Sample records for radical intermediate derived

  1. Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging.

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Yasukawa, Keiji; Kobayashi, Ryoma; Utsumi, Hideo

    2014-08-05

    Redox reactions that generate free radical intermediates are essential to metabolic processes. However, their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. We report here the use of dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) to conduct redox molecular imaging. Using DNP-MRI, we obtained simultaneous images of free radical intermediates generated from the coenzyme Q10 (CoQ10), flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) involved in the mitochondrial electron transport chain as well as the radicals derived from vitamins E and K1. Each of these free radicals was imaged in real time in a phantom comprising a mixture of free radicals localized in either lipophilic or aqueous environments. Changing the frequency of electron spin resonance (ESR) irradiation also allowed each of the radical species to be distinguished in the spectroscopic images. This study is the first to report the spectroscopic DNP-MRI imaging of free radical intermediates that are derived from endogenous species involved in metabolic processes.

  2. Oxidative cyclization reactions: controlling the course of a radical cation-derived reaction with the use of a second nucleophile.

    PubMed

    Redden, Alison; Perkins, Robert J; Moeller, Kevin D

    2013-12-02

    Construction of new ring systems: Oxidative cyclizations (see picture; RVC=reticulated vitreous carbon) have been conducted that use two separate intramolecular nucleophiles to trap an enol ether-derived radical cation intermediate. The reactions provide a means for rapidly trapping the radical cation intermediate in a manner that avoids competitive decomposition reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Relative stability of radicals derived from artemisinin: A semiempirical and DFT study

    NASA Astrophysics Data System (ADS)

    Arantes, C.; de Araujo, M. T.; Taranto, A. G.; de M. Carneiro, J. W.

    The semiempirical AM1 and PM3 methods, as well as the density functional (DFT/B3LYP) approach using the 6-31g(d) basis set, were employed to calculate the relative stability of intermediate radicals derived from artemisinin, a sesquiterpene lactone having an endoperoxide bridge that is essential for its antimalarial activity. The compounds studied have their nonperoxidic oxygen atom of the trioxane ring and/or the carbonyl group replaced by a CH2 unit. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. It was found that replacement of oxygen atoms decreases the relative stability of the anionic radical intermediates. In contrast, for compounds with inverted stereochemistry the intermediate radicals were found to be more stable than those with the artemisinin-like stereochemistry. These relative stabilities may modulate the antimalarial potency. Radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  4. Radical SAM catalysis via an organometallic intermediate with an Fe-[5'-C]-deoxyadenosyl bond.

    PubMed

    Horitani, Masaki; Shisler, Krista; Broderick, William E; Hutcheson, Rachel U; Duschene, Kaitlin S; Marts, Amy R; Hoffman, Brian M; Broderick, Joan B

    2016-05-13

    Radical S-adenosylmethionine (SAM) enzymes use a [4Fe-4S] cluster to cleave SAM to initiate diverse radical reactions. These reactions are thought to involve the 5'-deoxyadenosyl radical intermediate, which has not yet been detected. We used rapid freeze-quenching to trap a catalytically competent intermediate in the reaction catalyzed by the radical SAM enzyme pyruvate formate-lyase activating enzyme. Characterization of the intermediate by electron paramagnetic resonance and (13)C, (57)Fe electron nuclear double-resonance spectroscopies reveals that it contains an organometallic center in which the 5' carbon of a SAM-derived deoxyadenosyl moiety forms a bond with the unique iron site of the [4Fe-4S] cluster. Discovery of this intermediate extends the list of enzymatic bioorganometallic centers to the radical SAM enzymes, the largest enzyme superfamily known, and reveals intriguing parallels to B12 radical enzymes. Copyright © 2016, American Association for the Advancement of Science.

  5. Vinylcyclopropylacyl and polyeneacyl radicals. Intramolecular ketene alkyl radical additions in ring synthesis.

    PubMed

    De Boeck, Benoit; Herbert, Nicola M A; Harrington-Frost, Nicole M; Pattenden, Gerald

    2005-01-21

    Treatment of a variety of substituted vinylcyclopropyl selenyl esters, e.g. 11, with Bu(3)SnH-AIBN in refluxing benzene leads to the corresponding acyl radical intermediates, which undergo rearrangement and intramolecular cyclisations via their ketene alkyl radical equivalents producing cyclohexenones in 50-60% yield. By contrast, treatment of conjugated triene selenyl esters, e.g. 32, with Bu(3)SnH-AIBN produces substituted 2-cyclopentenones via intramolecular cyclisations of their ketene alkyl radical intermediates. Under the same radical-initiating conditions the selenyl esters derived from o-vinylbenzoic acid and o-vinylcinnamic acid undergo intramolecular cyclisations producing 1-indanone and 5,6-dihydrobenzocyclohepten-7-one respectively in 60-70% yields. A tandem radical cyclisation from the alpha,beta,gamma,delta-diene selenyl ester 31 provides an expeditious synthesis of the diquinane 35 in 69% yield.

  6. Computational Study of the Thermodynamics of Atmospheric Nitration of PAHs via OH-Radical-Initiated Reaction

    NASA Astrophysics Data System (ADS)

    Jariyasopit, N.; Cheong, P.; Simonich, S. L.

    2011-12-01

    Nitrated polycyclic aromatic hydrocarbons (NPAHs) are an important class of PAH derivatives that are more toxic than their parent PAHs (1) and are emitted from direct emission and secondary emission to the atmosphere. The secondary emissions, particularly the OH-radical initiated and NO3-radical-initiated reactions, have been shown to influence the NPAH concentrations in the atmosphere. Gas-phase reactions are thought to be the major sources of NPAHs containing four or fewer rings (2). Besides NPAHs, PAHs lead to a number of other products including oxygenated, hydroxy substituted and ring-opened PAH derivatives (3). For some PAHs, the OH-initiated and NO3-initiated reactions result in the formation of different NPAH isomers, allowing the ratio of these isomers to be used in the determination of direct or secondary emission sources. Previous studies have shown that the PAH gas-phase reactions with OH radical is initiated by the addition of OH radical to the aromatic ring to form hydroxycyclohexadienyl radicals (4). In the presence of NO2, these reactive intermediates readily nitrate with the elimination of water (4). The hydroxycyclohexadienyl-type radical intermediates are also prone to react with other species in the atmosphere or revert back to the original compound (3). The objective of this study was to investigate the thermodynamics of PAH nitration through day-time OH-radical-initiated reactions. The theoretical investigation were carried out using Density Functioanl Theory (B3LYP) and the 6-31G(d) basis set, as implemented in Gaussian03. A number of different PAHs were studied including fluoranthene, pyrene, as well as the molecular weight 302 PAHs such as dibenzo[a,l]pyrene. Computations were also used to predict unknown NPAHs formed by OH-radical-initiated reaction. All intermediates for the OH-radical addition and the following nitration were computed. We have discovered that the thermodynamic stability of the intermediates involved in the PAH oxygenation and nitration pathways are critical in explaining the atmospheric abundances of NPAHs. Specifically, we have found that the experimentally most abundant species had the most stable intermediates. Interestingly, the overall free energy of reaction was not a factor in determining the relative abundances of NPAHs.

  7. Model studies in cytochrome P-450-mediated toxicity of halogenated compounds: radical processes involving iron porphyrins.

    PubMed Central

    Brault, D

    1985-01-01

    Haloalkane toxicity originates from attack on biological targets by reactive intermediates derived from haloalkane metabolism by a hemoprotein, cytochrome P-450. Carbon-centered radicals and their peroxyl derivatives are most likely involved. The reactions of iron porphyrin--a model for cytochrome P-450--with various carbon-centered and peroxyl radicals generated by pulse radiolysis are examined. Competition between iron porphyrin and unsaturated fatty acids for attack by peroxyl radicals is pointed out. These kinetic data are used to derive a model for toxicity of haloalkanes with particular attention to carbon tetrachloride and halothane. The importance of local oxygen concentration and structural arrangement of fatty acids around cytochrome P-450 is emphasized. PMID:3007100

  8. Addition products of alpha-tocopherol with lipid-derived free radicals.

    PubMed

    Yamauchi, Ryo

    2007-01-01

    The addition products of alpha-tocopherol with lipid-derived free radicals have been reviewed. Free radical scavenging reactions of alpha-tocopherol take place via the alpha-tocopheroxyl radical as an intermediate. If a suitable free radical is present, an addition product can be formed from the coupling of the free radical with the alpha-tocopheroxyl radical. The addition products of alpha-tocopherol with lipid-peroxyl radicals are 8a-(lipid-dioxy)-alpha-tocopherones, which are hydrolyzed to alpha-tocopherylquinone. On the other hand, the carbon-centered radicals of lipids prefer to react with the phenoxyl radical of alpha-tocopherol to form 6-O-lipid-alpha-tocopherol under anaerobic conditions. The addition products of alpha-tocopherol with peroxyl radicals (epoxylinoleoyl-peroxyl radicals) produced from cholesteryl ester and phosphatidylcholine were detected in the peroxidized human plasma using a high-sensitive HPLC procedure with postcolumn reduction and electrochemical detection. Thus, the formation of these addition products provides us with much information on the antioxidant function of vitamin E in biological systems.

  9. Solvent effects on the relative stability of radicals derived from artemisinin: DFT study using the PCM/COSMO approach

    NASA Astrophysics Data System (ADS)

    Araujo, M. T. De; Carneiro, J. W. De M.; Taranto, A. G.

    The PCM/COSMO approach was employed to calculate the relative stability of radicals derived from the antimalarial artemisinin. The calculations were performed in polar (water) and apolar (THF) solvent at the density functional level [B3LYP/6-31g(d)]. Relative stabilities were calculated by means of isodesmic equations using artemisinin as reference. Replacement of oxygen atoms by CH2 unities was found to decrease the relative stability of the anionic radical intermediates. The degree of destabilization is reduced in the presence of solvent, being less in water than in THF. The dipole moment and the corresponding solvation free energies of these species modulate this effect. Derivatives with inverted stereochemistry are more stable than those with the artemisinin-like stereochemistry, although the solvent attenuates this stabilization effect. As was found in the in vacuo calculations, the radicals centered on carbon are always more stable than the corresponding radicals centered on oxygen.

  10. Bifurcation and extinction limit of stretched premixed flames with chain-branching intermediate kinetics and radiative loss

    NASA Astrophysics Data System (ADS)

    Zhang, Huangwei; Chen, Zheng

    2018-05-01

    Premixed counterflow flames with thermally sensitive intermediate kinetics and radiation heat loss are analysed within the framework of large activation energy. Unlike previous studies considering one-step global reaction, two-step chemistry consisting of a chain branching reaction and a recombination reaction is considered here. The correlation between the flame front location and stretch rate is derived. Based on this correlation, the extinction limit and bifurcation characteristics of the strained premixed flame are studied, and the effects of fuel and radical Lewis numbers as well as radiation heat loss are examined. Different flame regimes and their extinction characteristics can be predicted by the present theory. It is found that fuel Lewis number affects the flame bifurcation qualitatively and quantitatively, whereas radical Lewis number only has a quantitative influence. Stretch rates at the stretch and radiation extinction limits respectively decrease and increase with fuel Lewis number before the flammability limit is reached, while the radical Lewis number shows the opposite tendency. In addition, the relation between the standard flammability limit and the limit derived from the strained near stagnation flame is affected by the fuel Lewis number, but not by the radical Lewis number. Meanwhile, the flammability limit increases with decreased fuel Lewis number, but with increased radical Lewis number. Radical behaviours at flame front corresponding to flame bifurcation and extinction are also analysed in this work. It is shown that radical concentration at the flame front, under extinction stretch rate condition, increases with radical Lewis number but decreases with fuel Lewis number. It decreases with increased radiation loss.

  11. Mechanistic Insights from Reaction of α-Oxiranyl-Aldehydes with Cyanobacterial Aldehyde Deformylating Oxygenase

    PubMed Central

    Das, Debasis; Ellington, Benjamin; Paul, Bishwajit; Marsh, E. Neil G.

    2014-01-01

    The biosynthesis of long-chain aliphatic hydrocarbons, which are derived from fatty acids, is widespread in Nature. The last step in this pathway involves the decarbonylation of fatty aldehydes to the corresponding alkanes or alkenes. In cyanobacteria this is catalyzed by an aldehyde deformylating oxygenase. We have investigated the mechanism of this enzyme using substrates bearing an oxirane ring adjacent to the aldehyde carbon. The enzyme catalyzed the deformylation of these substrates to produce the corresponding oxiranes. Performing the reaction in D2O allowed the facial selectivity of proton addition to be examined by 1H-NMR spectroscopy. The proton is delivered with equal probability to either face of the oxirane ring, indicating the formation of an oxiranyl radical intermediate that is free to rotate during the reaction. Unexpectedly, the enzyme also catalyzes a side reaction in which oxiranyl-aldehydes undergo tandem deformylation to furnish alkanes two carbons shorter. We present evidence that this involves the rearrangement of the intermediate oxiranyl radical formed in the first step, resulting an aldehyde that is further deformylated in a second step. These observations provide support for a radical mechanism for deformylation and, furthermore, allow the lifetime of the radical intermediate to be estimated based on prior measurements of rate constants for the rearrangement of oxiranyl radicals. PMID:24313866

  12. Identification of the substrate radical intermediate derived from ethanolamine during catalysis by ethanolamine ammonia-lyase.

    PubMed

    Bender, Güneş; Poyner, Russell R; Reed, George H

    2008-10-28

    Rapid-mix freeze-quench (RMFQ) methods and electron paramagnetic resonance (EPR) spectroscopy have been used to characterize the steady-state radical in the deamination of ethanolamine catalyzed by adenosylcobalamin (AdoCbl)-dependent ethanolamine ammonia-lyase (EAL). EPR spectra of the radical intermediates formed with the substrates, [1-13C]ethanolamine, [2-13C]ethanolamine, and unlabeled ethanolamine were acquired using RMFQ trapping methods from 10 ms to completion of the reaction. Resolved 13C hyperfine splitting in EPR spectra of samples prepared with [1-13C]ethanolamine and the absence of such splitting in spectra of samples prepared with [2-13C]ethanolamine show that the unpaired electron is localized on C1 (the carbinol carbon) of the substrate. The 13C splitting from C1 persists from 10 ms throughout the time course of substrate turnover, and there was no evidence of a detectable amount of a product like radical having unpaired spin on C2. These results correct an earlier assignment for this radical intermediate [Warncke, K., et al. (1999) J. Am. Chem. Soc. 121, 10522-10528]. The EPR signals of the substrate radical intermediate are altered by electron spin coupling to the other paramagnetic species, cob(II)alamin, in the active site. The dipole-dipole and exchange interactions as well as the 1-13C hyperfine splitting tensor were analyzed via spectral simulations. The sign of the isotropic exchange interaction indicates a weak ferromagnetic coupling of the two unpaired electrons. A Co2+-radical distance of 8.7 A was obtained from the magnitude of the dipole-dipole interaction. The orientation of the principal axes of the 13C hyperfine splitting tensor shows that the long axis of the spin-bearing p orbital on C1 of the substrate radical makes an angle of approximately 98 degrees with the unique axis of the d(z2) orbital of Co2+.

  13. Reaction between peroxynitrite and boronates: EPR spin-trapping, HPLC analyses, and quantum mechanical study of the free radical pathway

    PubMed Central

    Sikora, Adam; Zielonka, Jacek; Lopez, Marcos; Dybala-Defratyka, Agnieszka; Joseph, Joy; Marcinek, Andrzej; Kalyanaraman, Balaraman

    2013-01-01

    Recently we showed that peroxynitrite (ONOO−) reacts directly and rapidly with aromatic and aliphatic boronic acids (k ≈ 106 M−1s−1). Product analyses and substrate consumption data indicated that ONOO− reacts stoichiometrically with boronates, yielding the corresponding phenols as the major product (~85–90%), and the remaining products (10–15%) were proposed to originate from free radical intermediates (phenyl and phenoxyl radicals). Here we investigated in detail the minor, free radical pathway of boronate reaction with ONOO−. The electron paramagnetic resonance (EPR) spin-trapping technique was used to characterize the free radical intermediates formed from the reaction between boronates and ONOO−. Using 2-methyl-2-nitrosopropane (MNP) and 5-diethoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) spin traps, phenyl radicals were trapped and detected. Although phenoxyl radicals were not detected, the positive effects of molecular oxygen, and inhibitory effects of hydrogen atom donors (acetonitrile, and 2-propanol) and general radical scavengers (GSH, NADH, ascorbic acid and tyrosine) on the formation of phenoxyl radical-derived nitrated product, suggest that phenoxyl radical was formed as the secondary species. We propose that the initial step of the reaction involves the addition of ONOO− to the boron atom in boronates. The anionic intermediate undergoes both heterolytic (major pathway) and homolytic (minor pathway) cleavage of the peroxy (O-O) bond to form phenol and nitrite as a major product (via a non-radical mechanism), or a radical pair PhB(OH)2O•−…•NO2 as a minor product. It is conceivable that phenyl radicals are formed by the fragmentation of PhB(OH)2O•− radical anion. According to the DFT quantum mechanical calculations, the energy barrier for the dissociation of PhB(OH)2O•− radical anion to form phenyl radicals is only a few kcal/mol, suggesting rapid and spontaneous fragmentation of PhB(OH)2O•− radical anion in aqueous media. Biological implications of the minor free radical pathway are discussed in the context of ONOO− detection, using the boronate probes. PMID:21434648

  14. Radical-mediated reduction of the dithiocarbamate group under tin-free conditions.

    PubMed

    McMaster, Claire; Bream, Robert N; Grainger, Richard S

    2012-06-28

    Reductive desulfurisation of dithiocarbamates is conveniently achieved using H(3)PO(2)-Et(3)N-ACCN in refluxing dioxane. Fused and spirocyclic β-lactams, prepared through 4-exo trig carbamoyl radical cyclisation-dithiocarbamate group transfer reactions, are reduced without fragmentation of the strained 4-membered ring. Diethyl tetraacetyl-d-glucopyranosyl dithiocarbamate is selectively reduced with or without acyloxy group migration depending on reaction conditions and choice of reductant. Deuterium incorporation from D(3)PO(2)-Et(3)N is observed for a system involving a nucleophilic radical intermediate, but not in the case of the electrophilic radical obtained through acyloxy group migration on a glucose derivative.

  15. Effects of potassium iodide, colchicine and dapsone on the generation of polymorphonuclear leukocyte-derived oxygen intermediates.

    PubMed

    Miyachi, Y; Niwa, Y

    1982-08-01

    The effects of potassium iodide, colchicine and dapsone on the in vitro generation of polymorphonuclear leukocyte (PMN)-derived oxygen intermediates were investigated. These three drugs have beneficial effects on those conditions in which PMNs play an important pathogenetic role. Three oxygen intermediates, superoxide anion (O2-), hydrogen peroxide (H2O2), hydroxyl radical (OH.) and chemiluminescence were included in assay studies. Dose response studies were performed with therapeutic doses of the drugs (10 microM--mM). We found that both potassium iodide and dapsone significantly suppressed the generation of oxygen intermediates, except for O2-. Colchicine decreased OH. production. Our results show tha these agents to some extent exert their anti-inflammatory effects by interfering with the PMN-dependent production of oxygen intermediates, thus conferring protection from auto-oxidative tissue injury. This may account for their clinical efficacy in many PMN-mediated dermatological diseases.

  16. Potential of EPR spin-trapping to investigate in situ free radicals generation from skin allergens in reconstructed human epidermis: cumene hydroperoxide as proof of concept.

