicity.

    PubMed

    Kozuleva, Marina; Klenina, Irina; Proskuryakov, Ivan; Kirilyuk, Igor; Ivanov, Boris

    2011-04-06

    Accumulation of nitroxide radicals, DCP· or TMT·, under illumination of a thylakoid suspension containing either hydrophilic, DCP-H, or lipophilic, TMT-H, cyclic hydroxylamines that have high rate constants of the reaction with superoxide radicals, was measured using ESR. A slower accumulation of TMT· in contrast with DCP· accumulation was explained by re-reduction of TMT· by the carriers of the photosynthetic electron transport chain within the membrane. Superoxide dismutase suppressed TMT· accumulation to a lesser extent than DCP· accumulation. The data are interpreted as evidencing the production of intramembrane superoxide in thylakoids. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  2. Diffusion studies on permeable nitroxyl spin probe through lipid bilayer membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benial, A. Milton Franklin; Meenakumari, V.; Ichikawa, Kazuhiro

    2014-04-24

    Electron spin resonance (ESR) studies were carried out for 2mM {sup 14}N labeled deutrated permeable 3- methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water, 1 mM, 2 mM, 3 mM and 4 mM concentration of MC-PROXYL in 300 mM concentration of liposomal solution by using a L-band ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported. The partition parameter and permeability values indicate the maximum spin distribution in the lipid phase at 2 mM concentration. This study illustrates that ESR can be used to differentiate between the intra and extra-membrane water by loading themore » liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the radical concentration was optimized as 2 mM in liposomal solution for ESR phantom studies and experiments.« less

  3. Atmospheric nonequilibrium mini-plasma jet created by a 3D printer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takamatsu, Toshihiro, E-mail: toshihiro@plasma.es.titech.ac.jp; Tokyo Institute of Technology, Department of Energy Sciences, J2-32, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8502; Kawano, Hiroaki

    2015-07-15

    In this study, a small-sized plasma jet source with a 3.7 mm head diameter was created via a 3D printer. The jet’s emission properties and OH radical concentrations (generated by argon, helium, and nitrogen plasmas) were investigated using optical emission spectrometry (OES) and electron spin resonance (ESR). As such, for OES, each individual gas plasma propagates emission lines that derive from gases and ambient air inserted into the measurement system. For the case of ESR, a spin adduct of the OH radical is typically observed for all gas plasma treatment scenarios with a 10 s treatment by helium plasma generatingmore » the largest amount of OH radicals at 110 μM. Therefore, it was confirmed that a plasma jet source made by a 3D printer can generate stable plasmas using each of the aforementioned three gases.« less

  4. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress

    PubMed Central

    Thatcher, Louise F.; Kamphuis, Lars G.; Hane, James K.; Oñate-Sánchez, Luis; Singh, Karam B.

    2015-01-01

    Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses. PMID:25985302

  5. The Arabidopsis KH-Domain RNA-Binding Protein ESR1 Functions in Components of Jasmonate Signalling, Unlinking Growth Restraint and Resistance to Stress.

    PubMed

    Thatcher, Louise F; Kamphuis, Lars G; Hane, James K; Oñate-Sánchez, Luis; Singh, Karam B

    2015-01-01

    Glutathione S-transferases (GSTs) play important roles in the protection of cells against toxins and oxidative damage where one Arabidopsis member, GSTF8, has become a commonly used marker gene for early stress and defense responses. A GSTF8 promoter fragment fused to the luciferase reporter gene was used in a forward genetic screen for Arabidopsis mutants with up-regulated GSTF8 promoter activity. This identified the esr1-1 (enhanced stress response 1) mutant which also conferred increased resistance to the fungal pathogen Fusarium oxysporum. Through positional cloning, the ESR1 gene was found to encode a KH-domain containing RNA-binding protein (At5g53060). Whole transcriptome sequencing of esr1-1 identified altered expression of genes involved in responses to biotic and abiotic stimuli, hormone signaling pathways and developmental processes. In particular was an overall significant enrichment for jasmonic acid (JA) mediated processes in the esr1-1 down-regulated dataset. A subset of these genes were tested for MeJA inducibility and we found the expression of some but not all were reduced in esr1-1. The esr1-1 mutant was not impaired in other aspects of JA-signalling such as JA- sensitivity or development, suggesting ESR1 functions in specific components of the JA-signaling pathway. Examination of salicylic acid (SA) regulated marker genes in esr1-1 showed no increase in basal or SA induced expression suggesting repression of JA-regulated genes is not due to antagonistic SA-JA crosstalk. These results define new roles for KH-domain containing proteins with ESR1 unlinking JA-mediated growth and defense responses.

  6. Production of hydroxyl radical by redox active flavonoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyanaraman, B.; Hodnick, W.F.; Pardini, R.S.

    1986-05-01

    The authors have previously shown that flavonoids autoxidize and generate superoxide (O/sub 2//sup -/) and hydrogen peroxide (H/sub 2/O/sub 2/), suggesting that hydroxyl radical (OH) could be formed via the metal-ion catalyzed Haber-Weiss reaction. In the presence of ethylenediamine tetraacetic acid (EDTA) and 5,5-dimethyl-1-pyrroline-1-oxide (DMPO), myricetin, quercetagetin and quercetin gave an ESR signal for the DMPO-OH spin adduct, and the DMPO-Eto adduct in the presence of excess ethanol, indicating the production of free OH. The addition of FeCl/sub 3/ to the reaction mixture resulted in a dramatic increase in the DMPO-OH signal. Without chelator (EDTA) there was no signal andmore » the presence of diethylenetriamine-pentaacetic acid (DETAPAC) greatly diminished the signal. The presence of superoxide dismutase (SOD) had no effect on the signal while catalase completely abrogated the signal. The addition of Fe (III)-EDTA to flavonoid solutions under anaerobic conditions produced time dependent auxochromic shifts in their absorption spectra and resulted in the reduction of Fe (III) to Fe (II). These data suggest that the flavonoids autoxidize to produce O/sub 2//sup -/ and H/sub 2/O/sub 2/ by dismutation and in the presence of Fe (III)-EDTA the flavonoid can directly reduce the Fe (III) to Fe (II) resulting in the production of OH through Fenton chemistry.« less

  7. A kinetic study of enhancing effect by phenolic compounds on the hydroxyl radical generation during ozonation.

    PubMed

    Han, Y H; Ichikawa, K; Utsumi, H

    2004-01-01

    Ozone decomposition in aqueous solution proceeds through a radical type chain mechanism. These reactions involve the very reactive and catalytic intermediates O2- radical, OH radical, HO2 radical, OH-, H2O2, etc. OH radical is proposed as an important factor in the ozonation of water among them. In the present study, the enhancing effects of several phenolic compounds; phenol, 2-, 3-, 4-monochloro, 2,4-dichloro, 2,4,6-trichlorophenol on OH radical generation were mathematically evaluated using the electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocities of DMPO-OH generation in ozonated water containing phenolic compounds were quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus, which was controlled by homemade software. The initial velocities of DMPO-OH generation increased as a function of the ozone concentration. The relation among ozone concentration, amount of phenolic compounds and the initial velocity (v0) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, v0 (10(-6) M/s) = (A' x [PhOHs (10(-9) M)] + 0.0005) exp (60 x [ozone (10(-9) M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.98.

  8. Influence of 13C isotopic labeling location of 13C DNP of acetate using TEMPO free radical

    NASA Astrophysics Data System (ADS)

    Parish, Christopher; Niedbalski, Peter; Lumata, Lloyd

    2015-03-01

    Dynamic nuclear polarization (DNP) via the dissolution method enhances the liquid-state magnetic resonance (NMR or MRI) signals of insensitive nuclear spins by at least 10,000-fold. The basis for all these signal enhancements at room temperature is the polarization transfer from the electrons to nuclear spins at cryogenic temperature and high magnetic field. In this work, we have studied the influence of the location of 13C isotopic labeling on the DNP of sodium acetate at 3.35 T and 1.4 K using a wide ESR linewidth free radical 4-oxo-TEMPO. The carbonyl [1-13C]acetate spins produced a polarization level that is almost twice that of the methyl [2-13C]acetate spins. On the other hand, the polarization of the methyl 13C spins doubled to reach the level of [1-13C]acetate when the methyl group was deuterated. Meanwhile, the solid-state nuclear relaxation of these samples are the same and do not correlate with the polarization levels. These behavior implies that the nuclear relaxation for these samples is dominated by the contribution from the free radicals and the polarization levels can be explained by a thermodynamic picture of DNP.

  9. Mating changes the subcellular distribution and the functionality of estrogen receptors in the rat oviduct.

    PubMed

    Orihuela, Pedro A; Zuñiga, Lidia M; Rios, Mariana; Parada-Bustamante, Alexis; Sierralta, Walter D; Velásquez, Luis A; Croxatto, Horacio B

    2009-11-30

    Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS). Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta) in oviductal epithelial cells of rats on day 1 of cycle (C1) or pregnancy (P1) using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on C1 or P1 treated with selective agonists for ESR1 (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct.

  10. [The inhibitor of free radical processes decrease of protein biosynthesis in gun short wound tissues and weaken development of the general adaptation syndrome].

    PubMed

    Todorov, I N; Bogdanov, G N; Mitrokhin, Iu I; Varfolomeev, V N; Sidorenko, L I; Mishchenko, D V

    2006-01-01

    The dynamics of total protein biosynthesis and procollagen biosynthesis in skeletal muscle of injury tissues with the antioxidant BHT (dibunol) treatment and with common healing were studied. The obtained date indicate that the AO treatment reduce the rate of biosynthesis both the total proteins and procollagen at the 3th day of healing. Dibunol also considerably reduce the protein biosynthesis in adrenals and brake of corticosteroids biogenesis as measured by ESR-signals intensity of reduced adrenodoxine. AO treatment also reduce the protein biosynthesis in thymus, spleen and bone marrow. The lowering of functional activity of endocrine and immune systems indicate that the AO significantly inhibit the systemic reactions of organism induced by acute wound affect. It was suggested that as "primary mediator" of stress-reaction may be considered lipoperoxide radicals and decay products of lipohydroperoide.

  11. Free radical scavenging activities measured by electron spin resonance spectroscopy and B16 cell antiproliferative behaviors of seven plants.

    PubMed

    Calliste, C A; Trouillas, P; Allais, D P; Simon, A; Duroux, J L

    2001-07-01

    In an effort to discover new antioxidant natural compounds, seven plants that grow in France (most of them in the Limousin countryside) were screened. Among these plants, was the extensively studied Vitis vinifera as reference. For each plant, sequential percolation was realized with five solvents of increasing polarities (hexane, chloroform, ethyl acetate, methanol, and water). Free radical scavenging activities were examined in different systems using electron spin resonance (ESR) spectroscopy. These assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH), the hydroxyl radicals generated by a Fenton reaction, and the superoxide radicals generated by the X/XO system. Antiproliferative behavior was studied on B16 melanoma cells. ESR results showed that three plants (Castanea sativa, Filipendula ulmaria, and Betula pendula) possessed, for the most polar fractions (presence of phenolic compounds), high antioxidant activities in comparison with the Vitis vinifera reference. Gentiana lutea was the only one that presented a hydroxyl scavenging activity for the ethyl acetate and chloroform fractions. The antiproliferative test results showed that the same three plants are the most effective, but for the apolar fractions (chloroform and hexane).

  12. ESR study of the molecular orientation and dynamics of stable organic radicals included in the 1-D organic nanochannels of 2,4,6-tris-4-(chlorophenoxy)-1,3,5-triazine.

    PubMed

    Kobayashi, Hirokazu; Asaji, Tetsuo; Tani, Atsushi

    2012-03-01

    The molecular orientation and dynamics of the organic stable radicals such as 2,2,6,6-tetramethyl-1-piperidinyl-1-oxyl (TEMPO) or 4-hydroxy-TEMPO (TEMPOL) included in the one-dimensional (1-D) organic nanochannels of 2,4,6-tris-4-(chlorophenoxy)-1,3,5-triazine (CLPOT) were investigated by examining the inclusion compounds (ICs) diluted by the co-inclusion of non-radicals using ESR spectroscopy. Spectral simulation showed that the axial rotation of TEMPO or TEMPOL molecules is excited in the nanochannels with activation energies of 8 and 7 kJ mol(-1) , respectively. The rotation axis was estimated to be tilted towards the principal x direction in the axis system of the g-tensor of the respective radicals. This is quite different from that for similar ICs in the nanochannels of tris(o-phenylenedioxy)cyclotriphosphazene (TPP), in which the radicals are axially rotating around the principal axis y of the g-tensor. The difference is attributed to the larger nanospace of the CLPOT nanochannels. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method.

    PubMed

    Haywood, Rachel; Volkov, Arsen; Andrady, Carima; Sayer, Robert

    2012-03-01

    The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.

  14. DETECTION OF FREE RADICALS IN FATS IRRADIATED WITH $gamma$-RAYS BY MEANS OF ELECTRON SPIN RESONANCE SPECTROSCOPY (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lueck, H.; Deffner, U.; Kohn, R.

    1963-10-01

    Electron spin resonance (ESR) spectroscopy offers a convenient method for determining the occurrence of free radicals in food products irradiated with gamma rays. Some work has been done on meat and vegetables, but nothing on fats. For this reason, lard, tallow, and cocoa butter were irradiated at --196, --80, 0, and +30 deg C with 1, 2, and 10 Mrad gamma rays at a rate of 0.5 Mrad/hr and measured the ESR spectra at --196, --80 deg C, and at room temperature allowing various times to elapse between irradiation and measurement. The spectra were taken with a Varian V 4500more » spectrometer at a modulation of 100 kHz. In all the examined fats, free radicals were found after irradiation with high doses at very low temperatures. The number of free radicals was very small and their life duration varied at room temperature between fractions of a minute and several weeks. The spectra of the fats investigated were very similar, although their life duration varied depending on the presence of impurities which acted as radical scavengers. When the irradiated fats were stored for some time at room temperature, free peroxide radicals were found. (OID)« less

  15. A study of the UV and VUV degradation of FEP

    NASA Technical Reports Server (NTRS)

    George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1993-01-01

    UV and VUV degradation of fluorinated ethylene propylene (FEP) copolymer was studied using electron spin resonance (ESR) spectroscopy, x-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM). The ESR study revealed the formation of a terminal polymer radical. The stability of this radical was investigated under different environments. An XPS study of FEP film exposed to VUV and atomic oxygen showed that oxidation takes place on the polymer surface. The study revealed also that the percentage of CF2 in the polymer surface decreased with exposure time and the percentage of CF, CF3, and carbon attached to oxygen increased. SEM micrographs of FEP film exposed to VUV and atomic oxygen identified a rough surface with undulations similar to sand dunes.

  16. Estrogen receptor ESR1 mediates activation of ERK1/2, CREB, and ELK1 in the corpus of the epididymis.

    PubMed

    Cavalcanti, Fernanda N; Lucas, Thais F G; Lazari, Maria Fatima M; Porto, Catarina S

    2015-06-01

    Expression of the estrogen receptor ESR1 is higher in the corpus than it is in the initial segment/caput and cauda of the epididymis. ESR1 immunostaining in the corpus has been localized not only in the nuclei but also in the cytoplasm and apical membrane, which indicates that ESR1 plays a role in membrane-initiated signaling. The present study investigated whether ESR1 mediates the activation of rapid signaling pathways by estradiol (E2) in the epididymis. We investigated the effect of E2 and the ESR1-selective agonist (4,4',4''-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) on the activation of extracellular signal-regulated protein kinases (ERK1/2), CREB protein, and ETS oncogene-related protein (ELK1). Treatment with PPT did not affect ERK1/2 phosphorylation in the cauda, but it rapidly increased ERK1/2 phosphorylation in the initial segment/caput and corpus of the epididymis. PPT also activated CREB and ELK1 in the corpus of the epididymis. The PPT-induced phosphorylation of ERK1/2, CREB, and ELK1 was blocked by the ESR1-selective antagonist MPP and by pretreatment with a non-receptor tyrosine kinase SRC inhibitor, an EGFR kinase inhibitor, an MEK1/2 inhibitor, and a phosphatidylinositol-3-kinase inhibitor. In conclusion, these results indicate that the corpus, which is a region with high expression of the estrogen receptor ESR1, is a major target in the epididymis for the activation of rapid signaling by E2. The sequence of events that follow E2 interaction with ESR1 includes the SRC-mediated transactivation of EGFR and the phosphorylation of ERK1/2, CREB, and ELK1. This rapid estrogen signaling may modulate gene expression in the corpus of the epididymis, and it may play a role in the dynamic microenvironment of the epididymal lumen. © 2015 Society for Endocrinology.

  17. 13 C dynamic nuclear polarization using isotopically enriched 4-oxo-TEMPO free radicals.

    PubMed

    Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Lumata, Lloyd

    2016-12-01

    The nitroxide-based free radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) is a widely used polarizing agent in NMR signal amplification via dissolution dynamic nuclear polarization (DNP). In this study, we have thoroughly investigated the effects of 15 N and/or 2 H isotopic labeling of 4-oxo-TEMPO free radical on 13 C DNP of 3 M [1- 13 C] sodium acetate samples in 1 : 1 v/v glycerol : water at 3.35 T and 1.2 K. Four variants of this free radical were used for 13 C DNP: 4-oxo-TEMPO, 4-oxo-TEMPO- 15 N, 4-oxo-TEMPO-d 16 and 4-oxo-TEMPO- 15 N,d 16 . Our results indicate that, despite the striking differences seen in the electron spin resonance (ESR) spectral features, the 13 C DNP efficiency of these 15 N and/or 2 H-enriched 4-oxo-TEMPO free radicals are relatively the same compared with 13 C DNP performance of the regular 4-oxo-TEMPO. Furthermore, when fully deuterated glassing solvents were used, the 13 C DNP signals of these samples all doubled in the same manner, and the 13 C polarization buildup was faster by a factor of 2 for all samples. The data here suggest that the hyperfine coupling contributions of these isotopically enriched 4-oxo-TEMPO free radicals have negligible effects on the 13 C DNP efficiency at 3.35 T and 1.2 K. These results are discussed in light of the spin temperature model of DNP. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Effect of ascorbic acid (vitamin C) on the ESR spectra of the red and black hair: pheomelanin free radicals are not always present in red hair.

    PubMed

    Chikvaidze, Eduard; Topeshashvili, Maia

    2015-12-01

    Increased incidence of melanoma in the population with red hair is conditioned by synthesis of pheomelanin pigments in the skin and their phototoxic properties. The recent research has shown that free radicals of pheomelanin are produced not only by the influence of UV irradiation, but also in UV-independent pathways of oxidative stress. It has been ascertained, that the color of the hair is not always determinant of the amount of pheolemanin radicals in red hair. Therefore, in order to evaluate the risk of melanoma in different individuals, it is necessary to define the amount of free radicals of pheomelanin in red hair using ESR spectroscopy method. Besides, it is very important to find effective antioxidant, capable of neutralizing free radicals of pheomelanin. It was proved that ascorbic acid neutralizes free radicals of pheomelanin very effectively. The main goal of our research was to define the presumably optimal concentration of ascorbic acid as an antioxidant and study the kinetics of the influence of this concentration on red and black hair. It has been found out, that ascorbic acid influences the free radicals of red and black hair, and its appropriate optimal concentration is 10 mM. The obtained results can be considered in dermatology and cosmetology. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Antioxidative effects of a processed grain food.

    PubMed

    Minamiyama, Y; Yoshikawa, T; Tanigawa, T; Takahashi, S; Naito, Y; Ichikawa, H; Kondo, M

    1994-10-01

    Antioxidant biofactor: AOB is a unique processed grain food. It is a yellow-green powder. It contains the following extracts: germ extracts, soybean, rice bran, tear grass, sesame, wheat, citron, green tea, green leaf extract, and malted rice. These materials were slowly roasted under a powdered oure at less than 60 degrees C and fermented with Aspergillus oryzae over 3 days to transform each ingredient into low molecular weight substances. These conditions were different by each material, environmental humidity and temperature. It probably contains a variety of substances having antioxidant activity including flavonoids, alpha-tocopherol, vitamin C, and tannins. We investigated its antioxidative properties using electron spin resonance (ESR) and autoxidation of rat brain homogenates. The superoxide, hydroxyl radical, and the stable free radical, diphenyl-p-picrylhydrazyl (DPPH) radical scavenging activity of AOB was investigated using ESR spectrometry. In an in vitro study, a suspension of AOB was added directly to a superoxide generating system (hypoxanthine-xanthine oxidase; HX/XO) and investigated using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a spin trapping agent. At final concentrations of 0.01, 0.05, and 0.1 mg/ml, AOB dose-dependent scavenging activity was observed as 0.103, 0.619, and 1.369 U/ml, respectively. A concentration of 1.0 mg/ml completely scavenged DMPO-OOH signals; 1.0 mg/ml of AOB inhibited the DMPO-OH signal generated by Fenton's reaction, but its inhibitory effect was not competitive, and was inhibition of the Fenton's reaction. 1.0, 3.0, and 5.0 mg/ml of AOB were significantly inhibited the DPPH radical. In an in vivo study, rats were fed AOB orally at doses of 1 or 5 g/day for 24 h or for 3 days and the superoxide scavenging activity was measured in plasma. With the administration of 1 g/day for 3 days, the superoxide scavenging activity was about 1.8 times that of the control group fed a basal diet; 1.5 times the control with 5 g/day for 1 day, and 2.6 times the control with 5 g/day for 3 days, all of which represented significant increases in superoxide scavenging activity. AOB strongly inhibited the autoxidation of rat brain homogenates in vitro in a dose-dependent manner. However, each ingredient before roast and fermentation little inhibited lipid peroxidation. Roasting and fermentation with A. oryzae way be important to transform each ingredient into low molecular weight substances. Therefore, it was suggested that AOB possesses strong antioxidant and free radical scavenging activities.

  20. SU-E-I-78: Neuromelanin in the Subthalamic Nucleus of Patients with Parkinson's Disease: An Electron Spin Resonance Spectroscopy Study.

    PubMed

    Gomez, J; Salmon, C Garrido; Filho, O Baffa; Santos, J Peixoto; Pitella, J

    2012-06-01

    Parkinson disease and related syndromes are associated directly with the concentrations of neuromelanin, iron and other heavy metals, and nowadays it is discussed the possible protective role of neuromelanin by the sequester redox active iron ions, reducing the formation of free hydroxyl radicals and therefore inactivating the iron ions that induce oxidative stress. The aim of this work is to study the concentration ratios between iron ions and neuromelanin in subthalamic nucleus of patients with Parkinson's disease (PD) using Electron Spin Resonance (ESR). Necropsy samples of subthalamic nucleus from eight human brains were studied: three non-affected by any neurodegenerative disease and five with Parkinson's disease. The samples were stored in formaldehyde and washed with a solution of 0.01 molar of ethylenediaminetetraacetic acid. ESR experiments were development in a JEOL FA-200 X-Band spectrometer at different temperatures between -170° C to room temperature. The relative concentrations of each species were estimated from the double integral values of the fitted spectra. For all samples, ESR spectra showed to be composed of three different signals following the Curie's law. One signal was attributed to high-spin ferric ions (g∼ 4.3) in rhomboedric symmetry, Cu(II) ions (close to g=2.0) and neuromelanin (g∼ 2.01). The ferric ions concentration ratio between patients and controls was 3.0±0.2. The same ratio for neuromelanine was 0.24±0.06. Our preliminary results indicated a significant increment of iron concentration in PD samples which agrees with previous histochemical and biochemical reports. This finding and the clear reduction of neuromelanin concentration in PD samples suggest the possible role of neuromelanin as iron ions storage. © 2012 American Association of Physicists in Medicine.

  1. ESR spectroscopy for detecting gamma-irradiated dried vegetables and estimating absorbed doses

    NASA Astrophysics Data System (ADS)

    Kwon, Joong-Ho; Chung, Hyung-Wook; Byun, Myung-Woo

    2000-03-01

    In view of an increasing demand for food irradiation technology, the development of a reliable means of detection for the control of irradiated foods has become necessary. Various vegetable food materials (dried cabbage, carrot, chunggyungchae, garlic, onion, and green onion), which can be legally irradiated in Korea, were subjected to a detection study using ESR spectroscopy. Correlation coefficients ( R2) between absorbed doses (2.5-15 kGy) and their corresponding ESR signals were identified from ESR signals. Pre-established threshold values were successfully applied to the detection of 54 coded unknown samples of dried clean vegetables ( chunggyungchae, Brassica camestris var. chinensis), both non-irradiated and irradiated. The ESR signals of irradiated chunggyungchae decreased over a longer storage time, however, even after 6 months of ambient storage, these signals were still distinguishable from those of non-irradiated samples. The most successful estimates of absorbed dose (5 and 8 kGy) were obtained immediately after irradiation using a quadratic fit with average values of 4.85 and 8.65 kGy being calculated.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, M.S.; Forman, A.; Hanson, L.K.

    Optical, ESR, ENDOR, and redox characteristics of anion and cation radicals of bacteriochlorophyll b (BChl) and bacteriopheophytin b (BPh) have been obtained in nonaqueous solvents. The radicals exhibit properties similar to those of BChl a derivatives, as expected from extended Huckel and Pariser-Parr-Pople MO calculations. The electronic configurations of the radicals have been assigned on the basis of the MO calculations and by analogy with BChl a and BPh a results. Oxidized reaction centers of Rhodopseudomonas viridis do not display the ..sqrt..2 narrowing of the ESR line width nor the 50% decrease in ENDOR splittings expected for a symmetric cationmore » dimer, when compared to BChl b/sup +/. Nonetheless, computer simulations indicate that a dimeric model for P960, the primary donor of R. viridis, can be rationalized by imposing a torsional angle on ring IV different from that found in crystals of Chl a, i.e., P960 may be a dimer with a twist. Comparison of the resolved ESR spectra and ENDOR splittings of the primary acceptor (I/sup -/) of R. viridis with in-vitro results indicates that I/sup -/ is a monomeric anion. Optical and redox data favor BPh over BChl as the primary acceptor. These results allow a description of the electronic profile of the species which evolve within a picosecond time domain in the primary conversion of light into chemical energy at approx. 1000 nm.« less

  3. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyaji, Akimitsu; Kohno, Masahiro; Inoue, Yoshihiro

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that {sup 1}O{sub 2} generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte.more » - Highlights: • Generation of singlet oxygen was observed during tyrosinase-catalyzed tyrosine oxidation. • The singlet oxygen generated when tyrosine was converted into dopachrome. • The amount of singlet oxygen is not sufficient for cell toxicity. • It decreased when the hydroxyl radicals and/or superoxide anions were trapped.« less

  4. Mating changes the subcellular distribution and the functionality of estrogen receptors in the rat oviduct

    PubMed Central

    2009-01-01

    Background Mating changes the mode of action of 17beta-estradiol (E2) to accelerate oviductal egg transport from a nongenomic to a genomic mode, although in both pathways estrogen receptors (ER) are required. This change was designated as intracellular path shifting (IPS). Methods Herein, we examined the subcellular distribution of ESR1 and ESR2 (formerly known as ER-alpha and ER-beta) in oviductal epithelial cells of rats on day 1 of cycle (C1) or pregnancy (P1) using immunoelectron microscopy for ESR1 and ESR2. The effect of mating on intraoviductal ESR1 or ESR2 signaling was then explored comparing the expression of E2-target genes c-fos, brain creatine kinase (Ckb) and calbindin 9 kDa (s100g) in rats on C1 or P1 treated with selective agonists for ESR1 (PPT) or ESR2 (DPN). The effect of ER agonists on egg transport was also evaluated on C1 or P1 rats. Results Receptor immunoreactivity was associated with the nucleus, cytoplasm and plasma membrane of the epithelial cells. Mating affected the subcellular distribution of both receptors as well as the response to E2. In C1 and P1 rats, PPT increased Ckb while both agonists increased c-fos. DPN increased Ckb and s100g only in C1 and P1 rats, respectively. PPT accelerated egg transport in both groups and DPN accelerated egg transport only in C1 rats. Conclusion Estrogen receptors present a subcellular distribution compatible with E2 genomic and nongenomic signaling in the oviductal epithelial cells of C1 and P1 although IPS occurs independently of changes in the distribution of ESR1 and ESR2 in the oviductal epithelial cells. Mating affected intraoviductal ER-signaling and induced loss of functional involvement of ESR2 on E2-induced accelerated egg transport. These findings reveal a profound influence on the ER signaling pathways exerted by mating in the oviduct. PMID:19948032

  5. Mechanism of the coupling of diazonium to single-walled carbon nanotubes and its consequences.

    PubMed

    Schmidt, Grégory; Gallon, Salomé; Esnouf, Stéphane; Bourgoin, Jean-Philippe; Chenevier, Pascale

    2009-01-01

    On the tube: The coupling of diazonium ions onto single-walled carbon nanotubes is shown to proceed through a radical chain reaction by kinetic analysis of the absorption peak drop (see picture). Radical species are also revealed by ESR. Metallic (m) nanotubes play a special catalytic role in the functionalization of semiconducting (sc) nanotubes.Due to its simplicity and versatility, diazonium coupling is the most widely used method for carbon nanotube (CNT) functionalization to increase CNT processability and add new functionalities. Yet, its mechanism is so far mostly unknown. Herein, we use kinetic analysis to shed light on this complex mechanism. A free-radical chain reaction is revealed by absorption spectroscopy and ESR. Metallic CNTs are shown to play an unexpected catalytic role. The step determining the selectivity towards metallic CNTs is identified by a Hammett correlation. A mechanistic model is proposed that predicts reactivity and selectivity as a function of diazonium electrophilicity and metallic-to-semiconducting CNT ratio, thus opening perspectives of controlled high-yield functionalization and purification.

  6. Characterization of the activity of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-be nzopyran-6-yl-hydrogen phosphate] potassium salt in hydroxyl radical elimination.

    PubMed

    Tomita, T; Kashima, M; Tsujimoto, Y

    2000-03-01

    The effect of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H -1-benzopyran-6-yl-hydrogen phosphate] potassium salt (EPC-K1) on hydroxyl radical (*OH) elimination was studied using electron spin resonance (ESR) and spectrophotometric experiments. The addition of EPC-K, and *OH scavengers eliminated the *OH generated from Cu2+/H2O2, Fe2+/H2O2 and H2O2/UV-irradiation reaction systems. However, in competitive reactions using different concentrations of a spin-trap agent, the addition of the *OH scavenger altered the IC50 values, whereas the addition of EPC-K1 and a metal chelater did not change the value in the Cu2+/H2O2 and Fe2+/H2O2 reaction systems. The addition of EPC-K1 and metal chelater changed the ESR signal for free Cu2+. The spectrophotometric experiments confirmed that the addition of EPC-K1 and metal chelater altered the absorption spectra due to CuCl2 and FeSO4, whereas the *OH scavenger did not alter the spectra. Therefore, it was demonstrated that EPC-K, has the ability both to scavenge *OH directly and to inhibit the generation of *OH by the chelation of Cu2+ and Fe2+.

  7. Inhibitory effect of naturally occurring flavonoids on the formation of advanced glycation endproducts.

    PubMed

    Wu, Chi-Hao; Yen, Gow-Chin

    2005-04-20

    The objective of this study was to investigate the inhibitory effect of naturally occurring flavonoids on individual stage of protein glycation in vitro using the model systems of delta-Gluconolactone assay (early stage), BSA-methylglyoxal assay (middle stage), BSA-glucose assay, and G.K. peptide-ribose assay (last stage). In the early stage of protein glycation, luteolin, qucertin, and rutin exhibited significant inhibitory activity on HbA1C formation (p < 0.01), which were more effective than that of aminoguanidine (AG, 10 mM), a well-known inhibitor for advanced glycation endproducts (AGEs). For the middle stage, luteolin and rutin developed more significant inhibitory effect on methylglyoxal-medicated protein modification, and the IC50's were 66.1 and 71.8 microM, respectively. In the last stage of glycation, luteolin was found to be potent inhibitors of both the AGEs formation and the subsequent cross-linking of proteins. In addition, phenyl-tert-butyl-nitron served as a spin-trapping agent, and electron spin resonance (ESR) was used to explore the possible mechanism of the inhibitory effect of flavonoids on glycation. The results indicated that protein glycation was accompanied by oxidative reactions, as the ESR spectra showed a clear-cut radical signal. Statistical analysis showed that inhibitory capability of flavonoids against protein glycation was remarkably related to the scavenging free radicals derived from glycoxidation process (r = 0.79, p < 0.01). Consequently, the inhibitory mechanism of flavonoids against glycation was, at least partly, due to their antioxidant properties.

  8. ESR evidence for radical production from the reaction of ozone with unsaturated lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, D.F.; McAdams, M.L..; Pryor, W.A.

    1991-03-15

    The authors report electron spin resonance (ESR) spin trapping evidence for radical production by the reaction of ozone with unsaturated compounds. Soy and egg phosphatidylcholine liposomes, fatty acid emulsions, and homogeneous aqueous solutions of 3-hexenoic acid were treated with ozone in the presence of the spin trap {alpha}-phenyl-N-tert-butyl nitrone (PBN). Under these conditions, they observe spin adducts resulting from the trapping of both organic carbon- and oxygen-centered radicals. When the lipid-soluble antioxidant alpha-tocopherol is included in the liposomal systems, the formation of spin adducts is completely inhibited. The authors suggest that radicals giving rise to these spin adducts arise formmore » the rapid decomposition of the 1,2,3-trioxolane intermediate that is initially formed when ozone reacts with the carbon-carbon double bonds of the substrates. These free radicals are not formed by the decomposition of the Criegee ozonide, since little of the ozonide is formed in the presence of water. Although hydrogen peroxide is the predominate peroxidic product of the ozone/alkene reaction, its decomposition is not responsible for the observed radical production since neither catalase nor iron chelators significantly affect the spin adduct yield. The radical yield is approximately 1%. Since a polyunsaturated fatty acid (PUFA) such as linoleic acid produces much higher concentrations of spin trappable radicals than does the monounsaturated fatty oleic acid, the results also suggest that sites in the lung containing higher levels of PUFA may be an important target for radical formation.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samskog, P.; Kispert, L.D.; Lund, A.

    Four different alkoxy radicals were identified by ESR studies in x-ray irradiated single crystals of trehalose. The radical sites are O/sup prime//sub 2/(I), O/sub 2/(II), O/sup prime//sub 3/(III), and the probable ring oxygen O/sub 5/(IV). All alkoxy radicals exhibit one or two ..beta..-proton couplings. An additional coupling to a ..gamma.. proton for radical II is observed. The difference in the g/sub max/ value for the alkoxy radicals is discussed in terms of the type of hydrogen bonding involved. Two hydroxyalkyl radicals VI and VII were also produced at 77 K. Storage of crystals for one week results in decay ofmore » radicals I and II. Alkoxy radical II transform into a C/sub 6/-centered hydroxyalkyl radical V.« less

  10. Selective electron spin resonance measurements of micrometer-scale thin samples on a substrate

    NASA Astrophysics Data System (ADS)

    Dikarov, Ekaterina; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2013-11-01

    An approach to the selective observation of paramagnetic centers in thin samples or surfaces with electron spin resonance (ESR) is presented. The methodology is based on the use of a surface microresonator that enables the selective obtention of ESR data from thin layers with minimal background signals from the supporting substrate. An experimental example is provided, which measures the ESR signal from a 1.2 µm polycrystalline silicon layer on a glass substrate used in modern solar-cell technology. The ESR results obtained with the surface microresonator show the effective elimination of background signals, especially at low cryogenic temperatures, compared to the use of a conventional resonator. The surface microresonator also facilitates much higher absolute spin sensitivity, requiring much smaller surfaces for the measurement.

  11. An electron spin polarization study of the interaction of photoexcited triplet molecules with mono- and polynitroxyl stable free radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turro, N.J.; Khudyakov, I.V.; Bossmann, S.H.

    1993-02-11

    Time-resolved electron spin resonance (TR ESR) has been used to investigate the chemically induced dynamic electron polarization (CIDEP) generated by the interaction of stable free radicals with the triplet states of benzophenone, benzil, and 2-acetylnaphthalene. The stable radicals were mono-, di-, tri-, and tetranitroxyl free radicals possessing the 2,2,6,6-tetramethylpiperidine-N-oxyl moiety. All of the stable radical systems investigated were found to be emissively polarized by interaction with the triplet states, and the phase of polarization was independent of the sign of zero-field splitting (D) of the interacting triple molecule. Possible and likely mechanisms of polarization transfer (creation) resulting from the interactionmore » of photoexcited triplet molecules with nitroxyls in the strong electron exchange are discussed. The emissive CIDEP of nitroxyls observed in the interactions with triplet benzil, which has D > 0, provides strong support for the operation of the radical-triplet pair mechanism. Within the time scale of TR ESR experiments ([approximately]10[sup [minus]7]--10[sup [minus]6] s) no significant variation in the shape of the CIDEP spectra of the nitroxyls was observed, either in viscous media or in micelles. It is concluded that intramolecular spin exchange (or conformational change) of polynitroyls occurs much faster than the time resolution of the experiment. 24 refs., 6 figs., 1 tab.« less

  12. Mechanism of free radical generation in platelets and primary hepatocytes: A novel electron spin resonance study.

    PubMed

    Wang, Chiun-Lang; Yang, Po-Sheng; Tsao, Jeng-Ting; Jayakumar, Thanasekaran; Wang, Meng-Jiy; Sheu, Joen-Rong; Chou, Duen-Suey

    2018-01-01

    Oxygen free radicals have been implicated in the pathogenesis of toxic liver injury and are thought to be involved in cardiac dysfunction in the cirrhotic heart. Therefore, direct evidence for the electron spin resonance (ESR) detection of how D‑galactosamine (GalN), an established experimental hepatotoxic substance, induced free radicals formation in platelets and primary hepatocytes is presented in the present study. ESR results demonstrated that GalN induced hydroxyl radicals (OH•) in a resting human platelet suspension; however, radicals were not produced in a cell free Fenton reaction system. The GalN‑induced OH• formation was significantly inhibited by the cyclooxygenase (COX) inhibitor indomethasin, though it was not affected by the lipoxygenase (LOX) or cytochrome P450 inhibitors, AA861 and 1‑aminobenzotriazole (ABT), in platelets. In addition, the present study demonstrated that baicalein induced semiquinone free radicals in platelets, which were significantly reduced by the COX inhibitor without affecting the formed OH•. In the mouse primary hepatocytes, the formation of arachidonic acid (AA) induced carbon‑centered radicals that were concentration dependently enhanced by GalN. These radicals were inhibited by AA861, though not affected by indomethasin or ABT. In addition, GalN did not induce platelet aggregation prior to or following collagen pretreatment in human platelets. The results of the present study indicated that GalN and baicalein may induce OH• by COX and LOX in human platelets. GalN also potentiated AA induced carbon‑centered radicals in hepatocytes via cytochrome P450. The present study presented the role of free radicals in the pathophysiological association between platelets and hepatocytes.

  13. Diffusion studies on permeable nitroxyl spin probes through bilayer lipid membranes: A low frequency ESR study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meenakumari, V.; Benial, A. Milton Franklin, E-mail: miltonfranklin@yahoo.com; Utsumi, Hideo

    2015-06-24

    Electron spin resonance (ESR) studies were carried out for permeable 2mM {sup 14}N-labeled deutrated 3 Methoxy carbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) in pure water and 1mM, 2mM, 3mM, 4mM concentration of 14N-labeled deutrated MC-PROXYL in 400mM concentration of liposomal solution by using a 300 MHz ESR spectrometer. The ESR parameters such as linewidth, hyperfine coupling constant, g-factor, partition parameter and permeability were reported for these samples. The line broadening was observed for the nitroxyl spin probe in the liposomal solution. The line broadening indicates that the high viscous nature of the liposomal solution. The partition parameter and permeability values indicate the maximum diffusion ofmore » nitroxyl spin probes in the bilayer lipid membranes at 2 mM concentration of nitroxyl radical. This study illustrates that ESR can be used to differentiate between the intra and extra- membrane water by loading the liposome vesicles with a lipid-permeable nitroxyl spin probe. From the ESR results, the spin probe concentration was optimized as 2mM in liposomal solution for ESR phantom studies/imaging, invivo and invitro experiments.« less

  14. Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells.

    PubMed

    Li, Zheqi; Levine, Kevin M; Bahreini, Amir; Wang, Peilu; Chu, David; Park, Ben Ho; Oesterreich, Steffi; Lee, Adrian V

    2018-01-01

    Increased evidence suggests that somatic mutations in the ligand-binding domain of estrogen receptor [ER (ERα/ESR1)] are critical mediators of endocrine-resistant breast cancer progression. Insulinlike growth factor-1 (IGF1) is an essential regulator of breast development and tumorigenesis and also has a role in endocrine resistance. A recent study showed enhanced crosstalk between IGF1 and ERα in ESR1 mutant cells, but detailed mechanisms are incompletely understood. Using genome-edited MCF-7 and T47D cell lines harboring Y537S and D538G ESR1 mutations, we characterized altered IGF1 signaling. RNA sequencing revealed upregulation of multiple genes in the IGF1 pathway, including insulin receptor substrate-1 (IRS1), consistent in both Y537S and D538G ESR1 mutant cell line models. Higher IRS1 expression was confirmed by quantitative reverse transcription polymerase chain reaction and immunoblotting. ESR1 mutant cells also showed increased levels of IGF-regulated genes, reflected by activation of an IGF signature. IGF1 showed increased sensitivity and potency in growth stimulation of ESR1 mutant cells. Analysis of downstream signaling revealed the phosphoinositide 3-kinase (PI3K)-Akt axis as a major pathway mediating the enhanced IGF1 response in ESR1 mutant cells. Decreasing IRS1 expression by small interfering RNA diminished the increased sensitivity to IGF1. Combination treatment with inhibitors against IGF1 receptor (IGF1R; OSI-906) and ER (fulvestrant) showed synergistic growth inhibition in ESR1 mutant cells, particularly at lower effective concentrations. Our study supports a critical role of enhanced IGF1 signaling in ESR1 mutant cell lines, pointing toward a potential for cotargeting IGF1R and ERα in endocrine-resistant breast tumors with mutant ESR1. Copyright © 2018 Endocrine Society.

  15. Broadband electron spin resonance from 500 MHz to 40 GHz using superconducting coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Clauss, Conrad; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Bogani, Lapo; Scheffler, Marc; Dressel, Martin

    2013-04-01

    We present non-conventional electron spin resonance (ESR) experiments based on microfabricated superconducting Nb thin film waveguides. A very broad frequency range, from 0.5 to 40 GHz, becomes accessible at low temperatures down to 1.6 K and in magnetic fields up to 1.4 T. This allows for an accurate inspection of the ESR absorption position in the frequency domain, in contrast to the more common observation as a function of magnetic field. We demonstrate the applicability of frequency-swept ESR on Cr3+ atoms in ruby as well as on organic radicals of the nitronyl-nitroxide family. Measurements between 1.6 and 30 K reveal a small frequency shift of the ESR and a resonance broadening below the critical temperature of Nb, which we both attribute to a modification of the magnetic field configuration due to the appearance of shielding supercurrents in the waveguide.

  16. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    NASA Astrophysics Data System (ADS)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad; Bogani, Lapo; Bothner, Daniel; Koelle, Dieter; Kleiner, Reinhold; Dressel, Martin; Scheffler, Marc

    2015-05-01

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr3+ ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application for the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Hirokazu

    One-dimensional (1D) molecular chains of 4-substituted-2,2,6,6-tetramethyl-1-piperidinyloxyl (4-X-TEMPO) radicals were constructed in the crystalline 1D nanochannels of 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) used as a template. The ESR spectra of CLPOT inclusion compounds (ICs) using 4-X-TEMPO were examined on the basis of spectral simulation using EasySpin program package for simulating and fitting ESR spectra. The ESR spectra of [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC were isotropic in the total range of temperatures. The peak-to-peak line width (ΔB{sub pp}) became monotonically narrower from 2.8 to 1.3 mT with increase in temperature in the range of 4.2–298 K. The effect of the rotational diffusion motion of TEMPO radicals inmore » the CLPOT nanochannels for the inter-spin interaction of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC was found to be smaller than the case of [(TPP){sub 2}−(TEMPO){sub 1.0}] IC (TPP = tris(o-phenylenedioxy)cyclotriphosphazene) reported in our previous study. The ΔB{sub pp} of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC in the whole range of temperatures was much narrower than the estimation to be based on the Van Vleck’s formula for the second moment of the rigid lattice model where the electron spin can be considered as fixed; 11 mT of Gaussian line-width component. This suggests the possibility of exchange narrowing in the 1D organic-radical chains of the [(CLPOT){sub 2}-(TEMPO){sub 1.0}] IC. On the other hand, the ESR spectra of [(CLPOT){sub 2}-(MeO-TEMPO){sub 0.41}] IC (MeO-TEMPO = 4-methoxy-TEMPO) were reproduced by a superposition of major broad isotropic adsorption line and minor temperature-dependent modulated triplet component. This suggests that the IC has the part of 1D organic-radical chains and MeO-TEMPO molecules isolated in the CLPOT nanochannels.« less

  18. Estrogens in Male Physiology.

    PubMed

    Cooke, Paul S; Nanjappa, Manjunatha K; Ko, CheMyong; Prins, Gail S; Hess, Rex A

    2017-07-01

    Estrogens have historically been associated with female reproduction, but work over the last two decades established that estrogens and their main nuclear receptors (ESR1 and ESR2) and G protein-coupled estrogen receptor (GPER) also regulate male reproductive and nonreproductive organs. 17β-Estradiol (E2) is measureable in blood of men and males of other species, but in rete testis fluids, E2 reaches concentrations normally found only in females and in some species nanomolar concentrations of estrone sulfate are found in semen. Aromatase, which converts androgens to estrogens, is expressed in Leydig cells, seminiferous epithelium, and other male organs. Early studies showed E2 binding in numerous male tissues, and ESR1 and ESR2 each show unique distributions and actions in males. Exogenous estrogen treatment produced male reproductive pathologies in laboratory animals and men, especially during development, and studies with transgenic mice with compromised estrogen signaling demonstrated an E2 role in normal male physiology. Efferent ductules and epididymal functions are dependent on estrogen signaling through ESR1, whose loss impaired ion transport and water reabsorption, resulting in abnormal sperm. Loss of ESR1 or aromatase also produces effects on nonreproductive targets such as brain, adipose, skeletal muscle, bone, cardiovascular, and immune tissues. Expression of GPER is extensive in male tracts, suggesting a possible role for E2 signaling through this receptor in male reproduction. Recent evidence also indicates that membrane ESR1 has critical roles in male reproduction. Thus estrogens are important physiological regulators in males, and future studies may reveal additional roles for estrogen signaling in various target tissues. Copyright © 2017 the American Physiological Society.

  19. Investigation of defects in In–Ga–Zn oxide thin film using electron spin resonance signals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nonaka, Yusuke; Kurosawa, Yoichi; Komatsu, Yoshihiro

    In–Ga–Zn oxide (IGZO) is a next-generation semiconductor material seen as an alternative to silicon. Despite the importance of the controllability of characteristics and the reliability of devices, defects in IGZO have not been fully understood. We investigated defects in IGZO thin films using electron spin resonance (ESR) spectroscopy. In as-sputtered IGZO thin films, we observed an ESR signal which had a g-value of g = 2.010, and the signal was found to disappear under thermal treatment. Annealing in a reductive atmosphere, such as N{sub 2} atmosphere, generated an ESR signal with g = 1.932 in IGZO thin films. The temperature dependence of the lattermore » signal suggests that the signal is induced by delocalized unpaired electrons (i.e., conduction electrons). In fact, a comparison between the conductivity and ESR signal intensity revealed that the signal's intensity is related to the number of conduction electrons in the IGZO thin film. The signal's intensity did not increase with oxygen vacancy alone but also with increases in both oxygen vacancy and hydrogen concentration. In addition, first-principle calculation suggests that the conduction electrons in IGZO may be generated by defects that occur when hydrogen atoms are inserted into oxygen vacancies.« less

  20. ESR evidence for in vivo formation of free radicals in tissue of mice exposed to single-walled carbon nanotubes.

    PubMed

    Shvedova, A A; Kisin, E R; Murray, A R; Mouithys-Mickalad, A; Stadler, K; Mason, R P; Kadiiska, M

    2014-08-01

    Nanomaterials are being utilized in an increasing variety of manufactured goods. Because of their unique physicochemical, electrical, mechanical, and thermal properties, single-walled carbon nanotubes (SWCNTs) have found numerous applications in the electronics, aerospace, chemical, polymer, and pharmaceutical industries. Previously, we have reported that pharyngeal exposure of C57BL/6 mice to SWCNTs caused dose-dependent formation of granulomatous bronchial interstitial pneumonia, fibrosis, oxidative stress, acute inflammatory/cytokine responses, and a decrease in pulmonary function. In the current study, we used electron spin resonance (ESR) to directly assess whether exposure to respirable SWCNTs caused formation of free radicals in the lungs and in two distant organs, the heart and liver. Here we report that exposure to partially purified SWCNTs (HiPco technique, Carbon Nanotechnologies, Inc., Houston, TX, USA) resulted in the augmentation of oxidative stress as evidenced by ESR detection of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone spin-trapped carbon-centered lipid-derived radicals recorded shortly after the treatment. This was accompanied by a significant depletion of antioxidants and elevated biomarkers of inflammation presented by recruitment of inflammatory cells and an increase in proinflammatory cytokines in the lungs, as well as development of multifocal granulomatous pneumonia, interstitial fibrosis, and suppressed pulmonary function. Moreover, pulmonary exposure to SWCNTs also caused the formation of carbon-centered lipid-derived radicals in the heart and liver at later time points (day 7 postexposure). Additionally, SWCNTs induced a significant accumulation of oxidatively modified proteins, increase in lipid peroxidation products, depletion of antioxidants, and inflammatory response in both the heart and the liver. Furthermore, the iron chelator deferoxamine noticeably reduced lung inflammation and oxidative stress, indicating an important role for metal-catalyzed species in lung injury caused by SWCNTs. Overall, we provide direct evidence that lipid-derived free radicals are a critical contributor to tissue damage induced by SWCNTs not only in the lungs, but also in distant organs. Published by Elsevier Inc.

  1. Formation of 8-oxo-7,8-dihydroguanine-radicals in γ-irradiated DNA by multiple one-electron oxidations

    PubMed Central

    Shukla, Lata I.; Adhikary, Amitava; Pazdro, Robert; Becker, David; Sevilla, Michael D.

    2004-01-01

    Electron spin resonance (ESR) studies of radicals formed by radiation-induced multiple one-electron oxidations of guanine moieties in DNA are reported in this work. Annealing of gamma-irradiated DNA from 77 to 235 K results in the hydration of one electron oxidized guanine (G•+) to form the 8-hydroxy-7,8-dihydroguanin-7-yl-radical (•GOH) having one β-proton coupling of 17–28 G and an anisotropic nitrogen coupling, A‖, of ∼20 G, A⊥ = 0 with g‖ = 2.0026 and g⊥ = 2.0037. Further annealing to 258 K results in the formation of a sharp singlet at g = 2.0048 with line-width of 5.3 G that is identified as the 8-oxo-7,8-dihydroguanine one-electron-oxidized radical (8-oxo-G•+). This species is formed via two one-electron oxidations of •GOH. These two one-electron oxidation steps leading to the formation of 8-oxo-G•+ from •GOH in DNA, are in accordance with the expected ease of oxidation of •GOH and 8-oxo-G. The incorporation of oxygen from water in G•+ leading to •GOH and to 8-oxo-G•+ is verified by ESR studies employing 17O isotopically enriched water, which provide unambiguous evidence for the formation of both radicals. ESR analysis of irradiated-DNA in the presence of the electron scavenger, Tl3+, demonstrates that the cationic pathway leads to the formation of the 8-oxo-G•+. In irradiated DNA–Tl3+ samples, Tl3+ captures electrons. Tl2+ thus produced is a strong oxidant (2.2 V), which is metastable at 77 K and is observed to increase the formation of G•+ and subsequently of 8-oxo-G•+ upon annealing. We find that in the absence of the electron scavenger the yield of 8-oxo-G•+ is substantially reduced as a result of electron recombinations with G•+ and possible reaction with •GOH. PMID:15601999

  2. Radicals produced by gamma-irradiation of hyperquenched glassy water containing 2'-deoxyguanosine-5'-monophosphate.

    PubMed

    Staluszka, Justyna; Steblecka, Malgorzata; Szajdzinska-Pietek, Ewa; Kohl, Ingrid; Salzmann, Christoph G; Hallbrucker, Andreas; Mayer, Erwin

    2008-09-18

    Hyperquenched glassy water (HGW) has been suggested as the best model for liquid water, to be used in low-temperature studies of indirect radiation effects on dissolved biomolecules (Bednarek et al. J. Am. Chem. Soc. 1996, 118, 9387). In the present work, these effects are examined by X-band electron spin resonance spectroscopy (ESR) in gamma-irradiated HGW matrix containing 2'-deoxyguanosine-5'-monophosphate. Analysis of the complex ESR spectra indicates that, in addition to OH(*) and HO2(*) radicals generated by water radiolysis, three species are trapped at 77 K:(i) G(C8)H(*) radical, the H-adduct to the double bond at C8; (ii) G(- *) radical anion, the product of electron scavenging by the aromatic ring of the base; and (iii) dR(-H)(*) radicals formed by H abstraction from the sugar moiety, predominantly at the C'5 position. We discuss the yields of the radicals, their thermal stability and transformations, as well as the effect of photobleaching. This study confirms our earlier suggestion that in HGW the H atom addition/abstraction products are created at 77 K in competition with HO2(*) radicals, in a concerted process following ionization of water molecule at L-type defect sites of the H-bonded matrix. The lack of OH(*) reactivity toward the solute suggests that the H-bonded structure in HGW is much more effective in recombining OH(*) radicals than that of aqueous glasses obtained from highly concentrated electrolyte solutions. Furthermore, complementary experiments for the neat matrix have provided evidence that HO2(*) radicals are not the product of H atom reaction with molecular oxygen, possibly generated by ultrasounds used in the process of sample preparation.

  3. Investigation of irradiated 1H-Benzo[b]pyrrole by ESR, thermal methods and learning algorithm

    NASA Astrophysics Data System (ADS)

    Algul, Gulay; Ceylan, Yusuf; Usta, Keziban; Yumurtaci Aydogmus, Hacer; Usta, Ayhan; Asik, Biray

    2016-05-01

    1H-Benzo[b]pyrrole samples were irradiated in the air with gamma source at 0.969 kGy per hour at room temperature for 24, 48 and 72 h. After irradiation, electron spin resonance, thermogravimetry analysis (TGA) and differential thermal analysis (DTA) measurements were immediately carried out on the irradiated and unirradiated samples. The ESR measurements were performed between 320 and 400 K. ESR spectra were recorded from the samples irradiated for 48 and 72 h. The obtained spectra were observed to be dependent on temperature. Two radical-type centres were detected on the sample. Detected radiation-induced radicals were attributed to R-+•NH and R=•CC2H2. The g-values and hyperfine constants were calculated by means of the experimental spectra. It was also determined from TGA spectrum that both the unirradiated and irradiated samples were decomposed at one step with the rising temperature. Moreover, a theoretical study was presented. Success of the machine learning methods was tested. It was found that bagging techniques, which are widely used in the machine learning literature, could optimise prediction accuracy noticeably.

  4. Direct observation of the protonation of acetone ketyl radical by conductometric pulse radiolysis. [8-MeV electrons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janata, E.; Schuler, R.H.

    1980-12-11

    Improvements in conductometric pulse radiolysis methods allow direct observation of the protonation of the acetone ketyl radical anion on the 10-ns time scale. The protonation period of 9.7 +- 0.5 ns determined here is in good agreement with that estimated from the ESR line broadening studies of Laroff and Fessenden, (J. Phys. Chem., 77, 1283(1973)).

  5. Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; Stesmans, Andre; van Tol, Johan; Kosynkin, D. V.; Tour, James M.

    2014-04-01

    Electronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.

  6. Dynamic nuclear polarization enhanced nuclear magnetic resonance and electron spin resonance studies of hydration and local water dynamics in micelle and vesicle assemblies.

    PubMed

    McCarney, Evan R; Armstrong, Brandon D; Kausik, Ravinath; Han, Songi

    2008-09-16

    We present a unique analysis tool for the selective detection of local water inside soft molecular assemblies (hydrophobic cores, vesicular bilayers, and micellar structures) suspended in bulk water. Through the use of dynamic nuclear polarization (DNP), the (1)H NMR signal of water is amplified, as it interacts with stable radicals that possess approximately 658 times higher spin polarization. We utilized stable nitroxide radicals covalently attached along the hydrophobic tail of stearic acid molecules that incorporate themselves into surfactant-based micelle or vesicle structures. Here, we present a study of local water content and fluid viscosity inside oleate micelles and vesicles and Triton X-100 micelles to serve as model systems for soft molecular assemblies. This approach is unique because the amplification of the NMR signal is performed in bulk solution and under ambient conditions with site-specific spin labels that only detect the water that is directly interacting with the localized spin labels. Continuous wave (cw) electron spin resonance (ESR) analysis provides rotational dynamics of the spin-labeled molecular chain segments and local polarity parameters that can be related to hydration properties, whereas we show that DNP-enhanced (1)H NMR analysis of fluid samples directly provides translational water dynamics and permeability of the local environment probed by the spin label. Our technique therefore has the potential to become a powerful analysis tool, complementary to cw ESR, to study hydration characteristics of surfactant assemblies, lipid bilayers, or protein aggregates, where water dynamics is a key parameter of their structure and function. In this study, we find that there is significant penetration of water inside the oleate micelles with a higher average local water viscosity (approximately 1.8 cP) than in bulk water, and Triton X-100 micelles and oleate vesicle bilayers mostly exclude water while allowing for considerable surfactant chain motion and measurable water permeation through the soft structure.

  7. Inhibition effects of flavonoids on 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline formation and alkoxy radical scavenging capabilities of flavonoids in a model system.

    PubMed

    Shao, Zeping; Han, Zhonghui; Zhang, Jinhui; Zhang, Yan; Wang, Shuo

    2018-06-01

    Heterocyclic aromatic amines (HAAs) have been considered as carcinogenic and mutagenic chemicals generated during thermal processing of protein-rich foods that can be inhibited by some flavonoids. Free radical scavenging is a major characteristic of flavonoids. The half-maximal inhibitory concentration (IC 50 ) values of nine flavonoids were determined by evaluating their capacity to inhibit 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) formation in a model system. The results of the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) test validated that MeIQx and 7,8-DiMeIQx formed via a free radical pathway. Electron spin resonance (ESR) spectroscopic analysis with spin trapping (α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN) spin adduct, a N  = 15.2 G and a H  = 2.7 G) revealed that an alkoxy radical was the generated intermediate. The scavenging capacities of the nine flavonoids on alkoxy radicals were then evaluated based on the ESR spectra of the POBN spin adducts. The weak correlation between the alkoxy radical scavenging capacities and IC 50 of the flavonoids suggested that their inhibitory activity against MeIQx and 7,8-DiMeIQx formation operates by a more complex mechanism than simply scavenging alkoxy radicals. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  8. LC/ESR/MS study of pH-dependent radical generation from 15-LOX catalyzed DPA peroxidation

    PubMed Central

    Purwaha, Preeti; Gu, Yan; Kelavkar, Uddhav; Kang, Jing Xuan; Law, Benedict; Wu, Erxi; Qian, Steven Y.

    2011-01-01

    Docosapentaenoic acid (DPA) is a unique fatty acid that exists in two isomeric forms (n-3 and n-6) which differ in their physiological behaviors. DPA can undergo free-radical mediated peroxidation via lipoxygenase (LOX). 15-LOX, one of the LOX isomers, has received much attention in cancer research due to its very different expression level in normal tissues compared to tumors and some bioactive fatty acid metabolites modulating the tumorigenic pathways in cancer. However, the mechanism linking 15-LOX, DPA-metabolites, and the bioactivities is still unclear, and the free radicals generated in DPA peroxidation have never been characterized. In this study, we have studied radicals formed from both soybean and human cellular (PC3-15LOS cells) 15-LOX-catalyzed peroxidation of DPAs at different pH’s using a combination of LC/ESR/MS with the spin trapping technique. We observed a total of three carbon-centered radicals formed in 15-LOX/DPA (n-3) stemming from its 7-, 17- and 20-hydroperoxides, while only one formed from 17-hydroperoxide in DPA (n-6). A change in the reaction pH from 8.5 (15-LOX enzyme optimum) to 7.4 (physiological) and to 6.5 (tumor, acidic) not only decreased the total radical formation but also altered the preferred site of oxygenation. This pH-dependent alteration of radical formation and oxygenation pattern may have significant implications and provide a basis for our ongoing investigations of LOXs as well as fatty acids in cancer biology. PMID:21807091

  9. Free radical mediated formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters.

    PubMed

    Zhang, Xiaowei; Gao, Boyan; Qin, Fang; Shi, Haiming; Jiang, Yuangrong; Xu, Xuebing; Yu, Liangli Lucy

    2013-03-13

    The present study was conducted to test the hypothesis that a free radical was formed and mediated the formation of 3-monochloropropanediol (3-MCPD) fatty acid diesters, a group of food contaminants, from diacylglycerols at high temperature under a low-moisture condition for the first time. The presence of free radicals in a vegetable oil kept at 120 °C for 20 min was demonstrated using an electron spin resonance (ESR) spectroscopy examination with 5,5-dimethylpyrroline-N-oxide (DMPO) as the spin trap agent. ESR investigation also showed an association between thermal treatment degree and the concentration of free radicals. A Fourier transform infrared spectroscopy (FT-IR) analysis of sn-1,2-stearoylglycerol (DSG) at 25 and 120 °C suggested the possible involvement of an ester carbonyl group in forming 3-MCPD diesters. On the basis of these results, a novel free radical mediated chemical mechanism was proposed for 3-MCPD diester formation. Furthermore, a quadrupole-time of flight (Q-TOF) MS/MS investigation was performed and detected the DMPO adducts with the cyclic acyloxonium free radical (CAFR) and its product MS ions, proving the presence of CAFR. Furthermore, the free radical mechanism was validated by the formation of 3-MCPD diesters through reacting DSG with a number of organic and inorganic chlorine sources including chlorine gas at 120 and 240 °C. The findings of this study might lead to the improvement of oil and food processing conditions to reduce the level of 3-MCPD diesters in foods and enhance food safety.

  10. ESR dating of tooth enamel: comparison with {230Th }/{234U } speleothem dates at La Chaise-de-Vouthon (Charente), France

    NASA Astrophysics Data System (ADS)

    Blackwell, Bonnie; Porat, N.; Schwarcz, H. P.; Debénath, A.

    One way to assess a new dating method's reliability is by comparing its results with those from well established, independent techniques. A controlled test of the electron spin resonance (ESR) dating method as it is currently being applied to teeth was attempted for the time range 100-250 ka, beyond that of 14C, at the archaeological site of La Chaise-de-Vouthon (Charente, France). Although absent in modern enamel, a single ESR signal with g = 2.0018 in fossil tooth enamel hydroxyapatite increases in amplitude with increasing irradiation doses. ESR ages are derived from the ratio of the AD, the radiation dose needed to produce the observed ESR signal, relative to the natural, environmental dose rate (ED) experienced by the tooth after deposition. Since the age depends on the uranium (U) uptake history assumed, three ages are calculated assuming: (1) early U uptake (EU); (2) continuous (linear) uptake (LU); (3) recent uptake (RU). Generally, the LU age agrees best with known ages determined by other methods, although the RU model is better for some teeth. ESR dating assumes that the fossil has not suffered recrystallization or significant diagenetic alteration. In the preliminary test, three teeth were dated. In Bourgeois-Delaunay, a bovid molar associated with Palaeolithic artefacts was collected from layers dated at 101 ± 12 to 114 ± 7 ka by {230Th }/{234U } dating of the over- and underlying stalagmitic floors. From Suard, two Equus teeth were collected from beneath a stalagmitic floor dating 112 ± 12 ka. ESR dating teeth significantly underestimated the true age for the teeth: the mean ESR ages range from 37 to 94 ka with standard errors of 2-6 ka, and good replicability. Although more teeth at La Chaise need to be tested to ascertain that the underestimation does not result from random variation commonly seen among teeth within one unit, the consistent underestimation suggests a fault in one of the assumptions underlying the dating method. The most obvious source of error lies in the difficulty in modelling the external γ dose. Only U leaching, not incorrectly modelled U uptake, would cause the underestimation. Diagenetic alteration may also cause anomalous fading, thermal instability, variation in k, or ESR signal suppression. More study into the effects of diagenesis alteration on enamel ESR signals is needed, as is a reevaluation of the mean signal life and α efficiency for several more enamel samples.

  11. Thermally assisted OSL application for equivalent dose estimation; comparison of multiple equivalent dose values as well as saturation levels determined by luminescence and ESR techniques for a sedimentary sample collected from a fault gouge

    NASA Astrophysics Data System (ADS)

    Şahiner, Eren; Meriç, Niyazi; Polymeris, George S.

    2017-02-01

    Equivalent dose estimation (De) constitutes the most important part of either trap-charge dating techniques or dosimetry applications. In the present work, multiple, independent equivalent dose estimation approaches were adopted, using both luminescence and ESR techniques; two different minerals were studied, namely quartz as well as feldspathic polymineral samples. The work is divided into three independent parts, depending on the type of signal employed. Firstly, different De estimation approaches were carried out on both polymineral and contaminated quartz, using single aliquot regenerative dose protocols employing conventional OSL and IRSL signals, acquired at different temperatures. Secondly, ESR equivalent dose estimations using the additive dose procedure both at room temperature and at 90 K were discussed. Lastly, for the first time in the literature, a single aliquot regenerative protocol employing a thermally assisted OSL signal originating from Very Deep Traps was applied for natural minerals. Rejection criteria such as recycling and recovery ratios are also presented. The SAR protocol, whenever applied, provided with compatible De estimations with great accuracy, independent on either the type of mineral or the stimulation temperature. Low temperature ESR signals resulting from Al and Ti centers indicate very large De values due to bleaching in-ability, associated with large uncertainty values. Additionally, dose saturation of different approaches was investigated. For the signal arising from Very Deep Traps in quartz saturation is extended almost by one order of magnitude. It is interesting that most of De values yielded using different luminescence signals agree with each other and ESR Ge center has very large D0 values. The results presented above highly support the argument that the stability and the initial ESR signal of the Ge center is highly sample-dependent, without any instability problems for the cases of quartz resulting from fault gouge.