    PubMed

    Kuresepi, Salen; Vileno, Bertrand; Turek, Philippe; Lepoittevin, Jean-Pierre; Giménez-Arnau, Elena

    2018-02-01

    The first step in the development of skin sensitisation to a chemical, and in the elicitation of further allergic contact dermatitis (ACD), is the binding of the allergen to skin proteins after penetrating into the epidermis. The so-formed antigenic adduct is then recognised by the immune system as foreign to the body. Sensitising organic hydroperoxides derived from autoxidation of natural terpenes are believed to form antigens through radical-mediated mechanisms, although this has not yet been established. So far, in vitro investigations on reactive radical intermediates derived from these skin sensitisers have been conducted in solution, yet with experimental conditions being far away from real-life sensitisation. Herein, we report for the first time, the potential use of EPR spin-trapping to study the in situ generation of free radicals derived from cumene hydroperoxide CumOOH in a 3D reconstructed human epidermis (RHE) model, thus much closer to what may happen in vivo. Among the undesirable effects associated with dermal exposure to CumOOH, it is described to cause allergic and irritant dermatitis, being reported as a significant sensitiser. We considered exploiting the usage of spin-trap DEPMPO as an extensive view of all sort of radicals derived from CumOOH were observed all at once in solution. We showed that in the Episkin TM RHE model, both by incubating in the assay medium and by topical application, carbon radicals are mainly formed by redox reactions suggesting the key role of CumOOH-derived carbon radicals in the antigen formation process.

  17. Nature of electrogenerated intermediates in nitro-substituted nor-β-lapachones: the structure of radical species during successive electron transfer in multiredox centers.

    PubMed

    Armendáriz-Vidales, Georgina; Hernández-Muñoz, Lindsay S; González, Felipe J; de Souza, Antonio A; de Abreu, Fabiane C; Jardim, Guilherme A M; da Silva, Eufrânio N; Goulart, Marilia O F; Frontana, Carlos

    2014-06-06

    Electrochemical, spectroelectrochemical, and theoretical studies of the reduction reactions in nor-β-lapachone derivatives including a nitro redox center showed that reduction of the compounds involves the formation of several radical intermediates, including a biradical dianion resultant from the separate reduction of the quinone and nitro groups in the molecules. Theoretical descriptions of the corresponding Fukui functions f(αα)⁺ and f(ββ)⁺(r) and LUMO densities considering finite differences and frozen core approximations for describing the changes in electron and spin densities of the system allowed us to confirm these results. A description of the potential relationship with the obtained results and biological activity selectivity indexes suggests that both the formation of stable biradical dianion species and the stability of the semiquinone intermediates during further reduction are determining factors in the description of their biological activity.

  18. Broadband Microwave Study of Reaction Intermediates and Products Through the Pyrolysis of Oxygenated Biofuels

    NASA Astrophysics Data System (ADS)

    Abeysekera, Chamara; Hernandez-Castillo, Alicia O.; Fritz, Sean; Zwier, Timothy S.

    2017-06-01

    The rapidly growing list of potential plant-derived biofuels creates a challenge for the scientific community to provide a molecular-scale understanding of their combustion. Development of accurate combustion models rests on a foundation of experimental data on the kinetics and product branching ratios of their individual reaction steps. Therefore, new spectroscopic tools are necessary to selectively detect and characterize fuel components and reactive intermediates generated by pyrolysis and combustion. Substituted furans, including furanic ethers, are considered second-generation biofuel candidates. Following the work of the Ellison group, an 8-18 GHz microwave study was carried out on the unimolecular and bimolecular decomposition of the smallest furanic ether, 2-methoxy furan, and it`s pyrolysis intermediate, the 2-furanyloxy radical, formed in a high-temperature pyrolysis source coupled to a supersonic expansion. Details of the experimental setup and analysis of the spectrum of the radical will be discussed.

  19. Human 2-Oxoglutarate Dehydrogenase Complex E1 Component Forms a Thiamin-derived Radical by Aerobic Oxidation of the Enamine Intermediate*

    PubMed Central

    Nemeria, Natalia S.; Ambrus, Attila; Patel, Hetalben; Gerfen, Gary; Adam-Vizi, Vera; Tretter, Laszlo; Zhou, Jieyu; Wang, Junjie; Jordan, Frank

    2014-01-01

    Herein are reported unique properties of the human 2-oxoglutarate dehydrogenase multienzyme complex (OGDHc), a rate-limiting enzyme in the Krebs (citric acid) cycle. (a) Functionally competent 2-oxoglutarate dehydrogenase (E1o-h) and dihydrolipoyl succinyltransferase components have been expressed according to kinetic and spectroscopic evidence. (b) A stable free radical, consistent with the C2-(C2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (ThDP) cation radical was detected by electron spin resonance upon reaction of the E1o-h with 2-oxoglutarate (OG) by itself or when assembled from individual components into OGDHc. (c) An unusual stability of the E1o-h-bound C2-(2α-hydroxy)-γ-carboxypropylidene thiamin diphosphate (the “ThDP-enamine”/C2α-carbanion, the first postdecarboxylation intermediate) was observed, probably stabilized by the 5-carboxyl group of OG, not reported before. (d) The reaction of OG with the E1o-h gave rise to superoxide anion and hydrogen peroxide (reactive oxygen species (ROS)). (e) The relatively stable enzyme-bound enamine is the likely substrate for oxidation by O2, leading to the superoxide anion radical (in d) and the radical (in b). (f) The specific activity assessed for ROS formation compared with the NADH (overall complex) activity, as well as the fraction of radical intermediate occupying active centers of E1o-h are consistent with each other and indicate that radical/ROS formation is an “off-pathway” side reaction comprising less than 1% of the “on-pathway” reactivity. However, the nearly ubiquitous presence of OGDHc in human tissues, including the brain, makes these findings of considerable importance in human metabolism and perhaps disease. PMID:25210035

  20. Photosensitized degradation of acetaminophen in natural organic matter solutions: The role of triplet states and oxygen.

    PubMed

    Li, Yanyun; Pan, Yanheng; Lian, Lushi; Yan, Shuwen; Song, Weihua; Yang, Xin

    2017-02-01

    The photolysis of acetaminophen, a widely used pharmaceutical, in simulated natural organic matter solutions was investigated. The triplet states of natural organic matter ( 3 NOM*) were found to play the dominant role in its photodegradation, while the contributions from hydroxyl radicals and singlet oxygen were negligible. Dissolved oxygen (DO) plays a dual role. From anaerobic to microaerobic (0.5 mg/L DO) conditions, the degradation rate of acetaminophen increased by 4-fold. That suggests the involvement of DO in reactions with the degradation intermediates. With increasing oxygen levels to saturated conditions (26 mg/L DO), the degradation rate became slower, mainly due to DO's quenching effect on 3 NOM*. Superoxide radical (O 2 - ) did not react with acetaminophen directly, but possibly quenched the intermediates to reverse the degradation process. The main photochemical pathways were shown to involve phenoxyl radical and N-radical cations, finally yielding hydroxylated derivatives, dimers and nitrosophenol. A reaction mechanism involving 3 NOM*, oxygen and O 2 - is proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The Development, Implementation and Application of Accurate Quantum Chemical Methods for Molecular Structure, Spectra and Reaction Paths

    DTIC Science & Technology

    2016-02-02

    Bartlett, Nigel G. J. Richards, Robert W. Molt, Alison M. Lecher. Facile Csp2 Csp2 bond cleavage in oxalic acid -derived radicals: Implications for...sway a strong bond link in oxalate can be broken by manganese containing enzymes. The intermediate steps involved the formation of either a radical or...catalysis by oxalate decarboxylase, Journal of the American Chemical Society, (03 2015): 3248. doi: 10.1021/ja510666r Erik Deumens, Victor F. Lotrich

  2. Hypochlorite-induced damage to proteins: formation of nitrogen-centred radicals from lysine residues and their role in protein fragmentation.

    PubMed Central

    Hawkins, C L; Davies, M J

    1998-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl damages proteins by reaction with amino acid side-chains or backbone cleavage. Little information is available about the mechanisms and intermediates involved in these reactions. EPR spin trapping has been employed to identify radicals on proteins, peptides and amino acids after treatment with HOCl. Reaction with HOCl gives both high- and low-molecular-mass nitrogen-centred, protein-derived radicals; the yield of the latter increases with both higher HOCl:protein ratios and enzymic digestion. These radicals, which arise from lysine side-chain amino groups, react with ascorbate, glutathione and Trolox. Reaction of HOCl-treated proteins with excess methionine eliminates radical formation, which is consistent with lysine-derived chloramines (via homolysis of N-Cl bonds) being the radical source. Incubation of HOCl-treated proteins, after removal of excess oxidant, gives rise to both nitrogen-centred radicals, over a period of hours, and time-dependent fragmentation of the protein. Treatment with excess methionine or antioxidants (Trolox, ascorbate, glutathione) protects against fragmentation; urate and bilirubin do not. Chloramine formation and nitrogen-centred radicals are therefore key species in HOCl-induced protein fragmentation. PMID:9620862

  3. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    PubMed

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction is proposed between aminocarboxylates and arylamine free radicals via the carboxylic group-linked tertiary nitrogen of the deprotonated amino acid derivatives. These findings may have significant implications for the biological fate of arylamine xenobiotic and drug free-radical metabolites.

  4. Properties of Intermediates in the Catalytic Cycle of Oxalate Oxidoreductase and Its Suicide Inactivation by Pyruvate

    PubMed Central

    2017-01-01

    Oxalate:ferredoxin oxidoreductase (OOR) is an unusual member of the thiamine pyrophosphate (TPP)-dependent 2-oxoacid:ferredoxin oxidoreductase (OFOR) family in that it catalyzes the coenzyme A (CoA)-independent conversion of oxalate into 2 equivalents of carbon dioxide. This reaction is surprising because binding of CoA to the acyl-TPP intermediate of other OFORs results in formation of a CoA ester, and in the case of pyruvate:ferredoxin oxidoreductase (PFOR), CoA binding generates the central metabolic intermediate acetyl-CoA and promotes a 105-fold acceleration of the rate of electron transfer. Here we describe kinetic, spectroscopic, and computational results to show that CoA has no effect on catalysis by OOR and describe the chemical rationale for why this cofactor is unnecessary in this enzymatic transformation. Our results demonstrate that, like PFOR, OOR binds pyruvate and catalyzes decarboxylation to form the same hydroxyethylidine–TPP (HE–TPP) intermediate and one-electron transfer to generate the HE–TPP radical. However, in OOR, this intermediate remains stranded at the active site as a covalent inhibitor. These and other results indicate that, like other OFOR family members, OOR generates an oxalate-derived adduct with TPP (oxalyl-TPP) that undergoes decarboxylation and one-electron transfer to form a radical intermediate remaining bound to TPP (dihydroxymethylidene–TPP). However, unlike in PFOR, where CoA binding drives formation of the product, in OOR, proton transfer and a conformational change in the “switch loop” alter the redox potential of the radical intermediate sufficiently to promote the transfer of an electron into the iron–sulfur cluster network, leading directly to a second decarboxylation and completing the catalytic cycle. PMID:28514140

  5. Highly durable organic electrode for sodium-ion batteries via a stabilized α-C radical intermediate

    NASA Astrophysics Data System (ADS)

    Wu, Shaofei; Wang, Wenxi; Li, Minchan; Cao, Lujie; Lyu, Fucong; Yang, Mingyang; Wang, Zhenyu; Shi, Yang; Nan, Bo; Yu, Sicen; Sun, Zhifang; Liu, Yao; Lu, Zhouguang

    2016-11-01

    It is a challenge to prepare organic electrodes for sodium-ion batteries with long cycle life and high capacity. The highly reactive radical intermediates generated during the sodiation/desodiation process could be a critical issue because of undesired side reactions. Here we present durable electrodes with a stabilized α-C radical intermediate. Through the resonance effect as well as steric effects, the excessive reactivity of the unpaired electron is successfully suppressed, thus developing an electrode with stable cycling for over 2,000 cycles with 96.8% capacity retention. In addition, the α-radical demonstrates reversible transformation between three states: C=C α-C.radical and α-C- anion. Such transformation provides additional Na+ storage equal to more than 0.83 Na+ insertion per α-C radical for the electrodes. The strategy of intermediate radical stabilization could be enlightening in the design of organic electrodes with enhanced cycling life and energy storage capability.

  6. Regulation of the nitric oxide oxidase activity of myeloperoxidase by pharmacological agents.

    PubMed

    Maiocchi, Sophie L; Morris, Jonathan C; Rees, Martin D; Thomas, Shane R

    2017-07-01

    The leukocyte-derived heme enzyme myeloperoxidase (MPO) is released extracellularly during inflammation and impairs nitric oxide (NO) bioavailability by directly oxidizing NO or producing NO-consuming substrate radicals. Here, structurally diverse pharmacological agents with activities as MPO substrates/inhibitors or antioxidants were screened for their effects on MPO NO oxidase activity in human plasma and physiological model systems containing endogenous MPO substrates/antioxidants (tyrosine, urate, ascorbate). Hydrazide-based irreversible/reversible MPO inhibitors (4-ABAH, isoniazid) or the sickle cell anaemia drug, hydroxyurea, all promoted MPO NO oxidase activity. This involved the capacity of NO to antagonize MPO inhibition by hydrazide-derived radicals and/or the ability of drug-derived radicals to stimulate MPO turnover thereby increasing NO consumption by MPO redox intermediates or NO-consuming radicals. In contrast, the mechanism-based irreversible MPO inhibitor 2-thioxanthine, potently inhibited MPO turnover and NO consumption. Although the phenolics acetaminophen and resveratrol initially increased MPO turnover and NO consumption, they limited the overall extent of NO loss by rapidly depleting H 2 O 2 and promoting the formation of ascorbyl radicals, which inefficiently consume NO. The vitamin E analogue trolox inhibited MPO NO oxidase activity in ascorbate-depleted fluids by scavenging NO-consuming tyrosyl and urate radicals. Tempol and related nitroxides decreased NO consumption in ascorbate-replete fluids by scavenging MPO-derived ascorbyl radicals. Indoles or apocynin yielded marginal effects. Kinetic analyses rationalized differences in drug activities and identified criteria for the improved inhibition of MPO NO oxidase activity. This study reveals that widely used agents have important implications for MPO NO oxidase activity under physiological conditions, highlighting new pharmacological strategies for preserving NO bioavailability during inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Inhibition of free radical-induced erythrocyte hemolysis by 2-O-substituted ascorbic acid derivatives.

    PubMed

    Takebayashi, Jun; Kaji, Hiroaki; Ichiyama, Kenji; Makino, Kazutaka; Gohda, Eiichi; Yamamoto, Itaru; Tai, Akihiro

    2007-10-15

    Inhibitory effects of 2-O-substituted ascorbic acid derivatives, ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S), on 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH)-induced oxidative hemolysis of sheep erythrocytes were studied and were compared with those of ascorbic acid (AA) and other antioxidants. The order of the inhibition efficiency was AA-2S> or =Trolox=uric acid> or =AA-2P> or =AA-2G=AA>glutathione. Although the reactivity of the AA derivatives against AAPH-derived peroxyl radical (ROO(*)) was much lower than that of AA, the derivatives exerted equal or more potent protective effects on AAPH-induced hemolysis and membrane protein oxidation. In addition, the AA derivatives were found to react per se with ROO(*), not via AA as an intermediate. These findings suggest that secondary reactions between the AA derivative radical and ROO(*) play a part in hemolysis inhibition. Delayed addition of the AA derivatives after AAPH-induced oxidation of erythrocytes had already proceeded showed weaker inhibition of hemolysis compared to that of AA. These results suggest that the AA derivatives per se act as biologically effective antioxidants under moderate oxidative stress and that AA-2G and AA-2P may be able to act under severe oxidative stress after enzymatic conversion to AA in vivo.

  8. The interaction of diamines and polyamines with the peroxidase-catalyzed metabolism of aromatic amines: a potential mechanism for the modulation of aniline toxicity.

    PubMed

    Michail, Karim; Aljuhani, Naif; Siraki, Arno G

    2013-03-01

    Synthetic and biological amines such as ethylenediamine (EDA), spermine, and spermidine have not been previously investigated in free-radical biochemical systems involving aniline-based drugs or xenobiotics. We aimed to study the influence of polyamines in the modulation of aromatic amine radical metabolites in peroxidase-mediated free radical reactions. The aniline compounds tested caused a relatively low oxidation rate of glutathione in the presence of horseradish peroxidase (HRP), and H2O2; however, they demonstrated marked oxygen consumption when a polyamine molecule was present. Next, we characterized the free-radical products generated by these reactions using spin-trapping and electron paramagnetic resonance (EPR) spectrometry. Primary and secondary but not tertiary polyamines dose-dependently enhanced the N-centered radicals of different aniline compounds catalyzed by either HRP or myeloperoxidase, which we believe occurred via charge transfer intermediates and subsequent stabilization of aniline-derived radical species as suggested by isotopically labeled aniline. Aniline/peroxidase reaction product(s) were monitored at 435 nm by kinetic spectrophotometry in the presence and absence of a polyamine additive. Using gas chromatography-mass spectrometry, the dimerziation product of aniline, azobenzene, was significantly amplified when EDA was present. In conclusion, di- and poly-amines are capable of enhancing the formation of aromatic-amine-derived free radicals, a fact that is expected to have toxicological consequences.

  9. Absence of an effect of vitamin E on protein and lipid radical formation during lipoperoxidation of LDL by lipoxygenase

    PubMed Central

    Ganini, Douglas; Mason, Ronald P.

    2014-01-01

    LDL oxidation is the primary event in atherosclerosis, where LDL lipoperoxidation leads to modifications in the apolipoprotein B-100 (apo B-100) and lipids. Intermediate species of lipoperoxidation are known to be able to generate amino acid-centered radicals. Thus, we hypothesized that lipoperoxidation intermediates induce protein-derived free radical formation during LDL oxidation. Using DMPO and immuno spin-trapping, we detected the formation of protein free radicals on LDL incubated with Cu2+ or the soybean lipoxidase (LPOx)/phospholipase A2 (PLA2). With low concentrations of DMPO (1 mM), Cu2+ dose-dependently induced oxidation of LDL and easily detected apo B-100 radicals. Protein radical formation in LDL incubated with Cu2+ showed maximum yields after 30 minutes. In contrast, the yields of apo B-100-radicals formed by LPOx/PLA2 followed a typical enzyme-catalyzed kinetics that was unaffected by DMPO concentrations of up to 50 mM. Furthermore, when we analyzed the effect of antioxidants on protein radical formation during LDL oxidation, we found that ascorbate, urate and Trolox dose-dependently reduced apo B-100-free radical formation in LDL exposed to Cu2+. In contrast, Trolox was the only antioxidant that even partially protected LDL from LPOx/PLA2. We also examined the kinetics of lipid radical formation and protein radical formation induced by Cu2+ or LPOx/PLA2 for LDL supplemented with α-tocopherol. In contrast to the potent antioxidant effect of α-tocopherol on the delay of LDL oxidation induced by Cu2+, when we used the oxidizing system LPOx/PLA2, no significant protection was detected. The lack of protection of α-tocopherol on the apo B-100 and lipid free radical formation by LPOx may explain the failure of vitamin E as a cardiovascular protective agent for humans. PMID:25091900

  10. NHC-catalysed benzoin condensation - is it all down to the Breslow intermediate?

    PubMed

    Rehbein, Julia; Ruser, Stephanie-M; Phan, Jenny

    2015-10-01

    The Breslow catalytic cycle describing the benzoin condensation promoted by N-heterocyclic carbenes (NHC) as proposed in the late 1950s has since then been tried by generations of physical organic chemists. Emphasis has been laid on proofing the existence of an enaminol like structure (Breslow intermediate) that explains the observed umpolung of an otherwise electrophilic aldehyde. The present study is not focusing on spectroscopic elucidation of a thiazolydene based Breslow intermediate but rather tries to clarify if this key-intermediate is indeed directly linked with the product side of the overall reaction. The here presented EPR-spectroscopic and computational data provide a fundamentally different view on how the benzoin condensation may proceed: a radical pair could be identified as a second key-intermediate that is derived from the Breslow-intermediate via an SET process. These results highlight the close relationship to the Cannizarro reaction and oxidative transformations of aldehydes under NHC catalysis.

  11. Radiolysis of paracetamol in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László

    2012-09-01

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.

  12. Photodissociation of CF2ICF2I in solid para-hydrogen: infrared spectra of anti- and gauche-˙C2F4I radicals.

    PubMed

    Haupa, Karolina Anna; Lim, Manho; Lee, Yuan-Pern

    2018-05-09

    The photolysis of 1,2-diiodotetrafluoroethane (CF2ICF2I) has served as a prototypical system in ultrafast reaction dynamics. Even though the intermediates, anti- and gauche-iodotetrafluoroethyl (˙C2F4I) radicals, have been characterized with electron diffraction and X-ray diffraction, their infrared spectra are unreported. We report the formation and infrared identification of these radical intermediates upon ultraviolet photodissociation of CF2ICF2I in solid para-hydrogen (p-H2) at 3.3 K. Lines at 1364.9/1358.5, 1283.2, 1177.1, 1162.2, 1126.8, 837.3, 658.0, 574.2, and 555.2 cm-1 are assigned to anti-˙C2F4I, and lines at 1325.9, 1259.7, 1143.4, 1063.4, 921.0, and 765.3 cm-1 to gauche-˙C2F4I. A secondary photodissociation leading to C2F4 was also observed. The assignments were derived according to behavior on secondary photolysis, comparison of the vibrational wavenumbers and the IR intensities of the observed lines with values predicted with the B3PW91/aug-cc-pVTZ-pp method. This spectral identification provides valuable information for future direct spectral probes of these important intermediates.

  13. Hydrogen peroxide and dioxygen activation by dinuclear copper complexes in aqueous solution: hydroxyl radical production initiated by internal electron transfer.

    PubMed

    Zhu, Qing; Lian, Yuxiang; Thyagarajan, Sunita; Rokita, Steven E; Karlin, Kenneth D; Blough, Neil V

    2008-05-21

    Dinuclear Cu(II) complexes, CuII2Nn (n = 4 or 5), were recently found to specifically cleave DNA in the presence of a reducing thiol and O2 or in the presence of H2O2 alone. However, CuII2N3 and a closely related mononuclear Cu(II) complex exhibited no selective reaction under either condition. Spectroscopic studies indicate an intermediate is generated from CuII2Nn (n = 4 or 5) and mononuclear Cu(II) solutions in the presence of H2O2 or from CuI2Nn (n = 4 or 5) in the presence of O2. This intermediate decays to generate OH radicals and ligand degradation products at room temperature. The lack of reactivity of the intermediate with a series of added electron donors suggests the intermediate discharges through a rate-limiting intramolecular electron transfer from the ligand to the metal peroxo center to produce an OH radical and a ligand-based radical. These results imply that DNA cleavage does not result from direct reaction with a metal-peroxo intermediate but instead arises from reaction with either OH radicals or ligand-based radicals.

  14. Direct observation of unimolecular decay of CH 3 CH 2 CHOO Criegee intermediates to OH radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Liu, Fang; Klippenstein, Stephen J.

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH3CH2CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice-Ramsperger-Kassel-Marcus calculations of the microcanonical unimolecular decay rate for CH3CH2CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronic structure calculations, contributes significantlymore » to the decay rate. Infrared transitions of CH3CH2CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH3CH2CHOO of ca. 10(7) s(-1), which are slower than those obtained for syn-CH3CHOO or (CH3)(2)COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH3CH2CHOO under atmospheric conditions, giving a rate of 279 s(-1) at 298 K.« less

  15. Synthesis of heterocyclic analogues of epibatidine via 7-azabicyclo[2.2.1]hept-2-yl radical intermediates. 1. Intermolecular reactions.

    PubMed

    Gómez-Sánchez, Elena; Soriano, Elena; Marco-Contelles, José

    2008-09-05

    The synthesis and reactivity of the 7-azabicyclo[2.2.1]hept-2-yl radical has been extensively investigated in inter- and intramolecular reaction processes for the first time. In this work we will present the preparation of the radical and its successful intermolecular reaction with radical acceptors such as tert-butylisocyanide and acrylonitrile. Computational analyses have been carried out to show and explain the mechanisms and stereochemical outcome of these transformations. Overall and from the chemical point of view, a new and convenient synthetic approach has been developed for the synthesis of exo-2-(cyano)alkyl substituted 7-azabicyclo[2.2.1]heptane derivatives, a series of compounds of wide interest for the synthesis of heterocyclic analogues of epibatidine. As a result, we describe here the synthesis of the tetrazoloepibatidines (8 and 15) and the oxadiazoloepibatidine (10).

  16. Oxygen Activation and Radical Transformations in Heme Proteins and Metalloporphyrins

    PubMed Central

    2017-01-01

    As a result of the adaptation of life to an aerobic environment, nature has evolved a panoply of metalloproteins for oxidative metabolism and protection against reactive oxygen species. Despite the diverse structures and functions of these proteins, they share common mechanistic grounds. An open-shell transition metal like iron or copper is employed to interact with O2 and its derived intermediates such as hydrogen peroxide to afford a variety of metal–oxygen intermediates. These reactive intermediates, including metal-superoxo, -(hydro)peroxo, and high-valent metal–oxo species, are the basis for the various biological functions of O2-utilizing metalloproteins. Collectively, these processes are called oxygen activation. Much of our understanding of the reactivity of these reactive intermediates has come from the study of heme-containing proteins and related metalloporphyrin compounds. These studies not only have deepened our understanding of various functions of heme proteins, such as O2 storage and transport, degradation of reactive oxygen species, redox signaling, and biological oxygenation, etc., but also have driven the development of bioinorganic chemistry and biomimetic catalysis. In this review, we survey the range of O2 activation processes mediated by heme proteins and model compounds with a focus on recent progress in the characterization and reactivity of important iron–oxygen intermediates. Representative reactions initiated by these reactive intermediates as well as some context from prior decades will also be presented. We will discuss the fundamental mechanistic features of these transformations and delineate the underlying structural and electronic factors that contribute to the spectrum of reactivities that has been observed in nature as well as those that have been invented using these paradigms. Given the recent developments in biocatalysis for non-natural chemistries and the renaissance of radical chemistry in organic synthesis, we envision that new enzymatic and synthetic transformations will emerge based on the radical processes mediated by metalloproteins and their synthetic analogs. PMID:29286645

  17. Photogenerated radical intermediates of vitamin K 1: a time-resolved resonance Raman study

    NASA Astrophysics Data System (ADS)

    Balakrishnan, G.; Umapathy, S.

    1999-01-01

    Quinones play a vital role in the process of electron transfer in bacterial photosynthetic reaction centers. It is of interest to investigate the photochemical reactions involving quinones with a view to elucidating the structure-function relationships in the biological processes. Resonance Raman spectra of radical anions and the time-resolved resonance Raman spectra of vitamin K 1 (model compound for Q A in Rhodopseudomonas viridis, a bacterial photosynthetic reception center) are presented. The photochemical intermediates of vitamin K 1, viz. radical anion, ketyl radical and o-quinone methide have been identified. The vibrational assignments of all these intermediates are made on the basis of comparison with our earlier TR3 studies on radical anions of naphthoquinone and menaquinone.

  18. Palladium-Catalyzed Atom-Transfer Radical Cyclization at Remote Unactivated C(sp3 )-H Sites: Hydrogen-Atom Transfer of Hybrid Vinyl Palladium Radical Intermediates.

    PubMed

    Ratushnyy, Maxim; Parasram, Marvin; Wang, Yang; Gevorgyan, Vladimir

    2018-03-01

    A novel mild, visible-light-induced palladium-catalyzed hydrogen atom translocation/atom-transfer radical cyclization (HAT/ATRC) cascade has been developed. This protocol involves a 1,5-HAT process of previously unknown hybrid vinyl palladium radical intermediates, thus leading to iodomethyl carbo- and heterocyclic structures. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Interactions of short-acting, intermediate-acting and pre-mixed human insulins with free radicals--Comparative EPR examination.

    PubMed

    Olczyk, Paweł; Komosinska-Vassev, Katarzyna; Ramos, Paweł; Mencner, Łukasz; Olczyk, Krystyna; Pilawa, Barbara

    2015-07-25

    Electron paramagnetic resonance (EPR) spectroscopy was used to examine insulins interactions with free radicals. Human recombinant DNA insulins of three groups were studied: short-acting insulin (Insuman Rapid); intermediate-acting insulins (Humulin N, Insuman Basal), and pre-mixed insulins (Humulin M3, Gensulin M50, Gensulin M40, Gensulin M30). The aim of an X-band (9.3GHz) study was comparative analysis of antioxidative properties of the three groups of human insulins. DPPH was used as a stable free radical model. Amplitudes of EPR lines of DPPH as the paramagnetic free radical reference, and DPPH interacting with the individual tested insulins were compared. For all the examined insulins kinetics of their interactions with free radicals up to 60 min were obtained. The strongest interactions with free radicals were observed for the short-acting insulin - Insuman Rapid. The lowest interactions with free radicals were characteristic for intermediate-acting insulin - Insuman Basal. The pre-mixed insulins i.e. Humulin M3 and Gensulin M50 revealed the fastest interactions with free radicals. The short acting, intermediate acting and premixed insulins have been found to be effective agents in reducing free radical formation in vitro and should be further considered as potential useful tools in attenuation of oxidative stress in diabetic patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Hypochlorite and superoxide radicals can act synergistically to induce fragmentation of hyaluronan and chondroitin sulphates

    PubMed Central

    2004-01-01

    Activated phagocytes release the haem enzyme MPO (myeloperoxidase) and also generate superoxide radicals (O2•−), and hence H2O2, via an oxidative burst. Reaction of MPO with H2O2 in the presence of chloride ions generates HOCl (the physiological mixture of hypochlorous acid and its anion present at pH 7.4). Exposure of glycosaminoglycans to a MPO–H2O2–Cl− system or reagent HOCl generates long-lived chloramides [R-NCl-C(O)-R′] derived from the glycosamine N-acetyl functions. Decomposition of these species by transition metal ions gives polymer-derived amidyl (nitrogen-centred) radicals [R-N•-C(O)-R′], polymer-derived carbon-centred radicals and site-specific strand scission. In the present study, we have shown that exposure of glycosaminoglycan chloramides to O2•− also promotes chloramide decomposition and glycosaminoglycan fragmentation. These processes are inhibited by superoxide dismutase, metal ion chelators and the metal ion-binding protein BSA, consistent with chloramide decomposition and polymer fragmentation occurring via O2•−-dependent one-electron reduction, possibly catalysed by trace metal ions. Polymer fragmentation induced by O2•− [generated by the superoxide thermal source 1, di-(4-carboxybenzyl)hyponitrite] was demonstrated to be entirely chloramide dependent as no fragmentation occurred with the native polymers or when the chloramides were quenched by prior treatment with methionine. EPR spin-trapping experiments using 5,5-dimethyl1-pyrroline-N-oxide and 2-methyl-2-nitrosopropane have provided evidence for both O2•− and polymer-derived carbon-centred radicals as intermediates. The results obtained are consistent with a mechanism involving one-electron reduction of the chloramides to yield polymer-derived amidyl radicals, which subsequently undergo intramolecular hydrogen atom abstraction reactions to give carbon-centred radicals. The latter undergo fragmentation reactions in a site-specific manner. This synergistic damage to glycosaminoglycans induced by HOCl and O2•− may be of significance at sites of inflammation where both oxidants are generated concurrently. PMID:15078224

  1. A characterization of the two-step reaction mechanism of phenol decomposition by a Fenton reaction

    NASA Astrophysics Data System (ADS)

    Valdés, Cristian; Alzate-Morales, Jans; Osorio, Edison; Villaseñor, Jorge; Navarro-Retamal, Carlos

    2015-11-01

    Phenol is one of the worst contaminants at date, and its degradation has been a crucial task over years. Here, the decomposition process of phenol, in a Fenton reaction, is described. Using scavengers, it was observed that decomposition of phenol was mainly influenced by production of hydroxyl radicals. Experimental and theoretical activation energies (Ea) for phenol oxidation intermediates were calculated. According to these Ea, phenol decomposition is a two-step reaction mechanism mediated predominantly by hydroxyl radicals, producing a decomposition yield order given as hydroquinone > catechol > resorcinol. Furthermore, traces of reaction derived acids were detected by HPLC and GS-MS.

  2. Substrate-controlled Rh(II)-catalyzed single-electron-transfer (SET): divergent synthesis of fused indoles.

    PubMed

    Chen, Kai; Zhu, Zi-Zhong; Liu, Jia-Xin; Tang, Xiang-Ying; Wei, Yin; Shi, Min

    2016-01-07

    Rh(II)-catalyzed diversified ring expansions controlled by single-electron-transfer (SET) have been disclosed in this communication, producing a series of indole-fused azetidines and 1H-carbazoles or related derivatives in moderate to good yields via Rh2(III,II) nitrene radical intermediates. The direction of ring expansion branches according to different ring sizes of methylenecycloalkanes.

  3. Formation of methemoglobin and phenoxyl radicals from p-hydroxyanisole and oxyhemoglobin.

    PubMed

    Stolze, K; Nohl, H

    1991-01-01

    The reaction of p-hydroxyanisole with oxyhemoglobin was investigated using electron spin resonance spectroscopy (ESR) and visible spectroscopy. As a reactive reaction intermediate we found the p-methoxyphenoxyl radical, the one-electron oxidation product of p-hydroxyanisole. Detection of this species required the rapid flow device elucidating the instability of this radical intermediate. The second reaction product formed is methemoglobin. Catalase or SOD had no effect upon the reaction kinetics. Accordingly, reactive oxygen species such as hydroxyl radicals or superoxide could not be observed although the spin trapping agent DMPO was used to make these short-lived species detectable. When the sulfhydryl blocking agents N-ethylmaleimide or mersalyl acid were used, an increase of the methemoglobin formation rate and of the phenoxyl radical concentration were observed. We have interpreted this observation in terms of a side reaction of free radical intermediates with thiol groups.

  4. Direct observation of unimolecular decay of CH{sub 3}CH{sub 2}CHOO Criegee intermediates to OH radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Yi; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH{sub 3}CH{sub 2}CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice–Ramsperger–Kassel–Marcus calculations of the microcanonical unimolecular decay rate for CH{sub 3}CH{sub 2}CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronicmore » structure calculations, contributes significantly to the decay rate. Infrared transitions of CH{sub 3}CH{sub 2}CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH{sub 3}CH{sub 2}CHOO of ca. 10{sup 7} s{sup −1}, which are slower than those obtained for syn-CH{sub 3}CHOO or (CH{sub 3}){sub 2}COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH{sub 3}CH{sub 2}CHOO under atmospheric conditions, giving a rate of 279 s{sup −1} at 298 K.« less

  5. Pyrimidine Nucleobase Radical Reactivity in DNA and RNA.

    PubMed

    Greenberg, Marc M

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  6. Pyrimidine nucleobase radical reactivity in DNA and RNA

    NASA Astrophysics Data System (ADS)

    Greenberg, Marc M.

    2016-11-01

    Nucleobase radicals are major products of the reactions between nucleic acids and hydroxyl radical, which is produced via the indirect effect of ionizing radiation. The nucleobase radicals also result from hydration of cation radicals that are produced via the direct effect of ionizing radiation. The role that nucleobase radicals play in strand scission has been investigated indirectly using ionizing radiation to generate them. More recently, the reactivity of nucleobase radicals resulting from formal hydrogen atom or hydroxyl radical addition to pyrimidines has been studied by independently generating the reactive intermediates via UV-photolysis of synthetic precursors. This approach has provided control over where the reactive intermediates are produced within biopolymers and facilitated studying their reactivity. The contributions to our understanding of pyrimidine nucleobase radical reactivity by this approach are summarized.

  7. Free Radical Mechanisms of Xenobiotic Mammalian Cytotoxicities

    DTIC Science & Technology

    1991-06-30

    injury process was mediated through biotransformation of the halocarbons to a free radical intermediate, similar to what happens in the liver . However...peroxidation) of antioxidant agents - is not limited to the liver , but also occurs in vascular cells as well. Unlike the liver , where most of the injury is...frequent mechanism of xenobiotic liver toxicity is biotransformation by cytochrome P,5o-enzymes to toxic free radical intermediates. The primary objective

  8. 4′-CyanoPLP presents better prospect for the experimental detection of elusive cyclic intermediate radical in the reaction of lysine 5,6-aminomutase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maity, Amarendra Nath; Ke, Shyue-Chu, E-mail: ke@mail.ndhu.edu.tw

    2015-02-06

    Graphical abstract: The results of our calculations suggest that the reaction of 4′-cyanoPLP with lysine 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical, which is proposed to be a key intermediate in the reaction of pyridoxal-5′-phosphate dependent radical aminomutases. - Highlights: • 4′-CyanoI{sup ·} is the lowest energy radical intermediate in the reaction of 5,6-LAM. • 4′-CyanoPLP offers good prospect for the experimental observation of elusive I{sup ·}. • The calculated HFCCs would help to characterize 4′-cyanoI{sup ·} by EPR. - Abstract: The results of our calculations suggest that the reaction of 4′-cyanoPLP with lysinemore » 5,6-aminomutase offers better prospect for the experimental detection of elusive cyclic azacyclopropylcarbinyl radical (I{sup ·}), which is proposed to be a key intermediate in the reaction of pyridoxal-5′-phosphate dependent radical aminomutases. We have calculated the corresponding hyperfine coupling constants (HFCCs) for {sup 14}N and {sup 13}C of cyano group using several basis sets to help the characterization of 4′-cyanoI{sup ·}.« less

  9. Spectroscopic detection, characterization and dynamics of free radicals relevant to combustion processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Terry

    2015-06-04

    Combustion chemistry is enormously complex. The chemical mechanisms involve a multitude of elementary reaction steps and a comparable number of reactive intermediates, many of which are free radicals. Computer simulations based upon these mechanisms are limited by the validity of the mechanisms and the parameters characterizing the properties of the intermediates and their reactivity. Spectroscopy can provide data for sensitive and selective diagnostics to follow their reactions. Spectroscopic analysis also provides detailed parameters characterizing the properties of these intermediates. These parameters serve as experimental gold standards to benchmark predictions of these properties from large-scale, electronic structure calculations. This work hasmore » demonstrated the unique capabilities of near-infrared cavity ringdown spectroscopy (NIR CRDS) to identify, characterize and monitor intermediates of key importance in complex chemical reactions. Our studies have focussed on the large family of organic peroxy radicals which are arguably themost important intermediates in combustion chemistry and many other reactions involving the oxidation of organic compounds. Our spectroscopic studies have shown that the NIR Ã - ˜X electronic spectra of the peroxy radicals allows one to differentiate among chemical species in the organic peroxy family and also determine their isomeric and conformic structure in many cases. We have clearly demonstrated this capability on saturated and unsaturated peroxy radicals and β-hydroxy peroxy radicals. In addition we have developed a unique dual wavelength CRDS apparatus specifically for the purpose of measuring absolute absorption cross section and following the reaction of chemical intermediates. The utility of the apparatus has been demonstrated by measuring the cross-section and self-reaction rate constant for ethyl peroxy.« less

  10. [Inhibiting properties of stable nitroxyl radicals in reactions of linoleic acid and linoleyl alcohol oxidation catalyzed by 5-lipoxygenase].

    PubMed

    Kharchenko, O V; Kharitonenko, A I; Vovk, A I; Kukhar', V P; Babiĭ, L V; Khil'chevskiĭ, A N; Mel'nik, A K

    2005-01-01

    The inhibiting effects of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and its 4-substituted derivatives in reactions of linoleyl acid or linoleyl alcohol oxidation catalyzed by potato tuber 5-lipoxygenase were investigated. Inhibiting properties of stable nitroxyl radicals in presence of lubrol and SDS were reduced at the transition from TEMPO to 4-hydroxy-TEMPO or 4-amino-TEMPO and increased at use of adamantane-1-carboxylic or 3-methyladamantane-1-carboxylic acid 1-oxyl-2,2,6,6-tetramethylpiperidine-4-yl esters. Enzyme activity at saturating concentrations of inhibitor was not suppressed completely, and decreased up to the certain level determined by the substrate nature. The dependence of partial inhibition efficiency on rotational correlation time of stable nitroxides in model micellar systems were analysed. It was supposed that 5-lipoxygenase inhibition includes the interaction of hydrophobic nitroxide with radical intermediate formed in enzymatic process.