  12. Changes in estrogen receptor signaling alters the timekeeping system in male mice.

    PubMed

    Blattner, Margaret S; Mahoney, Megan M

    2015-11-01

    Circadian rhythms are modulated by steroid hormones; however, the mechanisms of this action are not fully understood, particularly in males. In females estradiol regulates activity level, pattern of expression, and free running period (tau). We tested the hypothesis that activity level and distribution in male mice includes both classical and "non-classical" actions of estrogens at the estrogen receptor subtype 1 (ESR1). We used transgenic mice with mutations in their estrogen response pathways: ESR1 knock-out (ERKO) mice lack the ability to respond to estrogens via ESR1. "Non-classical" estrogen receptor knock-in (NERKI) mice have an inserted ESR1 receptor with a mutation in the estrogen-response-element binding domain, allowing activation via non-genomic and second messenger pathways. Gonadectomized male NERKI, ERKO, and wildtype (WT) littermates were given oil, or low or high dose estradiol and daily activity parameters were quantified. Estradiol shortened the ratio of activity in the light relative to dark (LD ratio), shortened tau, advanced the time of activity onset, and altered responsiveness to light cues administered in the late subjective night, suggesting modulation by an ESR1-independent mechanism. Estradiol treatment in NERKI but not WT males altered the timing of activity onset, LD ratio, and the behavioral response to light cues. These results may represent disruptions in the balance of genomic/nongenomic or ESR1/ESR2 signaling pathways. We also found a significant genotype effect on total activity, LD ratio, tau, and activity duration. These data provide new information about the role of ESR1-dependent and independent signaling pathways on the timekeeping system in male mice. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A kinetic study of 3-chlorophenol enhanced hydroxyl radical generation during ozonation.

    PubMed

    Utsumi, Hideo; Han, Youn-Hee; Ichikawa, Kazuhiro

    2003-12-01

    Hydroxyl (OH) radical is proposed as an important factor in the ozonation of water. In the present study, the enhancing effect of 3-chlorophenol on OH radical generation was mathematically evaluated using electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocity of DMPO-OH generation in ozonated water containing 3-chlorophenol was quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus which was controlled by home-made software. The initial velocity of DMPO-OH generation increased as a function of the concentration of ozone and the more effectively of 3-chlorophenol concentration. The relation among ozone concentration, amount of 3-chlorophenol and the initial velocity (nu(0)) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, nu(0) (10(-6)M/s)=[9.7 x [3-chlorophenol (10(-9)M)] + 0.0005]exp(57 x [ozone (10(-9)M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.99. The equation for the enhancing effect by 3-chlorophenol should provide useful information to optimize the condition in ozone treatment process of water containing phenolic pollutants.

  14. The ground state of metallic nano-structures in heavily irradiated NaCl-KBF4

    NASA Astrophysics Data System (ADS)

    Cherkasov, F. G.; L'Vov, S. G.; Tikhonov, D. A.; den Hartog, H. W.; Vainshtein, D. I.

    ESR, NMR and static magnetic susceptibility measurements of heavily irradiated NaCl-K and NaCl-KBF4 are reported. Up to 10% of the NaCl-molecules are transformed into metallic Na nanoparticles and Cl-2 precipitates. In addition, there are paramagnetic F- and F-aggregates, which are coupled by exchange interactions to the conduction electrons in the nanoparticles. Above 160 K the NMR and ESR signals of NaCl-K and NaCl-KBF4 show Pauli paramagnetism and the properties of the Na nanoparticles are similar to bulk sodium. A single ESR line is observed revealing exchange interaction between conduction electrons in the nano-particles and F-aggregates. The observed decrease of the ESR susceptibility with decreasing temperature is due to a metal-insulator transition. The conduction electrons are localized below 40 K and the above mentioned F-aggregate centers contribute significantly to the overall ESR signal. For NaCl-KBF4 we observed that with decreasing temperature the ESR line shifts towards lower fields due to antiferromagnetic ordering and internal magnetic fields.

  15. Probing cardiac metabolism by hyperpolarized 13C MR using an exclusively endogenous substrate mixture and photo-induced non-persistent radicals

    PubMed Central

    Bastiaansen, Jessica A. M.; Yoshihara, Hikari A. I.; Capozzi, Andrea; Schwitter, Juerg; Gruetter, Rolf; Merritt, Matthew E.; Comment, Arnaud

    2018-01-01

    Purpose To probe the cardiac metabolism of carbohydrates and short chain fatty acids simultaneously in vivo following the injection of a hyperpolarized 13C-labeled substrate mixture prepared using photo-induced non-persistent radicals. Methods Droplets of mixed [1-13C]pyruvic and [1-13C]butyric acids were frozen into glassy beads in liquid nitrogen. Ethanol addition was investigated as a means to increase the polarization level. The beads were irradiated with ultraviolet (UV) light and the radical concentration was measured by ESR spectroscopy. Following dynamic nuclear polarization (DNP) in a 7T polarizer, the beads were dissolved, and the radical-free hyperpolarized solution was rapidly transferred into an injection pump located inside a 9.4T scanner. The hyperpolarized solution was injected in healthy rats to measure cardiac metabolism in vivo. Results UV-irradiation created non-persistent radicals in a mixture containing 13C-labeled pyruvic and butyric acids and enabled the hyperpolarization of both substrates by DNP. Ethanol addition increased the radical concentration from 16 to 26 mM. Liquid-state 13C polarization was 3% inside the pump at the time of injection, and increased to 5% by addition of ethanol to the substrate mixture prior to UV irradiation. In the rat heart, the in vivo13C signals from lactate, alanine, bicarbonate and acetylcarnitine were detected following the metabolism of the injected substrate mixture. Conclusion Co-polarization of two 13C-labeled substrates and the detection of their myocardial metabolism in vivo was achieved without using persistent radicals. The absence of radicals in the solution containing the hyperpolarized 13C-substrates may simplify the translation to clinical use because no filtration is required prior to injection. PMID:29411415

  16. Observing electron spin resonance between 0.1 and 67 GHz at temperatures between 50 mK and 300 K using broadband metallic coplanar waveguides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiemann, Yvonne; Simmendinger, Julian; Clauss, Conrad

    2015-05-11

    We describe a fully broadband approach for electron spin resonance (ESR) experiments, where it is possible to tune not only the magnetic field but also the frequency continuously over wide ranges. Here, a metallic coplanar transmission line acts as compact and versatile microwave probe that can easily be implemented in different cryogenic setups. We perform ESR measurements at frequencies between 0.1 and 67 GHz and at temperatures between 50 mK and room temperature. Three different types of samples (Cr{sup 3+} ions in ruby, organic radicals of the nitronyl-nitroxide family, and the doped semiconductor Si:P) represent different possible fields of application formore » the technique. We demonstrate that an extremely large phase space in temperature, magnetic field, and frequency for ESR measurements, substantially exceeding the range of conventional ESR setups, is accessible with metallic coplanar lines.« less

  17. CHARGE-TRANSFER ASSOCIATION AND PARAMAGNETISM OF SOME ORGANIC SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eastman, J W

    When p-xylene was combined with chloranil in n-heptane, charge-transfer optical absorption was observed. The magnitude of this absorption was used to calculate an equilibrium constant for the formation of a donor-acceptor complex containing one p-xylene was combined with carbon tetrabromide and with carbon tetrachloride in n-heptane, no charge-transfer absorption was observed. Reactions of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) with chloranil (pQCl/ sub 4/) were observed in ethylene dichloride and acetonitrile. In both solvents adduct formation occurred initially, as observed by its charge-transfer absorption. In acetonitrile time-dependent electron spin resonance (ESR) absorption was observed, and it was identified with the positive and negative radicalmore » ions of TMPD and pQCl/sub 4/, respectively. In this case a completely ionized electron transfer had occurred. Chloranil and other quinones were found to react with N,N-dimethylaniline forming a crystal violet salt. The diamagnetic donor-acceptor complexes and also semiquinone radicals are intermediates which were observed. Some physical measurements of the kinetics of this reaction are described and correlated. When fluoranil was allowed to react with dimethylaniline, the hyperfine splitting by the fluorine atoms of the fluoranil radical was not resolved. Characteristics of the ESR absorption by this radical in dimethylaniline are discussed in terms of an electron transfer between the semiquinone and quinone, and between the semiquinone and hydroquinone ion. Paramagnetism was discovered in hydrocarbon-quinone solids. ESR absorption was assigned to imperfections in the solid which was normally diamagnetic. The preparation of these solids and some of their physical characteristics are described. (auth)« less

  18. Comprehensive genetic assessment of the ESR1 locus identifies a risk region for endometrial cancer.

    PubMed

    O'Mara, Tracy A; Glubb, Dylan M; Painter, Jodie N; Cheng, Timothy; Dennis, Joe; Attia, John; Holliday, Elizabeth G; McEvoy, Mark; Scott, Rodney J; Ashton, Katie; Proietto, Tony; Otton, Geoffrey; Shah, Mitul; Ahmed, Shahana; Healey, Catherine S; Gorman, Maggie; Martin, Lynn; Hodgson, Shirley; Fasching, Peter A; Hein, Alexander; Beckmann, Matthias W; Ekici, Arif B; Hall, Per; Czene, Kamila; Darabi, Hatef; Li, Jingmei; Dürst, Matthias; Runnebaum, Ingo; Hillemanns, Peter; Dörk, Thilo; Lambrechts, Diether; Depreeuw, Jeroen; Annibali, Daniela; Amant, Frederic; Zhao, Hui; Goode, Ellen L; Dowdy, Sean C; Fridley, Brooke L; Winham, Stacey J; Salvesen, Helga B; Njølstad, Tormund S; Trovik, Jone; Werner, Henrica M J; Tham, Emma; Liu, Tao; Mints, Miriam; Bolla, Manjeet K; Michailidou, Kyriaki; Tyrer, Jonathan P; Wang, Qin; Hopper, John L; Peto, Julian; Swerdlow, Anthony J; Burwinkel, Barbara; Brenner, Hermann; Meindl, Alfons; Brauch, Hiltrud; Lindblom, Annika; Chang-Claude, Jenny; Couch, Fergus J; Giles, Graham G; Kristensen, Vessela N; Cox, Angela; Pharoah, Paul D P; Dunning, Alison M; Tomlinson, Ian; Easton, Douglas F; Thompson, Deborah J; Spurdle, Amanda B

    2015-10-01

    Excessive exposure to estrogen is a well-established risk factor for endometrial cancer (EC), particularly for cancers of endometrioid histology. The physiological function of estrogen is primarily mediated by estrogen receptor alpha, encoded by ESR1. Consequently, several studies have investigated whether variation at the ESR1 locus is associated with risk of EC, with conflicting results. We performed comprehensive fine-mapping analyses of 3633 genotyped and imputed single nucleotide polymorphisms (SNPs) in 6607 EC cases and 37 925 controls. There was evidence of an EC risk signal located at a potential alternative promoter of the ESR1 gene (lead SNP rs79575945, P=1.86×10(-5)), which was stronger for cancers of endometrioid subtype (P=3.76×10(-6)). Bioinformatic analysis suggests that this risk signal is in a functionally important region targeting ESR1, and eQTL analysis found that rs79575945 was associated with expression of SYNE1, a neighbouring gene. In summary, we have identified a single EC risk signal located at ESR1, at study-wide significance. Given SNPs located at this locus have been associated with risk for breast cancer, also a hormonally driven cancer, this study adds weight to the rationale for performing informed candidate fine-scale genetic studies across cancer types. © 2015 Society for Endocrinology.

  19. ESR signals in a core from the lake Baikal: implications for climate change

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Hidaka, K.; Takamatsu, N.

    2002-12-01

    Electron spin resonance dating method has been used for obtaining ages of Quaternary events using speleothem, corals, shells, hydroxyapatite in tooth enamel, gypsum, and quartz (Ikeya, 1993). Recently, it was also found that an ESR signal in quartz of loess is useful to discuss the variation of its origin (e. g. Ono et al., 1998). The method is based on the signal intensity of the heat treated (gamma ray irradiation and heating, Toyoda and Ikeya, 1991) E 1_f center (an unpaired electron at an oxygen vacancy) correlates the original (crystallization) age of quartz (e.g. Toyoda and Hattori, 2000). If there is variation in ages of basement rocks (origin of loess), ESR signal intensity may differentiate the origins. We applied the present method to sediments taken from the core of the lake Baikal with the length of 600m. The ESR intensity of the heat treated E1_f center was determined by an ESR measurement at room temperature for about 100 mg of the bulk samples, with a microwave power of 0.01 mW, field modulation amplitude of 0.1 mT, and with a scan range of 5 mT around g=2.001 after gamma ray irradiation to 1 kGy and subsequent heating at 300C. The ESR signal of the E1_f center was clearly observed although other minerals are also included in the bulk sample. The peak to peak height was taken as the signal intensity after normalizing the height with the gain (the instrumental setting at the time of measurement), mass, and the intensity of the standard simultaneously measured with the sample. The concentrations of the quartz in the bulk samples were obtained by the X ray diffraction study, normalizing the peak intensity with a standard CeO sample. The variation of the ESR signal intensity with depth of the core will be presented together with the possible climate change which may have caused the variation. References M. Ikeya (1993) New applications of electron spin resonance, dating, dosimetry and imaging, World Scientific. Y. Ono, T. Naruse, M. Ikeya, H. Kohno, and S. Toyoda (1998) Global Planet. Change, 18, 129-135. S. Toyoda and M. Ikeya (1991) Geochem. J. 25, 437-445. S. Toyoda and W. Hattori (2000) Appl. Radiat. Isot., 52, 1351-1356.

  20. ESR response of phenol compounds for dosimetry of gamma photon beams

    NASA Astrophysics Data System (ADS)

    Marrale, M.; Longo, A.; Panzeca, S.; Gallo, S.; Principato, F.; Tomarchio, E.; Parlato, A.; Buttafava, A.; Dondi, D.; Zeffiro, A.

    2014-11-01

    In the present paper we investigate the features of IRGANOX® 1076 phenols as a material for electron spin resonance (ESR) dosimetry. We experimentally analyzed the ESR response of pellets of IRGANOX® 1076 phenols irradiated with 60Co photons. The best experimental parameters (modulation amplitude and microwave power) for dosimetric applications have been obtained. The dependence of ESR signal as function of γ dose is found to be linear in the dose range studied (12-60 Gy) and the lowest measurable dose is found to be of the order of 1 Gy. The signal after irradiation is very stable in the first thirty days. From the point of view of the tissue equivalence, these materials have mass energy absorption coefficient values comparable with those of soft tissue.

  1. The chemistry and preparation of tantalum complexes with 2,3-dihydroxy benzoic acid: Experimental and theoretical investigation

    NASA Astrophysics Data System (ADS)

    Hatzipanayioti, Despina; Kontotheodorou, Konstantinos

    2011-03-01

    The effect of 2,3-dihydroxybenzoic acid (2,3DHBA, pyrocatechuic acid) on the chloro-alkoxo-species [TaCl 5- x(OMe) x], formed by dissolving TaCl 5 in MeOH, has been studied. The coordination of 2,3DHBA-H 2- on Ta (V) replacing MeO-terminal groups was monitored via NMR spectroscopy. The yellow solid 1 was isolated from the mixture of TaCl 5, with neutral 2,3-DHBA, in MeOH. From this solid the elemental (C, H and Ta), the thermogravimetric analyses, the IR, NMR, ESR and electronic spectra support the formula Ta 2(2,3DHBA) 2(O) 2Cl 4(MeO) 4. The ESR spectrum of solid 1, at 4.2 K, shows a half-field signal apart from a multiline signal around g = 2, supporting evidence for semiquinone and Ta (IV) presence. The occurrence of superoxide radical, in the low temperature of ESR spectrum recording, cannot be ruled out. By heating the solid 1 at 500 °C, an oxide phase showing porous character (SEM) and retaining CO 2 (IR), is evident. Solid 1 heated at 900 °C, leads to the formation of β-Ta 2O 5 orthorhombic phase, as the XRD pattern indicates. The hydrolytic process of solid 1, in aqueous solutions, has been studied; the presence of paramagnetic species generated in situ upon addition of base and the consequent degradative process of 2,3-DHBA, under aerobic conditions is obvious. In order to gain information for the structure of solid 1, DFT calculations have been performed for some theoretical models, based on the empirical formula of solid 1. The calculated structural and spectroscopic parameters have been correlated to experimental results. The energy optimized structures may give an idea about the way of MeCl and MeOMe formation as well some possible intermediates of the hydrolytic mechanism.

  2. Antioxidant activities of two sericin proteins extracted from cocoon of silkworm (Bombyx mori) measured by DPPH, chemiluminescence, ORAC and ESR methods.

    PubMed

    Takechi, Tayori; Wada, Ritsuko; Fukuda, Tsubasa; Harada, Kazuki; Takamura, Hitoshi

    2014-05-01

    Recent efforts have focused on the use of sericin proteins extracted from cocoons of silkworm as a healthy food source for human consumption. In this study, we focused on the antioxidative properties of sericin proteins. The antioxidative properties were measured in sericin proteins extracted from the shell of the cocoon, designated hereafter as white sericin protein and yellow-green sericin protein, as well as bread without sericin protein and bread to which white sericin powder had been added using four measurement methods: 1,1-Diphenyl-2-picrylhydrazyl (DPPH), chemiluminescence, oxygen radical absorbance capacity (ORAC) and electron spin resonance (ESR). High antioxidative properties of sericin proteins were indicated by all four methods. A comparison of the two types of sericin proteins revealed that yellow-green sericin protein exhibited high antioxidative properties as indicated by the DPPH, chemiluminescence and ORAC methods. By contrast, a higher antioxidative property was determined in white sericin protein by the ESR method. Consequently, our findings confirmed that sericin proteins have antioxidative properties against multiple radicals. In addition, the antioxidative property of bread was enhanced by the addition of sericin powder to the bread. Therefore, findings of this study suggest that sericin proteins may be efficiently used as beneficial food for human health.

  3. Antioxidant activities of two sericin proteins extracted from cocoon of silkworm (Bombyx mori) measured by DPPH, chemiluminescence, ORAC and ESR methods

    PubMed Central

    TAKECHI, TAYORI; WADA, RITSUKO; FUKUDA, TSUBASA; HARADA, KAZUKI; TAKAMURA, HITOSHI

    2014-01-01

    Recent efforts have focused on the use of sericin proteins extracted from cocoons of silkworm as a healthy food source for human consumption. In this study, we focused on the antioxidative properties of sericin proteins. The antioxidative properties were measured in sericin proteins extracted from the shell of the cocoon, designated hereafter as white sericin protein and yellow-green sericin protein, as well as bread without sericin protein and bread to which white sericin powder had been added using four measurement methods: 1,1-Diphenyl-2-picrylhydrazyl (DPPH), chemiluminescence, oxygen radical absorbance capacity (ORAC) and electron spin resonance (ESR). High antioxidative properties of sericin proteins were indicated by all four methods. A comparison of the two types of sericin proteins revealed that yellow-green sericin protein exhibited high antioxidative properties as indicated by the DPPH, chemiluminescence and ORAC methods. By contrast, a higher antioxidative property was determined in white sericin protein by the ESR method. Consequently, our findings confirmed that sericin proteins have antioxidative properties against multiple radicals. In addition, the antioxidative property of bread was enhanced by the addition of sericin powder to the bread. Therefore, findings of this study suggest that sericin proteins may be efficiently used as beneficial food for human health. PMID:24748975

  4. ESR detection of irradiated carob pods (Ceratoniasiliqua L) and its dosimetric feature

    NASA Astrophysics Data System (ADS)

    Tuner, Hasan; Polat, Mustafa

    2017-12-01

    Un-irradiated carob powder exhibited a weak ESR singlet at g = 2.0041 ± 0.0006 with peak-to-peak linewidth (ΔHpp) of 0.33 ± 0.01 mT. Irradiated carob powder exhibited an ESR spectrum consisting many resonance lines and similar to ESR spectrum of sugar in all aspects. A linear function of the absorbed radiation dose was found to describe best the dose-response curves of the ESR signal intensity Ipp. It is concluded that due to the similarity of carob powder ESR spectrum to the irradiated sugar and the fact that it is widely consumed, carob powder has the potential to be used as a retrospective and/or accidental dosimetric material.

  5. Aminoxyl (nitroxyl) radicals in the early decomposition of the nitramine RDX.

    PubMed

    Irikura, Karl K

    2013-03-14

    The explosive nitramine RDX (1,3,5-trinitrohexahydro-s-triazine) is thought to decompose largely by homolytic N-N bond cleavage, among other possible initiation reactions. Density-functional theory (DFT) calculations indicate that the resulting secondary aminyl (R2N·) radical can abstract an oxygen atom from NO2 or from a neighboring nitramine molecule, producing an aminoxyl (R2NO·) radical. Persistent aminoxyl radicals have been detected in electron-spin resonance (ESR) experiments and are consistent with autocatalytic "red oils" reported in the experimental literature. When the O-atom donor is a nitramine, a nitrosamine is formed along with the aminoxyl radical. Reactions of aminoxyl radicals can lead readily to the "oxy-s-triazine" product (as the s-triazine N-oxide) observed mass-spectrometrically by Behrens and co-workers. In addition to forming aminoxyl radicals, the initial aminyl radical can catalyze loss of HONO from RDX.

  6. WIND1 Promotes Shoot Regeneration through Transcriptional Activation of ENHANCER OF SHOOT REGENERATION1 in Arabidopsis[OPEN

    PubMed Central

    Ohnuma, Mariko; Kurata, Tetsuya; Nakata, Masaru; Ohme-Takagi, Masaru

    2017-01-01

    Many plant species display remarkable developmental plasticity and regenerate new organs after injury. Local signals produced by wounding are thought to trigger organ regeneration but molecular mechanisms underlying this control remain largely unknown. We previously identified an AP2/ERF transcription factor WOUND INDUCED DEDIFFERENTIATION1 (WIND1) as a central regulator of wound-induced cellular reprogramming in plants. In this study, we demonstrate that WIND1 promotes callus formation and shoot regeneration by upregulating the expression of the ENHANCER OF SHOOT REGENERATION1 (ESR1) gene, which encodes another AP2/ERF transcription factor in Arabidopsis thaliana. The esr1 mutants are defective in callus formation and shoot regeneration; conversely, its overexpression promotes both of these processes, indicating that ESR1 functions as a critical driver of cellular reprogramming. Our data show that WIND1 directly binds the vascular system-specific and wound-responsive cis-element-like motifs within the ESR1 promoter and activates its expression. The expression of ESR1 is strongly reduced in WIND1-SRDX dominant repressors, and ectopic overexpression of ESR1 bypasses defects in callus formation and shoot regeneration in WIND1-SRDX plants, supporting the notion that ESR1 acts downstream of WIND1. Together, our findings uncover a key molecular pathway that links wound signaling to shoot regeneration in plants. PMID:28011694

  7. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin.

    PubMed

    Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba

    2016-01-14

    Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health.

  8. Free Radical Scavenging and Cellular Antioxidant Properties of Astaxanthin

    PubMed Central

    Dose, Janina; Matsugo, Seiichi; Yokokawa, Haruka; Koshida, Yutaro; Okazaki, Shigetoshi; Seidel, Ulrike; Eggersdorfer, Manfred; Rimbach, Gerald; Esatbeyoglu, Tuba

    2016-01-01

    Astaxanthin is a coloring agent which is used as a feed additive in aquaculture nutrition. Recently, potential health benefits of astaxanthin have been discussed which may be partly related to its free radical scavenging and antioxidant properties. Our electron spin resonance (ESR) and spin trapping data suggest that synthetic astaxanthin is a potent free radical scavenger in terms of diphenylpicryl-hydrazyl (DPPH) and galvinoxyl free radicals. Furthermore, astaxanthin dose-dependently quenched singlet oxygen as determined by photon counting. In addition to free radical scavenging and singlet oxygen quenching properties, astaxanthin induced the antioxidant enzyme paroxoanase-1, enhanced glutathione concentrations and prevented lipid peroxidation in cultured hepatocytes. Present results suggest that, beyond its coloring properties, synthetic astaxanthin exhibits free radical scavenging, singlet oxygen quenching, and antioxidant activities which could probably positively affect animal and human health. PMID:26784174

  9. Roles of Estrogen Receptor-α and the Coactivator MED1 During Human Endometrial Decidualization

    PubMed Central

    Kaya Okur, Hatice S.; Das, Amrita; Taylor, Robert N.; Bagchi, Indrani C.

    2016-01-01

    The steroid hormones 17β-estradiol and progesterone are critical regulators of endometrial stromal cell differentiation, known as decidualization, which is a prerequisite for successful establishment of pregnancy. The present study using primary human endometrial stromal cells (HESCs) addressed the role of estrogen receptor-α (ESR1) in decidualization. Knockdown of ESR1 transcripts by RNA interference led to a marked reduction in decidualization of HESCs. Gene expression profiling at an early stage of decidualization indicated that ESR1 negatively regulates several cell cycle regulatory factors, thereby suppressing the proliferation of HESCs as these cells enter the differentiation program. ESR1 also controls the expression of WNT4, FOXO1, and progesterone receptor (PGR), well-known mediators of decidualization. Whereas ESR1 knockdown strongly inhibited the expression of FOXO1 and WNT4 transcripts within 24 hours of the initiation of decidualization, PGR expression remained unaffected at this early time point. Our study also revealed a major role of cAMP signaling in influencing the function of ESR1 during decidualization. Using a proteomic approach, we discovered that the cAMP-dependent protein kinase A (PKA) phosphorylates Mediator 1 (MED1), a subunit of the mediator coactivator complex, during HESC differentiation. Using immunoprecipitation, we demonstrated that PKA-phosphorylated MED1 interacts with ESR1. The PKA-dependent phosphorylation of MED1 was also correlated with its enhanced recruitment to estrogen-responsive elements in the WNT4 gene. Knockdown of MED1 transcripts impaired the expression of ESR1-induced WNT4 and FOXO1 transcripts and blocked decidualization. Based on these findings, we conclude that modulation of ESR1-MED1 interactions by cAMP signaling plays a critical role in human decidualization. PMID:26849466

  10. Onion skin as a radiation monitor

    NASA Astrophysics Data System (ADS)

    Desrosiers, Marc F.; McLaughlin, William L.

    The ESR spectra of the dry, outer skin of onion, red onion, garlic, and shallot were measured before and after irradiation. In all spectra only a single resonance (g = 2.00) was observed. The ESR signal intensity increased with absorbed dose, however, the radiation-induced signal decayed slowly with time. It was concluded that the outer skin of these foods are not suitable as a long-term postirradiation monitor.

  11. Reactivity of amine antioxidants relative to OH and anti e

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minkhadzhidinova, D.R.; Nikiforov, G.A.; Khrapova, N.G.

    1986-06-20

    An ESR study was carried out on the reactivity of various types of amines relative to OH/sup ./ and anti e. The selection of these compounds having anti-oxidant properties was also based on the circumstance that amine molecules contain a set of functional groups which may be potential sites for the attack of both OH and anti e radicals. A sample of 6 M H/sub 3/PO/sub 4/ was used for the matrix solutions and forms a glass upon rapid insertion into liquid nitrogen. The phosphoric acid solutions of these compounds taken in concentrations from 0.025 to 0.05 M were flushedmore » with argon to remove oxygen. Ampules containing the solutions were inserted into liquid nitrogen and irradiated from a cobalt source. The ESR spectra of the irradiated solutions clearly show the components of the atomic hydrogen doublet with a = 50 mT and of H/sub 2/PO/sub 4//sup ./ radicals in the central region of the spectrum.« less

  12. Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance.

    PubMed

    Kusar, A; Zupancic, A; Sentjurc, M; Baricevic, D

    2006-10-01

    Yellow gentian (Gentiana lutea L.) is a herbal species with a long-term use in traditional medicine due to its digestive and stomachic properties. This paper presents an investigation of the free radical scavenging activity of methanolic extracts of yellow gentian leaves and roots in two different systems using electron spin resonance (ESR) spectrometry. Assays were based on the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH) and the superoxide radicals (O2*-) generated by the xanthine/xanthine oxidase (X/XO) system. The results of gentian methanolic extracts were compared with the antioxidant capacity of synthetic antioxidant butylated hydroxyanisole (BHA). This study proves that yellow gentian leaves and roots exhibit considerable antioxidant properties, expressed either by their capability to scavenge DPPH or superoxide radicals.

  13. Induction-detection electron spin resonance with spin sensitivity of a few tens of spins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artzi, Yaron; Twig, Ygal; Blank, Aharon

    2015-02-23

    Electron spin resonance (ESR) is a spectroscopic method that addresses electrons in paramagnetic materials directly through their spin properties. ESR has many applications, ranging from semiconductor characterization to structural biology and even quantum computing. Although it is very powerful and informative, ESR traditionally suffers from low sensitivity, requiring many millions of spins to get a measureable signal with commercial systems using the Faraday induction-detection principle. In view of this disadvantage, significant efforts were made recently to develop alternative detection schemes based, for example, on force, optical, or electrical detection of spins, all of which can reach single electron spin sensitivity.more » This sensitivity, however, comes at the price of limited applicability and usefulness with regard to real scientific and technological issues facing modern ESR which are currently dealt with conventional induction-detection ESR on a daily basis. Here, we present the most sensitive experimental induction-detection ESR setup and results ever recorded that can detect the signal from just a few tens of spins. They were achieved thanks to the development of an ultra-miniature micrometer-sized microwave resonator that was operated at ∼34 GHz at cryogenic temperatures in conjunction with a unique cryogenically cooled low noise amplifier. The test sample used was isotopically enriched phosphorus-doped silicon, which is of significant relevance to spin-based quantum computing. The sensitivity was experimentally verified with the aid of a unique high-resolution ESR imaging approach. These results represent a paradigm shift with respect to the capabilities and possible applications of induction-detection-based ESR spectroscopy and imaging.« less

  14. Photolysis and oxidation of azidophenyl-substituted radicals: delocalization in heteroatom-based radicals.

    PubMed

    Serwinski, Paul R; Esat, Burak; Lahti, Paul M; Liao, Yi; Walton, Richard; Lan, Jiang

    2004-08-06

    2-(4-Azidophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (14), 2-(4-azidophenyl)benzimidazole-1-oxide-3-oxyl (16), 2-(4-azidophenyl)-1,2,6-triphenylverdazyl (19), 2-(3-azidophenyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (21), and (3-azidophenyl)-N-tert-butyl-N-aminoxyl (25) were photolyzed in frozen solution to give S = 3/2 state ESR spectra of the corresponding nitrenophenyl radicals with the following zero-field splitting parameters: |D/hc| = 0.277 cm(-1), |E/hc| < or = 0.002 cm(-1) (7 from 14); |D/hc| = 0.256 cm(-1), |E/hc| < or = 0.002 cm(-1) (8 from 16); |D/hc| = 0.288 cm(-1), |E/hc| < or = 0.002 cm(-1) (9 from 19); |D/hc| = 0.352 cm(-1), |E/hc| = 0.006 cm(-1) (10 from 21); |D/hc| = 0.336 cm(-1), |E/hc| = 0.004 cm(-1) (11 from 25). UB3LYP/6-31G computations and ESR spectroscopic analyses suggest that these are nitreno radicals, even para-linked systems with possible quinonoidal resonance forms. Neat samples of azidophenyl radicals 14 and 21 showed bulk paramagnetic behavior, consistent with the lack of close contacts in their crystal structures. Efforts to make photolabile coordination complexes of 14 and 21 with paramagnetic transition metal ions were unsuccessful: Cu(ClO4)2 x 6H2O instead oxidized them to the corresponding diamagnetic nitrosonium perchlorate salts. Copyright 2004 American Chemical Society

  15. Electron Spin Resonance (ESR) detection of active oxygen species and organic phases in Martian soils

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow; Kim, Soon Sam; Liang, Ranty H.

    1989-01-01

    The presence of active oxygen species (O(-), O2(-), O3(-)) and other strong oxidants (Fe2O3 and Fe3O4) was invoked in interpretations of the Viking biological experiments and a model was also suggested for Martian surface chemistry. The non-biological interpretations of the biological results gain futher support as no organic compounds were detected in the Viking pyrolysis-gas chromatography mass spectrometer (GCSM) experiments at concentrations as low as 10 ppb. Electron spin resonance (ESR) measures the absorption of microwaves by a paramagnetic and/or ferromagnetic center in the presence of an external field. In many instances, ESR has the advantage of detailed submicroscopic identification of the transient species and/or unstable reaction intermediates in their environments. Since the higly active oxygen species (O(-), O2(-), O3(-), and R-O-O(-)) are all paramagnetic in nature, they can be readily detected in native form by the ESR method. Active oxygen species likely to occur in the Martian surface samples were detected by ESR in UV-irradiated samples containing MgO. A miniaturized ESR spectrometer system can be developed for the Mars Rover Sample Return Mission. The instrument can perform the following in situ Martian samples analyses: detection of active oxygen species; characterization of Martian surface chemistry and photooxidation processes; and searching for organic compounds in the form of free radicals preserved in subsoils, and detection of microfossils with Martian carbonate sediments.

  16. Time-resolved ESR spectra of the α-hydroxybenzyl-amine complex

    NASA Astrophysics Data System (ADS)

    Kawai, Akio; Kobori, Yasuhiro; Obi, Kinichi

    1993-11-01

    Time-resolved ESR spectra of the α-hydroxybenzyl radical were measured in benzene and 2-propanol solutions by the photo-dissociation of benzoin. The hyperfine structure (hfs) of α-hydroxybenzyl depends on the solvents. In a benzene solution containing triethylamine, two species with different hyperfine structure appeared simultaneously. As the ratio of intensity for the two species depends on the concentration of triethylamine, one of them is assigned to the bare α-hydroxybenzyl and the other to the 1:1 complex of α-hydroxybenzyl and triethylamine. The equilibrium constant of complex formation was estimated to be about 450 M -1 from the analysis of CIDEP intensities.

  17. Reaching the quantum limit of sensitivity in electron spin resonance

    DOE PAGES

    Bienfait, A.; Pla, J. J.; Kubo, Y.; ...

    2015-12-14

    The detection and characterization of paramagnetic species by electron spin resonance (ESR) spectroscopy is widely used throughout chemistry, biology and materials science, from in vivo imaging to distance measurements in spin-labelled proteins. ESR relies on the inductive detection of microwave signals emitted by the spins into a coupled microwave resonator during their Larmor precession. However, such signals can be very small, prohibiting the application of ESR at the nanoscale (for example, at the single-cell level or on individual nanoparticles). Here in this work, using a Josephson parametric microwave amplifier combined with high-quality-factor superconducting microresonators cooled at millikelvin temperatures, we improvemore » the state-of-the-art sensitivity of inductive ESR detection by nearly four orders of magnitude. We demonstrate the detection of 1,700 bismuth donor spins in silicon within a single Hahn echo with unit signal-to-noise ratio, reduced to 150 spins by averaging a single Carr-Purcell-Meiboom-Gill sequence. This unprecedented sensitivity reaches the limit set by quantum fluctuations of the electromagnetic field instead of thermal or technical noise, which constitutes a novel regime for magnetic resonance. In conclusion, the detection volume of our resonator is ~0.02nl, and our approach can be readily scaled down further to improve sensitivity, providing a new versatile toolbox for ESR at the nanoscale.« less

  18. Formation of methemoglobin and phenoxyl radicals from p-hydroxyanisole and oxyhemoglobin.

    PubMed

    Stolze, K; Nohl, H

    1991-01-01

    The reaction of p-hydroxyanisole with oxyhemoglobin was investigated using electron spin resonance spectroscopy (ESR) and visible spectroscopy. As a reactive reaction intermediate we found the p-methoxyphenoxyl radical, the one-electron oxidation product of p-hydroxyanisole. Detection of this species required the rapid flow device elucidating the instability of this radical intermediate. The second reaction product formed is methemoglobin. Catalase or SOD had no effect upon the reaction kinetics. Accordingly, reactive oxygen species such as hydroxyl radicals or superoxide could not be observed although the spin trapping agent DMPO was used to make these short-lived species detectable. When the sulfhydryl blocking agents N-ethylmaleimide or mersalyl acid were used, an increase of the methemoglobin formation rate and of the phenoxyl radical concentration were observed. We have interpreted this observation in terms of a side reaction of free radical intermediates with thiol groups.

  19. Rate constant for reaction of vitamin C with protein radicals in γ-irradiated aqueous albumin solution at 295 K

    NASA Astrophysics Data System (ADS)

    Miyazaki, Tetsuo; Yoshimura, Toru; Mita, Kazuya; Suzuki, Keiji; Watanabe, Masami

    1995-02-01

    When an aqueous solution of albumin (0.1 kg dm -3) is irradiated by γ-rays at 295 K, albumin radicals with a long lifetime are observed by ESR. The reaction of vitamin C with the albumin radicals has been studied at 295 K in the albumin solution, which is considered as a model of cells. The rate constant for the reaction of vitamin C with the albumin radicals was measured as 0.014 dm 3 mol -1 s -1, which is much smaller than the reported rate constants (10 6-10 10 dm 3 mol -1 s -1) for the reaction of vitamin C with radicals in a dilute aqueous solution. The small rate constant for the reaction of vitamin C is ascribed to the reaction in polymer coils in the albumin solution, since vitamin C and albumin radicals diffuse very slowly in the coils.

  20. ESR dating of barite in sea-floor hydrothermal sulfide deposits at Okinawa Trough

    NASA Astrophysics Data System (ADS)

    Fujiwara, T.; Toyoda, S.; Uchida, A.; Ishibashi, J.; Nakai, S.; Takamasa, A.

    2013-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). With this aspect, Okumura et al. (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite to obtain preliminary ages, while Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. ESR is a method to observe radicals having unpaired electrons. As natural radiation creates unpaired electrons in minerals, the age is deduced by dividing the natural radiation dose (obtained from the amount of unpaired electrons) by the dose rate which is estimated by the amount of environmental radioactive elements. The samples were taken by the research cruises, NT12-10 and NT11-20 and NT12-06 operated by JAMSTEC from Hatoma, Yoron, Izena, North Iheya, and Yonaguni IV Knolls of Okinawa Trough. The blocks of sulfide deposits were cut into pieces, and about 2.0g was crushed. The samples were soaked in 12M hydrochloric acid, left for approximately 24 hours. Then, 13M nitric acid was added. Finally, after rinsing in distilled water, the sample was filtered and dried. Impurities were removed by handpicking. A X-ray diffraction study was made to confirm that the grains are pure barite. After γ-ray irradiation at Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, they were measured at room temperature with an ESR spectrometer (JES-PX2300) with a microwave power of 1mW, and the magnetic field modulation amplitude of 0.1mT. The equivalent natural radiation doses were obtained from the increase of ESR signal intensity of SO3- by irradiation. The bulk Ra concentration was measured by the low background pure Ge gamma ray spectrometer. Assuming that Ra is populated only in barite, the dose rate was calculated with the alpha effectiveness of 0.043 (Toyoda et al., 2012), where the decay of Ra (a half life of 1600 years) was also taken into account. The dating results indicate that the ages are, Yron Knoll < Hatoma Knoll ≒ North Iheya Knoll < Izena Knoll. This order of ages is consistent with the development of the hydrothermal vent ecosystem estimated by observed landscape.. The results of U-Th dating for these samples will also be presented.

  1. Plasmatic antioxidant capacity due to ascorbate using TEMPO scavenging and electron spin resonance.

    PubMed

    Piehl, Lidia L; Facorro, Graciela B; Huarte, Mónica G; Desimone, Martín F; Copello, Guillermo J; Díaz, Luis E; de Celis, Emilio Rubín

    2005-09-01

    Ascorbate is the most effective water-soluble antioxidant and its plasma concentration is usually measured by different methods including colorimetric assays, HPLC or capillary electrophoresis. Plasma antioxidant capacity is determined by indexes such as total reactive antioxidant potential, total antioxidant reactivity, oxygen radical absorbance capacity, etc. We developed an alternative method for the evaluation of the plasma antioxidant status due to ascorbate. TEMPO kinetics scavenging analyzed by ESR spectroscopy was performed on plasma samples in different antioxidant situations. Plasma ascorbate concentrations were determined by capillary electrophoresis. Ascorbyl radical levels were measured by ESR. Plasma reactivity with TEMPO (PR-T) reflected plasma ascorbate levels. Average PR-T for normal plasmas resulted 85+/-27 micromol/l (n=43). PR-T during ascorbic acid intake (1 g/day) increased to an average value of 130+/-20 micromol/l (p<0.001, n=20). PR-T correlated with the plasmatic ascorbate levels determined by capillary electrophoresis (r=0.92), presenting as an advantage the avoiding of the deproteination step. Plasma ascorbyl radical levels increase from 16+/-2 to 24+/-3 nmol/l (p<0.005, n=14) after ascorbate intake. PR-T could be considered as a measure of the plasmatic antioxidant capacity due to the plasma ascorbate levels and could be useful to investigate different antioxidant situations.

  2. Purity analyses of high-purity organic compounds with nitroxyl radicals based on the Curie–Weiss law

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, Nobuhiro, E-mail: nobu-matsumoto@aist.go.jp; Shimosaka, Takuya

    2015-05-07

    This work reports an attempt to quantify the purities of powders of high-purity organic compounds with stable nitroxyl radicals (namely, 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL), and 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl benzoate (4-hydroxy-TEMPO benzoate)) in terms of mass fractions by using our “effective magnetic moment method,” which is based on both the Curie–Weiss law and a fundamental equation of electron paramagnetic resonance (ESR). The temperature dependence of the magnetic moment resulting from the radicals was measured with a superconducting quantum interference device magnetometer. The g value for each compound was measured with an X-band ESR spectrometer. The results of the purities were (0.998 ± 0.064) kg kg{supmore » −1} for TEMPO, (1.019 ± 0.040) kg kg{sup −1} for TEMPOL, and (1.001 ± 0.048) kg kg{sup −1} for 4-hydroxy-TEMPO benzoate. These results demonstrate that this analytical method as a future candidate of potential primary direct method can measure the purities with expanded uncertainties of approximately 5%.« less

  3. Electron spin resonance as a high sensitivity technique for environmental magnetism: determination of contamination in carbonate sediments

    NASA Astrophysics Data System (ADS)

    Crook, Nigel P.; Hoon, Stephen R.; Taylor, Kevin G.; Perry, Chris T.

    2002-05-01

    This study investigates the application of high sensitivity electron spin resonance (ESR) to environmental magnetism in conjunction with the more conventional techniques of magnetic susceptibility, vibrating sample magnetometry (VSM) and chemical compositional analysis. Using these techniques we have studied carbonate sediment samples from Discovery Bay, Jamaica, which has been impacted to varying degrees by a bauxite loading facility. The carbonate sediment samples contain magnetic minerals ranging from moderate to low concentrations. The ESR spectra for all sites essentially contain three components. First, a six-line spectra centred around g = 2 resulting from Mn2+ ions within a carbonate matrix; second a g = 4.3 signal from isolated Fe3+ ions incorporated as impurities within minerals such as gibbsite, kaolinite or quartz; third a ferrimagnetic resonance with a maxima at 230 mT resulting from the ferrimagnetic minerals present within the bauxite contamination. Depending upon the location of the sites within the embayment these signals vary in their relative amplitude in a systematic manner related to the degree of bauxite input. Analysis of the ESR spectral components reveals linear relationships between the amplitude of the Mn2+ and ferrimagnetic signals and total Mn and Fe concentrations. To assist in determining the origin of the ESR signals coral and bauxite reference samples were employed. Coral representative of the matrix of the sediment was taken remote from the bauxite loading facility whilst pure bauxite was collected from nearby mining facilities. We find ESR to be a very sensitive technique particularly appropriate to magnetic analysis of ferri- and para-magnetic components within environmental samples otherwise dominated by diamagnetic (carbonate) minerals. When employing typical sample masses of 200 mg the practical detection limit of ESR to ferri- and para-magnetic minerals within a diamagnetic carbonate matrix is of the order of 1 ppm and 1 ppb respectively, approximately 102 and 105 times the sensitivity achievable employing the VSM in our laboratory.

  4. Dissolution DNP-NMR spectroscopy using galvinoxyl as a polarizing agent

    NASA Astrophysics Data System (ADS)

    Lumata, Lloyd L.; Merritt, Matthew E.; Malloy, Craig R.; Sherry, A. Dean; van Tol, Johan; Song, Likai; Kovacs, Zoltan

    2013-02-01

    The goal of this work was to test feasibility of using galvinoxyl (2,6-di-tert-butyl-α-(3,5-di-tert-butyl-4-oxo-2,5-cyclohexadien-1-ylidene)-p-tolyloxy) as a polarizing agent for dissolution dynamic nuclear polarization (DNP) NMR spectroscopy. We have found that galvinoxyl is reasonably soluble in ethyl acetate, chloroform, or acetone and the solutions formed good glasses when mixed together or with other solvents such as dimethyl sulfoxide. W-band electron spin resonance (ESR) measurements revealed that galvinoxyl has an ESR linewidth D intermediate between that of carbon-centered free radical trityl OX063 and the nitroxide-based 4-oxo-TEMPO, thus the DNP with galvinoxyl for nuclei with low gyromagnetic ratio γ such as 13C and 15N is expected to proceed predominantly via the thermal mixing process. The optimum radical concentration that would afford the highest 13C nuclear polarization (approximately 6% for [1-13C]ethyl acetate) at 3.35 T and 1.4 K was found to be around 40 mM. After dissolution, large liquid-state NMR enhancements were achieved for a number of 13C and 15N compounds with long spin-lattice relaxation time T1. In addition, the hydrophobic galvinoxyl free radical can be easily filtered out from the dissolution liquid when water is used as the solvent. These results indicate that galvinoxyl can be considered as an easily available free radical polarizing agent for routine dissolution DNP-NMR spectroscopy.

  5. Synthesis and antioxidant properties of a new lipophilic ascorbic acid analogue.

    PubMed

    Cotelle, Philippe; Cotelle, Nicole; Teissier, Elisabeth; Vezin, Hervé

    2003-03-20

    4-(4-Hydroxyphenyl)-5-(4-hydroxyphenylmethyl)-2-hydroxyfurane-2-one 1 was prepared by an acidic dimerisation of 4-hydroxyphenylpyruvic acid and some of its antioxidant and spectroscopic properties have been measured and compared to that of ascorbic acid. 1 is as good an antioxidant as ascorbic acid in the DPPH (2,2-diphenyl-1-picryl hydrazyl radical) test and the inhibition of hydroxyl radical and a powerful inhibitor of the Cu(2+) or AAPH (2,2'-azobis-(2-amidinopropane) dihydrochloride) induced oxidation of human LDL. 1 gives a stable radical characterised by its ESR spectrum similarly to ascorbic acid but in lower concentration and with a different reactivity towards nitroxides. Theoretical calculations allow us to propose the structure for the radical formed from 1, to explain its lower stability than ascorbyl radical and to evaluate the lipophilicity of 1.

  6. ESR1 Mutations Affect Anti-proliferative Responses to Tamoxifen through Enhanced Cross-Talk with IGF Signaling

    PubMed Central

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Ando’, Sebastiano; Fuqua, Suzanne AW

    2017-01-01

    It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers, however we do not yet know how to best treat these patients. We have modeled the three most frequent hormone binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR we identified mutations at high frequencies ranging from 12% for Y537N, 5% for Y537S, and 2% for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort, and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam. PMID:27178332

  7. Electron Spin Resonance and optical absorption spectroscopic studies of manganese centers in aluminium lead borate glasses.

    PubMed

    SivaRamaiah, G; LakshmanaRao, J

    2012-12-01

    Electron Spin Resonance (ESR) and optical absorption studies of 5Al(2)O(3)+75H(3)BO(3)+(20-x)PbO+xMnSO(4) (where x=0.5, 1,1.5 and 2 mol% of MnSO(4)) glasses at room temperature have been studied. The ESR spectrum of all the glasses exhibits resonance signals with effective isotropic g values at ≈2.0, 3.3 and 4.3. The ESR resonance signal at isotropic g≈2.0 has been attributed to Mn(2+) centers in an octahedral symmetry. The ESR resonance signals at isotropic g≈3.3 and 4.3 have been attributed to the rhombic symmetry of the Mn(2+) ions. The zero-field splitting parameter (zfs) has been calculated from the intensities of the allowed hyperfine lines. The optical absorption spectrum exhibits an intense band in the visible region and it has been attributed to (5)E(g)→(5)T(2g) transition of Mn(3+)centers in an octahedral environment. The optical band gap and the Urbach energies have been calculated from the ultraviolet absorption edges. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Bisphenol A causes malformation of the head region in embryos of Xenopus laevis and decreases the expression of the ESR-1 gene mediated by Notch signaling.

    PubMed

    Imaoka, Susumu; Mori, Tomohiro; Kinoshita, Tsutomu

    2007-02-01

    Bisphenol A (BpA) is widely used in industry and dentistry. Its effects on the embryonic development of Xenopus laevis were investigated. Xenopus embryos at stage 10.5 were treated with BpA. Developmental abnormalities were observed at stage 35; malformation of the head region including eyes and scoliosis. The expression of several markers of embryonic development was investigated by reverse transcription-polymerase chain reaction (RT-PCR). The pan-neural marker SOX-2, the neural stem cell marker nrp-1, the mesodermal marker MyoD, and the endodermal marker sox17alpha, were used. Although the expression of marker genes was not changed by treatment with BpA, that of Pax-6, a key regulator of the morphogenesis of the eyes, was decreased by BpA. Pax-6 is a downstream factor of Notch signaling. So, the expression of a typical Notch-dependent factor, ESR-1, was investigated in the presence of BpA. The expression of ESR-1 was efficiently suppressed by BpA. In whole mount in situ hybridization (WISH), Pax-6 was expressed in the central nervous system and eyes. The expression was lost completely on treatment with BpA. The expression of ESR-1 in the central nervous system and eyes also disappeared with BpA treatment. Injection of the intracellular domain of Notch efficiently recovered ESR-1 expression in the presence of BpA although injection of a ligand for notch, Delta, did not. These results suggest that BpA decreased the expression of ESR-1 by disrupting the Notch signal.

  9. Evaluating the Potential of Q-Band ESR Spectroscopy for Dose Reconstruction of Fossil Tooth Enamel

    PubMed Central

    Guilarte, Verónica; Trompier, François; Duval, Mathieu

    2016-01-01

    The potential of Q-band Electron Spin Resonance (ESR) for quantitative measurements has been scarcely evaluated in the literature and its application for dose reconstruction of fossil tooth enamel with dating purposes remains still quite unknown. Hence, we have performed a comparative study based on several Early to Middle Pleistocene fossil tooth samples using both X- and Q-band spectroscopies. Our results show that Q-band offers a significant improvement in terms of sensitivity and signal resolution: it allows not only to work with reduced amounts of valuable samples (< 4 mg), but also to identify different components of the main composite ESR signal. However, inherent precision of the ESR intensity measurements at Q-band is clearly lower than that achieved at X-band, highlighting the necessity to carry out repeated measurements. All dose values derived from X- and Q-band are nevertheless systematically consistent at either 1 or 2 sigma. In summary, our results indicate that Q-band could now be considered as a reliable tool for ESR dosimetry/dating of fossil teeth although further work is required to improve the repeatability of the measurements. PMID:26930398

  10. Quantitative electron spin resonance (ESR) analysis of antioxidative properties using the acetaldehyde/xanthine oxidase system

    NASA Astrophysics Data System (ADS)

    Souchard, J.-P.; Nepveu, F.

    1998-05-01

    We present a method for the quantitative ESR analysis of the antioxidant properties of drugs using the acetaldhehyde/xanthine oxidase (AC/XOD) superoxide generating system and 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as spin trap. In stoichiometric conditions (AC/XOD, 60 mM/0.018 U), the resulting paramagnetic DMPO adduct disappeared with superoxide dismutase and remained when catalase or DMSO were used. That adduct was dependent only on superoxide and resulted from the trapping of a carboxyl radical by DMPO (aN = 15.2 G, aH = 18.9 G). Similar results were obtained using 4-pyridyl-l-oxide-N-t-butyl nitrone (POBN) as spin trap. The ESR signal of the DMPO-CO2- adduct was very stable and allowed quantitative analysis of the antioxidative activity of redox molecules from an IC{50} value representing the concentration causing 50% inhibition of its intensity. Among the tested compounds, manganese(II), complexes were the most effective, 25 times as active as ascorbic acid or (+)catechin and 500-fold more antioxidative than Trolox^R. Nous présentons une méthode d'analyse quantitative de l'activité antioxydante de composés d'intérêt pharmaceutique basée sur le système acétaldéhyde/xanthine oxydase (AC/XOD), l'utilisation de la RPE et du piégeage de spin avec le 5,5-diméthyl-l-pyrroline-N-oxyde (DMPO). Dans les conditions stoechiométriques {AC/XOD, 60 mM/0,018 U/ml}, l'adduit radicalaire résultant de ce système disparaît en présence de superoxyde dismutase et persiste en présence de catalase ou de DMSO. Cet adduit ne dépend que de la présence de l'anion superoxyde et provient du piégeage d'un radical carboxyle CO2- sur le DMPO (aN = 15.2 G, aH = 18.9 G). Des résultats similaires ont été obtenus avec le piégeur de spin 4-pyridyl-l-oxyde-N-t-butyl nitrone (POBN). Le signal RPE de l'adduit DMPO-CO2- est très stable et permet la quantification de l'activité antioxydante de pharmacophores redox par la détermination de la CI{50}, concentration qui diminue de 50 % son intensité. Parmi les composés testés, les complexes du manganèse sont les plus antioxydants, 25 fois plus actifs que la vitamine C ou la catéchine(+), 500 fois plus antioxydants que le Trolox^R.

  11. ESR1 mutations affect anti-proliferative responses to tamoxifen through enhanced cross-talk with IGF signaling.

    PubMed

    Gelsomino, Luca; Gu, Guowei; Rechoum, Yassine; Beyer, Amanda R; Pejerrey, Sasha M; Tsimelzon, Anna; Wang, Tao; Huffman, Kenneth; Ludlow, Andrew; Andò, Sebastiano; Fuqua, Suzanne A W

    2016-06-01

    The purpose of this study was to address the role of ESR1 hormone-binding mutations in breast cancer. Soft agar anchorage-independent growth assay, Western blot, ERE reporter transactivation assay, proximity ligation assay (PLA), coimmunoprecipitation assay, silencing assay, digital droplet PCR (ddPCR), Kaplan-Meier analysis, and statistical analysis. It is now generally accepted that estrogen receptor (ESR1) mutations occur frequently in metastatic breast cancers; however, we do not yet know how to best treat these patients. We have modeled the three most frequent hormone-binding ESR1 (HBD-ESR1) mutations (Y537N, Y537S, and D538G) using stable lentiviral transduction in human breast cancer cell lines. Effects on growth were examined in response to hormonal and targeted agents, and mutation-specific changes were studied using microarray and Western blot analysis. We determined that the HBD-ESR1 mutations alter anti-proliferative effects to tamoxifen (Tam), due to cell-intrinsic changes in activation of the insulin-like growth factor receptor (IGF1R) signaling pathway and levels of PIK3R1/PIK3R3. The selective estrogen receptor degrader, fulvestrant, significantly reduced the anchorage-independent growth of ESR1 mutant-expressing cells, while combination treatments with the mTOR inhibitor everolimus, or an inhibitor blocking IGF1R, and the insulin receptor significantly enhanced anti-proliferative responses. Using digital drop (dd) PCR, we identified mutations at high frequencies ranging from 12 % for Y537N, 5 % for Y537S, and 2 % for D538G in archived primary breast tumors from women treated with adjuvant mono-tamoxifen therapy. The HBD-ESR1 mutations were not associated with recurrence-free or overall survival in response in this patient cohort and suggest that knowledge of other cell-intrinsic factors in combination with ESR1 mutation status will be needed determine anti-proliferative responses to Tam.

  12. Electron Spin Resonance Studies of Carbonic Anhydrase: Transition Metal Ions and Spin-Labeled Sulfonamides*

    PubMed Central

    Taylor, June S.; Mushak, Paul; Coleman, Joseph E.

    1970-01-01

    Electron spin resonance (esr) spectra of Cu(II) and Co(II) carbonic anhydrase, and a spin-labeled sulfonamide complex of the Zn(II) enzyme, are reported. The coordination geometry of Cu(II) bound in the enzyme appears to have approximately axial symmetry. Esr spectra of enzyme complexes with metal-binding anions also show axial symmetry and greater covalency, in the order ethoxzolamide < SH- < N3- ≤ CN-. Well-resolved superhyperfine structure in the spectrum of the cyanide complex suggests the presence of two, and probably three, equivalent nitrogen ligands from the protein. Esr spectra of the Co(II) enzyme and its complexes show two types of Co(II) environment, one typical of the native enzyme and the 1:1 CN- complex, and one typical of a 2:1 CN- complex. Co(II) in the 2:1 complex appears to be low-spin and probably has a coordination number of 5. Binding of a spin-labeled sulfonamide to the active center immobilizes the free radical. The similarity of the esr spectra of spin-labeled Zn(II) and Co(II) carbonic anhydrases suggests that the conformation at the active center is similar in the two metal derivatives. PMID:4320976

  13. Permeability studies of redox-sensitive nitroxyl spin probes in corn oil using an L-band ESR spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jebaraj, D. David; Utsumi, Hideo; Asath, R. Mohamed

    Electron spin resonance (ESR) studies were carried out for 2mM {sup 14}N labeled {sup 2}H enriched 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl (MC-PROXYL) and 3–carboxy-2,2,5,5,-tetramethyl-1-pyrrolidinyloxy (carboxy-PROXYL) in pure water and various concentrations of corn oil. The ESR parameters, such as the line width, hyperfine coupling constant, g-factor, rotational correlation time, partition parameter and permeability were reported for the samples. The line width broadening was observed for both nitroxyl radicals in corn oil solutions. The partition parameter for permeable MC-PROXYL in corn oil increases with increasing concentration of corn oil, which reveals that the nitroxyl spin probe permeates into the oil phase. From the results, themore » corn oil concentration was optimized as 50 % for phantom studies. The rotational correlation time also increases with increasing concentration of corn oil. The permeable and impermeable nature of nitroxyl spin probes was demonstrated. These results will be useful for the development of ESR/OMR imaging modalities in in vivo and in vitro studies.« less

  14. ESR study of molecular orientation and dynamics of TEMPO derivatives in CLPOT 1D nanochannels.

    PubMed

    Kobayashi, Hirokazu; Furuhashi, Yuta; Nakagawa, Haruka; Asaji, Tetsuo

    2016-08-01

    The molecular orientations and dynamics of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO) radical derivatives with large substituent groups at the 4-position (4-X-TEMPO) in the organic one-dimensional nanochannels within the nanosized molecular template 2,4,6-tris(4-chlorophenoxy)-1,3,5-triazine (CLPOT) were examined using ESR. The concentrations of guest radicals, including 4-methoxy-TEMPO (MeO-TEMPO) or 4-oxo-TEMPO (TEMPONE), in the CLPOT nanochannels in each inclusion compound (IC) were reduced by co-including 4-substituted-2,2,6,6-tetramethylpiperidine (4-R-TEMP) compounds at a ratio of 1 : 30-1 : 600. At higher temperatures, the guest radicals in each IC underwent anisotropic rotational diffusion in the CLPOT nanochannels. The rotational diffusion activation energy, Ea , associated with MeO-TEMPO or TEMPONE in the CLPOT nanochannels (6-7 kJ mol(-1) ), was independent of the size and type of substituent group and was similar to the Ea values obtained for TEMPO and 4- hydroxy-TEMPO (TEMPOL) in our previous study. However, in the case in which TEMP was used as a guest compound for dilution (spacer), the tilt of the rotational axis to the principal axis system of the g-tensor, and the rotational diffusion correlation time, τR , of each guest radical in the CLPOT nanochannels were different from the case with other 4-R-TEMP. These results indicate the possibility of controlling molecular orientation and dynamics of guest radicals in CLPOT ICs through the appropriate choice of spacer. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Structural and electronic studies of metal carbide clusterfullerene Sc2C2@Cs-C72

    NASA Astrophysics Data System (ADS)

    Feng, Yongqiang; Wang, Taishan; Wu, Jingyi; Feng, Lai; Xiang, Junfeng; Ma, Yihan; Zhang, Zhuxia; Jiang, Li; Shu, Chunying; Wang, Chunru

    2013-07-01

    We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed.We present a metal carbide clusterfullerene Sc2C2@Cs(10528)-C72, whose structure has been baffling for many years. A motional endohedral Sc2C2 cluster, special molecule geometry and electronic structure were found in Sc2C2@Cs(10528)-C72. The paramagnetic Sc2C2@Cs-C72 anion radical was successfully prepared by a chemical reduction method and hyperfine couplings in the ESR spectrum were observed. Electronic supplementary information (ESI) available: Experimental details, HPLC chromatogram, and DFT calculations. CCDC 917712. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c3nr01739g

  16. ESR, electrochemical and cyclodextrin-inclusion studies of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives

    NASA Astrophysics Data System (ADS)

    Olea-Azar, C.; Abarca, B.; Norambuena, E.; Opazo, L.; Jullian, C.; Valencia, S.; Ballesteros, R.; Chadlaoui, M.

    2008-11-01

    The electron spin resonance (ESR) spectra of free radicals obtained by electrolytic reduction of triazolopyridyl pyridyl ketones and dipyridyl ketones derivatives were measured in dimethylsulfoxide (DMSO). The hyperfine patterns indicate that the spin density delocalization is dependent of the rings presented in the molecule. The electrochemistry of these compounds was characterized using cyclic voltammetry, in DMSO as solvent. When one carbonyl is present in the molecule one step in the reduction mechanism was observed while two carbonyl are present two steps were detected. The first wave was assigned to the generation of the correspondent free radical species, and the second wave was assigned to the dianion derivatives. The phase-solubility measurements indicated an interaction between molecules selected and cyclodextrins in water. These inclusion complexes are 1:1 with βCD, and HP-βCD. The values of Ks showed a different kind of complexes depending on which rings are included. AM1 and DFT calculations were performed to obtain the optimized geometries, theoretical hyperfine constants, and spin distributions, respectively. The theoretical results are in complete agreement with the experimental ones.

  17. Nitration of benzo[a]pyrene adsorbed on coal fly ash particles by nitrogen dioxide: role of thermal activation.

    PubMed

    Kristovich, Robert L; Dutta, Prabir K

    2005-09-15

    Nitration of benzo[a]pyrene (BaP) by nitrogen dioxide (NO2) adsorbed on the surface of thermally activated coal fly ash and model aluminosilicate particles led to the formation of nitrobenzo[a]pyrenes as verified by extraction and gas chromatography/mass spectrometry (GC/MS). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was utilized to follow the nitration reaction on the surface of zeolite Y. Nitrobenzo[a]pyrene formation was observed along with the formation of nitrous acid and nitrate species. The formation of the BaP radical cation was also observed on thermally activated aluminosilicate particles by electron spin resonance (ESR) spectroscopy. On the basis of GC/MS, DRIFTS, and ESR spectroscopy results, a mechanism of nitration involving intermediate BaP radical cations generated on thermally activated aluminosilicate particles is proposed. These observations have led to the hypothesis that nitration of adsorbed polyaromatic hydrocarbons on coal fly ash by reaction with nitrogen oxides can occur in the smokestack, but with the aging of the fly ash particles, the extent of the nitration reaction will be diminished.

  18. ESR dating pleistocene barnacles from BC and Maine: a new method for tracking sea level change.

    PubMed

    Blackwell, Bonnie A B; Gong, J J J; Skinner, Anne R; Blais-Stevens, Andrée; Nelson, Robert E; Blickstein, Joel I B

    2010-02-01

    Barnacles have never been successfully dated by electron spin resonance (ESR). Living mainly in the intertidal zone, barnacles die when sea level changes cause their permanent exposure. Thus, dating the barnacles dates past sea level changes. From this, we can measure apparent sea level changes that occur due to ocean volume changes, crustal isostasy, and tectonics. ESR can date aragonitic mollusc shells ranging in age from 5 ka to at least 500 ka. By modifying the standard ESR method for molluscs to chemically dissolve 20 microm from off the shells, six barnacle samples from Norridgewock, Maine, and Khyex River, British Columbia, were tested for suitability for ESR dating. Due to Mn2+ interference peaks, the four Maine barnacle samples were not datable by ESR. Two barnacles from BC, which lacked Mn2+ interference, yielded a mean ESR age of 15.1 +/- 1.0 ka. These ages agree well with 14C dates on the barnacles themselves and wood in the overlying glaciomarine sediment. Although stability tests to calculate the mean dating signal lifetime and more ESR calibration tests against other barnacles of known age are needed to ensure the method's accuracy, ESR can indeed date Balanus, and thus, sea level changes.

  19. Epithelial estrogen receptor 1 intrinsically mediates squamous differentiation in the mouse vagina.

    PubMed

    Miyagawa, Shinichi; Iguchi, Taisen

    2015-10-20

    Estrogen-mediated actions in female reproductive organs are tightly regulated, mainly through estrogen receptor 1 (ESR1). The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing the homeostasis of stratified squamous epithelia. To address the role of ESR1-mediated tissue events during homeostasis, we analyzed mice with a vaginal epithelium-specific knockout of Esr1 driven by keratin 5-Cre (K5-Esr1KO). We show here that loss of epithelial ESR1 in the vagina resulted in aberrant epithelial cell proliferation in the suprabasal cell layers and led to failure of keratinized differentiation. Gene expression analysis showed that several known estrogen target genes, including erbB growth factor ligands, were not induced by estrogen in the K5-Esr1KO mouse vagina. Organ culture experiments revealed that the addition of erbB growth factor ligands, such as amphiregulin, could activate keratinized differentiation in the absence of epithelial ESR1. Thus, epithelial ESR1 integrates estrogen and growth factor signaling to mediate regulation of cell proliferation in squamous differentiation, and our results provide new insights into estrogen-mediated homeostasis in female reproductive organs.

  20. Epithelial estrogen receptor 1 intrinsically mediates squamous differentiation in the mouse vagina

    PubMed Central

    Miyagawa, Shinichi; Iguchi, Taisen

    2015-01-01

    Estrogen-mediated actions in female reproductive organs are tightly regulated, mainly through estrogen receptor 1 (ESR1). The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen and provides a unique model for analyzing the homeostasis of stratified squamous epithelia. To address the role of ESR1-mediated tissue events during homeostasis, we analyzed mice with a vaginal epithelium-specific knockout of Esr1 driven by keratin 5-Cre (K5-Esr1KO). We show here that loss of epithelial ESR1 in the vagina resulted in aberrant epithelial cell proliferation in the suprabasal cell layers and led to failure of keratinized differentiation. Gene expression analysis showed that several known estrogen target genes, including erbB growth factor ligands, were not induced by estrogen in the K5-Esr1KO mouse vagina. Organ culture experiments revealed that the addition of erbB growth factor ligands, such as amphiregulin, could activate keratinized differentiation in the absence of epithelial ESR1. Thus, epithelial ESR1 integrates estrogen and growth factor signaling to mediate regulation of cell proliferation in squamous differentiation, and our results provide new insights into estrogen-mediated homeostasis in female reproductive organs. PMID:26438838

  1. Ambient Particulate Matter Induces Oxidative Dna Damage in Lung Epithelial Cells.

    PubMed

    Knaapen, A M; Schins, R P; Steinfartz, Y; Doris, H; Dunemann, L; Borm, P J

    2000-01-01

    Although epidemiological studies have established a correlation between PMIO levels and acute cardiovascular and respiratory complications, hardly any data is available on possible chronic effects such as cancer. The purpose of this study was to investigate the production of free radicals by ambient particulate matter (TSP) and to link these data to oxidative DNA damage in lung epithelial cells. In line with previous findings on PMIO, supercoiled plasmid DNA was depleted by JSP as well as JSP supernatant (p < .001), and this effect was reduced in the presence of mannitol (5 mM). Using electron spin resonance (ESR) and the spin trap dimethyl-1-pyrroline N-oxide (DMPO) we were able to show that hydroxy/radicals ('OH) are formed from both JSP and JSP supernatant. The DMPO-OH signal was completely abrogated when TSP was preincubated with deferoxamine (5 mM), showing the importance of iron and other soluble metals in this process. Atomic absorption spectroscopy (AAS) analysis of the TSP supernatant showed the presence of soluble Fe, V, and Ni (respectively 253.0, 14.7, and 76.0 µ/g insoluble TSP). To investigate the biological significance of OH formation by TSP, 8-hydroxydeoxyguanosine (8-oxodC) was measured in a rat type II cell line by immunocytochemistry. The formation of this hydroxyl-radical-specific DNA adduct was increased twofold (p < .01) after incubation with TSP supernatants, and this effect was inhibited by deferoxamine (p < .01). In summary, our results provide direct evidence that ambient particulate matter generates hydroxyI radicals in acellular systems. Furthermore, we showed that these particulates induce the hydroxyl-radical-specific DNA lesion 8-oxodC in lung target cells via an iron-mediated mechanism.

  2. TL and ESR based identification of gamma-irradiated frozen fish using different hydrolysis techniques

    NASA Astrophysics Data System (ADS)

    Ahn, Jae-Jun; Akram, Kashif; Shahbaz, Hafiz Muhammad; Kwon, Joong-Ho

    2014-12-01

    Frozen fish fillets (walleye Pollack and Japanese Spanish mackerel) were selected as samples for irradiation (0-10 kGy) detection trials using different hydrolysis methods. Photostimulated luminescence (PSL)-based screening analysis for gamma-irradiated frozen fillets showed low sensitivity due to limited silicate mineral contents on the samples. Same limitations were found in the thermoluminescence (TL) analysis on mineral samples isolated by density separation method. However, acid (HCl) and alkali (KOH) hydrolysis methods were effective in getting enough minerals to carry out TL analysis, which was reconfirmed through the normalization step by calculating the TL ratios (TL1/TL2). For improved electron spin resonance (ESR) analysis, alkali and enzyme (alcalase) hydrolysis methods were compared in separating minute-bone fractions. The enzymatic method provided more clear radiation-specific hydroxyapatite radicals than that of the alkaline method. Different hydrolysis methods could extend the application of TL and ESR techniques in identifying the irradiation history of frozen fish fillets.

  3. Double quantum coherence ESR spectroscopy and quantum chemical calculations on a BDPA biradical.

    PubMed

    Haeri, Haleh Hashemi; Spindler, Philipp; Plackmeyer, Jörn; Prisner, Thomas

    2016-10-26

    Carbon-centered radicals are interesting alternatives to otherwise commonly used nitroxide spin labels for dipolar spectroscopy techniques because of their narrow ESR linewidth. Herein, we present a novel BDPA biradical, where two BDPA (α,α,γ,γ-bisdiphenylene-β-phenylallyl) radicals are covalently tethered by a saturated biphenyl acetylene linker. The inter-spin distance between the two spin carrier fragments was measured using double quantum coherence (DQC) ESR methodology. The DQC experiment revealed a mean distance of only 1.8 nm between the two unpaired electron spins. This distance is shorter than the predictions based on a simple modelling of the biradical geometry with the electron spins located at the central carbon atoms. Therefore, DFT (density functional theory) calculations were performed to obtain a picture of the spin delocalization, which may give rise to a modified dipolar interaction tensor, and to find those conformations that correspond best to the experimentally observed inter-spin distance. Quantum chemical calculations showed that the attachment of the biphenyl acetylene linker at the second position of the fluorenyl ring of BDPA did not affect the spin population or geometry of the BDPA radical. Therefore, spin delocalization and geometry optimization of each BDPA moiety could be performed on the monomeric unit alone. The allylic dihedral angle θ 1 between the fluorenyl rings in the monomer subunit was determined to be 30° or 150° using quantum chemical calculations. The proton hyperfine coupling constant calculated from both energy minima was in very good agreement with literature values. Based on the optimal monomer geometries and spin density distributions, the dipolar coupling interaction between both BDPA units could be calculated for several dimer geometries. It was shown that the rotation of the BDPA units around the linker axis (θ 2 ) does not significantly influence the dipolar coupling strength when compared to the allylic dihedral angle θ 1 . A good agreement between the experimental and calculated dipolar coupling was found for θ 1 = 30°.

  4. Detection and original dose assessment of egg powders subjected to gamma irradiation by using ESR technique

    NASA Astrophysics Data System (ADS)

    Aydın, Talat

    2015-09-01

    ESR (electron spin resonance) techniques were applied for detection and original dose estimation to radiation-processed egg powders. The un-irradiated (control) egg powders showed a single resonance line centered at g=2.0086±0.0005, 2.0081±0.0005, 2.0082±0.0005 (native signal) for yolk, white and whole egg, respectively. Irradiation induced at least one additional intense singlet overlapping to the control signal and caused a significant increase in signal intensity without any changes in spectral patterns. Responses of egg powders to different gamma radiation doses in the range 0-10 kGy were examined. The stability of the radiation-induced ESR signal of irradiated egg powders were investigated over a storage period of about 5 months. Additive reirradiation of the egg powders produces a reproducible dose response function, which can be used to assess the initial dose by back-extrapolation. The additive dose method gives an estimation of the original dose within ±12% at the end of the 720 h storage period.

  5. Chromate enhanced visible light driven TiO₂ photocatalytic mechanism on Acid Orange 7 photodegradation.

    PubMed

    Wang, Yeoung-Sheng; Shen, Jyun-Hong; Horng, Jao-Jia

    2014-06-15

    When hexavalent chromium (Cr(VI)) is added to a TiO2 photocatalytic reaction, the decolorization and mineralization efficiencies of azo dyes Acid Orange 7 (AO7) are enhanced even though the mechanism is unclear. This study used 5,5-dimethyl-l-pyrroline-N-oxide (DMPO) as the scavenger and the analysis of Electron Spin Resonance (ESR) to investigate this enhancement effect by observing the hydroxyl radical (OH) generation of the Cr(VI)/TiO2 system under UV and visible light (Vis) irradiation. With Cr(VI), the decolorization efficiencies were approximately 95% and 62% under UV and Vis, and those efficiencies were 25% less in the absence of Cr(VI). The phenomena of the DMPO-OH signals during the ESR analysis under Vis 405 and 550 nm irradiation were obviously the enhancement effects of Cr(VI) in aerobic conditions. In anoxic conditions, the catalytic effects of Cr(VI) could not be achieved due to the lack of a redox reaction between Cr(VI) and the adsorbed oxygen at the oxygen vacancy sites on the TiO2 surfaces. The results suggest that by introducing the agents of redox reactions such as chromate ions, we could lower the photoenergy of TiO2 needed and allow Vis irradiation to activate photocatalysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. [Identification of irradiated abalone by ESR spectroscopy].

    PubMed

    Song, Yeping; Wang, Chuanxian; Yang, Zhenyu; Zhong, Weike; Geng, Jinpei; Lu, Di; Ding, Zhuoping

    2012-05-01

    To establish an analytical method for the detection and identification of irradiated abalone by electron spin resonance spectroscopy. Electron spin resonance (ESR) was used to study the spectral characteristics of abalone and the characteristic peak for quantitation. There were obvious different ESR spectra between unirradiated and irradiated abalone. The g factor for unirradiated abalone was 2.0055-2.0060, the g1 and g2 factor for irradiated abalone were (2.0027 +/- 0.0001) and (1.9994 +/- 0.0001), respectively. The ESR signal intensity of characteristic peak was positively correlated with absorbed dose in the range of 0.5 - 10 kGy, left peak was the characteristic peak for quantitation and the detection limit was < or = 0.5 kGy. It was difficult to quantitate when the absorbed dose was over 10 kGy. ESR characteristic peak and g factor were able to qualitatively determine the irradiation of abalone. ESR spectroscopy is an effective method to determine whether the abalone being irradiated or not.

  7. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots

    NASA Astrophysics Data System (ADS)

    Singamaneni, Srinivasa Rao; van Tol, Johan; Ye, Ruquan; Tour, James M.

    2015-11-01

    In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10-4 T), g = 2.0023; and a narrow signal of peak to peak width = 60 (10-4 T), g = 2.003). The third defect center is Mn2+ (6S5/2, 3d5) (signal width = 61 (10-4 T), g = 2.0023, Aiso = 93(10-4 T)), and the fourth defect is identified as Cu2+ (2D5/2, 3d9) (g⊥ = 2.048 and g‖ = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn2+ and two-carbon related signals, and no Cu2+ signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.

  8. Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging.

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Yasukawa, Keiji; Kobayashi, Ryoma; Utsumi, Hideo

    2014-08-05

    Redox reactions that generate free radical intermediates are essential to metabolic processes. However, their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. We report here the use of dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) to conduct redox molecular imaging. Using DNP-MRI, we obtained simultaneous images of free radical intermediates generated from the coenzyme Q10 (CoQ10), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) involved in the mitochondrial electron transport chain as well as the radicals derived from vitamins E and K1. Each of these free radicals was imaged in real time in a phantom comprising a mixture of free radicals localized in either lipophilic or aqueous environments. Changing the frequency of electron spin resonance (ESR) irradiation also allowed each of the radical species to be distinguished in the spectroscopic images. This study is the first to report the spectroscopic DNP-MRI imaging of free radical intermediates that are derived from endogenous species involved in metabolic processes.

  9. Mechanism of UVA-dependent DNA damage induced by an antitumor drug dacarbazine in relation to its photogenotoxicity.

    PubMed

    Iwamoto, Takuya; Hiraku, Yusuke; Okuda, Masahiro; Kawanishi, Shosuke

    2008-03-01

    It has been reported that dacarbazine (DTIC) is photogenotoxic. The purpose of this study is to clarify the mechanism of photogenotoxicity induced by DTIC. We examined DNA damage induced by UVA-irradiated DTIC using 32P-5'-end-labeled DNA fragments obtained from human genes. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in calf thymus DNA was measured by high performance liquid chromatograph with an electrochemical detector. Electron spin resonance (ESR) spin-trapping experiments were performed to detect radical species generated from UVA-irradiated DTIC. UVA-irradiated DTIC caused DNA damage at guanine residues, especially at the 5'-GGT-3' sequence in the presence of Cu(II) and also induced 8-oxodG generation in calf thymus DNA. DTIC-induced photodamage to DNA fragments was partially inhibited by catalase, whereas 8-oxodG formation was significantly increased by catalase. NaN3, a carbene scavenger, inhibited DNA damage and 8-oxodG formation in a dose-dependent manner, suggesting that carbene intermediates are involved. The ESR spin-trapping experiments demonstrated the generation of aryl radicals in the process of photodegradation of DTIC. Photoactivated DTIC generates the carbene and aryl radicals, which may induce both DNA adduct and 8-oxodG formation, resulting in photogenotoxicity. This study could provide an insight into the safe usage of DTIC.

  10. An ESR study of the stable radical in a γ-irradiated single crystal of 17α-dydroxy-progesterone

    NASA Astrophysics Data System (ADS)

    Krzyminiewski, R.; Pietrzak, J.; Konopka, R.

    1990-11-01

    Electron spin resonance spectroscopy was used to investigate γ-radiation damage of 17α-hydroxy-progesterone molecules in a single crystal. Two types of radicals with different rates of recombination were observed and a definite structure was assigned to the specimen by analyzing the orientational variation of the spectra. The unpaired electron of the radical is delocalized in the 2 pz orbitals of the C(6), C(4) and C(3) atoms, giving rise to a hyperfine spectrum by interaction with two equivalent α-protons in positions 4 and 6 and with two non-equivalent β-protons attached to C(7). The hyperfine coupling tensors are reported, together with the g tensor of the radical. The presence of additional intermolecular interactions caused by hydrogen bonding between O(3) and HO(17) of two molecules does not change the type of radical (which is the same as the stable radical in a γ-irradiated single crystal of progesterone) but does increase the hyperfine coupling anisotropy.

  11. ESR study of p-type natural 2H-polytype MoS2 crystals: The As acceptor activity

    NASA Astrophysics Data System (ADS)

    Stesmans, A.; Iacovo, S.; Afanas'ev, V. V.

    2016-10-01

    Low-temperature (T = 1.7-77 K) multi frequency electron spin resonance (ESR) study on p-type 2H-polytype geological MoS2 crystals reveals p-type doping predominantly originating from As atoms substituting for S sites in densities of (2.4 ± 0.2) × 1017 cm-3. Observation of a "half field"(g ˜ 3.88) signal firmly correlating with the central Zeeman As accepter signal indicates the presence of spin S > ½ As agglomerates, which together with the distinct multicomponent makeup of the Zeeman signal points to manifest non-uniform As doping; only ˜13% of the total As response originates from individual decoupled As dopants. From ESR monitoring the latter vs. T, an activation energy Ea = (0.7 ± 0.2) meV is obtained. This unveils As as a noticeable shallow acceptor dopant, appropriate for realization of effective p-type doping in targeted 2D MoS2-based switching devices.

  12. Sex and seasonal differences in mRNA expression of estrogen receptor α (ESR1) in red-sided garter snakes (Thamnophis sirtalis parietalis).

    PubMed

    Ashton, Sydney E; Vernasco, Ben J; Moore, Ignacio T; Parker, M Rockwell

    2018-05-25

    Estrogens are important regulators of reproductive physiology including sexual signal expression and vitellogenesis. For the regulation to occur, the hormone must bind and activate receptors in target tissues, and expression of the receptors can vary by sex and/or season. By simultaneously comparing circulating hormone levels with receptor expression, a more complete understanding of hormone action can be gained. Our study species, the red-sided garter snake (Thamnophis sirtalis parietalis), provides an excellent opportunity to study the interaction between sex steroid hormones and receptor expression in addition to sexual dimorphism and seasonality. During the spring mating season, male garter snakes rely exclusively on the female's skin-based, estrogen-dependent sex pheromone to direct courtship. Males can be stimulated to produce this sexual attractiveness pheromone by treatment with estradiol (E 2 ), which also induces male vitellogenesis. Estrogen receptors (ESRs) are required to transduce the effects of estrogens, thus we used quantitative RT-PCR to analyze expression of ESR alpha (ERα; gene ESR1) mRNA in the skin and liver of wild caught male and female garter snakes across simulated spring and fall conditions in the laboratory. While ESR1 was present in the skin of both sexes, there were no sex or seasonal differences in expression levels. Liver expression of ESR1, however, was sexually dimorphic, with females showing greatest expression in fall when circulating E 2 concentrations were lowest. There were no statistically significant correlations between E 2 and ESR1 expression. Our data suggest that the skin of both sexes is sensitive to estrogen signaling and thus the production of sex pheromone is dependent on bioavailable levels of E 2 . Female expression of ESR1 in the liver may increase in the fall to prime energy storage mechanisms required for vitellogenesis the following year. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. The role of melanin as protector against free radicals in skin and its role as free radical indicator in hair

    NASA Astrophysics Data System (ADS)

    Herrling, Thomas; Jung, Katinka; Fuchs, Jürgen

    2008-05-01

    Throughout the body, melanin is a homogenous biological polymer containing a population of intrinsic, semiquinone-like radicals. Additional extrinsic free radicals are reversibly photo-generated by UV and visible light. Melanin photochemistry, particularly the formation and decay of extrinsic radicals, has been the subject of numerous electron spin resonance (ESR) spectroscopy studies. Several melanin monomers exist, and the predominant monomer in a melanin polymer depends on its location within an organism. In skin and hair, melanin differs in content of eumelanin or pheomelanin. Its bioradical character and its susceptibility to UV irradiation makes melanin an excellent indicator for UV-related processes in both skin and hair. The existence of melanin in skin is strongly correlated with the prevention against free radicals/ROS generated by UV radiation. Especially in the skin melanin (mainly eumelanin) ensures the only natural UV protection by eliminating the generated free radicals/ROS. Melanin in hair can be used as a free radical detector for evaluating the efficacy of hair care products. The aim of this study was to investigate the suitability of melanin as protector of skin against UV generated free radicals and as free radical indicator in hair.

  14. ESR and nonresonant microwave absorption of ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals

    NASA Astrophysics Data System (ADS)

    Tagaya, Kimihito; Fukuoka, Nobuo; Nakanishi, Shigemitsu

    1990-12-01

    ESR measurements were performed for ErBa2Cu3O(7-delta) and HoBa2Cu3O(7-delta) single crystals from 77 K to room temperature. The ESR signals of Er2BaCuO5 and Ho2BaCuO5 were observed, and their temperature variations were investigated. Nonresonant microwave absorption was also observed below the superconducting critical temperature of 93 K. The principal values of lower critical field were determined.

  15. Electron spin resonance from NV centers in diamonds levitating in an ion trap

    NASA Astrophysics Data System (ADS)

    Delord, T.; Nicolas, L.; Schwab, L.; Hétet, G.

    2017-03-01

    We report observations of the electron spin resonance (ESR) of nitrogen vacancy centers in diamonds that are levitating in an ion trap. Using a needle Paul trap operating under ambient conditions, we demonstrate efficient microwave driving of the electronic spin and show that the spin properties of deposited diamond particles measured by the ESR are retained in the Paul trap. We also exploit the ESR signal to show angle stability of single trapped mono-crystals, a necessary step towards spin-controlled levitating macroscopic objects.

  16. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.

    PubMed

    Kamogawa, Erisa; Sueishi, Yoshimi

    2014-03-01

    Edaravone (3-methyl-1-phenyl-2-pyrazoline-5-one) is a neuroprotective drug that has been used for brain ischemia injury treatment. Because its activity is speculated to be due to free radical scavenging activity, we carried out a quantitative determination of edaravone's free radical scavenging activity against multiple free radical species. Electron spin resonance (ESR) spin trapping-based multiple free-radical scavenging (MULTIS) method was employed, where target free radicals were hydroxyl radical, superoxide anion, alkoxyl radical, alkylperoxyl radical, methyl radical, and singlet oxygen. Edaravone showed relatively high scavenging abilities against hydroxyl radical (scavenging rate constant k=2.98×10(11) M(-1) s(-1)), singlet oxygen (k=2.75×10(7) M(-1) s(-1)), and methyl radical (k=3.00×10(7) M(-1) s(-1)). Overall, edaravone's scavenging activity against multiple free radical species is as robust as other known potent antioxidant such as uric acid, glutathione, and trolox. A radar chart illustration of the MULTIS activity relative to uric acid, glutathione, and trolox indicates that edaravone has a high and balanced antioxidant activity with low specificity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Development of force-detected THz-ESR measurement system and its application to metal porphyrin complexes

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Okamoto, Tsubasa; Ohmichi, Eiji; Ohta, Hitoshi

    Electron spin resonance spectroscopy in the terahertz region (THz-ESR) is a promising technique to study biological materials such as metalloproteins because it directly probes the metal ion sites that play an important role in the emergence of functionality. By combining THz-ESR with force detection, the samples mass is reduced to the order of ng. This feature is of great advantage because the sample preparation process of biological materials is time-consuming. We developed a force-detected THz-ESR system utilizing optical interferometry for precise cantilever displacement measurement. In order to suppress the sensitivity fluctuation and instability of cantilever dynamics under high magnetic field, the tuning of interferometer is feedback-controlled during a measurement. By using this system, we successfully observed the ESR signal of hemin, which is a model substance of hemoglobin and myoglobin, in THz region.

  18. Photochemical and radiation-chemical aspects of matrix acidity effects on some organic systems

    NASA Astrophysics Data System (ADS)

    Ambroz, H. B.; Przybytniak, G. K.; Wronska, T.; Kemp, T. J.

    The role of matrix effects in radiolysis and photolysis is illustrated using two systems: organosulphur compounds and benzenediazonium salts. Their intermediates as detected by low temperature ESR and optical spectroscopy or FAB-MS give evidence that the main reaction pathways depend strongly on these effects. Changes in matrix acidity can control the formation of neutral radical, ion-radical or ionic species which are crucial to the character of the final products of irradiation of organosulphur compounds, which are of great importance in medicine, biology, ecology and industry. Microenvironmental influences determine whether the triplet aryl cation or radical species are detected as the principal or sole intermediates in the decomposition of diazonium salts, a process leading to different stable products with industrial application.

  19. Modulation of oxidative damage by nitroxide free radicals.

    PubMed

    Dragutan, Ileana; Mehlhorn, Rolf J

    2007-03-01

    Piperidine nitroxides like 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) are persistent free radicals in non-acidic aqueous solutions and organic solvents that may have value as therapeutic agents in medicine. In biological environments, they undergo mostly reduction to stable hydroxylamines but can also undergo oxidation to reactive oxoammonium compounds. Reactions of the oxoammonium derivatives could have adverse consequences including chemical modification of vital macromolecules and deleterious effects on cell signaling. An examination of their reactivity in aqueous solution has shown that oxoammonium compounds can oxidize almost any organic as well as many inorganic molecules found in biological systems. Many of these reactions appear to be one-electron transfers that reduce the oxoammonium to the corresponding nitroxide species, in contrast to a prevalence of two-electron reductions of oxoammonium in organic solvents. Amino acids, alcohols, aldehydes, phospholipids, hydrogen peroxide, other nitroxides, hydroxylamines, phenols and certain transition metal ions and their complexes are among reductants of oxoammonium, causing conversion of this species to the paramagnetic nitroxide. On the other hand, thiols and oxoammonium yield products that cannot be detected by ESR even under conditions that would oxidize hydroxylamines to nitroxides. These products may include hindered secondary amines, sulfoxamides and sulfonamides. Thiol oxidation products other than disulfides cannot be restored to thiols by common enzymatic reduction pathways. Such products may also play a role in cell signaling events related to oxidative stress. Adverse consequences of the reactions of oxoammonium compounds may partially offset the putative beneficial effects of nitroxides in some therapeutic settings.

  20. Experimental setup for investigation of nanoclusters at cryogenic temperatures by electron spin resonance and optical spectroscopies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, S., E-mail: maoshunghost@tamu.edu; Meraki, A.; McColgan, P. T.

    2014-07-15

    We present the design and performance of an experimental setup for simultaneous electron spin resonance (ESR) and optical studies of nanoclusters with stabilized free radicals at cryogenic temperatures. A gas mixture of impurities and helium after passing through a RF discharge for dissociation of molecules is directed onto the surface of superfluid helium to form the nanoclusters of impurities. A specially designed ESR cavity operated in the TE{sub 011} mode allows optical access to the sample. The cavity is incorporated into a homemade insert which is placed inside a variable temperature insert of a Janis {sup 4}He cryostat. The temperaturemore » range for sample investigation is 1.25–300 K. A Bruker EPR 300E and Andor 500i optical spectrograph incorporated with a Newton EMCCD camera are used for ESR and optical registration, respectively. The current experimental system makes it possible to study the ESR and optical spectra of impurity-helium condensates simultaneously. The setup allows a broad range of research at low temperatures including optically detected magnetic resonance, studies of chemical processes of the active species produced by photolysis in solid matrices, and investigations of nanoclusters produced by laser ablation in superfluid helium.« less

  1. Expression of estrogen receptor α 36 (ESR36) in the hamster ovary throughout the estrous cycle: effects of gonadotropins.

    PubMed

    Chakraborty, Prabuddha; Roy, Shyamal K

    2013-01-01

    Estradiol-17β (E) plays an important role in ovarian follicular development. Evidence indicates that some of the effect of E is mediated by the transmembrane estrogen receptor. In this study, we examined the spatio-temporal expression of recently discovered ERα36 (ESR36), a splice variant of Esr1 and a receptor for non-genomic E signaling, in the hamster ovary during the estrous cycle and the role of gonadotropins and ovarian steroid hormones in ESR36 expression. ESR36 expression was high on estrus (D1:0900 h) and declined precipitously by proestrus (D4:0900 h) and remained low up to D4:1600 h. Immunofluorescence findings corroborated immunoblot findings and revealed that ESR36 was expressed only in the cell membrane of both follicular and non-follicular cells, except the oocytes. Ovarian ESR36 was capable of binding to the E-affinity matrix, and have different molecular weight than that of the ESR1 or GPER. Hypophysectomy (Hx) resulted in a marked decline in ESR36 protein levels. FSH and LH, alone or combined, markedly upregulated ESR36 protein in Hx hamsters to the levels observed in D1 hamsters, but neither E nor P had any effect. Inhibition of the gonadotropin surge by phenobarbital treatment on D4:1100 h attenuated ESR36 expression in D1:0900 h ovaries, but the decline was restored by either FSH or LH replacement on D4 afternoon. This is the first report to show that ESR36, which is distinct from ESR1 or GPER is expressed in the plasma membrane of ovarian follicular and non-follicular cells, binds to E and its expression is regulated directly by the gonadotropins. In light of our previous findings, the results suggest that ovarian cells contain at least two distinct membrane estrogen receptors, such as GPER and ESR36, and strongly suggest for a non-genomic action of E regulating ovarian follicular functions.

  2. ESR signals in quartz for the studies of earth surface processes

    NASA Astrophysics Data System (ADS)

    Toyoda, S.; Shimada, A., , Dr; Takada, M.

    2017-12-01

    Various ESR (electron spin resonance) signals are observed in quartz. As they are formed by natural radiation, the signals are useful in dating of geological events, such as volcanic eruption, faulting and sedimentation. It was also found that those paramagnetic defects can be fingerprints of sediments, to be used for studies in sediment provenance. The signal of the E1' center, unpaired electron at an oxygen vacancy, was first used for such studies. A method was proposed to estimate the number of the precursors (oxygen vacancies) from the E1' center intensity. The number of oxygen vacancies in quartz was found to have positive correlation with the crystallization age. Using this feature, studies were quite successful in aeolian dust. It was shown that the sources of aeolian dust deposited in northern part of Japanese Islands were different between in MIS1 and MIS 2. In combination with crystallinity index, the contributions of the dust components from three origins were quantitatively obtained. After these, the provenance studies on river sediments have started where the impurity centers in quartz were employed, which are the Al center, the Ti centers, and the Ge centers. Sediments of Kizu River, Mie to Nara prefectures in Central Japan are most extensively studied. Firstly, it was shown that each of possible sources of granitic quartz around the reaches has respective characteristics in the number of oxygen vacancies and the signal intensities of impurity centers. Secondary, by the artificial mixing experiments, the impurity signal intensities have the values consistent with the mixing ratio of the two samples of quartz with different intensities. At river junctions, the mixing ratios were calculated from the ESR signals. At some locations, the mixing ratio values obtained from one signal were consistent with the ones from another signal while at some locations they were not. The latter inconsistent results would indicate that the river sediments are inhomogeneous and complicated. Several results will be presented showing the source to sink changes in the ESR signal intensities along with the river. The signals are basically consistent with the possible sources in the river beds having the variation due to the inflow of the tributaries.

  3. Effects of ionizing radiations on a pharmaceutical compound, chloramphenicol

    NASA Astrophysics Data System (ADS)

    Varshney, L.; Patel, K. M.

    1994-05-01

    Chloramphenicol, a broad spectrum antibiotic, has been irradiated using Cobalt-60 γ radiation and electron beam at graded radiation doses upto 100 kGy. Several degradation products and free radicals are formed on irradiation. Purity, degradation products, free radicals, discolouration, crystallinity, solubility and entropy of radiation processing have been investigated. Aqueous solutions undergo extensive radiolysis even at low doses. Physico-chemical, microbiological and toxicological tests do not show significant degradation at sterilization dose. High performance liquid chromatography (HPLC), differential scanning calorimetry (DSC), UV-spectrophotometry, diffuse reflectance spectroscopy (DRS) and electron spin resonance spectroscopy (ESR) techniques were employed for the investigations.

  4. Mössbauer effect study of iron(III) inidazolidine nitroxyl-free radical ligand complex

    NASA Astrophysics Data System (ADS)

    Mulaba, A.; Kiremire, E.; Pollak, H.; Boeyens, J.

    1999-09-01

    A new complex, [Fe(acac)L2], bearing inidazolidine nitroxyl-free radical ligand (L-) was recently synthesised for biological studies. It proved to be biologically active against African sleeping sickness, plasmodium falciparum (malaria), leishmaniasis and chaga disease causative agents. Three ESR well resolved peaks indicated the presence of a free (unpaired) and chemically active electron in the complex. The structural complex ferric iron was found at the centre of two electric gradient whose the biggest is suggested to be initiated by the unpaired charge. No distinction between different cis isomers could be made.

  5. Free radical scavenging abilities of polypeptide from Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Han, Zhiwu; Chu, Xiao; Liu, Chengjuan; Wang, Yuejun; Mi, Sun; Wang, Chunbo

    2006-09-01

    We investigated the radical scavenging effect and antioxidation property of polypeptide extracted from Chlamys farreri (PCF) in vitro using chemiluminescence and electron spin resonance (ESR) methods. We examined the scavenging effects of PCF on superoxide anions (O{2/-}), hydroxyl radicals (OH·), peroxynitrite (ONOO-) and the inhibiting capacity of PCF on peroxidation of linoleic acid. Our experiment suggested that PCF could scavenge oxygen free radicals including superoxide anions (O{2/-}) (IC50=0.3 mg/ml), hydroxyl radicals (OH·) (IC50=0.2 μg/ml) generated from the reaction systems and effectively inhibit the oxidative activity of ONOO- (IC50=0.2 mg/ml). At 1.25 mg/ml of PCF, the inhibition ratio on lipid peroxidation of linoleic acid was 43%. The scavenging effect of PCF on O{2/-}, OH· and ONOO- free radicals were stronger than those of vitamin C but less on lipid peroxidation of linoleic acid. Thus PCF could scavenge free radicals and inhibit the peroxidation of linoleic acid in vitro. It is an antioxidant from marine products and potential for industrial production in future.

  6. Radiolysis of poly(acrylic acid) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ulanski, Piotr; Bothe, Eberhard; Hildenbrand, Knut; Rosiak, Janusz M.; von Sonntag, Clemens

    1995-02-01

    Poly(acrylic acid), PAA, reacts with OH-radicals yielding -CHCH(CO 2H)- (β-radicals) and -CH 2C(CO 2H)- (α-radicals) in a ratio of approximately 2:1. This estimate is based on pulse radiolysis data where the absorption spectrum of the PAA-radicals was compared with the spectra of α-radicals from model systems. The β-radicals convert slowly into α-radicals ( k = 0.7 s -1 at pH 10). This process has also been observed by ESR. At PAA-concentrations of 10 -2 mol dm -3 chain scission dominates over other competing reactions except at low pH. The rate of chain scission was followed by pulse conductometry and in the pH range 7-9 k = 4 × 10 -2s -1 was observed. Oxygen reacts with PAA-radicals with k = 3.1 × 10 8 dm 3 mol -1 s -1 at pH 3.5 and k = 1.0 × 10 8 dm 3 mol -1 s -1 at pH 10. The corresponding peroxyl radicals undergo slow intramolecular H-transfer yielding a UV-absorbing product whose properties are that of 1,3-diketones.

  7. The Guanine Cation Radical: Investigation of Deprotonation States by ESR and DFT

    PubMed Central

    Adhikary, Amitava; Kumar, Anil; Becker, David; Sevilla, Michael D.

    2008-01-01

    This work reports ESR studies that identify the favored site of deprotonation of the guanine cation radical (G•+) in an aqueous medium at 77 K. Using ESR and UV-visible spectroscopy, one-electron oxidized guanine is investigated in frozen aqueous D2O solutions of 2′-deoxyguanosine (dGuo) at low temperatures at various pHs at which the guanine cation, G•+ (pH 3–5), singly deprotonated species, G(-H)• (pH 7–9) and doubly deprotonated species, G(-2H)•− (pH>11) are found. C-8-deuteration of dGuo to give 8-D-dGuo removes the major proton hyperfine coupling at C-8. This isolates the anisotropic nitrogen couplings for each of the three species and aids our analyses. These anisotropic nitrogen couplings were assigned to specific nitrogen sites by use of 15N substituted derivatives at N1, N2 N3 atoms in dGuo. Both ESR and UV-visible spectra are reported for each of the species: G•+, G(-H)•, and G(-2H)•−. The experimental anisotropic ESR hyperfine couplings are compared to those obtained from DFT calculations for the various tautomers of G(-H)•. Using the B3LYP/6–31G(d) method, the geometries and energies of G•+ and its singly deprotonated state in its two tautomeric forms, G(N1-H)• and G(N2-H)•, were investigated. In a non-hydrated state G(N2-H)• is found to be more stable than G(N1-H)• but on hydration with 7 water molecules G(N1-H)• is found to be more stable than G(N2-H)•. The theoretically calculated hyperfine coupling constants (HFCC) of G•+, G(N1-H)• and G(-2H)•− match the experimentally observed HFCCs best on hydration with 7 or more waters. For G(-2H)•−, the hyperfine coupling constant (HFCC) at the exocyclic nitrogen atom (N2) is especially sensitive to the number of hydrating water molecules; good agreement with experiment is not obtained until 9 or 10 waters of hydration are included. PMID:17125389

  8. Depressive-like effect of prenatal exposure to DDT involves global DNA hypomethylation and impairment of GPER1/ESR1 protein levels but not ESR2 and AHR/ARNT signaling.

    PubMed

    Kajta, Malgorzata; Wnuk, Agnieszka; Rzemieniec, Joanna; Litwa, Ewa; Lason, Wladyslaw; Zelek-Molik, Agnieszka; Nalepa, Irena; Rogóż, Zofia; Grochowalski, Adam; Wojtowicz, Anna K

    2017-07-01

    Several lines of evidence suggest that exposures to Endocrine Disrupting Chemicals (EDCs) such as pesticides increase the risks of neuropsychiatric disorders. Despite extended residual persistence of dichlorodiphenyltrichloroethane (DDT) in the environment, the mechanisms of perinatal actions of DDT that could account for adult-onset of depression are largely unknown. This study demonstrated the isomer-specific induction of depressive-like behavior and impairment of Htr1a/serotonin signaling in one-month-old mice that were prenatally exposed to DDT. The effects were reversed by the antidepressant citalopram as evidenced in the forced swimming (FST) and tail suspension (TST) tests in the male and female mice. Prenatally administered DDT accumulated in mouse brain as determined with gas chromatography and tandem mass spectrometry, led to global DNA hypomethylation, and altered the levels of methylated DNA in specific genes. The induction of depressive-like behavior and impairment of Htr1a/serotonin signaling were accompanied by p,p'-DDT-specific decrease in the levels of estrogen receptors i.e. ESR1 and/or GPER1 depending on sex. In contrast, o,p'-DDT did not induce depressive-like effects and exhibited quite distinct pattern of biochemical alterations that was related to aryl hydrocarbon receptor (AHR), its nuclear translocator ARNT, and ESR2. Exposure to o,p'-DDT increased AHR expression in male and female brains, and reduced expression levels of ARNT and ESR2 in the female brains. The evolution of p,p'-DDT-induced depressive-like behavior was preceded by attenuation of Htr1a and Gper1/GPER1 expression as observed in the 7-day-old mouse pups. Because p,p'-DDT caused sex- and age-independent attenuation of GPER1, we suggest that impairment of GPER1 signaling plays a key role in the propagation of DDT-induced depressive-like symptoms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Variable Coupling Scheme for High Frequency Electron Spin Resonance Resonators Using Asymmetric Meshes

    PubMed Central

    Tipikin, D. S.; Earle, K. A.; Freed, J. H.

    2010-01-01

    The sensitivity of a high frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter wave transmission line optical axis. We quantify the performance of this device with nitroxide spin-label spectra in both a lossy aqueous solution and a low loss solid state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems in particular are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high frequency ESR to the study of biological systems at physiological conditions, for example. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in signal to noise at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples. PMID:20458356

  10. 17Beta-estradiol signaling and regulation of proliferation and apoptosis of rat Sertoli cells.

    PubMed

    Royer, Carine; Lucas, Thaís F G; Lazari, Maria F M; Porto, Catarina S

    2012-04-01

    The aim of the present study was to investigate the intracellular signaling events downstream of the classical estrogen receptors (ESRs) and G protein-coupled estrogen receptor 1 (GPER) involved in regulation of proliferation and apoptosis of rat Sertoli cells, in which we have previously described ESR1, ESR2, and GPER. ESRs play a role in Sertoli cell proliferation, and GPER, but not ESRs, plays a role modulating gene expression involved with apoptosis. The present study shows that 17beta-estradiol (E2) and the GPER-selective agonist G-1 rapidly activate phosphatidylinositol 3-kinase (PIK3)/serine threonine protein kinase (AKT) and cyclic AMP response element-binding (CREB) phosphorylation. E2 and the ESR1-selective agonist 4,4',4″-(4-propyl-(1H)-pyrazole-1,3,5-triyl)trisphenol (PPT) increase the expression of cyclin D1 (CCND1), whereas the ESR2-selective agonist 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) and G-1 do not change the expression of this protein, suggesting that ESR1 is the upstream receptor regulating Sertoli cell proliferation. E2- or PPT-ESR1, through activation of epidermal growth factor receptor (EGFR)/mitogen-activated protein kinase 3/1 (MAPK3/1) and PIK3 pathways, induces upregulation of CCND1. KG-501, the compound that disrupts the phospho-CREB/CREB binding protein (CBP) complex, does not change E2- or PPT-ESR1-mediated CCND1 expression, suggesting that phospho-CREB/cyclic AMP response element/CBP is not involved in the expression of this protein. E2- or G-1-GPER, through activation of EGFR/MAPK3/1 and PIK3 pathways, may be involved in the upregulation of antiapoptotic proteins BCL2 and BCL2L2. E2- or G-1-GPER/EGFR/MAPK3/1/phospho-CREB decreases BAX expression. Taken together, these results show a differential effect of E2-GPER on the CREB-mediated transcription of proapoptotic and antiapoptotic genes of the same BCL2 gene family. ESR1 and GPER can mediate the rapid E2 actions in the Sertoli cells, which in turn can modulate nuclear transcriptional events important for Sertoli cell function and maintenance of normal testis development and homeostasis. Our findings are important to clarify the role of estrogen in a critical period of testicular development, and to direct further studies, which may contribute to better understanding of the causes of male infertility.

  11. ROS production in homogenate from the body wall of sea cucumber Stichopus japonicus under UVA irradiation: ESR spin-trapping study.

    PubMed

    Qi, Hang; Dong, Xiu-fang; Zhao, Ya-ping; Li, Nan; Fu, Hui; Feng, Ding-ding; Liu, Li; Yu, Chen-xu

    2016-02-01

    Sea cucumber Stichopus japonicus (S. japonicus) shows a strong ability of autolysis, which leads to severe deterioration in sea cucumber quality during processing and storage. In this study, to further characterize the mechanism of sea cucumber autolysis, hydroxyl radical production induced by ultraviolet A (UVA) irradiation was investigated. Homogenate from the body wall of S. japonicas was prepared and subjected to UVA irradiation at room temperature. Electron Spin Resonance (ESR) spectra of the treated samples were subsequently recorded. The results showed that hydroxyl radicals (OH) became more abundant while the time of UVA treatment and the homogenate concentration were increased. Addition of superoxide dismutase (SOD), catalase, EDTA, desferal, NaN3 and D2O to the homogenate samples led to different degrees of inhibition on OH production. Metal cations and pH also showed different effects on OH production. These results indicated that OH was produced in the homogenate with a possible pathway as follows: O2(-) → H2O2 → OH, suggesting that OH might be a critical factor in UVA-induced S. japonicus autolysis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Study into the identification of irradiation ground paprika

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beczner, J.; Farkas, J.; Kiss, I.

    From international colloquium: the identification of irradiated foodstuffs; Karlsruhe, Germany (24 Oct 1973). Several methods for the demonstration of irradiation in ground paprika were tested. In carbonyl compounds extracted by steam distillation unambiguous changes, which might have served as a basis for detecting irradiation, were not observed. Derivatography did not prove suitable either. On the basis of the size of ESR signal, the control sample and the irradiated one could be distinguished 2 to 3 weeks after irradiation. After a longer storage period, the size of the signal is irrelevant. Further study of the shape of the ESR signals maymore » yield valuable information in experiments on the demonstration of irradiation. (GE)« less

  13. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate.

    PubMed

    Mendis, Eresha; Rajapakse, Niranjan; Kim, Se-Kwon

    2005-02-09

    Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.

  14. Thermal Properties of the ESR Centres in Speleothem Samples

    NASA Astrophysics Data System (ADS)

    Ulusoy, Ü.; Anbar, Gül

    2007-04-01

    The paramagnetic centres used for ESR (Electron Spin Resonance) dating method should be thermally stable which is the main factor limiting the range of this method. In this work, thermal stabilities of the ESR centres in the cave deposites from the Aladaǧlar Massive and Alanya in Turkey has been investigated. The life times of the dating signal were calculated as about 4.0 and 3.7 years for G06 and G08 samples at the 10 °C depositing temperature. The activation energies of the centres are obtained the same, 0.7eV for both samples.

  15. Magnetic Resonance Characterization of Defects in Icosahedral and Cubic Boron Arsenide Bulk Crystals

    NASA Astrophysics Data System (ADS)

    Glaser, E. R.; Freitas, J. A., Jr.; Cress, C. D.; Perkins, F. K.; Prokes, S. M.; Ruppalt, L. B.; Culbertson, J. C.; Whiteley, C.; Edgar, J. H.; Tian, F.; Ren, Z.; Kim, J.; Shi, L.; Naval Research Lab Team; Kansas State U. Team; U. Houston Team; U. Texas Team

    Low-temperature electron spin resonance (ESR) at 9.5 GHz and optically-detected magnetic resonance (ODMR) at 24 GHz were employed to investigate point defects in icosahedral and cubic Boron Arsenide bulk crystals. These semiconductors are of interest for use in high radiation and/or high temperature environments. ESR of the (001) B12As2 (Eg = 3.47 eV) mm-size platelets revealed two distinct features of unknown origin. The first signal is characterized by Zeeman splitting g-values of g|| = 2.017, g⊥ = 2.0183 while the second with g|| = 2.0182, g⊥ = 1.9997. Most notably, the second signal was also observed from ODMR on the broad 2.4 eV ``yellow/green'' photoluminescence band previously reported for these crystals and suggests its direct involvement in this likely defect-related radiative recombination process. Preliminary ESR obtained for the 100-300 micron-size cubic BAs crystals revealed a signal with g-value of 2.018 (very similar to that found for the B12As2 crystals) and broad FWHM value of 182 G. Possible origins of these defects will be discussed.

  16. Protective activity of hamamelitannin on cell damage induced by superoxide anion radicals in murine dermal fibroblasts.

    PubMed

    Masaki, H; Atsumi, T; Sakurai, H

    1995-01-01

    Previously we demonstrated that hamamelitannin (2',5-di-O-galloyl hamamelose) in Hamamelis virginiana L. exhibits potent superoxide-anion scavenging activity. We then examined the physiological and pharmacological activities of hamamelitannin as well as its functional homologues, gallic acid and syringic acid. The following results were obtained: (1) Hamamelitannin has a higher protective activity against cell damages induced by superoxide anions than gallic acid which is the functional moiety of hamamelitannin. The protective activity of hamamelitannin on murine fibroblast-damage induced by superoxide anions was found at a minimum concentration of 50 microM, while the corresponding figure for gallic acid was 100 microM. (2) Pre-treatment of fibroblasts with hamamelitannin enhances cell survival. (3) The superoxide-anion scavenging activity of the compound in terms of its IC50 value (50% inhibition concentration of superoxide anion radicals generated) was evaluated by ESR spin-trapping. Both hamamelitannin (IC50 = 1.31 +/- 0.06 microM) and gallic acid (IC50 = 1.01 +/- 0.03 microM) exhibited high superoxide-anion scavenging activity followed by syringic acid (IC50 = 13.90 +/- 2.38 microM). (4) When hamamelitannin was treated with superoxide anions generated by a KO2-crown ether system, HPLC analysis showed the disappearance of hamamelitannin and the concomitant formation of hamamelitannin-derived radicals (g = 2.005, delta H1 = 2.16 G, delta H2 = 4.69 G) was detected by ESR spectrometry.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. Reaction between aminoalkyl radicals and akyl halides: Dehalogenation by electron transfer?

    NASA Astrophysics Data System (ADS)

    Lalevée, J.; Fouassier, J. P.; Blanchard, N.; Ingold, K. U.

    2011-07-01

    Aminoalkyl radicals, such as Et2NCrad HCH3, have low oxidation potentials and are therefore powerful reducing agents. We have found that Et2NCrad HCH3 reacts with CCl4 and CBr4 in di-tert-butyl peroxide with bimolecular rate constants (measured by LFP) close, or equal, to the diffusion-controlled limit. For the less reactive halide, CH2Br2, the reaction rate is increased substantially by the addition of acetonitrile as a co-solvent. It is tentatively concluded that these reactions occur by electron-transfer from the aminoalkyl to the organohalide with formation of the iminium ion, Et2N+dbnd CHCH3 (NMR detection), halide ion and a halomethyl radical, e.g., rad CCl3 and rad CHCl2 (ESR, spin-trapping detection).

  18. Preoperative Erythrocyte Sedimentation Rate Independently Predicts Overall Survival in Localized Renal Cell Carcinoma following Radical Nephrectomy

    PubMed Central

    Cross, Brian W.; Johnson, Timothy V.; DeRosa, Austin B.; Ogan, Kenneth; Pattaras, John G.; Nieh, Peter T.; Kucuk, Omer; Harris, Wayne B.; Master, Viraj A.

    2012-01-01

    Objectives. To determine the relationship between preoperative erythrocyte sedimentation rate (ESR) and overall survival in localized renal cell carcinoma (RCC) following nephrectomy. Methods. 167 patients undergoing nephrectomy for localized RCC had ESR levels measured preoperatively. Receiver Operating Characteristics curves were used to determine Area Under the Curve and relative sensitivity and specificity of preoperative ESR in predicting overall survival. Cut-offs for low (0.0–20.0 mm/hr), intermediate (20.1–50.0 mm/hr), and high risk (>50.0 mm/hr) groups were created. Kaplan-Meier analysis was conducted to assess the univariate impact of these ESR-based groups on overall survival. Univariate and multivariate Cox regression analysis was conducted to assess the potential of these groups to predict overall survival, adjusting for other patient and tumor characteristics. Results. Overall, 55.2% were low risk, while 27.0% and 17.8% were intermediate and high risk, respectively. Median (95% CI) survival was 44.1 (42.6–45.5) months, 35.5 (32.3–38.8) months, and 32.1 (25.5–38.6) months, respectively. After controlling for other patient and tumor characteristics, intermediate and high risk groups experienced a 4.5-fold (HR: 4.509, 95% CI: 0.735–27.649) and 18.5-fold (HR: 18.531, 95% CI: 2.117–162.228) increased risk of overall mortality, respectively. Conclusion. Preoperative ESR values represent a robust predictor of overall survival following nephrectomy in localized RCC. PMID:22900160

  19. Defining a Role for the Oncogene Beta-Catenin in Prostate Epithelial Growth and Invasion

    DTIC Science & Technology

    2011-07-01

    receptor function. To determine in increased or decreased Wnt signaling can affect androgen receptor function, we harvested E15.5 UGSs from Esr1 -Cre x...beta-cateninfl/fl and Esr1 -Cre APCfl/fl embryos and treated them with 2 uM tamoxifen and zero, low, normal, or high androgen to determine if high

  20. Sample selection and preservation techniques for the Mars sample return mission

    NASA Technical Reports Server (NTRS)

    Tsay, Fun-Dow

    1988-01-01

    It is proposed that a miniaturized electron spin resonance (ESR) spectrometer be developed as an effective, nondestructivew sample selection and characterization instrument for the Mars Rover Sample Return mission. The ESR instrument can meet rover science payload requirements and yet has the capability and versatility to perform the following in situ Martian sample analyses: (1) detection of active oxygen species, and characterization of Martian surface chemistry and photocatalytic oxidation processes; (2) determination of paramagnetic Fe(3+) in clay silicate minerals, Mn(2+) in carbonates, and ferromagnetic centers of magnetite, maghemite and hematite; (3) search for organic compounds in the form of free radicals in subsoil, and detection of Martian fossil organic matter likely to be associated with carbonate and other sedimentary deposits. The proposed instrument is further detailed.

  1. Calculated hyperfine coupling constants for 5,5-dimethyl-1-pyrroline N-oxide radical products in water and benzene

    NASA Astrophysics Data System (ADS)

    Nardali, Ş.; Ucun, F.; Karakaya, M.

    2017-11-01

    The optimized structures of some radical adducts of 5,5-dimethyl-1-pyrroline N-oxide were computed by different methods on ESR spectra. As trapped radicals, H, N3, NH2, CH3, CCl3, OOH in water and F, OH, CF3, CH2OH, OC2H5 in benzene solutions were used. The calculated isotropic hyperfine coupling constants of all the trapped radicals were compared with the corresponding experimental data. The hyperfine coupling constant due to the β proton of the nitroxide radical was seen to be consist with the McConnel's relation αβ = B 0 + B 1cos2θ and, to be effected with the opposite spin density of oxygen nucleus bonded to the nitrogen. It was concluded that in hyperfine calculations the DFT(B3PW91)/LanL2DZ level is superior computational quantum model relative to the used other level. Also, the study has been enriched by the computational of the optimized geometrical parameters, the hyper conjugative interaction energies, the atomic charges and spin densities for all the radical adducts.

  2. Reaction of long-lived radicals and vitamin C in γ-irradiated mammalian cells and their model system at 295 K. Tunneling reaction in biological system

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuro; Miyazaki, Tetsuo; Kosugi, Yoshio; Kumada, Takayuki; Koyama, Sinji; Kodama, Seiji; Watanabe, Masami

    1997-05-01

    When golden hamster embryo (GHE) cells or concentrated albumin solution (0.1 kg dm -3) that is a model system of cells is irradiated with γ-rays at 295 K, organic radicals produced can be observed by ESR. The organic radicals survive at both 295 and 310 K for such a long time as 20 h. The long-lived radicals in GHE cells and the albumin solution react with vitamin C by the rate constants of 0.007 dm 3 mol -1 s -1 and 0.014 dm 3 mol -1 s -1, respectively. The long-lived radicals in human cells cause gene mutation, which is suppressed by addition of vitamin C. The isotope effect on the rate constant ( k) for the reaction of the long-lived radicals and vitamin C has been studied in the albumin solution by use of protonated vitamin C and deuterated vitamin C. The isotope effect ( kH/ kD) was more than 20 ≈ 50 and was interpreted in terms of tunneling reaction.

  3. Expression and signaling of G protein-coupled estrogen receptor 1 (GPER) in rat sertoli cells.

    PubMed

    Lucas, Thaís F G; Royer, Carine; Siu, Erica R; Lazari, Maria Fatima M; Porto, Catarina S

    2010-08-01

    The aim of the present study was to investigate the expression and signaling of the G protein-coupled estrogen receptor 1 (GPER) in cultured immature rat Sertoli cells--in which we have previously described the classical estrogen receptors (ESR1 and ESR2). Expression of GPER in cultured Sertoli cells from 15-day-old rats was detected by RT-PCR and immunoassays. Gper transcripts also were present in testes from 5-, 15-, and 120-day-old rats. Short-term treatment of Sertoli cells with 17beta-estradiol (E2), the GPER agonist G-1, or the ESR antagonist ICI 182,780 (ICI) rapidly activated MAPK3/1 (ERK1/2), even after down-regulation of ESR1 and ESR2, suggesting a role for GPER in the rapid E2 action in these cells. MAPK3/1 phosphorylation induced by ICI or G-1 was blocked by pertussis toxin, selective inhibitor of the SRC family of protein tyrosine kinases, metalloprotease inhibitor, MAP2K1/2 inhibitor, and epidermal growth factor receptor (EGFR) kinase inhibitor. Furthermore, E2, but not G-1, induced up-regulation of cyclin D1 in the Sertoli cells. This effect was blocked by ICI. E2 and G-1 decreased BAX and increased BCL2 expression and these effects were blocked by MAP2K1/2 inhibitor and EGFR kinase inhibitor. The pretreatment with ICI did not block the effect of E2. Taken together, these results indicate that in Sertoli cells 1) GPER-mediated MAPK3/1 activation occurs via EGFR transactivation through G protein beta gamma subunits that promote SRC-mediated metalloprotease-dependent release of EGFR ligands, which bind to EGFR and lead to MAPK3/1 phosphorylation; 2) E2-ESRs play a role in Sertoli cell proliferation; and 3) E2-GPER may regulate gene expression involved with apoptosis. ESR and GPER may mediate actions important for Sertoli cell function and maintenance of normal testis development and homeostasis.

  4. Correlation between erythropoietin receptor(s) and estrogen and progesterone receptor expression in different breast cancer cell lines.

    PubMed

    Trošt, Nina; Hevir, Neli; Rižner, Tea Lanišnik; Debeljak, Nataša

    2013-03-01

    Erythropoietin (EPO) receptor (EPOR) expression in breast cancer has been shown to correlate with the expression of estrogen receptor (ESR) and progesterone receptor (PGR) and to be associated with the response to tamoxifen in ESR+/PGR+ tumors but not in ESR- tumors. In addition, the correlation between EPOR and G protein-coupled estrogen receptor 1 [GPER; also known as G protein-coupled receptor 30 (GPR30)] has been reported, suggesting the prognostic potential of EPOR expression. Moreover, the involvement of colony stimulating factor 2 receptor, β, low‑affinity (CSF2RB) and ephrin type-B receptor 4 (EPHB4) as EPOR potential receptor partners in cancer has been indicated. This study analyzed the correlation between the expression of genes for EPO, EPOR, CSF2RB, EPHB4, ESR, PGR and GPER in the MCF-7, MDA-MB-361, T-47D, MDA-MB-231, Hs578Bst, SKBR3, MCF-10A and Hs578T cell lines. The cell lines were also treated with recombinant human EPO (rHuEPO) in order to determine its ability to activate the Jak/STAT5, MAPK and PI3K signaling pathways and modify cell growth characteristics. Expression analysis stratified the cell lines in 2 main clusters, hormone-dependent cell lines expressing ESR and PGR and a hormone-independent cluster. A significant correlation was observed between the expression levels of ESR and PGR and their expression was also associated with that of GPER. Furthermore, the expression of GPER was associated with that of EPOR, suggesting the connection between this orphan G protein and EPO signaling. A negative correlation between EPOR and CSF2RB expression was observed, questioning the involvement of these two receptors in the hetero-receptor formation. rHuEPO treatment only influenced the hormone-independent cell lines, since only the MDA-MB-231, SKBR3 and Hs578T cells responded to the treatment. The correlation between the expression of the analyzed receptors suggests that the receptors may interact in order to activate signaling pathways or to evade their inhibition. Therefore, breast cancer classification upon ESR, PGR and human epidermal growth factor receptor 2 (HER2) may not be sufficient for the selection of suitable treatment protocol. The expression of EPOR, GPER and EPHB4 may be considered as additional classification factors.

  5. Neonatal over-expression of estrogen receptor-α alters midbrain dopamine neuron development and reverses the effects of low maternal care in female offspring

    PubMed Central

    Peña, Catherine Jensen; Champagne, Frances A

    2014-01-01

    Maternal behavior is dependent on estrogen receptor-alpha (ERα; Esr1) and oxytocin receptor (OTR) signaling in the medial preoptic area (MPOA) of the hypothalamus, as well as dopamine signaling from the ventral tegmental area (VTA) to forebrain regions. Previous studies in rats indicate that low levels of maternal care, particularly licking/grooming (LG), lead to reduced levels of MPOA ERα and VTA dopamine neurons in female offspring and predict lower levels of postpartum maternal behavior by these offspring. The aim of the current study was to determine the functional impact on maternal behavior of neonatal manipulation of ERα in females that had experienced low vs. high levels of postnatal maternal LG. Adenovirus expressing ESR1 was targeted to the MPOA in female pups from low and high LG litters on postnatal day 2–3. Over-expression of ESR1 in low LG offspring elevated the level of ERα-immunoreactive cells in the MPOA and of tyrosine hydroxylase cells in the VTA to that observed in high LG females. Amongst juvenile female low LG offspring, ESR1 over-expression also decreased the latency to engage in maternal behavior toward donor pups. These results show that virally-mediated expression of ESR1 in the neonatal rat hypothalamus results in lasting changes in ESR1 expression through the juvenile period, and can “rescue” hormone receptor levels and behavior of offspring reared by low LG dams, potentially mediated by downstream alterations within reward circuitry. Thus, the transmission of maternal behavior from one generation to the next can be augmented by neonatal ERα in the MPOA. PMID:25044746

  6. Dynamics of 4-oxo-TEMPO-d16-15N nitroxide-propylene glycol system studied by ESR and ESE in liquid and glassy state in temperature range 10-295 K

    NASA Astrophysics Data System (ADS)

    Goslar, Janina; Hoffmann, Stanislaw K.; Lijewski, Stefan

    2016-08-01

    ESR spectra and electron spin relaxation of nitroxide radical in 4-oxo-TEMPO-d16-15N in propylene glycol were studied at X-band in the temperature range 10-295 K. The spin-lattice relaxation in the liquid viscous state determined from the resonance line shape is governed by three mechanisms occurring during isotropic molecular reorientations. In the glassy state below 200 K the spin-lattice relaxation, phase relaxation and electron spin echo envelope modulations (ESEEM) were studied by pulse spin echo technique using 2-pulse and 3-pulse induced signals. Electron spin-lattice relaxation is governed by a single non-phonon relaxation process produced by localized oscillators of energy 76 cm-1. Electron spin dephasing is dominated by a molecular motion producing a resonance-type peak in the temperature dependence of the dephasing rate around 120 K. The origin of the peak is discussed and a simple method for the peak shape analysis is proposed, which gives the activation energy of a thermally activated motion Ea = 7.8 kJ/mol and correlation time τ0 = 10-8 s. The spin echo amplitude is strongly modulated and FT spectrum contains a doublet of lines centered around the 2D nuclei Zeeman frequency. The splitting into the doublet is discussed as due to a weak hyperfine coupling of nitroxide unpaired electron with deuterium of reorienting CD3 groups.

  7. ESR dating of barite in sulphide deposits formed by the sea-floor hydrothermal activities.

    PubMed

    Toyoda, Shin; Fujiwara, Taisei; Uchida, Ai; Ishibashi, Jun-ichiro; Nakai, Shun'ichi; Takamasa, Asako

    2014-06-01

    Barite is a mineral newly found to be practically useful for electron spin resonance (ESR) dating of sulphide deposits formed by the sea-floor hydrothermal activities. The recent studies for the properties of the ESR dating signal in barite are summarised in the present paper as well as the formulas for corrections for accurate dose-rate estimation are developed including the dose-rate conversion factors, shape correction for gamma-ray dose and decay of (226)Ra. Although development of the techniques for ESR dating of barite has been completed, further comparative studies with other dating techniques such as U-Th and (226)Ra-(210)Pb dating are necessary for the technique to be widely used. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Luminescence and ESR studies of relationships between O(-)-centres and structural iron in natural and synthetically hydrated kaolinites

    NASA Technical Reports Server (NTRS)

    Coyne, L. M.; Costanzo, P. M.; Theng, B. K.

    1989-01-01

    Luminescence, induced by dehydration and by wetting with hydrazine and unsymmetrically substituted hydrazine, and related ESR spectra have been observed from several kaolinites, synthetically hydrated kaolinites, and metahalloysites. The amine-wetting luminescence results suggest that intercalation, not a chemiluminescence reaction, is the luminescence trigger. Correlation between hydration-induced luminescence and g = 2 ESR signals associated with O(-)-centres in several natural halloysites, and concurrent diminution of the intensity of both these signal types as a function of aging in two 8.4 angstroms synthetically hydrated, kaolinites, confirm a previously-reported relationship between the luminescence induced by dehydration and in the presence of O(-)-centres (holes, i.e., electron vacancies) in the tetrahedral sheet. Furthermore, the ESR spectra of the 8.4 angstroms hydrate showed a concurrent change in the line shape of the g = 4 signal from a shape usually associated with structural Fe in an ordered kaolinite, to a simpler one typically observed in more disordered kaolinite, halloysite, and montmorillonite. Either structural Fe centres and the O(-)-centres interact, or both are subject to factors previously associated with degree of order. The results question the long-term stability of the 8.4 angstroms hydrate, although XRD does not indicate interlayer collapse over this period. Complex inter-relationships are shown between intercalation, stored energy, structural Fe, and the degree of hydration which may be reflected in catalytic as well as spectroscopic properties of the clays.

  9. Pulse-based electron spin transient nutation measurement of BaTiO3 fine particle: Identification of controversial signal around g = 2.00

    NASA Astrophysics Data System (ADS)

    Sawai, Takatoshi; Yamaguchi, Yoji; Kitamura, Noriko; Date, Tomotsugu; Konishi, Shinya; Taga, Kazuya; Tanaka, Katsuhisa

    2018-05-01

    Two dimensional pulse-based electron spin transient nutation (2D-ESTN) spectroscopy is a powerful tool for determining the spin quantum number and has been applied to BaTiO3 fine powder in order to identify the origin of the continuous wave electron spin resonance (CW-ESR) signal around g = 2.00. The signal is frequently observed in BaTiO3 ceramics, and the correlation between the signal intensity and positive temperature coefficient of resistivity (PTCR) properties has been reported to date. The CW-ESR spectrum of BaTiO3 fine particles synthesized by the sol-gel method shows a typical asymmetric signal at g = 2.004. The 2D-ESTN measurements of the sample clearly reveal that the signal belongs to the S = 5/2 high spin state, indicating that the signal is not due to a point defect as suggested by a number of researchers but rather to a transition metal ion. Our elemental analysis, as well as previous studies, indicates that the origin of the g = 2.004 signal is due to the presence of an Fe3+ impurity. The D value (second-order fine structure parameter) reveals that the origin of the signal is an Fe3+ center with distant charge compensation. In addition, we show a peculiar temperature dependence of the CW-ESR spectrum, suggesting that the phase transition behavior of a BaTiO3 fine particle is quite different from that of a bulk single crystal. Our identification does not contradict a vacancy-mediated mechanism for PTCR. However, it is incorrect to use the signal at g = 2.00 as evidence to support the vacancy-mediated mechanism.

  10. ESR detection procedure of irradiated papaya containing high water content

    NASA Astrophysics Data System (ADS)

    Kikuchi, Masahiro; Shimoyama, Yuhei; Ukai, Mitsuko; Kobayashi, Yasuhiko

    2011-05-01

    ESR signals were recorded from irradiated papaya at liquid nitrogen temperature (77 K), and freeze-dried irradiated papaya at room temperature (295 K). Two side peaks from the flesh at the liquid nitrogen temperature indicated a linear dose response for 3-14 days after the γ-irradiation. The line shapes recorded from the freeze-dried specimens were sharper than those at liquid nitrogen temperature.

  11. Free radical interactions between raw materials in dry soup powder.

    PubMed

    Raitio, Riikka; Orlien, Vibeke; Skibsted, Leif H

    2011-12-01

    Interactions at the free radical level were observed between dry ingredients in cauliflower soup powder, prepared by dry mixing of ingredients and rapeseed oil, which may be of importance for quality deterioration of such dry food products. The free radical concentrations of cauliflower soup powder, obtained by electron spin resonance (ESR) spectroscopy, rapidly become smaller during storage (40°C and relative humidity of 75%) than the calculated concentrations of free radicals based on the free radical concentrations of the powder ingredients used to make the soup powder and stored separately under similar conditions. Similarly, free radical concentrations decreased faster when any combination of two powder ingredients (of the three major ingredients of the soup powder) were mixed together and stored at 50°C for 1week than when each powder component was stored separately. Furthermore, yeast extract powder was found to play a key role when free radical interactions between powder ingredients occurred. The incubation of rapeseed oil with powder ingredients at 45°C for 24h, indicated the ability of cauliflower powder to increase the concentration of hydroperoxides in rapeseed oil, while yeast extract powder was found to prevent this hydroperoxide formation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Role of IKK-alpha in EGFR Signaling Regulation

    DTIC Science & Technology

    2013-09-01

    correlated with IKKα expression using CCLE. Nonsupervised hierarchical clustering analysis was performed based on Erbb2, ERα ( ESR1 ), PR (PgR...signature (ERBB2, ESR1 , and PGR) genes. A subset of 4 genes showing distinct expression pattern in TNBC versus non-TNBC cell lines is shown in the...AKT2 AKT3 CDH1 MYB CDH2 VIM ERBB2 ESR1 PGR H C C 11 87 C A L- 85 -1 H C C 11 43 H D Q -P 1 C A L- 51 H C C 38 H C C 21 57 C A L- 12 0 B T- 54 9 H C C

  13. ESR1 and ESR2 polymorphisms in the BIG 1-98 trial comparing adjuvant letrozole versus tamoxifen or their sequence for early breast cancer.

    PubMed

    Leyland-Jones, Brian; Gray, Kathryn P; Abramovitz, Mark; Bouzyk, Mark; Young, Brandon; Long, Bradley; Kammler, Roswitha; Dell'Orto, Patrizia; Biasi, Maria Olivia; Thürlimann, Beat; Harvey, Vernon; Neven, Patrick; Arnould, Laurent; Maibach, Rudolf; Price, Karen N; Coates, Alan S; Goldhirsch, Aron; Gelber, Richard D; Pagani, Olivia; Viale, Giuseppe; Rae, James M; Regan, Meredith M

    2015-12-01

    Estrogen receptor 1 (ESR1) and ESR2 gene polymorphisms have been associated with endocrine-mediated physiological mechanisms, and inconsistently with breast cancer risk and outcomes, bone mineral density changes, and hot flushes/night sweats. DNA was isolated and genotyped for six ESR1 and two ESR2 single-nucleotide polymorphisms (SNPs) from tumor specimens from 3691 postmenopausal women with hormone receptor-positive breast cancer enrolled in the BIG 1-98 trial to receive tamoxifen and/or letrozole for 5 years. Associations with recurrence and adverse events (AEs) were assessed using Cox proportional hazards models. 3401 samples were successfully genotyped for five SNPs. ESR1 rs9340799(XbaI) (T>C) variants CC or TC were associated with reduced breast cancer risk (HR = 0.82,95% CI = 0.67-1.0), and ESR1 rs2077647 (T>C) variants CC or TC was associated with reduced distant recurrence risk (HR = 0.69, 95% CI = 0.53-0.90), both regardless of the treatments. No differential treatment effects (letrozole vs. tamoxifen) were observed for the association of outcome with any of the SNPs. Letrozole-treated patients with rs2077647 (T>C) variants CC and TC had a reduced risk of bone AE (HR = 0.75, 95% CI = 0.58-0.98, P interaction = 0.08), whereas patients with rs4986938 (G>A) genotype variants AA and AG had an increased risk of bone AE (HR = 1.37, 95% CI = 1.01-1.84, P interaction = 0.07). We observed that (1) rare ESR1 homozygous polymorphisms were associated with lower recurrence, and (2) ESR1 and ESR2 SNPs were associated with bone AEs in letrozole-treated patients. Genes that are involved in estrogen signaling and synthesis have the potential to affect both breast cancer recurrence and side effects, suggesting that individual treatment strategies can incorporate not only oncogenic drivers but also SNPs related to estrogen activity.