  11. Photolysis of polycyclic aromatic hydrocarbons (PAHs) on Fe3+-montmorillonite surface under visible light: Degradation kinetics, mechanism, and toxicity assessments.

    PubMed

    Zhao, Song; Jia, Hanzhong; Nulaji, Gulimire; Gao, Hongwei; Wang, Fu; Wang, Chuanyi

    2017-10-01

    Photochemical behavior of various polycyclic aromatic hydrocarbons (PAHs) on Fe 3+ -modified montmorillonite was explored to determine their potential kinetics, pathways, and mechanism under visible light. Depending on the type of PAH molecules, the transformation rate follows the order of benzo[a]pyrene ≈ anthracene > benzo[a]anthracene > phenanthrene. Quantum simulation results confirm the crucial role of "cation-π" interaction between Fe 3+ and PAHs on their transformation kinetics. Primary intermediates, including quinones, ring-opening products and benzene derivatives, were identified by gas chromatography-mass spectrometer (GC-MS), and the possible photodegradation pathway of benzo[a]pyrene was proposed. Meanwhile, radical intermediates, such as reactive oxygen species (ROS) and free organic radicals, were detected by electron paramagnetic resonance (EPR) technique. The photolysis of selected PAHs, such as anthracene and benzo[a]pyrene, on clay surface firstly occurs by electron transfer from PAHs to Fe 3+ -montmorillonite, followed by degradation involving photo-induced ROS such as ·OH and ·O 2 - . To investigate the acute toxicity of photolysis products, the Microtox ® toxicity test was performed during the photodegradation processes of various PAHs. As a result, the photo-irradiation initially induces increased toxicity by generating reactive intermediates, such as free organic radicals, and then the toxicity gradually decreases with increasing of reaction time. Overall, the present study provides useful information to understand the fate and photo-transformation of PAHs in contaminated soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Evidence for Formation of a Radical-Mediated Flavin-N5 Covalent Intermediate.

    PubMed

    Dai, Yumin; Valentino, Hannah R; Sobrado, Pablo

    2018-05-18

    The redox-neutral reaction catalyzed by 2-haloacrylate hydratase (2-HAH) leads to the conversion of 2-chloroacrylate to pyruvate. Previous mechanistic studies demonstrated formation of a flavin-iminium ion as an important intermediate in the 2-HAH catalytic cycle. Time-resolved flavin absorbance studies were performed in this study and the data showed that the enzyme is capable of stabilizing both anionic and neutral flavin semiquinone species. The presence of a radical scavenger decreases the activity in a concentration-dependent manner. These data are consistent with the flavin iminium intermediate occurring via radical recombination. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Free terminal amines in DNA-binding peptides alter the product distribution from guanine radicals produced by single electron oxidation.

    PubMed

    Konigsfeld, Katie M; Lee, Melissa; Urata, Sarah M; Aguilera, Joe A; Milligan, Jamie R

    2012-03-01

    Electron deficient guanine radical species are major intermediates produced in DNA by the direct effect of ionizing irradiation. There is evidence that they react with amine groups in closely bound ligands to form covalent crosslinks. Crosslink formation is very poorly characterized in terms of quantitative rate and yield data. We sought to address this issue by using oligo-arginine ligands to model the close association of DNA and its binding proteins in chromatin. Guanine radicals were prepared in plasmid DNA by single electron oxidation. The product distribution derived from them was assayed by strand break formation after four different post-irradiation incubations. We compared the yields of DNA damage produced in the presence of four ligands in which neither, one, or both of the amino and carboxylate termini were blocked with amides. Free carboxylate groups were unreactive. Significantly higher yields of heat labile sites were observed when the amino terminus was unblocked. The rate of the reaction was characterized by diluting the unblocked amino group with its amide blocked derivative. These observations provide a means to develop quantitative estimates for the yields in which these labile sites are formed in chromatin by exposure to ionizing irradiation.

  14. Unusual spin-trap chemistry for the reaction of hydroxyl radical with the carcinogen N-nitrosodimethylamine

    NASA Astrophysics Data System (ADS)

    Wink, David A.; Desrosiers, Marc F.

    The reaction of the potent carcinogen N-nitrosodimethylamine (NDMA) with hydroxyl radical generated via radiolysis was studied using EPR techniques. Attempts to spin trap NDMA radical intermediates with 3,5-dibromo-4-nitrosobenzene sulfonate (DBNBS) produced only unusual DBNBS radicals. One of these radicals was shown to be generated by both reaction of DBNBS with nitric oxide, and direct oxidation of DBNBS with an inorganic oxidant ( .Br -2). Another DBNBS radical was identified as a sulfite spin adduct resulting from the degradation of DBNBS by a NDMA reactive intermediate. In the absence of DBNBS, hydroxyl radical reaction with NDMA gave the dimethylnitroxide radical. Unexpectedly, addition of DBNBS to a solution containing dimethylnitroxide produced an EPR spectrum nearly identical to that of NDMA solutions with DBNBS added before radiolysis. A proposed mechanism accounting for these observations is presented.

  15. Forming a Two-Ring Polycyclic Aromatic Hydrocarbon without a Benzene Intermediate: the Reaction of Propargyl with Acetylene

    NASA Astrophysics Data System (ADS)

    Osborn, David; Savee, John; Selby, Talitha; Welz, Oliver; Taatjes, Craig

    The reaction of acetylene (HCCH) with a resonance-stabilized free radical is a commonly invoked mechanism for the generation of polycyclic aromatic hydrocarbons (PAH), which are likely precursors of soot particles in combustion. In this work, we examine the sequential addition of acetylene to the propargyl radical (H2CCCH) at temperatures of 800 and 1000 K. Using time-resolved multiplexed photoionization mass spectrometry with tunable ionizing radiation, we identified the isomeric forms of the C5H5 and C7H7 intermediates in this reaction sequence, and confirmed that the final C9H8 product is the two-ring aromatic compound indene. We identified two different resonance-stabilized C5H5 intermediates, with different temperature dependencies. Furthermore, the C7H7 intermediate is the tropyl radical (c-C7H7) , not the benzyl radical (C6H5CH2) , as is usually assumed in combustion environments. These experimental results are in general agreement with the latest electronic structure / master equation results of da Silva et al. This work shows a pathway for PAH formation that bypasses benzene / benzyl intermediates.

  16. Dehydrogenation of benzene on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Gao, W.; Zheng, W. T.; Jiang, Q.

    2008-10-01

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  17. Dehydrogenation of benzene on Pt(111) surface.

    PubMed

    Gao, W; Zheng, W T; Jiang, Q

    2008-10-28

    The dehydrogenation of benzene on Pt(111) surface is studied by ab initio density functional theory. The minimum energy pathways for benzene dehydrogenation are found with the nudge elastic band method including several factors of the associated barriers, reactive energies, intermediates, and transient states. The results show that there are two possible parallel minimum energy pathways on the Pt(111) surface. Moreover, the tilting angle of the H atom in benzene can be taken as an index for the actual barrier of dehydrogenation. In addition, the properties of dehydrogenation radicals on the Pt(111) surface are explored through their adsorption energy, adsorption geometry, and electronic structure on the surface. The vibrational frequencies of the dehydrogenation radicals derived from the calculations are in agreement with literature data.

  18. NIR photocleavage of the Si-C bond in axial Si-phthalocyanines.

    PubMed

    Doane, Tennyson; Cheng, Yu; Sodhi, Nipun; Burda, Clemens

    2014-11-13

    The use of light-triggered photolysis provides a powerful tool for unique syntheses and for applications that require remote operation such as drug delivery or molecular switches. Here, we describe the photochemistry of a recently developed alkylsilicon phthalocyanine Pc 227, which undergoes an exchange of the alkyl ligand for a ligand derived from the solvent when the axial Si-C bond is photolyzed in a solvent with low-energy visible light. In this work with methanol as the solvent, we investigate the formation of the methoxy analogue of the therapeutic drug Pc 4, (termed Pc 233) upon irradiation. Using steady-state spectroscopy and characterization of the photoproducts, the competing pathways between direct ligand exchange on the central silicon atom and delocalization of the radical produced by homolysis on the phthalocyanine ring is observed. The delocalized radical intermediate is quite long-lived. At long times this intermediate decomposes without significant formation of Pc 233. The results of this investigation provide insights into recent work utilizing Pc 227 for drug delivery applications and for future work on the use of phthalocyanines as long-wavelength phototriggers.

  19. Radicals: Reactive Intermediates with Translational Potential.

    PubMed

    Yan, Ming; Lo, Julian C; Edwards, Jacob T; Baran, Phil S

    2016-10-05

    This Perspective illustrates the defining characteristics of free radical chemistry, beginning with its rich and storied history. Studies from our laboratory are discussed along with recent developments emanating from others in this burgeoning area. The practicality and chemoselectivity of radical reactions enable rapid access to molecules of relevance to drug discovery, agrochemistry, material science, and other disciplines. Thus, these reactive intermediates possess inherent translational potential, as they can be widely used to expedite scientific endeavors for the betterment of humankind.

  20. Exploring the chemical kinetics of partially oxidized intermediates by combining experiments, theory, and kinetic modeling.

    PubMed

    Hoyermann, Karlheinz; Mauß, Fabian; Olzmann, Matthias; Welz, Oliver; Zeuch, Thomas

    2017-07-19

    Partially oxidized intermediates play a central role in combustion and atmospheric chemistry. In this perspective, we focus on the chemical kinetics of alkoxy radicals, peroxy radicals, and Criegee intermediates, which are key species in both combustion and atmospheric environments. These reactive intermediates feature a broad spectrum of chemical diversity. Their reactivity is central to our understanding of how volatile organic compounds are degraded in the atmosphere and converted into secondary organic aerosol. Moreover, they sensitively determine ignition timing in internal combustion engines. The intention of this perspective article is to provide the reader with information about the general mechanisms of reactions initiated by addition of atomic and molecular oxygen to alkyl radicals and ozone to alkenes. We will focus on critical branching points in the subsequent reaction mechanisms and discuss them from a consistent point of view. As a first example of our integrated approach, we will show how experiment, theory, and kinetic modeling have been successfully combined in the first infrared detection of Criegee intermediates during the gas phase ozonolysis. As a second example, we will examine the ignition timing of n-heptane/air mixtures at low and intermediate temperatures. Here, we present a reduced, fuel size independent kinetic model of the complex chemistry initiated by peroxy radicals that has been successfully applied to simulate standard n-heptane combustion experiments.

  1. Real-time monitoring of the oxalate decarboxylase reaction and probing hydron exchange in the product, formate, using fourier transform infrared spectroscopy.

    PubMed

    Muthusamy, Mylrajan; Burrell, Matthew R; Thorneley, Roger N F; Bornemann, Stephen

    2006-09-05

    Oxalate decarboxylase converts oxalate to formate and carbon dioxide and uses dioxygen as a cofactor despite the reaction involving no net redox change. We have successfully used Fourier transform infrared spectroscopy to monitor in real time both substrate consumption and product formation for the first time. The assignment of the peaks was confirmed using [(13)C]oxalate as the substrate. The K(m) for oxalate determined using this assay was 3.8-fold lower than that estimated from a stopped assay. The infrared assay was also capable of distinguishing between oxalate decarboxylase and oxalate oxidase activity by the lack of formate being produced by the latter. In D(2)O, the product with oxalate decarboxylase was C-deuterio formate rather than formate, showing that the source of the hydron was solvent as expected. Large solvent deuterium kinetic isotope effects were observed on V(max) (7.1 +/- 0.3), K(m) for oxalate (3.9 +/- 0.9), and k(cat)/K(m) (1.8 +/- 0.4) indicative of a proton transfer event during a rate-limiting step. Semiempirical quantum mechanical calculations on the stability of formate-derived species gave an indication of the stability and nature of a likely enzyme-bound formyl radical catalytic intermediate. The capability of the enzyme to bind formate under conditions in which the enzyme is known to be active was determined by electron paramagnetic resonance. However, no enzyme-catalyzed exchange of the C-hydron of formate was observed using the infrared assay, suggesting that a formyl radical intermediate is not accessible in the reverse reaction. This restricts the formation of potentially harmful radical intermediates to the forward reaction.

  2. Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI.

    PubMed

    Utsumi, Hideo; Hyodo, Fuminori

    2015-01-01

    Redox reactions that generate free radical intermediates are essential to metabolic processes, and their intermediates can produce reactive oxygen species, which may promote diseases related to oxidative stress. The development of an in vivo electron spin resonance (ESR) spectrometer and its imaging enables us noninvasive and direct measurement of in vivo free radical reactions in living organisms. The dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), also called PEDRI or OMRI, is also a new imaging method for observing free radical species in vivo. The spatiotemporal resolution of free radical imaging with DNP-MRI is comparable with that in MRI, and each of the radical species can be distinguished in the spectroscopic images by changing the frequency or magnetic field of ESR irradiation. Several kinds of stable nitroxyl radicals were used as spin probes to detect in vivo redox reactions. The signal decay of nitroxyl probes, which is determined with in vivo DNP-MRI, reflects the redox status under oxidative stress, and the signal decay is suppressed by prior administration of antioxidants. In addition, DNP-MRI can also visualize various intermediate free radicals from the intrinsic redox molecules. This noninvasive method, in vivo DNP-MRI, could become a useful tool for investigating the mechanism of oxidative injuries in animal disease models and the in vivo effects of antioxidant drugs. © 2015 Elsevier Inc. All rights reserved.

  3. Characteristics of Radical Reactions, Spin Rules, and a Suggestion for the Consistent Use of a Dot on Radical Species

    ERIC Educational Resources Information Center

    Wojnarovits, Laszlo

    2011-01-01

    In many chemical reactions, reactive radicals have been shown to be transient intermediates. The free radical character of a chemical species is often, but not always, indicated by adding a superscript dot to the chemical formula. A consistent use of this radical symbol on all species that have radical character is suggested. Free radicals have a…

  4. Thermochemistry and kinetics for 2-butanone-1-yl radical (CH2·C(═O)CH2CH3) reactions with O2.

    PubMed

    Sebbar, N; Bozzelli, J W; Bockhorn, H

    2014-01-09

    Thermochemistry of reactants, intermediates, transition state structures, and products along with kinetics on the association of CH2·C(═O)CH2CH3 (2-butanone-1-yl) with O2 and dissociation of the peroxy adduct isomers are studied. Thermochemical properties are determined using ab initio (G3MP2B3 and G3) composite methods along with density functional theory (B3LYP/6-311g(d,p)). Entropy and heat capacity contributions versus temperature are determined from structures, vibration frequencies, and internal rotor potentials. The CH2·C(═O)CH2CH3 radical + O2 association results in a chemically activated peroxy radical with 27 kcal mol(-1) excess of energy. The chemically activated adduct can react to stabilized peroxy or hydroperoxide alkyl radical adducts, further react to lactones plus hydroxyl radical, or form olefinic ketones and a hydroperoxy radical. Kinetic parameters are determined from the G3 composite methods derived thermochemical parameters, and quantum Rice-Ramsperger-Kassel (QRRK) analysis to calculate k(E) with master equation analysis to evaluate falloff in the chemically activated and dissociation reactions. One new, not previously reported, peroxy chemistry reaction is presented. It has a low barrier path and involves a concerted reaction resulting in olefin formation, H2O elimination, and an alkoxy radical.

  5. Easy access to a cyclic key intermediate for the synthesis of trisporic acids and related compounds.

    PubMed

    González-Delgado, José A; Escobar, Gustavo; Arteaga, Jesús F; Barrero, Alejandro F

    2014-02-03

    The synthesis of a cyclohexane skeleton possessing different oxygenated functional groups at C-3, C-8 and C-9, and a D1,6-double bond has been accomplished in 10 steps with an overall 17% yield. This compound is a key intermediate for access to a wide range of compounds of the bioactive trisporoid family. The synthetic sequence consists of the preparation of a properly functionalized epoxygeraniol derivative, and its subsequent stereoselective cyclization mediated by Ti(III). This last step implies a domino process that starts with a homolytic epoxide opening followed by a radical cyclization and regioselective elimination. This concerted process gives access to the cyclohexane moiety with stereochemical control of five of its six carbon atoms.

  6. Excitation of photosystem I by 760 nm femtosecond laser pulses: transient absorption spectra and intermediates

    NASA Astrophysics Data System (ADS)

    Cherepanov, Dmitry A.; Shelaev, Ivan V.; Gostev, Fedor E.; Mamedov, Mahir D.; Petrova, Anastasia A.; Aybush, Arseniy V.; Shuvalov, Vladimir A.; Semenov, Alexey Yu; Nadtochenko, Victor A.

    2017-09-01

    Excitation of photosystem I (PS I) by a femtosecond 760 nm pump leads to one- and two-photon absorption. The one-photon excitation produces intermediates with transient absorption spectra similar to the spectra of the primary [{{{P}}700}+{{{A}}0}-{{A}}1] and secondary [{{{P}}700}+{{A}}0{{{A}}1}-] ion-radical pairs in the PS I reaction center. The two-photon absorption generates the upper level excited states of chlorophyll (Chl) and carotenoid molecules in the antenna. These excited states are converted into the long-lived intermediates and can be tentatively attributed to the excited and charge-transfer ion-radical states of Chl molecules and to the excited states of carotenoids in the antenna. The transient spectra of intermediates generated by two-photon excitation differ from the transient one-photon spectra of the primary and secondary ion-radical pairs.

  7. Identification and mechanism of formation of potentially genotoxic metabolites of tamoxifen: study by LC-MS/MS.

    PubMed

    Lim, C K; Yuan, Z X; Jones, R M; White, I N; Smith, L L

    1997-06-01

    On-line high-performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI MS) and tandem mass spectrometry (MS/MS) have been applied to the study of tamoxifen metabolism in liver microsomes and to the identification of potentially genotoxic metabolites. The results showed that the hydroxylated derivatives, including 4-hydroxytamoxifen and alpha-hydroxytamoxifen are detoxication metabolites, while arene oxides, their free radical precursors or metabolic intermediates, are the most probable species involved in DNA-adduct formation.

  8. NHC-catalysed benzoin condensation – is it all down to the Breslow intermediate?† †Electronic supplementary information (ESI) available: Characterisation data of products, substrates and catalysts, EPR and NMR spectra and progress curves as well as computational details are found. See DOI: 10.1039/c5sc02186c Click here for additional data file.