  14. A portable microfluidic system for rapid measurement of the erythrocyte sedimentation rate.

    PubMed

    Isiksacan, Ziya; Erel, Ozcan; Elbuken, Caglar

    2016-11-29

    The erythrocyte sedimentation rate (ESR) is a frequently used 30 min or 60 min clinical test for screening of several inflammatory conditions, infections, trauma, and malignant diseases, as well as non-inflammatory conditions including prostate cancer and stroke. Erythrocyte aggregation (EA) is a physiological process where erythrocytes form face-to-face linear structures, called rouleaux, at stasis or low shear rates. In this work, we proposed a method for ESR measurement from EA. We developed a microfluidic opto-electro-mechanical system, using which we experimentally showed a significant correlation (R 2 = 0.86) between ESR and EA. The microfluidic system was shown to measure ESR from EA using fingerprick blood in 2 min. 40 μl of whole blood is filled in a disposable polycarbonate cartridge which is illuminated with a near infrared emitting diode. Erythrocytes were disaggregated under the effect of a mechanical shear force using a solenoid pinch valve. Following complete disaggregation, transmitted light through the cartridge was measured using a photodetector for 1.5 min. The intensity level is at its lowest at complete disaggregation and highest at complete aggregation. We calculated ESR from the transmitted signal profile. We also developed another microfluidic cartridge specifically for monitoring the EA process in real-time during ESR measurement. The presented system is suitable for ultrafast, low-cost, and low-sample volume measurement of ESR at the point-of-care.

  15. Electron Spin Resonance (ESR) for the study of Reactive Oxygen Species (ROS) on the isolated frog skin (Pelophylax bergeri): A non-invasive method for environmental monitoring.

    PubMed

    D'Errico, Gerardino; Vitiello, Giuseppe; De Tommaso, Gaetano; Abdel-Gawad, Fagr Kh; Brundo, Maria Violetta; Ferrante, Margherita; De Maio, Anna; Trocchia, Samantha; Bianchi, Anna Rita; Ciarcia, Gaetano; Guerriero, Giulia

    2018-04-11

    Reactive oxygen species (ROS) in biological tissues of elected biosentinels represent an optimal biomarker for eco-monitoring of polluted areas. Electron spin resonance (ESR) is the most definitive method for detecting, quantifying and possibly identifying radicals in complex systems. A non-invasive method for monitoring polluted areas by the quantitative determination of ROS in frog skin biopsy is presented. We assessed by ESR spectroscopy the ROS level in adult male of Pelophylax bergeri, specie not a risk of extinction, collected from the polluted Sarno River (SA, Italy) basin. The spin-trap ESR method was validated by immunohistochemical analysis of the well-assessed pollution biomarkers cytochrome P450 aromatase 1A (CYP1A) and glutathione S-transferase (GST), and by determining the poly(ADPribose) polymerase (PARP) and GST enzymatic activity. ROS concentration in skin samples from frogs collected in the polluted area is significantly higher than that determined for the unpolluted reference area. Immunohistochemical analysis of CYP1A and GST supported the reliability of our approach, even in the absence of evident morphological and ultrastructural differences. PARP activity assay, connected to possible oxidative DNA damage, and the detoxification index by GST enzymatic assay give statistically significant evidence that higher levels of ROS are associated to alterations of the different biomarkers. ROS concentration, measured by ESR on isolated frog skin, through the presented non-lethal method, is a reliable biomarker for toxicity screening and represents a useful basic datum for future modelling studies on environmental monitoring and biodiversity loss prevention. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Oxygen-17 and molybdenum-95 coupling in spectroscopic models of molybdoenzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, G.L.; Kony, M.; Tiekink, E.R.

    1988-09-28

    Assignment of (Mo/sup V/OS) and cis-(Mo/sup V/O(SH)) centers in active xanthine oxidase (very rapid and rapid ESR signals) are supported by generation of these species in solution. The ESR parameters were measured using /sup 17/O and /sup 95/Mo and are reported herein. The data revealed variations in relative magnitudes of the hyperfine components, and the different patterns of angles reflect significant differences in electronic structure. The same electronic differences appear to be responsible for the variations in magnitude and anisotropy of the /sup 17/O coupling, assigned to bound product Mo-/sup 17/OR in both enzyme signals.

  17. Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu, E-mail: tour@rice.edu; Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695; Tol, Johan van

    In this letter, we report on the high frequency (239.2 and 336 GHz) electron spin resonance (ESR) studies performed on graphene quantum dots (GQDs), prepared through a wet chemistry route from three types of coal: (a) bituminous, (b) anthracite, and (c) coke; and from non-coal derived GQDs. The microwave frequency-, power-, and temperature-dependent ESR spectra coupled with computer-aided simulations reveal four distinct magnetic defect centers. In bituminous- and anthracite-derived GQDs, we have identified two of them as intrinsic carbon-centered magnetic defect centers (a broad signal of peak to peak width = 697 (10{sup −4} T), g = 2.0023; and a narrow signal of peak tomore » peak width = 60 (10{sup −4} T), g = 2.003). The third defect center is Mn{sup 2+} ({sup 6}S{sub 5/2}, 3d{sup 5}) (signal width = 61 (10{sup −4} T), g = 2.0023, A{sub iso} = 93(10{sup −4} T)), and the fourth defect is identified as Cu{sup 2+} ({sup 2}D{sub 5/2}, 3d{sup 9}) (g{sub ⊥} = 2.048 and g{sub ‖} = 2.279), previously undetected. Coke-derived and non-coal derived GQDs show Mn{sup 2+} and two-carbon related signals, and no Cu{sup 2+} signal. The extrinsic impurities most likely originate from the starting coal. Furthermore, Raman, photoluminescence, and ESR measurements detected no noticeable changes in the properties of the bituminous GQDs after one year. This study highlights the importance of employing high frequency ESR spectroscopy in identifying the (magnetic) defects, which are roadblocks for spin relaxation times of graphene-based materials. These defects would not have been possible to probe by other spin transport measurements.« less

  18. Morphological Analysis of the Axonal Projections of EGFP-Labeled Esr1-Expressing Neurons in Transgenic Female Medaka.

    PubMed

    Zempo, Buntaro; Karigo, Tomomi; Kanda, Shinji; Akazome, Yasuhisa; Oka, Yoshitaka

    2018-02-01

    Some hypothalamic neurons expressing estrogen receptor α (Esr1) are thought to transmit a gonadal estrogen feedback signal to gonadotropin-releasing hormone 1 (GnRH1) neurons, which is the final common pathway for feedback regulation of reproductive functions. Moreover, estrogen-sensitive neurons are suggested to control sexual behaviors in coordination with reproduction. In mammals, hypothalamic estrogen-sensitive neurons release the peptide kisspeptin and regulate GnRH1 neurons. However, a growing body of evidence in nonmammalian species casts doubt on the regulation of GnRH1 neurons by kisspeptin neurons. As a step toward understanding how estrogen regulates neuronal circuits for reproduction and sex behavior in vertebrates in general, we generated a transgenic (Tg) medaka that expresses enhanced green fluorescent protein (EGFP) specifically in esr1-expressing neurons (esr1 neurons) and analyzed their axonal projections. We found that esr1 neurons in the preoptic area (POA) project to the gnrh1 neurons. We also demonstrated by transcriptome and histological analyses that these esr1 neurons are glutamatergic or γ-aminobutyric acidergic (GABAergic) but not kisspeptinergic. We therefore suggest that glutamatergic and GABAergic esr1 neurons in the POA regulate gnrh1 neurons. This hypothesis is consistent with previous studies in mice that found that glutamatergic and GABAergic transmission is critical for estrogen-dependent changes in GnRH1 neuron firing. Thus, we propose that this neuronal circuit may provide an evolutionarily conserved mechanism for regulation of reproduction. In addition, we showed that telencephalic esr1 neurons project to medulla, which may control sexual behavior. Moreover, we found that some POA-esr1 neurons coexpress progesterone receptors. These neurons may form the neuronal circuits that regulate reproduction and sex behavior in response to the serum estrogen/progesterone. Copyright © 2018 Endocrine Society.

  19. Functional Analysis of Nuclear Estrogen Receptors in Zebrafish Reproduction by Genome Editing Approach.

    PubMed

    Lu, Huijie; Cui, Yong; Jiang, Liwen; Ge, Wei

    2017-07-01

    Estrogens signal through both nuclear and membrane receptors with most reported effects being mediated via the nuclear estrogen receptors (nERs). Although much work has been reported on nERs in the zebrafish, there is a lack of direct genetic evidence for their functional roles and importance in reproduction. To address this issue, we undertook this study to disrupt all three nERs in the zebrafish, namely esr1 (ERα), esr2a (ERβII), and esr2b (ERβI), by the genome-editing technology clustered regularly interspaced short palindromic repeats and its associated nuclease (CRISPR/Cas9). Using this loss-of-function genetic approach, we successfully created three mutant zebrafish lines with each nER knocked out. In addition, we also generated all possible double and triple knockouts of the three nERs. The phenotypes of these mutants in reproduction were analyzed in all single, double, and triple nER knockouts in both females and males. Surprisingly, all three single nER mutant fish lines display normal reproductive development and function in both females and males, suggesting functional redundancy among these nERs. Further analysis of double and triple knockouts showed that nERs, especially Esr2a and Esr2b, were essential for female reproduction, and loss of these two nERs led to an arrest of folliculogenesis at previtellogenic stage II followed by sex reversal from female to male. In addition, the current study also revealed a unique role for Esr2a in follicle cell proliferation and transdifferentiation, follicle growth, and chorion formation. Taken together, this study provides the most comprehensive genetic analysis for differential functions of esr1, esr2a, and esr2b in fish reproduction. Copyright © 2017 Endocrine Society.

  20. Combined chemical and mechanical effects on free radicals in UHMWPE joints during implantation.

    PubMed

    Jahan, M S; Wang, C; Schwartz, G; Davidson, J A

    1991-08-01

    An electron spin resonance (ESR) technique is employed to determine the free radical distribution in the articulating surfaces of retrieved acetabular cups and knee-joint plateaus (retrieved after more than 6 years of implantation). Similar measurements made on samples prepared from cyclically stressed and unstressed cups, and on samples following oxidations in nitric acid and intralipid solutions provided sufficient data to gain more knowledge about the combined chemical and mechanical effects on PE free radicals during implantation. In UHMWPE free radicals are primarily initiated by gamma-ray sterilization; however, during implantation, peroxy (scission type) free radicals are formed and reach a maximum concentration level (equilibrium state) due to oxidation by chemical (hemoglobin and/or synovial fluids) environment of the joints. Subsequently, due to frictional heating and stress in the loading zones, free radical reaction is accelerated and their number is reduced only in those areas. This is consistent with the observations of a temperature rise in acetabular cups during in vitro frictional wear stress tests and in vivo telemetry observations, as reported by others. Compared with the previously reported SEM micrographs the low-free-radical regions are correlated with high-wear areas and the high-free-radical regions with the low-wear areas.

  1. A comparison of free radical formation by quinone antitumour agents in MCF-7 cells and the role of NAD(P)H (quinone-acceptor) oxidoreductase (DT-diaphorase).

    PubMed

    Fisher, G R; Patterson, L H; Gutierrez, P L

    1993-09-01

    Electron paramagnetic resonance (EPR/ESR) spin trapping studies with DMPO revealed that purified rat liver NAD(P)H (quinone-acceptor) oxidoreductase (QAO) mediated hydroxyl radical formation by a diverse range of quinone-based antitumour agents. However, when MCF-7 S9 cell fraction was the source of QAO, EPR studies distinguished four different interactions by these agents and QAO with respect to hydroxyl radical formation: (i) hydroxyl radical formation by diaziquone (AZQ), menadione, 1AQ; 1,5AQ and 1,8AQ was mediated entirely or partially by QAO in MCF-7 S9 fraction; (ii) hydroxyl radical formation by daunorubicin and Adriamycin was not mediated by QAO in MCF-7 S9 fraction; (iii) hydroxyl radical formation by mitomycin C was stimulated in MCF-7 S9 fraction when QAO was inhibited by dicumarol; (iv) no hydroxyl radical formation was detected for 1,4AQ or mitoxantrone in MCF-7 S9 fraction. This study shows that purified rat liver QAO can mediate hydroxyl radical formation by a variety of diverse quinone antitumour agents. However, QAO did not necessarily contribute to hydroxyl radical formation by these agents in MCF-7 S9 fraction and in the case of mitomycin C, QAO played a protective role against hydroxyl radical formation.

  2. ESR investigations on γ-ray irradiated 3-methyl nylon 3

    NASA Astrophysics Data System (ADS)

    Catiker, Efkan; Guven, Olgun; Ozarslan, Ozdemir; Chipara, Mircea

    2008-06-01

    Electron spin resonance spectroscopy investigations on γ irradiated 3-methyl nylon 3 (poly-3-methyl β-alanine) are reported. The resonance spectra (recorded after the irradiation in nitrogen atmosphere has been stopped) have been attributed to the parallel and perpendicular components of a triplet line assigned to the delocalization of the uncoupled electron over an effective nuclear spin 1. It was suggested that this effective spin arises from the fast tunneling/rotation of a proton between two positions. The resonance spectra have been simulated with accuracy by using a simplified spin Hamiltonian and assuming Lorentzian-like resonance line shapes and axial asymmetry of the resonance line due to the trapping of free radicals in randomly oriented crystallites. The time evolution of free radicals in nitrogen atmosphere at room temperature has been analyzed. The decay kinetics of stable free radicals in 3-methyl nylon 3 (under inert atmosphere) has been investigated. It was shown that the radiation-induced radicals in inert atmosphere decay through a unimolecular reaction.

  3. Generation Mechanism of Radical Species by Tyrosine-Tyrosinase Reaction

    PubMed Central

    Tada, Mika; Kohno, Masahiro; Kasai, Shigenobu; Niwano, Yoshimi

    2010-01-01

    Alleviated melanin formation in the skin through inhibition of tyrosine-tyrosinase reaction is one of the major targets of cosmetics for whitening ability. Since melanin has a pivotal role for photoprotection, there are pros and cons of inhibition of melanin formation. This study applying electron spin resonance (ESR)-spin trapping method revealed that •H and •OH are generated through tyrosine-tyrosinase reaction. When deuterium water was used instead of H2O, the signal of 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-H (a spin adduct of DMPO and •H) greatly decreased, whilst DMPO-OH (a spin adduct of DMPO and •OH) did not. Thus, it is suggested that •H was derived from H2O, and •OH through oxidative catalytic process of tyrosine to dopaquinone. Our study suggests that tyrosinase inhibitors might contribute to alleviate the oxidative damage of the skin by inhibiting •OH generation via the enzyme reaction. PMID:20838572

  4. Construction of imaging system for wide-field-range ESR spectra using localized microwave field and its case study of crystal orientation in suspension of copper sulfate pentahydrate (CuSO4 . 5H2O).

    PubMed

    Tani, Atsushi; Ueno, Takehiro; Yamanaka, Chihiro; Katsura, Makoto; Ikeya, Motoji

    2005-02-01

    A scanning electron spin resonance (ESR) microscope using a localized microwave field was redesigned to measure ESR spectra from 0 to 400 mT using electromagnets. Divalent copper ion (Cu2+) in copper sulfate pentahydrate (CuSO4 . 5H2O) was imaged, after the powdered samples were cemented in silicone rubber under a magnetic field. The ratio of the two signal intensities at g=2.27 and 2.08 clearly indicates the orientation of the particles. This method can be used for mapping the local magnetic field and its direction.

  5. Gper and ESRs are expressed in rat round spermatids and mediate oestrogen-dependent rapid pathways modulating expression of cyclin B1 and Bax.

    PubMed

    Chimento, A; Sirianni, R; Zolea, F; Bois, C; Delalande, C; Andò, S; Maggiolini, M; Aquila, S; Carreau, S; Pezzi, V

    2011-10-01

    Spermatogenesis is a precisely controlled and timed process, comprising mitotic divisions of spermatogonia, meiotic divisions of spermatocytes, maturation and differentiation of haploid spermatids giving rise to spermatozoa. It is well known that the maintenance of spermatogenesis is controlled by gonadotrophins and testosterone, the effects of which are modulated by a complex network of locally produced factors, including oestrogens. However, it remains uncertain whether oestrogens are able to activate rapid signalling pathways directly in male germ cells. Classically, oestrogens act by binding to oestrogen receptors (ESRs) 1 and 2. Recently, it has been demonstrated that rapid oestrogen action can also be mediated by the G-protein-coupled oestrogen receptor 1 (Gper). The aim of the present study was to investigate ESRs and Gper expression in primary cultures of adult rat round spermatids (RS) and define if oestradiol (E2) is able to activate, through these receptors, pathways involved in the regulation of genes controlling rat RS apoptosis and/or maturation. In this study, we demonstrated that rat RS express ESR1, ESR2 and Gper. Short-time treatment of RS with E2, the selective Gper agonist G1 and the selective ESR1 and ERβ agonists, 4,4',4"-(4-propyl-[1H]pyrazole-1,3,5-triyl) trisphenol (PPT) and 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN), respectively, determined activation of Extra-cellular signal-regulated kinase (ERK1/2) through the involvement of epidermal growth factor receptor transactivation. In addition, we investigated the effects of ESRs and Gper pathway activation on factors involved in RS maturation. Expression of cyclin B1 mRNA was downregulated by E2, G1 and PPT, but not by DPN. A concomitant and inverse regulation of the pro-apoptotic factor Bax mRNA expression was observed in the same conditions, with DPN being the only one determining an increase in this factor expression. Collectively, these data demonstrate that E2 activates, through ESRs and Gper, pathways involved in the regulation of genes controlling rat RS apoptosis and differentiation such as cyclin B1 and Bax. © 2010 The Authors. International Journal of Andrology © 2011 European Academy of Andrology.

  6. Reaction rates of α-tocopheroxyl radicals confined in micelles and in human plasma lipoproteins.

    PubMed

    Vanzani, Paola; Rigo, Adelio; Zennaro, Lucio; Di Paolo, Maria Luisa; Scarpa, Marina; Rossetto, Monica

    2014-08-01

    α-Tocopherol, the main component of vitamin E, traps highly reactive radicals which otherwise might react with lipids present in plasmatic lipoproteins or in cell membranes. The α-tocopheroxyl radicals generated by this process have also a pro-oxidant action which is contrasted by their reaction with ascorbate or by bimolecular self-reaction (dismutation). The kinetics of this bimolecular self-reaction were explored in solution such as ethanol, and in heterogeneous systems such as deoxycholic acid micelles and in human plasma. According to ESR measurements, the kinetic rate constant (2k(d)) of the bimolecular self-reaction of α-tocopheroxyl radicals in micelles and in human plasma was calculated to be of the order of 10(5) M(-1) s(-1) at 37 °C. This value was obtained considering that the reactive radicals are confined into the micellar pseudophase and is one to two orders of magnitude higher than the value we found in homogeneous phase. The physiological significance of this high value is discussed considering the competition between bimolecular self-reaction and the α-tocopheroxyl radical recycling by ascorbate. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Spectroscopic Evidence for Covalent Binding of Sulfadiazine to Natural Soils via 1,4-nucleophilic addition (Michael Type Addition) studied by Spin Labeling ESR

    NASA Astrophysics Data System (ADS)

    Aleksandrova, Olga

    2015-04-01

    Among different classes of veterinary pharmaceuticals, Sulfadiazine (SDZ) is widely used in animal husbandry. Its residues were detected in different environmental compartments. However, soil is a hot spot for SDZ as it receives a large portion of excreted compounds through the application of manure during soil fertilization. Ample studies on the fate of SDZ in soils showed that a large portion forms nonextractable residues (NER) along with transformation products and a low mineralization (Mueller et al., 2013). A common observation was an initially fast formation of NER up to 10% of the applied amount promptly after the application of SDZ to soil, and this portion increased up to 50% within a few days (Mueller et al., 2013; Nowak et al., 2011). A common finding for SDZ, as for other sulfonamides, was biphasic kinetics of the formation of NER, which was attributed to the occurrence of two reaction processes: a rapid, often reversible process and a slower, irreversible process (Weber et al., 1996). A single-phase reaction process was also established under anaerobic treatment (Gulkowska et al., 2014). A major focus of this work is to elucidate a reaction mechanism of covalent binding of SDZ to soil that is currently required to estimate a risk of NER formed by SDZ in soils for human health. Taking into account a key role of the amine functional groups of SDZ on its reactivity in soil, nitroxide radicals with the sewed aromatic or aliphatic amines labeled soil samples and then, were investigated by means of ESR spectroscopy. 2,5,5-Trimethyl-2-(3-aminophenyl)pyrrolidin-1-yloxy and 4-amino-2,2,6,6-Tetramethylpiperidin-1-oxyl modeled decomposition products of SDZ with the aromatic and aliphatic amines, respectively. The application of the defined combination of both spin labels (SL) to different soils well simulated a change of a paramagnetic signal of soil organic radicals interacted with SDZ. After their application to soil, SL were found in soil sites characterized with different polarity. As shown by the spin labeling ESR experiment, molecules modeling SDZ were promptly bound to non-hydrolysable network of soil organic matter only via the aromatic amines that was accompanied by a prompt enlargement of humic particles binding aromatic amines, whereas binding of decomposition products of SDZ to humic acids of soil via the aliphatic amines was not observable. The ESR spectra obviously showed a single-phase process of covalent binding of the aromatic amines. Repeated washouts of labeled soil samples using distil water and ultrafiltration through the membrane of 5000 MWCO PES confirmed irreversible binding of the aromatic amines, and showed that via the aliphatic amines, binding of SDZ or decomposition products of SDZ to soil might also occur but reversibly and only to small soil molecules, which don't enter into the composition of non-hydrolysable part of soil organic matter. SL ESR experiments of different soils at the presence of Laccase highlighted that covalent binding of the aromatic amines to humic particles occurred in the specific hydrophobic areas of soil found as depleted in oxygen. All measured data evidenced that first, SDZ might be decomposed that allowed for measuring the same change of a paramagnetic signal of soil organic matter influenced by both aromatic and aliphatic amines as in the experiment of the interaction of soil with SDZ. Second, a decomposition product of SDZ with the aromatic amine might be bound to non-hydrolysable parts of soil organic matter under specific anaerobic conditions only via 1,4 - nucleophilic addition, Michael-type addition. Gulkowska, A., Thalmann, B., D., Hollender, J., & Krauss, M. (2014). Chemosphere, 107, 366 - 372. Müller, T., Rosendahl, I., Focks, A., Siemens, J., Klasmeier, J., & Matthies. (2013). Environmental Pollution, 172,180 - 185. Nowak, K.M., Miltner, A., Gehre, M., Schaeffer, A., & Kaestner, M. (2011). Environmental Science & Technology 45, 999 - 1006. Weber, E.J., Spidle, D.L., & Thron, K.A. (1996). Environmental Science & Technology, 30 (9), 2755-2763.

  8. Kr-86 Ion-Beam Irradiation of Hydrated DNA: Free Radical and Unaltered Base Yields

    PubMed Central

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T.; Bull, Arthur W.; Sevilla, Michael D.

    2012-01-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields. PMID:23106211

  9. Kr-86 ion-beam irradiation of hydrated DNA: free radical and unaltered base yields.

    PubMed

    Becker, David; Adhikary, Amitava; Tetteh, Smedley T; Bull, Arthur W; Sevilla, Michael D

    2012-12-01

    This work reports an ESR and product analysis investigation of Kr-86 ion-beam irradiation of hydrated DNA at 77 K. The irradiation results in the formation and trapping of both base radicals and sugar phosphate radicals (DNA backbone radicals). The absolute yields (G, μmol/J) of the base radicals are smaller than the yields found in similarly prepared γ-irradiated DNA samples, and the relative yields of backbone radicals relative to base radicals are much higher than that found in γ-irradiated samples. From these results, we have elaborated our radiation chemical model of the track structure for ion-beam irradiated DNA as it applies to krypton ion-beams. The base radicals, which are trapped as ion radicals or reversibly protonated or deprotonated ion radicals, are formed almost entirely in the track penumbra, a region in which radiation chemical effects are similar to those found in γ-irradiated samples. By comparing the yields of base radicals in ion-beam samples to the yields of the same radicals in γ-irradiated samples, the partition of energy between the low-LET region (penumbra) and the core is experimentally determined. The neutral sugar and other backbone radicals, which are not as susceptible to recombination as are ion radicals, are formed largely in the track core. The backbone radicals show a linear dose response up to very high doses. Unaltered base release yields in Kr-86 irradiated hydrated DNA are equal to sugar radical yields within experimental error limits, consistent with radiation-chemical processes in which all base release originates with sugar radicals. Two phosphorus-centered radicals from fragmentation of the DNA backbone are found in low yields.

  10. Kinetics and characterization of radiation-induced grafting of styrene on fluoropolymers

    NASA Astrophysics Data System (ADS)

    Guilmeau, I.; Esnouf, S.; Betz, N.; Le Moël, A.

    1997-08-01

    Grafting of styrene solution onto poly(ethylene-co-tetrafluoroethylene) (ETFE) was carried out by the pre-irradiation method. ETFE films were irradiated by 1.5 MeV electron beams in air. The influence of grafting temperature (50 to 80°C) has been investigated. It was found that the saturation grafting yield and the initial rate follow an Arrhenius law. The volume grafting yields were measured by FTIR spectroscopy in transmission and by weighing and the 'surface' grafting yields by FTIR-ATR. The results showed that grafting reaction is not monomer diffusion controlled in 30 μm film, nevertheless heterogeneities are revealed. By in-situ ESR, the decay of peroxy radicals was recorded under various heating and grafting conditions. These experiments suggest that the peroxy radicals react rapidly with monomer, but do not initiate the grafting process. The propagating radicals were not detectable, which may indicate that polystyrene chains are very long.

  11. Stable polymeric carbon radicals. Part 2: Attempts at the preparation of polyradicals of the triphenylmethyl type linked by P-phenylene units

    NASA Technical Reports Server (NTRS)

    Braun, D.; Lehmann, P.

    1985-01-01

    As starting materials for the preparation of polyradicals of triphenylmethyl type linked by p-phenylene units bis(4-iodophenylmethane) and bis(4-iodo-2,5-dimethyl-phenylmethane) were synthesized by a Sandmeyer reaction from the corresponding diamino compounds and subsequently transformed into the corresponding polymeric hydrocarbons 6a and 6b by an Ullmann condensation. In the following step 6a and 6b were brominated at the tert. carbon atom by means of N-bromosuccinimide. The reaction of the resulting poly (4,4'-biphenylylen-alpha-bromobenzylidene)s (7a and 7b) with mercury afforded the corresponding radicals, the ESR spectra of which were recorded. From the methyl substituted polymer 7b poly (2,2'5,5-tetramethyl-4,4'-bi-phenylylen)phenylmethylidyne was formed, whereas the unsubstituted product 7a was transformed into a para-quinoide polymer with radical properties.

  12. Theoretical study of hyperfine coupling constants and electron spin g factors for X2Σ diatomics from Groups 1 and 2

    NASA Astrophysics Data System (ADS)

    Bruna, Pablo J.; Grein, Friedrich

    The ESR parameters of the cations Be 2 + , Mg 2 + , Ca 2 + , BeMg + , BeCa + , MgCa + and the mixed radicals ZBe, ZMg, ZCa (Z = Li, Na, K), all having a X 2 Σu + (1 σg 2 1 σu )/X 2 Sigma + (1 σ2 2 σ) ground state, have been studied theoretically. The A iso and A dip constants have been calculated with UHF, CISD, MP2, B3LYP, PW91PW91 wavefunctions, and 6-311+G(2df) basis sets. The electron spin g factors (magnetic moment μs) have been evaluated from correlated (MRDCI) wavefunctions, using a Hamiltonian based on Breit-Pauli theory with perturbation expansions up to second order, and 6-311+ G(2d) basis sets. As expected for s-rich radicals, the hyperfine spectra are governed by the A iso terms. Both Δg|| and Δg Υ̂values are negative, but Δg|| lies close to zero. For Δg Υ̂, the coupling with 1 2 Π(u) dominates the sum-over-states expansions. Although the singly occupied MOs (SOMO) are mostly of s character, the | Δg Υ̂| are relatively large, up to 5200 ppm for cationic, and up to 7850 ppm for neutral radicals. These large values are caused by low excitation energies and high magnetic transition moments, the latter due to the fact that the σ*( s - s ) SOMO has the same nodal properties as a p σorbital. Of the radicals considered here, an ESR spectrum is available only for Mg2+. Our theoretical A iso of-287 MHz reproduces well the matrix result (-291 MHz). Calculated values of-10 ppm for Deltag|| and of-1280 ppm for Deltag Υ̂give an average < Δg> =-860 ppm that lies within the experimental range of-600( ±300) ppm in Ne, and of-1300( ±500) ppm in Ar matrices.

  13. Inorganic Halogen Oxidizer Research

    DTIC Science & Technology

    1975-02-26

    K. 0. Christe and C. J. Schack, Advances Inorg. Chem. Radiochem. 15. "The NF * Radical Cation. Esr Studies of Radiation Effects in NF„+ Salts...and 25°) in a wide variety of polar and nonpolar solvents, such as aqueous solutions, alcohols, ketones , esters, ethers , and aromatic and halogenated... Studies of Radiation Effects in NF, Salts = 4 S. P. Mishra, M. C R. Symons, K. 0. Christe, R. D. Wilson and R. I. Wagner Received. . . August .9

  14. Synthesis and spectral properties of polymethine-cyanine dye-nitroxide radical hybrid compounds for use as fluorescence probes to monitor reducing species and radicals

    NASA Astrophysics Data System (ADS)

    Sato, Shingo; Tsunoda, Minoru; Suzuki, Minoru; Kutsuna, Masahiro; Takido-uchi, Kiyomi; Shindo, Mitsuru; Mizuguchi, Hitoshi; Obara, Heitaro; Ohya, Hiroaki

    2009-01-01

    Various hybrid compounds comprised of two types of nitroxide radicals and either a pentamethine (Cy5) or trimethine cyanine (Cy3) were synthesized. The nitroxide radicals were linked either via an ester-bond to one or two N-alkyl carboxyl-terminated groups of Cy5, or via two amido-bonds (aminocarbonyl or carbonylamino group) to the 5-position of the indolenine moieties of Cy5 and Cy3. Changes in fluorescence and ESR intensities of the hybrid compounds were measured before and after addition of Na ascorbate in PBS (pH 7.0) to reduce the radicals. Among the hybrid compounds synthesized, those that linked the nitroxide radicals via an aminocarbonyl residue at the 5-position of the indolenine moieties on Cy5 and Cy3 exhibited a 1.8- and 5.1-fold increase in fluorescence intensity with the reduction of the nitroxide segment by the addition of Na ascorbate, respectively. In contrast, fluorescence intensity was not enhanced in the other hybrid compounds. Thus, the hybrid compounds which exhibited an increase in fluorescent intensity with radical reduction can be used in the quantitative measurement of reducing species such as Fe 2+ and ascorbic acid, and hydroxyl radicals. Because these hybrid compounds have the advantage of fluorescing at longer wavelengths—661 (Cy5) or 568 (Cy3) nm, respectively, they can be used to measure radical-reducing species or radicals either in solution or in vivo.

  15. The regulation of oxytocin and oxytocin receptor in human placenta according to gestational age.

    PubMed

    Kim, Seung-Chul; Lee, Jae-Eon; Kang, Seong Soo; Yang, Hoe-Saeng; Kim, Sun Suk; An, Beum-Soo

    2017-10-01

    Oxytocin (OXT) is a peptide hormone that plays a central role in the regulation of parturition and lactation. OXT signaling is mediated by OXT receptor (OXTR), which shows species- and tissue-specific expressions and gene regulation. In the present study, we examined the synthesis of OXT and OXTR in human placenta tissue according to gestational age. A total of 48 placentas were divided into early preterm, late preterm and term groups depending on gestational age, and expression of OXT and OXTR was evaluated. First, OXT and OXTR mRNA and protein were detected in normal placenta tissue via Q-PCR, Dot-blot and Western blot assay. Both OXT and OXTR levels in normal placenta increased gradually in the late stage of pregnancy, suggesting that local OXT may play a critical role in the function of the placenta. To determine the regulatory mechanism of OXT, placental BeWo cells were administrated estrogen (E2) or progesterone (P 4 ), and expression of OXT and OXTR was tested. The mRNA and protein levels of OXT and OXTR were upregulated by E2 but blocked by co-treatment with P 4 In order to confirm the estrogen receptor (ESR)-mediated signaling, we administrated ESR antagonists together with E2 to BeWo cells. As a result, both OXT and OXTR were significantly altered by ESR1 antagonist (MPP) while moderately regulated by ESR2 antagonist (PHTPP). These results suggest that OXT and OXTR are controlled mainly by E2 in the placenta via ESR1 and thus may play physiological functions in the human placenta during the late stage of pregnancy. © 2017 Society for Endocrinology.

  16. Lunar Dust and Lunar Simulant Activation and Monitoring

    NASA Technical Reports Server (NTRS)

    Wallace, W. T.; Hammond, D. K.; Jeevarajan, A. S.

    2008-01-01

    Prior to returning to the moon, understanding the effects of lunar dust on both human physiology and mechanical equipment is a pressing concern, as problems related to lunar dust during the Apollo missions have been well documented (J.R. Gaier, The Effects of Lunar Dust on EVA Systems During the Apollo Missions. 2005, NASA-Glenn Research Center. p. 65). While efforts were made to remove the dust before reentering the lunar module, via brushing of the suits or vacuuming, a significant amount of dust was returned to the spacecraft, causing various problems. For instance, astronaut Harrison Schmitt complained of hay fever effects caused by the dust, and the abrasive nature of the material was found to cause problems with various joints and seals of the spacecraft and suits. It is clear that, in order to avoid potential health and performance problems while on the lunar surface, the reactive properties of lunar dust must be quenched. It is likely that soil on the lunar surface is in an activated form, i.e. capable of producing oxygen-based radicals in a humidified air environment, due to constant exposure to meteorite impacts, UV radiation, and elements of the solar wind. An activated silica surface serves as a good example. An oxygen-based radical species arises from the breaking of Si-OSi bonds. This system is comparable to that expected for the lunar dust system due to the large amounts of agglutinic glass and silicate vapor deposits present in lunar soil. Unfortunately, exposure to the Earth s atmosphere has passivated the active species on lunar dust, leading to efforts to reactivate the dust in order to understand the true effects that will be experienced by astronauts and equipment on the moon. Electron spin resonance (ESR) spectroscopy is commonly used for the study of radical species, and has been used previously to study silicon- and oxygen-based radicals, as well as the hydroxyl radicals produced by these species in solution (V. Vallyathan, et al., Am. Rev. Respir. Dis. 138 (1988) 1213-1219). The size and cost of these instruments makes them unattractive for the monitoring of lunar dust activity. A more suitable technique is based on the change in fluorescence of a molecule upon reaction with a hydroxyl radical (or other radical species). Fluorescence instruments are much less costly and bulky than ESR spectrometers, and small fluorescence sensors for space missions have already been developed (F. Gao, et al., J. Biomed. Opt. 10 (2005) 054005). For the current fluorescence studies, the terephthalate molecule has been chosen for monitoring the production of hydroxyl radicals in solution. As shown in Scheme 1, the reaction between the non-fluorescent terephthalate molecule and a hydroxyl radical produces the highly-fluorescent 2-hydroxyterephthalate molecule.

  17. Rapid screening for anthocyanins in cane sugars using ESR spectroscopy.

    PubMed

    Thamaphat, Kheamrutai; Goodman, Bernard A; Limsuwan, Pichet; Smith, Siwaporn Meejoo

    2015-03-15

    Anthocyanin, which is soluble in water and released into sugar steam during extraction, was investigated in this study. The anthocyanin content in refined sugar, plantation white sugar, soft brown sugar and raw sugar was determined using electron spin resonance (ESR) spectroscopy, which was operated at room temperature, and compared with spectra from standard anthocyanin. The ESR spectra of red and violet anthocyanins was predominantly g ≈ 2.0055, which corresponded to an unpaired electron located in the pyrylium ring. Signals for Fe(III) and Mn(II), which naturally occur in plants, were found in raw sugar, soft brown sugar and standard anthocyanin but were absent from refined sugar and plantation white sugar due to the refining process. In addition, the ESR results were correlated with the apparent colour of the sugar, which was determined using the method of the International Commission for Uniform Methods of Sugar Analysis and inductively coupled plasma optical emission spectroscopy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Electron spin resonance investigations of /sup 11/B/sup 12/C, /sup 11/B/sup 13/C, and /sup 10/B/sup 12/C in neon, argon, and krypton matrices at 4 K: Comparison with theoretical results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight L.B. Jr.; Cobranchi, S.T.; Petty, J.T.

    1989-01-15

    The first spectroscopic study of the diatomic radical BC is reported which confirms previous theoretical predictions of a /sup 4/summation/sup -/ electronic ground state. The nuclear hyperfine interactions (A tensors) obtained for /sup 11/B, /sup 10/B, and /sup 13/C from the electron spin resonance (ESR) measurements are compared with extensive ab initio CI calculations. The BC molecule is one of the first examples of a small high spin radical for such an in-depth experimental--theoretical comparison. The electronic structure of BC obtained from an analysis of the nuclear hyperfine interaction (hfi) is compared to that obtained from a Mulliken-type population analysismore » conducted on a CI wave function which yields A/sub iso/ and A/sub dip/ results in good agreement with the observed values. The BC radical was generated by the laser vaporization of a boron--carbon mixture and trapped in neon, argon, and krypton matrices at 4 K for a complete ESR characterization. The magnetic parameters (MHz) obtained for /sup 11/B/sup 13/C in solid neon are: g/sub parallel/ = 2.0015(3); g/sub perpendicular/ = 2.0020(3); D(zfs) = 1701(2); /sup 11/B: chemically bondA/sub parallel/chemically bond = 100(1); chemically bondA/sub perpendicular/chemically bond = 79(1); /sup 13/C: chemically bondA/sub parallel/chemically bond = 5(2) and chemically bondA/sub perpendicular/chemically bond = 15(1). Based on comparison with the theoretical results, the most likely choice of signs is that all A values are positive.« less

  19. Electron-transfer and acid-base properties of a two-electron oxidized form of quaterpyrrole that acts as both an electron donor and an acceptor.

    PubMed

    Zhang, Min; E, Wenbo; Ohkubo, Kei; Sanchez-Garcia, David; Yoon, Dae-Wi; Sessler, Jonathan L; Fukuzumi, Shunichi; Kadish, Karl M

    2008-02-21

    Electron-transfer interconversion between the four-electron oxidized form of a quaterpyrrole (abbreviated as P4 for four pyrroles) and the two-electron oxidized form (P4H2) as well as between P4H2 and its fully reduced form (P4H4) bearing analogous substituents in the alpha- and beta-pyrrolic positions was studied by means of cyclic voltammetry and UV-visible spectroelectrochemistry combined with ESR and laser flash photolysis measurements. The two-electron oxidized form, P4H2, acts as both an electron donor and an electron acceptor. The radical cation (P4H2*+) and radical anion (P4H2*-) are both produced by photoinduced electron transfer from dimeric 1-benzyl-1,4-dihydronicotinamide to P4H2, whereas the cation radical form of the compound is also produced by electron-transfer oxidation of P4H2 with [Ru(bpy)3]3+. The ESR spectra of P4H2*+ and P4H2*- were recorded at low temperature and exhibit spin delocalization over all four pyrrole units. Thus, the two-electron oxidized form of the quaterpyrrole (P4H2) displays redox and electronic features analogous to those seen in the case of porphyrins and may be considered as a simple, open-chain model of this well-studied tetrapyrrolic macrocycle. The dynamics of deprotonation from P4H2*+ and disproportionation of P4H2 were examined by laser flash photolysis measurements of photoinduced electron-transfer oxidation and reduction of P4H2, respectively.

  20. Origin and production process of eolian dust emitted from the Tarim Basin and their evolution through the Plio-Pleostocene based on ESR signal intensity and crystallinity of quartz

    NASA Astrophysics Data System (ADS)

    Tada, R.; Isozaki, Y.; Zheng, H.; Sun, Y.; Toyoda, S.; Hasegawa, H.; Yoshida, T.

    2010-12-01

    Tarim Basin (or Taklimakan Desert) is regarded as one of the major source area of eolian dust in the northern hemisphere. Although a previous study hypothesized that the detrital materials in the Tarim Basin were produced by glacial activity in the surrounding mountains, delivered by rivers, and homogenized by wind within the basin, not enough evidence has been presented to support this hypothesis. Here, we conducted provenance study of eolian dust in the Tarim Basin by examining fine silt fraction (< 20 μm) of the sediments collected from all over the Tarim Basin. We focused on quartz and measured its electron spin resonance [ESR] signal intensity and Crystallinity Index [CI] in the fine (<16μm) and coarse (> 64μm) fractions of various types of sediments including river sediments derived from the Kunlun and Tian Shan Mountains, dry lake sediments in the eastern part of the basin, and mountain loess on the northern slope of the Kunlun Mountains, to examine the process to produce eolian dust within the Tarim Basin. The result revealed that the coarse fractions of river sediments were derived from bedrocks exposed in the drainage area of each river, and that quartz in coarse fraction of the river sediment has ESR signal intensity and CI values unique to each river. ESR signal intensity and CI of quartz in fine fractions of river sediments discharged from the Tian Shan Mountains, which are located windward of the basin, and those discharged from mountainous rivers show values similar to the values for coarse fractions, suggesting that their sources are the same as those for the coarse fractions. On the other hand, ESR signal intensity and CI of quartz in fine fractions of river sediments discharged from the Kunlun Mountains show values different from those for the coarse fractions, and converged to the values close to the average values for the fine fractions of river sediments in the basin and also for the mountain loess, the latter represents the eolian dust emitted from the Tarim Basin. The converged values are considered as resulted from homogenization by the repeated recycling process within the basin. Analysis of the Quaternary mountain loess and Plio-Pleistocene loess-like siltstone intercalated in the alluvial sediments delivered from the Kunlun Mountains revealed that eolian dust source and production process essentially the same as the present has been established at ca. 3.5 Ma.

  1. Relationship between adiponectin, leptin, IGF-1 and total lipid peroxides plasma concentrations in patients with systemic sclerosis: possible role in disease development.

    PubMed

    Winsz-Szczotka, Katarzyna; Kuźnik-Trocha, Kornelia; Komosińska-Vassev, Katarzyna; Kucharz, Eugeniusz; Kotulska, Anna; Olczyk, Krystyna

    2016-07-01

    The relationship between adiponectin, leptin, insulin-like growth factor-1 (IGF-1) and total lipid peroxide (TLP) concentrations, and its possible role in the development of diffuse cutaneous systemic sclerosis (dcSSc), were evaluated in this study. Plasma adipokines and IGF-1 levels were determined using the enzyme-linked immunosorbent assay method, whereas TLP levels were determined using a photometric test, in 36 dcSSc patients and 40 healthy controls matched by age, sex and body mass index (BMI). Plasma levels of adipokines were significantly lowered, while TLP and IGF-1 were increased in dcSSc patients compared to controls. Adiponectin correlated significantly with leptin (r = 0.44), TLP (r = -0.54), CRP (r = -0.47), erythrocyte sedimentation rate (ESR) (r = -0.40) and duration of disease (r = -0.44). A significant relationship was found between leptinemia and IGF-1 (r = -0.40), TLP (r = 0.44), duration of disease (r = -0.38) and BMI (r = 0.65). TLP correlated with IGF-1 (r = -0.43), C-reactive protein (r = 0.47), ESR (r = 0.49) and duration of disease (r = 0.46), while IGF-1 correlated with ESR (r = -0.40). Adipose tissue may play a complex role in the development of dcSSc, affecting both the metabolic state of the organism, as well as free radical-induced connective tissue degradation. Although, leptin seems to exert a pro-oxidative effect and both adiponectin and IGF-1 appear to prevent free radical damage, confirmation of the above effects requires further research. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  2. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C3N4 nanosheets under visible light irradiation.

    PubMed

    Liu, Bochuan; Qiao, Meng; Wang, Yanbin; Wang, Lijuan; Gong, Yan; Guo, Tao; Zhao, Xu

    2017-12-01

    The enhancement of g-C 3 N 4 photocatalytic degradation of bisphenol A (BPA) via persulfate (PS) addition was investigated under visible light irradiation. The effects of various parameters on the BPA degradation were investigated, such as catalysts dosage, PS concentrations, initial pH value and BPA concentration. The results showed that g-C 3 N 4 nanosheets exhibited superior photocatalytic activity toward BPA degradation as compared with bulk g-C 3 N 4 . The addition of PS can further improve the g-C 3 N 4 photocatalytic performance for BPA degradation. With 5 mM PS, the degradation rate of BPA was increased from 72.5% to 100% at 90 min, and the corresponding first-order kinetic constants were increased from 0.0028 to 0.0140 min -1 . The removal efficiency of BPA increased with the decrease of solution pH value. The active radicals in the reaction system were tested by electron spin resonance (ESR) and radicals quenching experiments. Instead of persulfate radicals' oxidation, it was proposed that the main active radicals for BPA degradation were superoxide radicals and the photogenerated holes. Copyright © 2017. Published by Elsevier Ltd.

  3. Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines.

    PubMed

    Okayasu, H; Ishihara, M; Satoh, K; Sakagami, H

    2001-01-01

    Vitamin K1, K2 and K3 were compared for their cytotoxic activity, radical generation and O2- scavenging activity. Among these compounds, vitamin K3 showed the highest cytotoxic activity against human oral tumor cell lines (HSC-2, HSG), human promyelocytic leukemic cell line (HL-60) and human gingival fibroblast (HGF). Vitamin K3 induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 or HSG cells. The cytotoxic activity of vitamins K2 and K1 was one and two orders lower, respectively, than K3. Vitamin K2, but not vitamin K3, showed tumor-specific cytotoxic action. ESR spectroscopy showed that only vitamin K3 produced radical(s) under alkaline condition and most potently enhanced the radical intensity of sodium ascorbate and scavenged O2- (generated by hypoxanthine-xanthine oxidase reaction system); vitamin K2 was much less active whereas vitamin K1 was inactive. These data suggest that the cytotoxic activity of vitamin K3 is generated by radical-mediated oxidation mechanism and that this vitamin has two opposing actions (that is, antioxidant and prooxidant), depending on the experimental conditions.

  4. [Effects of vitamin E and selenium on the metabolism of free radicals in broilers].

    PubMed

    Xu, Jian-Xiong; Wang, Jing; Wang, Tian

    2007-08-01

    Taking 200 healthy broilers at 14 d of age as test materials, the free radicals in their blood and tissues were detected by electron spin resonance (ESR) and biochemical methods, aimed to investigate the effects of vitamin E (V(E)) and selenium (Se) on the metabolism of different free radicals and their dynamic changes in the broilers. The results showed that the content of NO free radicals in broilers tissues decreased with increasing supplementing level of V(E), while high supplementation of Se tended to induce the production of NO free radicals. High supplementation of V(E) and Se in feeds improved the GSH-Px and SOD activities in broilers serum and liver significantly. With the extension of experimental period, the SOD activity in tissues decreased, while GSH-PX activity increased gradually, implying that the deficiency of V(E) and/or Se might induce the overproduction of O2*- and H2O2 free radicals. H2O2 free radicals might be produced largely at early stage of V(E) and Se deficiency and declined then, while the over-production of O2*- free radicals could maintain for a long time. The deficiency of V(E) and/or Se could improve the MDA content significantly, and Se deficiency had higher effects than V(E) deficiency. There were synergic effects in the metabolism of NO, O2 and H2O2 free radicals.

  5. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.

    PubMed

    Shukla, Lata I; Pazdro, Robert; Huang, James; DeVreugd, Christopher; Becker, David; Sevilla, Michael D

    2004-05-01

    In this investigation of radical formation and reaction in gamma- irradiated DNA and model compounds, we report the conversion of the guanine cation radical (one-electron oxidized guanine, G(.+)) to the C1' sugar radical and another sugar radical at the C3' or C4' position (designated C3'(.)/C4'(.)) by visible and UV photolysis. Electron spin resonance (ESR) spectroscopic investigations were performed on salmon testes DNA as well as 5'-dGMP, 3'-dGMP, 2'-deoxyguanosine and other nucleosides/nucleotides as model systems. DNA samples (25- 150 mg/ml D(2)O) were prepared with Tl(3+) or Fe(CN)(3-)(6) as electron scavengers. Upon gamma irradiation of such samples at 77 K, the electron-gain path in the DNA is strongly suppressed and predominantly G(.+) is found; after UV or visible photolysis, the fraction of the C1' sugar radical increases with a concomitant reduction in the fraction of G(.+). In model systems, 3'- dGMP(+.) and 5'-dGMP(+.) were produced by attack of Cl(.-)(2) on the parent nucleotide in 7 M LiCl glass. Subsequent visible photolysis of the 3'-dGMP(+.) (77 K) results predominantly in formation of C1'(.) whereas photolysis of 5'-dGMP(+.) results predominantly in formation of C3'(.)/C4'(.). We propose that sugar radical formation is a result of delocalization of the hole in the electronically excited base cation radical into the sugar ring, followed by deprotonation at specific sites on the sugar.

  6. In vitro preparation and assessment of radical reducing peptide from Octopus aegina using digestive proteases.

    PubMed

    Sudhakar, Sekar; Nazeer, Rasool Abdul

    2017-07-01

    Antioxidant peptides protect biological macromolecules against radical damages. The use of these peptides was evaluated using free radicals scavenging assays [2,2-diphenyl-1 picrylhydrazyl (DPPH) and hydroxyl] with the help of UV-visible and electron spin resonance (ESR) spectroscopy methods. The Octopus aegina mantle protein were tested upon hydrolysis using gastrointestinal enzymes up to 12 h, where pepsin hydrolysate exhibited superior properties (DPPH: 44.39±0.67% and hydroxyl: 38.84±1.07%) compared with trypsin and α-chymotrypsin. Consequently, the antioxidant activity of the purified hydrolysate increased on a successive purification, and the peptide sequence was determined to be 368.9 Da with Gly-Glu-Tyr amino acids. Tripeptide exerted free radical scavenging efficiency in DNA damage, lipid peroxidation and cellular destruction (MCF7 cells) under stress condition. The results obtained with octopus antioxidant peptide suggested its role as an adjunct in food and pharmaceutical industries. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  7. Antioxidant Activity and Total Phenolic and Flavonoid Contents of Hieracium pilosella L. Extracts

    PubMed Central

    Stanojević, Ljiljana; Stanković, Mihajlo; Nikolić, Vesna; Nikolić, Ljubiša; Ristić, Dušica; Čanadanovic-Brunet, Jasna; Tumbas, Vesna

    2009-01-01

    The antioxidant activity of water, ethanol and methanol Hieracium pilosella L. extracts is reported. The antioxidative activity was tested by spectrophotometrically measuring their ability to scavenge a stable DPPH• free radical and a reactive hydroxyl radical trapped by DMPO during the Fenton reaction, using the ESR spectroscopy. Total phenolic content and total flavonoid content were evaluated according to the Folin-Ciocalteu procedure, and a colorimetric method, respectively. A HPLC method was used for identification of some phenolic compounds (chlorogenic acid, apigenin-7-O-glucoside and umbelliferone). The antioxidant activity of the investigated extracts slightly differs depending on the solvent used. The concentration of 0.30 mg/mL of water, ethanol and methanol extract is less effective in scavenging hydroxyl radicals (56.35, 58.73 and 54.35%, respectively) in comparison with the DPPH• radical scavenging activity (around 95% for all extracts). The high contents of total phenolic compounds (239.59–244.16 mg GAE/g of dry extract) and total flavonoids (79.13–82.18 mg RE/g of dry extract) indicated that these compounds contribute to the antioxidative activity. PMID:22346723

  8. Association of the Estrogen Receptor 1 (ESR1) Gene with Body Height in Adult Males from Two Swedish Population Cohorts

    PubMed Central

    Dahlgren, Andreas; Lundmark, Per; Axelsson, Tomas; Lind, Lars; Syvänen, Ann-Christine

    2008-01-01

    Human body height is a complex genetic trait with high heritability. We performed an association study of 17 candidate genes for height in the Uppsala Longitudinal Study of Adult Men (ULSAM) that consists of 1153 elderly men of age 70 born in the central region of Sweden. First we genotyped a panel of 137 single nucleotide polymorphism (SNPs) evenly distributed across the candidate genes in the ULSAM cohort. We identified 4 SNPs in the estrogen receptor gene (ESR1) on chromosome 6q25.1 with suggestive signals of association (p<0.05) with standing body height. This result was followed up by genotyping the same 25 SNPs in the ESR1 gene as in ULSAM in a second population cohort, the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort that consist of 507 males and 509 females of age 70 from the same geographical region as ULSAM. One SNP, rs2179922 located in intron 4 of ESR1 showed and association signal (p = 0.0056) in the male samples from the PIVUS cohort. Homozygote carriers of the G-allele of the SNP rs2179922 were on average 0.90 cm taller than individuals with the two other genotypes at this SNP in the ULSAM cohort and 2.3 cm taller in the PIVUS cohort. No association was observed for the females in the PIVUS cohort. PMID:18350145

  9. Prediagnostic Smoking Is Associated with Binary and Quantitative Measures of ER Protein and ESR1 mRNA Expression in Breast Tumors.

    PubMed

    Butler, Eboneé N; Bensen, Jeannette T; Chen, Mengjie; Conway, Kathleen; Richardson, David B; Sun, Xuezheng; Geradts, Joseph; Olshan, Andrew F; Troester, Melissa A

    2018-01-01

    Background: Smoking is a possible risk factor for breast cancer and has been linked to increased risk of estrogen receptor-positive (ER + ) disease in some epidemiologic studies. It is unknown whether smoking has quantitative effects on ER expression. Methods: We examined relationships between smoking and ER expression from tumors of 1,888 women diagnosed with invasive breast cancer from a population-based study in North Carolina. ER expression was characterized using binary (±) and continuous measures for ER protein, ESR1 mRNA, and a multigene luminal score (LS) that serves as a measure of estrogen signaling in breast tumors. We used logistic and linear regression models to estimate temporal and dose-dependent associations between smoking and ER measures. Results: The odds of ER + , ESR1 + , and LS + tumors among current smokers (at the time of diagnosis), those who smoked 20 or more years, and those who smoked within 5 years of diagnosis were nearly double those of nonsmokers. Quantitative levels of ESR1 were highest among current smokers compared with never smokers overall [mean (log 2 ) = 9.2 vs. 8.7, P < 0.05] and among ER + cases; however, we did not observe associations between smoking measures and continuous ER protein expression. Conclusions: In relationship to breast cancer diagnosis, recent smoking was associated with higher odds of the ER + , ESR1 + , and LS + subtype. Current smoking was associated with elevated ESR1 mRNA levels and an elevated LS, but not with altered ER protein. Impact: A multigene LS and single-gene ESR1 mRNA may capture tumor changes associated with smoking. Cancer Epidemiol Biomarkers Prev; 27(1); 67-74. ©2017 AACR . ©2017 American Association for Cancer Research.

  10. Efficacy of puffer fish (Takifugu rubripes) sauce in reducing hydroxyl radical damage to DNA assessed using the apurinic/apyrimidinic site method.

    PubMed

    Harada, Kazuki; Makino, Yoshio; Yamauchi, Tomio; Fukuda, Nami; Tamaru, Miki; Okubo, Yasue; Maeda, Toshimichi; Fukuda, Yutaka; Shiba, Tsuneo

    2007-09-01

    Apurinic/apyrimidinic (AP) sites are frequently observed DNA lesions when cells are exposed to hydroxyl radicals. We developed a new method for measurement of the antioxidative activity of foods using the occurrence frequency of AP sites on DNA. Combined with the electron spin resonance (ESR) method as a standard method, we examined whether fish and soy sauces including puffer fish [Takifugu rubripes (Temminck et Schlegel)] sauce could protect DNA from damage caused by hydroxyl radicals. The results showed that the ratios of DNA protection by puffer fish sauce, salmon fish sauce, sandfish fish sauce (Shottsuru), colorless soy sauce, squid fish sauce (Ishiru), dark color soy sauce and light color soy sauce were 68.9, 67.0, 60.1, 49.7, 34.1, 28.2 and -4.4%, respectively. Puffer, salmon, and sandfish fish sauces showed high ratios of DNA protection against hydroxyl radicals. On the other hand, IC(50) values of hydroxyl radical scavenging of the puffer, salmon, sandfish, squid fish sauces and colorless, dark and light color soy sauces were 0.20, 0.09, 4.16, 0.26% and 0.28, 0.14 and 0.18%, respectively. Though the puffer fish sauce exhibited the highest level of DNA protection among the examined samples and a high hydroxyl radical scavenging capability, a correlation between the radical scavenging capability and DNA protection against hydroxyl radicals among the examined fish and soy sauces was not found.

  11. Cellular targeting and host-specific recognition of cyst nematode CLE proteins

    USDA-ARS?s Scientific Manuscript database

    Cyst nematodes produce secreted peptide mimics of plant CLAVATA3/ESR (CLE) peptides likely involved in redirecting CLE signaling pathways active in roots to form unique and essential feeding cells. The hallmark structure of plant CLEs, which includes an N-terminal signal peptide, a highly variable d...

  12. Towards an understanding of the evolution of the chorioallantoic placenta: steroid biosynthesis and steroid hormone signaling in the chorioallantoic membrane of an oviparous reptile.

    PubMed

    Cruze, Lori; Kohno, Satomi; McCoy, Michael W; Guillette, Louis J

    2012-09-01

    Amniotes, mammals, reptiles, and birds form common extraembryonic membranes during development to perform essential functions, such as protection, nutrient transfer, gas exchange, and waste removal. Together with the maternal uterus, extraembryonic membranes of viviparous (live-bearing) amniotes develop as an endocrine placenta that synthesizes and responds to steroid hormones critical for development. The ability of these membranes to synthesize and respond to steroid hormone signaling has traditionally been considered an innovation of placental amniotes. However, our laboratory recently demonstrated that this ability extends to the chorioallantoic membrane (CAM) of an oviparous (egg-laying) amniote, the domestic chicken, and we hypothesized that steroidogenic extraembryonic membranes could be an evolutionarily conserved characteristic of all amniotes because of similarities in basic structure, function, and shared evolutionary ancestry. In this study, we examined steroid hormone synthesis and signaling in the CAM of another oviparous amniote, the American alligator (Alligator mississippiensis). We quantified mRNA expression of a steroidogenic factor involved in the regulation of steroidogenesis (NR5A1), the key steroidogenic enzymes involved in the synthesis of progestins (HSD3B1), androgens (CYP17A1), and estrogens (CYP19A1), and the receptors involved in the signaling of progestins (PR), androgens (AR), estrogens (ESR1 and ESR2), and glucocorticoids (GR). Furthermore, we performed protein immunolocalization for PR and ESR1. Collectively, our findings indicate that the alligator CAM has the capability to regulate, synthesize, and respond to steroid hormone signaling, thus, supporting our hypothesis that the extraembryonic membranes of Amniota share a unifying characteristic, that is, the ability to synthesize and respond to steroid hormones.

  13. Recurrent ESR1-CCDC170 rearrangements in an aggressive subset of estrogen-receptor positive breast cancers

    PubMed Central

    Veeraraghavan, Jamunarani; Tan, Ying; Cao, Xi-Xi; Kim, Jin-Ah; Wang, Xian; Chamness, Gary C.; Maiti, Sourindra N.; Cooper, Laurence J. N.; Edwards, Dean P.; Contreras, Alejandro; Hilsenbeck, Susan G.; Chang, Eric C.; Schiff, Rachel; Wang, Xiao-Song

    2014-01-01

    Characterizing the genetic alterations leading to the more aggressive forms of estrogen receptor positive (ER+) breast cancers are of critical significance in breast cancer management. Here we identify recurrent rearrangements between estrogen receptor gene ESR1 and its neighbor CCDC170, which are enriched in the more aggressive and endocrine-resistant luminal-B tumors, through large-scale analyses of breast cancer transcriptome and copy number alterations. Further screening of 200 ER+ breast cancers identifies eight ESR1-CCDC170 positive tumors. These fusions encode N-terminally truncated CCDC170 proteins (ΔCCDC170). When introduced into ER+ breast cancer cells, ΔCCDC170 leads to markedly increased cell motility and anchorage-independent growth, reduced endocrine sensitivity, and enhanced xenograft tumor formation. Mechanistic studies suggest that ΔCCDC170 engages Gab1 signalosome to potentiate growth factor signaling and enhance cell motility. Together, this study identifies neoplastic ESR1-CCDC170 fusions in a more aggressive subset of ER+ breast cancer, which suggests a new concept of ER pathobiology in breast cancer. PMID:25099679

  14. Electron diffusion deduced from eiscat

    NASA Astrophysics Data System (ADS)

    Roettger, J.; Fukao, S.

    The EISCAT Svalbard Radar (ESR) operates on 500 MHz; collocated with it is the SOUSY Svalbard Radar (SSR), which operates on 53.5 MHz. We have used both radars during Polar Mesosphere Summer Echoes (PMSE) coherent scatter conditions, where the ESR can also detect incoherent scatter and thus allows to estimate the electron density. We describe obser-vations during two observing periods in summer 1999 and 2000. Well calibrated sig-nal power was obtained with both radars, from which we deduced the radar reflec-tivity. Estimating the turbulence dissipation rate from the narrow beam observations of PMSE with the ESR, using the estimate of the electron density and the radar reflec-tivity on both frequencies we can obtain estimates of the Schmidt number by compar-ing our observational results with the model of Cho and Kelley (1993). Schmidt num-bers of at least 100 are necessary to obtain the measured radar reflectivities, which ba-sically support the model of Cho and Kelley claiming that the inertial-viscous subrange in the electron gas can extend down to small scales of some ten centimeters (namely, the Bragg scale of the ESR).

  15. Charge Transfer Salts of BO with Paramagnetic Isothiocyanato Complex Anions: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III or Fe III, isoq=isoquinoline and BO=Bis(ethylenedioxo)tetrathiafulvalene

    NASA Astrophysics Data System (ADS)

    Setifi, Fatima; Ota, Akira; Ouahab, Lahcéne; Golhen, Stèphane; Yamochi, Hideki; Saito, Gunzi

    2002-11-01

    The preparation, X-ray structures and magnetic properties of two isostructural new charge transfer salts: (BO)[ M(isoq) 2(NCS) 4]; M=Cr III(1), Fe III(2) and isoq=isoquinoline are reported. Their structure consists of alternate organic and inorganic layers, each layer being formed by mixed columns of BO radical cations and paramagnetic metal complex anions. There are short intermolecular contacts between donor and anion (S2 anion· · ·S4 BO<3.5 Å) and between adjacent BO molecules (O· · · O1<3.2 Å). The two compounds are insulators. ESR measurements show single signal without separating the donor and anion spins. The magnetic measurements obey the Curie-Weiss law and revealed dominant antiferromagnetic interactions between anion spin and donor spin, but long-range magnetic ordering did not occur down to 2 K. This is directly related to structural reasons which were deduced from a comparison of the title compounds with other 1:1 salts containing same anion complexes and different donors.

  16. Crucial role of estrogen for the mammalian female in regulating semen coagulation and liquefaction in vivo

    PubMed Central

    2017-01-01

    Semen liquefaction changes semen from a gel-like to watery consistency and is required for sperm to gain mobility and swim to the fertilization site in the Fallopian tubes. Kallikrein-related peptidases 3 (KLK3) and other kallikrein-related peptidases from male prostate glands are responsible for semen liquefaction by cleaving gel-forming proteins (semenogelin and collagen). In a physiological context, the liquefaction process occurs within the female reproductive tract. How seminal proteins interact with the female reproductive environment is still largely unexplored. We previously reported that conditional genetic ablation of Esr1 (estrogen receptor α) in the epithelial cells of the female reproductive tract (Wnt7aCre/+;Esr1f/f) causes female infertility, partly due to a drastic reduction in the number of motile sperm entering the oviduct. In this study, we found that post-ejaculated semen from fertile wild-type males was solidified and the sperm were entrapped in Wnt7aCre/+;Esr1f/f uteri, compared to the watery semen (liquefied) found in Esr1f/f controls. In addition, semenogelin and collagen were not degraded in Wnt7aCre/+;Esr1f/f uteri. Amongst multiple gene families aberrantly expressed in the absence of epithelial ESR1, we have identified that a lack of Klks in the uterus is a potential cause for the liquefaction defect. Pharmacological inhibition of KLKs in the uterus replicated the phenotype observed in Wnt7aCre/+;Esr1f/f uteri, suggesting that loss of uterine and seminal KLK function causes this liquefaction defect. In human cervical cell culture, expression of several KLKs and their inhibitors (SPINKs) was regulated by estrogen in an ESR1-dependent manner. Our study demonstrates that estrogen/ESR1 signaling in the female reproductive tract plays an indispensable role in normal semen liquefaction, providing fundamental evidence that exposure of post-ejaculated semen to the suboptimal microenvironment in the female reproductive tract leads to faulty liquefaction and subsequently causes a fertility defect. PMID:28414719

  17. The first characterization of free radicals formed from cellular COX-catalyzed peroxidation.

    PubMed

    Gu, Yan; Xu, Yi; Law, Benedict; Qian, Steven Y

    2013-04-01

    Through free radical-mediated peroxidation, cyclooxygenase (COX) can metabolize dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA) to form well-known bioactive metabolites, namely, the 1-series of prostaglandins (PGs1) and the 2-series of prostaglandins (PGs2), respectively. Unlike PGs2, which are generally viewed as proinflammatory and procarcinogenic PGs, PGs1 may possess anti-inflammatory and anti-cancer activity. Previous studies using ovine COX along with spin trapping and the LC/ESR/MS technique have shown that certain exclusive free radicals are generated from different free radical reactions in DGLA and AA peroxidation. However, it has been unclear whether the differences were associated with the contrasting bioactivity of DGLA vs AA. The aim of this study was to refine the LC/MS and spin trapping technique to make it possible for the association between free radicals and cancer cell growth to be directly tested. Using a colon cancer cell line, HCA-7 colony 29, and LC/MS along with a solid-phase extraction, we were able to characterize the reduced forms of radical adducts (hydroxylamines) as the free radicals generated from cellular COX-catalyzed peroxidation. For the first time, free radicals formed in the COX-catalyzed peroxidation of AA vs DGLA and their association with cancer cell growth were assessed (cell proliferation via MTS and cell cycle distribution via propidium iodide staining) in the same experimental setting. The exclusive free radicals formed from the COX-catalyzed peroxidation of AA and DGLA were shown to be correlated with the cell growth response. Our results indicate that free radicals generated from the distinct radical reactions in COX-catalyzed peroxidation may represent the novel metabolites of AA and DGLA that correspond to their contrasting bioactivity. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The First Characterization of Free Radicals Formed From Cellular COX-Catalyzed Peroxidation

    PubMed Central

    Gu, Yan; Xu, Yi; Law, Benedict; Qian, Steven Y.

    2014-01-01

    Through free radical-mediated peroxidation, cyclooxygenase (COX) can metabolize dihomo-γ-linolenic acid (DGLA) and arachidonic acid(AA) to form well-known bioactive metabolites, namely, the 1-series of prostaglandins (PGs1) and 2-series of prostaglandins(PGs2), respectively. Unlike PGs2, which are generally viewed as pro-inflammatory and pro-carcinogenic PGs, PGs1 may possess anti-inflammatory and anti-cancer activity. Previous studies using ovine COX along with spin trapping and the LC/ESR/MS technique have shown that certain exclusive free radicals are generated from different free radical reactions in DGLA and AA peroxidation. However, it has been unclear whether the differences were associated with the contrasting bioactivity of DGLA vs. AA. The aim of this study was to refine the LC/MS and spin-trapping technique to make it possible for the association between free radicals and cancer cell growth to be directly tested. Using a colon cancer cell line, HCA-7 colony 29, and LC/MS along with a solid phase extraction, we were able to characterize the reduced forms of radical adducts (hydroxylamines) as the free radicals generated from cellular COX-catalyzed peroxidation. For the first time, free radicals formed in the COX-catalyzed peroxidation of AA vs. DGLA and their association with cancer cell growth was assessed (cell proliferation via MTS and cell cycle distribution via PI staining) in the same experimental setting. The exclusive free radicals formed from the COX-catalyzed peroxidation of AA and DGLA were shown to be correlated with the cell growth response. Our results indicate that free radicals generated from the distinct radical reactions in COX-catalyzed peroxidation may represent the novel metabolites of AA and DGLA that correspond to their contrasting bioactivity. PMID:23261941

  19. Structural and magnetic characterization of copper sulfonated phthalocyanine grafted onto treated polyethylene

    NASA Astrophysics Data System (ADS)

    Reznickova, A.; Kolska, Z.; Orendac, M.; Cizmar, E.; Sajdl, P.; Svorcik, V.

    2016-08-01

    This study focuses on high density polyethylene (HDPE) activated by Ar plasma treatment, subsequently grafted with copper sulfonated phthalocyanine (CuPc) especially pointing out to the surface and magnetic properties of those composites. Properties of pristine PE and their plasma treated counterparts were studied by different experimental techniques: X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, zeta potential and by electron spin resonance (ESR). XPS analysis confirmed the successful grafting of phthalocyanine. The highest absorption was found for the sample grafted with bCuPc for 1 h. Electrokinetic analysis also confirmed the plasma treatment and also subsequent CuPc grafting influence significantly the surface chemistry and charge. These results correspond well with XPS determination. ESR studies confirmed the presence of CuPc grafted on HDPE. It was found, that grafting is mediated by magnetically inactive functional groups, rather than radicals. Magnetic properties of CuPc do not seem to change significantly after grafting CuPc on polyethylene surface.

  20. What happens when spins meet for ionizing radiation dosimetry?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavoni, Juliana F.; Baffa, Oswaldo, E-mail: baffa@usp.br; Neves-Junior, Wellington F. P.

    2016-07-07

    Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom tomore » validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.« less

  1. What happens when spins meet for ionizing radiation dosimetry?

    NASA Astrophysics Data System (ADS)

    Pavoni, Juliana F.; Neves-Junior, Wellington F. P.; Baffa, Oswaldo

    2016-07-01

    Electron spin resonance (ESR) and magnetic resonance imaging (MRI) can be used to measure radiation dose deposited in different milieu through its effects. Radiation can break chemical bonds and if they produce stable free radicals, ESR can measure their concentration through their spins and a dose can be inferred. Ionizing radiation can also promote polymerization and in this case proton relaxation times can be measured and an image weighed by T2 can be produced giving spatial information about dose. A review of the basics of these applications is presented concluding with an end-to-end test using a composite Gel-Alanine phantom to validate 3-dimensionally dose distribution delivered in a simulation of Volume Modulated Arch Therapy on the simultaneous treatment of multiple brain metastases. The results obtained with the gel and alanine dosimeters are consistent with the expected by the treatment planning system, showing the potential of this multidosimetric approach and validating dosimetrically the multiple brain metastases treatment using VMAT.

  2. Massively parallel implementations of coupled-cluster methods for electron spin resonance spectra. I. Isotropic hyperfine coupling tensors in large radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Prakash; Morales, Jorge A., E-mail: jorge.morales@ttu.edu; Perera, Ajith

    2013-11-07

    Coupled cluster (CC) methods provide highly accurate predictions of molecular properties, but their high computational cost has precluded their routine application to large systems. Fortunately, recent computational developments in the ACES III program by the Bartlett group [the OED/ERD atomic integral package, the super instruction processor, and the super instruction architecture language] permit overcoming that limitation by providing a framework for massively parallel CC implementations. In that scheme, we are further extending those parallel CC efforts to systematically predict the three main electron spin resonance (ESR) tensors (A-, g-, and D-tensors) to be reported in a series of papers. Inmore » this paper inaugurating that series, we report our new ACES III parallel capabilities that calculate isotropic hyperfine coupling constants in 38 neutral, cationic, and anionic radicals that include the {sup 11}B, {sup 17}O, {sup 9}Be, {sup 19}F, {sup 1}H, {sup 13}C, {sup 35}Cl, {sup 33}S,{sup 14}N, {sup 31}P, and {sup 67}Zn nuclei. Present parallel calculations are conducted at the Hartree-Fock (HF), second-order many-body perturbation theory [MBPT(2)], CC singles and doubles (CCSD), and CCSD with perturbative triples [CCSD(T)] levels using Roos augmented double- and triple-zeta atomic natural orbitals basis sets. HF results consistently overestimate isotropic hyperfine coupling constants. However, inclusion of electron correlation effects in the simplest way via MBPT(2) provides significant improvements in the predictions, but not without occasional failures. In contrast, CCSD results are consistently in very good agreement with experimental results. Inclusion of perturbative triples to CCSD via CCSD(T) leads to small improvements in the predictions, which might not compensate for the extra computational effort at a non-iterative N{sup 7}-scaling in CCSD(T). The importance of these accurate computations of isotropic hyperfine coupling constants to elucidate experimental ESR spectra, to interpret spin-density distributions, and to characterize and identify radical species is illustrated with our results from large organic radicals. Those include species relevant for organic chemistry, petroleum industry, and biochemistry, such as the cyclo-hexyl, 1-adamatyl, and Zn-porphycene anion radicals, inter alia.« less

  3. Biocompatibility of 4-META/MMA-TBB resin used as a dental luting agent.

    PubMed

    Nakagawa, Kaori; Saita, Makiko; Ikeda, Takayuki; Hirota, Makoto; Park, Wonhee; Lee, Masaichi Chang-Il; Ogawa, Takahiro

    2015-07-01

    The bonding and biological properties of currently used luting/cementing materials need to be improved. 4-Acryloyloxyethyl trimellitate anhydride/methyl methacrylate-tri-n-butylborane (4-META/MMA-TBB) resin is primarily used for splinting mobile teeth or treating fractured teeth. It undergoes moisture-resistant polymerization and bonds strongly to dentin and metals. The purpose of this in vitro study was to compare the biological and biochemical properties META/MMA-TBB resin with those of conventional polymethyl methacrylate (PMMA)-MMA resin and other currently used luting materials in order to determine whether it may be a viable dental luting agent. The degree of polymerization of 4-META/MMA-TBB resin, PMMA-MMA autopolymerizing resin, 10-methacryloyloxydecyl dihydrogen phosphate-dimethacrylate (MDP-DMA) adhesive resin, and a glass ionomer cement was measured by Fourier-transformed infrared spectroscopy. Free radical production during setting was evaluated by electron spin resonance (ESR) spectroscopy. Rat dental pulp cells cultured on these materials were examined for cell viability, attachment, proliferation, and functional phenotype. The degree of polymerization of 4-META/MMA-TBB resin was 82% thirty minutes after preparation, compared to 66% for PMMA-MMA autopolymerizing resin. ESR spectroscopy revealed free radical production from 4-META/MMA-TBB resin and glass ionomer cement was equivalent 24 hours after preparation, with no spike in radical generation observed. In contrast, free radical production from PMMA-MMA and MDP-DMA adhesive resins was rapid and sustained and 10 to 20 times greater than that from 4-META/MMA-TBB. The percentage of viable dental pulp cells 24 hours after seeding was considerably higher on MDP-DMA and 4-META/MMA-TBB resin than on glass ionomer cement. Cell number, proliferation, and alkaline phosphatase activity were highest on 4-META/MMA-TBB resin and lowest on the glass ionomer cement. 4-META/MMA-TBB resin is at least as biocompatible, and perhaps even more biocompatible, than other current luting materials, with fast, favorable, and nontoxic polymerization properties. Further in vivo and human studies of 4-META/MMA-TBB resin as a dental luting agent are warranted. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  4. Extensive screening for herbal extracts with potent antioxidant properties

    PubMed Central

    Niwano, Yoshimi; Saito, Keita; Yoshizaki, Fumihiko; Kohno, Masahiro; Ozawa, Toshihiko

    2011-01-01

    This paper summarizes our research for herbal extracts with potent antioxidant activity obtained from a large scale screening based on superoxide radical (O2•−) scavenging activity followed by characterization of antioxidant properties. Firstly, scavenging activity against O2•− was extensively screened from ethanol extracts of approximately 1000 kinds of herbs by applying an electron spin resonance (ESR)-spin trapping method, and we chose four edible herbal extracts with prominently potent ability to scavenge O2•−. They are the extracts from Punica granatum (Peel), Syzygium aromaticum (Bud), Mangifera indica (Kernel), and Phyllanthus emblica (Fruit). These extracts were further examined to determine if they also scavenge hydroxyl radical (•OH), by applying the ESR spin-trapping method, and if they have heat resistance as a desirable characteristic feature. Experiments with the Fenton reaction and photolysis of H2O2 induced by UV irradiation demonstrated that all four extracts have potent ability to directly scavenge •OH. Furthermore, the scavenging activities against O2•− and •OH of the extracts of P. granatum (peel), M. indica (kernel) and P. emblica (fruit) proved to be heat-resistant. The results of the review might give useful information when choosing a potent antioxidant as a foodstuff. For instance, the four herbal extracts chosen from extensive screening possess desirable antioxidant properties. In particular, the extracts of the aforementioned three herbs are expected to be suitable for food processing in which thermal devices are used, because of their heat resistance. PMID:21297917

  5. Anti-HIV and immunomodulation activities of cacao mass lignin-carbohydrate complex.

    PubMed

    Sakagami, Hiroshi; Kawano, Michiyo; Thet, May Maw; Hashimoto, Ken; Satoh, Kazue; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Haishima, Yuji; Maeda, Yuuichi; Sakurai, Koji

    2011-01-01

    Recently, a prominent antiviral and macrophage stimulatory activity of cacao lignin-carbohydrate complex (LCC) has been reported. However, the solubility and sterility of LCC have not been considered yet. In the present study, complete solubilisation and sterilisation was achieved by autoclaving under mild alkaline conditions and the previously reported biological activities were re-examined. LCCs were obtained by 1% NaOH extraction and acid precipitation, and a repeated extraction-precipitation cycle. Nitric oxide (NO) and cytokine productions were assayed by the Griess method and ELISA, respectively. Inducible NO synthase (iNOS) expression was determined by Western blot analysis. Superoxide anion, hydroxyl radical and nitric oxide radical-scavenging activity was determined by ESR spectroscopy. Cacao mass LCC showed reproducibly higher anti-HIV activity than cacao husk LCC. Cacao mass LCC, up to 62.5 μg/ml, did not stimulate mouse macrophage-like cells (RAW264.7 and J774.1) to produce NO, nor did it induce iNOS protein, in contrast to lipopolysaccharide (LPS). Cacao mass LCC and LPS synergistically stimulated iNOS protein expression, suggesting a different point of action. Cacao mass LCC induced tumour necrosis factor-α production markedly less than LPS, and did not induce interleukin-1β, interferon-α or interferon-γ. ESR spectroscopy showed that cacao mass LCC, but not LPS, scavenged NO produced from NOC-7. This study demonstrated several new biological activities of LCCs distinct from LPS and further confirmed the promising antiviral and immunomodulating activities of LCCs.

  6. Fabrication of Pt nanoparticles decorated Gd-doped Bi2MoO6 nanosheets: Design, radicals regulating and mechanism of Gd/Pt-Bi2MoO6 photocatalyst

    NASA Astrophysics Data System (ADS)

    Li, Hongda; Li, Wenjun; Wang, Fangzhi; Liu, Xintong; Ren, Chaojun; Miao, Xiao

    2018-01-01

    A new Pt nanoparticles decorated Gd-doped Bi2MoO6 photocatalyst was synthesized by the hydrothermal process and in-situ reduction method. The crystal structure, morphology, chemical state and optical property of the obtained photocatalysts were investigated. The activities of photocatalysts were also evaluated by the degradation of Rhodamine B, Tetracyclines and 4-Chlorophenol under visible light irradiation, and the results indicated that the Gd/Pt co-modified Bi2MoO6 sample shows better photocatalytic activity. Meanwhile, the results of trapping experiments and Electron Spin Resonance (ESR) spectra demonstrated that the rad OH radicals can be formed by doping of Gd3+ ions, and the addition of Pt was conducive to the producing of more • O2- and rad OH radicals. Also the results from the degradation of 4-chlorophenol implied that the formed rad OH radicals in the system of Gd/Pt-BMO possess stronger oxidizability than • O2- radicals for degrading the special organics which are difficult to be mineralized. Additionally, the mechanism about the excellent photocatalytic activity of Gd/Pt co-modified Bi2MoO6 was also discussed.

  7. Alkoxyl- and carbon-centered radicals as primary agents for degrading non-phenolic lignin-substructure model compounds.

    PubMed

    Ohashi, Yasunori; Uno, Yukiko; Amirta, Rudianto; Watanabe, Takahito; Honda, Yoichi; Watanabe, Takashi

    2011-04-07

    Lignin degradation by white-rot fungi proceeds via free radical reaction catalyzed by oxidative enzymes and metabolites. Basidiomycetes called selective white-rot fungi degrade both phenolic and non-phenolic lignin substructures without penetration of extracellular enzymes into the cell wall. Extracellular lipid peroxidation has been proposed as a possible ligninolytic mechanism, and radical species degrading the recalcitrant non-phenolic lignin substructures have been discussed. Reactions between the non-phenolic lignin model compounds and radicals produced from azo compounds in air have previously been analysed, and peroxyl radical (PR) is postulated to be responsible for lignin degradation (Kapich et al., FEBS Lett., 1999, 461, 115-119). However, because the thermolysis of azo compounds in air generates both a carbon-centred radical (CR) and a peroxyl radical (PR), we re-examined the reactivity of the three radicals alkoxyl radical (AR), CR and PR towards non-phenolic monomeric and dimeric lignin model compounds. The dimeric lignin model compound is degraded by CR produced by reaction of 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH), which under N(2) atmosphere cleaves the α-β bond in 1-(4-ethoxy-3-methoxyphenyl)-2-(2-methoxyphenoxy)-1,3-propanediol to yield 4-ethoxy-3-methoxybenzaldehyde. However, it is not degraded by the PR produced by reaction of Ce(4+)/tert-BuOOH. In addition, it is degraded by AR produced by reaction of Ti(3+)/tert-BuOOH. PR and AR are generated in the presence and absence of veratryl alcohol, respectively. Rapid-flow ESR analysis of the radical species demonstrates that AR but not PR reacts with the lignin model compound. Thus, AR and CR are primary agents for the degradation of non-phenolic lignin substructures.

  8. Development of Millimeter Wave Fabry-Pérot Resonator for Simultaneous Electron-Spin and Nuclear Magnetic Resonance Measurement

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yuya; Ohya, Kenta; Fujii, Yutaka; Fukuda, Akira; Miura, Shunsuke; Mitsudo, Seitaro; Yamamori, Hidetomo; Kikuchi, Hikomitsu

    2018-04-01

    We report a Fabry-Pérot resonator with spherical and flat mirrors to allow simultaneous electron-spin resonance (ESR) and nuclear magnetic resonance (NMR) measurements that could be used for double magnetic resonance (DoMR). In order to perform simultaneous ESR and NMR measurements, the flat mirror must reflect millimeter wavelength electromagnetic waves and the resonator must have a high Q value ( Q > 3000) for ESR frequencies, while the mirror must simultaneously let NMR frequencies pass through. This requirement can be achieved by exploiting the difference of skin depth for the two frequencies, since skin depth is inversely proportional to the square root of the frequency. In consideration of the skin depth, the optimum conditions for conducting ESR and NMR using a gold thin film are explored by examining the relation between the Q value and the film thickness. A flat mirror with a gold thin film was fabricated by sputtering gold on an epoxy plate. We also installed a Helmholtz radio frequency coil for NMR and tested the system both at room and low temperatures with an optimally thick gold film. As a result, signals were obtained at 0.18 K for ESR and at 1.3 K for NMR. A flat-mirrored resonator with a thin gold film surface is an effective way to locate NMR coils closer to the sample being examined with DoMR.

  9. Irradiated bivalve mollusks: Use of EPR spectroscopy for identification and dosimetry

    NASA Astrophysics Data System (ADS)

    Alberti, Angelo; Chiaravalle, Eugenio; Fuochi, Piergiorgio; Macciantelli, Dante; Mangiacotti, Michele; Marchesani, Giuliana; Plescia, Elena

    2011-12-01

    High energy radiation treatment of foodstuff for microbial control and shelf-life extension is being used in many countries. However, for consumer protection and information, the European Union has adopted the Directives 1999/2/EC and 1999/3/EC to harmonize the rules concerning the treatment and trade of irradiated foods in EU countries. Among the validated methods to detect irradiated foods the EU directives also include Electron Paramagnetic Resonance (EPR/ESR) spectroscopy.We describe herein the use of EPR for identification of four species of bivalve mollusks, i.e. brown Venus shells (Callista chione), clams (Tapes semidecussatus), mussels (Mytilus galloprovincialis) and oysters (Ostrea edulis) irradiated with 60Co γ-rays. EPR could definitely identify irradiated seashells due to the presence of long-lived free radicals, primarily CO2-, CO33-, SO2- and SO3- radical anions. The presence of other organic free radicals, believed to originate from conchiolin, a scleroprotein present in the shells, was also ascertained. The use of one of these radicals as a marker for irradiation of brown Venus shells and clams can be envisaged. We also propose a dosimetric protocol for the reconstruction of the administered dose in irradiated oysters.

  10. An in vivo ESR spin-trapping study: Free radical generation in rats from formate intoxication— role of the Fenton reaction

    PubMed Central

    Dikalova, Anna E.; Kadiiska, Maria B.; Mason, Ronald P.

    2001-01-01

    Electron spin resonance spectroscopy has been used to study free radical generation in rats with acute sodium formate poisoning. The in vivo spin-trapping technique was used with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN), which reacts with free radical metabolites to form radical adducts, which were detected in the bile and urine samples from Fischer rats. The use of [13C]-sodium formate and computer simulations of the spectra identified the 12-line spectrum as arising from the POBN/carbon dioxide anion radical adduct. The identification of POBN/⋅CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} radical adduct provides direct electron spin resonance spectroscopy evidence for the formation of ⋅CO\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{_{2}^{-}}}\\end{equation*}\\end{document} radicals during acute intoxication by sodium formate, suggesting a free radical metabolic pathway. To study the mechanism of free radical generation by formate, we tested several known inhibitors. Both allopurinol, an inhibitor of xanthine oxidase, and aminobenzotriazole, a cytochrome P450 inhibitor, decreased free radical formation from formate, which may imply a dependence on hydrogen peroxide. In accord with this hypothesis, the catalase inhibitor 3-aminotriazole caused a significant increase in free radical formation. The iron chelator Desferal decreased the formation of free radicals up to 2-fold. Presumably, iron plays a role in the mechanism of free radical generation by formate via the Fenton reaction. The detection of formate free radical metabolites generated in vivo and the key role of the Fenton reaction in this process may be important for understanding the pathogenesis of both formate and methanol intoxication. PMID:11717423

  11. UV-generated free radicals (FR) in skin: Their prevention by sunscreens and their induction by self-tanning agents

    NASA Astrophysics Data System (ADS)

    Jung, K.; Seifert, M.; Herrling, Th.; Fuchs, J.

    2008-05-01

    In the past few years, the cellular effects of ultraviolet (UV) irradiation induced in skin have become increasingly recognized. Indeed, it is now well known that UV irradiation induces structural and cellular changes in all the compartments of skin tissue. The generation of reactive oxygen species (ROS) is the first and immediate consequence of UV exposure and therefore the quantitative determination of free radical reactions in the skin during UV radiation is of primary importance for the understanding of dermatological photodamage. The RSF method (radical sun protection factor) herein presented, based on electron spin resonance spectroscopy (ESR), enables the measurement of free radical reactions in skin biopsies directly during UV radiation. The amount of free radicals varies with UV doses and can be standardized by varying UV irradiance or exposure time. The RSF method allows the determination of the protective effect of UV filters and sunscreens as well as the radical induction capacity of self-tanning agents as dihydroxyacetone (DHA). The reaction of the reducing sugars used in self-tanning products and amino acids in the skin layer (Maillard reaction) leads to the formation of Amadori products that generate free radicals during UV irradiation. Using the RSF method three different self-tanning agents were analyzed and it was found, that in DHA-treated skin more than 180% additional radicals were generated during sun exposure with respect to untreated skin. For this reason the exposure duration in the sun must be shortened when self-tanners are used and photoaging processes are accelerated.

  12. Partial structural characterization and antioxidant activity of a phenolic-xylan from Castanea sativa hardwood.

    PubMed

    Renault, Emmanuel; Barbat-Rogeon, Aline; Chaleix, Vincent; Calliste, Claude-Alain; Colas, Cyril; Gloaguen, Vincent

    2014-09-01

    4-O-Methylglucuronoxylans (MGX) were isolated from chestnut wood sawdust using two different procedures: chlorite delignification followed by the classical alkaline extraction step, and an unusual green chemistry process of delignification using phthalocyanine/H2O2 followed by a simple extraction with hot water. Antioxidant properties of both MGX were evaluated against the stable radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) by electronic spin resonance (ESR). IC50 of water-extracted MGX was found to be less than 225 μg mL(-1), in contrast with alkali-extracted MGX for which no radical scavenging was observed. Characterization of extracts by colorimetric assay, GC, LC-MS and NMR spectroscopy provided some clues to understanding structure-function relationships of MGX in connection with their antioxidant activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Synergistic cytotoxic action of vitamin C and vitamin K3.

    PubMed

    Zhang, W; Negoro, T; Satoh, K; Jiang, Y; Hashimoto, K; Kikuchi, H; Nishikawa, H; Miyata, T; Yamamoto, Y; Nakano, K; Yasumoto, E; Nakayachi, T; Mineno, K; Satoh, T; Sakagami, H

    2001-01-01

    We investigated the combination effect of sodium ascorbate (vitamin C) and menadione (vitamin K3) on the viability of various cultured cells. Human oral squamous cell carcinoma (HSC-2, HSC-3) and human promyelocytic leukemia (HL-60) cells were more sensitive to these vitamins as compared to normal cells (human gingival fibroblast HGF, human periodontal ligament fibroblast HPLF, human pulp cell HPC). The combination of vitamin C and vitamin K3 produced synergistic cytotoxicity against all these 6 cell lines. Treatment with vitamin C or vitamin K3, or their combination, induced internucleosomal DNA fragmentation only in HL-60 cells, but not in the oral tumor cell lines (HSC-2, HSC-3, HSG). ESR spectroscopy showed that vitamins C and K3 produce radicals under alkaline conditions and that the combination of these two vitamins synergistically enhanced their respective radical intensities.

  14. Are free radicals involved in thiol-based redox signaling?

    PubMed

    Winterbourn, Christine C

    2015-03-01

    Cells respond to many stimuli by transmitting signals through redox-regulated pathways. It is generally accepted that in many instances signal transduction is via reversible oxidation of thiol proteins, although there is uncertainty about the specific redox transformations involved. The prevailing view is that thiol oxidation occurs by a two electron mechanism, most commonly involving hydrogen peroxide. Free radicals, on the other hand, are considered as damaging species and not generally regarded as important in cell signaling. This paper examines whether it is justified to dismiss radicals or whether they could have a signaling role. Although there is no direct evidence that radicals are involved in transmitting thiol-based redox signals, evidence is presented that they are generated in cells when these signaling pathways are activated. Radicals produce the same thiol oxidation products as two electron oxidants, although by a different mechanism, and at this point radical-mediated pathways should not be dismissed. There are unresolved issues about how radical mechanisms could achieve sufficient selectivity, but this could be possible through colocalization of radical-generating and signal-transducing proteins. Colocalization is also likely to be important for nonradical signaling mechanisms and identification of such associations should be a priority for advancing the field. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Femtosecond laser microfabrication in polymers towards memory devices and microfluidic applications

    NASA Astrophysics Data System (ADS)

    Deepak, K. L. N.; Venugopal Rao, S.; Narayana Rao, D.

    2011-12-01

    We have investigated femtosecond laser induced microstructures, gratings, and craters in four different polymers: poly methyl methacrylate (PMMA), poly dimethyl siloxane (PDMS), polystyrene (PS) and poly vinyl alcohol (PVA) using Ti:sapphire laser delivering 800 nm, 100 femtosecond (fs) pulses at 1 kHz repetition rate with a maximum pulse energy of 1 mJ. Local chemical modifications leading to the formation of optical centers and peroxide radicals which were studied using UV-Visible absorption and emission, confocal micro-Raman and Electron Spin Resonance (ESR) spectroscopic techniques.

  16. Response of adult mouse uterus to early disruption of estrogen receptor-alpha signaling is influenced by Krüppel-like factor 9

    USDA-ARS?s Scientific Manuscript database

    Inappropriate early exposure of the hormone-responsive uterus to estrogenic compounds is associated with increased risk for adult reproductive diseases including endometrial cancers. While the dysregulation of estrogen receptor-alpha (ESR1) signaling is a well-acknowledged early event in tumor initi...

  17. Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium.

    PubMed

    Banciu, Adela; Banciu, Daniel Dumitru; Mustaciosu, Cosmin Catalin; Radu, Mihai; Cretoiu, Dragos; Xiao, Junjie; Cretoiu, Sanda Maria; Suciu, Nicolae; Radu, Beatrice Mihaela

    2018-05-09

    Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine myometrium and their gene expression regulation by beta-estradiol in pregnant conditions. Further exploration of the calcium signaling in TCs and its modulation by estrogen hormones will contribute to the understanding of labor and pregnancy mechanisms and to the development of effective strategies to reduce the risk of premature birth.

  18. Electron spin resonance spectroscopy for immunoassay using iron oxide nanoparticles as probe.

    PubMed

    Jiang, Jia; Tian, Sizhu; Wang, Kun; Wang, Yang; Zang, Shuang; Yu, Aimin; Zhang, Ziwei

    2018-02-01

    With the help of iron oxide nanoparticles, electron spin resonance spectroscopy (ESR) was applied to immunoassay. Iron oxide nanoparticles were used as the ESR probe in order to achieve an amplification of the signal resulting from the large amount of Fe 3+ ion enclosed in each nanoparticle. Rabbit IgG was used as antigen to test this method. Polyclonal antibody of rabbit IgG was used as antibody to detect the antigen. Iron oxide nanoparticle with a diameter of either 10 or 30 nm was labeled to the antibody, and Fe 3+ in the nanoparticle was probed for ESR signal. The sepharose beads were used as solid phase to which rabbit IgG was conjugated. The nanoparticle-labeled antibody was first added in the sample containing antigen, and the antigen-conjugated sepharose beads were then added into the sample. The nanoparticle-labeled antibody bound to the antigen on sepharose beads was separated from the sample by centrifugation and measured. We found that the detection ranges of the antigen obtained with nanoparticles of different sizes were different because the amount of antibody on nanoparticles of 10 nm was about one order of magnitude higher than that on nanoparticles of 30 nm. When 10 nm nanoparticle was used as probe, the upper limit of detection was 40.00 μg mL -1 , and the analytical sensitivity was 1.81 μg mL -1 . When 30 nm nanoparticle was used, the upper limit of detection was 3.00 μg mL -1 , and the sensitivity was 0.014 and 0.13 μg mL -1 depending on the ratio of nanoparticle to antibody. Graphical abstract Schematic diagram of procedure and ESR spectra.

  19. Highly sensitive free radical detection by nitrone-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Du, Libo; Huang, Saipeng; Zhuang, Qianfen; Jia, Hongying; Rockenbauer, Antal; Liu, Yangping; Liu, Ke Jian; Liu, Yang

    2014-01-01

    The detection of free radicals and related species has attracted significant attention in recent years because of their critical roles in physiological and pathological processes. Among the methods for the detection of free radicals, electron spin resonance (ESR) coupled with the use of the spin trapping technique has been an effective approach for characterization and quantification of these species due to its high specificity. However, its application in biological systems, especially in in vivo systems, has been greatly limited partially due to the low reaction rate between the currently available spin traps with biological radicals. To overcome this drawback, we herein report the first example of nitrone functionalized gold nanoparticles (Au@EMPO) as highly efficient spin traps in which the thiolated EMPO (2-(ethoxycarbonyl)-2-methyl-3,4-dihydro-2H-pyrrole 1-oxide) derivative was self-assembled on gold nanoparticles. Kinetic studies showed that Au@EMPO has a 137-fold higher reaction rate constant with &z.rad;OH than PBN (N-tert-butyl-α-phenylnitrone). Owing to the high rate of trapping &z.rad;OH by Au@EMPO as well as the high stability of the resulting spin adduct (t1/2 ~ 56 min), Au@EMPO affords 124-fold higher sensitivity for &z.rad;OH than EMPO. Thus, this new nanospin trap shows great potential in trapping the important radicals such as &z.rad;OH in various biological systems and provides a novel strategy to design spin traps with much improved properties.The detection of free radicals and related species has attracted significant attention in recent years because of their critical roles in physiological and pathological processes. Among the methods for the detection of free radicals, electron spin resonance (ESR) coupled with the use of the spin trapping technique has been an effective approach for characterization and quantification of these species due to its high specificity. However, its application in biological systems, especially in in vivo systems, has been greatly limited partially due to the low reaction rate between the currently available spin traps with biological radicals. To overcome this drawback, we herein report the first example of nitrone functionalized gold nanoparticles (Au@EMPO) as highly efficient spin traps in which the thiolated EMPO (2-(ethoxycarbonyl)-2-methyl-3,4-dihydro-2H-pyrrole 1-oxide) derivative was self-assembled on gold nanoparticles. Kinetic studies showed that Au@EMPO has a 137-fold higher reaction rate constant with &z.rad;OH than PBN (N-tert-butyl-α-phenylnitrone). Owing to the high rate of trapping &z.rad;OH by Au@EMPO as well as the high stability of the resulting spin adduct (t1/2 ~ 56 min), Au@EMPO affords 124-fold higher sensitivity for &z.rad;OH than EMPO. Thus, this new nanospin trap shows great potential in trapping the important radicals such as &z.rad;OH in various biological systems and provides a novel strategy to design spin traps with much improved properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04559e

  20. Gamma radiation effects on seed germination, growth and pigment content, and ESR study of induced free radicals in maize (Zea mays).

    PubMed

    Marcu, Delia; Damian, Grigore; Cosma, Constantin; Cristea, Victoria

    2013-09-01

    The effects of gamma radiation are investigated by studying plant germination, growth and development, and biochemical characteristics of maize. Maize dry seeds are exposed to a gamma source at doses ranging from 0.1 to 1 kGy. Our results show that the germination potential, expressed through the final germination percentage and the germination index, as well as the physiological parameters of maize seedlings (root and shoot lengths) decreased by increasing the irradiation dose. Moreover, plants derived from seeds exposed at higher doses (≤0.5 kGy) did not survive more than 10 days. Biochemical differences based on photosynthetic pigment (chlorophyll a, chlorophyll b, carotenoids) content revealed an inversely proportional relationship to doses of exposure. Furthermore, the concentration of chlorophyll a was higher than chlorophyll b in both irradiated and non-irradiated seedlings. Electron spin resonance spectroscopy used to evaluate the amount of free radicals induced by gamma ray treatment demonstrates that the relative concentration of radiation-induced free radicals depends linearly on the absorbed doses.

  1. Aging of SRC liquids

    NASA Astrophysics Data System (ADS)

    Hara, T.; Jones, L.; Tewari, K. C.; Li, N. C.

    1981-02-01

    The viscosity of SRC-LL liquid increases when subjected to accelerated aging by bubbling oxygen in the presence of copper strip at 62°C. Precipitates are formed and can be separated from the aged liquid by Soxhlet extraction with pentane. A 30-70 blend of SRC-I with SRC-LL was subjected to oxygen aging in the absence of copper, and the viscosity increased dramatically after 6 days at 62°. The content of preasphaltene and its molecular size increase with time of aging, accompanied by decrease of asphaltene and pentane-soluble contents. For the preasphaltene fraction on aging, gel permeation chromatography shows formation of larger particles. ESR experiments show that with oxygen aging, spin concentration in the preasphaltene fraction decreases. Perhaps some semiquinone, together with di- and tri-substituted phenoxy radicals, generated by oxygen aging of the coal liquid, interact with the free radicals already present in coal to yield larger particles and reduce free radical concentration. We are currently using the very high-field (600-MHz) NMR spectrometer at Mellon Institute to determine changes in structural parameters before and after aging of SRC-II and its chromatographically separated fractions.

  2. [Fundamentals of plasma chemistry and its application to drug engineering].

    PubMed

    Kuzuya, M

    1996-04-01

    In this review, our novel research works in both low temperature plasma chemistry and solid state plasma chemistry were described. As for low temperature plasma, the ESR study on plasma-induced radicals of several selected conventional polymers was shown including the detailed analyses of the radical structure and the mechanism by which the radicals were formed on typical degradable methacrylic polymers and cross-linkable polystyrene. One of the pharmaceutical applications of the plasma processing for drug delivery system (DDS) was also described, which includes the preparations of double-compressed tablet consisting of drugs as a core material and various types of polymers as a wall material followed by plasma-irradiation on such a tablet. As for solid state plasma, the detailed reaction mechanism of solid state mechanochemical polymerization was shown including the solid state single electron transfer and the special feature of the resulting polymers. The structural criteria for polymerizable monomer derived from the quantum chemical considerations were also established. Based on the above findings, we synthesized various polymeric prodrugs by mechanochemical polymerization and studied the nature of hydrolyses (drug release).

  3. Radical induced degradation of acetaminophen with Fe3O4 magnetic nanoparticles as heterogeneous activator of peroxymonosulfate.

    PubMed

    Tan, Chaoqun; Gao, Naiyun; Deng, Yang; Deng, Jing; Zhou, Shiqing; Li, Jun; Xin, Xiaoyan

    2014-07-15

    Magnetic nano-scaled particles Fe3O4 were studied for the activation of peroxymonosulfate (PMS) to generate active radicals for degradation of acetaminophen (APAP) in water. The Fe3O4 MNPs were found to effectively catalyze PMS for removal of APAP, and the reactions well followed a pseudo-first-order kinetics pattern (R(2)>0.95). Within 120min, approximately 75% of 10ppm APAP was accomplished by 0.2mM PMS in the presence of 0.8g/L Fe3O4 MNPs with little Fe(3+) leaching (<4μg/L). Higher Fe3O4 MNP dose, lower initial APAP concentration, neutral pH, and higher reaction temperature favored the APAP degradation. The production of sulfate radicals and hydroxyl radicals was validated through two ways: (1) indirectly from the scavenging tests with scavenging agents, tert-butyl alcohol (TBA) and ethanol (EtOH); (2) directly from the electron paramagnetic resonance (ESR) tests with 0.1M 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). Plausible mechanisms on the radical generation from Fe3O4 MNP activation of PMS are proposed based on the results of radical identification tests and XPS analysis. It appeared that Fe(2+)Fe(3+) on the catalyst surface was responsible for the radical generation. The results demonstrated that Fe3O4 MNPs activated PMS is a promising technology for water pollution caused by contaminants such as pharmaceuticals. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. ESR study of a biological assay on whole blood: antioxidant efficiency of various vitamins.

    PubMed

    Stocker, Pierre; Lesgards, Jean-François; Vidal, Nicolas; Chalier, Florence; Prost, Michel

    2003-04-07

    This study deals with the activity of various vitamins against the radical-mediated oxidative damage in human whole blood. We have used a biological method that allows both the evaluation of plasma and that of red blood cell resistance against the free radicals induced by 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH). Spin trapping measures using mainly 5-(diethoxyphosphoryl)-5-methyl-1-pyrolline N-oxide nitrone (DEPMPO) were carried out under several conditions to identify the free radicals implicated in this test. Only the oxygenated-centred radical generated from AAPH was found highly reactive to initiate red blood cell lysis. With DEPMPO only alkoxyl radicals were observed and no evidence was found for alkylperoxyl radicals. The antioxidant activity of several lipid- and water-soluble vitamins has been assessed by the biological assay and through two chemical methods. We have noticed high antioxidant activities for tocopherols (in the order delta>gamma>alpha) in the biological test but not through chemical methods. At 1 microM, the delta-tocopherol efficiency in inhibiting radical-induced red blood cell hemolysis was three times as high as the alpha-tocopherol efficiency. For beta-carotene no significant activity even in whole blood was shown. Highly surprising antioxidant activities were observed for acid folic and pyridoxine, compared to ascorbic acid. At 10 microM, the effectiveness of folic acid was almost three times as high as vitamin C. The biological test seems clinically more relevant than most other common assays because it can detect several classes of antioxidants.

  5. Construction of 0.15 Tesla Overhauser Enhanced MRI.

    PubMed

    Tokunaga, Yuumi; Nakao, Motonao; Naganuma, Tatsuya; Ichikawa, Kazuhiro

    2017-01-01

    Overhauser enhanced MRI (OMRI) is one of the free radical imaging technologies and has been used in biomedical research such as for partial oxygen measurements in tumor, and redox status in acute oxidative diseases. The external magnetic field of OMRI is frequently in the range of 5-10 mTesla to ensure microwave penetration into small animals, and the S/N ratio is limited. In this study, a 0.15 Tesla OMRI was constructed and tested to improve the S/N ratio for a small sample, or skin measurement. Specification of the main magnet was as follows: 0.15 Tesla permanent magnet; gap size 160 mm; homogenous spherical volume of 80 mm in diameter. The OMRI resonator was designed based on TE 101 cavity mode and machined from a phosphorus deoxidized copper block for electron spin resonance (ESR) excitation and a solenoid transmission/receive resonator for NMR detection. The resonant frequencies and Q values were 6.38 MHz/150 and 4.31-4.41 GHz/120 for NMR and ESR, respectively. The Q values were comparable to those of conventional low field OMRI resonators at 15 mTesla. As expected, the MRI S/N ratio was improved by a factor of 30. Triplet dynamic nuclear polarization spectra were observed for 14 N carboxy-PROXYL, along the excitation microwave sweep. In the current setup, the enhancement factor was ca. 0.5. In conclusion, the results of this preliminary evaluation indicate that the 0.15 Tesla OMRI could be useful for free radical measurement for small samples.

  6. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    PubMed Central

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-01-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals. PMID:26960916

  7. Metal-Diazo Radicals of α-Carbonyl Diazomethanes

    NASA Astrophysics Data System (ADS)

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-01

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [RhICl(cod)]2, [CoII(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [RhICl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N• (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C•, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C•, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  8. Metal-Diazo Radicals of α-Carbonyl Diazomethanes.

    PubMed

    Li, Feifei; Xiao, Longqiang; Liu, Lijian

    2016-03-10

    Metal-diazo radicals of α-carbonyl diazomethanes are new members of the radical family and are precursors to metal-carbene radicals. Herein, using electron paramagnetic resonance spectroscopy with spin-trapping, we detect diazo radicals of α-carbonyl diazomethanes, induced by [Rh(I)Cl(cod)]2, [Co(II)(por)] and PdCl2, at room temperature. The unique quintet signal of the Rh-diazo radical was observed in measurements of α-carbonyl diazomethane adducts of [Rh(I)Cl(cod)]2 in the presence of 5,5-dimethyl-pyrroline-1-N-oxide (DMPO). DFT calculations indicated that 97.2% of spin density is localized on the diazo moiety. Co- and Pd-diazo radicals are EPR silent but were captured by DMPO to form spin adducts of DMPO-N∙ (triplet-of-sextets signal). The spin-trapping also provides a powerful tool for detection of metal-carbene radicals, as evidenced by the DMPO-trapped carbene radicals (DMPO-C∙, sextet signal) and 2-methyl-2-nitrosopropane-carbene adducts (MNP-C∙, doublet-of-triplets signal). The transformation of α-carbonyl diazomethanes to metal-carbene radicals was confirmed to be a two-step process via metal-diazo radicals.

  9. New core-pyrene π structure organophotocatalysts usable as highly efficient photoinitiators

    PubMed Central

    Telitel, Sofia; Dumur, Frédéric; Faury, Thomas; Graff, Bernadette; Tehfe, Mohamad-Ali; Fouassier, Jean-Pierre

    2013-01-01

    Summary Eleven di- and trifunctional compounds based on a core-pyrene π structure (Co_Py) were synthesized and investigated for the formation of free radicals. The application of two- and three-component photoinitiating systems (different Co_Pys with the addition of iodonium or sulfonium salts, alkyl halide or amine) was investigated in detail for cationic and radical photopolymerization reactions under near-UV–vis light. The proposed compounds can behave as new photocatalysts. Successful results in terms of rates of polymerization and final conversions were obtained. The strong MO coupling between the six different cores and the pyrene moiety was studied by DFT calculations. The different chemical intermediates are characterized by ESR and laser flash photolysis experiments. The mechanisms involved in the initiation step are discussed, and relationships between the core structure, the Co_Py absorption property, and the polymerization ability are tentatively proposed. PMID:23766803

  10. Photoionization of N,N,N',N'-tetramethylbenzidine in anionic-cationic mixed micelles of sodium dodecyl sulfate-dodecyltrimethylammonium chloride: electron spin resonance and electron spin echo modulation studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivara-Minten, E.; Baglioni, P.; Kevan, L.

    1988-05-05

    Electron spin echo modulation (ESEM) and electron spin resonance (ESR) spectra of the photogenerated N,N,N',N'-tetramethylbenzidine cation radical (TMB/sup +/) in frozen mixed micelles of dodecyltrimethylammonium chloride (DTAC) and sodium dodecyl sulfate (SDS) have been studied as a function of the mixed micelle composition. ESEM effects due to TMB/sup +/ interactions with deuterium in D/sub 2/O show a decrease of the TMB/sup +/-water interaction that depends on the SDS-DTAC mixed micelle composition and reaches a minimum for the equimolar mixed micelle. The efficiency of charge separation upon photoionization of TMB to produce TMB/sup +/ measured by ESR correlates with the degreemore » of water penetration into the micelle. ESEM effects due to interaction of x-doxylstearic acid nitroxide probes with deuterium in D/sub 2/O show that the decrease of water penetration is due to higher surface packing due to electrostatic attraction among the polar headgroups of the two surfactants.« less

  11. META-ANALYSIS OF GENOME-WIDE STUDIES IDENTIFIES WNT16 AND ESR1 SNPS ASSOCIATED WITH BONE MINERAL DENSITY IN PREMENOPAUSAL WOMEN

    PubMed Central

    Koller, Daniel L.; Zheng, Hou-Feng; Karasik, David; Yerges-Armstrong, Laura; Liu, Ching-Ti; McGuigan, Fiona; Kemp, John P.; Giroux, Sylvie; Lai, Dongbing; Edenberg, Howard J.; Peacock, Munro; Czerwinski, Stefan A.; Choh, Audrey C.; McMahon, George; St Pourcain, Beate; Timpson, Nicholas J.; Lawlor, Debbie A; Evans, David M; Towne, Bradford; Blangero, John; Carless, Melanie A.; Kammerer, Candace; Goltzman, David; Kovacs, Christopher S.; Prior, Jerilynn C.; Spector, Tim D.; Rousseau, Francois; Tobias, Jon H.; Akesson, Kristina; Econs, Michael J.; Mitchell, Braxton D.; Richards, J. Brent; Kiel, Douglas P.; Foroud, Tatiana

    2013-01-01

    Previous genome-wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta-analyses of these results have identified numerous SNPs of modest effect at genome-wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta-analysis restricted to premenopausal white women from four cohorts (n= 4,061 women, ages 20 to 45) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. Following imputation, age- and weight-adjusted BMD values were tested for association with each SNP. Association of a SNP in the WNT16 gene (rs3801387; p=1.7 × 10−9) and multiple SNPs in the ESR1/C6orf97 (rs4870044; p=1.3 × 10−8) achieved genome-wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven Replication cohorts that included premenopausal women of European, Hispanic-American, and African-American descent (combined n=5,597 for femoral neck; 4,744 for lumbar spine). When the data from the Discovery and Replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p=1.3 × 10−11; ESR1/C6orf97 joint p= 1.4 × 10−10). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p< 1 × 10−5). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period. PMID:23074152

  12. Upregulation of the ESR1 Gene and ESR Ratio (ESR1/ESR2) is Associated with a Worse Prognosis in Papillary Thyroid Carcinoma: The Impact of the Estrogen Receptor α/β Expression on Clinical Outcomes in Papillary Thyroid Carcinoma Patients.

    PubMed

    Yi, Jin Wook; Kim, Su-Jin; Kim, Jong Kyu; Seong, Chan Yong; Yu, Hyeong Won; Chai, Young Jun; Choi, June Young; Lee, Kyu Eun

    2017-11-01

    A gender disparity exists with respect to the incidence of papillary thyroid cancer (PTC), suggesting that sex hormones such as estrogen play a role in PTC development and progression. In this study, we compared estrogen receptor gene expression patterns in PTCs to determine the clinical significance of estrogen gene expression in PTC. We analyzed ESR1 and ESR2 messenger RNA expression counts using data from The Cancer Genome Atlas (TCGA). To validate the results of TCGA analysis, we analyzed microarray data (GSE 54958) from the Gene Expression Omnibus. ESR1 gene expression and ESR ratio (ESR1/ESR2) were significantly higher in PTC tissues than in paired normal thyroid tissues (mean 659.427 vs. 264.045 for ESR1, 92.017 vs. 19.064 for ESR ratio). Among female patients, ESR1 expression and ESR ratio were negatively correlated with increased age. ESR1 expression and ESR ratio were higher in patients with classic PTC, lymphovascular invasion, BRAF V600E mutation, and radioiodine therapy. Classification analysis demonstrated that higher ESR1 expression and a higher ESR ratio faced a worse overall survival (hazard ratio 6.348 for ESR1, 4.031 for ESR ratio). Validation microarray analysis demonstrated that ESR1 expression and ESR ratio were higher in tumor tissues, classic PTC, and BRAF V600E . Higher ESR1 expression and a higher ESR ratio were associated with aggressive prognostic factors and worse overall survival in female PTC patients. Our results suggest that ESR1 and ESR ratio can be used as prognostic markers to predict female patient survival and have potential as a therapeutic target.

  13. Anchoring ceria nanoparticles on graphene oxide and their radical scavenge properties under gamma irradiation environment.

    PubMed

    Xia, Wei; Zhao, Jun; Wang, Tao; Song, Li; Gong, Hao; Guo, Hu; Gao, Bing; Fan, Xiaoli; He, Jianping

    2017-06-28

    Polymer networks such as those of epoxy resin, as common protection materials, possess radiolytic oxidation degradation effects under gamma irradiation environment, which have a great accelerating effect on the ageing rate and severely limit their potential applications for metal protection in the nuclear industry. To overcome this, we report a simple scheme of anchoring crystalline ceria nanoparticles onto graphene sheets (CG) and incorporate it into the epoxy resin, followed by thermal polymerization to obtain CeO 2 /graphene-epoxy nanocomposite coating (CGNS). We had proven that graphene might act as "interwalls" in the epoxy matrix, which will result in space location-obstruct effect as well as absorb the radicals induced by γ-ray irradiation. Moreover, owing to the interconversion of cerium ions between their +3 and +4 states coupled with the formation of oxygen vacancy defects, electron spin resonance (ESR) detection shows that CeO 2 /graphene (CG) could act as a preferable radical scavenger and achieve better performance in trapping radicals than single graphene based composite. Electrochemical data strongly demonstrate that CeO 2 /graphene is capable of maintaining the anti-corrosion properties under gamma irradiation environment. Therefore, the designed hybrid CeO 2 /graphene-epoxy composite can be considered as potential candidates for protective coatings in nuclear industry.

  14. Temperature dependent behavior of localized and delocalized electrons in nitrogen-doped 6H SiC crystals as studied by electron spin resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenko, D., E-mail: dariyasavchenko@gmail.com; National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv 03056; Kalabukhova, E.

    2016-01-28

    We have studied the temperature behavior of the electron spin resonance (ESR) spectra of nitrogen (N) donors in n-type 6H SiC crystals grown by Lely and sublimation sandwich methods (SSM) with donor concentration of 10{sup 17 }cm{sup −3} at T = 60–150 K. A broad signal in the ESR spectrum was observed at T ≥ 80 K with Lorentzian lineshape and g{sub ||} = 2.0043(3), g{sub ⊥} = 2.0030(3), which was previously assigned in the literature to the N donors in the 1s(E) excited state. Based on the analysis of the ESR lineshape, linewidth and g-tensor we attribute this signal to the conduction electrons (CE). The emergence of the CE ESRmore » signal at T > 80 K was explained by the ionization of electrons from the 1s(A{sub 1}) ground and 1s(E) excited states of N donors to the conduction band while the observed reduction of the hyperfine (hf) splitting for the N{sub k1,k2} donors with the temperature increase is attributed to the motional narrowing effect of the hf splitting. The temperature dependence of CE ESR linewidth is described by an exponential law (Orbach process) with the activation energy corresponding to the energy separation between 1s(A{sub 1}) and 1s(E) energy levels for N residing at quasi-cubic sites (N{sub k1,k2}). The theoretical analysis of the temperature dependence of microwave conductivity measured by the contact-free method shows that due to the different position of the Fermi level in two samples the ionization of free electrons occurs from the energy levels of N{sub k1,k2} donors in Lely grown samples and from the energy level of N{sub h} residing at hexagonal position in 6H SiC grown by SSM.« less

  15. Spin-wave-induced lateral temperature gradient in a YIG thin film/GGG system excited in an ESR cavity

    NASA Astrophysics Data System (ADS)

    Shigematsu, Ei; Ando, Yuichiro; Dushenko, Sergey; Shinjo, Teruya; Shiraishi, Masashi

    2018-05-01

    The lateral thermal gradient of an yttrium iron garnet (YIG) film under microwave application in the cavity of the electron spin resonance system (ESR) was measured at room temperature by fabricating a Cu/Sb thermocouple onto it. To date, thermal transport in YIG films caused by the Damon-Eshbach mode (DEM)—the unidirectional spin-wave heat conveyer effect—was demonstrated only by the excitation using coplanar waveguides. Here, we show that the effect exists even under YIG excitation using the ESR cavity—a tool often employed to realize spin pumping. The temperature difference observed around the ferromagnetic resonance field under 4 mW microwave power peaked at 13 mK. The observed thermoelectric signal indicates the imbalance of the population between the DEMs that propagate near the top and bottom surfaces of the YIG film. We attribute the DEM population imbalance to different magnetic dampings near the top and bottom YIG surfaces. Additionally, the spin wave dynamics of the system were investigated using the micromagnetic simulations. The micromagnetic simulations confirmed the existence of the DEM imbalance in the system with increased Gilbert damping at one of the YIG interfaces. The reported results are indispensable to the quantitative estimation of the electromotive force in the spin-charge conversion experiments using ESR cavities.

  16. AMS 14C analysis of teeth from archaeological sites showing anomalous esr dating results

    NASA Astrophysics Data System (ADS)

    Grün, Rainer; Abeyratne, Mohan; Head, John; Tuniz, Claudio; Hedges, Robert E. M.

    We have carried out AMS radiocarbon analysis on two groups of samples: the first one gave reasonable ESR age estimates and the second one yielded serious age underestinations. All samples were supposedly older than 35 ka, the oldest being around 160 ka. Two pretreatment techniques were used for radiocarbon dating: acid evolution and thermal release. Heating to 600, 750 and 900°C combined with total de-gassing at these temperatures was chosen to obtain age estimates on the organic fraction, secondary carbonates and original carbonate present in the hydroxyapatite mineral phase, respectively. All radiocarbon results present serious age underestimations. The secondary carbonate fraction gives almost modern results indicating an extremely rapid exchange of this component. Owing to this very rapid carbonate exchange it is not likely that the ESR signals used for dating are associated with the secondary carbonates. One tooth from Tabun with independent age estimates of >150 ka was further investigated by the Oxford AMS laboratory, yielding an age estimate of 1930±100 BP on the residual collagen from dentine and 18,000±160 BP on the carbonate component of the enamel bioapatite. We did not, however, find an explanation of why some samples give serious ESR underestimatioils whilst many others provide reasonable results.

  17. Effect of Low Nickel Dopant on Torque Transducer Response Function in High-Chromium Content ESR Stainless Tool Steels

    NASA Astrophysics Data System (ADS)

    Wiewel, Joseph L.; Hecox, Bryan G.; Orris, Jason T.; Boley, Mark S.

    2007-03-01

    The change in magnetoelastic torque transducer response was investigated as a low nickel content (up to 0.2%) is alloyed into an ESR (Electro-Slag-Refining) stainless tool steel with a chromium content of around 13%, which our previous studies have proven to be the ideal level of chromium content for optimal transducer performance. Two separate hollow steel 3/4-inch diameter shafts were prepared from ESR 416 and ESR 420 steel, respectively, the first having no nickel content and the second having 0.2% nickel content. The heat treatment of these steels consisted of a hardening process conducted in a helium atmosphere at 1038^oC, followed by an annealing at 871^oC for 5h and a 15^oC cool down rate. Prior and subsequent to the heat treatment processes, the circumferential and axial magnetic hysteresis properties of the samples were measured and their external field signals were mapped over the magnetically polarized regions both with and without applied shear stress up to 2500 psi on the samples. It was found that the effect of the low nickel dopant was to improve torque transducer sensitivity and linearity, but heat treatment worsened the performance of both samples.

  18. Radiation effects in x-irradiated hydroxy compounds

    NASA Astrophysics Data System (ADS)

    Budzinski, Edwin E.; Potter, William R.; Box, Harold C.

    1980-01-01

    Radiation effects are compared in single crystals of xylitol, sorbitol, and dulcitol x-irradiated at 4.2 °K. In xylitol and dulcitol, but not in sorbitol, a primary oxidation product is identified as an alkoxy radical. ENDOR measurements detected three proton hyperfine couplings associated with the alkoxy ESR absorption, one of which is attributed to a proton three bond lengths removed from the seat of unpaired spin density. Intermolecular trapping of electrons is observed in all three crystals. ENDOR measurements were made of the hyperfine couplings between the trapped electron and the hydroxy protons forming the trap.

  19. Oligothiophene bipyridine alternate copolymers and their ruthenium metalated analogues: in situ ESR and UV-vis investigations of metal-chain interactions.

    PubMed

    Lafolet, F; Genoud, F; Divisia-Blohorn, B; Aronica, C; Guillerez, S

    2005-07-07

    In situ electron spin resonance (ESR) and UV-vis spectro-electrochemical studies have been performed on two copolymers consisting of alternating subunits of regioregular head to tail (HT) coupled 3-octylthiophene tetramer and 2,2'-bipyridine subunits (P4) or 3-octylthiophene hexamer subunits of the same regioregularity and 2,2'-bipyridine subunits (P6). Both P4 and P6 have been investigated in their metal-free form as well as in the ruthenium(II) metalated form (P4-Ru and P6-Ru). P4 and P6 in the p-doped state exhibit a clear ESR signal characteristic of the presence of polarons in the oligothienylene subunits. In the case of P4, no recombination of polarons into bipolarons is observed, whereas the recombination process takes place in P6. The formation of bipolarons is well-rationalized in terms of the conjugation length, and it seems clear that the higher length of the oligothiophene subunit in P6( )()stabilizes bipolarons(.)() The same effect, is induced by the coordination of -Ru(bpy)(2)(2+) to the bipyridine unit in the metalated form of both polymers, which results in an increase of the conjugation length. Important information is gained from the analysis of the ESR spectra of both nonmetalated and metalated in the oxidized (p-doped) and reduced (n-doped) forms. In the p-doped state both nonmetalated and metalated polymers reveal the presence of a narrow ESR line characteristic of the mobile spin carriers in the polymer matrix. The oxidation of the metal center occurs at higher potentials and leads to an irreversible destruction of the system. To the contrary, in the reduced (n-doped) state the ESR lines of the nonmetalated and metalated polymers markedly differ. A significant line broadening with simultaneous change of the g-value is caused by spin-orbit coupling phenomenon induced by the presence of the coordinating metal. Finally, the observation of a clear polaronic band in the UV-vis spectrum of p-doped P4 and its strong dependence on the applied potential can be clearly correlated with the potential induced changes in the ESR spin density. The same applies to P4-Ru, where the changes in the polaronic and bipolaronic bands can also be correlated with the ESR spin density changes.

  20. Magnetic and electron spin resonance studies of W doped CoFe2O4 polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Singamaneni, S. R.; Martinez, L. M.; Swadipta, R.; Ramana, C. V.

    2018-05-01

    We report the magnetic and electron spin resonance (ESR) properties of W doped CoFe2O4 polycrystalline materials, prepared by standard solid-state reaction method. W was doped (0-15%) in CFO lattice on Fe site. Isothermal magnetization measurements reveal that the coercive field (Hc) (1300-2200 Oe) and saturation magnetization MS (35-82 emu/g) vary strongly as a function of W doping at all the temperatures (4-300 K) measured. We believe that a strong decrease in magnetic anisotropy in CFO after doping with W could cause a decrease in Hc. Up on doping CFO with W in place of Fe, the process transforms part of Fe3+ into Fe2+ due to the creation of more oxygen vacancies. This hinders the super-exchange interaction between Fe3+ and Fe2+, which causes a decrease in MS. Zero-field cooled (ZFC) and field cooled (FC, 1000 Oe) magnetization responses measured at 4 K on 1% W doped CFO show no indication of exchange bias, inferring that there are no other microscopic secondary magnetic phases (no segregation). This observation is corroborated by ESR (9.398 GHz) measurements collected as a function of temperature (10-150 K) and W doping (0-15%). We find that ESR spectra did not change after doping with W above 0.5%. However, ESR spectra collected from 0.5% W doped CFO sample showed a strong temperature dependence. We observed several ESR signals from 0.5% W doped CFO sample that could be due to phase separation.

  1. Visible-light-driven photocatalytic activation of peroxymonosulfate by Cu2(OH)PO4 for effective decontamination.

    PubMed

    Liu, Guoshuai; Zhou, Yanan; Teng, Jie; Zhang, Jinna; You, Shijie

    2018-06-01

    The advanced oxidation process (AOP) based on SO 4 - radicals draws an increasing interest in water and wastewater treatment. Producing SO 4 - radicals from the activation of peroxymonosulfate (PMS) by transition metal ions or oxides may be problematic due to high operational cost and potential secondary pollution caused by metal leaching. To address this challenge, the present study reports the efficient production of SO 4 - radicals through visible-light-driven photocatalytic activation (VL-PCA) of PMS by using Cu 2 (OH)PO 4 single crystal for enhanced degradation of a typical recalcitrant organic pollutant, i.e., 2,4-dichlorophenol (2,4-DCP). It took only 7 min to achieve almost 100% removal of 2,4-DCP in the Cu 2 (OH)PO 4 /PMS system under visible-light irradiation and pH-neutral condition. The 2,4-DCP degradation was positively correlated to the amount of Cu 2 (OH)PO 4 and PMS. Both OH and SO 4 - radicals were responsible for enhanced degradation performance, indicated by radical scavenger experiments and electron spin resonance (ESR) measurements. The Cu 2 (OH)PO 4 single crystal exhibited good cyclic stability and negligible metal leaching. According to density functional theory (DFT) calculations, the visible-light-driven transformation of two copper states between trigonal bipyramidal sites and octahedral sites in the crystal structure of Cu 2 (OH)PO 4 facilitates the generation of OH and SO 4 - radicals from the activation of PMS and cleavage of O-O bonds. This study provides the proof-in-concept demonstration of activation of PMS driven by visible light, making the SO 4 - radicals-based AOPs much easier, more economical and more sustainable in engineering applications for water and wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. ESR1 and its antagonist fulvestrant in pituitary adenomas.

    PubMed

    Gao, Hua; Xue, Yake; Cao, Lei; Liu, Qian; Liu, Chunhui; Shan, Xiaosong; Wang, Hongyun; Gu, Yi; Zhang, Yazhuo

    2017-03-05

    Estrogen has a key role in the pathogenesis of pituitary adenomas (PAs). The study was to evaluate the estrogen receptor alpha (ESR1) level in 289 PAs cases, its association with clinicopathologic features and serving as a target of cancer treatment. In this study, the ESR1 level was evaluated by tissue microarray (TMA). The effect of fulvestrant was determined by an animal model of prolactinoma established by subcutaneous injection of 17β-estradiol in F344 rats. The volume and weight of the pituitary were assessed in the different groups. The effects of fulvestrant on cell proliferation and cell invasion were explored in the pituitary adenoma cell lines GH3 and JT1-1. The ESR1-positive cells rates of 191/289 cases were more than 50%. And ESR1 high level cases (age≥50) were 103/133, and 88/156 in cases (age<50) (X 2  = 14.17, p = 0.0001). The average weight of the pituitary gland in F344 rat tumor model induced by 17-β-estradiol was 38.6 ± 11.2 mg, almost 6 times higher than control group (6.2 ± 1.7 mg). Fulvestrant significantly reduced the weight of the pituitary and its inhibition rate was 68.4 ± 8.3%. TUNEL assay and Western blotting showed that fulvestrant induced apoptotic cell death in vivo and in vitro. PTEN/MAPK signaling pathways were activated in response to fulvestrant treatment in GH3 cells. U0126 partly rescued cell viability of GH3 cells after fulvestrant exposure. ESR1 can be a potential target for PAs, especially for elder GHomas and NFPAs. Fulvestrant may be a new choice for the treatment of PAs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Identifying the Jaramillo Subchron in cave sediments using ESR

    NASA Astrophysics Data System (ADS)

    Pares, J. M.; Moreno, D.; Duval, M.

    2017-12-01

    The Jaramillo Subchron is represented by marine isotope stages 31 to 28, a period that embodies a fundamental shift in the Earth's climate known as the Early-Middle Pleistocene transition (EMPT). Also, this time interval is a critical period in human evolution and therefore identifying the Jaramillo provides an invaluable timeline. The correlation of magnetic chrons to the GPTS in sediments is typically hampered by the lack of a tie-point, as radiometric methods are rarely appropriate. In this study we combine Electron Spin Resonance (ESR) results from quartz grains, and paleomagnetism to identify the Jaramillo Subchron in cave sediments that include artifact-bearing layers. The ESR age estimate is basically derived from the determination of the equivalent dose, which is the laboratory estimate of the total dose absorbed by the sample since the ESR signal has been last reset to zero by sunlight exposure, and the dose rate, which is an estimation of the mean dose annually absorbed by the sample. The magnetostratigraphic study, based on more than 140 specimens over 20 meters-thick sedimentary sequence, results in three major reversals, which are interpreted from top to bottom as the Matuyama-Brunhes boundary and the Jaramillo Subchron. Both sediments and speleothems generally carry stable remanent magnetization directions mostly residing in magnetite, as supported by progressive alternating field (AF) demagnetization and rock magnetism. ESR dating on quartz grains from an 80 cm-thick stratigraphic layer that displays normal polarity gives an age of 0.84±0.12 Ma, consistent within the error with the current ages of the Jaramillo Subchron. Documenting the Jaramillo in fossiliferous sediments is important because it saw the EMPT and associated faunal turnover, as well as the expansion of hominins outside Africa. Also, this study highlights the potential of ESR dating on quartz grains from cave sediments to interpret magnetostratigraphic records.

  4. [Study of free radicals in aqueous humor in glaucoma and cataracts: differences in presence or absence of diabetes mellitus and neovascular glaucoma].

    PubMed

    Oshida, Eiki; Arai, Kiyomi; Sakai, Miki; Chikuda, Makoto

    2014-09-01

    This study was conducted for the purpose of comparing differences in the types of free radicals in the aqueous humor of glaucoma and cataract patients. Free radicals in the aqueous humor of 44 glaucoma eyes and 15 cataract eyes were measured by electron spin resonance (ESR), followed by comparing the detection rates. In addition, subgroup analyses were also conducted for the presence or absence of complications of diabetes mellitus (DM) and neovascular glaucoma (NVG) in the patients. Three types of free radicals were measured, ascorbate-free radical (AFR), AFR containing a trace amount of superoxide (SO) (AFR +), and SO containing a trace amount of AFR (SO +). Significant differences were observed in the detection rates of each type between the glaucoma group (maximum SO +) and the cataract group (maximum AFR), between the DM group (maximum SO +) and the non-DM group (maximum AFR) in the glaucoma, and between the DM group (maximum AFR +) and the non-DM group (maximum AFR) in the cataract. SO + was detected in all cases of NVG regardless of whether they were DM or non-DM. Glaucoma cases are more susceptible to the generation of SO in the aqueous humor than cataracts, and they are more liable to occur in DM than in non-DM in both glaucoma and cataract cases. This study suggest an evidence for a strong correlation with SO and vascularization in NVG.

  5. Characterization of Free Radicals Formed from COX-Catalyzed DGLA Peroxidation

    PubMed Central

    Xiao, Ying; Gu, Yan; Purwaha, Preeti; Ni, Kunyi; Law, Benedict; Mallik, Sanku; Qian, Steven Y.

    2011-01-01

    Like arachidonic acid (AA), dihomo-γ-linolenic acid (DGLA) is a 20-carbon ω-6 polyunsaturated fatty acid and a substrate of cyclooxygenase (COX). Through free radical reactions, COX metabolizes DGLA and AA to form well-known bioactive metabolites, namely, the 1- and 2-series of prostaglandins (PGs1 and PGs2), respectively. Unlike PGs2, which are viewed as pro-inflammatory, PGs1 possess anti-inflammatory and anticancer activities. However, the mechanisms linking the PGs to their bioactivities are still unclear, and radicals generated in COX-DGLA have not been detected. In order to better understand PGs biology and determine whether different reactions occur in COX-DGLA than in COX-AA, we have used LC/ESR/MS with a spin trap, α-[4-pyridyl-1-oxide]-N-tert-butyl nitrone (POBN), to characterize the carbon-centered radicals formed from COX-DGLA in vitro, including cellular peroxidation. A total of five types of DGLA-derived radicals were characterized as POBN adducts: m/z 266, m/z 296 and m/z 550 (same as and/or similar to COX-AA), and m/z 324 and m/z 354 (exclusively from COX-DGLA). Our results suggested that C-15 oxygenation to form PGGs occurs in both COX-DGLA and COX-AA; however, C-8 oxygenation occurs exclusively in COX-DGLA. This new finding will be further investigated for its association with different bioactivities of PGs, with potential implications for inflammatory diseases. PMID:21310230

  6. Disruption of estrogen receptor signaling enhances intestinal neoplasia in Apc(Min/+) mice.

    PubMed

    Cleveland, Alicia G; Oikarinen, Seija I; Bynoté, Kimberly K; Marttinen, Maija; Rafter, Joseph J; Gustafsson, Jan-Ake; Roy, Shyamal K; Pitot, Henry C; Korach, Kenneth S; Lubahn, Dennis B; Mutanen, Marja; Gould, Karen A

    2009-09-01

    Estrogen receptors (ERs) [ERalpha (Esr1) and ERbeta (Esr2)] are expressed in the human colon, but during the multistep process of colorectal carcinogenesis, expression of both ERalpha and ERbeta is lost, suggesting that loss of ER function might promote colorectal carcinogenesis. Through crosses between an ERalpha knockout and Apc(Min) mouse strains, we demonstrate that ERalpha deficiency is associated with a significant increase in intestinal tumor multiplicity, size and burden in Apc(Min/+) mice. Within the normal intestinal epithelium of Apc(Min/+) mice, ERalpha deficiency is associated with an accumulation of nuclear beta-catenin, an indicator of activation of the Wnt-beta-catenin-signaling pathway, which is known to play a critical role in intestinal cancers. Consistent with the hypothesis that ERalpha deficiency is associated with activation of Wnt-beta-catenin signaling, ERalpha deficiency in the intestinal epithelium of Apc(Min/+) mice also correlated with increased expression of Wnt-beta-catenin target genes. Through crosses between an ERbeta knockout and Apc(Min) mouse strains, we observed some evidence that ERbeta deficiency is associated with an increased incidence of colon tumors in Apc(Min/+) mice. This effect of ERbeta deficiency does not involve modulation of Wnt-beta-catenin signaling. Our studies suggest that ERalpha and ERbeta signaling modulate colorectal carcinogenesis, and ERalpha does so, at least in part, by regulating the activity of the Wnt-beta-catenin pathway.