    PubMed Central

    Ruser, Stephanie-M.; Phan, Jenny

    2015-01-01

    The Breslow catalytic cycle describing the benzoin condensation promoted by N-heterocyclic carbenes (NHC) as proposed in the late 1950s has since then been tried by generations of physical organic chemists. Emphasis has been laid on proofing the existence of an enaminol like structure (Breslow intermediate) that explains the observed umpolung of an otherwise electrophilic aldehyde. The present study is not focusing on spectroscopic elucidation of a thiazolydene based Breslow intermediate but rather tries to clarify if this key-intermediate is indeed directly linked with the product side of the overall reaction. The here presented EPR-spectroscopic and computational data provide a fundamentally different view on how the benzoin condensation may proceed: a radical pair could be identified as a second key-intermediate that is derived from the Breslow-intermediate via an SET process. These results highlight the close relationship to the Cannizarro reaction and oxidative transformations of aldehydes under NHC catalysis. PMID:29449915

  9. Reassessment of the risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer treated using radical prostatectomy.

    PubMed

    Narita, Shintaro; Mitsuzuka, Koji; Tsuchiya, Norihiko; Koie, Takuya; Kawamura, Sadafumi; Ohyama, Chikara; Tochigi, Tatsuo; Yamaguchi, Takuhiro; Arai, Yoichi; Habuchi, Tomonori

    2015-11-01

    To assess the risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer patients treated using radical prostatectomy. We retrospectively reviewed the medical records of 1268 men with prostate cancer treated using radical prostatectomy without neoadjuvant therapy. The association between various risk factors and biochemical recurrence was then statistically evaluated. The Kaplan-Meier method, log-rank tests and Cox proportional hazards models were used for statistical analysis. In the intermediate-risk group, 96 patients (14.5%) experienced biochemical recurrence during a median follow up of 41 months. In the intermediate-risk group, preoperative prostate-specific antigen level, prostate volume and prostate-specific antigen density were significant preoperative risk factors for biochemical recurrence, whereas other factors including age, primary Gleason 4, clinical stage >T2 and percentage of positive biopsies were not. In multivariate analysis, higher preoperative prostate-specific antigen level and density, and a smaller prostate volume were independent risk factors for biochemical recurrence in the intermediate-risk group. Biochemical recurrence-free survival of patients in the intermediate-risk group with a higher prostate-specific antigen level and density (≥15 ng/mL, ≥0.6 ng/mL/cm(3), respectively), and lower prostate volume (≤10 mL) was comparable with that of high-risk group individuals (P = 0.632, 0.494 and 0.961, respectively). Preoperative prostate-specific antigen, prostate volume and prostate-specific antigen density are significant risk factors for biochemical recurrence in D'Amico intermediate-risk prostate cancer patients treated using radical prostatectomy. Using these variables, a subset of the intermediate-risk patients can be identified as having equivalent outcomes to high-risk patients. © 2015 The Japanese Urological Association.

  10. The rotational spectrum of the water-hydroperoxy radical (H2O-HO2) complex.

    PubMed

    Suma, Kohsuke; Sumiyoshi, Yoshihiro; Endo, Yasuki

    2006-03-03

    Peroxy radicals and their derivatives are elusive but important intermediates in a wide range of oxidation processes. We observed pure rotational transitions of the water-hydroperoxy radical complex, H2O-HO2, in a supersonic jet by means of a Fourier transform microwave spectrometer combined with a double-resonance technique. The observed rotational transitions were found to split into two components because of the internal rotation of the water moiety. The molecular constants for the two components were determined precisely, supporting a molecular structure in which HO2 acts as a proton donor to form a nearly planar five-membered ring, and one hydrogen atom of water sticks out from the ring plane. The structure and the spectral splittings due to internal rotation provide information on the nature of the bonding interaction between open- and closed-shell species, and they also provide accurate transition frequencies that are applicable to remote sensing of this complex, which may elucidate its potential roles in atmospheric and combustion chemistry.

  11. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.

    PubMed

    Asatryan, Rubik; Bozzelli, Joseph W

    2008-04-07

    Dimethyl sulfoxide (DMSO) is the major sulfur-containing constituent of the Marine Boundary Layer. It is a significant source of H2SO4 aerosol/particles and methane sulfonic acid via atmospheric oxidation processes, where the mechanism is not established. In this study, several new, low-temperature pathways are revealed in the oxidation of DMSO using CBS-QB3 and G3MP2 multilevel and B3LYP hybrid density functional quantum chemical methods. Unlike analogous hydrocarbon peroxy radicals the chemically activated DMSO peroxy radical, [CH3S(=O)CH2OO*]*, predominantly undergoes simple dissociation to a methylsulfinyl radical CH3S*(=O) and a Criegee intermediate, CH2OO, with the barrier to dissociation 11.3 kcal mol(-1) below the energy of the CH3S(=O)CH2* + O2 reactants. The well depth for addition of O2 to the CH3S(=O)CH2 precursor radical is 29.6 kcal mol(-1) at the CBS-QB3 level of theory. We believe that this reaction may serve an important role in atmospheric photochemical and irradiated biological (oxygen-rich) media where formation of initial radicals is facilitated even at lower temperatures. The Criegee intermediate (carbonyl oxide, peroxymethylene) and sulfinyl radical can further decompose, resulting in additional chain branching. A second reaction channel important for oxidation processes includes formation (via intramolecular H atom transfer) and further decomposition of hydroperoxide methylsulfoxide radical, *CH2S(=O)CH2OOH over a low barrier of activation. The initial H-transfer reaction is similar and common in analogous hydrocarbon radical + O2 reactions; but the subsequent very low (3-6 kcal mol(-1)) barrier (14 kcal mol(-1) below the initial reagents) to beta-scission products is not common in HC systems. The low energy reaction of the hydroperoxide radical is a beta-scission elimination of *CH2S(=O)CH2OOH into the CH2=S=O + CH2O + *OH product set. This beta-scission barrier is low, because of the delocalization of the *CH2 radical center through the -S(=O) group, to the -CH2OOH fragment in the transition state structure. The hydroperoxide methylsulfoxide radical can also decompose via a second reaction channel of intramolecular OH migration, yielding formaldehyde and a sulfur-centered hydroxymethylsulfinyl radical HOCH2S*(=O). The barrier of activation relative to initial reagents is 4.2 kcal mol(-1). Heats of formation for DMSO, DMSO carbon-centered radical and Criegee intermediate are evaluated at 298 K as -35.97 +/- 0.05, 13.0 +/- 0.2 and 25.3 +/- 0.7 kcal mol(-1) respectively using isodesmic reaction analysis. The [CH3S*(=O) + CH2OO] product set is shown to form a van der Waals complex that results in O-atom transfer reaction and the formation of new products CH3SO2* radical and CH2O. Proper orientation of the Criegee intermediate and methylsulfinyl radical, as a pre-stabilized pre-reaction complex, assist the process. The DMSO radical reaction is also compared to that of acetonyl radical.

  12. Spectroscopic characterization of the iron-oxo intermediate in cytochrome P450.

    PubMed

    Jung, Christiane; Schünemann, Volker; Lendzian, Friedhelm; Trautwein, Alfred X; Contzen, Jörg; Galander, Marcus; Böttger, Lars H; Richter, Matthias; Barra, Anne-Laure

    2005-10-01

    From analogy to chloroperoxidase from Caldariomyces fumago, it is believed that the electronic structure of the intermediate iron-oxo species in the catalytic cycle of cytochrome P450 corresponds to an iron(IV) porphyrin-pi-cation radical (compound I). However, our recent studies on P450cam revealed that after 8 ms a tyrosine radical and iron(IV) were formed in the reaction of ferric P450 with external oxidants in the shunt pathway. The present study on the heme domain of P450BM3 (P450BMP) shows a similar result. In addition to a tyrosine radical, a contribution from a tryptophan radical was found in the electron paramagnetic resonance (EPR) spectra of P450BMP. Here we present comparative multi-frequency EPR (9.6, 94 and 285 GHz) and Mössbauer spectroscopic studies on freeze-quenched intermediates produced using peroxy acetic acid as oxidant for both P450 cytochromes. After 8 ms in both systems, amino acid radicals occurred instead of the proposed iron(IV) porphyrin-pi-cation radical, which may be transiently formed on a much faster time scale. These findings are discussed with respect to other heme thiolate proteins. Our studies demonstrate that intramolecular electron transfer from aromatic amino acids is a common feature in these enzymes. The electron transfer quenches the presumably transiently formed porphyrin-pi-cation radical, which makes it extremely difficult to trap compound I.

  13. The [C{sub 6}H{sub 10}]{sup {sm{underscore}bullet}+} hypersurface: The parent radical cation Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M.; Schaefer, H.F. III

    1999-07-21

    Various possible reaction pathways between ethene and butadiene radical cation (cis- and trans-), have been investigated at different levels of theory up to UCCSD(T)/DZP/UMP2(fc)/DZP and with density functional theory at B3LYP/DZP. A stepwise addition involving open chain intermediates and leading to the Diels-Alder product, the cyclohexene radical cation, was found to have a total activation barrier {Delta}G{sup 298{ne}} = 6.3 kcal mol{sup {minus}1} and a change in free Gibbs energy, {Delta}G{sup 298}, of {minus}33.5 kcal mol{sup {minus}1}. On the E{degree} potential energy surface, all transition states are lower in energy than separated ethene and butadiene, the exothermicity {Delta}E = -45.6more » kcal mol{sup {minus}1}. A more direct path could be characterized as stepwise with one intermediate only at the SCF level but not at electron-correlated levels and hence might actually be a concerted strongly asynchronous addition with a very small or no activation barrier (UCCSD(T)/DZP/UHF/6-31G* gives a {Delta}G{sup 298{ne}} of 0.8 kcal mol{sup {minus}1}). The critical step for another alternative, the cyclobutanation-vinylcyclobutane/cyclohexene rearrangement, is a 1,3-alkyl shift which involves a barrier ({Delta}G{sup 298{ne}}) only 1.7 kcal mol{sup {minus}1} higher than that of stop use addition for both cis-, and trans-butadiene radical cation. However, from the (ethene and trans-butadiene) reactions, ring expansion of the vinylcyclobutane radical cation intermediate, to a methylene cyclopentane radical cation, requires an activation only 1.3 kcal mol{sup {minus}1} larger than for (trans-butadiene radical). While cis/trans isomerization of free butadiene radical cation requires a high activation (24.9 kcal mol{sup {minus}1}), a reaction sequence involving addition of ethene (to stepwise give an open chain intermediate and vinyl cyclobutane radical cation) has a barrier of only 3.5 kcal mol{sup {minus}1} ({Delta}G{sup 298{ne}}). This sequence also makes ethene and butadiene radical cations to exchange terminal methylene groups.« less

  14. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    PubMed

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  15. Controlling Stereoselectivity and Chemoselectivity of Cyclopropyl Ketyl Radical Anions with Visible Light Photocatalysis

    NASA Astrophysics Data System (ADS)

    Amador, Adrian Gabriel

    A defining characteristic of research in the Yoon laboratory is a focus on the formation and utilization of high-energy reactive intermediates to accomplish difficult transformations. Recent efforts have been aimed at controlling the reactivity of open-shell radical intermediates; both in terms of chemoselectivity and stereoselectivity. Transition metal photocatalysis has proven to be a particularly successful strategy for accomplishing a wide variety of transformations ranging from net redox neutral as well as net reductive and oxidative transformations. This thesis describes one such approach where the combination of a photocatalyst and a Lewis acid can be used to achieve highly selective and high yielding [3 + 2] cycloadditions between aryl cyclopropyl ketones and a wide range of unsaturated (e.g. olefin and imine) coupling partners. Key to the success of these studies was understanding and carefully optimizing both photocatalyst and Lewis acid to achieve the desired reactivity. These studies have resulted in the development of a highly enantioselective [3 + 2] cycloaddition between cyclopropyl ketones and olefins for the synthesis of cyclopentanes as well as the development of a more general redox-auxiliary approach for the [3 + 2] cycloaddition of cyclopropyl ketones and simple olefins and imine derivatives.

  16. UV + V UV double-resonance studies of autoionizing Rydberg states of the hydroxyl radical

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Amy M.; Liu, Fang; Lester, Marsha I., E-mail: milester@sas.upenn.edu

    2016-05-14

    The hydroxyl radical (OH) is a key oxidant in atmospheric and combustion chemistry. Recently, a sensitive and state-selective ionization method has been developed for detection of the OH radical that utilizes UV excitation on the A{sup 2}Σ{sup +}–X{sup 2}Π transition followed by fixed 118 nm vacuum ultraviolet (VUV) radiation to access autoionizing Rydberg states [J. M. Beames et al., J. Chem. Phys. 134, 241102 (2011)]. The present study uses tunable VUV radiation generated by four-wave mixing to examine the origin of the enhanced ionization efficiency observed for OH radicals prepared in specific A{sup 2}Σ{sup +} intermediate levels. The enhancement ismore » shown to arise from resonant excitation to distinct rotational and fine structure levels of two newly identified {sup 2}Π Rydberg states with an A{sup 3}Π cationic core and a 3d electron followed by ionization. Spectroscopic constants are derived and effects due to uncoupling of the Rydberg electron are revealed for the OH {sup 2}Π Rydberg states. The linewidths indicate a Rydberg state lifetime due to autoionization on the order of a picosecond.« less

  17. A paradigm shift for radical SAM reactions: The organometallic intermediate Ω is central to catalysis.

    PubMed

    Byer, Amanda S; Yang, Hao; McDaniel, Elizabeth C; Kathiresan, Venkatesan; Impano, Stella; Pagnier, Adrien; Watts, Hope; Denler, Carly; Vagstad, Anna; Piel, Jörn; Duschene, Kaitlin S; Shepard, Eric M; Shields, Thomas P; Scott, Lincoln G; Lilla, Edward A; Yokoyama, Kenichi; Broderick, William E; Hoffman, Brian M; Broderick, Joan B

    2018-06-28

    Radical S-adenosyl-L-methionine (SAM) en-zymes comprise a vast superfamily catalyzing diverse reactions essential to all life through ho-molytic SAM cleavage to liberate the highly-reactive 5-deoxyadenosyl radical (5-dAdo•). Our recent observation of a catalytically compe-tent organometallic intermediate Ω that forms dur-ing reaction of the radical SAM (RS) enzyme py-ruvate formate-lyase activating-enzyme (PFL-AE) was therefore quite surprising, and led to the question of its broad relevance in the superfamily. We now show that Ω in PFL-AE forms as an in-termediate under a variety of mixing order condi-tions, suggesting it is central to catalysis in this enzyme. We further demonstrate that Ω forms in a suite of RS enzymes chosen to span the totality of superfamily reaction types, implicating Ω as essential in catalysis across the RS superfamily. Finally, EPR and electron nuclear double reso-nance spectroscopy establish that Ω involves an Fe-C5 bond between 5-dAdo• and the [4Fe-4S] cluster. An analogous organometallic bond is found in the well-known adenosylcobalamin (co-enzyme B12) cofactor used to initiate radical reac-tions via a 5'-dAdo• intermediate. Generation of a 5'-dAdo• intermediate via homolytic metal-carbon bond cleavage thus appears to be similar for Ω and coenzyme B12. However coenzyme B12 is involved in enzymes catalyzing of only a small number (~12) of distinct reactions, while the RS superfamily has more than 100,000 distinct se-quences and over 80 reaction types character-ized to date. The appearance of Ω across the RS superfamily therefore dramatically enlarges the sphere of bio-organometallic chemistry in Nature.

  18. Thermochemical and kinetic analyses on oxidation of isobutenyl radical and 2-hydroperoxymethyl-2-propenyl radical.

    PubMed

    Zheng, X L; Sun, H Y; Law, C K

    2005-10-13

    In recognition of the importance of the isobutene oxidation reaction in the preignition chemistry associated with engine knock, the thermochemistry, chemical reaction pathways, and reaction kinetics of the isobutenyl radical oxidation at low to intermediate temperature range were computationally studied, focusing on both the first and the second O2 addition to the isobutenyl radical. The geometries of reactants, important intermediates, transition states, and products in the isobutenyl radical oxidation system were optimized at the B3LYP/6-311G(d,p) and MP2(full)/6-31G(d) levels, and the thermochemical properties were determined on the basis of ab initio, density functional theory, and statistical mechanics. Enthalpies of formation for several important intermediates were calculated using isodesmic reactions at the DFT and the CBS-QB3 levels. The kinetic analysis of the first O2 addition to the isobutenyl radical was performed using enthalpies at the CBS-QB3 and G3(MP2) levels. The reaction forms a chemically activated isobutenyl peroxy adduct which can be stabilized, dissociate back to reactants, cyclize to cyclic peroxide-alkyl radicals, and isomerize to the 2-hydroperoxymethyl-2-propenyl radical that further undergoes another O2 addition. The reaction channels for isomerization and cyclization and further dissociation on this second O2 addition were analyzed using enthalpies at the DFT level with energy corrections based on similar reaction channels for the first O2 addition. The high-pressure limit rate constants for each reaction channel were determined as functions of temperature by the canonical transition state theory for further kinetic model development.

  19. The human Krebs cycle 2-oxoglutarate dehydrogenase complex creates an additional source of superoxide/hydrogen peroxide from 2-oxoadipate as alternative substrate.

    PubMed

    Nemeria, Natalia S; Gerfen, Gary; Guevara, Elena; Nareddy, Pradeep Reddy; Szostak, Michal; Jordan, Frank

    2017-07-01

    Recently, we reported that the human 2-oxoglutarate dehydrogenase (hE1o) component of the 2-oxoglutarate dehydrogenase complex (OGDHc) could produce the reactive oxygen species superoxide and hydrogen peroxide (detected by chemical means) from its substrate 2-oxoglutarate (OG), most likely concurrently with one-electron oxidation by dioxygen of the thiamin diphosphate (ThDP)-derived enamine intermediate to a C2α-centered radical (detected by Electron Paramagnetic Resonance) [Nemeria et al., 2014 [17]; Ambrus et al. 2015 [18

  20. One-Electron Reduction of Penicillins in Relation to the Oxidative Stress Phenomenon

    PubMed Central

    Szabó, László; Tóth, Tünde; Takács, Erzsébet; Wojnárovits, László

    2015-01-01

    Certain bactericidal antibiotics target mitochondrial components and, due to the leakage of electrons from the electron transport chain, one-electron reduction might occur that can lead to intermediates passing the electron to suitable acceptors. This study aimed at investigating the one-electron reduction mechanism of selected penicillin derivatives using pulse radiolysis techniques. Penicillins can accommodate the electron on each of their carbonyl carbon. Ketyl radicals are thus produced, which are reducing agents with possibility to interact with suitable biomolecules. A detailed mechanism of the reduction is reported. PMID:26690427

  1. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products

    DOE PAGES

    Green, Amy M.; Barber, Victoria P.; Fang, Yi; ...

    2017-11-06

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3CHOO. IR excitation of selectively deuterated syn-CD 3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD 3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, whichmore » is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ~10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. Lastly, at 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH 3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ~50.« less

  2. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, Amy M.; Barber, Victoria P.; Fang, Yi

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3CHOO. IR excitation of selectively deuterated syn-CD 3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD 3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, whichmore » is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ~10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. Lastly, at 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH 3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ~50.« less

  3. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.

    PubMed

    Green, Amy M; Barber, Victoria P; Fang, Yi; Klippenstein, Stephen J; Lester, Marsha I

    2017-11-21

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH 3 CHOO. IR excitation of selectively deuterated syn -CD 3 CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn -CD 3 CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn -CH 3 CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50.

  4. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products

    PubMed Central

    Green, Amy M.; Barber, Victoria P.; Fang, Yi; Klippenstein, Stephen J.; Lester, Marsha I.

    2017-01-01

    Ozonolysis of alkenes, an important nonphotolytic source of hydroxyl (OH) radicals in the atmosphere, proceeds through unimolecular decay of Criegee intermediates. Here, we report a large kinetic isotope effect associated with the rate-limiting hydrogen-transfer step that releases OH radicals for a prototypical Criegee intermediate, CH3CHOO. IR excitation of selectively deuterated syn-CD3CHOO is shown to result in deuterium atom transfer and release OD radical products. Vibrational activation of syn-CD3CHOO is coupled with direct time-resolved detection of OD products to measure a 10-fold slower rate of unimolecular decay upon deuteration in the vicinity of the transition state barrier, which is confirmed by microcanonical statistical theory that incorporates quantum mechanical tunneling. The corresponding kinetic isotope effect of ∼10 is attributed primarily to the decreased probability of D-atom vs. H-atom transfer arising from tunneling. Master equation modeling is utilized to compute the thermal unimolecular decay rates for selectively and fully deuterated syn methyl-substituted Criegee intermediates under atmospheric conditions. At 298 K (1 atm), tunneling is predicted to enhance the thermal decay rate of syn-CH3CHOO compared with the deuterated species, giving rise to a significant kinetic isotope effect of ∼50. PMID:29109292

  5. Thiyl radicals and induction of protein degradation

    PubMed Central

    Schöneich, Christian

    2016-01-01

    Thiyl radicals are important intermediates in the redox biology and chemistry of thiols. These radicals can react via hydrogen transfer with various C-H bonds in peptides and proteins, leading to the generation of carbon-centered radicals, and, potentially, to irreversible protein damage. This review summarizes quantitative information on reaction kinetics and product formation, and discusses the significance of these reactions for protein degradation induced by thiyl radical formation. PMID:26212409

  6. Noncanonical Radical SAM Enzyme Chemistry Learned from Diphthamide Biosynthesis.

    PubMed

    Dong, Min; Zhang, Yugang; Lin, Hening

    2018-05-10

    Radical S-adenosylmethionine (SAM) enzymes are a superfamily of enzymes that use SAM and reduced [4Fe-4S] cluster to generate a 5'-deoxyadenosyl radical to catalyze numerous challenging reactions. We have reported a type of noncanonical radical SAM enzymes in the diphthamide biosynthesis pathway. These enzymes also use SAM and reduced [4Fe-4S] clusters, but generate a 3-amino-3-carboxypropyl (ACP) radical to modify the substrate protein, translation elongation factor 2. The regioselective cleavage of a different C-S bond of the sulfonium center of SAM in these enzymes comparing to canonical radical SAM enzymes is intriguing. Here, we highlight some recent findings in the mechanism of these types of enzymes, showing that the diphthamide biosynthetic radial SAM enzymes bound SAM with a distinct geometry. In this way, the unique iron of the [4Fe-4S] cluster in the enzyme can only attack the carbon on the ACP group to form an organometallic intermediate. The homolysis of the organometallic intermediate releases the ACP radical and generates the EF2 radial.

  7. Photodissociation dynamics and spectroscopy of free radical combustion intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, David Lewis

    1996-12-01

    The photodissociation spectroscopy and dynamics of free radicals is studied by the technique of fast beam photofragment translational spectroscopy. Photodetachment of internally cold, mass-selected negative ions produces a clean source of radicals, which are subsequently dissociated and detected. The photofragment yield as a function of photon energy is obtained, mapping out the dissociative and predissociative electronic states of the radical. In addition, the photodissociation dynamics, product branching ratios, and bond energies are probed at fixed photon energies by measuring the translational energy, P(E T), and angular distribution of the recoiling fragments using a time- and position-sensitive detector. Ab initio calculationsmore » are combined with dynamical and statistical models to interpret the observed data. The photodissociation of three prototypical hydrocarbon combustion intermediates forms the core of this work.« less

  8. A substrate radical intermediate in the reaction between ribonucleotide reductase from Escherichia coli and 2'-azido-2'-deoxynucleoside diphosphates.

    PubMed

    Sjöberg, B M; Gräslund, A; Eckstein, F

    1983-07-10

    The B2 subunit of ribonucleotide reductase from Escherichia coli contains a tyrosine radical which is essential for enzyme activity. In the reaction between ribonucleotide reductase and the substrate analogue 2'-azido-2'-deoxycytidine 5'-diphosphate a new transient radical is formed. The EPR characteristics of this new radical species are consistent with a localization of the unpaired electron at the sugar moiety of the nucleotide. The radical shows hyperfine couplings to a hydrogen and a nitrogen nucleus, the latter probably being part of the azide substituent. The formation of the nucleotide radical in this suicidal reaction is concomitant with the decay of the tyrosine radical of the B2 subunit. Kinetic data argue for a first (pseudosecond) order decay of the B2 radical via generation of the nucleotide radical followed by a slower first order decay of the nucleotide radical. End products in the reaction are cytosine and radical-free protein B2. In the reaction between bacteriophage T4 ribonucleotide reductase and 2'-azido-2'-deoxycytidine 5'-diphosphate an identical nucleotide radical is formed. The present results are consistent with the hypothesis that the appearance and structure of the transient radical mimic stages in the normal reaction pathway of ribonucleotide reductase, postulated to proceed via 3'-hydrogen abstraction and cation radical formation of the substrate nucleotide (Stubbe, J., and Ackles, D. (1980) J. Biol. Chem. 255, 8027-8030). The nucleotide radical described here might be equivalent to such a cation radical intermediate.

  9. The radical mechanism of biological methane synthesis by methyl-coenzyme M reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wongnate, T.; Sliwa, D.; Ginovska, B.

    2016-05-19

    Methyl-coenzyme M reductase (MCR), the rate-limiting enzyme in methanogenesis and anaerobic methane oxidation, is responsible for the production of over one billion tons of methane per year. The mechanism of methane synthesis is unknown, with the two leading proposals involving either a methyl-nickel(III) (Mechanism I) or methyl radical/Ni(II)-thiolate (Mechanism II) intermediate(s). When the reaction between the active Ni(I) enzyme with substrates was studied by transient kinetic, spectroscopic and computational methods, formation of an EPR-silent Ni(II)-thiolate intermediate was positively identified by magnetic circular dichroism spectroscopy. There was no evidence for an EPR-active methyl-Ni(III) species. Temperature-dependent transient kinetic studies revealed that themore » activation energy for the initial catalytic step closely matched the value computed by density functional theory for Mechanism II. Thus, our results demonstrate that biological methane synthesis occurs by generation of a methyl radical.« less

  10. Stabilization of Two Radicals with One Metal: A Stepwise Coupling Model for Copper-Catalyzed Radical–Radical Cross-Coupling

    PubMed Central

    Qi, Xiaotian; Zhu, Lei; Bai, Ruopeng; Lan, Yu

    2017-01-01

    Transition metal-catalyzed radical–radical cross-coupling reactions provide innovative methods for C–C and C–heteroatom bond construction. A theoretical study was performed to reveal the mechanism and selectivity of the copper-catalyzed C–N radical–radical cross-coupling reaction. The concerted coupling pathway, in which a C–N bond is formed through the direct nucleophilic addition of a carbon radical to the nitrogen atom of the Cu(II)–N species, is demonstrated to be kinetically unfavorable. The stepwise coupling pathway, which involves the combination of a carbon radical with a Cu(II)–N species before C–N bond formation, is shown to be probable. Both the Mulliken atomic spin density distribution and frontier molecular orbital analysis on the Cu(II)–N intermediate show that the Cu site is more reactive than that of N; thus, the carbon radical preferentially react with the metal center. The chemoselectivity of the cross-coupling is also explained by the differences in electron compatibility of the carbon radical, the nitrogen radical and the Cu(II)–N intermediate. The higher activation free energy for N–N radical–radical homo-coupling is attributed to the mismatch of Cu(II)–N species with the nitrogen radical because the electrophilicity for both is strong. PMID:28272407

  11. COLBALT-MEDIATED ACTIVATION OF PEROXYMONOSULFATE AND SULFATE RADICAL ATTACK ON PHENOLIC COMPOUNDS, IMPLICATIONS OF CHLORIDE IONS

    EPA Science Inventory

    This study reports on the sulfate radical pathway of room temperature degradation of two phenolic compounds in water. The radicals were produced by the cobalt-mediated decomposition of peroxymonosulfate (Oxone) in an aqueous homogeneous system. The major intermediates formed from...

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barata-Vallejo, Sebastian; Ferreri, Carla; Zhang, Tao

    Important biological consequences are related to the reaction of HO radicals with methionine (Met). Several fundamental aspects remain to be defined when Met is an amino acid residue incorporated in the interior of peptides and proteins. The present study focuses on Gly-Met-Gly, the simplest peptide where Met is not a terminal residue. The reactions of HO with Gly-Met-Gly and its N-acetyl derivative were studied by pulse radiolysis technique. The transient absorption spectra were resolved into contributions from specific components of radical intermediates. Moreover, a detailed product analysis is provided for the first time for Met-containing peptides in radiolytic studies tomore » support the mechanistic proposal. By parallel radiolytical and electrochemical reactions and consequent product identification, the formation of sulfoxide attributed to the direct HO radical attack on the sulfide functionality of the Met residue could be excluded, with the in situ generated hydrogen peroxide responsible for this oxidation. LC–MS and high resolution MS/MS were powerful analytical tools to envisage the structures of five products, thus allowing to complete the mechanistic picture of the overall Met-containing peptide reactivity.« less

  13. Exploring Chemical Routes Relevant to the Toxicity of Paracetamol and Its meta-Analogue at a Molecular Level.

    PubMed

    Castañeda-Arriaga, Romina; Galano, Annia

    2017-06-19

    Several chemical routes related to the toxicity of paracetamol (APAP, also known as acetaminophen), its analogue N-acetyl-m-aminophenol (AMAP), and their deacetylated derivatives, were investigated using the density functional theory. It was found that AMAP is more resilient to chemical oxidation than APAP. The chemical degradation of AMAP into radical intermediates is predicted to be significant only when it is induced by strong oxidants. This might explain the apparent contradictions among experimental evidence regarding AMAP toxicity. All of the investigated species are incapable of oxidizing DNA, but they can damage lipids by H atom transfer (HAT) from the bis-allylic site, with the phenoxyl radical of AMAP being the most threatening to the lipids' chemical integrity. Regarding protein damage, Cys residues were identified as the most likely targets. The damage in this case may involve two different routes: (i) HAT from the thiol site by phenoxyl radicals and (ii) protein arylation by the quinone imine (QI) derivatives. Both are not only thermochemically viable, but also are very fast reactions. According to the mechanism identified here as the most likely one for protein arylation, a rather large concentration of QI would be necessary for this damage to be significant. This might explain why APAP is nontoxic in therapeutic doses, while overdoses can result in hepatic toxicity. In addition, the QI derived from both APAP and AMAP were found to be capable of inflicting this kind of damage. In addition, it is proposed that they might increase • OH production via the Fenton reaction, which would contribute to their toxicity.

  14. Mechanisms of strand break formation in DNA due to the direct effect of ionizing radiation: the dependency of free base release on the length of alternating CG oligodeoxynucleotides.

    PubMed

    Sharma, Kiran K; Razskazovskiy, Yuriy; Purkayastha, Shubhadeep; Bernhard, William A

    2009-06-11

    The question of how NA base sequence influences the yield of DNA strand breaks produced by the direct effect of ionizing radiation was investigated in a series of oligodeoxynucleotides of the form (d(CG)(n))(2) and (d(GC)(n))(2). The yields of free base release from X-irradiated DNA films containing 2.5 waters/nucleotide were measured by HPLC as a function of oligomer length. For (d(CG)(n))(2), the ratio of the Gua yield to Cyt yield, R, was relatively constant at 2.4-2.5 for n = 2-4 and it decreased to 1.2 as n increased from 5 to 10. When Gua was moved to the 5' end, for example going from d(CG)(5) to d(GC)(5), R dropped from 1.9 +/- 0.1 to 1.1 +/- 0.1. These effects are poorly described if the chemistry at the oligomer ends is assumed to be independent of the remainder of the oligomer. A mathematical model incorporating charge transfer through the base stack was derived to explain these effects. In addition, EPR was used to measure the yield of trapped-deoxyribose radicals at 4 K following X-irradiation at 4 K. The yield of free base release was substantially greater, by 50-100 nmol/J, than the yield of trapped-deoxyribose radicals. Therefore, a large fraction of free base release stems from a nonradical intermediate. For this intermediate, a deoxyribose carbocation formed by two one-electron oxidations is proposed. This reaction pathway requires that the hole (electron loss site) transfers through the base stack and, upon encountering a deoxyribose hole, oxidizes that site to form a deoxyribose carbocation. This reaction mechanism provides a consistent way of explaining both the absence of trapped radical intermediates and the unusual dependence of free base release on oligomer length.

  15. Chemical instability of graphene oxide following exposure to highly reactive radicals in advanced oxidation processes.

    PubMed

    Wang, Zhaohui; Sun, Linyan; Lou, Xiaoyi; Yang, Fei; Feng, Min; Liu, Jianshe

    2017-12-01

    The rapidly increasing and widespread use of graphene oxide (GO) as catalyst supports, requires further understanding of its chemical stability in advanced oxidation processes (AOPs). In this study, UV/H 2 O 2 and UV/persulfate (UV/PS) processes were selected to test the chemical instability of GO in terms of their performance in producing highly reactive hydroxyl radicals (OH) and sulfate radicals (SO 4 - ), respectively. The degradation intermediates were characterized using UV-visible absorption spectra (UV-vis), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Raman spectroscopy, and matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS). Experimental data indicate that UV/PS process was more effective in enhancing GO degradation than the UV/H 2 O 2 system. The overall oxygen-containing functionalities (e.g. CO, CO and OCO groups) dramatically declined. After radical attack, sheet-like GO was destructed into lots of flakes and some low-molecular-weight molecules were detected. The results suggest GO is most vulnerable against SO 4 - radical attack, which deserves special attention while GO acts as a catalyst support or even as a catalyst itself. Therefore, stability of GO and its derivatives should be carefully assessed before they are applied to SO 4 - -based AOPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Quantum Chemical Molecular Dynamics Simulations of 1,3-Dichloropropene Combustion.

    PubMed

    Ahubelem, Nwakamma; Shah, Kalpit; Moghtaderi, Behdad; Page, Alister J

    2015-09-03

    Oxidative decomposition of 1,3-dichloropropene was investigated using quantum chemical molecular dynamics (QM/MD) at 1500 and 3000 K. Thermal oxidation of 1,3-dichloropropene was initiated by (1) abstraction of allylic H/Cl by O2 and (2) intra-annular C-Cl bond scission and elimination of allylic Cl. A kinetic analysis shows that (2) is the more dominant initiation pathway, in agreement with QM/MD results. These QM/MD simulations reveal new routes to the formation of major products (H2O, CO, HCl, CO2), which are propagated primarily by the chloroperoxy (ClO2), OH, and 1,3-dichloropropene derived radicals. In particular, intra-annular C-C/C-H bond dissociation reactions of intermediate aldehydes/ketones are shown to play a dominant role in the formation of CO and CO2. Our simulations demonstrate that both combustion temperature and radical concentration can influence the product yield, however not the combustion mechanism.

  17. Multicomponent kinetic analysis and theoretical studies on the phenolic intermediates in the oxidation of eugenol and isoeugenol catalyzed by laccase.

    PubMed

    Qi, Yan-Bing; Wang, Xiao-Lei; Shi, Ting; Liu, Shuchang; Xu, Zhen-Hao; Li, Xiqing; Shi, Xuling; Xu, Ping; Zhao, Yi-Lei

    2015-11-28

    Laccase catalyzes the oxidation of natural phenols and thereby is believed to initialize reactions in lignification and delignification. Numerous phenolic mediators have also been applied in laccase-mediator systems. However, reaction details after the primary O-H rupture of phenols remain obscure. In this work two types of isomeric phenols, EUG (eugenol) and ISO (trans-/cis-isoeugenol), were used as chemical probes to explore the enzymatic reaction pathways, with the combined methods of time-resolved UV-Vis absorption spectra, MCR-ALS, HPLC-MS, and quantum mechanical (QM) calculations. It has been found that the EUG-consuming rate is linear to its concentration, while the ISO not. Besides, an o-methoxy quinone methide intermediate, (E/Z)-4-allylidene-2-methoxycyclohexa-2,5-dienone, was evidenced in the case of EUG with the UV-Vis measurement, mass spectra and TD-DFT calculations; in contrast, an ISO-generating phenoxyl radical, a (E/Z)-2-methoxy-4-(prop-1-en-1-yl) phenoxyl radical, was identified in the case of ISO. Furthermore, QM calculations indicated that the EUG-generating phenoxyl radical (an O-centered radical) can easily transform into an allylic radical (a C-centered radical) by hydrogen atom transfer (HAT) with a calculated activation enthalpy of 5.3 kcal mol(-1) and then be fast oxidized to the observed eugenol quinone methide, rather than an O-radical alkene addition with barriers above 12.8 kcal mol(-1). In contrast, the ISO-generating phenoxyl radical directly undergoes a radical coupling (RC) process, with a barrier of 4.8 kcal mol(-1), while the HAT isomerization between O- and C-centered radicals has a higher reaction barrier of 8.0 kcal mol(-1). The electronic conjugation of the benzyl-type radical and the aromatic allylic radical leads to differentiation of the two pathways. These results imply that competitive reaction pathways exist for the nascent reactive intermediates generated in the laccase-catalyzed oxidation of natural phenols, which is important for understanding the lignin polymerization and may shed some light on the development of efficient laccase-mediator systems.

  18. Tamoxifen metabolism in rat liver microsomes: identification of a dimeric metabolite derived from free radical intermediates by liquid chromatography/mass spectrometry.

    PubMed

    Jones, R M; Yuan, Z X; Lim, C K

    1999-01-01

    Tamoxifen has been shown to be a potent liver carcinogen in rats, and generates covalent DNA adducts. On-line high performance liquid chromatography/electrospray ionisation mass spectrometry (HPLC/ESI-MS) has been used to further study the metabolites of tamoxifen formed by rat liver microsomes in the presence of NADPH with a view to identifying potential reactive metabolites which may be responsible for the formation of DNA adducts, and liver carcinogenesis. A metabolite has been detected with a protonated molecule at m/z 773. The mass of this compound is consistent with a dimer of hydroxylated tamoxifen (m/z 388). Analysis of 4-hydroxytamoxifen incubated with a rat liver microsomal preparation showed the formation of a similar metabolite with an apparent MH+ ion at m/z 773, believed to be a dimer of 4-hydroxytamoxifen formed by a free radical reaction. The retention time for this metabolite from 4-hydroxytamoxifen is identical to that of the tamoxifen metabolite, suggesting that these two compounds are the same. The levels of the dimer were higher when 4-hydroxytamoxifen was used as substrate and, in addition, two isomers were detected. It is proposed that tamoxifen was first converted to arene oxides which react with DNA or to 4-hydroxytamoxifen, either directly or via 3,4-epoxytamoxifen, which then undergoes activation via a free radical reaction to give reactive intermediates which can then react with DNA and protein, or with themselves, to give the dimers (m/z 773).

  19. AAPH-mediated antioxidant reactions of secoisolariciresinol and SDG.

    PubMed

    Hosseinian, Farah S; Muir, Alister D; Westcott, Neil D; Krol, Ed S

    2007-02-21

    Secoisolariciresinol (SECO ) is the major lignan found in flaxseed (Linum usitatissimum L.) and is present in a polymer that contains secoisolariciresinol diglucoside (SDG ). SECO, SDG and the polymer are known to have a number of health benefits, including reduction of serum cholesterol levels, delay in the onset of type II diabetes and decreased formation of breast, prostate and colon cancers. The health benefits of SECO and SDG may be partially attributed to their antioxidant properties. To better understand their antioxidant properties, SECO and SDG were oxidized using 2,2'-azobis(2-amidinopropane), an in vitro model of radical scavenging. The major lignan radical-scavenging oxidation products and their formation over time were determined. SDG was converted to four major products, which were the result of a phenoxyl radical intermediate. One of these products, a dimer of SDG, decomposed under the reaction conditions to form two of the other major products, and . SECO was converted to five major products, two of which were also the result of a phenoxyl radical intermediate. The remaining products were the result of an unexpected alkoxyl radical intermediate. The phenol oxidation products were stable under the reaction conditions, whereas two of the alcohol oxidation products decomposed. In general, only one phenol group on the lignans was oxidized, suggesting that the number of phenols per molecule may not predict radical scavenging antioxidant ability of lignans. Finally, SECO is a superior antioxidant to SDG, and it may be that the additional alcohol oxidation pathway contributes to its greater antioxidant ability.

  20. Prostaglandin H synthase-catalyzed oxidation of all-trans- and 13-cis-retinoic acid to carbon-centered and peroxyl radical intermediates.