  7. Disruption of estrogen receptor signaling enhances intestinal neoplasia in ApcMin/+ mice

    PubMed Central

    Cleveland, Alicia G.; Oikarinen, Seija I.; Bynoté, Kimberly K.; Marttinen, Maija; Rafter, Joseph J.; Gustafsson, Jan-Åke; Roy, Shyamal K.; Pitot, Henry C.; Korach, Kenneth S.; Lubahn, Dennis B.; Mutanen, Marja; Gould, Karen A.

    2009-01-01

    Estrogen receptors (ERs) [ERα (Esr1) and ERβ (Esr2)] are expressed in the human colon, but during the multistep process of colorectal carcinogenesis, expression of both ERα and ERβ is lost, suggesting that loss of ER function might promote colorectal carcinogenesis. Through crosses between an ERα knockout and ApcMin mouse strains, we demonstrate that ERα deficiency is associated with a significant increase in intestinal tumor multiplicity, size and burden in ApcMin/+ mice. Within the normal intestinal epithelium of ApcMin/+ mice, ERα deficiency is associated with an accumulation of nuclear β-catenin, an indicator of activation of the Wnt–β-catenin-signaling pathway, which is known to play a critical role in intestinal cancers. Consistent with the hypothesis that ERα deficiency is associated with activation of Wnt–β-catenin signaling, ERα deficiency in the intestinal epithelium of ApcMin/+ mice also correlated with increased expression of Wnt–β-catenin target genes. Through crosses between an ERβ knockout and ApcMin mouse strains, we observed some evidence that ERβ deficiency is associated with an increased incidence of colon tumors in ApcMin/+ mice. This effect of ERβ deficiency does not involve modulation of Wnt–β-catenin signaling. Our studies suggest that ERα and ERβ signaling modulate colorectal carcinogenesis, and ERα does so, at least in part, by regulating the activity of the Wnt–β-catenin pathway. PMID:19520794

  8. Diverse CLE peptides from cyst nematode species

    USDA-ARS?s Scientific Manuscript database

    Plant CLAVATA3/ESR (CLE)-like peptides play diverse roles in plant growth and development including maintenance of the stem cell population in the root meristem. Small secreted peptides sharing similarity to plant CLE signaling peptides have been isolated from several cyst nematode species including...

  9. Role of nematode peptides and other small molecules in plant parasitism

    USDA-ARS?s Scientific Manuscript database

    Molecular, genetic, and biochemical studies are demonstrating an increasingly important role of peptide signaling in nematode parasitism of plants. To date, the majority of nematode-secreted peptides identified share similarity with plant CLAVATA3/ESR (CLE) peptides, but bioinformatics analyses of n...

  10. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend.

    PubMed

    Godoi, Ricardo H M; Polezer, Gabriela; Borillo, Guilherme C; Brown, Andrew; Valebona, Fabio B; Silva, Thiago O B; Ingberman, Aline B G; Nalin, Marcelo; Yamamoto, Carlos I; Potgieter-Vermaak, Sanja; Penteado Neto, Renato A; de Marchi, Mary Rosa R; Saldiva, Paulo H N; Pauliquevis, Theotonio; Godoi, Ana Flavia L

    2016-08-01

    Although the particulate matter (PM) emissions from biodiesel fuelled engines are acknowledged to be lower than those of fossil diesel, there is a concern on the impact of PM produced by biodiesel to human health. As the oxidative potential of PM has been suggested as trigger for adverse health effects, it was measured using the Electron Spin Resonance (OP(ESR)) technique. Additionally, Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was employed to determine elemental concentration, and Raman Spectroscopy was used to describe the amorphous carbon character of the soot collected on exhaust PM from biodiesel blends fuelled test-bed engine, with and without Selective Catalytic Reduction (SCR). OP(ESR) results showed higher oxidative potential per kWh of PM produced from a blend of 20% soybean biodiesel and 80% ULSD (B20) engine compared with a blend of 5% soybean biodiesel and 95% ULSD (B5), whereas the SCR was able to reduce oxidative potential for each fuel. EDXRF data indicates a correlation of 0.99 between concentration of copper and oxidative potential. Raman Spectroscopy centered on the expected carbon peaks between 1100cm(-1) and 1600cm(-1) indicate lower molecular disorder for the B20 particulate matter, an indicative of a more graphitic carbon structure. The analytical techniques used in this study highlight the link between biodiesel engine exhaust and increased oxidative potential relative to biodiesel addition on fossil diesel combustion. The EDXRF analysis confirmed the prominent role of metals on free radical production. As a whole, these results suggest that 20% of biodiesel blends run without SCR may pose an increased health risk due to an increase in OH radical generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism

    PubMed Central

    Sapkota, Yadav; Steinthorsdottir, Valgerdur; Morris, Andrew P.; Fassbender, Amelie; Rahmioglu, Nilufer; De Vivo, Immaculata; Buring, Julie E.; Zhang, Futao; Edwards, Todd L.; Jones, Sarah; O, Dorien; Peterse, Daniëlle; Rexrode, Kathryn M.; Ridker, Paul M.; Schork, Andrew J.; MacGregor, Stuart; Martin, Nicholas G.; Becker, Christian M.; Adachi, Sosuke; Yoshihara, Kosuke; Enomoto, Takayuki; Takahashi, Atsushi; Kamatani, Yoichiro; Matsuda, Koichi; Kubo, Michiaki; Thorleifsson, Gudmar; Geirsson, Reynir T.; Thorsteinsdottir, Unnur; Wallace, Leanne M.; Werge, Thomas M.; Thompson, Wesley K.; Yang, Jian; Velez Edwards, Digna R.; Nyegaard, Mette; Low, Siew-Kee; Zondervan, Krina T.; Missmer, Stacey A.; D'Hooghe, Thomas; Montgomery, Grant W.; Chasman, Daniel I.; Stefansson, Kari; Tung, Joyce Y.; Nyholt, Dale R.

    2017-01-01

    Endometriosis is a heritable hormone-dependent gynecological disorder, associated with severe pelvic pain and reduced fertility; however, its molecular mechanisms remain largely unknown. Here we perform a meta-analysis of 11 genome-wide association case-control data sets, totalling 17,045 endometriosis cases and 191,596 controls. In addition to replicating previously reported loci, we identify five novel loci significantly associated with endometriosis risk (P<5 × 10−8), implicating genes involved in sex steroid hormone pathways (FN1, CCDC170, ESR1, SYNE1 and FSHB). Conditional analysis identified five secondary association signals, including two at the ESR1 locus, resulting in 19 independent single nucleotide polymorphisms (SNPs) robustly associated with endometriosis, which together explain up to 5.19% of variance in endometriosis. These results highlight novel variants in or near specific genes with important roles in sex steroid hormone signalling and function, and offer unique opportunities for more targeted functional research efforts. PMID:28537267

  12. An investigation of the iron-sulphur proteins of benzene dioxygenase from Pseudomonas putida by electron-spin-resonance spectroscopy.

    PubMed Central

    Geary, P J; Saboowalla, F; Patil, D; Cammack, R

    1984-01-01

    Benzene dioxygenase from Pseudomonas putida comprises three components, namely a flavoprotein (NADH:ferredoxin oxidoreductase; Mr 81000), an intermediate electron-transfer protein, or ferredoxin (Mr 12000) with a [2Fe-2S] cluster, and a terminal dioxygenase containing two [2Fe-2S] iron-sulphur clusters (Mr 215000), which requires two additional Fe2+ atoms/molecule for oxygenase activity. The ferredoxin and the dioxygenase give e.s.r. signals in the reduced state with rhombic symmetry and average g values of 1.92 and 1.896 respectively. The mid-point redox potentials were determined by e.s.r. titration at pH 7.0 to be -155 mV and -112 mV respectively. The signal from the dioxygenase shows pronounced g anisotropy and most closely resembles those of 4-methoxybenzoate mono-oxygenase from Pseudomonas putida and the [2Fe-2S] 'Rieske' proteins of the quinone-cytochrome c region of electron-transport chains of respiration and photosynthesis. PMID:6324743

  13. A protocol for detecting and scavenging gas-phase free radicals in mainstream cigarette smoke.

    PubMed

    Yu, Long-Xi; Dzikovski, Boris G; Freed, Jack H

    2012-01-02

    Cigarette smoking is associated with human cancers. It has been reported that most of the lung cancer deaths are caused by cigarette smoking (5,6,7,12). Although tobacco tars and related products in the particle phase of cigarette smoke are major causes of carcinogenic and mutagenic related diseases, cigarette smoke contains significant amounts of free radicals that are also considered as an important group of carcinogens(9,10). Free radicals attack cell constituents by damaging protein structure, lipids and DNA sequences and increase the risks of developing various types of cancers. Inhaled radicals produce adducts that contribute to many of the negative health effects of tobacco smoke in the lung(3). Studies have been conducted to reduce free radicals in cigarette smoke to decrease risks of the smoking-induced damage. It has been reported that haemoglobin and heme-containing compounds could partially scavenge nitric oxide, reactive oxidants and carcinogenic volatile nitrosocompounds of cigarette smoke(4). A 'bio-filter' consisted of haemoglobin and activated carbon was used to scavenge the free radicals and to remove up to 90% of the free radicals from cigarette smoke(14). However, due to the cost-ineffectiveness, it has not been successfully commercialized. Another study showed good scavenging efficiency of shikonin, a component of Chinese herbal medicine(8). In the present study, we report a protocol for introducing common natural antioxidant extracts into the cigarette filter for scavenging gas phase free radicals in cigarette smoke and measurement of the scavenge effect on gas phase free radicals in mainstream cigarette smoke (MCS) using spin-trapping Electron Spin Resonance (ESR) Spectroscopy(1,2,14). We showed high scavenging capacity of lycopene and grape seed extract which could point to their future application in cigarette filters. An important advantage of these prospective scavengers is that they can be obtained in large quantities from byproducts of tomato or wine industry respectively(11,13).

  14. Differential association of ESR1 and ESR2 gene variants with the risk of breast cancer and associated features: A case-control study.

    PubMed

    Ghali, Rabeb M; Al-Mutawa, Maryam A; Al-Ansari, Abrar K; Zaied, Sonia; Bhiri, Hanen; Mahjoub, Touhami; Almawi, Wassim Y

    2018-04-20

    Estrogen is key to breast cancer pathogenesis, and acts by binding its receptor (ER), which exists as ERα and ERβ, encoded by ESR1 and ESR2 genes, respectively. Studies that investigated the association of ESR1 and ESR2 variants with breast cancer yielded mixed outcome, and ethnic contribution was proposed. We evaluated the association between ESR1 and ESR2 variants and breast cancer and associated features in Tunisian women. Retrospective case-control study involving 207 female breast cancer patients, and 284 control women. Genotyping was done by real-time PCR. Minor allele frequencies (MAF) of tagging SNPs rs2234693 and rs3798577 (ESR1) were significantly higher, while MAF of rs1256049 (ESR2) was significantly lower in breast cancer patients vs. Patients carrying rs3798577 genotypes had higher risk, while rs1256049 genotype carriers had reduced risk of breast cancer. The association of ESR1 and ESR2 gene variants with breast cancer depended on ER and Her-2 status. ESR1 rs3798577 and ESR2 rs1256049 were associated with breast cancer in ER-positive cases, and ESR1 rs2234693, and rs3798577 were associated with breast cancer in Her-2-negative cases, while the association of ESR2 rs1256049 with breast cancer was seen in Her-2 positive cases. Haploview analysis identified 4-locus ESR1 haplotypes that were positively (CGTT, TACC, and TACT), and negatively (CGTC) associated with breast cancer. No ESR2 haplotypes associated with breast cancer were identified. ESR1 alleles and genotypes, and specific 3-locus ESR1 haplotypes are related with increased breast cancer susceptibility in Tunisian women. However, ESR2 variant and specific 1-locus ESR1 haplotype have a protective effect. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Formation of 3-MCPD Fatty Acid Esters from Monostearoyl Glycerol and the Thermal Stability of 3-MCPD Monoesters.

    PubMed

    Zhao, Yue; Zhang, Yaqiong; Zhang, Zhongfei; Liu, Jie; Wang, Yi-Lin; Gao, Boyan; Niu, Yuge; Sun, Xiangjun; Yu, Liangli

    2016-11-23

    Formation of 3-monochloropropanediol (3-MCPD) esters from monostearoyl glycerol (MSG) was investigated under high temperature and low moisture conditions. Different organic and inorganic chlorides, including lindane, KCl, CaCl 2 , NaCl, MgCl 2 , AlCl 3 , CuCl 2 , MnCl 2 , SnCl 2 , ZnCl 2 , and FeCl 3 , were evaluated for their potential to react with MSG to form 3-MCPD and glycidyl esters at 120 and 240 °C using a UPLC-Q-TOF MS analysis. The results indicated that different chlorine compounds differed in their capacity to react with MSG and formed different products including 3-MCPD mono- and diesters, distearoylglycerol, and glycidyl esters. According to electron spin resonance (ESR) and Fourier transform infrared (FT-IR) spectroscopies, free radical mediated formation mechanisms involving either five-membered or six-membered cyclic acyloxonium free radicals (CAFR) from monoacylglycerol (MAG) were proposed. Tandem quadrupole-time-of-flight (Q-TOF) MS and MS/MS analyses confirmed the free radical mechanisms. In addition, the results from the present study showed that 3-MCPD monoester could be degraded upon thermal treatment and suggested a possible catalytic role of Fe 3+ under the experimental conditions.

  16. Stabilization of polar soils organic matter: insights from 13-C NMR and ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Abakumov, Evgeny

    2017-04-01

    Polar soils play a key role in the global carbon balance, as they contain maximum stocks of soil organic matter (SOM) within the whole pedosphere. Low temperature and severe conditions provides the accumulation of large amounts of organic matter in permafrost soils over thousands of years. The quality and composition of organic matter of polar soils is underestimated. In order to better understand the implication of permafrost SOM to greenhouse gas emissions, an accurate knowledge of its spatial distribution, both in terms of quantity and quality (i.e. biodegradability, chemical composition and humification degree) is needed. The chemical composition of SOM determines its decomposability and, therefore, it determines the rate at which carbon may be transferred from soils to the atmosphere under warming conditions. Biodegradability of SOM has been related to humification degree, as more advanced stages in the humification process imply a depletion of the labile molecules, as well as an increase in the bulk aromaticity, which provides a higher stability of the SOM. Soils from Antarctic and different sectors of Arctic biome were investigated by 13-C NMR and electron spin resonance spectroscopy. It was shown, that the characteristic feature of polar soils humic acids is the dominance of aliphatic compounds on the aromatic one. This is related to the humification precursors component composition, namely to dominance of the remnants of lower plants, especially in Antarctic and low period of biological activity, which regulates the humification rate. Humic acids of Antarctic and various Arctic soils show the portion of aromatic components not more than 30 %. ESR spectroscopy shown that the concentration of free radicals is proportional to the humic acids stabilization degree. Less humified organic materials show the highest portion of free radical content, while the most developed soils and buried organic layers show decreased contents of free radicals. The database on soil organic matter composition of polar soil should be created with aim to evaluate current state of the humosphere and to provide the prognostic scenarios of possible mineralisation of humus.

  17. Successful combination of electron spin resonance, luminescence and palaeomagnetic dating methods allows reconstruction of the Pleistocene evolution of the lower Moulouya river (NE Morocco)

    NASA Astrophysics Data System (ADS)

    Bartz, Melanie; Rixhon, Gilles; Duval, Mathieu; King, Georgina E.; Álvarez Posada, Claudia; Parés, Josep M.; Brückner, Helmut

    2018-04-01

    Based on a combination of Electron Spin Resonance (ESR) dating of quartz, luminescence dating of K-feldspar and palaeomagnetism, this study presents the first chronostratigraphic framework for the Pleistocene fluvial deposits of the lower Moulouya river in the Triffa basin (NE Morocco). K-feldspar pIRIR225 and pIRIR290 signals of all samples are saturated, suggesting fluvial deposition at least as early as the Middle Pleistocene (∼0.39-0.80 Ma). Consequently, further chronological information was obtained with ESR dating of quartz grains from the ancient Pleistocene fluvial deposits. As for ESR, the multiple centres approach provides equivalent dose values derived from the Al and Ti centres that mostly agree within 1σ-error, suggesting complete signal resetting from the former during fluvial transport. ESR dating results yield Calabrian deposition ages for all river profiles from ∼1.1 to ∼1.5 Ma. These ages are remarkably consistent with the palaeomagnetic results: the occurrence of mostly reversed polarity in the deposits indicates a Matuyama age (>0.78 Ma). While low incision rates in the Triffa basin (0.025 ± 0.003 mm/a) related to thrusting activity during the Calabrian could be inferred, the fluvial record points to an acyclic and discontinuous sedimentation pattern over the last ∼1.3 Ma. It thereby probably rules out climate as the main driver for fluvial aggradation in the lowermost sedimentary basin. At a regional scale, several indicators point to transient fluvial response resulting from major Quaternary tectonic activity along the Beni Snassen gorge, located directly upstream of the investigated basin. We suggest that a capture event at the margin of the uplifting Beni Snassen massif occurred between 1.04 and 1.36 Ma at the latest and subsequently led to the creation of the gorge.

  18. Electron spin relaxation of synthetic melanin and melanin-containing human tissues as studied by electron spin echo and electron spin resonance.

    PubMed

    Okazaki, M; Kuwata, K; Miki, Y; Shiga, S; Shiga, T

    1985-10-01

    Electron spin lattice relaxation times (T1) and the phase memory times (Tm) were obtained for the synthetic melanin system from 3-hydroxytyrosine (dopa) by means of electron spin echo spectroscopy at 77 degrees K. Saturation behavior of the ESR spectra of melanins in melanin-containing tissue and of the synthetic melanin was also determined at the same temperature. The spin lattice relaxation time and the spectral diffusion time of the synthetic melanin are very long (4.3 ms and 101 microseconds, respectively, in the solid state), and the ESR signal saturates readily at low microwave powers. On the other hand, ESR spectra of natural melanins from the tissues chosen for this study, as well as those of synthetic melanins which contain Fe3+ of g = 4.3 and Mn2+ of g = 2, are relatively difficult to saturate compared with samples without such metal ions. These results show clearly that a large part of those two metal ions in sites responsible for the ESR spectral components with these particular g values are coordinated to melanin in melanin-containing tissue, and modify the magnetic relaxation behavior of the melanin. Accumulations of these metal ions in melanins are different from system to system, and they increase in the order: hair (black), retina and choroid (brown), malignant melanoma of eye and skin, and lentigo and nevus of skin.

  19. Fingerprints of single nuclear spin energy levels using STM - ENDOR

    NASA Astrophysics Data System (ADS)

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus (63Cu, 65Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus (14N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis.

  20. Fingerprints of single nuclear spin energy levels using STM - ENDOR.

    PubMed

    Manassen, Yishay; Averbukh, Michael; Jbara, Moamen; Siebenhofer, Bernhard; Shnirman, Alexander; Horovitz, Baruch

    2018-04-01

    We performed STM-ENDOR experiments where the intensity of one of the hyperfine components detected in ESR-STM is recorded while an rf power is irradiated into the tunneling junction and its frequency is swept. When the latter frequency is near a nuclear transition a dip in ESR-STM signal is observed. This experiment was performed in three different systems: near surface SiC vacancies where the electron spin is coupled to a next nearest neighbor 29 Si nucleus; Cu deposited on Si(111)7x7 surface, where the unpaired electron of the Cu atom is coupled to the Cu nucleus ( 63 Cu, 65 Cu) and on Tempo molecules adsorbed on Au(111), where the unpaired electron is coupled to a Nitrogen nucleus ( 14 N). While some of the hyperfine values are unresolved in the ESR-STM data due to linewidth we find that they are accurately determined in the STM-ENDOR data including those from remote nuclei, which are not detected in the ESR-STM spectrum. Furthermore, STM-ENDOR can measure single nuclear Zeeman frequencies, distinguish between isotopes through their different nuclear magnetic moments and detect quadrupole spectra. We also develop and solve a Bloch type equation for the coupled electron-nuclear system that facilitates interpretation of the data. The improved spectral resolution of STM - ENDOR opens many possibilities for nanometric scale chemical analysis. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Mutations in the estrogen receptor alpha hormone binding domain promote stem cell phenotype through notch activation in breast cancer cell lines.

    PubMed

    Gelsomino, L; Panza, S; Giordano, C; Barone, I; Gu, G; Spina, E; Catalano, S; Fuqua, S; Andò, S

    2018-04-24

    The detection of recurrent mutations affecting the hormone binding domain (HBD) of estrogen receptor alpha (ERα/ESR1) in endocrine therapy-resistant and metastatic breast cancers has prompted interest in functional characterization of these genetic alterations. Here, we explored the role of HBD-ESR1 mutations in influencing the behavior of breast cancer stem cells (BCSCs), using various BC cell lines stably expressing wild-type or mutant (Y537 N, Y537S, D538G) ERα. Compared to WT-ERα clones, mutant cells showed increased CD44 + /CD24 - ratio, mRNA levels of stemness genes, Mammosphere Forming Efficiency (MFE), Self-Renewal and migratory capabilities. Mutant clones exhibited high expression of NOTCH receptors/ligands/target genes and blockade of NOTCH signaling reduced MFE and migratory potential. Mutant BCSC activity was dependent on ERα phosphorylation at serine 118, since its inhibition decreased MFE and NOTCH4 activation only in mutant cells. Collectively, we demonstrate that the expression of HBD-ESR1 mutations may drive BC cells to acquire stem cell traits through ER/NOTCH4 interplay. We propose the early detection of HBD-ESR1 mutations as a challenge in precision medicine strategy, suggesting the development of tailored-approaches (i.e. NOTCH inhibitors) to prevent disease development and metastatic spread in BC mutant-positive patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Establishment of estrogen receptor 1 (ESR1)-knockout medaka: ESR1 is dispensable for sexual development and reproduction in medaka, Oryzias latipes.

    PubMed

    Tohyama, Saki; Ogino, Yukiko; Lange, Anke; Myosho, Taijun; Kobayashi, Tohru; Hirano, Yu; Yamada, Gen; Sato, Tomomi; Tatarazako, Norihisa; Tyler, Charles R; Iguchi, Taisen; Miyagawa, Shinichi

    2017-08-01

    Estrogens play fundamental roles in regulating reproductive activities and they act through estrogen receptor (ESR) in all vertebrates. Most vertebrates have two ESR subtypes (ESR1 and ESR2), whereas teleost fish have at least three (Esr1, Esr2a and Esr2b). Intricate functionalization has been suggested among the Esr subtypes, but to date, distinct roles of Esr have been characterized in only a limited number of species. Study of loss-of-function in animal models is a powerful tool for application to understanding vertebrate reproductive biology. In the current study, we established esr1 knockout (KO) medaka using a TALEN approach and examined the effects of Esr1 ablation. Unexpectedly, esr1 KO medaka did not show any significant defects in their gonadal development or in their sexual characteristics. Neither male or female esr1 KO medaka exhibited any significant changes in sexual differentiation or reproductive activity compared with wild type controls. Interestingly, however, estrogen-induced vitellogenin gene expression, an estrogen-responsive biomarker in fish, was limited in the liver of esr1 KO males. Our findings, in contrast to mammals, indicate that Esr1 is dispensable for normal development and reproduction in medaka. We thus provide an evidence for estrogen receptor functionalization between mammals and fish. Our findings will also benefit interpretation of studies into the toxicological effects of estrogenic chemicals in fish. © 2017 Japanese Society of Developmental Biologists.

  3. Zero-point corrections for isotropic coupling constants for cyclohexadienyl radical, C₆H₇ and C₆H₆Mu: beyond the bond length change approximation.

    PubMed

    Hudson, Bruce S; Chafetz, Suzanne K

    2013-04-25

    Zero-point vibrational level averaging for electron spin resonance (ESR) and muon spin resonance (µSR) hyperfine coupling constants (HFCCs) are computed for H and Mu isotopomers of the cyclohexadienyl radical. A local mode approximation previously developed for computation of the effect of replacement of H by D on ¹³C-NMR chemical shifts is used. DFT methods are used to compute the change in energy and HFCCs when the geometry is changed from the equilibrium values for the stretch and both bend degrees of freedom. This variation is then averaged over the probability distribution for each degree of freedom. The method is tested using data for the methylene group of C₆H₇, cyclohexadienyl radical and its Mu analog. Good agreement is found for the difference between the HFCCs for Mu and H of CHMu and that for H of CHMu and CH₂ of the parent radical methylene group. All three of these HFCCs are the same in the absence of the zero point average, a one-parameter fit of the static HFCC, a(0), can be computed. That value, 45.2 Gauss, is compared to the results of several fixed geometry electronic structure computations. The HFCC values for the ortho, meta and para H atoms are then discussed.

  4. Meta-analysis of genome-wide studies identifies WNT16 and ESR1 SNPs associated with bone mineral density in premenopausal women.

    PubMed

    Koller, Daniel L; Zheng, Hou-Feng; Karasik, David; Yerges-Armstrong, Laura; Liu, Ching-Ti; McGuigan, Fiona; Kemp, John P; Giroux, Sylvie; Lai, Dongbing; Edenberg, Howard J; Peacock, Munro; Czerwinski, Stefan A; Choh, Audrey C; McMahon, George; St Pourcain, Beate; Timpson, Nicholas J; Lawlor, Debbie A; Evans, David M; Towne, Bradford; Blangero, John; Carless, Melanie A; Kammerer, Candace; Goltzman, David; Kovacs, Christopher S; Prior, Jerilynn C; Spector, Tim D; Rousseau, Francois; Tobias, Jon H; Akesson, Kristina; Econs, Michael J; Mitchell, Braxton D; Richards, J Brent; Kiel, Douglas P; Foroud, Tatiana

    2013-03-01

    Previous genome-wide association studies (GWAS) have identified common variants in genes associated with variation in bone mineral density (BMD), although most have been carried out in combined samples of older women and men. Meta-analyses of these results have identified numerous single-nucleotide polymorphisms (SNPs) of modest effect at genome-wide significance levels in genes involved in both bone formation and resorption, as well as other pathways. We performed a meta-analysis restricted to premenopausal white women from four cohorts (n = 4061 women, aged 20 to 45 years) to identify genes influencing peak bone mass at the lumbar spine and femoral neck. After imputation, age- and weight-adjusted bone-mineral density (BMD) values were tested for association with each SNP. Association of an SNP in the WNT16 gene (rs3801387; p = 1.7 × 10(-9) ) and multiple SNPs in the ESR1/C6orf97 region (rs4870044; p = 1.3 × 10(-8) ) achieved genome-wide significance levels for lumbar spine BMD. These SNPs, along with others demonstrating suggestive evidence of association, were then tested for association in seven replication cohorts that included premenopausal women of European, Hispanic-American, and African-American descent (combined n = 5597 for femoral neck; n = 4744 for lumbar spine). When the data from the discovery and replication cohorts were analyzed jointly, the evidence was more significant (WNT16 joint p = 1.3 × 10(-11) ; ESR1/C6orf97 joint p = 1.4 × 10(-10) ). Multiple independent association signals were observed with spine BMD at the ESR1 region after conditioning on the primary signal. Analyses of femoral neck BMD also supported association with SNPs in WNT16 and ESR1/C6orf97 (p < 1 × 10(-5) ). Our results confirm that several of the genes contributing to BMD variation across a broad age range in both sexes have effects of similar magnitude on BMD of the spine in premenopausal women. These data support the hypothesis that variants in these genes of known skeletal function also affect BMD during the premenopausal period. Copyright © 2013 American Society for Bone and Mineral Research.

  5. ESR investigation of ROS generated by H2O2 bleaching with TiO2 coated HAp.

    PubMed

    Saita, Makiko; Kobayashi, Kyo; Kobatashi, Kyou; Yoshino, Fumihiko; Hase, Hiriko; Nonami, Toru; Kimoto, Katsuhiko; Lee, Masaichi-Chang-il

    2012-01-01

    It is well known that clinical bleaching can be achieved with a solution of 30% hydrogen peroxide (H2O2) or H2O2/titanium dioxide (TiO2) combination. This study examined the hypothesis that TiO2 coated with hydroxyapatite (HAp-TiO2) can generate reactive oxygen species (ROS). ROS are generated via photocatalysis using electron spin resonance (ESR). The bleaching properties of HAp-TiO2 in the presence of H2O2 can be measured using hematoporphyrin litmus paper and extracted teeth. We demonstrate that superoxides (O2(•-)) and hydroxyl radicals (HO(•)) can be generated through excitation of anatase TiO2, rutile TiO2, anatase HAp-TiO2, and rutile HAp-TiO2 in the presence of H2O2. The combination of R HAp-TiO2 with H2O2 produced the highest level of HO(•) generation and the most marked bleaching effects of all the samples. The superior bleaching effects exhibited by R HAp-TiO2 with H2O2 suggest that this combination may lead to novel methods for the clinical application of bleaching treatments.

  6. Electron spin resonance studies of the ovary of the rat

    NASA Astrophysics Data System (ADS)

    Andersen, Roy S.; Curtis, Joseph C.

    1988-11-01

    Electron spin resonance spectra of rat ovaries, isolated ovarian compartments, and ovarian subcellular fractions were compared with spectra of rat adrenals. Rat ovaries were found to exhibit ESR signals similar to those previously described in studies of mammalian adrenal and testis. Observations were made at 113 K in an anaerobic environment. ESR signals of the low-spin ferric cytochrome P-450, the non-heme protein ferredoxin, and the non-heme glycoprotein transferrin were consistently observed in whole ovaries. The first two signals were detected in mitochondrial fractions isolated from ovaries, while only cytochrome P-450 was detected in microsomal fractions. Signals from ferredoxin and cytochrome P-450 were also consistently observed in both whole adrenals and adrenal mitochondrial fractions. However, in the microsomal fraction only cytochrome P-450 was present. The g values for the cytochrome P-450 and ferredoxin signals found in this study of ovaries were identical to those previously reported and also found in this study in spectra of rat adrenals. The concentration of ferredoxin per milligram wet mass in rat ovaries appears to be only one-sixth of that in the rat adrenal. The concentration of cytochrome P-450 appears to be only one-ninth of that in the adrenal. Signals from ferredoxin were detected in all ovarian compartments except granulosa cells isolated from Graafian follicles. The third signal, that of transferrin, while often observed in the spectra of whole ovaries, has been attributed to residual blood in the tissues examined. The effects of oxygen on these spectra has been found to be considerable and is discussed.

  7. Scavenging of reactive oxygen species and prevention of oxidative neuronal cell damage by a novel gallotannin, pistafolia A.

    PubMed

    Wei, Taotao; Sun, Handong; Zhao, Xingyu; Hou, Jingwu; Hou, Aijun; Zhao, Qinshi; Xin, Wenjuan

    2002-03-08

    Pistafolia A is a novel gallotannin isolated from the leaf extract of Pistacia weinmannifolia. In the present investigation, the ability of Pistafolia A to scavenge reactive oxygen species including hydroxyl radicals and superoxide anion was measured by ESR spin trapping technique. The inhibition effect on iron-induced lipid peroxidaiton in liposomes was studied. The protective effects of Pistafolia A against oxidative neuronal cell damage and apoptosis induced by peroxynitrite were also assessed. The results showed that Pistafolia A could scavenge both hydroxyl radicals and superoxide anion dose-dependently and inhibit lipid peroxidation effectively. In cerebellar granule cells pretreated with Pistafolia A, peroxynitrite-induced oxidative neuronal damage and apoptosis were prevented markedly. The antioxidant capacity of Pistafolia A was much more potent then that of the water-soluble analog of vitamin E, Trolox. The results suggested that Pistafolia A might be used as an effective natural antioxidant for the prevention and cure of neuronal diseases associated with the production of peroxynitrite and related reactive oxygen species.

  8. pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants.

    PubMed

    Altunkaya, Arzu; Gökmen, Vural; Skibsted, Leif H

    2016-01-01

    Influence of pH on the antioxidant activities of combinations of lettuce extract (LE) with quercetin (QC), green tea extract (GTE) or grape seed extract (GSE) was investigated for both reduction of Fremy's salt in aqueous solution using direct electron spin resonance (ESR) spectroscopy and in L-α-phosphatidylcholine liposome peroxidation assay measured following formation of conjugated dienes. All examined phenolic antioxidants showed increasing radical scavenging effect with increasing pH values by using both methods. QC, GTE and GSE acted synergistically in combination with LE against oxidation of peroxidating liposomes and with QC showing the largest effect. The pH dependent increase of the antioxidant activity of the phenols is due to an increase of their electron-donating ability upon deprotonation and to their stabilization in alkaline solutions leading to polymerization reaction. Such polymerization reactions of polyphenolic antioxidants can form new oxidizable -OH moieties in their polymeric products resulting in a higher radical scavenging activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Vanadium distribution in rats and DNA cleavage by vanadyl complex: implication for vanadium toxicity and biological effects.

    PubMed Central

    Sakurai, H

    1994-01-01

    Vanadium ion is toxic to animals. However, vanadium is also an agent used for chemoprotection against cancers in animals. To understand both the toxic and beneficial effects we studied vanadium distribution in rats. Accumulation of vanadium in the liver nuclei of rats given low doses of compounds in the +4 or +5 oxidation state was greater than in the liver nuclei of rats given high doses of vanadium compounds or the vanadate (+5 oxidation state) compound. Vanadium was incorporated exclusively in the vanadyl (+4 oxidation state) form. We also investigated the reactions of vanadyl ion and found that incubation of DNA with vanadyl ion and hydrogen peroxide (H2O2) led to intense DNA cleavage. ESR spin trapping demonstrated that hydroxyl radicals are generated during the reactions of vanadyl ion and H2O2. Thus, we propose that the mechanism for vanadium-dependent toxicity and antineoplastic action is due to DNA cleavage by hydroxyl radicals generated in living systems. PMID:7843133

  10. Active-oxygen scavenging activity of plant extracts.

    PubMed

    Masaki, H; Sakaki, S; Atsumi, T; Sakurai, H

    1995-01-01

    To find antioxidative compounds present in plants, 65 types of plant extract were tested using the neotetrazolium method for evidence of superoxide anion-scavenging effects and 7 plant extracts were selected for further investigation. The activity of active-oxygen scavengers such as superoxide anion radicals, hydroxyl radicals, singlet oxygens and lipid peroxides in the 7 plant extracts (Aeseclus hippocastanum L., Hamamelis virginiana L. Polygonum cuspidatum Sieb., Quercus robur L., Rosemarinous officinalis L., Salvia officinalis L. and Sanguisorba officinalis L.) was examined in detail by both ESR spin-trapping and malondialdehyde generation. Furthermore, the active-oxygen scavenging activity of these plant extracts was evaluated using a murine dermal fibroblast culture system. Both Aeseclus hippocastanum L. and Hamamelis virginia L. were found to have strong active-oxygen scavenging activity of and protective activity against cell damage induced by active oxygen. Both Aeseclus hippocastanum L. and Hamamelis virginiana L. are proposed as potent plant extracts with potential application as anti-aging or anti-wrinkle material for the skin.

  11. N1, N14-diferuloylspermine as an antioxidative phytochemical contained in leaves of Cardamine fauriei.

    PubMed

    Abe, Keima; Matsuura, Hideyuki; Ukai, Mitsuko; Shimura, Hanako; Koshino, Hiroyuki; Suzuki, Takashi

    2017-10-01

    Most Brassicaceae vegetables are ideal dietary sources of antioxidants beneficial for human health. Cardamine fauriei (Ezo-wasabi in Japanese) is a wild, edible Brassicaceae herb native to Hokkaido, Japan. To clarify the main antioxidative phytochemical, an 80% methanol extraction from the leaves was fractionated with Diaion® HP-20, Sephadex® LH-20, and Sep-Pak® C18 cartridges, and the fraction with strong antioxidant activity depending on DPPH method was purified by HPLC. Based on the analyses using HRESIMS and MS/MS, the compound might be N 1 , N 14 -diferuloylspermine. This rare phenol compound was chemically synthesized, whose data on HPLC, MS and 1 H NMR were compared with those of naturally derived compound from C. fauriei. All results indicated they were the same compound. The radical-scavenging properties of diferuloylspermine were evaluated by ORAC and ESR spin trapping methods, with the diferuloylspermine showing high scavenging activities of the ROO · , O 2 ·- , and HO · radicals as was those of conventional antioxidants.

  12. Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong

    2018-04-01

    The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.

  13. Nematode CLE signaling in Arabidopsis requires CLAVATA2 and CORYNE

    USDA-ARS?s Scientific Manuscript database

    Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ESR(CLE)-like effector proteins. These proteins have been shown to act as ligand mimics of plant CLE peptides and are required for successful nematode infection; however, the receptors for nematode CLE-like peptides have not been identified. Her...

  14. Magnetometry with Ensembles of Nitrogen Vacancy Centers in Bulk Diamond

    DTIC Science & Technology

    2015-10-23

    the ESR curve. Any frequency components of the photodetector signal which are not close to the reference frequency, are filtered out. This mitigates ...indicating that we have not yet run up against thermal or flicker noise for these time scales. 5.3 Details of frequency modulation circuit In order

  15. ESR study of electron reactions with esters and triglycerides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevilla, M.D.; Morehouse, K.M.; Swarts, S.

    1981-04-02

    Reactions which occurred after electron attachment at 77K to a number of small carboxylic acid esters and triglycerides in an aqueous glass are reported. Most ester anions are found to decay on warming to form alkyl radicals by ..beta.. scission: RC(O/sup -/)OR' ..-->.. RCO/sub 2//sup -/ + R'.. The alkyl radical (R'.) produced by annealing is found to abstract hydrogen from the parent ester at an ..cap alpha..-carbon site, R'.+ R''CH/sub 2/CO/sub 2/R' ..-->.. R''CHCO/sub 2/R', or in the case of ethyl formate from the formate hydrogen, CH/sub 3/CH/sub 2/.+ HCO/sub 2/C/sub 2/H/sub 5/ ..-->.. C/sub 2/H/sub 6/ +.CO/sub 2/C/submore » 2/H/sub 5/. Results found for the methyl formate anion suggest hydrogen abstraction by the anion itself may compete with alkyl radical formation. The anion of the triglyceride triacetin is found to undergo an analogous mechanism to the ester anions producing the propane diol diester radical, .CH/sub 2/CH(Ac)CH/sub 2/(Ac), Ac = acetate. This species subsequently abstracts hydrogen from the parent compound to produce the ..cap alpha..-carbon radical, .CH/sub 2/CO/sub 2/R. Results found after annealing the tripropionin radical anion give evidence for abstraction from the ..cap alpha.. carbon in the propionate side groups producing CH/sub 3/CHCO/sub 2/R. Studies of a ..gamma..-irradiated ester (ethyl myristate) and two triglycerides (tripalmitin and tristearin) yield results which suggest that the mechanism of ester anion decay found in aqueous glasses applies to ..gamma..-irradiated neat long-chain esters and triglycerides. Results found in this work are compared to the results of product analysis.« less

  16. Photoinduced Reactions of Benzophenone in Biaxially Oriented Polypropylene.

    PubMed

    Levin, Peter P; Efremkin, Alexei F; Krivandin, Aleksey V; Lomakin, Sergei M; Shatalova, Olga V; Khudyakov, Igor V

    2018-05-03

    The photoinduced reactions of benzophenone (B) in biaxially oriented polypropylene (BOPP) were studied with nanosecond laser photolysis (N 2 laser, λ337.1 nm). The first observed transient was a triplet state 3 B*. Decay of 3 B* led to formation of a radical pair (RP) of BH • and R • , where R • is a radical formed by hydrogen abstraction from BOPP (RH) by 3 B*. We studied BOPP after the preheating for a short time in a temperature range 298-423 K, which is essentially lower than its melting point of 453 K. All measurements with not-heated and with preheated (annealed) BOPP were made at 298 K. A radical pair (RP) apparently decays as a contact pair 3 [BH • , R • ] in nonheated BOPP. A critical phenomenon takes place: dissociation of RP with a formation of free radicals in the polymer bulk is observed at preheating temperature T crit ≈ 403 K and at a higher T. The physical process of heating and cooling of BOPP apparently resulted in the restructuring of crystallites, their agglomeration, shrinking of the distribution of crystallites according to their sizes in BOPP. Overall BOPP becomes softer which manifests itself in the radical kinetics. The decay kinetics of 3 B* and RP in the cage fits well the first-order law. Rate constants were obtained. Radicals BH • , which exit into the polymer bulk at temperatures of preheating T ≥ 403 K, decay by cross-termination according to the second-order law. A relatively high rate constant ∼10 8 M -1 ·s -1 for this reaction was obtained due to diffusion of BH • enclosed in the soft amorphous phase of BOPP. Properties of BOPP containing B were studied with ESR, DSC, IR, and WAXD.

  17. Association of polymorphisms in estrogen receptors (ESR1 and ESR2) with male infertility: a meta-analysis and systematic review.

    PubMed

    Ge, Yu-Zheng; Xu, Lu-Wei; Jia, Rui-Peng; Xu, Zheng; Li, Wen-Cheng; Wu, Ran; Liao, Sheng; Gao, Fei; Tan, Si-Jia; Song, Qun; Xin, Hui

    2014-05-01

    Estrogens play an important role in male reproduction via interacting with estrogen receptors (ERs), whose expression can be regulated by the polymorphisms in different regions of ESR1 and ESR2 genes. However, results from published studies on the association between four well-characterized polymorphisms (PvuII, XbaI, RsaI, and AluI) in the gene of ERs (ESR1 and ESR2) and male infertility risk are inconclusive. To investigate the strength of relationship of PvuII and XbaI in ESR1 and RsaI and AluI in ESR2 with male infertility, we conducted a meta-analysis of 12 eligible studies with odds ratio (OR) and its corresponding 95 % confidence intervals (95 % CI). Overall, ESR1 PvuII and ESR2 RsaI polymorphisms were significantly associated with male infertility risk. The subgroup analyses by ethnicities demonstrated that in Asians, ESR1 PvuII, XbaI and ESR2 RsaI polymorphisms were significantly associated with a decreased infertility risk, while in Caucasians both ESR1 PvuII and ESR2 RsaI polymorphisms increased the susceptibility to male infertility. As for ESR2 AluI polymorphism, no significant association was detected in either overall analysis or subgroup analyses by ethnicities/genotyping methods. This meta-analysis suggested that polymorphisms in the genes of ERs (ESR1 and ESR2) may have differential roles in the predisposition to male infertility according to the different ethnic backgrounds. Further well-designed and unbiased studies with larger sample size and diverse ethnic backgrounds should be conducted to verify our findings.

  18. Spin Coherence in Silicon-based Quantum Structures and Devices

    DTIC Science & Technology

    2017-08-31

    Using electron spin resonance (ESR) to measure the den- sity of shallow traps, we find that the two sets of devices are nearly identical , indicating...experiments which cannot utilize a clock transition or a field-cancelling decoherence-free subspace. Our approach was to lock the microwave source driving...the electron spins to a strong nuclear spin signal. In our initial experiments we locked to the proton signal in a water cell. However, the noise in

  19. In Vivo Application of Proton-Electron Double-Resonance Imaging

    PubMed Central

    Kishimoto, Shun; Krishna, Murali C.; Khramtsov, Valery V.; Utsumi, Hideo

    2018-01-01

    Abstract Significance: Proton-electron double-resonance imaging (PEDRI) employs electron paramagnetic resonance irradiation with low-field magnetic resonance imaging so that the electron spin polarization is transferred to nearby protons, resulting in higher signals. PEDRI provides information about free radical distribution and, indirectly, about the local microenvironment such as partial pressure of oxygen (pO2), tissue permeability, redox status, and acid-base balance. Recent Advances: Local acid-base balance can be imaged by exploiting the different resonance frequency of radical probes between R and RH+ forms. Redox status can also be imaged by using the loss of radical-related signal after reduction. These methods require optimized radical probes and pulse sequences. Critical Issues: High-power radio frequency irradiation is needed for optimum signal enhancement, which may be harmful to living tissue by unwanted heat deposition. Free radical probes differ depending on the purpose of PEDRI. Some probes are less effective for enhancing signal than others, which can reduce image quality. It is so far not possible to image endogenous radicals by PEDRI because low concentrations and broad line widths of the radicals lead to negligible signal enhancement. Future Directions: PEDRI has similarities with electron paramagnetic resonance imaging (EPRI) because both techniques observe the EPR signal, directly in the case of EPRI and indirectly with PEDRI. PEDRI provides information that is vital to research on homeostasis, development of diseases, or treatment responses in vivo. It is expected that the development of new EPR techniques will give insights into novel PEDRI applications and vice versa. Antioxid. Redox Signal. 28, 1345–1364. PMID:28990406

  20. Synthesis, electronic and ESR spectral studies on copper(II) nitrate complexes with some acylhydrazines and hydrazones.

    PubMed

    Singh, Vinod P

    2008-11-01

    This paper describes the preparation of [Cu(bh)2(H2O)2](NO3)2], [Cu(ibh)2(NO3)2], [Cu(ibh)2(H2O)2](NO3)2 and [Cu(iinh)2(NO3)2] (bh = benzoyl hydrazine (C6H5CONHNH2); ibh = isonicotinoyl hydrazine (NC5H4CONHNH2); ibh = isopropanone benzoyl hydrazone (C6H5CONHN=C(CH3)2; iinh = isopropanone isonicotinoyl hydrazone (NC5H4CONHN=C(CH3)2). These copper(II) complexes are characterized by elemental analyses, molar conductances, dehydration studies, ESR, IR and electronic spectral studies. The electronic and ESR spectra indicate that each complex exhibits a six-coordinate tetragonally distorted octahedral geometry in the solid state and in DMSO solution. The ESR spectra of most of the complexes are typically isotropic type at room temperature (300 K) in solid state as well as in DMSO solution. However, all the complexes exhibit invariably axial signals at 77 K in DMSO solution. The trend g(||) > g(perpendicular) > g(e,) observed in all the complexes suggests the presence of an unpaired electron in the d x2-y2 orbital of the Cu(II). The bh and inh ligands bond to Cu(II) through the >C=O and -NH2 groups whereas, ibh and iinh bond through >C=O and >C=N- groups. The IR spectra of bh and ibh complexes also show H-O-H stretching and bending modes of coordinated water.

  1. Clinical significance of ESR1 gene copy number changes in breast cancer as measured by fluorescence in situ hybridisation.

    PubMed

    Lin, Ching-Hung; Liu, Jacqueline M; Lu, Yen-Shen; Lan, Chieh; Lee, Wei-Chung; Kuo, Kuan-Ting; Wang, Chung-Chieh; Chang, Dwan-Ying; Huang, Chiun-Sheng; Cheng, Ann-Lii

    2013-02-01

    The ESR1 gene encodes for oestrogen receptor (ER) α, which plays a crucial role in mammary carcinogenesis and clinical outcome in patients with breast cancer. However, the clinical significance of the ESR1 gene copy number change for breast cancer has not been clarified. ESR1 gene copy number was determined by fluorescence in situ hybridisation (FISH) on tissue sections. A minimum of 20 tumour cells were counted per section, and a FISH ratio of ESR1 gene to CEP6 ≥ 2.0 was considered ESR1 amplification. A ratio >1.2 but <2.0 was considered ESR1 gain. The ESR1 copy number was further measured by quantitative real-time PCR (Q-PCR) with ASXL2 as a reference. FISH revealed ESR1 amplification in six cases (4.0%) and ESR1 gain in 13 cases (8.7%) from a total of 150 cases. ESR1 gain and amplification were more common in older patients (p<0.001), and correlated well with ER protein expression (p=0.03) measured by immunohistochemistry, and ESR1 copy number (p<0.001) measured by Q-PCR. Furthermore, the multivariate analysis revealed that ESR1 amplification was associated with a shorter disease-free survival (HR=5.56, p=0.03) and a shorter overall survival (HR=5.11, p=0.04). In general, the frequency of ESR1 amplification in breast cancer is low when measured by FISH in large sections. ESR1 gain and amplification in breast cancer may be associated with older age and poorer outcomes.

  2. POSSIBLE NATURE OF THE RADIATION-INDUCED SIGNAL IN NAILS: HIGH-FIELD EPR, CONFIRMING CHEMICAL SYNTHESIS, AND QUANTUM CHEMICAL CALCULATIONS

    PubMed Central

    Tipikin, Dmitriy S.; Swarts, Steven G.; Sidabras, Jason W.; Trompier, François; Swartz, Harold M.

    2016-01-01

    Exposure of finger- and toe-nails to ionizing radiation generates an Electron Paramagnetic Resonance (EPR) signal whose intensity is dose dependent and stable at room temperature for several days. The dependency of the radiation-induced signal (RIS) on the received dose may be used as the basis for retrospective dosimetry of an individual's fortuitous exposure to ionizing radiation. Two radiation-induced signals, a quasi-stable (RIS2) and stable signal (RIS5), have been identified in nails irradiated up to a dose of 50 Gy. Using X-band EPR, both RIS signals exhibit a singlet line shape with a line width around 1.0 mT and an apparent g-value of 2.0044. In this work, we seek information on the exact chemical nature of the radiation-induced free radicals underlying the signal. This knowledge may provide insights into the reason for the discrepancy in the stabilities of the two RIS signals and help develop strategies for stabilizing the radicals in nails or devising methods for restoring the radicals after decay. In this work an analysis of high field (94 GHz and 240 GHz) EPR spectra of the RIS using quantum chemical calculations, the oxidation–reduction properties and the pH dependence of the signal intensities are used to show that spectroscopic and chemical properties of the RIS are consistent with a semiquinone-type radical underlying the RIS. It has been suggested that semiquinone radicals formed on trace amounts of melanin in nails are the basis for the RIS signals. However, based on the quantum chemical calculations and chemical properties of the RIS, it is likely that the radicals underlying this signal are generated from the radiolysis of L-3,4-dihydroxyphenylalanine (DOPA) amino acids in the keratin proteins. These DOPA amino acids are likely formed from the exogenous oxidation of tyrosine in keratin by the oxygen from the air prior to irradiation. We show that these DOPA amino acids can work as radical traps, capturing the highly reactive and unstable sulfur-based radicals and/or alkyl radicals generated during the radiation event and are converted to the more stable o-semiquinone anion-radicals. From this understanding of the oxidation–reduction properties of the RIS, it may be possible to regenerate the unstable RIS2 following its decay through treatment of nail clippings. However, the treatment used to recover the RIS2 also has the ability to recover an interfering, mechanically-induced signal (MIS) formed when the nail is clipped. Therefore, to use the recovered (regenerated) RIS2 to increase the detection limits and precision of the RIS measurements and, therefore, the dose estimates calculated from the RIS signal amplitudes, will require the application of methods to differentiate the RIS2 from the recovered MIS signal. PMID:27522053

  3. Development of steroid signaling pathways during primordial follicle formation in the human fetal ovary.

    PubMed

    Fowler, Paul A; Anderson, Richard A; Saunders, Philippa T; Kinnell, Hazel; Mason, J Ian; Evans, Dean B; Bhattacharya, Siladitya; Flannigan, Samantha; Franks, Stephen; Monteiro, Ana; O'Shaughnessy, Peter J

    2011-06-01

    Ovarian primordial follicle formation is critical for subsequent human female fertility. It is likely that steroid, and especially estrogen, signaling is required for this process, but details of the pathways involved are currently lacking. The aim was to identify and characterize key members of the steroid-signaling pathway expressed in the second trimester human fetal ovary. We conducted an observational study of the female fetus, quantifying and localizing steroid-signaling pathway members. The study was conducted at the Universities of Aberdeen, Edinburgh, and Glasgow. Ovaries were collected from 43 morphologically normal human female fetuses from women undergoing elective termination of second trimester pregnancies. We measured mRNA transcript levels and immunolocalized key steroidogenic enzymes and steroid receptors, including those encoded by ESR2, AR, and CYP19A1. Levels of mRNA encoding the steroidogenic apparatus and steroid receptors increased across the second trimester. CYP19A1 transcript increased 4.7-fold during this period with intense immunostaining for CYP19A detected in pregranulosa cells around primordial follicles and somatic cells around oocyte nests. ESR2 was localized primarily to germ cells, but androgen receptor was exclusively expressed in somatic cells. CYP17A1 and HSD3B2 were also localized to oocytes, whereas CYP11A1 was detected in oocytes and some pregranulosa cells. The human fetal ovary expresses the machinery to produce and detect multiple steroid signaling pathways, including estrogenic signaling, with the oocyte acting as a key component. This study provides a step-change in our understanding of local dynamics of steroid hormone signaling during the key period of human primordial follicle formation.

  4. Neonatal uterine and vaginal cell proliferation and adenogenesis are independent of estrogen receptor 1 (ESR1) in the mouse.

    PubMed

    Nanjappa, Manjunatha K; Medrano, Theresa I; March, Amelia G; Cooke, Paul S

    2015-03-01

    Neonatal uterus and vagina express estrogen receptor 1 (ESR1) and respond mitogenically to exogenous estrogens. However, neonatal ovariectomy does not inhibit preweaning uterine cell proliferation, indicating that this process is estrogen independent. Extensive literature suggests that ESR1 can be activated by growth factors in a ligand-independent manner and drive uterine cell proliferation. Alternatively, neonatal uterine cell proliferation could be ESR1 independent despite its obligatory role in adult luminal epithelial proliferation. To determine ESR1's role in uterine and vaginal development, we analyzed cell proliferation, apoptosis, and uterine gland development (adenogenesis) in wild-type (WT) and Esr1 knockout (Esr1KO) mice from Postnatal Day 2 to Postnatal Day 60. Uterine and vaginal cell proliferation, apoptosis, and uterine adenogenesis were comparable in WT and Esr1KO mice before weaning. By Days 29-60, glands had regressed, and uterine cell proliferation was reduced in Esr1KO mice in contrast to continued adenogenesis and proliferation in WT. Apoptosis in Esr1KO uterine epithelium was not increased compared to WT at any age, indicating that differences in cell proliferation, rather than apoptosis, cause divergence of uterine size in these two groups at puberty. Similarly, vaginal epithelial proliferation was reduced, and the epithelium became atrophic in Esr1KO mice by 29 days of age and later in Esr1KO mice. These results indicate that preweaning uterine and vaginal development is ESR1 independent but becomes dependent on ESR1 by Day 29 on. It is not yet clear what mechanisms drive preweaning vaginal and uterine development, but ligand-independent activation of ESR1 is not involved. © 2015 by the Society for the Study of Reproduction, Inc.

  5. Site-specific radical formation in DNA induced by Cu(II)-H2O2 oxidizing system, using ESR, Immuno-spin trapping, LC/MS and MS/MS

    PubMed Central

    Bhattacharjee, Suchandra; Deterding, Leesa J.; Chatterjee, Saurabh; Jiang, JinJie; Ehrenshaft, Marilyn; Lardinois, Olivier; Ramirez, Dario C.; Tomer, Kenneth B.; Mason, Ronald P.

    2011-01-01

    Oxidative stress-related damage to the DNA macromolecule produces a multitude of lesions that are implicated in mutagenesis, carcinogenesis, reproductive cell death and aging. Many of these lesions have been studied and characterized by various techniques. Of the techniques that are available, the comet assay, HPLC-EC, GC-MS, HPLC-MS and especially HPLC-MS/MS remain the most widely used and have provided invaluable information on these lesions. However, accurate measurement of DNA damage has been a matter of debate. In particular, there have been reports of artifactual oxidation leading to erroneously high damage estimates. Further, most of these techniques measure the end product of a sequence of events and thus provide only limited information on the initial radical mechanism. We report here a qualitative measurement of DNA damage induced by a Cu(II)-H2O2 oxidizing system using immuno spin-trapping (IST) with EPR, MS and MS/MS. The radical generated is trapped by DMPO immediately upon formation. The DMPO adduct formed is initially EPR active but subsequently is oxidized to the stable nitrone, which can then be detected by IST and further characterized by MS and MS/MS. PMID:21382477

  6. Grafting of bacterial polyhydroxybutyrate (PHB) onto cellulose via in situ reactive extrusion with dicumyl peroxide.

    PubMed

    Wei, Liqing; McDonald, Armando G; Stark, Nicole M

    2015-03-09

    Polyhydroxybutyrate (PHB) was grafted onto cellulose fiber by dicumyl peroxide (DCP) radical initiation via in situ reactive extrusion. The yield of the grafted (cellulose-g-PHB) copolymer was recorded and grafting efficiency was found to be dependent on the reaction time and DCP concentration. The grafting mechanism was investigated by electron spin resonance (ESR) analysis and showed the presence of radicals produced by DCP radical initiation. The grafted copolymer structure was determined by nuclear magnetic resonance (NMR) spectroscopy. Scanning electronic microscopy (SEM) showed that the cellulose-g-PHB copolymer formed a continuous phase between the surfaces of cellulose and PHB as compared to cellulose-PHB blends. The relative crystallinity of cellulose and PHB were quantified from Fourier transform infrared (FTIR) spectra and X-ray diffraction (XRD) results, while the absolute degree of crystallinity was evaluated by differential scanning calorimetry (DSC). The reduction of crystallinity indicated the grafting reaction occurred not just in the amorphous region but also slightly in crystalline regions of both cellulose and PHB. The smaller crystal sizes suggested the brittleness of PHB was decreased. Thermogravimetric analysis (TGA) showed that the grafted copolymer was stabilized relative to PHB. By varying the reaction parameters the compositions (%PHB and %cellulose) of resultant cellulose-g-PHB copolymer are expected to be manipulated to obtain tunable properties.

  7. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions

    PubMed Central

    Zhang, Siyuan; Naab, Benjamin D.; Jucov, Evgheni V.; Parkin, Sean; Evans, Eric G. B.; Millhauser, Glenn L.; Timofeeva, Tatiana V.; Risko, Chad; Brédas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R.

    2015-01-01

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 {Y = cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)} have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT both indicate a longer C—C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2, yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2) dissociation and of D2-to-A electron transfer, D2 reacts with A to form D+ and A•– by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D+/0.5D2 redox potentials – the effective reducing strengths of the dimers – vary little within the series (ca. –1.9 V vs. FeCp2+/0) due to cancelation of trends in the D+/0 potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. PMID:26088609

  8. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer.

    PubMed

    Bailey, Swneke D; Desai, Kinjal; Kron, Ken J; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A; Treloar, Aislinn E; Dowar, Mark; Thu, Kelsie L; Cescon, David W; Silvester, Jennifer; Yang, S Y Cindy; Wu, Xue; Pezo, Rossanna C; Haibe-Kains, Benjamin; Mak, Tak W; Bedard, Philippe L; Pugh, Trevor J; Sallari, Richard C; Lupien, Mathieu

    2016-10-01

    Sustained expression of the estrogen receptor-α (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon estrogen stimulation to establish an oncogenic expression program. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers, suggesting that other mechanisms underlie the persistent expression of ESR1. We report significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by rs9383590, a functional inherited single-nucleotide variant (SNV) that accounts for several breast cancer risk-associated loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer.

  9. Galloylated polyphenols efficiently reduce alpha-tocopherol radicals in a phospholipid model system composed of sodium dodecyl sulfate (SDS) micelles.

    PubMed

    Pazos, Manuel; Torres, Josep Lluís; Andersen, Mogens L; Skibsted, Leif H; Medina, Isabel

    2009-06-10

    The ability of several polyphenolic fractions from grape ( Vitis vinifera ) pomace, pine ( Pinus pinaster ) bark, and witch hazel ( Hammamelis virginiana ) bark to repair alpha-tocopherol (alpha-TOH) through reduction of the alpha-tocopheroxyl radical was investigated in a homogeneous hexane system and a phospholipid-like system based on SDS micelles. These natural polyphenols were compared with pure related phenolics (epicatechin, gallic acid, epigallocatechin gallate, quercetin, and rutin) and ascorbic acid, which is a substance with a well-recognized capacity for regenerating alpha-TOH. alpha-Tocopheroxyl radicals were monitored and quantified by electron spin resonance (ESR) spectroscopy in the absence and presence of phenolics. Polyphenols from grape and pine bark were essentially catechin monomers and proanthocyanidins differing in the content of galloyl residues; those from pine bark had a negligible degree of galloylation. Polyphenolic fractions from witch hazel bark were composed of approximately 80% hydrolyzable tannins rich in galloyl moieties, together with a smaller amount of catechin monomers and proanthocyanidins. In the homogeneous hexane system, polyphenols from grape and pine bark exhibited similar activities, reducing the alpha-tocopheroxyl radicals by over 27-40%, whereas phenols from witch hazel were more highly effective, reducing 80% of alpha-TOH. In contrast, pine bark polyphenols were found to be significantly less active than the grape fractions in SDS micelles, reducing 30 and 70% of alpha-tocopheroxyl radicals, respectively. Polyphenolic fractions from witch hazel were also able to reduce the highest amount of alpha-TOH in SDS-micelles. The reducing capacity on alpha-tocopheroxyl radical of polyphenolic fractions was found to be pH-dependent and more effective at higher pH in the range of pH studied (5.8-7.8). These results stress the potential role of polyphenols, in particular those rich in galloyl groups, to maintain intact endogenous alpha-TOH in biological membranes through reduction of alpha-tocopheroxyl radicals.

  10. Dynamic nuclear polarization in solid samples by electrical-discharge-induced radicals

    NASA Astrophysics Data System (ADS)

    Katz, Itai; Blank, Aharon

    2015-12-01

    Dynamic nuclear polarization (DNP) is a method for enhancing nuclear magnetic resonance (NMR) signals that has many potential applications in chemistry and medicine. Traditionally, DNP signal enhancement is achieved through the use of exogenous radicals mixed in a solution with the molecules of interest. Here we show that proton DNP signal enhancements can be obtained for solid samples without the use of solvent and exogenous radicals. Radicals are generated primarily on the surface of a solid sample using electrical discharges. These radicals are found suitable for DNP. They are stable under moderate vacuum conditions, yet readily annihilate upon compound dissolution or air exposure. This feature makes them attractive for use in medical applications, where the current variety of radicals used for DNP faces regulatory problems. In addition, this solvent-free method may be found useful for analytical NMR of solid samples which cannot tolerate solvents, such as certain pharmaceutical products.

  11. Effects of water-filtered infrared-A and of heat on cell death, inflammation, antioxidative potential and of free radical formation in viable skin--first results.

    PubMed

    Piazena, Helmut; Pittermann, Wolfgang; Müller, Werner; Jung, Katinka; Kelleher, Debra K; Herrling, Thomas; Meffert, Peter; Uebelhack, Ralf; Kietzmann, Manfred

    2014-09-05

    The effects of water-filtered infrared-A (wIRA) and of convective heat on viability, inflammation, inducible free radicals and antioxidative power were investigated in natural and viable skin using the ex vivo Bovine Udder System (BUS) model. Therefore, skin samples from differently treated parts of the udder of a healthy cow were analyzed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test, by prostaglandin E2 (PGE2) measurement and by electron spin resonance (ESR) spectroscopy. Neither cell viability, the inflammation status, the radical status or the antioxidative defence systems of the skin were significantly affected by wIRA applied within 30 min by using an irradiance of 1900 W m(-2) which is of relevance for clinical use, but which exceeded the maximum solar IR-A irradiance at the Earth's surface more than 5 times and which resulted in a skin surface temperature of about 45 °C without cooling and of about 37 °C with convective cooling by air ventilation. No significant effects on viability and on inflammation were detected when convective heat was applied alone under equivalent conditions in terms of the resulting skin surface temperatures and exposure time. As compared with untreated skin, free radical formation was almost doubled, whereas the antioxidative power was reduced to about 50% after convective heating to about 45 °C. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Effects of high energy radiation on the mechanical properties of epoxy/graphite fiber reinforced composites

    NASA Technical Reports Server (NTRS)

    Fornes, R. E.; Gilbert, R. D.; Memory, J. D.

    1987-01-01

    Publications and theses generated on composite research are listed. Surface energy changes of an epoxy based on tetraglycidyl diaminodiphenyl methane (TGDDM)/diaminodiphenyl sulfone (DDS), T-300 graphite fiber and T-300/5208 (graphite fiber/epoxy) composites were investigated after irradiation with 0.5 MeV electrons. Electron spin resonance (ESR) investigations of line shapes and the radical decay behavior were made of an epoxy based on tetraglycidyl diaminodiphenyl methane (TGDDM)/diaminodiphenyl sulfone (DDS), T-300 graphite fiber, and T-300/5208 (graphite fiber/epoxy) composites after irradiation with Co(60) gamma-radiation or 0.5 MeV electrons. The results of the experiments are discussed.