    PubMed

    Freyaldenhoven, M A; Lloyd, R V; Samokyszyn, V M

    1996-06-01

    Due to the importance of all-trans-retinoic acid (RA) in the treatment of various dermatological conditions and the wide distribution of prostaglandin H synthase (PGHS) in tissues, we have further examined the mechanisms involved in the hydroperoxide-dependent cooxidation of RA and its isomer, 13-cis-retinoic acid ((13Z)-RA), by PGHS. Hydroperoxide-dependent, PGHS-catalyzed oxidation of RA and (13Z)-RA was shown to form free radical adducts, using electron spin resonance (ESR) spin trapping techniques and 5-phenyl-4-penten-1-yl hydroperoxide (PPHP) or 13-hydroperoxy-9-cis-11-trans-octadecadienoic acid (13-OOH-18:2) as hydroperoxide substrates. Utilization of the spin trap alpha-phenyl-N-tert-butylnitrone (PBN) resulted in the detection of (13Z)-RA-PBN and RA-PBN adducts whose spectra were characterized by hyperfine coupling constants of aH = 4.16/aN = 15.69 and aH = 3.01/aN =15.92, respectively. Identical experiments under anaerobic conditions were carried out using the spin trap 2-methyl-2-nitrosopropane (NtB) which yielded nitroxide adducts whose spectra were characterized by a triplet of doublets with values of aH = 3.49/aN = 15.84 for the (13Z)-RA adduct and aH = 3.49/aN = 15.88 for the RA adduct. These results are indicative of secondary carbon-centered radical formation. We also used (+)-benzo[a]pyrene 7(S),8(S)-dihydrodiol ((+)-BP-7,8-diol) as a peroxyl radical probe. The results demonstrated the formation of (+)-BP-7,8-diol-derived tetrols, with the trans-anti tetrol representing the major oxidation product in systems undergoing PPHP-dependent, PGHS-catalyzed oxidation of (13Z)-RA or RA. These results are consistent with the formation of peroxyl radicals in these systems. In all experiments, the (13Z)-RA isomer appeared to be a better substrate for the enzyme compared to the all-trans isomer. Collectively these results provide further evidence to support the previously proposed mechanism for retinoid oxidation by PGHS involving the intermediacy of C4 carbon-centered radicals which subsequently react with dioxygen, yielding retinoid-derived peroxyl radicals.

  1. Role of surfactant derived intermediates in the efficacy and mechanism for radiation chemical degradation of a hydrophobic azo dye, 1-phenylazo-2-naphthol.

    PubMed

    Das, Laboni; Chatterjee, Suchandra; Naik, Devidas B; Adhikari, Soumyakanti

    2015-11-15

    A combined methodology involving gamma and pulse radiolysis, product analysis and toxicity studies has been adopted to comprehend the degradation process of a model hydrophobic azo dye, 1-phenylazo-2-naphthol, emphasizing the role of the surfactant, which is an integral part of textile waste. Two new and important findings are underlined in this article. The first is the direct attestation of the hydrazyl radical-parent adduct, formed in the reaction of the dye with e(-)aq followed by protonation and subsequent addition to the unreacted dye molecule. This has been confirmed from concentration dependent studies. Secondly, we have clearly shown that in the reaction of hydroxyl radical with the dye in Triton X-100 media, the initially produced TX radicals cause reductive degradation of the dye. Identification and detailed analysis of HPLC and GCMS data reveals that similar products are formed in both the reactions of e(-)aq and OH radicals. Moreover, the cytotoxicity of 10(-4)moldm(-3) dye was found to be reduced significantly after irradiation. Thus, the present study not only depicts new pathways for the degradation of hydrophobic azo dye, but also demonstrates the role of a surfactant in the entire process. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Trimethyl phosphite as a trap for alkoxy radicals formed from the ring opening of oxiranylcarbinyl radicals. Conversion to alkenes. Mechanistic applications to the study of C-C versus C-O ring cleavage.

    PubMed

    Ding, Bangwei; Bentrude, Wesley G

    2003-03-19

    Trimethyl phosphite, (MeO)(3)P, is introduced as an efficient and selective trap in oxiranylcarbinyl radical (2) systems, formed from haloepoxides 8-13 under thermal AIBN/n-Bu(3)SnH conditions at about 80 degrees C. Initially, the transformations of 8-13, in the absence of phosphite, to allyl alcohol 7 and/or vinyl ether 5 were measured quantitatively (Table 1). Structural variations in the intermediate oxiranylcarbinyl (2), allyloxy (3), and vinyloxycarbinyl (4) radicals involve influences of the thermodynamics and kinetics of the C-O (2 --> 3, k(1)) and C-C (2 --> 4, k(2)) radical scission processes and readily account for the changes in the amounts of product vinyl ether (5) and allyl alcohol (7) formed. Added (MeO)(3)P is inert to vinyloxycarbinyl radical 4 and selectively and rapidly traps allyloxy radical 3, diverting it to trimethyl phosphate and allyl radical 6. Allyl radicals (6) dimerize or are trapped by n-Bu(3)SnH to give alkenes, formed from haloepoxides 8, 9, and 13 in 69-95% yields. Intermediate vinyloxycarbinyl radicals (4), in the presence or absence of (MeO)(3)P, are trapped by n-Bu(3)SnH to give vinyl ethers (5). The concentrations of (MeO)(3)P and n-Bu(3)SnH were varied independently, and the amounts of phosphate, vinyl ether (5), and/or alkene from haloepoxides 10, 11, and 13 were carefully monitored. The results reflect readily understood influences of changes in the structures of radicals 2-4, particularly as they influence the C-O (k(1)) and C-C (k(2)) cleavages of intermediate oxiranylcarbinyl radical 2 and their reverse (k(-1), k(-2)). Diversion by (MeO)(3)P of allyloxy radicals (3) from haloepoxides 11 and 12 fulfills a prior prediction that under conditions closer to kinetic control, products of C-O scission, not just those of C-C scission, may result. Thus, for oxiranylcarbinyl radicals from haloepoxides 11, 12, and 13, C-O scission (k(1), 2 --> 3) competes readily with C-C cleavage (k(2), 2 --> 4), even though C-C scission is favored thermodynamically.

  3. An Oxyferrous Heme/Protein-based Radical Intermediate Is Catalytically Competent in the Catalase Reaction of Mycobacterium tuberculosis Catalase-Peroxidase (KatG)*S⃞

    PubMed Central

    Suarez, Javier; Ranguelova, Kalina; Jarzecki, Andrzej A.; Manzerova, Julia; Krymov, Vladimir; Zhao, Xiangbo; Yu, Shengwei; Metlitsky, Leonid; Gerfen, Gary J.; Magliozzo, Richard S.

    2009-01-01

    A mechanism accounting for the robust catalase activity in catalase-peroxidases (KatG) presents a new challenge in heme protein enzymology. In Mycobacterium tuberculosis, KatG is the sole catalase and is also responsible for peroxidative activation of isoniazid, an anti-tuberculosis pro-drug. Here, optical stopped-flow spectrophotometry, rapid freeze-quench EPR spectroscopy both at the X-band and at the D-band, and mutagenesis are used to identify catalase reaction intermediates in M. tuberculosis KatG. In the presence of millimolar H2O2 at neutral pH, oxyferrous heme is formed within milliseconds from ferric (resting) KatG, whereas at pH 8.5, low spin ferric heme is formed. Using rapid freeze-quench EPR at X-band under both of these conditions, a narrow doublet radical signal with an 11 G principal hyperfine splitting was detected within the first milliseconds of turnover. The radical and the unique heme intermediates persist in wild-type KatG only during the time course of turnover of excess H2O2 (1000-fold or more). Mutation of Met255, Tyr229, or Trp107, which have covalently linked side chains in a unique distal side adduct (MYW) in wild-type KatG, abolishes this radical and the catalase activity. The D-band EPR spectrum of the radical exhibits a rhombic g tensor with dual gx values (2.00550 and 2.00606) and unique gy (2.00344) and gz values (2.00186) similar to but not typical of native tyrosyl radicals. Density functional theory calculations based on a model of an MYW adduct radical built from x-ray coordinates predict experimentally observed hyperfine interactions and a shift in g values away from the native tyrosyl radical. A catalytic role for an MYW adduct radical in the catalase mechanism of KatG is proposed. PMID:19139099

  4. Photochemical key steps in the synthesis of surfactants from furfural-derived intermediates.

    PubMed

    Gassama, Abdoulaye; Ernenwein, Cédric; Hoffmann, Norbert

    2009-01-01

    Furfural is oxidized to 2[5H]-furanone by using hydrogen peroxide or to 5-hydroxy-2[5H]-furanone by using photo-oxygenation. An amine function is introduced by photochemically induced radical addition of tertiairy amines, some of which carry an n-alkyl side chain as hydrophobic moiety. These amines are produced from fatty aldehydes and cyclic secondary amines. The resulting adducts are transformed into amphoteric surfactants possessing an ammonium and a carboxylate function. Amphoteric (pK(N) and isoelectric point) and surfactant properties such as the critical micelle concentration and the adsorption efficiency are determined.

  5. Anodic Cyclization Reactions and the Mechanistic Strategies That Enable Optimization.

    PubMed

    Feng, Ruozhu; Smith, Jake A; Moeller, Kevin D

    2017-09-19

    Oxidation reactions are powerful tools for synthesis because they allow us to reverse the polarity of electron-rich functional groups, generate highly reactive intermediates, and increase the functionality of molecules. For this reason, oxidation reactions have been and continue to be the subject of intense study. Central to these efforts is the development of mechanism-based strategies that allow us to think about the reactive intermediates that are frequently central to the success of the reactions and the mechanistic pathways that those intermediates trigger. For example, consider oxidative cyclization reactions that are triggered by the removal of an electron from an electron-rich olefin and lead to cyclic products that are functionalized for further elaboration. For these reactions to be successful, the radical cation intermediate must first be generated using conditions that limit its polymerization and then channeled down a productive desired pathway. Following the cyclization, a second oxidation step is necessary for product formation, after which the resulting cation must be quenched in a controlled fashion to avoid undesired elimination reactions. Problems can arise at any one or all of these steps, a fact that frequently complicates reaction optimization and can discourage the development of new transformations. Fortunately, anodic electrochemistry offers an outstanding opportunity to systematically probe the mechanism of oxidative cyclization reactions. The use of electrochemical methods allows for the generation of radical cations under neutral conditions in an environment that helps prevent polymerization of the intermediate. Once the intermediates have been generated, a series of "telltale indicators" can be used to diagnose which step in an oxidative cyclization is problematic for less successful transformation. A set of potential solutions to address each type of problem encountered has been developed. For example, problems with the initial cyclization reaction leading to either polymerization of the radical cation, elimination of a proton from or solvent trapping of that intermediate, or solvent trapping of the radical cation can be identified in the proton NMR spectrum of the crude reaction material. Such an NMR spectrum shows retention of the trapping group. The problems can be addressed by tuning the radical cation, altering the trapping group, or channeling the reactive intermediate down a radical pathway. Specific examples each are shown in this Account. Problems with the second oxidation step can be identified by poor current efficiency or general decomposition in spite of cyclic voltammetry evidence for a rapid cyclization. Solutions involve improving the oxidation conditions for the radical after cyclization by either the addition of a properly placed electron-donating group in the substrate or an increase in the concentration of electrolyte in the reaction (a change that stabilizes the cation generated from the second oxidation step). Problems with the final cation typically lead to overoxidation. Solutions to this problem require an approach that either slows down elimination side reactions or changes the reaction conditions so that the cation can be quickly trapped in an irreversible fashion. Again, this Account highlights these strategies along with the specific experimental protocols utilized.

  6. Cu-catalyzed aerobic oxidative cyclizations of 3-N-hydroxyamino-1,2-propadienes with alcohols, thiols, and amines to form α-O-, S-, and N-substituted 4-methylquinoline derivatives.

    PubMed

    Sharma, Pankaj; Liu, Rai-Shung

    2015-03-16

    A one-pot, two-step synthesis of α-O-, S-, and N-substituted 4-methylquinoline derivatives through Cu-catalyzed aerobic oxidations of N-hydroxyaminoallenes with alcohols, thiols, and amines is described. This reaction sequence involves an initial oxidation of N-hydroxyaminoallenes with NuH (Nu = OH, OR, NHR, and SR) to form 3-substituted 2-en-1-ones, followed by Brønsted acid catalyzed intramolecular cyclizations of the resulting products. Our mechanistic analysis suggests that the reactions proceed through a radical-type mechanism rather than a typical nitrone-intermediate route. The utility of this new Cu-catalyzed reaction is shown by its applicability to the synthesis of several 2-amino-4-methylquinoline derivatives, which are known to be key precursors to several bioactive molecules. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ab initio study of chain branching reactions involving second generation products in hydrocarbon combustion mechanisms.

    PubMed

    Davis, Alexander C; Francisco, Joseph S

    2012-01-28

    sec-Alkyl radicals are key reactive intermediates in the hydrocarbon combustion and atmospheric decomposition mechanisms that are formed by the abstraction of hydrogen from an alkane, or as a second generation product of n-alkyl H-migrations, C-C bond scissions in branched alkyl radicals, or the bimolecular reaction between olefins and n-alkyl radicals. Since alkanes and branched alkanes, which the sec-alkyl radicals are derived from, make up roughly 40-50% of traditional fuels an understanding of their chemistry is essential to improving combustion systems. The present work investigates all H-migration reactions initiated from an sec-alkyl radical that involve the movement of a secondary hydrogen, for the 2-butyl through 4-octyl radicals, using the CBS-Q, G2, and G4 composite methods. The resulting thermodynamic and kinetic parameters are compared to similar reactions in n-alkyl radicals in order to determine underlying trends. Particular attention is paid to the effect of cis/trans and 1,3-diaxial interactions on activation energies and rate coefficients. When combined with our previous work on n-alkyl radical H-migrations, a complete picture of H-migrations in unbranched alkyl radicals is obtained. This full data set suggests that the directionality of the remaining branched chains has a minimal effect on the rate coefficients for all but the largest viable transition states, which is in stark contrast to the differences predicted by the structurally similar dimethylcycloalkanes. In fact the initial location of the secondary radical site has a greater effect on the rate than does the directionality of the remaining alkyl chains. The activation energies for secondary to secondary reactions are much closer to those of the secondary to primary H-migrations. However, the rate coefficients are found to be closer to the corresponding primary to primary reaction values. A significant ramification of these results is that there will be multiple viable reaction pathways for these reactions instead of only one dominant pathway as previously believed.

  8. Magnetic field effects on coenzyme B12- and B6-dependent lysine 5,6-aminomutase: switching of the J-resonance through a kinetically competent radical-pair intermediate.

    PubMed

    Chen, Jun-Ru; Ke, Shyue-Chu

    2018-05-09

    The environmental magnetic field is beneficial to migratory bird navigation through the radical-pair mechanism. One of the continuing challenges in understanding how magnetic fields may perturb biological processes is that only a very few field-sensitive examples have been explored despite the prevalence of radical pairs in enzymatic reactions. We show that the reaction of adenosylcobalamin- and pyridoxal-5'-phosphate-dependent lysine 5,6-aminomutase proceeds via radical-pair intermediates and is magnetic field dependent. The 5'-deoxyadenosyl radical from adenosylcobalamin abstracts a C5(H) from the substrate to yield a {cob(ii)alamin - substrate} radical pair wherein the large spin-spin interaction (2J = 8000 gauss) locks the radical pair in a triplet state, as evidenced by electron paramagnetic resonance spectroscopy. Application of an external magnetic field in the range of 6500 to 8500 gauss triggers intersystem crossing to the singlet {cob(ii)alamin - substrate} radical-pair state. Spin-conserved H back-transfer from deoxyadenosine to the substrate radical yields a singlet {cob(ii)alamin-5'-deoxyadenosyl} radical pair. Spin-selective recombination to adenosylcobalamin decreased the enzyme catalytic efficiency kcat/Km by 16% at 7600 gauss. As a mechanistic probe, observation of magnetic field effects successfully demonstrates the presence of a kinetically significant radical pair in this enzyme. The study of a pronounced high-field level-crossing characteristic through an immobilized radical pair with a constant exchange interaction deepens our understanding of how a magnetic field may interact with an enzyme.

  9. Sono-activated persulfate oxidation of diclofenac: Degradation, kinetics, pathway and contribution of the different radicals involved.

    PubMed

    Monteagudo, J M; El-Taliawy, H; Durán, A; Caro, G; Bester, K

    2018-06-20

    Degradation of a diclofenac aqueous solution was performed using persulfate anions activated by ultrasound. The objective of this study was to analyze different parameters affecting the diclofenac (DCF) removal reaction by the ultrasonic persulfate (US/PS) process and to evaluate the role played by various intermediate oxidative species such as hydroxyl- and sulfate radicals, superoxide radical anion or singlet oxygen in the removal process as well as to determine a possible reaction pathway. The effects of pH, initial persulfate anion concentration, ultrasonic amplitude and temperature on DCF degradation were examined. Sulfate and hydroxyl radicals were involved in the main reaction pathway of diclofenac. Diclofenac amide and three hydroxy-diclofenac isomers (3´-hydroxy diclofenac, 4´-hydroxy diclofenac and 5-hydroxy diclofenac) were identified as reaction intermediates. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Photochemical primary process of photo-Fries rearrangement reaction of 1-naphthyl acetate as studied by MFE probe.

    PubMed

    Gohdo, Masao; Takamasu, Tadashi; Wakasa, Masanobu

    2011-01-14

    Photo-Fries rearrangement reactions of 1-naphthyl acetate (NA) in n-hexane and in cyclohexane were studied by the magnetic field effect probe (MFE probe) under magnetic fields (B) of 0 to 7 T. Transient absorptions of the 1-naphthoxyl radical, T-T absorption of NA, and a short-lifetime intermediate (τ = 24 ns) were observed by a nanosecond laser flash photolysis technique. In n-hexane, the yield of escaped 1-naphthoxyl radicals dropped dramatically upon application of a 3 mT field, but then the yield increased with increasing B for 3 mT < B≤ 7 T. These observed MFEs can be explained by the hyperfine coupling and the Δg mechanisms through the singlet radical pair. The fact that MFEs were observed for the present photo-Fries rearrangement reaction indicates the presence of a singlet radical pair intermediate with a lifetime as long as several tens of nanoseconds.

  11. Isolation and characterization of charge-tagged phenylperoxyl radicals in the gas phase: direct evidence for products and pathways in low temperature benzene oxidation.

    PubMed

    Kirk, Benjamin B; Harman, David G; Kenttämaa, Hilkka I; Trevitt, Adam J; Blanksby, Stephen J

    2012-12-28

    The phenylperoxyl radical has long been accepted as a critical intermediate in the oxidation of benzene and an archetype for arylperoxyl radicals in combustion and atmospheric chemistry. Despite being central to many contemporary mechanisms underpinning these chemistries, reports of the direct detection or isolation of phenylperoxyl radicals are rare and there is little experimental evidence connecting this intermediate with expected product channels. We have prepared and isolated two charge-tagged phenyl radical models in the gas phase [i.e., 4-(N,N,N-trimethylammonium)phenyl radical cation and 4-carboxylatophenyl radical anion] and observed their reactions with dioxygen by ion-trap mass spectrometry. Measured reaction rates show good agreement with prior reports for the neutral system (k(2)[(Me(3)N(+))C(6)H(4)˙ + O(2)] = 2.8 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 4.9%; k(2)[((-)O(2)C)C(6)H(4)˙ + O(2)] = 5.4 × 10(-11) cm(3) molecule(-1) s(-1), Φ = 9.2%) and the resulting mass spectra provide unequivocal evidence for the formation of phenylperoxyl radicals. Collisional activation of isolated phenylperoxyl radicals reveals unimolecular decomposition by three pathways: (i) loss of dioxygen to reform the initial phenyl radical; (ii) loss of atomic oxygen yielding a phenoxyl radical; and (iii) ejection of the formyl radical to give cyclopentadienone. Stable isotope labeling confirms these assignments. Quantum chemical calculations for both charge-tagged and neutral phenylperoxyl radicals confirm that loss of formyl radical is accessible both thermodynamically and entropically and competitive with direct loss of both hydrogen atom and carbon dioxide.