  13. Expression of Genomic Functional Estrogen Receptor 1 in Mouse Sertoli Cells

    PubMed Central

    Lin, Jing; Zhu, Jia; Li, Xian; Li, Shengqiang; Lan, Zijian; Ko, Jay

    2014-01-01

    There is no consensus whether Sertoli cells express estrogen receptor 1 (Esr1). Reverse transcription-polymerase chain reaction, Western blot, and immunofluorescence demonstrated that mouse Sertoli cell lines, TM4, MSC-1, and 15P-1, and purified primary mouse Sertoli cells (PSCs) contained Esr1 messenger RNA and proteins. Incubation of Sertoli cells with 17β-estradiol (E2) or ESR1 agonist stimulated the expression of an estrogen responsive gene Greb1, which was prevented by ESR inhibitor or ESR1 antagonist. Overexpression of Esr1 in MSC-1 enhanced E2-induced Greb1 expression, while knockdown of Esr1 by small interfering RNA in TM4 attenuated the response. Furthermore, E2-induced Greb1 expression was abolished in the PSCs isolated from Amh-Cre/Esr1-floxed mice in which Esr1 in Sertoli cells were selectively deleted. Chromatin immunoprecipitation assays indicated that E2-induced Greb1 expression in Sertoli cells was mediated by binding of ESR1 to estrogen responsive elements. In summary, ligand-dependent nuclear ESR1 was present in mouse Sertoli cells and mediates a classical genomic action of estrogens. PMID:24615934

  14. ESR1 inhibits hCG-induced steroidogenesis and proliferation of progenitor Leydig cells in mice.

    PubMed

    Oh, Yeong Seok; Koh, Il Kyoo; Choi, Bomi; Gye, Myung Chan

    2017-03-07

    Oestrogen is an important regulator in reproduction. To understand the role of oestrogen receptor 1 (ESR1) in Leydig cells, we investigated the expression of ESR1 in mouse Leydig cells during postnatal development and the effects of oestrogen on steroidogenesis and proliferation of progenitor Leydig cells (PLCs). In Leydig cells, the ESR1 expression was low at birth, increased until postnatal day 14 at which PLCs were predominant, and then decreased until adulthood. In foetal Leydig cells, ESR1 immunoreactivity increased from birth to postnatal day 14. These suggest that ESR1 is a potential biomarker of Leydig cell development. In PLCs, 17β-estradiol and the ESR1-selective agonist propylpyrazoletriol suppressed human chorionic gonadotropin (hCG)-induced progesterone production and steroidogenic gene expression. The ESR2-selective agonist diarylpropionitrile did not affect steroidogenesis. In PLCs from Esr1 knockout mice, hCG-stimulated steroidogenesis was not suppressed by 17β-estradiol, suggesting that oestrogen inhibits PLC steroidogenesis via ESR1. 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile decreased bromodeoxyuridine uptake in PLCs in the neonatal mice. In cultured PLCs, 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile reduced hCG-stimulated Ki67 and Pcna mRNA expression and the number of KI67-positive PLCs, suggesting that oestrogen inhibits PLC proliferation via both ESR1 and ESR2. In PLCs, ESR1 mediates the oestrogen-induced negative regulation of steroidogenesis and proliferation.

  15. ESR1 inhibits hCG-induced steroidogenesis and proliferation of progenitor Leydig cells in mice

    PubMed Central

    Oh, Yeong Seok; Koh, Il Kyoo; Choi, Bomi; Gye, Myung Chan

    2017-01-01

    Oestrogen is an important regulator in reproduction. To understand the role of oestrogen receptor 1 (ESR1) in Leydig cells, we investigated the expression of ESR1 in mouse Leydig cells during postnatal development and the effects of oestrogen on steroidogenesis and proliferation of progenitor Leydig cells (PLCs). In Leydig cells, the ESR1 expression was low at birth, increased until postnatal day 14 at which PLCs were predominant, and then decreased until adulthood. In foetal Leydig cells, ESR1 immunoreactivity increased from birth to postnatal day 14. These suggest that ESR1 is a potential biomarker of Leydig cell development. In PLCs, 17β-estradiol and the ESR1-selective agonist propylpyrazoletriol suppressed human chorionic gonadotropin (hCG)-induced progesterone production and steroidogenic gene expression. The ESR2-selective agonist diarylpropionitrile did not affect steroidogenesis. In PLCs from Esr1 knockout mice, hCG-stimulated steroidogenesis was not suppressed by 17β-estradiol, suggesting that oestrogen inhibits PLC steroidogenesis via ESR1. 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile decreased bromodeoxyuridine uptake in PLCs in the neonatal mice. In cultured PLCs, 17β-estradiol, propylpyrazoletriol, and diarylpropionitrile reduced hCG-stimulated Ki67 and Pcna mRNA expression and the number of KI67-positive PLCs, suggesting that oestrogen inhibits PLC proliferation via both ESR1 and ESR2. In PLCs, ESR1 mediates the oestrogen-induced negative regulation of steroidogenesis and proliferation. PMID:28266530

  16. Prevalence of ESR1 E380Q mutation in tumor tissue and plasma from Japanese breast cancer patients.

    PubMed

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Sueta, Aiko; Tomiguchi, Mai; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka

    2017-11-22

    ESR1 mutations have attracted attention as a potentially important marker and treatment target in endocrine therapy-resistant breast cancer patients. The E380Q mutation, which is one of the ESR1 mutations, is associated with estradiol (E2) hypersensitivity, increased DNA binding to the estrogen response element, and E2-independent constitutive trans-activation activity, but its frequency in ESR1 mutations remains unknown. The present study aimed to investigate the E380Q mutation in comparison with the other representative ESR1 mutations. We screened a total of 62 patients (66 tumor tissues and 69 plasma cell-free DNA (cfDNA)) to detect ESR1 mutations (E380Q, Y537S, Y537N, Y537C, and D538G) using droplet-digital polymerase chain reaction. Plasma was collected at more than two points of the clinical course, in whom changes of ESR1 mutations under treatment were investigated. We detected ESR1 mutations in 21% (12/57) of MBCs. The E380Q ESR1 mutation was found in 16% (2/12) and the other ESR1 LBD mutations were five (41.6%) of Y537S, and four each (33.3%) of D538G, Y537N, and Y537C, in 12 ESR1 mutant breast cancer patients. Five tumors had multiple ESR1 mutations: three had double ESR1 mutations; Y537S/E380Q, Y37S/Y537C, and Y537S/D538G, and two had triple ESR1 mutations; Y537S/Y537N/D538G. In plasma cfDNA analysis, the E380Q mutation was not detected, but increases in other ESR1 mutations were detected in 46.2% (6/13) of MBC patients under treatment. We have shown that there are distinct populations of ESR1 mutations in metastatic tissue and plasma. Each ESR1 mutation may have different clinical significance, and it will be necessary to investigate them all.

  17. Generation of Esr1-Knockout Rats Using Zinc Finger Nuclease-Mediated Genome Editing

    PubMed Central

    Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A.; Wolfe, Michael W.; Roby, Katherine F.; Vivian, Jay L.

    2014-01-01

    Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action. PMID:24506075

  18. Generation of Esr1-knockout rats using zinc finger nuclease-mediated genome editing.

    PubMed

    Rumi, M A Karim; Dhakal, Pramod; Kubota, Kaiyu; Chakraborty, Damayanti; Lei, Tianhua; Larson, Melissa A; Wolfe, Michael W; Roby, Katherine F; Vivian, Jay L; Soares, Michael J

    2014-05-01

    Estrogens play pivotal roles in development and function of many organ systems, including the reproductive system. We have generated estrogen receptor 1 (Esr1)-knockout rats using zinc finger nuclease (ZFN) genome targeting. mRNAs encoding ZFNs targeted to exon 3 of Esr1 were microinjected into single-cell rat embryos and transferred to pseudopregnant recipients. Of 17 live births, 5 had biallelic and 1 had monoallelic Esr1 mutations. A founder with monoallelic mutations was backcrossed to a wild-type rat. Offspring possessed only wild-type Esr1 alleles or wild-type alleles and Esr1 alleles containing either 482 bp (Δ482) or 223 bp (Δ223) deletions, indicating mosaicism in the founder. These heterozygous mutants were bred for colony expansion, generation of homozygous mutants, and phenotypic characterization. The Δ482 Esr1 allele yielded altered transcript processing, including the absence of exon 3, aberrant splicing of exon 2 and 4, and a frameshift that generated premature stop codons located immediately after the codon for Thr157. ESR1 protein was not detected in homozygous Δ482 mutant uteri. ESR1 disruption affected sexually dimorphic postnatal growth patterns and serum levels of gonadotropins and sex steroid hormones. Both male and female Esr1-null rats were infertile. Esr1-null males had small testes with distended and dysplastic seminiferous tubules, whereas Esr1-null females possessed large polycystic ovaries, thread-like uteri, and poorly developed mammary glands. In addition, uteri of Esr1-null rats did not effectively respond to 17β-estradiol treatment, further demonstrating that the Δ482 Esr1 mutation created a null allele. This rat model provides a new experimental tool for investigating the pathophysiology of estrogen action.

  19. Differential role of the estrogen receptors ESR1 and ESR2 on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats.

    PubMed

    Lucas, Thaís F G; Lazari, Maria Fatima M; Porto, Catarina S

    2014-01-25

    The aim of the present study was to investigate the role of each estrogen receptors on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats. Activation of ESR1 by 17β-estradiol (E2) and ESR1-selective agonist PPT increased CCND1 expression, and this effect was dependent on NF-kB activation. E2 and the ESR2-selective agonist DPN, but not PPT, increased, in a PI3K and CREB-dependent manner, the expression of CDKN1B and the transcription factors GATA-1 and DMRT1. Analyzing the expression of ESR1 and ESR2 in different stages of development of Sertoli cells, we observed that the ESR1/ESR2 ratio decreased with age, and this ratio seems to be important to determine the end of cell proliferation and the start of cell differentiation. In Sertoli cells from 15-day-old rats, the ESR1/ESR2 ratio favors the effect of ESR1 and the activation of this receptor increased [Methyl-(3)H]thymidine incorporation. We propose that in Sertoli cells from 15-day-old rats E2 modulates Sertoli cell proliferation through ESR1/NF-kB-mediated increase of CCND1, and cell cycle exit and differentiation through ESR2/CREB-mediated increase of CDKN1B, GATA-1 and DMRT1. The present study reinforces the important role of estrogen for normal testis development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  20. Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer

    PubMed Central

    Bailey, Swneke D.; Desai, Kinjal; Kron, Ken J.; Mazrooei, Parisa; Sinnott-Armstrong, Nicholas A.; Treloar, Aislinn E.; Dowar, Mark; Thu, Kelsie L.; Cescon, David W.; Silvester, Jennifer; Yang, S. Y. Cindy; Wu, Xue; Pezo, Rossanna C.; Haibe-Kains, Benjamin; Mak, Tak W.; Bedard, Philippe L.; Pugh, Trevor J.; Sallari, Richard C.; Lupien, Mathieu

    2016-01-01

    Sustained expression of the oestrogen receptor alpha (ESR1) drives two-thirds of breast cancer and defines the ESR1-positive subtype. ESR1 engages enhancers upon oestrogen stimulation to establish an oncogenic expression program1. Somatic copy number alterations involving the ESR1 gene occur in approximately 1% of ESR1-positive breast cancers2–5, implying that other mechanisms underlie the persistent expression of ESR1. We report the significant enrichment of somatic mutations within the set of regulatory elements (SRE) regulating ESR1 in 7% of ESR1-positive breast cancers. These mutations regulate ESR1 expression by modulating transcription factor binding to the DNA. The SRE includes a recurrently mutated enhancer whose activity is also affected by a functional inherited single nucleotide variant (SNV) rs9383590 that accounts for several breast cancer risk-loci. Our work highlights the importance of considering the combinatorial activity of regulatory elements as a single unit to delineate the impact of noncoding genetic alterations on single genes in cancer. PMID:27571262

  1. Platinum Nanoparticles: Efficient and Stable Catechol Oxidase Mimetics.

    PubMed

    Liu, Yi; Wu, Haohao; Chong, Yu; Wamer, Wayne G; Xia, Qingsu; Cai, Lining; Nie, Zhihong; Fu, Peter P; Yin, Jun-Jie

    2015-09-09

    Although enzyme-like nanomaterials have been extensively investigated over the past decade, most research has focused on the peroxidase-like, catalase-like, or SOD-like activity of these nanomaterials. Identifying nanomaterials having oxidase-like activities has received less attention. In this study, we demonstrate that platinum nanoparticles (Pt NPs) exhibit catechol oxidase-like activity, oxidizing polyphenols into the corresponding o-quinones. Four unique approaches are employed to demonstrate the catechol oxidase-like activity exerted by Pt NPs. First, UV-vis spectroscopy is used to monitor the oxidation of polyphenols catalyzed by Pt NPs. Second, the oxidized products of polyphenols are identified by ultrahigh-performance liquid chromatography (UHPLC) separation followed by high-resolution mass spectrometry (HRMS) identification. Third, electron spin resonance (ESR) oximetry techniques are used to confirm the O2 consumption during the oxidation reaction. Fourth, the intermediate products of semiquinone radicals formed during the oxidation of polyphenols are determined by ESR using spin stabilization. These results indicate Pt NPs possess catechol oxidase-like activity. Because polyphenols and related bioactive substances have been explored as potent antioxidants that could be useful for the prevention of cancer and cardiovascular diseases, and Pt NPs have been widely used in the chemical industry and medical science, it is essential to understand the potential effects of Pt NPs for altering or influencing the antioxidant activity of polyphenols.

  2. Tamoxifen impairs prepubertal mammary development and alters expression of estrogen receptor α (ESR1) and progesterone receptors (PGR).

    PubMed

    Tucker, H L M; Parsons, C L M; Ellis, S; Rhoads, M L; Akers, R M

    2016-01-01

    Research has shown that prepubertal heifers experience allometric mammary growth that is influenced by the ovaries. Our purpose was to determine the role of estrogen in prepubertal mammary gland development. Sixteen Holstein calves were randomly assigned to 1 of 2 treatment groups: tamoxifen-injected (TAM) or control (CON). Calves were administered the antiestrogen tamoxifen (0.3 mg kg(1) d(1)) or placebo from 28 to 120 d of age. At 120 d, calves were euthanized and udders removed. Weight and DNA content of trimmed parenchymal tissue were halved (P ≤ 0.0001) in TAM compared with CON calves. Parenchymal samples from 3 zones of the left rear mammary gland (lower, middle, and outer regions) were processed for immunohistochemical staining for estrogen receptor α (ESR1) and progesterone receptor (PGR), Ki67-positive cells, and 5-bromo-2'-deoxyuridine label retaining cells (LRCs). Overall, neither the percentage nor location within the epithelial tissue layer of either ESR1- or PGR-positive cells was impacted by TAM treatment. However, image analysis indicated a 6.2-fold lower (P = 0.0001) level of ESR1 protein expression in TAM calves. Similarly, messenger RNA expression of ESR1 was also reduced (P = 0.0001) in TAM heifers. In contrast, expression of PGR protein was greater by 43% (P = 0.03) in TAM calves, but messenger RNA expression did not differ between treatments. Overall, TAM calves had a higher (P ≤ 0.03) percentage and density (cells per tissue area) of Ki67-positive cells. Irrespective of treatment, there were also more Ki67-labeled cells in the outer zones of the mammary gland (P ≤ 0.001). We were able to effectively use multispectral imaging to identify positive cells and quantify the expression of ESR1 and PGR protein. We also identified and counted the proportion of label retaining cells (LCR) (putative epithelial stem cells). We noted an overall 2.9-fold greater number of LRCs in TAM heifers and more LRCs in the outer sampling zones. This suggests that a cohort of LCR cells in TAM remained inactivated in comparison with CON heifers, which exhibited markedly increased growth of the mammary parenchymal tissue over the treatment period. These results suggest that the impacts of ovariectomy are partially explained by loss of ESR1 expression and/or estrogen receptor signaling in the prepubertal bovine mammary gland. The significance of mammary expression of PGR in control of prepubertal bovine mammary development remains unresolved. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Direct Evidence of Solution-Mediated Superoxide Transport and Organic Radical Formation in Sodium-Oxygen Batteries.

    PubMed

    Xia, Chun; Fernandes, Russel; Cho, Franklin H; Sudhakar, Niranjan; Buonacorsi, Brandon; Walker, Sean; Xu, Meng; Baugh, Jonathan; Nazar, Linda F

    2016-09-07

    Advanced large-scale electrochemical energy storage requires cost-effective battery systems with high energy densities. Aprotic sodium-oxygen (Na-O2) batteries offer advantages, being comprised of low-cost elements and possessing much lower charge overpotential and higher reversibility compared to their lithium-oxygen battery cousins. Although such differences have been explained by solution-mediated superoxide transport, the underlying nature of this mechanism is not fully understood. Water has been suggested to solubilize superoxide via formation of hydroperoxyl (HO2), but direct evidence of these HO2 radical species in cells has proven elusive. Here, we use ESR spectroscopy at 210 K to identify and quantify soluble HO2 radicals in the electrolyte-cold-trapped in situ to prolong their lifetime-in a Na-O2 cell. These investigations are coupled to parallel SEM studies that image crystalline sodium superoxide (NaO2) on the carbon cathode. The superoxide radicals were spin-trapped via reaction with 5,5-dimethyl-pyrroline N-oxide at different electrochemical stages, allowing monitoring of their production and consumption during cycling. Our results conclusively demonstrate that transport of superoxide from cathode to electrolyte leads to the nucleation and growth of NaO2, which follows classical mechanisms based on the variation of superoxide content in the electrolyte and its correlation with the crystallization of cubic NaO2. The changes in superoxide content upon charge show that charge proceeds through the reverse solution process. Furthermore, we identify the carbon-centered/oxygen-centered alkyl radicals arising from attack of these solubilized HO2 species on the diglyme solvent. This is the first direct evidence of such species, which are likely responsible for electrolyte degradation.

  4. EsrE-A yigP Locus-Encoded Transcript-Is a 3′ UTR sRNA Involved in the Respiratory Chain of E. coli

    PubMed Central

    Xia, Hui; Yang, Xichen; Tang, Qiongwei; Ye, Jiang; Wu, Haizhen; Zhang, Huizhan

    2017-01-01

    The yigP locus is widely conserved among γ-proteobacteria. Mutation of the yigP locus impacts aerobic growth of Gram-negative bacteria. However, the underlying mechanism of how the yigP locus influences aerobic growth remains largely unknown. Here, we demonstrated that the yigP locus in Escherichia coli encodes two transcripts; the mRNA of ubiquinone biosynthesis protein, UbiJ, and the 3′ untranslated region small regulatory RNA (sRNA), EsrE. EsrE is an independent transcript that is transcribed using an internal promoter of the yigP locus. Surprisingly, we found that both the EsrE sRNA and UbiJ protein were required for Q8 biosynthesis, and were sufficient to rescue the growth defect ascribed to deletion of the yigP locus. Moreover, our data showed that EsrE targeted multiple mRNAs involved in several cellular processes including murein biosynthesis and the tricarboxylic acid cycle. Among these targets, sdhD mRNA that encodes one subunit of succinate dehydrogenase (SDH), was significantly activated. Our findings provided an insight into the important function of EsrE in bacterial adaptation to various environments, as well as coordinating different aspects of bacterial physiology. PMID:28900423

  5. Singlet oxygen generation during the oxidation of L-tyrosine and L-dopa with mushroom tyrosinase.

    PubMed

    Miyaji, Akimitsu; Kohno, Masahiro; Inoue, Yoshihiro; Baba, Toshihide

    2016-03-18

    The generation of singlet oxygen during the oxidation of tyrosine and L-dopa using mushroom tyrosinase in a phosphate buffer (pH 7.4), the model of melanin synthesis in melanocytes, was examined. The reaction was performed in the presence of 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen and the electron spin resonance (ESR) of the spin adduct, 4-oxo-2,2,6,6-tetramethyl-1-piperidinyloxy (4-oxo-TEMPO), was measured. An increase in the ESR signal attributable to 4-oxo-TEMPO was observed during the oxidation of tyrosine and L-dopa with tyrosinase, indicating the generation of singlet oxygen. The results suggest that (1)O2 generation via tyrosinase-catalyzed melanin synthesis occurs in melanocyte. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Comparison effects and electron spin resonance studies of α-Fe2O4 spinel type ferrite nanoparticles.

    PubMed

    Bayrakdar, H; Yalçın, O; Cengiz, U; Özüm, S; Anigi, E; Topel, O

    2014-11-11

    α-Fe2O4 spinel type ferrite nanoparticles have been synthesized by cetyltrimethylammonium bromide (CTAB) and ethylenediaminetetraacetic acid (EDTA) assisted hydrothermal route by using NaOH solution. Electron spin resonance (ESR/EPR) measurements of α-Fe2O4 nanoparticles have been performed by a conventional x-band spectrometer at room temperature. The comparison effect of nanoparticles prepared by using CTAB and EDTA in different α-doping on the structural and morphological properties have been investigated in detail. The effect of EDTA-assisted synthesis for α-Fe2O4 nanoparticles are refined, and thus the spectroscopic g-factor are detected by using ESR signals. These samples can be considered as great benefits for magnetic recording media, electromagnetic and drug delivery applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Spin accumulation in Si channels using CoFe/MgO/Si and CoFe/AlO{sub x}/Si tunnel contacts with high quality tunnel barriers prepared by radical-oxygen annealing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akushichi, T., E-mail: taiju.aku7@isl.titech.ac.jp; Shuto, Y.; Sugahara, S., E-mail: sugahara@isl.titech.ac.jp

    We investigate spin injection into Si channels using three-terminal spin-accumulation (3T-SA) devices with high-quality CoFe/MgO/n-Si and CoFe/AlO{sub x}/n-Si tunnel spin-injectors whose tunnel barriers are formed by radical oxidation of Mg and Al thin films deposited on Si(100) substrates and successive annealing under radical-oxygen exposure. When the MgO and AlO{sub x} barriers are not treated by the radical-oxygen annealing, the Hanle-effect signals obtained from the 3T-SA devices are closely fitted by a single Lorentz function representing a signal due to trap spins. On the other hand, when the tunnel barriers are annealed under radical-oxygen exposure, the Hanle-effect signals can be accuratelymore » fitted by the superposition of a Lorentz function and a non-Lorentz function representing a signal due to accumulated spins in the Si channel. These results suggest that the quality improvement of tunnel barriers treated by radical-oxygen annealing is highly effective for spin-injection into Si channels.« less

  8. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility.

    PubMed

    Theodorou, Vasiliki; Stark, Rory; Menon, Suraj; Carroll, Jason S

    2013-01-01

    Estrogen receptor (ESR1) drives growth in the majority of human breast cancers by binding to regulatory elements and inducing transcription events that promote tumor growth. Differences in enhancer occupancy by ESR1 contribute to the diverse expression profiles and clinical outcome observed in breast cancer patients. GATA3 is an ESR1-cooperating transcription factor mutated in breast tumors; however, its genomic properties are not fully defined. In order to investigate the composition of enhancers involved in estrogen-induced transcription and the potential role of GATA3, we performed extensive ChIP-sequencing in unstimulated breast cancer cells and following estrogen treatment. We find that GATA3 is pivotal in mediating enhancer accessibility at regulatory regions involved in ESR1-mediated transcription. GATA3 silencing resulted in a global redistribution of cofactors and active histone marks prior to estrogen stimulation. These global genomic changes altered the ESR1-binding profile that subsequently occurred following estrogen, with events exhibiting both loss and gain in binding affinity, implying a GATA3-mediated redistribution of ESR1 binding. The GATA3-mediated redistributed ESR1 profile correlated with changes in gene expression, suggestive of its functionality. Chromatin loops at the TFF locus involving ESR1-bound enhancers occurred independently of ESR1 when GATA3 was silenced, indicating that GATA3, when present on the chromatin, may serve as a licensing factor for estrogen-ESR1-mediated interactions between cis-regulatory elements. Together, these experiments suggest that GATA3 directly impacts ESR1 enhancer accessibility, and may potentially explain the contribution of mutant-GATA3 in the heterogeneity of ESR1+ breast cancer.

  9. ESR1 methylation in primary tumors and paired circulating tumor DNA of patients with high-grade serous ovarian cancer.

    PubMed

    Giannopoulou, Lydia; Mastoraki, Sophia; Buderath, Paul; Strati, Areti; Pavlakis, Kitty; Kasimir-Bauer, Sabine; Lianidou, Evi S

    2018-05-25

    Estrogen receptor, coded by the ESR1 gene, is highly expressed in epithelial ovarian cancer. ESR1 gene is frequently methylated in many types of gynecological malignancies. However, only a few studies attempted to investigate the role of ESR1 methylation and its clinical significance in ovarian cancer so far. The aim of our study was to examine ESR1 methylation status in primary tumors and corresponding circulating tumor DNA of patients with high-grade serous ovarian cancer (HGSC). ESR1 methylation was detected by a highly specific and sensitive real-time methylation-specific PCR assay. Two groups of HGSC samples were analyzed: group A (n = 66 primary tumors) and group B (n = 53 primary tumors and 50 corresponding plasma samples). ESR1 was found methylated in both groups of primary tumors: in 32/66 (48.5%) of group A and in 15/53 (28.3%) of group B. 19/50 (38.0%) corresponding plasma samples of group B were also methylated for ESR1. A significant agreement for ESR1 methylation was observed between primary tumors and paired plasma ctDNA samples (P = 0.004). Interestingly, the presence of ESR1 methylation in primary tumor samples of group B was significantly correlated with a better overall survival (P = 0.027) and progression-free survival (P = 0.041). We report for the first time the presence of ESR1 methylation in plasma ctDNA of patients with HGSC. The agreement between ESR1 methylation in primary tumors and paired ctDNA is statistically significant. Our results indicate a correlation between the presence of ESR1 methylation and a better clinical outcome in HGSC patients. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. GATA3 acts upstream of FOXA1 in mediating ESR1 binding by shaping enhancer accessibility

    PubMed Central

    Theodorou, Vasiliki; Stark, Rory; Menon, Suraj; Carroll, Jason S.

    2013-01-01

    Estrogen receptor (ESR1) drives growth in the majority of human breast cancers by binding to regulatory elements and inducing transcription events that promote tumor growth. Differences in enhancer occupancy by ESR1 contribute to the diverse expression profiles and clinical outcome observed in breast cancer patients. GATA3 is an ESR1-cooperating transcription factor mutated in breast tumors; however, its genomic properties are not fully defined. In order to investigate the composition of enhancers involved in estrogen-induced transcription and the potential role of GATA3, we performed extensive ChIP-sequencing in unstimulated breast cancer cells and following estrogen treatment. We find that GATA3 is pivotal in mediating enhancer accessibility at regulatory regions involved in ESR1-mediated transcription. GATA3 silencing resulted in a global redistribution of cofactors and active histone marks prior to estrogen stimulation. These global genomic changes altered the ESR1-binding profile that subsequently occurred following estrogen, with events exhibiting both loss and gain in binding affinity, implying a GATA3-mediated redistribution of ESR1 binding. The GATA3-mediated redistributed ESR1 profile correlated with changes in gene expression, suggestive of its functionality. Chromatin loops at the TFF locus involving ESR1-bound enhancers occurred independently of ESR1 when GATA3 was silenced, indicating that GATA3, when present on the chromatin, may serve as a licensing factor for estrogen–ESR1-mediated interactions between cis-regulatory elements. Together, these experiments suggest that GATA3 directly impacts ESR1 enhancer accessibility, and may potentially explain the contribution of mutant-GATA3 in the heterogeneity of ESR1+ breast cancer. PMID:23172872

  11. Visible light-induced OH radicals in Ga2O3: an EPR study.

    PubMed

    Tzitrinovich, Zeev; Lipovsky, Anat; Gedanken, Aharon; Lubart, Rachel

    2013-08-21

    Reactive oxygen species (ROS) were found to exist in water suspensions of several metal oxide nanoparticles (NPs), such as CuO, TiO2 and ZnO. Visible light irradiation enhanced the capability of TiO2 and ZnO NPs to generate ROS, thus increasing their antibacterial effects. Because of the possible toxic effects on the host tissue it is desired to find nano-metal oxides which do not produce ROS under room light, but only upon a strong external stimulus. Using the technique of electron-spin resonance (ESR) coupled with spin trapping, we examined the ability of Ga2O3 submicron-particle suspensions in water to produce reactive oxygen species with and without visible light irradiation. We found that in contrast to ZnO and TiO2 NPs, no ROS are produced by Ga2O3 under room light. Nevertheless blue light induced hydroxyl radical formation in Ga2O3. This finding might suggest that NPs of Ga2O3 could be used safely for infected skin sterilization.

  12. On the formation of the ·CH 2CH 2CH=NH 2+ distonic radical cation upon ionization of cyclopropylamine and allylamine

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh Tho; Creve, Steven; Ha, Tae-Kyu

    1998-08-01

    Ab initio molecular orbital and density functional theory calculations have been applied to determine the relative stability of the cyclopropylamine 1 and allylamine (CH 2=CHCH 2NH 2+·2) radical cations and their isomers. It is confirmed that, upon ionization, 1 undergoes barrier-free ring-opening giving the distonic species ·CH 2CH 2CH=NH 2+3. 2 also rearranges by a 1,2-H-shift to the more stable 3 (by 70 kJ/mol) which is, however, less stable than the 1-aminopropene ion (CH 3-CH=CH-NH 2+·4) by 60 kJ/mol. The transition structure TS 2/3 lies 40 kJ/mol higher in energy than TS 3/4. Although QCISD and B3LYP calculations of isotropic hyperfine coupling constants agree reasonably with observed values, supporting the presence of the distonic 3 in ESR matrix experiments, the exclusive observation of 3, but not 4, is intriguing. This emphasizes the role of the matrix in stabilizing 3.

  13. The Cu2+-nitrilotriacetic acid complex improves loading of α-helical double histidine site for precise distance measurements by pulsed ESR

    NASA Astrophysics Data System (ADS)

    Ghosh, Shreya; Lawless, Matthew J.; Rule, Gordon S.; Saxena, Sunil

    2018-01-01

    Site-directed spin labeling using two strategically placed natural histidine residues allows for the rigid attachment of paramagnetic Cu2+. This double histidine (dHis) motif enables extremely precise, narrow distance distributions resolved by Cu2+-based pulsed ESR. Furthermore, the distance measurements are easily relatable to the protein backbone-structure. The Cu2+ ion has, till now, been introduced as a complex with the chelating agent iminodiacetic acid (IDA) to prevent unspecific binding. Recently, this method was found to have two limiting concerns that include poor selectivity towards α-helices and incomplete Cu2+-IDA complexation. Herein, we introduce an alternative method of dHis-Cu2+ loading using the nitrilotriacetic acid (NTA)-Cu2+ complex. We find that the Cu2+-NTA complex shows a four-fold increase in selectivity toward α-helical dHis sites. Furthermore, we show that 100% Cu2+-NTA complexation is achievable, enabling precise dHis loading and resulting in no free Cu2+ in solution. We analyze the optimum dHis loading conditions using both continuous wave and pulsed ESR. We implement these findings to show increased sensitivity of the Double Electron-Electron Resonance (DEER) experiment in two different protein systems. The DEER signal is increased within the immunoglobulin binding domain of protein G (called GB1). We measure distances between a dHis site on an α-helix and dHis site either on a mid-strand or a non-hydrogen bonded edge-strand β-sheet. Finally, the DEER signal is increased twofold within two α-helix dHis sites in the enzymatic dimer glutathione S-transferase exemplifying the enhanced α-helical selectivity of Cu2+-NTA.

  14. A novel property of gold nanoparticles: Free radical generation under microwave irradiation.

    PubMed

    Paudel, Nava Raj; Shvydka, Diana; Parsai, E Ishmael

    2016-04-01

    Gold nanoparticles (GNPs) are known to be effective mediators in microwave hyperthermia. Interaction with an electromagnetic field, large surface to volume ratio, and size quantization of nanoparticles (NPs) can lead to increased cell killing beyond pure heating effects. The purpose of this study is to explore the possibility of free radical generation by GNPs in aqueous media when they are exposed to a microwave field. A number of samples with 500 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in 20 ppm GNP colloidal suspensions were scanned with an electron paramagnetic resonance (EPR)/electron spin resonance spectrometer to generate and detect free radicals. A fixed (9.68 GHz) frequency microwave from the spectrometer has served for both generation and detection of radicals. EPR spectra obtained as first derivatives of intensity with the spectrometer were double integrated to get the free radical signal intensities. Power dependence of radical intensity was studied by applying various levels of microwave power (12.5, 49.7, and 125 mW) while keeping all other scan parameters the same. Free radical signal intensities from initial and final scans, acquired at the same power levels, were compared. Hydroxyl radical (OH⋅) signal was found to be generated due to the exposure of GNP-DMPO colloidal samples to a microwave field. Intensity of OH⋅ signal thus generated at 12.5 mW microwave power for 2.8 min was close to the intensity of OH⋅ signal obtained from a water-DMPO sample exposed to 1.5 Gy ionizing radiation dose. For repeated scans, higher OH⋅ intensities were observed in the final scan for higher power levels applied between the initial and the final scans. Final intensities were higher also for a shorter time interval between the initial and the final scans. Our results observed for the first time demonstrate that GNPs generate OH⋅ radicals in aqueous media when they are exposed to a microwave field. If OH⋅ radicals can be generated close to deoxyribonucleic acid of cells by proper localization of NPs, NP-aided microwave hyperthermia can yield cell killing via both elevated temperature and free radical generation.

  15. Expression of oestrogen receptors (GPER, ESR1, ESR2) in human ductuli efferentes and proximal epididymis.

    PubMed

    Rago, V; Romeo, F; Giordano, F; Malivindi, R; Pezzi, V; Casaburi, I; Carpino, A

    2018-01-01

    Oestrogen targeting in the human genital ducts is still not well-known. In fact, to date, the localization of oestrogen receptors, ESR1 and ESR2, is controversial and the presence of the membrane oestrogen receptor GPER (G protein-coupled oestrogen receptor) is unexplored. This study has investigated the expression of GPER, ESR1, ESR2 in human ductuli efferentes and proximal caput epididymis by immunohistochemistry and Western blot analysis. Furthermore, the presence of PELP1 (proline-glutamic acid-leucine-rich protein 1), a co-regulator of the oestrogen receptors, was also evaluated. In ductuli efferentes, GPER and ESR1 were clearly localized in all epithelial cells, while ESR2 was evidenced only in ciliated cells. Conversely, the epithelial cells of proximal caput epididymis revealed moderate GPER immunoreactivity, the absence of ERS1 and the occasional presence of ESR2. Furthermore, PELP1 was observed in ciliated cells of ductuli efferentes and in principal cells of proximal caput epididymis. Therefore, this study firstly demonstrated the expression of GPER in human male genital ducts, revealing a new mediator of oestrogen action in these anatomical sites. ESR1 and ESR2 were differentially localized in the two genital tracts together with PELP1, but cell sites of ERs and their co-regulator were not homogeneous. So, a different regional/cellular association of GPER with the classical oestrogen receptors was highlighted, suggesting that oestrogen action could be mediated by GPER, ESR1, ESR2 in ductuli efferentes, while by GPER and, occasionally by ESR2, in proximal caput epididymis. This study suggests that the specific oestrogen-mediated functions in human genital ducts might result from the different local interactions of oestrogens with oestrogen receptors and their co-regulators. © 2017 American Society of Andrology and European Academy of Andrology.

  16. Genetic polymorphisms in ESR1 and ESR2 genes, and risk of hypospadias in a multiethnic study population.

    PubMed

    Choudhry, Shweta; Baskin, Laurence S; Lammer, Edward J; Witte, John S; Dasgupta, Sudeshna; Ma, Chen; Surampalli, Abhilasha; Shen, Joel; Shaw, Gary M; Carmichael, Suzan L

    2015-05-01

    Estrogenic endocrine disruptors acting via estrogen receptors α (ESR1) and β (ESR2) have been implicated in the etiology of hypospadias, a common congenital malformation of the male external genitalia. We determined the association of single nucleotide polymorphisms in ESR1 and ESR2 genes with hypospadias in a racially/ethnically diverse study population of California births. We investigated the relationship between hypospadias and 108 ESR1 and 36 ESR2 single nucleotide polymorphisms in 647 cases and 877 population based nonmalformed controls among infants born in selected California counties from 1990 to 2003. Subgroup analyses were performed by race/ethnicity (nonHispanic white and Hispanic subjects) and by hypospadias severity (mild to moderate and severe). Odds ratios for 33 of the 108 ESR1 single nucleotide polymorphisms had p values less than 0.05 (p = 0.05 to 0.007) for risk of hypospadias. However, none of the 36 ESR2 single nucleotide polymorphisms was significantly associated. In stratified analyses the association results were consistent by disease severity but different sets of single nucleotide polymorphisms were significantly associated with hypospadias in nonHispanic white and Hispanic subjects. Due to high linkage disequilibrium across the single nucleotide polymorphisms, haplotype analyses were conducted and identified 6 haplotype blocks in ESR1 gene that had haplotypes significantly associated with an increased risk of hypospadias (OR 1.3 to 1.8, p = 0.04 to 0.00001). Similar to single nucleotide polymorphism analysis, different ESR1 haplotypes were associated with risk of hypospadias in nonHispanic white and Hispanic subjects. No significant haplotype association was observed for ESR2. The data provide evidence that ESR1 single nucleotide polymorphisms and haplotypes influence the risk of hypospadias in white and Hispanic subjects, and warrant further examination in other study populations. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Increased Sensitivity of Estrogen Receptor Alpha Overexpressing Antral Follicles to Methoxychlor and Its Metabolites

    PubMed Central

    Paulose, Tessie; Hernández-Ochoa, Isabel; Basavarajappa, Mallikarjuna S.; Peretz, Jackye; Flaws, Jodi A.

    2011-01-01

    Methoxychlor (MXC), an organochlorine pesticide, and its metabolites, mono-hydroxy MXC (MOH) and bis-hydroxy MXC (HPTE) are known ovarian toxicants and can cause inhibition of antral follicle growth. Since these chemicals bind to estrogen receptor alpha (ESR1), we hypothesized that ovaries overexpressing ESR1 (ESR1 OE) would be more susceptible to toxicity induced by MXC and its metabolites because the chemicals can bind to more ESR1 in the antral follicles. We cultured antral follicles from controls and ESR1 OE mouse ovaries with either the vehicle dimethylsulfoxide (DMSO), MXC, MOH, or HPTE. The data show that at 96 h, the cultured antral follicles from ESR1 OE antral follicles are more susceptible to toxicity induced by MXC, MOH, and HPTE because low doses of these chemicals cause follicle growth inhibition in ESR1 OE mice but not in control mice. On comparing gene expression levels of nuclear receptors in the cultured antral follicles of ESR1 OE and control follicles, we found differential messenger RNA (mRNA) expression of Esr1, estrogen receptor beta (Esr2), androgen receptor (Ar), progesterone receptor (Pr), and aryl hydrocarbon receptor (Ahr) between the genotypes. We also analyzed mRNA levels of Cyp3a41a, the enzyme metabolizing MOH and HPTE, in the cultured follicles and found that Cyp3a41a was significantly lower in DMSO-treated ESR1 OE follicles compared with controls. In ESR1 OE livers, we found that Cyp3a41a levels were significantly lower compared with control livers. Collectively, these data suggest that MXC and its metabolites cause differential gene expression in ESR1 OE mice compared with controls. The results also suggest that the increased sensitivity of ESR1 OE mouse ovaries to toxicity induced by MXC and its metabolites is due to low clearance of the metabolites by the liver and ovary. PMID:21252393

  18. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance.

    PubMed

    Martin, Lesley-Ann; Ribas, Ricardo; Simigdala, Nikiana; Schuster, Eugene; Pancholi, Sunil; Tenev, Tencho; Gellert, Pascal; Buluwela, Laki; Harrod, Alison; Thornhill, Allan; Nikitorowicz-Buniak, Joanna; Bhamra, Amandeep; Turgeon, Marc-Olivier; Poulogiannis, George; Gao, Qiong; Martins, Vera; Hills, Margaret; Garcia-Murillas, Isaac; Fribbens, Charlotte; Patani, Neill; Li, Zheqi; Sikora, Matthew J; Turner, Nicholas; Zwart, Wilbert; Oesterreich, Steffi; Carroll, Jason; Ali, Simak; Dowsett, Mitch

    2017-11-30

    Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.

  19. Covalently Bound Nitroxyl Radicals in an Organic Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Barbara K.; Braunecker, Wade A.; Bobela, David C.

    2016-09-15

    A series of covalent organic framework (COF) structures is synthesized that possesses a tunable density of covalently bound nitroxyl radicals within the COF pores. The highest density of organic radicals produces an electron paramagnetic resonance (EPR) signal that suggests the majority of radicals strongly interact with other radicals, whereas for smaller loadings the EPR signals indicate the radicals are primarily isolated but with restricted motion. The dielectric loss as determined from microwave absorption of the framework structures compared with an amorphous control suggests that free motion of the radicals is inhibited when more than 25% of available sites are occupied.more » The ability to tune the mode of radical interactions and the subsequent effect on redox, electrical, and optical characteristics in a porous framework may lead to a class of structures with properties ideal for photoelectrochemistry or energy storage.« less

  20. ESR1 Mutations in Circulating Plasma Tumor DNA from Metastatic Breast Cancer Patients.

    PubMed

    Chu, David; Paoletti, Costanza; Gersch, Christina; VanDenBerg, Dustin A; Zabransky, Daniel J; Cochran, Rory L; Wong, Hong Yuen; Toro, Patricia Valda; Cidado, Justin; Croessmann, Sarah; Erlanger, Bracha; Cravero, Karen; Kyker-Snowman, Kelly; Button, Berry; Parsons, Heather A; Dalton, W Brian; Gillani, Riaz; Medford, Arielle; Aung, Kimberly; Tokudome, Nahomi; Chinnaiyan, Arul M; Schott, Anne; Robinson, Dan; Jacks, Karen S; Lauring, Josh; Hurley, Paula J; Hayes, Daniel F; Rae, James M; Park, Ben Ho

    2016-02-15

    Mutations in the estrogen receptor (ER)α gene, ESR1, have been identified in breast cancer metastases after progression on endocrine therapies. Because of limitations of metastatic biopsies, the reported frequency of ESR1 mutations may be underestimated. Here, we show a high frequency of ESR1 mutations using circulating plasma tumor DNA (ptDNA) from patients with metastatic breast cancer. We retrospectively obtained plasma samples from eight patients with known ESR1 mutations and three patients with wild-type ESR1 identified by next-generation sequencing (NGS) of biopsied metastatic tissues. Three common ESR1 mutations were queried for using droplet digital PCR (ddPCR). In a prospective cohort, metastatic tissue and plasma were collected contemporaneously from eight ER-positive and four ER-negative patients. Tissue biopsies were sequenced by NGS, and ptDNA ESR1 mutations were analyzed by ddPCR. In the retrospective cohort, all corresponding mutations were detected in ptDNA, with two patients harboring additional ESR1 mutations not present in their metastatic tissues. In the prospective cohort, three ER-positive patients did not have adequate tissue for NGS, and no ESR1 mutations were identified in tissue biopsies from the other nine patients. In contrast, ddPCR detected seven ptDNA ESR1 mutations in 6 of 12 patients (50%). We show that ESR1 mutations can occur at a high frequency and suggest that blood can be used to identify additional mutations not found by sequencing of a single metastatic lesion. ©2015 American Association for Cancer Research.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, N; Shvydka, D; Karpov, V

    Purpose: Hyperthermia, an established method of cancer treatment used in adjuvant to radiation and chemotherapy, can utilize metallic nanoparticles (NPs) for tumor heating with a microwave electromagnetic field. The high surface-area-to-volume ratio of nanoparticles makes them effective catalysts for free radical generation, thus amplifying the cell-killing effect of hyperthermia. We explore the effect of gold and platinum NPs in generating free radicals in aqueous media under a microwave field. Methods: Spin trap 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was mixed separately with 3.2 nm Mesogold and Mesoplatinum colloidal nanoparticle suspensions in deionized water to trap radicals. The mixtures were injected into a number ofmore » glass capillaries and exposed to the 9.68GHz microwave field of an electron paramagnetic resonance (EPR) spectrometer. The microwave radiation from the spectrometer served to both generate and detect the trapped radicals. Each sample was scanned at 12mW microwave power to obtain the initial signal of hydroxyl radicals (OH.), then at 39.8mW followed by 79.8 or 125mW, and finally re-scanned at 12mW. Radical signal intensities obtained by double integration of EPR spectra from the initial and the final scans were then compared. Results: Nanoparticle samples had no intentionally-added free radicals before the initial measurement. While samples with DMPO-water solution showed no OH. signal, all those with AuNPs or PtNPs developed an OH. signal during their first exposure to the microwave field. Depending upon the applied microwave power and time interval between the initial and the final EPR scans, an OH. intensity increase of ∼10-60% was found. This contradicts the typical trend of exponential decay of the OH. signal with time. Conclusion: The consistent increase in OH. intensity establishes that gold and platinum nanoparticles facilitate free radical generation under microwave irradiation. Our results suggest that NP-aided hyperthermia is accompanied by the generation of free radicals, which enhance the cell-killing effects of hyperthermia.« less

  2. Carnivorous pitcher plant uses free radicals in the digestion of prey.

    PubMed

    Chia, Tet Fatt; Aung, Hnin Hnin; Osipov, Anatoly N; Goh, Ngoh Khang; Chia, Lian Sai

    2004-01-01

    A study of the involvement of free oxygen radicals in trapping and digestion of insects by carnivorous plants was the main goal of the present investigation. We showed that the generation of oxygen free radicals by pitcher fluid of Nepenthes is the first step of the digestion process, as seen by EPR spin trapping assay and gel-electrophoresis. The EPR spectrum of N. gracilis fluid in the presence of DMPO spin trap showed the superposition of the hydroxyl radical spin adduct signal and of the ascorbyl radical signal. Catalase addition decreased the generation of hydroxyl radicals showing that hydroxyl radicals are generated from hydrogen peroxide, which can be derived from superoxide radicals. Gel-electrophoresis data showed that myosin, an abundant protein component of insects, can be rapidly broken down by free radicals and protease inhibitors do not inhibit this process. Addition of myoglobin to the pitcher plant fluid decreased the concentration of detectable radicals. Based on these observations, we conclude that oxygen free radicals produced by the pitcher plant aid in the digestion of the insect prey.

  3. Study of EPR/ESR Dosimetry in Fingernails as a Method for Assessing Dose of Victims of Radiological Accidents/Incidents

    DTIC Science & Technology

    2008-06-17

    dosimeters . .............................................................................................. 117 Figure 4-2. Flow chart illustrating...alanine, various sugars, quartz in rocks and sulfates, as EPR dosimeters [15]. Alternatively, radiation-induced EPR signals have been detected using...the medical response to radiological accidents, as a method for estimating radiation dose without the use of physical dosimeters and using exposed

  4. High field ESR study of the pi-d interaction effect in beta-(BDA-TTP)2MCl4 (M=Fe, Ga)

    NASA Astrophysics Data System (ADS)

    Tokumoto, Takahisa; Vantol, J.; Brunel, L.-C.; Choi, E. S.; Brooks, J. S.; Kaihatsu, T.; Akutsu, H.; Yamada, J.

    2007-03-01

    Novel magnetic organic conductors with pi-d interaction have commanded attention since the discovery of field induced superconductivity. One of them, beta-(BDA-TTP)2FeCl4, has alternating donor molecules and quasi 2D electrical properties. Previous studies of electrical and magnetic properties show an M-I transition at 120K and an AF transition at TN=8.5K, suggesting an exchange interaction between the conduction electrons and the Fe^3+ d-electrons. The properties of beta-(BDA-TTP)2GaCl4 are similar with exception of the absence of the AF transition, which is apparently due to the absence of pi-d exchange interaction. We report angular/temperature dependent 240GHz quasi optical ESR measurements on both compounds to probe the magnetic properties. The Ga compound signals follow the donor molecule structure, and show no magnetic order at any temperature. The Fe compound signals are quite different from the Ga compound, and exhibit AF behavior below TN. The difference of Fe and Ga compounds will be discussed in terms of the interaction between localized and itinerant magnetic moments.

  5. Carbon-centered radicals in γ-irradiated bone substituting biomaterials based on hydroxyapatite.

    PubMed

    Sadlo, Jaroslaw; Strzelczak, Grazyna; Lewandowska-Szumiel, Malgorzata; Sterniczuk, Marcin; Pajchel, Lukasz; Michalik, Jacek

    2012-09-01

    Gamma irradiated synthetic hydroxyapatite, bone substituting materials NanoBone(®) and HA Biocer were examined using EPR spectroscopy and compared with powdered human compact bone. In every case, radiation-induced carbon centered radicals were recorded, but their molecular structures and concentrations differed. In compact bone and synthetic hydroxyapatite the main signal assigned to the CO(2) (-) anion radical was stable, whereas the signal due to the CO(3) (3-) radical dominated in NanoBone(®) and HA Biocer just after irradiation. However, after a few days of storage of these samples, also a CO(2) (-) signal was recorded. The EPR study of irradiated compact bone and the synthetic graft materials suggest that their microscopic structures are different. In FT-IR spectra of NanoBone(®), HA Biocer and synthetic hydroxyapatite the HPO(4) (2-) and CO(3) (2-) in B-site groups are detected, whereas in compact bone signals due to collagen dominate.

  6. Quantification of superoxide radical production in thylakoid membrane using cyclic hydroxylamines.

    PubMed

    Kozuleva, Marina; Klenina, Irina; Mysin, Ivan; Kirilyuk, Igor; Opanasenko, Vera; Proskuryakov, Ivan; Ivanov, Boris

    2015-12-01

    Applicability of two lipophilic cyclic hydroxylamines (CHAs), CM-H and TMT-H, and two hydrophilic CHAs, CAT1-H and DCP-H, for detection of superoxide anion radical (O2(∙-)) produced by the thylakoid photosynthetic electron transfer chain (PETC) of higher plants under illumination has been studied. ESR spectrometry was applied for detection of the nitroxide radical originating due to CHAs oxidation by O2(∙-). CHAs and corresponding nitroxide radicals were shown to be involved in side reactions with PETC which could cause miscalculation of O2(∙-) production rate. Lipophilic CM-H was oxidized by PETC components, reducing the oxidized donor of Photosystem I, P700(+), while at the same concentration another lipophilic CHA, TMT-H, did not reduce P700(+). The nitroxide radical was able to accept electrons from components of the photosynthetic chain. Electrostatic interaction of stable cation CAT1-H with the membrane surface was suggested. Water-soluble superoxide dismutase (SOD) was added in order to suppress the reaction of CHA with O2(∙-) outside the membrane. SOD almost completely inhibited light-induced accumulation of DCP(∙), nitroxide radical derivative of hydrophilic DCP-H, in contrast to TMT(∙) accumulation. Based on the results showing that change in the thylakoid lumen pH and volume had minor effect on TMT(∙) accumulation, the reaction of TMT-H with O2(∙-) in the lumen was excluded. Addition of TMT-H to thylakoid suspension in the presence of SOD resulted in the increase in light-induced O2 uptake rate, that argued in favor of TMT-H ability to detect O2(∙-) produced within the membrane core. Thus, hydrophilic DCP-H and lipophilic TMT-H were shown to be usable for detection of O2(∙-) produced outside and within thylakoid membranes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Peroxy radical measurements with NCAR's chemical amplifier

    NASA Technical Reports Server (NTRS)

    Cantrell, Christopher; Shetter, Richard; Calvert, Jack G.

    1994-01-01

    The present NCAR instrument for HO2/RO2 measurements has been described previously. It is based on the reactions involving HO2, RO2, and HO radicals with CO and NO. Since (HO2) + (RO2) + (HO) is much greater than (HO) for most atmospheres, it is useful as a peroxy radical detector. Operation of the instrument depends on the creation of a chemical chain reaction which is initiated as HO2 and RO2 radicals in ambient air encounter added NO gas; this forms an NO2 molecule and an HO or RO radical: HO2(RO2) + NO yields HO(RO) + NO2. RO radicals react relatively efficiently with O2 to form an HO2 radical, and subsequently an HO-radical, by reaction with NO. CO gas added to the reaction chamber during part of the operating cycle, recycles the HO to HO2; HO + CO (+O2) yields HO2 + CO2. The reaction sequence may form several hundred NO2 molecules per HO2 (RO2) originally present, before chain termination occurs. The added CO is replaced by N2 addition periodically so that the chain reaction is suppressed, and a 'blank' signal resulting from NO2, O3 and possibly other NO2-forming species (non-chain processes) in ambient air is recorded. The difference between the signal with and without CO is proportional to the peroxy radical concentration. The NO2 produced is monitored using a sensitive luminol chemiluminescence detector system. In the NCAR instrument the length of the amplification chain is determined using a stable source of HO2 radicals (H2O2 thermal decomposition); the ratio of the signal seen with CO present to that with N2 present gives the sensitivity of the instrument to HO2 (molecules of NO2 formed/peroxy radical). The instrument is automated to carry out in hourly repeated cycles: (1) chain length determination; (2) NO2 calibration; and (3) linearity check on the response of signals. One minute averages of signals are normally recorded. The sensitivity of the instrument to detect peroxy radicals is in the pptv range. The present instrument has operated continuously (24 hr/day) in the field studies which extended over a period of several weeks. The major advantages of this instrument are as follows: (1) its relative simplicity; (2) low power requirements; and (3) its rapid response to all types of peroxy radicals--HO2, CH3O2 and the higher alkyl and acyl peroxy radicals; however not all RO2 species generate HO2 radicals with perfect efficiency and hence have somewhat lower response/molecule than HO2 radicals.

  8. Photodegradation of environmental mutagens by visible irradiation in the presence of xanthene dyes as photosensitizers.

    PubMed

    Odo, Junichi; Torimoto, Sei-ichi; Nakanishi, Suguru; Niitani, Tomoya; Aoki, Hiroyuki; Inoguchi, Masahiko; Yamasaki, Yu

    2012-01-01

    The photodegradation of environmental mutagens, such as 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1), 3-amino-1-methyl-5H-pyrido[4,3-b]indole (Trp-P-2), 2-amino-3-methyl-9H-pyrido[2,3-b]indole (MeAαC), and 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ), was investigated by visible irradiation in the presence of xanthene dyes as photosensitizers. Although the environmental mutagens themselves were very stable during visible irradiation under the conditions in this study, they were effectively photodegraded in the presence of the xanthene dyes (erythrosine, rose bengal, and phloxine). Moreover, photodegradation of the mutagens was further enhanced for xanthene dyes loaded onto a water-soluble diethylaminoethyl (DEAE)-dextran anion-exchanger via ionic interactions (xanthene-dyeDEX). Photodegradation was inhibited by O2 removal from the reaction solution. In ESR spin-trapping experiments using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a trapping reagent, signals characteristic of DMPO-•OH (hydroxyl radical) were observed in the presence of xanthene-dyeDEX. These results suggest that reactive oxygen species derived from O2, such as singlet molecular oxygen (•1O2) and/or •OH, were active participants in photodegradation of the mutagens in the presence of xanthene dyes or xanthene-dyeDEX.

  9. Lithospheric flexure revealed by Pleistocene emerged marine terraces on the southern Hawaiian Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A.T.

    1992-01-01

    New field and geochronological data from emerged marine deposits in the southern Hawaiian Islands suggest uplift of the islands of Molokai, Lanai and Oahu. Corals from these islands were dated by ESR. The accumulated dose for aragonitic coral at ESR signal, g = 2.0007, was determined by the additive dose method. The environmental dose rate was estimated from the Uranium concentration in corals and by using an estimate of 2.5 rad/a for the cosmic ray dose. The ESR ages of the highest terraces on Molokai are 290 [+-] 31 ka (30 m), on Lanai 217 [+-] 19 ka (50 m)more » and on Oahu 468 [+-] 36 ka (28 m). The age and elevation of the marine terraces are interpreted to imply uplift during the Late Quaternary. Lithospheric flexure combined with horizontal plate motion is proposed as a mechanism to describe the pattern of uplifted terraces on these islands. Using two-dimensional elastic plate models, the height of maximum bulge is approximately 4% to 7% of the maximum deflection for a continuous or broken plate model. Drowned reefs off Hawaii indicate subsidence of 1 km since 340 ka. Thus, the magnitude of observed uplift (30--50 m) is consistent with theoretical maximum bulge heights derived from numerical results.« less

  10. Intronic SNP in ESR1 encoding human estrogen receptor alpha is associated with brain ESR1 mRNA isoform expression and behavioral traits.

    PubMed

    Pinsonneault, Julia K; Frater, John T; Kompa, Benjamin; Mascarenhas, Roshan; Wang, Danxin; Sadee, Wolfgang

    2017-01-01

    Genetic variants of ESR1 have been implicated in multiple diseases, including behavioral disorders, but causative variants remain uncertain. We have searched for regulatory variants affecting ESR1 expression in human brain, measuring allelic ESR1 mRNA expression in human brain tissues with marker SNPs in exon4 representing ESR1-008 (or ESRα-36), and in the 3'UTR of ESR1-203, two main ESR1 isoforms in brain. In prefrontal cortex from subjects with bipolar disorder, schizophrenia, and controls (n = 35 each; Stanley Foundation brain bank), allelic ESR1 mRNA ratios deviated from unity up to tenfold at the exon4 marker SNP, with large allelic ratios observed primarily in bipolar and schizophrenic subjects. SNP scanning and targeted sequencing identified rs2144025, associated with large allelic mRNA ratios (p = 1.6E10-6). Moreover, rs2144025 was significantly associated with ESR1 mRNA levels in the Brain eQTL Almanac and in brain regions in the Genotype-Tissue Expression project. In four GWAS cohorts, rs2104425 was significantly associated with behavioral traits, including: hypomanic episodes in female bipolar disorder subjects (GAIN bipolar disorder study; p = 0.0004), comorbid psychological symptoms in both males and females with attention deficit hyperactivity disorder (GAIN ADHD, p = 0.00002), psychological diagnoses in female children (eMERGE study of childhood health, subject age ≥9, p = 0.0009), and traits in schizophrenia (e.g., grandiose delusions, GAIN schizophrenia, p = 0.0004). The first common ESR1 variant (MAF 12-33% across races) linked to regulatory functions, rs2144025 appears conditionally to affect ESR1 mRNA expression in the brain and modulate traits in behavioral disorders.

  11. Prognostic and predictive role of ESR1 status for postmenopausal patients with endocrine-responsive early breast cancer in the Danish cohort of the BIG 1-98 trial

    PubMed Central

    Ejlertsen, B.; Aldridge, J.; Nielsen, K. V.; Regan, M. M.; Henriksen, K. L.; Lykkesfeldt, A. E.; Müller, S.; Gelber, R. D.; Price, K. N.; Rasmussen, B. B.; Viale, G.; Mouridsen, H.

    2012-01-01

    Background: Estrogen Receptor 1 (ESR1) aberrations may be associated with expression of estrogen receptor (ER) or progesterone receptor (PgR), human epidermal growth factor receptor-2 (HER2) or Ki-67 labeling index and prognosis. Patients and methods: ESR1 was assessed in 1129 (81%) of 1396 postmenopausal Danish women with early breast cancer randomly assigned to receive 5 years of letrozole, tamoxifen or a sequence of these agents in the Breast International Group 1-98 trial and who had ER ≥1% after central review. Results: By FISH, 13.6% of patients had an ESR1-to-Centromere-6 (CEN-6) ratio ≥2 (amplified), and 4.2% had ESR1-to-CEN-6 ratio <0.8 (deleted). Deletion of ESR1 was associated with significantly lower levels of ER (P < 0.0001) and PgR (P = 0.02) and more frequent HER2 amplification. ESR1 deletion or amplification was associated with higher-Ki-67 than ESR1-normal tumors. Overall, there was no evidence of heterogeneity of disease-free survival (DFS) or in treatment effect according to ESR1 status. However, significant differences in DFS were observed for subsets based on a combination of ESR1 and HER2 status (P = 0.02). Conclusions: ESR1 aberrations were associated with HER2 status, Ki-67 labeling index and ER and PgR levels. When combined with HER2, ESR1 may be prognostic but should not be used for endocrine treatment selection in postmenopausal women with endocrine-responsive early breast cancer. PMID:21986093

  12. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer

    PubMed Central

    Schiavon, Gaia; Hrebien, Sarah; Garcia-Murillas, Isaac; Cutts, Rosalind J; Pearson, Alex; Tarazona, Noelia; Fenwick, Kerry; Kozarewa, Iwanka; Lopez-Knowles, Elena; Ribas, Ricardo; Nerurkar, Ashutosh; Osin, Peter; Chandarlapaty, Sarat; Martin, Lesley-Ann; Dowsett, Mitch; Smith, Ian E; Turner, Nicholas C.

    2016-01-01

    Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AI). We developed ultra-high sensitivity multiplexed digital PCR assays for ESR1 mutations in circulating tumor DNA (ctDNA) and used these to investigate the clinical relevance and origin of ESR1 mutations in a cohort of 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies, and could be assessed in samples shipped at room temperature in preservative tubes without loss of accuracy. ESR1 mutations were found exclusively in patients with estrogen receptor positive breast cancer previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy (HR 3.1, 95%CI 1.9-23.1, log rank p=0.0041). ESR1 mutation prevalence differed markedly between patients that were first exposed to AI during the adjuvant and metastatic settings (5.8% (3/52) vs 36.4% (16/44) respectively, p=0.0002). In an independent cohort, ESR1 mutations were identified in 0% (0/32, 95%CI 0-10.9%) tumor biopsies taken after progression on adjuvant AI. In a patient with serial samples taken during metastatic treatment, ESR1 mutation was selected during metastatic AI therapy, to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI therapy, but are commonly selected by therapy for metastatic disease, providing evidence that the mechanisms of resistance to targeted therapy may be substantially different between the treatment of micro-metastatic and overt metastatic cancer. PMID:26560360

  13. Intronic SNP in ESR1 encoding human estrogen receptor alpha is associated with brain ESR1 mRNA isoform expression and behavioral traits

    PubMed Central

    Kompa, Benjamin; Mascarenhas, Roshan; Wang, Danxin; Sadee, Wolfgang

    2017-01-01

    Genetic variants of ESR1 have been implicated in multiple diseases, including behavioral disorders, but causative variants remain uncertain. We have searched for regulatory variants affecting ESR1 expression in human brain, measuring allelic ESR1 mRNA expression in human brain tissues with marker SNPs in exon4 representing ESR1-008 (or ESRα-36), and in the 3’UTR of ESR1-203, two main ESR1 isoforms in brain. In prefrontal cortex from subjects with bipolar disorder, schizophrenia, and controls (n = 35 each; Stanley Foundation brain bank), allelic ESR1 mRNA ratios deviated from unity up to tenfold at the exon4 marker SNP, with large allelic ratios observed primarily in bipolar and schizophrenic subjects. SNP scanning and targeted sequencing identified rs2144025, associated with large allelic mRNA ratios (p = 1.6E10-6). Moreover, rs2144025 was significantly associated with ESR1 mRNA levels in the Brain eQTL Almanac and in brain regions in the Genotype-Tissue Expression project. In four GWAS cohorts, rs2104425 was significantly associated with behavioral traits, including: hypomanic episodes in female bipolar disorder subjects (GAIN bipolar disorder study; p = 0.0004), comorbid psychological symptoms in both males and females with attention deficit hyperactivity disorder (GAIN ADHD, p = 0.00002), psychological diagnoses in female children (eMERGE study of childhood health, subject age ≥9, p = 0.0009), and traits in schizophrenia (e.g., grandiose delusions, GAIN schizophrenia, p = 0.0004). The first common ESR1 variant (MAF 12–33% across races) linked to regulatory functions, rs2144025 appears conditionally to affect ESR1 mRNA expression in the brain and modulate traits in behavioral disorders. PMID:28617822

  14. Analysis of ESR1 mutation in circulating tumor DNA demonstrates evolution during therapy for metastatic breast cancer.

    PubMed

    Schiavon, Gaia; Hrebien, Sarah; Garcia-Murillas, Isaac; Cutts, Rosalind J; Pearson, Alex; Tarazona, Noelia; Fenwick, Kerry; Kozarewa, Iwanka; Lopez-Knowles, Elena; Ribas, Ricardo; Nerurkar, Ashutosh; Osin, Peter; Chandarlapaty, Sarat; Martin, Lesley-Ann; Dowsett, Mitch; Smith, Ian E; Turner, Nicholas C

    2015-11-11

    Acquired ESR1 mutations are a major mechanism of resistance to aromatase inhibitors (AIs). We developed ultra high-sensitivity multiplex digital polymerase chain reaction assays for ESR1 mutations in circulating tumor DNA (ctDNA) and investigated the clinical relevance and origin of ESR1 mutations in 171 women with advanced breast cancer. ESR1 mutation status in ctDNA showed high concordance with contemporaneous tumor biopsies and was accurately assessed in samples shipped at room temperature in preservative tubes. ESR1 mutations were found exclusively in estrogen receptor-positive breast cancer patients previously exposed to AI. Patients with ESR1 mutations had a substantially shorter progression-free survival on subsequent AI-based therapy [hazard ratio, 3.1; 95% confidence interval (CI), 1.9 to 23.1; P = 0.0041]. ESR1 mutation prevalence differed markedly between patients who were first exposed to AI during the adjuvant and metastatic settings [5.8% (3 of 52) versus 36.4% (16 of 44), respectively; P = 0.0002]. In an independent cohort, ESR1 mutations were identified in 0% (0 of 32; 95% CI, 0 to 10.9) tumor biopsies taken after progression on adjuvant AI. In a patient with serial sampling, ESR1 mutation was selected during metastatic AI therapy to become the dominant clone in the cancer. ESR1 mutations can be robustly identified with ctDNA analysis and predict for resistance to subsequent AI therapy. ESR1 mutations are rarely acquired during adjuvant AI but are commonly selected by therapy for metastatic disease, providing evidence that mechanisms of resistance to targeted therapy may be substantially different between the treatment of micrometastatic and overt metastatic cancer. Copyright © 2015, American Association for the Advancement of Science.

  15. Molecular mechanism of metal-independent decomposition of lipid hydroperoxide 13-HPODE by halogenated quinoid carcinogens.

    PubMed

    Qin, Hao; Huang, Chun-Hua; Mao, Li; Xia, Hai-Ying; Kalyanaraman, Balaraman; Shao, Jie; Shan, Guo-Qiang; Zhu, Ben-Zhan

    2013-10-01

    Halogenated quinones are a class of carcinogenic intermediates and newly identified chlorination disinfection by-products in drinking water. 13-Hydroperoxy-9,11-octadecadienoic acid (13-HPODE) is the most extensively studied endogenous lipid hydroperoxide. Although it is well known that the decomposition of 13-HPODE can be catalyzed by transition metal ions, it is not clear whether halogenated quinones could enhance its decomposition independent of metal ions and, if so, what the unique characteristics and similarities are. Here we show that 2,5-dichloro-1,4-benzoquinone (DCBQ) could markedly enhance the decomposition of 13-HPODE and formation of reactive lipid alkyl radicals such as pentyl and 7-carboxyheptyl radicals, and the genotoxic 4-hydroxy-2-nonenal (HNE), through the complementary application of ESR spin trapping, HPLC-MS, and GC-MS methods. Interestingly, two chloroquinone-lipid alkoxyl conjugates were also detected and identified from the reaction between DCBQ and 13-HPODE. Analogous results were observed with other halogenated quinones. This represents the first report that halogenated quinoid carcinogens can enhance the decomposition of the endogenous lipid hydroperoxide 13-HPODE and formation of reactive lipid alkyl radicals and genotoxic HNE via a novel metal-independent nucleophilic substitution coupled with homolytic decomposition mechanism, which may partly explain their potential genotoxicity and carcinogenicity. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. n-Dopants Based on Dimers of Benzimidazoline Radicals: Structures and Mechanism of Redox Reactions.

    PubMed

    Zhang, Siyuan; Naab, Benjamin D; Jucov, Evgheni V; Parkin, Sean; Evans, Eric G B; Millhauser, Glenn L; Timofeeva, Tatiana V; Risko, Chad; Brédas, Jean-Luc; Bao, Zhenan; Barlow, Stephen; Marder, Seth R

    2015-07-20

    Dimers of 2-substituted N,N'-dimethylbenzimidazoline radicals, (2-Y-DMBI)2 (Y=cyclohexyl (Cyc), ferrocenyl (Fc), ruthenocenyl (Rc)), have recently been reported as n-dopants for organic semiconductors. Here their structural and energetic characteristics are reported, along with the mechanisms by which they react with acceptors, A (PCBM, TIPS-pentacene), in solution. X-ray data and DFT calculations both indicate a longer C-C bond for (2-Cyc-DMBI)2 than (2-Fc-DMBI)2 , yet DFT and ESR data show that the latter dissociates more readily due to stabilization of the radical by Fc. Depending on the energetics of dimer (D2 ) dissociation and of D2 -to-A electron transfer, D2 reacts with A to form D(+) and A(-) by either of two mechanisms, differing in whether the first step is endergonic dissociation or endergonic electron transfer. However, the D(+) /0.5 D2 redox potentials-the effective reducing strengths of the dimers-vary little within the series (ca. -1.9 V vs. FeCp2 (+/0) ) (Cp=cyclopentadienyl) due to cancelation of trends in the D(+/0) potential and D2 dissociation energy. The implications of these findings for use of these dimers as n-dopants, and for future dopant design, are discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Expression of ESR1 in Glutamatergic and GABAergic Neurons Is Essential for Normal Puberty Onset, Estrogen Feedback, and Fertility in Female Mice.

    PubMed

    Cheong, Rachel Y; Czieselsky, Katja; Porteous, Robert; Herbison, Allan E

    2015-10-28

    Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse. Copyright © 2015 the authors 0270-6474/15/3514533-11$15.00/0.

  18. Comparison of ESR1 Mutations in Tumor Tissue and Matched Plasma Samples from Metastatic Breast Cancer Patients.

    PubMed

    Takeshita, Takashi; Yamamoto, Yutaka; Yamamoto-Ibusuki, Mutsuko; Tomiguchi, Mai; Sueta, Aiko; Murakami, Keiichi; Omoto, Yoko; Iwase, Hirotaka

    2017-10-01

    ESR1 mutation in circulating cell-free DNA (cfDNA) is emerging as a noninvasive biomarker of acquired resistance to endocrine therapy, but there is a paucity of data comparing the status of ESR1 gene in cfDNA with that in its corresponding tumor tissue. The objective of this study is to validate the degree of concordance of ESR1 mutations between plasma and tumor tissue. ESR1 ligand-binding domain mutations Y537S, Y537N, Y537C, and D538G were analyzed using droplet digital PCR in 35 patients with metastatic breast cancer (MBC) (35 tumor tissue samples and 67 plasma samples). Of the 35 paired samples, 26 (74.3%) were concordant: one patient had detectable ESR1 mutations both plasma (ESR1 Y537S/Y537N) and tumor tissue (ESR1 Y537S/Y537C), and 25 had WT ESR1 alleles in both. Nine (25.7%) had discordance between the plasma and tissue results: five had mutations detected only in their tumor tissue (two Y537S, one Y537C, one D538G, and one Y537S/Y537N/D538G), and four had mutations detected only in their plasma (one Y537S, one Y537N, and two Y537S/Y537N/D538G). Furthermore, longitudinal plasma samples from 19 patients were used to assess changes in the presence of ESR1 mutations during treatment. Eleven patients had cfDNA ESR1 mutations over the course of treatment. A total of eight of 11 patients with MBC with cfDNA ESR1 mutations (72.7%) had the polyclonal mutations. We have shown the independent distribution of ESR1 mutations between plasma and tumor tissue in 35 patients with MBC. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, Nava Raj, E-mail: nrpaudel@yahoo.com; Shvydka, Diana; Parsai, E. Ishmael

    Purpose: Gold nanoparticles (GNPs) are known to be effective mediators in microwave hyperthermia. Interaction with an electromagnetic field, large surface to volume ratio, and size quantization of nanoparticles (NPs) can lead to increased cell killing beyond pure heating effects. The purpose of this study is to explore the possibility of free radical generation by GNPs in aqueous media when they are exposed to a microwave field. Methods: A number of samples with 500 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO) in 20 ppm GNP colloidal suspensions were scanned with an electron paramagnetic resonance (EPR)/electron spin resonance spectrometer to generate and detect free radicals.more » A fixed (9.68 GHz) frequency microwave from the spectrometer has served for both generation and detection of radicals. EPR spectra obtained as first derivatives of intensity with the spectrometer were double integrated to get the free radical signal intensities. Power dependence of radical intensity was studied by applying various levels of microwave power (12.5, 49.7, and 125 mW) while keeping all other scan parameters the same. Free radical signal intensities from initial and final scans, acquired at the same power levels, were compared. Results: Hydroxyl radical (OH⋅) signal was found to be generated due to the exposure of GNP–DMPO colloidal samples to a microwave field. Intensity of OH⋅ signal thus generated at 12.5 mW microwave power for 2.8 min was close to the intensity of OH⋅ signal obtained from a water–DMPO sample exposed to 1.5 Gy ionizing radiation dose. For repeated scans, higher OH⋅ intensities were observed in the final scan for higher power levels applied between the initial and the final scans. Final intensities were higher also for a shorter time interval between the initial and the final scans. Conclusions: Our results observed for the first time demonstrate that GNPs generate OH⋅ radicals in aqueous media when they are exposed to a microwave field. If OH⋅ radicals can be generated close to deoxyribonucleic acid of cells by proper localization of NPs, NP-aided microwave hyperthermia can yield cell killing via both elevated temperature and free radical generation.« less

  20. Age-specific effects of estrogen receptors' polymorphisms on the bone traits in healthy fertile women: the BONTURNO study

    PubMed Central

    Massart, Francesco; Marini, Francesca; Bianchi, Gerolamo; Minisola, Salvatore; Luisetto, Giovanni; Pirazzoli, Antonella; Salvi, Sara; Micheli, Dino; Masi, Laura; Brandi, Maria Luisa

    2009-01-01

    Background Skeletal characteristics such as height (Ht), bone mineral density (BMD) or bone turnover markers are strongly inherited. Common variants in the genes encoding for estrogen receptor alpha (ESR1) and beta (ESR2) are proposed as candidates for influencing bone phenotypes at the population level. Methods We studied 641 healthy premenopausal women aged 20–50 years (yrs) participating into the BONTURNO study. Exclusion criteria were irregular cyclic menses, low trauma fracture, metabolic bone or chronic diseases. Serum C-telopeptide of type I collagen (CTX), osteocalcin (OC), and N-terminal propeptide of type I procollagen (P1NP) were measured in all enrolled subjects, who underwent to lumbar spine (LS), total hip (TH) and femoral neck (FN) BMD evaluation by DXA. Five hundred seventy Caucasian women were genotyped for ESR1 rs2234693 and rs9340799 and ESR2 rs4986938 polymorphisms. Results Although no genotype differences were found in body parameters, subjects with combined ESR1 CCGG plus ESR2 AA-AG genotype were taller than those with opposite genotype (P = 0.044). Moreover, ESR1 rs2234693 genotypes correlated with family history of osteoporosis (FHO) and hip fracture (FHF) (P < 0.01), while ESR2 AA-AC genotypes were strongly associated with FHF (OR 2.387, 95% CI 1.432–3.977; P < 0.001). When clustered by age, 20–30 yrs old subjects, having at least one ESR1 rs2234693 C allele presented lower LS- (P = 0.008) and TH-BMD (P = 0.047) than TT genotypes. In 41–50 yrs age, lower FN-BMD was associated with ESR2 AA (P = 0.0180) subjects than in those with the opposite genotype. ESR1 rs2234693 and rs9340799 and ESR2 rs4986938 polymorphisms did not correlate with age-adjusted values of OC, CTX and P1NP. Conclusion These findings support the presence of age-specific effects of ESR1 and ESR2 polymorphisms on various skeletal traits in healthy fertile women. PMID:19386104

  1. ESR1 mutations: Moving towards guiding treatment decision-making in metastatic breast cancer patients.

    PubMed

    Angus, Lindsay; Beije, Nick; Jager, Agnes; Martens, John W M; Sleijfer, Stefan

    2017-01-01

    Mutations in the gene coding for the estrogen receptor (ER), ESR1, have been associated with acquired endocrine resistance in patients with ER-positive metastatic breast cancer (MBC). Functional studies revealed that these ESR1 mutations lead to constitutive activity of the ER, meaning that the receptor is active in absence of its ligand estrogen, conferring resistance against several endocrine agents. While recent clinical studies reported that the occurrence of ESR1 mutations is rare in primary breast cancer tumors, these mutations are more frequently observed in metastatic tissue and circulating cell-free DNA of MBC patients pretreated with endocrine therapy. Given the assumed impact that the presence of ESR1 mutations has on outcome to endocrine therapy, assessing ESR1 mutations in MBC patients is likely to be of significant interest to further individualize treatment for MBC patients. Here, ESR1 mutation detection methods and the most relevant pre-clinical and clinical studies on ESR1 mutations regarding endocrine resistance are reviewed, with particular interest in the ultimate goal of guiding treatment decision-making based on ESR1 mutations. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Manual for the Extrapyramidal Symptom Rating Scale (ESRS).

    PubMed

    Chouinard, Guy; Margolese, Howard C

    2005-07-15

    The Extrapyramidal Symptom Rating Scale (ESRS) was developed to assess four types of drug-induced movement disorders (DIMD): Parkinsonism, akathisia, dystonia, and tardive dyskinesia (TD). Comprehensive ESRS definitions and basic instructions are given. Factor analysis provided six ESRS factors: 1) hypokinetic Parkinsonism; 2) orofacial dyskinesia; 3) trunk/limb dyskinesia; 4) akathisia; 5) tremor; and 6) tardive dystonia. Two pivotal studies found high inter-rater reliability correlations in both antipsychotic-induced movement disorders and idiopathic Parkinson disease. For inter-rater reliability and certification of raters, >or=80% of item ratings of the complete scale should be +/-1 point of expert ratings and >or=70% of ratings on individual items of each ESRS subscale should be +/-1 point of expert ratings. During a cross-scale comparison, AIMS and ESRS were found to have a 96% (359/374) agreement between TD-defined cases by DSM-IV TD criteria. Two recent international studies using the ESRS included over 3000 patients worldwide and showed an incidence of TD ranging from 10.2% (2000) to 12% (1998). ESRS specificity was investigated through two different approaches, path analyses and ANCOVA PANSS factors changes, which found that ESRS measurement of drug-induced EPS is valid and discriminative from psychiatric symptoms.

  3. Degradation and ESR Failures in MnO2 Chip Tantalum Capacitors

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2017-01-01

    Equivalent series resistance (ESR) of chip tantalum capacitors determines the rate of energy delivery and power dissipation thus affecting temperature and reliability of the parts. Employment of advanced capacitors with reduced ESR decreases power losses and improves efficiency in power systems. Stability of ESR is essential for correct operations of power units and might cause malfunctioning and failures when ESR becomes too high or too low. Several cases with ESR values in CWR29 capacitors exceeding the specified limit that were observed recently raised concerns regarding environmental factors affecting ESR and the adequacy of the existing screening and qualification testing. In this work, results of stress testing of various types of military and commercial capacitors obtained over years by GSFC test lab and NEPP projects that involved ESR measurements are described. Environmental stress tests include testing in humidity and vacuum chambers, temperature cycling, long-term storage at high temperatures, and various soldering simulation tests. Note that in many cases parts failed due to excessive leakage currents or reduced breakdown voltages. However, only ESR-related degradation and failures are discussed. Mechanisms of moisture effect are discussed and recommendations to improve screening and qualification system are suggested.

  4. Functional analysis of the GmESR1 gene associated with soybean regeneration

    PubMed Central

    Chen, Qingshan; Liu, Ming; Xin, Dawei; Qi, Zhaoming; Li, Sinan; Ma, Yanlong; Wang, Lingshuang; Jin, Yangmei; Li, Wenbin; Wu, Xiaoxia; Su, An-yu

    2017-01-01

    Plant regeneration can occur via in vitro tissue culture through somatic embryogenesis or de novo shoot organogenesis. Transformation of soybean (Glycine max) is difficult, hence optimization of the transformation system for soybean regeneration is required. This study investigated ENHANCER OF SHOOT REGENERATION 1 (GmESR1), a soybean transcription factor that targets regeneration-associated genes. Sequence analysis showed that GmESR1 contained a conserved 57 amino acid APETALA 2 (AP2)/ETHYLENE RESPONSE FACTOR (ERF) DNA-binding domain. The relative expression level of GmESR1 was highest in young embryos, flowers and stems in the soybean cultivar ‘Dongnong 50’. To examine the function of GmESR1, transgenic Arabidopsis (Arabidopsis thaliana) and soybean plants overexpressing GmESR1 were generated. In Arabidopsis, overexpression of GmESR1 resulted in accelerated seed germination, and seedling shoot and root elongation. In soybean overexpression of GmESR1 also led to faster seed germination, and shoot and root elongation. GmESR1 specifically bound to the GCC-box. The results provide a foundation for the establishment of an efficient and stable transformation system for soybean. PMID:28403182

  5. X-band Electron Paramagnetic Resonance Investigation of Stable Organic Radicals Present under Cold Stratification in 'Fuji' Apple Seeds.

    PubMed

    Nakagawa, Kouichi; Matsumoto, Kazuhiro; Chaiserm, Nattakan; Priprem, Aroonsri

    2017-01-01

    We investigated stable organic radicals formed in response to cold stratification in 'Fuji' apple seeds using X-band (9 GHz) electron paramagnetic resonance (EPR) technique. This technique primarily detected two paramagnetic species in each seed. These two different radical species were assigned as a stable organic radical and Mn 2+ species based on the g values and hyperfine components. Signal from the stable radicals was noted at a g value of about 2.00 and was strong and relatively stable. Significant radical intensity changes were observed in apple seeds on refrigeration along with water supplementation. The strongest radical intensity and a very weak Mn 2+ signal were also observed for the seeds kept in moisture-containing sand in a refrigerator. Noninvasive EPR of the radicals present in each seed revealed that the stable radicals were located primarily in the seed coat. These results indicate that the significant radical intensity changes in apple seeds under refrigeration for at least 90 days followed by water supplementation for one week, can be related to cold stratification of the seeds.

  6. Luminescence induced by dehydration of kaolin - Association with electron-spin-active centers and with surface activity for dehydration-polymerization of glycine

    NASA Technical Reports Server (NTRS)

    Coyne, L.; Hovatter, W.; Sweeney, M.

    1983-01-01

    Experimental data concerning emission of light upon dehydration as a function of preheating and pre-gamma-irradiation are correlated with reported studies of electron-spin resonance (ESR) activity after similar pretreatments. The effect of these pretreatments on the kaolin-promoted incorporation of glycine into peptide oligomers in a wet/cold, hot/dry fluctuating environment is compared to their effect on the ESR and luminescent signals. The existence of spectroscopically active centers appears to be loosely anticorrelated with reaction yield; these yields are increased by increasing the overall energy content of the material. It is concluded that some part of the chemical yield is produced by a mechanism involving intrinsic, excited electronic states of the clay crystal lattice. These states may be derived from thermally, interfacially, and/or mechanically induced charge reorganization within interspersed energy levels in the band structure of the material.

  7. Investigation of the Effects of Subchronic Low Dose Oral Exposure to Bisphenol A (BPA) and Ethinyl Estradiol (EE) on Estrogen Receptor Expression in the Juvenile and Adult Female Rat Hypothalamus

    PubMed Central

    Rebuli, Meghan E.; Cao, Jinyan; Sluzas, Emily; Delclos, K. Barry; Camacho, Luísa; Lewis, Sherry M.; Vanlandingham, Michelle M.; Patisaul, Heather B.

    2014-01-01

    Concerns have been raised regarding the long-term impacts of early life exposure to the ubiquitous environmental contaminant bisphenol A (BPA) on brain organization. Because BPA has been reported to affect estrogen signaling, and steroid hormones play a critical role in brain sexual differentiation, there is also concern that BPA exposure could alter neural sex differences. Here, we examine the impact of subchronic exposure from gestation to adulthood to oral doses of BPA below the current no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day on estrogen receptor (ESR) expression in sexually dimorphic brain regions of prepubertal and adult female rats. The dams were gavaged daily with vehicle (0.3% carboxymethylcellulose), 2.5, 25, 260, or 2700 μg BPA/kg bw/day, or 0.5 or 5.0 μg ethinyl estradiol (EE)/kg bw/day from gestational day 6 until labor began. Offspring were then gavaged directly from the day after birth until the day before scheduled sacrifice on postnatal days 21 or 90. Using in situ hybridization, one or more BPA doses produced significant decreases in Esr1 expression in the juvenile female rat anteroventral periventricular nucleus (AVPV) of the hypothalamus and significant decreases in Esr2 expression in the adult female rat AVPV and medial preoptic area (MPOA), relative to vehicle controls. BPA did not simply reproduce EE effects, indicating that BPA is not acting solely as an estrogen mimic. The possible consequences of long-term changes in hypothalamic ESR expression resulting from subchronic low dose BPA exposure on neuroendocrine effects are discussed and being addressed in ongoing, related work. PMID:24752507

  8. Effects of the components in rice flour on thermal radical generation under microwave irradiation.

    PubMed

    Lin, Lufen; Huang, Luelue; Fan, Daming; Hu, Bo; Gao, Yishu; Lian, Huizhang; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2016-12-01

    The relationships between radical generation under microwave irradiation and the components of various types of rice flour were investigated. Electron paramagnetic resonance (EPR) spectroscopy was used to characterize the radicals found in rice flour samples. The EPR spectra revealed that several types of radical (carbon-centered, tyrosyl and semiquinone) were localized in the starch and protein fractions of the rice flour. The signal intensity of the free radicals was observed to increase exponentially with increasing microwave power and residence time. The rice bran samples exhibited the greatest free radical signal intensity, followed by the brown rice samples and the white rice samples. This finding was consistent for both the native and the microwaved samples. The ratio of rice starch to rice protein also played an important role in the generation of radicals. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Photodynamic therapy of Curcuma longa extract stimulated with blue light against Aggregatibacter actinomycetemcomitans.

    PubMed

    Saitawee, Darika; Teerakapong, Aroon; Morales, Noppawan Phumala; Jitprasertwong, Paiboon; Hormdee, Doosadee

    2018-06-01

    Curcumin, one of an established curcuminoid substances extracted from Curcuma longa, has been used as a photosensitizer (PS) in photodynamic therapy (PDT). Curcuminoid substances has been reported to have benefits in treating dental chronic infection and inflammation diseases, such as chronic periodontitis. The purpose of this study was to find the optimum concentration of Curcuma longa (CL) extract, containing all curcuminoid substances, and the power density of blue light (BL) in photodynamic therapy against periodontally pathogenic bacteria, A. actinomycetemcomitans. Antibacterial activity of various concentrations of CL extract against A. actinomycetemcomitans was determined. Exponentially growing bacteria were combined with 2-fold dilution of CL extract solution ranging from 25 to 0.098 μg/ml. Co-culture bacteria treated with 0.12% chlorhexidine (CHX) served as the positive control. The effect of photostimulation with light emitting diode (LED) 420-480 nm at 16.8 J/cm 2 for 1 min on the selected concentration of CL extract was examined. Bacteria viability was determined by plate counting technique. In addition, production of free radicals was tested by electron spin resonance spectroscope (ESR) with 5,5-dimethyl-1-pyrroline N-oxide (DMPO). The antibacterial activity of CL extract was dose dependent. Without BL, 25 μg/ml CL extract showed 6.03 ± 0.39 log 10 A. actinomycetemcomitans. Interestingly, the combination of BL and 0.78 μg/ml CL extract solution showed complete absence of A. actinomycetemcomitans. Peak signal intensity of hydroxyl radical production was also detected with the combination of BL and CL. CL extract not only had antimicrobial activity but also could be used as an effective PS when stimulated with BL in PDT. The optimal antibacterial effect of CL extract with BL was equal to the standard oral disinfectant, 0.12% CHX. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Prostaglandin H synthase-catalyzed oxidation of all-trans- and 13-cis-retinoic acid to carbon-centered and peroxyl radical intermediates.

    PubMed

    Freyaldenhoven, M A; Lloyd, R V; Samokyszyn, V M

    1996-06-01

    Due to the importance of all-trans-retinoic acid (RA) in the treatment of various dermatological conditions and the wide distribution of prostaglandin H synthase (PGHS) in tissues, we have further examined the mechanisms involved in the hydroperoxide-dependent cooxidation of RA and its isomer, 13-cis-retinoic acid ((13Z)-RA), by PGHS. Hydroperoxide-dependent, PGHS-catalyzed oxidation of RA and (13Z)-RA was shown to form free radical adducts, using electron spin resonance (ESR) spin trapping techniques and 5-phenyl-4-penten-1-yl hydroperoxide (PPHP) or 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-OOH-18:2) as hydroperoxide substrates. Utilization of the spin trap alpha-phenyl-N-tert-butylnitrone (PBN) resulted in the detection of (13Z)-RA-PBN and RA-PBN adducts whose spectra were characterized by hyperfine coupling constants of aH = 4.16/aN = 15.69 and aH = 3.01/aN =15.92, respectively. Identical experiments under anaerobic conditions were carried out using the spin trap 2-methyl-2-nitrosopropane (NtB) which yielded nitroxide adducts whose spectra were characterized by a triplet of doublets with values of aH = 3.49/aN = 15.84 for the (13Z)-RA adduct and aH = 3.49/aN = 15.88 for the RA adduct. These results are indicative of secondary carbon-centered radical formation. We also used (+)-benzo[a]pyrene 7(S),8(S)-dihydrodiol ((+)-BP-7,8-diol) as a peroxyl radical probe. The results demonstrated the formation of (+)-BP-7,8-diol-derived tetrols, with the trans-anti tetrol representing the major oxidation product in systems undergoing PPHP-dependent, PGHS-catalyzed oxidation of (13Z)-RA or RA. These results are consistent with the formation of peroxyl radicals in these systems. In all experiments, the (13Z)-RA isomer appeared to be a better substrate for the enzyme compared to the all-trans isomer. Collectively these results provide further evidence to support the previously proposed mechanism for retinoid oxidation by PGHS involving the intermediacy of C4 carbon-centered radicals which subsequently react with dioxygen, yielding retinoid-derived peroxyl radicals.

  11. Incorporating geographical factors with artificial neural networks to predict reference values of erythrocyte sedimentation rate

    PubMed Central

    2013-01-01

    Background The measurement of the Erythrocyte Sedimentation Rate (ESR) value is a standard procedure performed during a typical blood test. In order to formulate a unified standard of establishing reference ESR values, this paper presents a novel prediction model in which local normal ESR values and corresponding geographical factors are used to predict reference ESR values using multi-layer feed-forward artificial neural networks (ANN). Methods and findings Local normal ESR values were obtained from hospital data, while geographical factors that include altitude, sunshine hours, relative humidity, temperature and precipitation were obtained from the National Geographical Data Information Centre in China. The results show that predicted values are statistically in agreement with measured values. Model results exhibit significant agreement between training data and test data. Consequently, the model is used to predict the unseen local reference ESR values. Conclusions Reference ESR values can be established with geographical factors by using artificial intelligence techniques. ANN is an effective method for simulating and predicting reference ESR values because of its ability to model nonlinear and complex relationships. PMID:23497145

  12. Lack of Association between ESR1 and CYP1A1 Gene Polymorphisms and Susceptibility to Uterine Leiomyoma in Female Patients of Iranian Descent.

    PubMed

    Taghizade Mortezaee, Fatemeh; Tabatabaiefar, Mohammad Amin; Hashemzadeh Chaleshtori, Morteza; Miraj, Sepideh

    2014-01-01

    Uterine leiomyoma (UL) is the most common benign smooth muscle cell tumor with as yet unknown etiology and pathogenesis. This study was carried out to investigate the association of ESR1-351 A>G, ESR1 -397 T>C and CYP1A1 (Ile462Val) polymorphisms with UL in female patients of Iranian origin. In this case-control study, 276 patients with UL and 156 healthy women were recruited. The genetic polymorphisms ESR1-351 A>G, ESR1-397 T>C and CYP1A1 (Ile462Val) were genotyped by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP). No significant difference were found in frequencies of both genotypes and alleles of ESR1-351 A>G, ESR1-397 T>C and CYP1A1 (Ile462Val) polymorphisms between the two groups (p>0.05). Our findings indicated that these ESR1 and CYP1A1 polymorphisms were not associated with the development of UL in the cases reported here.

  13. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant

    PubMed Central

    Spoerke, Jill M.; Gendreau, Steven; Walter, Kimberly; Qiu, Jiaheng; Wilson, Timothy R.; Savage, Heidi; Aimi, Junko; Derynck, Mika K.; Chen, Meng; Chan, Iris T.; Amler, Lukas C.; Hampton, Garret M.; Johnston, Stephen; Krop, Ian; Schmid, Peter; Lackner, Mark R.

    2016-01-01

    Mutations in ESR1 have been associated with resistance to aromatase inhibitor (AI) therapy in patients with ER+ metastatic breast cancer. Little is known of the impact of these mutations in patients receiving selective oestrogen receptor degrader (SERD) therapy. In this study, hotspot mutations in ESR1 and PIK3CA from ctDNA were assayed in clinical trial samples from ER+ metastatic breast cancer patients randomized either to the SERD fulvestrant or fulvestrant plus a pan-PI3K inhibitor. ESR1 mutations are present in 37% of baseline samples and are enriched in patients with luminal A and PIK3CA-mutated tumours. ESR1 mutations are often polyclonal and longitudinal analysis shows distinct clones exhibiting divergent behaviour over time. ESR1 mutation allele frequency does not show a consistent pattern of increases during fulvestrant treatment, and progression-free survival is not different in patients with ESR1 mutations compared with wild-type patients. ESR1 mutations are not associated with clinical resistance to fulvestrant in this study. PMID:27174596

  14. Heterogeneity and clinical significance of ESR1 mutations in ER-positive metastatic breast cancer patients receiving fulvestrant.

    PubMed

    Spoerke, Jill M; Gendreau, Steven; Walter, Kimberly; Qiu, Jiaheng; Wilson, Timothy R; Savage, Heidi; Aimi, Junko; Derynck, Mika K; Chen, Meng; Chan, Iris T; Amler, Lukas C; Hampton, Garret M; Johnston, Stephen; Krop, Ian; Schmid, Peter; Lackner, Mark R

    2016-05-13

    Mutations in ESR1 have been associated with resistance to aromatase inhibitor (AI) therapy in patients with ER+ metastatic breast cancer. Little is known of the impact of these mutations in patients receiving selective oestrogen receptor degrader (SERD) therapy. In this study, hotspot mutations in ESR1 and PIK3CA from ctDNA were assayed in clinical trial samples from ER+ metastatic breast cancer patients randomized either to the SERD fulvestrant or fulvestrant plus a pan-PI3K inhibitor. ESR1 mutations are present in 37% of baseline samples and are enriched in patients with luminal A and PIK3CA-mutated tumours. ESR1 mutations are often polyclonal and longitudinal analysis shows distinct clones exhibiting divergent behaviour over time. ESR1 mutation allele frequency does not show a consistent pattern of increases during fulvestrant treatment, and progression-free survival is not different in patients with ESR1 mutations compared with wild-type patients. ESR1 mutations are not associated with clinical resistance to fulvestrant in this study.

  15. Incorporating geographical factors with artificial neural networks to predict reference values of erythrocyte sedimentation rate.

    PubMed

    Yang, Qingsheng; Mwenda, Kevin M; Ge, Miao

    2013-03-12

    The measurement of the Erythrocyte Sedimentation Rate (ESR) value is a standard procedure performed during a typical blood test. In order to formulate a unified standard of establishing reference ESR values, this paper presents a novel prediction model in which local normal ESR values and corresponding geographical factors are used to predict reference ESR values using multi-layer feed-forward artificial neural networks (ANN). Local normal ESR values were obtained from hospital data, while geographical factors that include altitude, sunshine hours, relative humidity, temperature and precipitation were obtained from the National Geographical Data Information Centre in China.The results show that predicted values are statistically in agreement with measured values. Model results exhibit significant agreement between training data and test data. Consequently, the model is used to predict the unseen local reference ESR values. Reference ESR values can be established with geographical factors by using artificial intelligence techniques. ANN is an effective method for simulating and predicting reference ESR values because of its ability to model nonlinear and complex relationships.

  16. High-sensitivity assay for monitoring ESR1 mutations in circulating cell-free DNA of breast cancer patients receiving endocrine therapy.

    PubMed

    Lupini, Laura; Moretti, Anna; Bassi, Cristian; Schirone, Alessio; Pedriali, Massimo; Querzoli, Patrizia; Roncarati, Roberta; Frassoldati, Antonio; Negrini, Massimo

    2018-03-12

    Approximately 70% of breast cancers (BCs) express estrogen receptor alpha (ERα) and are treated with endocrine therapy. However, the effectiveness of this therapy is limited by innate or acquired resistance in approximately one-third of patients. Activating mutations in the ESR1 gene that encodes ERα promote critical resistance mechanisms. Here, we developed a high sensitivity approach based on enhanced-ice-COLD-PCR for detecting ESR1 mutations. The method produced an enrichment up to 100-fold and allowed the unambiguous detection of ESR1 mutations even when they consisted of only 0.01% of the total ESR1 allelic fraction. After COLD-PCR enrichment, methods based on next-generation sequencing or droplet-digital PCR were employed to detect and quantify ESR1 mutations. We applied the method to detect ESR1 mutations in circulating free DNA from the plasma of 56 patients with metastatic ER-positive BC. Fifteen of these patients were found to have ESR1 mutations at codons 536-538. This study demonstrates the utility of the enhanced-ice-COLD-PCR approach for simplifying and improving the detection of ESR1 tumor mutations in liquid biopsies. Because of its high sensitivity, the approach may potentially be applicable to patients with non-metastatic disease.

  17. Kinetics, prognostic and predictive values of ESR1 circulating mutations in metastatic breast cancer patients progressing on aromatase inhibitor

    PubMed Central

    Clatot, Florian; Perdrix, Anne; Augusto, Laetitia; Beaussire, Ludivine; Delacour, Julien; Calbrix, Céline; Sefrioui, David; Viailly, Pierre-Julien; Bubenheim, Michael; Moldovan, Cristian; Alexandru, Cristina; Tennevet, Isabelle; Rigal, Olivier; Guillemet, Cécile; Leheurteur, Marianne; Gouérant, Sophie; Petrau, Camille; Théry, Jean-Christophe; Picquenot, Jean-Michel; Veyret, Corinne; Frébourg, Thierry; Jardin, Fabrice

    2016-01-01

    Purpose To assess the prognostic and predictive value of circulating ESR1 mutation and its kinetics before and after progression on aromatase inhibitor (AI) treatment. Patients and methods ESR1 circulating D538G and Y537S/N/C mutations were retrospectively analyzed by digital droplet PCR after first-line AI failure in patients treated consecutively from 2010 to 2012 for hormone receptor-positive metastatic breast cancer. Progression-free survival (PFS) and overall survival (OS) were analyzed according to circulating mutational status and subsequent lines of treatment. The kinetics of ESR1 mutation before (3 and 6 months) and after (3 months) AI progression were determined in the available archive plasmas. Results Circulating ESR1 mutations were found at AI progression in 44/144 patients included (30.6%). Median follow-up from AI initiation was 40 months (range 4-94). The median OS was decreased in patients with circulating ESR1 mutation than in patients without mutation (15.5 versus 23.8 months, P=0.0006). The median PFS was also significantly decreased in patients with ESR1 mutation than in patients without mutation (5.9 vs 7 months, P=0.002). After AI failure, there was no difference in outcome for patients receiving chemotherapy (n = 58) versus non-AI endocrine therapy (n=51) in patients with and without ESR1 mutation. ESR1 circulating mutations were detectable in 75% of all cases before AI progression, whereas the kinetics 3 months after progression did not correlate with outcome. Conclusion ESR1 circulating mutations are independent risk factors for poor outcome after AI failure, and are frequently detectable before clinical progression. Interventional studies based on ESR1 circulating status are warranted. PMID:27801670

  18. Absence of estrogen receptor alpha (ESR1) gene amplification in a series of breast cancers in Taiwan.

    PubMed

    Chen, Jim-Ray; Hsieh, Tsan-Yu; Chen, Huang-Yang; Yeh, Kun-Yan; Chen, Kuo-Su; ChangChien, Yi-Che; Pintye, Mariann; Chang, Liang-Che; Hwang, Cheng-Cheng; Chien, Hui-Ping; Hsu, Yuan-Chun

    2014-06-01

    Immunohistochemical expression of ERα, encoded by the ESR1 (estrogen receptor 1) gene located at 6q25.1, is the most important determinant of responsiveness to endocrine therapy in breast cancer. The prevalence and significance of ESR1 amplification in breast cancer remain controversial. We set out to assess ESR1 status and its relevance in breast cancer in Taiwan. We tested tissue samples from 311 invasive carcinomas in a tissue microarray for ESR1 status by fluorescent in situ hybridization (FISH) and chromogenic in situ hybridization (CISH). In order to examine its association with ERα and ESR1 status, HER2 status was determined by FISH. Of the carcinomas, 58.8 % (183/311) was ERα positive. None of the carcinomas showed amplification of ESR1 by either method, whereas 24.1 % (75/311) of the carcinomas harbored HER2 amplification. Of the carcinomas, 9.6 % (26/301) showed ESR1 gain (1.3 ≤ ratio ESR1/chromosome 6 < 2) by FISH and 10 % (24/299) by CISH. FISH and CISH results showed a good correlation (κ-coefficient = 0.786). ESR1 gain by FISH and CISH was significantly associated with high-grade (P = 0.0294 and 0.0417, respectively) but not with ERα expression, HER2 status, or overall survival. ERα positivity was significantly associated with better overall survival (P = 0.039). HER2 amplification was significantly related with poor overall survival (P = 0.002). Our data confirm that in breast cancer, HER2 amplification is a frequent genetic aberration and a negative prognostic factor, and show that ESR1 amplification is not a key genetic abnormality in the tumorigenesis of breast cancer in Taiwan.

  19. Kinetics, prognostic and predictive values of ESR1 circulating mutations in metastatic breast cancer patients progressing on aromatase inhibitor.

    PubMed

    Clatot, Florian; Perdrix, Anne; Augusto, Laetitia; Beaussire, Ludivine; Delacour, Julien; Calbrix, Céline; Sefrioui, David; Viailly, Pierre-Julien; Bubenheim, Michael; Moldovan, Cristian; Alexandru, Cristina; Tennevet, Isabelle; Rigal, Olivier; Guillemet, Cécile; Leheurteur, Marianne; Gouérant, Sophie; Petrau, Camille; Théry, Jean-Christophe; Picquenot, Jean-Michel; Veyret, Corinne; Frébourg, Thierry; Jardin, Fabrice; Sarafan-Vasseur, Nasrin; Di Fiore, Frédéric

    2016-11-15

    To assess the prognostic and predictive value of circulating ESR1 mutation and its kinetics before and after progression on aromatase inhibitor (AI) treatment. ESR1 circulating D538G and Y537S/N/C mutations were retrospectively analyzed by digital droplet PCR after first-line AI failure in patients treated consecutively from 2010 to 2012 for hormone receptor-positive metastatic breast cancer. Progression-free survival (PFS) and overall survival (OS) were analyzed according to circulating mutational status and subsequent lines of treatment. The kinetics of ESR1 mutation before (3 and 6 months) and after (3 months) AI progression were determined in the available archive plasmas. Circulating ESR1 mutations were found at AI progression in 44/144 patients included (30.6%). Median follow-up from AI initiation was 40 months (range 4-94). The median OS was decreased in patients with circulating ESR1 mutation than in patients without mutation (15.5 versus 23.8 months, P=0.0006). The median PFS was also significantly decreased in patients with ESR1 mutation than in patients without mutation (5.9 vs 7 months, P=0.002). After AI failure, there was no difference in outcome for patients receiving chemotherapy (n = 58) versus non-AI endocrine therapy (n=51) in patients with and without ESR1 mutation. ESR1 circulating mutations were detectable in 75% of all cases before AI progression, whereas the kinetics 3 months after progression did not correlate with outcome. ESR1 circulating mutations are independent risk factors for poor outcome after AI failure, and are frequently detectable before clinical progression. Interventional studies based on ESR1 circulating status are warranted.

  20. The Evaluation of IL6 and ESR1 Gene Polymorphisms in Primary Dysmenorrhea.

    PubMed

    Ozsoy, Asker Zeki; Karakus, Nevin; Yigit, Serbulent; Cakmak, Bulent; Nacar, Mehmet Can; Yılmaz Dogru, Hatice

    2016-01-01

    Primary dysmenorrhea is the most common gynecological complaint with painful menstrual cramps in pelvis without any pathology. It affects about half of menstruating women, and it causes significant disruption in quality of life. We investigated the association between IL6 gene promoter and ESR1 gene XbaI and PvuII polymorphisms and primary dysmenorrhea. In this case-control study, 152 unrelated young women with primary dysmenorrhea and 150 unrelated healthy age-matched controls participated. Genomic DNA was isolated and IL6 and ESR1 gene polymorphisms were genotyped using PCR-based RFLP assay. The distribution of genotype and allele frequencies of IL6 gene promoter and ESR1 gene XbaI polymorphisms were not statistically different between patients and controls (p > 0.05). However, the genotype and allele frequencies of ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls (p = 0.009 and p = 0.021, respectively). Statistically significant associations were also observed between age and married status of primary dysmenorrhea patients and ESR1 gene PvuII polymorphism (p = 0.044 and p = 0.023, respectively). In combined genotype analyses, AG at ESR1 XbaI and TC at ESR1 PvuII loci encoded a p-value of 0.027. Thus, individuals who are heterozygote at both loci have a lower risk of developing primary dysmenorrhea. Our study suggests no strong association between IL6 gene promoter and ESR1 gene XbaI polymorphisms and primary dysmenorrhea in Turkish women. However, ESR1 gene PvuII polymorphism showed statistically significant differences between primary dysmenorrhea patients and controls. The potential association between ESR1 gene PvuII polymorphism and age and married status of dysmenorrhea patients deserves further consideration.

  1. Recurrent hyperactive ESR1 fusion proteins in endocrine therapy-resistant breast cancer.

    PubMed

    Hartmaier, R J; Trabucco, S E; Priedigkeit, N; Chung, J H; Parachoniak, C A; Vanden Borre, P; Morley, S; Rosenzweig, M; Gay, L M; Goldberg, M E; Suh, J; Ali, S M; Ross, J; Leyland-Jones, B; Young, B; Williams, C; Park, B; Tsai, M; Haley, B; Peguero, J; Callahan, R D; Sachelarie, I; Cho, J; Atkinson, J M; Bahreini, A; Nagle, A M; Puhalla, S L; Watters, R J; Erdogan-Yildirim, Z; Cao, L; Oesterreich, S; Mathew, A; Lucas, P C; Davidson, N E; Brufsky, A M; Frampton, G M; Stephens, P J; Chmielecki, J; Lee, A V

    2018-04-01

    Estrogen receptor-positive (ER-positive) metastatic breast cancer is often intractable due to endocrine therapy resistance. Although ESR1 promoter switching events have been associated with endocrine-therapy resistance, recurrent ESR1 fusion proteins have yet to be identified in advanced breast cancer. To identify genomic structural rearrangements (REs) including gene fusions in acquired resistance, we undertook a multimodal sequencing effort in three breast cancer patient cohorts: (i) mate-pair and/or RNAseq in 6 patient-matched primary-metastatic tumors and 51 metastases, (ii) high coverage (>500×) comprehensive genomic profiling of 287-395 cancer-related genes across 9542 solid tumors (5216 from metastatic disease), and (iii) ultra-high coverage (>5000×) genomic profiling of 62 cancer-related genes in 254 ctDNA samples. In addition to traditional gene fusion detection methods (i.e. discordant reads, split reads), ESR1 REs were detected from targeted sequencing data by applying a novel algorithm (copyshift) that identifies major copy number shifts at rearrangement hotspots. We identify 88 ESR1 REs across 83 unique patients with direct confirmation of 9 ESR1 fusion proteins (including 2 via immunoblot). ESR1 REs are highly enriched in ER-positive, metastatic disease and co-occur with known ESR1 missense alterations, suggestive of polyclonal resistance. Importantly, all fusions result from a breakpoint in or near ESR1 intron 6 and therefore lack an intact ligand binding domain (LBD). In vitro characterization of three fusions reveals ligand-independence and hyperactivity dependent upon the 3' partner gene. Our lower-bound estimate of ESR1 fusions is at least 1% of metastatic solid breast cancers, the prevalence in ctDNA is at least 10× enriched. We postulate this enrichment may represent secondary resistance to more aggressive endocrine therapies applied to patients with ESR1 LBD missense alterations. Collectively, these data indicate that N-terminal ESR1 fusions involving exons 6-7 are a recurrent driver of endocrine therapy resistance and are impervious to ER-targeted therapies.

  2. Comparison of the disease activity score using erythrocyte sedimentation rate and C-reactive protein in African Americans with rheumatoid arthritis.

    PubMed

    Tamhane, Ashutosh; Redden, David T; McGwin, Gerald; Brown, Elizabeth E; Westfall, Andrew O; Reynolds, Richard J; Hughes, Laura B; Conn, Doyt L; Callahan, Leigh F; Jonas, Beth L; Smith, Edwin A; Brasington, Richard D; Moreland, Larry W; Bridges, S Louis

    2013-11-01

    The Disease Activity Score based on 28 joints (DAS28) has been increasingly used in clinical practice and research studies of rheumatoid arthritis (RA). Studies have reported discordance between DAS28 based on erythrocyte sedimentation rate (ESR) versus C-reactive protein (CRP) in patients with RA. However, such comparison is lacking in African Americans with RA. This analysis included participants from the Consortium for the Longitudinal Evaluation of African Americans with Early Rheumatoid Arthritis (CLEAR) registry, which enrolls self-declared African Americans with RA. Using tender and swollen joint counts, separate ESR-based and CRP-based DAS28 scores (DAS28-ESR3 and DAS28-CRP3) were calculated, as were DAS28-ESR4 and DAS28-CRP4, which included the patient's assessment of disease activity. The scores were compared using paired t-test, simple agreement and κ, correlation coefficient, and Bland-Altman plots. Of the 233 included participants, 85% were women, mean age at enrollment was 52.6 years, and median disease duration at enrollment was 21 months. Mean DAS28-ESR3 was significantly higher than DAS28-CRP3 (4.8 vs 3.9; p < 0.001). Similarly, mean DAS28-ESR4 was significantly higher than DAS28-CRP4 (4.7 vs 3.9; p < 0.001). ESR-based DAS28 remained higher than CRP-based DAS28 even when stratified by age, sex, and disease duration. Overall agreement was not high between DAS28-ESR3 and DAS28-CRP3 (50%) or between DAS28-ESR4 and DAS28-CRP4 (59%). DAS28-CRP3 underestimated disease activity in 47% of the participants relative to DAS28-ESR3 and DAS28-CRP4 in 40% of the participants relative to DAS28-ESR4. There was significant discordance between the ESR-based and CRP-based DAS28, a situation that could affect clinical treatment decisions for African Americans with RA.

  3. Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome.

    PubMed

    Cerny, Katheryn L; Ribeiro, Rosanne A C; Jeoung, Myoungkun; Ko, CheMyong; Bridges, Phillip J

    2016-01-01

    Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430-2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG's, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG's in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1-regulated gene expression and related bioinformatic analysis is presented to increase our understanding of how estradiol/ESR1 affects function of the oviduct, and to identify genes that may be proven as important regulators of fertility in the future.

  4. A novel FOXA1/ESR1 interacting pathway: A study of Oncomine™ breast cancer microarrays

    PubMed Central

    Chaudhary, Sanjib; Krishna, B. Madhu; Mishra, Sandip K.

    2017-01-01

    Forkhead box protein A1 (FOXA1) is essential for the growth and differentiation of breast epithelium, and has a favorable outcome in breast cancer (BC). Elevated FOXA1 expression in BC also facilitates hormone responsiveness in estrogen receptor (ESR)-positive BC. However, the interaction between these two pathways is not fully understood. FOXA1 and GATA binding protein 3 (GATA3) along with ESR1 expression are responsible for maintaining a luminal phenotype, thus suggesting the existence of a strong association between them. The present study utilized the Oncomine™ microarray database to identify FOXA1:ESR1 and FOXA1:ESR1:GATA3 co-expression co-regulated genes. Oncomine™ analysis revealed 115 and 79 overlapping genes clusters in FOXA1:ESR1 and FOXA1:ESR1:GATA3 microarrays, respectively. Five ESR1 direct target genes [trefoil factor 1 (TFF1/PS2), B-cell lymphoma 2 (BCL2), seven in absentia homolog 2 (SIAH2), cellular myeloblastosis viral oncogene homolog (CMYB) and progesterone receptor (PGR)] were detected in the co-expression clusters. To further investigate the role of FOXA1 in ESR1-positive cells, MCF7 cells were transfected with a FOXA1 expression plasmid, and it was observed that the direct target genes of ESR1 (PS2, BCL2, SIAH2 and PGR) were significantly regulated upon transfection. Analysis of one of these target genes, PS2, revealed the presence of two FOXA1 binding sites in the vicinity of the estrogen response element (ERE), which was confirmed by binding assays. Under estrogen stimulation, FOXA1 protein was recruited to the FOXA1 site and could also bind to the ERE site (although in minimal amounts) in the PS2 promoter. Co-transfection of FOXA1/ESR1 expression plasmids demonstrated a significantly regulation of the target genes identified in the FOXA1/ESR1 multi-arrays compared with only FOXA1 transfection, which was suggestive of a synergistic effect of ESR1 and FOXA1 on the target genes. In summary, the present study identified novel FOXA1, ESR1 and GATA3 co-expressed genes that may be involved in breast tumorigenesis. PMID:28789340

  5. A novel FOXA1/ESR1 interacting pathway: A study of Oncomine™ breast cancer microarrays.

    PubMed

    Chaudhary, Sanjib; Krishna, B Madhu; Mishra, Sandip K

    2017-08-01

    Forkhead box protein A1 (FOXA1) is essential for the growth and differentiation of breast epithelium, and has a favorable outcome in breast cancer (BC). Elevated FOXA1 expression in BC also facilitates hormone responsiveness in estrogen receptor ( ESR )-positive BC. However, the interaction between these two pathways is not fully understood. FOXA1 and GATA binding protein 3 ( GATA3 ) along with ESR1 expression are responsible for maintaining a luminal phenotype, thus suggesting the existence of a strong association between them. The present study utilized the Oncomine™ microarray database to identify FOXA1:ESR1 and FOXA1:ESR1:GATA3 co-expression co-regulated genes. Oncomine™ analysis revealed 115 and 79 overlapping genes clusters in FOXA1:ESR1 and FOXA1:ESR1:GATA3 microarrays, respectively. Five ESR1 direct target genes [trefoil factor 1 ( TFF1/PS2 ), B-cell lymphoma 2 ( BCL2 ), seven in absentia homolog 2 ( SIAH2 ), cellular myeloblastosis viral oncogene homolog ( CMYB ) and progesterone receptor ( PGR )] were detected in the co-expression clusters. To further investigate the role of FOXA1 in ESR1-positive cells, MCF7 cells were transfected with a FOXA1 expression plasmid, and it was observed that the direct target genes of ESR1 ( PS2, BCL2, SIAH2 and PGR ) were significantly regulated upon transfection. Analysis of one of these target genes, PS2 , revealed the presence of two FOXA1 binding sites in the vicinity of the estrogen response element (ERE), which was confirmed by binding assays. Under estrogen stimulation, FOXA1 protein was recruited to the FOXA1 site and could also bind to the ERE site (although in minimal amounts) in the PS2 promoter. Co-transfection of FOXA1 / ESR1 expression plasmids demonstrated a significantly regulation of the target genes identified in the FOXA1 / ESR1 multi-arrays compared with only FOXA1 transfection, which was suggestive of a synergistic effect of ESR1 and FOXA1 on the target genes. In summary, the present study identified novel FOXA1 , ESR1 and GATA 3 co-expressed genes that may be involved in breast tumorigenesis.

  6. Identification of the residues involved in stabilization of the semiquinone radical in the high-affinity ubiquinone binding site in cytochrome bo(3) from Escherichia coli by site-directed mutagenesis and EPR spectroscopy.

    PubMed

    Hellwig, Petra; Yano, Takahiro; Ohnishi, Tomoko; Gennis, Robert B

    2002-08-27

    During turnover of cytochrome bo(3) from Escherichia coli, a semiquinone radical is stabilized in a high-affinity binding site. To identify binding partners of this radical, site-directed mutants have been designed on the basis of a recently modeled quinone binding site (Abramson et al., 2000). The R71H, H98F, D75H, and I102W mutant enzymes were found to show very little or no quinol oxidase activity. The thermodynamic and EPR spectroscopic properties of semiquinone radicals in these mutants were characterized. For the H98F and the R71H mutants, no EPR signal of the semiquinone radical was observed in the redox potential range from -100 to 250 mV. During potentiometric titration of the D75H mutant enzyme, a semiquinone signal was detected in the same potential range as that of the wild-type enzyme. However, the EPR spectrum of the D75H mutant lacks the characteristic hyperfine structure of the semiquinone radical signal observed in the wild-type oxidase, indicating that D75 or the introduced His, interacts with the semiquinone radical. For the I102W mutant, a free radical signal was observed with a redox midpoint potential downshifted by about 200 mV. On the basis of these observations, it is suggested that R71, D75, and H98 residues are involved in the stabilization of the semiquinone state in the high-affinity binding site. Details of the possible binding motif and mechanistic implications are discussed.

  7. Status and outlook of the CRYRING@ESR project

    NASA Astrophysics Data System (ADS)

    Geithner, W.; Andelkovic, Z.; Beck, D.; Bräuning, H.; Bräuning-Demian, A.; Danared, H.; Dimopoulou, C.; Engström, M.; Fedotova, S.; Gorda, O.; Herfurth, F.; Hess, R.; Källberg, A.; Kleffner, C.; Kotovskiy, N.; Kraus, I.; Lestinsky, M.; Litvinov, S.; Nolden, F.; Reiter, A.; Sieber, T.; Steck, M.; Vorobyev, G.

    2017-11-01

    Once operational, CRYRING@ESR will store and decelerate ions delivered by the experimental storage ring ESR at energies well below those of ESR. In addition to that, CRYRING@ESR has an electron cooler operating with an ultracold electron beam, allowing to provide cooled ion beams for precision experiments. These ions will be delivered to a broad range of experiments presently in preparation; either in-ring or extracted to a dedicated beamline for experiments. An overview and status report of the installation and commissioning of the CRYRING-@ESR storage ring for highly charged ions at the GSI Helmholtzzentrum für Schwerionenforschung is presented. The installation of this storage ring started in 2014 and was completing end of 2016, when this publication was written.

  8. Estrogen receptor α is required for oviductal transport of embryos

    PubMed Central

    Li, Shuai; O’Neill, Sofia R. S.; Zhang, Yong; Holtzman, Michael J.; Takemaru, Ken-Ichi; Korach, Kenneth S.; Winuthayanon, Wipawee

    2017-01-01

    Newly fertilized embryos spend the first few days within the oviduct and are transported to the uterus, where they implant onto the uterine wall. An implantation of the embryo before reaching the uterus could result in ectopic pregnancy and lead to maternal death. Estrogen is necessary for embryo transport in mammals; however, the mechanism involved in estrogen-mediated cellular function within the oviduct remains unclear. In this study, we show in mouse models that ciliary length and beat frequency of the oviductal epithelial cells are regulated through estrogen receptor α (ESR1) but not estrogen receptor β (ESR2). Gene profiling indicated that transcripts in the WNT/β-catenin (WNT/CTNNB1) signaling pathway were regulated by estrogen in mouse oviduct, and inhibition of this pathway in a whole oviduct culture system resulted in a decreased embryo transport distance. However, selective ablation of CTNNB1 from the oviductal ciliated cells did not affect embryo transport, possibly because of a compensatory mechanism via intact CTNNB1 in the adjacent secretory cells. In summary, we demonstrated that disruption of estrogen signaling in oviductal epithelial cells alters ciliary function and impairs embryo transport. Therefore, our findings may provide a better understanding of etiology of the ectopic pregnancy that is associated with alteration of estrogen signals.—Li, S., O’Neill, S. R. S., Zhang, Y., Holtzman, M. J., Takemaru, K.-I., Korach, K. S., Winuthayanon, W. Estrogen receptor α is required for oviductal transport of embryos. PMID:28082352

  9. The Impact of ESR1 Mutations on the Treatment of Metastatic Breast Cancer.

    PubMed

    Pejerrey, Sasha M; Dustin, Derek; Kim, Jin-Ah; Gu, Guowei; Rechoum, Yassine; Fuqua, Suzanne A W

    2018-05-07

    After nearly 20 years of research, it is now established that mutations within the estrogen receptor (ER) gene, ESR1, frequently occur in metastatic breast cancer and influence response to hormone therapy. Though early studies presented differing results, sensitive sequencing techniques now show that ESR1 mutations occur at a frequency between 20 and 40% depending on the assay method. Recent studies have focused on several "hot spot mutations," a cluster of mutations found in the hormone-binding domain of the ESR1 gene. Throughout the course of treatment, tumor evolution can occur, and ESR1 mutations emerge and become enriched in the metastatic setting. Sensitive techniques to continually monitor mutant burden in vivo are needed to effectively treat patients with mutant ESR1. The full impact of these mutations on tumor response to different therapies remains to be determined. However, recent studies indicate that mutant-bearing tumors may be less responsive to specific hormonal therapies, and suggest that aromatase inhibitor (AI) therapy may select for the emergence of ESR1 mutations. Additionally, different mutations may respond discretely to targeted therapies. The need for more preclinical mechanistic studies on ESR1 mutations and the development of better agents to target these mutations are urgently needed. In the future, sequential monitoring of ESR1 mutational status will likely direct personalized therapeutic regimens appropriate to each tumor's unique mutational landscape.

  10. Sensitivity of Erythrocyte Sedimentation Rate and C-reactive Protein in Childhood Bone and Joint Infections

    PubMed Central

    Kallio, Markku J. T.; Kallio, Pentti E.; Peltola, Heikki

    2009-01-01

    In addition to the examination of clinical signs, several laboratory markers have been measured for diagnostics and monitoring of pediatric septic bone and joint infections. Traditionally erythrocyte sedimentation rate (ESR) and leukocyte cell count have been used, whereas C-reactive protein (CRP) has gained in popularity. We monitored 265 children at ages 3 months to 15 years with culture-positive osteoarticular infections with a predetermined series of ESR, CRP, and leukocyte count measurements. On admission, ESR exceeded 20 mm/hour in 94% and CRP exceeded 20 mg/L in 95% of the cases, the mean (± standard error of the mean) being 51 ± 2 mm/hour and 87 ± 4 mg/L, respectively. ESR normalized in 24 days and CRP in 10 days. Elevated CRP gave a slightly better sensitivity in diagnostics than ESR, but best sensitivity was gained with the combined use of ESR and CRP (98%). Elevated ESR or CRP was seen in all cases during the first 3 days. Measuring ESR and CRP on admission can help the clinician rule out an acute osteoarticular infection. CRP normalizes faster than ESR, providing a clear advantage in monitoring recovery. Level of Evidence: Level II, diagnostic study. See Guidelines for Authors for a complete description of levels of evidence. PMID:19533263

  11. Upregulation of estrogen receptor subtypes and vitellogenin mRNA in cinnamon clownfish Amphiprion melanopus during the sex change process: profiles on effects of 17beta-estradiol.

    PubMed

    Kim, Na Na; Jin, Deuk-Hee; Lee, Jehee; Kil, Gyung-Suk; Choi, Cheol Young

    2010-10-01

    In the present study, we investigated the expression pattern of estrogen receptors (esr) and vitellogenin (vtg) mRNA in the gonads and liver during sex change in cinnamon clownfish by using quantitative polymerase chain reaction. We divided gonadal development during the sex change from male to female into 3 stages (mature male, male at 90days after removing female, and mature female) and investigated esr and vtg mRNA expressions during the sex change. With female, the esr and vtg mRNA expressions increased. In western blot analysis, Esr1 protein was detected only in the ovaries of female cinnamon clownfish. Also, to understand the effect of 17beta-estradiol (E(2)), we investigated the esr and vtg mRNA expression patterns in the gonads and liver, and the changes in plasma E(2) level after E(2) injection. E(2) treatment increased both mRNA expression levels of esr and vtg and plasma E(2) levels. The present study describes the molecular characterization of esr subtypes and the interactions between esr and vtg after E(2) treatment in cinnamon clownfish. 2010 Elsevier Inc. All rights reserved.

  12. A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation.

    PubMed

    Tomita, Saori; Abdalla, Mohamed Osama Ali; Fujiwara, Saori; Matsumori, Haruka; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Iwase, Hirotaka; Saitoh, Noriko; Nakao, Mitsuyoshi

    2015-04-29

    Estrogen receptor-α (ER)-positive breast cancer cells undergo hormone-independent proliferation after deprivation of oestrogen, leading to endocrine therapy resistance. Up-regulation of the ER gene (ESR1) is critical for this process, but the underlying mechanisms remain unclear. Here we show that the combination of transcriptome and fluorescence in situ hybridization analyses revealed that oestrogen deprivation induced a cluster of noncoding RNAs that defined a large chromatin domain containing the ESR1 locus. We termed these RNAs as Eleanors (ESR1 locus enhancing and activating noncoding RNAs). Eleanors were present in ER-positive breast cancer tissues and localized at the transcriptionally active ESR1 locus to form RNA foci. Depletion of one Eleanor, upstream (u)-Eleanor, impaired cell growth and transcription of intragenic Eleanors and ESR1 mRNA, indicating that Eleanors cis-activate the ESR1 gene. Eleanor-mediated gene activation represents a new type of locus control mechanism and plays an essential role in the adaptation of breast cancer cells.

  13. A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation

    PubMed Central

    Tomita, Saori; Abdalla, Mohamed Osama Ali; Fujiwara, Saori; Matsumori, Haruka; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Iwase, Hirotaka; Saitoh, Noriko; Nakao, Mitsuyoshi

    2015-01-01

    Estrogen receptor-α (ER)-positive breast cancer cells undergo hormone-independent proliferation after deprivation of oestrogen, leading to endocrine therapy resistance. Up-regulation of the ER gene (ESR1) is critical for this process, but the underlying mechanisms remain unclear. Here we show that the combination of transcriptome and fluorescence in situ hybridization analyses revealed that oestrogen deprivation induced a cluster of noncoding RNAs that defined a large chromatin domain containing the ESR1 locus. We termed these RNAs as Eleanors (ESR1 locus enhancing and activating noncoding RNAs). Eleanors were present in ER-positive breast cancer tissues and localized at the transcriptionally active ESR1 locus to form RNA foci. Depletion of one Eleanor, upstream (u)-Eleanor, impaired cell growth and transcription of intragenic Eleanors and ESR1 mRNA, indicating that Eleanors cis-activate the ESR1 gene. Eleanor-mediated gene activation represents a new type of locus control mechanism and plays an essential role in the adaptation of breast cancer cells. PMID:25923108

  14. Reconstruction of nuclear receptor network reveals that NR2E3 is a novel upstream regulator of ESR1 in breast cancer

    PubMed Central

    Park, Yun-Yong; Kim, Kyounghyun; Kim, Sang-Bae; Hennessy, Bryan T; Kim, Soo Mi; Park, Eun Sung; Lim, Jae Yun; Li, Jane; Lu, Yiling; Gonzalez-Angulo, Ana Maria; Jeong, Woojin; Mills, Gordon B; Safe, Stephen; Lee, Ju-Seog

    2012-01-01

    ESR1 is one of the most important transcription factors and therapeutic targets in breast cancer. By applying systems-level re-analysis of publicly available gene expression data, we uncovered a potential regulator of ESR1. We demonstrated that orphan nuclear receptor NR2E3 regulates ESR1 via direct binding to the ESR1 promoter with concomitant recruitment of PIAS3 to the promoter in breast cancer cells, and is essential for physiological cellular activity of ESR1 in estrogen receptor (ER)-positive breast cancer cells. Moreover, expression of NR2E3 was significantly associated with recurrence-free survival and a favourable response to tamoxifen treatment in women with ER-positive breast cancer. Our results provide mechanistic insights on the regulation of ESR1 by NR2E3 and the clinical relevance of NR2E3 in breast cancer. PMID:22174013

  15. Dosimetric evaluation of lithium carbonate (Li2CO3) as a dosemeter for gamma-radiation dose measurements.

    PubMed

    Popoca, R; Ureña-Núñez, F

    2009-06-01

    This work reports the possibility of using lithium carbonate as a dosimetric material for gamma-radiation measurements. Carboxi-radical ions, CO(2)(-) and CO(3)(-), arise from the gamma irradiation of Li(2)CO(3), and these radical ions can be quantified by electron paramagnetic resonance (EPR) spectrometry. The EPR-signal response of gamma-irradiated lithium carbonate has been investigated to determine some dosimetric characteristics such as: peak-to-peak signal intensity versus gamma dose received, zero-dose response, signal fading, signal repeatability, batch homogeneity, dose rate effect and stability at different environmental conditions. Using the conventional peak-to-peak method of stable ion radicals, it is concluded that lithium carbonate could be used as a gamma dosemeter in the range of 3-100 Gy.

  16. Fabrication of thermo-responsive PNIPAAm-g-ETFE for cell culture dishes by pre-irradiation grafting

    NASA Astrophysics Data System (ADS)

    Yamahara, Yumi; Nagasawa, Naotsugu; Taguchi, Mitsumasa; Oshima, Akihiro; Washio, Masakazu

    2018-01-01

    Thermo-responsive templates for the cell cultivation based on Poly(tetrafluoroethylene-co-ethylene) (ETFE) were fabricated by pre-irradiation grafting of N-isoproplyacrylamide (NIPAAm) monomer by electron beam (EB) irradiation under nitrogen gas atmosphere at room temperature, and their characteristic properties were studied. The detachment of cultured HeLa cells from fabricated thermo-responsive templates were attempted. Furthermore, the reaction mechanism is proposed using ESR spectroscopy and FT-IR spectroscopy. It is confirmed that the cultured HeLa cells were detached from fabricated thermo-responsive templates at 20 °C. Water contact angle analysis indicated that obtained templates had thermo-response around 30 °C. It is suggested that the grafted polymer chains would mainly react with peroxy radicals (-CF2-CF(OO・)-) on tetrafluoroethylene unit in ETFE.

  17. A high-spin and durable polyradical: poly(4-diphenylaminium-1,2-phenylenevinylene).

    PubMed

    Murata, Hidenori; Takahashi, Masahiro; Namba, Kazuaki; Takahashi, Naoki; Nishide, Hiroyuki

    2004-02-06

    A purely organic, high-spin, and durable polyradical molecule was synthesized: It is based on the non-Kekulé- and non-disjoint design of a pi-conjugated poly(1,2-phenylenevinylene) backbone pendantly 4-substituted with multiple robust arylaminium radicals. 4-N,N-Bis(4-methoxy- and -tert-butylphenyl)amino-2-bromostyrene 5 were synthesized and polymerized with a palladium-phosphine catalyst to afford the head-to-tail-linked polyradical precursors (1). Oxidation of 1 with the nitrosonium ion solubilized with a crown ether gave the aminium polyradicals (1(+)()) which were durable (half-life > 1 month) at room temperature in air. A high-spin ground state with an average S = (4.5)/2 for 1a(+) was proved even at room temperature by magnetic susceptibility, magnetization, ESR, and NMR measurements.

  18. Impact of topical application of sulfur mustard on mice skin and distant organs DNA repair enzyme signature.

    PubMed

    Sauvaigo, Sylvie; Sarrazy, Fanny; Batal, Mohamed; Caillat, Sylvain; Pitiot, Benoit; Mouret, Stéphane; Cléry-Barraud, Cécile; Boudry, Isabelle; Douki, Thierry

    2016-01-22

    Sulfur mustard (SM) is a chemical warfare agent that, upon topical application, damages skin and reaches internal organs through diffusion in blood. Two major toxic consequences of SM exposure are inflammation, associated with oxidative stress, and the formation of alkylated DNA bases. In the present study, we investigated the impact of exposure to SM on DNA repair, using two different functional DNA repair assays which provide information on several Base Excision Repair (BER) and Excision/Synthesis Repair (ESR) activities. BER activities were reduced in all organs as early as 4h after exposure, with the exception of the defense systems against 8-oxo-guanine and hypoxanthine which were stimulated. Interestingly, the resulting BER intermediates could activate inflammation signals, aggravating the inflammation triggered by SM exposure and leading to increased oxidative stress. ESR activities were found to be mostly inhibited in skin, brain and kidneys. In contrast, in the lung there was a general increase in ESR activities. In summary, exposure to SM leads to a significant decrease in DNA repair in most organs, concomitant with the formation of DNA damage. These synergistic genotoxic effects are likely to participate in the high toxicity of this alkylating agent. Lungs, possibly better equipped with repair enzymes to handle exogenous exposure, are the exception. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Learning Team Review 2016-0001: Installing Outlets for Programmatic Equipment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunwoody, John Tyler; Obrey, Kimberly Ann; Bridgewater, Jon S.

    The purpose of a Learning Team is to transfer and communicate the information into operational feedback and improvement. We want to pay attention to the small things that go wrong because they are often early warning signals and may provide insight into the health of the whole system. An ESR was placed in the October of 2015 to move/install a number of 120V and 208V outlets in 455-104B to support programmatic furnace needs. Electrical design review was completed for ESR 22217 on February 22, 2016 and a Design Change Form completed describing the modification needed as: demolish 1 existing receptaclemore » and circuit leaving conduit and jbox for use to install new receptacle and 5 new receptacles/circuits are required and one existing receptacle is to be relocated, listed under FSR 149229. The FSR scope of work was written:: Please have the Electricians come out to perform demolition (1ea.), installation (6ea.)& relocation (1ea.) of receptacles / circuits. ESR 22217 & DCF-16-35-0455-1281 is in place for this work. Coordinate final receptacle locations with Laboratory Resident. Contact John Dunwoody or O-MC for this information. WO# 545580-01 was signed on April 20, 2016.: Electricians to perform demolition, installation, & relocation of receptacles / circuits PER attached DCF-16-0455-1281-SK-1.« less

  20. Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination.

    PubMed

    Lan, Shenyu; Feng, Jinxi; Xiong, Ya; Tian, Shuanghong; Liu, Shengwei; Kong, Lingjun

    2017-06-06

    Piezo-catalysis was first used to degrade a nondye pollutant, 4-chlorophenol (4-CP). In this process, hydrothermally synthesized tetragonal BaTiO 3 nano/micrometer-sized particles were used as the piezo-catalyst, and the ultrasonic irradiation with low frequency was selected as the vibration energy to cause the deformation of tetragonal BaTiO 3 . It was found that the piezoelectric potential from the deformation could not only successfully degrade 4-chlorophenol but also effectively dechlorinate it at the same time, and five kinds of dechlorinated intermediates, hydroquinone, benzoquinone, phenol, cyclohexanone, and cyclohexanol, were determined. This is the first sample of piezo-dechlorination. Although various active species, including h + , e - , •H, •OH, •O 2 - , 1 O 2 , and H 2 O 2 , were generated in the piezoelectric process, it was confirmed by ESR, scavenger studies, and LC-MS that the degradation and dechlorination were mainly attributed to •OH radicals. These •OH radicals were chiefly derived from the electron reduction of O 2 , partly from the hole oxidation of H 2 O. These results indicated that the piezo-catalysis was an emerging and effective advanced oxidation technology for degradation and dechlorination of organic pollutants.

Top