  12. Mechanism of ascaridole activation in Leishmania.

    PubMed

    Geroldinger, Gerald; Tonner, Matthias; Hettegger, Hubert; Bacher, Markus; Monzote, Lianet; Walter, Martin; Staniek, Katrin; Rosenau, Thomas; Gille, Lars

    2017-05-15

    Endoperoxides (EP) are an emerging class of drugs which have potential in antiparasitic therapy, but also in other fields. For malaria therapy the EP artemisinin (Art) and its derivatives are successfully used. We have shown in the past that the EP ascaridole (Asc) is useful for the treatment of cutaneous leishmaniasis in a mouse model. Biomimetic experiments suggested that these drugs need activation in the respective target pathogens to exert their function. In spite of this idea, direct activation of EP to radicals inside cells has never been demonstrated. Therefore, this study was initiated to explore the activation of Asc in biomimetic systems and inside Leishmania in comparison to Art. Using electron paramagnetic resonance spectroscopy (EPR) in combination with spin-trapping we identified the secondary alkyl radical intermediates arising from reduction by Fe 2+ in cell-free systems. Combined GC/NMR analysis confirmed the loss of isopropyl residues from Asc during this process as intermediates. This activation of Asc was stimulated by low molecular Fe 2+ complexes or alternatively by hemin in conjunction with thiol reductants, such as cysteine (Cys). In Leishmania tarentolae promastigotes (LtP) as model for pathogenic forms of Leishmania carbon-centered radicals were identified in the presence of Asc by EPR spin-trapping. Both Asc and Art inhibited the viability in LtP with IC 50 values in the low micromolar range while IC 50 values for J774 macrophages were considerably higher. A similar structure without EP bridge (1,4-cineole) resulted in no detectable radicals and possessed much less cytotoxicity in LtP and no selectivity for LtP compared to J774 cells. The Asc-derived radical formation in LtP was inhibited by the iron chelator deferoxamine (DFO), and stimulated by Cys (a suitable reductant for hemin). The IC 50 values for LtP viability in the presence of Asc or Art were increased significantly by the spin trap DMPO, while Cys and DFO increased only IC 50 values for Art. In a heme association assay Asc demonstrated a lower binding affinity to heme than Art. ICP-OES measurements revealed that in LtP the total iron concentrations were twice as high as values in J774 macrophages. Since low molecular iron was important in Asc activation we studied the influence of Asc on the labile iron pool (LIP) in LtP. Low temperature EPR experiments demonstrated that Asc shifts the redox balance of iron in the LIP to its oxidized state. These data demonstrate that univalent cleavage of Asc/Art in LtP is an essential part of their pharmacological mechanism. The structure of the EP determines whether activation by low molecular iron or heme is favored and the availability of these intracellular activators modulates their cytotoxicity. These findings may be helpful for synthesis of new Asc derivatives and understanding the action of EP in other cell types. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Reduced 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)-Initiated Oxidative DNA Damage and Neurodegeneration in Prostaglandin H Synthase-1 Knockout Mice

    PubMed Central

    2010-01-01

    The neurodegenerative potential of 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) and underlying mechanisms are under debate. Here, we show that MDMA is a substrate for CNS prostaglandin H synthase (PHS)-catalyzed bioactivation to a free radical intermediate that causes reactive oxygen species (ROS) formation and neurodegenerative oxidative DNA damage. In vitro PHS-1-catalyzed bioactivation of MDMA stereoselectively produced free radical intermediate formation and oxidative DNA damage that was blocked by the PHS inhibitor eicosatetraynoic acid. In vivo, MDMA stereoselectively caused gender-independent DNA oxidation and dopaminergic nerve terminal degeneration in several brain regions, dependent on regional PHS-1 levels. Conversely, MDMA-initiated striatal DNA oxidation, nerve terminal degeneration, and motor coordination deficits were reduced in PHS-1 +/− and −/− knockout mice in a gene dose-dependent fashion. These results confirm the neurodegenerative potential of MDMA and provide the first direct evidence for a novel molecular mechanism involving PHS-catalyzed formation of a neurotoxic MDMA free radical intermediate. PMID:22778832

  14. Characterization of the radical-scavenging reaction of 2-O-substituted ascorbic acid derivatives, AA-2G, AA-2P, and AA-2S: a kinetic and stoichiometric study.

    PubMed

    Takebayashi, Jun; Tai, Akihiro; Gohda, Eiichi; Yamamoto, Itaru

    2006-04-01

    The aim of this study was to characterize the antioxidant activity of three ascorbic acid (AA) derivatives O-substituted at the C-2 position of AA: ascorbic acid 2-glucoside (AA-2G), ascorbic acid 2-phosphate (AA-2P), and ascorbic acid 2-sulfate (AA-2S). The radical-scavenging activities of these AA derivatives and some common low molecular-weight antioxidants such as uric acid or glutathione against 1,1-diphenyl-picrylhydrazyl (DPPH) radical, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS+), or galvinoxyl radical were kinetically and stoichiometrically evaluated under pH-controlled conditions. Those AA derivatives slowly and continuously reacted with DPPH radical and ABTS+, but not with galvinoxyl radical. They effectively reacted with DPPH radical under acidic conditions and with ABTS+ under neutral conditions. In contrast, AA immediately quenched all species of radicals tested at all pH values investigated. The reactivity of Trolox, a water-soluble vitamin E analogue, was comparable to that of AA in terms of kinetics and stoichiometrics. Uric acid and glutathione exhibited long-lasting radical-scavenging activity against these radicals under certain pH conditions. The radical-scavenging profiles of AA derivatives were closer to those of uric acid and glutathione rather than to that of AA. The number of radicals scavenged by one molecule of AA derivatives, uric acid, or glutathione was equal to or greater than that by AA or Trolox under the appropriate conditions. These data suggest the potential usage of AA derivatives as radical scavengers.

  15. Synthesis of ST7612AA1, a Novel Oral HDAC Inhibitor, via Radical 
Thioacetic Acid Addition.

    PubMed

    Battistuzzi, Gianfranco; Giannini, Giuseppe

    2016-12-01

    In the expanding field of anticancer drugs, HDAC inhibitors are playing an increasingly important role. To date, four/five HDAC inhibitors have been approved by FDA. All these compounds fit the widely accepted HDAC inhibitors pharmacophore model characterized by a cap group, a linker chain and a zinc binding group (ZBG), able to bind the Zn 2+ ion in a pocket of the HDAC active site. Romidepsin, a natural compound, is the only thiol derivative. We have selected a new class of synthetic HDAC inhibitors, the thio-ω(lactam-carboxamide) derivatives, with ST7612AA1 as drug candidate, pan-inhibitor active in the range of single- to two-digit nanomolar concentrations. Preliminary results of a synthetic optimization attempt towards a fast scale-up process are here proposed. In the four steps of synthesis, from unsaturated amino acid intermediate to the final product, we explored different synthetic conditions in order to have a transferable process for a scale-up synthetic laboratory. In the first step, isobutyl chloroformate was used and, after a simple work up with 1M HCl, 2 (96% yield) was obtained as a white solid, which was used directly in the next step. For thioacetic acid addition to the double bond of intermediate 2 , two different routes were possible, with addition reaction in the first (D') or last step (D). Reactions of 2 to give 5 or of 4 to give ST7612AA1 were both performed in dioxane. Reactions were fast and did not need the usually advised radical quenching with cyclohexene. The corresponding products were obtained in good yields (step D', 89%; step D, 81%) after a flash chromatography. , a thiol derivative prodrug of ST7464AA1 , is the first of a new generation of HDAC inhibitors, very potent, orally administered, and well tolerated. Here, we have identified a synthetic route, competitive, versatile and easily transferable to industrial processes.

  16. Oxysterols from Free Radical Chain Oxidation of 7-Dehydrocholesterol: Product and Mechanistic Studies

    PubMed Central

    Xu, Libin; Korade, Zeljka; Porter, Ned A.

    2010-01-01

    Free radical chain oxidation of highly oxidizable 7-dehydrocholesterol (7-DHC) initiated by 2,2′-azobis(4-methoxy-2,4-dimethylvaleronitrile) was carried out at 37°C in benzene for 24 hours. Fifteen oxysterols derived from 7-DHC were isolated and characterized with 1D- and 2D-NMR spectroscopy and mass spectrometry. A mechanism that involves abstraction of hydrogen atoms at C-9 and/or C-14 is proposed to account for the formation of all of the oxysterols and the reaction progress profile. In either the H-9 or H-14 mechanism, a pentadienyl radical intermediate is formed after abstraction of H-9 or H-14 by a peroxyl radical. This step is followed by the well-precedented transformations observed in peroxidation reactions of polyunsaturated fatty acids such as oxygen addition, peroxyl radical 5-exo cyclization, and SHi carbon radical attack on the peroxide bond. The mechanism for peroxidation of 7-DHC also accounts for the formation of numerous oxysterol natural products isolated from fungal species, marine sponges, and cactaceous species. In a cell viability test, the oxysterol mixture from 7-DHC peroxidation was found to be cytotoxic to Neuro2a neuroblastoma cells in the micromolar concentration range. We propose that the high reactivity of 7-DHC and the oxysterols generated from its peroxidation may play important roles in the pathogenesis of Smith-Lemli-Opitz syndrome (SLOS), X-linked dominant chondrodysplasia punctata (CDPX2), and cerebrotendinous xanthomatosis (CTX), all of these being metabolic disorders having an elevated level of 7-DHC. PMID:20121089

  17. Photochemical and radiation-chemical aspects of matrix acidity effects on some organic systems

    NASA Astrophysics Data System (ADS)

    Ambroz, H. B.; Przybytniak, G. K.; Wronska, T.; Kemp, T. J.

    The role of matrix effects in radiolysis and photolysis is illustrated using two systems: organosulphur compounds and benzenediazonium salts. Their intermediates as detected by low temperature ESR and optical spectroscopy or FAB-MS give evidence that the main reaction pathways depend strongly on these effects. Changes in matrix acidity can control the formation of neutral radical, ion-radical or ionic species which are crucial to the character of the final products of irradiation of organosulphur compounds, which are of great importance in medicine, biology, ecology and industry. Microenvironmental influences determine whether the triplet aryl cation or radical species are detected as the principal or sole intermediates in the decomposition of diazonium salts, a process leading to different stable products with industrial application.

  18. The reactions of cytidine and 2'-deoxycytidine with SO4.- revisited. Pulse radiolysis and product studies.

    PubMed

    Aravindakumar, Charuvila T; Schuchmann, Man Nien; Rao, Balijepalli S; von Sonntag, Justus; von Sonntag, Clemens

    2003-01-21

    The reactions of SO4.- with 2'-deoxycytidine 1a and cytidine 1b lead to very different intermediates (base radicals with 1a, sugar radicals with 1b). The present study provides spectral and kinetic data for the various intermediates by pulse radiolysis as well as information on final product yields (free cytosine). Taking these and literature data into account allows us to substantiate but also modify in essential aspects the current mechanistic concept (H. Catterall, M. J. Davies and B. C. Gilbert, J. Chem. Soc., Perkin Trans. 2, 1992, 1379). SO4.- radicals have been generated radiolytically in the reaction of peroxodisulfate with the hydrated electron (and the H. atom). In the reaction of SO4.- with 1a (k = 1.6 x 10(9) dm3 mol-1 s-1), a transient (lambda max = 400 nm, shifted to 450 nm at pH 3) is observed. This absorption is due to two intermediates. The major component (lambda max approximately 385 nm) does not react with O2 and has been attributed to an N-centered radical 4a formed upon sulfate release and deprotonation at nitrogen. The minor component, rapidly wiped out by O2, must be due to C-centered OH-adduct radical(s) 6a and/or 7a suggested to be formed by a water-induced nucleophilic replacement. These radicals decay by second-order kinetics. Free cytosine is only formed in low yields (G = 0.14 x 10(-7) mol J-1 upon electron-beam irradiation). In contrast, 1b gives rise to an intermediate absorbing at lambda max = 530 nm (shifted to 600 nm in acid solution) which rapidly decays (k = 6 x 10(4) s-1). In the presence of O2, the decay is much faster (k approximately 1.3 x 10(9) dm3 mol-1 s-1) indicating that this species must be a C-centered radical. This has been attributed to the C(5)-yl radical 8 formed upon the reaction of the C(2')-OH group with the cytidine SO4(.-)-adduct radical 2b. This reaction competes very effectively with the corresponding reaction of water and the release of sulfate and a proton generating the N-centered radical. Upon the decay of 8, sugar radical 11 is formed with the release of cytosine. The latter is formed with a G value of 2.8 x 10(-7) mol J-1 (85% of primary SO4.-) at high dose rates (electron beam irradiation). At low dose rates (gamma-radiolysis) its yield is increased to 7 x 10(-7) mol J-1 due to a chain reaction involving peroxodisulfate and reducing free radicals. Phosphate buffer prevents the formation of the sugar radical at the SO4(.-)-adduct stage by enhancing the rate of sulfate release by deprotonation of 2b and also by speeding up the decay of the C(5)-yl radical into another (base) radical. Cytosine release in cytidine is mechanistically related to strand breakage in poly(C). Literature data on the effect of dioxygen on strand breakage yields in poly(C) induced by SO4.- (suppressed) and upon photoionisation (unaltered) lead us to conclude that in poly(C) and also in the present system free radical cations are not involved to a major extent. This conclusion modifies an essential aspect of the current mechanistic concept.

  19. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals

    NASA Astrophysics Data System (ADS)

    Murphy, John J.; Bastida, David; Paria, Suva; Fagnoni, Maurizio; Melchiorre, Paolo

    2016-04-01

    An important goal of modern organic chemistry is to develop new catalytic strategies for enantioselective carbon-carbon bond formation that can be used to generate quaternary stereogenic centres. Whereas considerable advances have been achieved by exploiting polar reactivity, radical transformations have been far less successful. This is despite the fact that open-shell intermediates are intrinsically primed for connecting structurally congested carbons, as their reactivity is only marginally affected by steric factors. Here we show how the combination of photoredox and asymmetric organic catalysis enables enantioselective radical conjugate additions to β,β-disubstituted cyclic enones to obtain quaternary carbon stereocentres with high fidelity. Critical to our success was the design of a chiral organic catalyst, containing a redox-active carbazole moiety, that drives the formation of iminium ions and the stereoselective trapping of photochemically generated carbon-centred radicals by means of an electron-relay mechanism. We demonstrate the generality of this organocatalytic radical-trapping strategy with two sets of open-shell intermediates, formed through unrelated light-triggered pathways from readily available substrates and photoredox catalysts—this method represents the application of iminium ion activation (a successful catalytic strategy for enantioselective polar chemistry) within the realm of radical reactivity.

  20. Antioxidant vitamins and enzymatic and synthetic oxygen-derived free radical scavengers in the prevention and treatment of cardiovascular disease.

    PubMed

    Nayak, D U; Karmen, C; Frishman, W H; Vakili, B A

    2001-01-01

    Oxygen-derived free radical formation can lead to cellular injury and death. Under normal situations, the human body has a free radical scavenger system (catalase, superoxide dismutase) that can detoxify free radicals. Antioxidant vitamins and enzymatic and synthetic oxygen-derived free radical scavengers have been used clinically to prevent the formation of oxidized LDL and to prevent reperfusion injury, which is often caused by free radicals. In this article, the pathogenesis of free radical production and cell injury are discussed, and therapeutic approaches for disease prevention are presented.

  1. Flavonoid oxidation by the radical generator AIBN: a unified mechanism for quercetin radical scavenging.

    PubMed

    Krishnamachari, Venkat; Levine, Lanfang H; Paré, Paul W

    2002-07-17

    Four oxidized flavonoid derivatives generated from reacting quercetin (a pentahydroxylated flavone) with the peroxyl radical generator 2,2'-azobis-isobutyronitrile (AIBN) were isolated by chromatographic methods and identified by NMR and MS analyses. Compounds included 2-(3,4-dihydroxybenzoyl)-2,4,6-trihydroxy-3(2H)-benzofuranone (2); 1,3,11a-trihydroxy-9-(3,5,7-trihydroxy-4H-1-benzopyran-4-on-2-yl)-5a-(3,4-dihydroxyphenyl)-5,6,11-hexahydro-5,6,11-trioxanaphthacene-12-one (3); 2-(3,4-dihydroxybenzoyloxy)-4,6-dihydroxybenzoic acid (4); and methyl 3,4-dihydroxyphenylglyoxylate (5). Product ratios under different hydrogen ion concentrations and external nucleophiles revealed that two of the products, namely the substituted benzofuranone (2) and the depside (4), are generated from a common carbocation intermediate. Indirect evidence for the operation of a cyclic concerted mechanism in the formation of the dimeric product (3) is provided. The identification of these products supports the model that the principal site of scavenging reactive oxygen species (ROS) in quercetin is the o-dihydroxyl substituent in the B-ring, as well as the C-ring olefinic linkage.

  2. Radiation chemical studies of Gly-Met-Gly in aqueous solution

    DOE PAGES

    Barata-Vallejo, Sebastian; Ferreri, Carla; Zhang, Tao; ...

    2016-10-25

    Important biological consequences are related to the reaction of HO radicals with methionine (Met). Several fundamental aspects remain to be defined when Met is an amino acid residue incorporated in the interior of peptides and proteins. The present study focuses on Gly-Met-Gly, the simplest peptide where Met is not a terminal residue. The reactions of HO with Gly-Met-Gly and its N-acetyl derivative were studied by pulse radiolysis technique. The transient absorption spectra were resolved into contributions from specific components of radical intermediates. Moreover, a detailed product analysis is provided for the first time for Met-containing peptides in radiolytic studies tomore » support the mechanistic proposal. By parallel radiolytical and electrochemical reactions and consequent product identification, the formation of sulfoxide attributed to the direct HO radical attack on the sulfide functionality of the Met residue could be excluded, with the in situ generated hydrogen peroxide responsible for this oxidation. LC–MS and high resolution MS/MS were powerful analytical tools to envisage the structures of five products, thus allowing to complete the mechanistic picture of the overall Met-containing peptide reactivity.« less

  3. Production of Hydroxyl Radical via the Activation of Hydrogen Peroxide by Hydroxylamine.

    PubMed

    Chen, Liwei; Li, Xuchun; Zhang, Jing; Fang, Jingyun; Huang, Yanmin; Wang, Ping; Ma, Jun

    2015-09-01

    The production of the hydroxyl radical (HO·) is important in environmental chemistry. This study reports a new source of HO· generated solely from hydrogen peroxide (H2O2) activated by hydroxylamine (HA). Electron paramagnetic resonance analysis and the oxidation of a HO· probe, benzoic acid, were used to confirm the production of HO·. The production of HO· increased with increasing concentrations of either HA or H2O2 as well as decreasing pH. The second-order rate constant for the reaction was (2.2 ± 0.2) × 10(-4) M(-1) s(-1). HO· was probably produced in two steps: the activation of H2O2 by protonated HA and then reaction between the H2O2 and the intermediate protonated aminoxyl radical generated in the first step. Such a two-step oxidation can possibly be ascribed to the ionizable hydroxyl moiety in the molecular structure of HA, as is suggested by comparing the reactivity of a series of HA derivatives in HO· production. The results shed light on a previously unknown source of HO· formation, which broadens the understanding of its role in environmental processes.

  4. Investigation of radiosterilization feasibility of sulfamethoxazole by ESR spectroscopy

    NASA Astrophysics Data System (ADS)

    Çolak, Şeyda

    2017-12-01

    In the present study, the spectroscopic features of the radiolytic intermediates that were produced in gamma-irradiated (5, 10, 25 and 50 kGy) sulfamethoxazole (SMX) have been investigated by electron spin resonance (ESR) spectroscopy and the radiation sterilization feasibility of SMX by ionizing radiation was examined. Gamma-irradiated SMX exhibited a complex ESR spectrum consisting of 13 resonance lines where spectral parameters for the central resonance line were found to be g = 2.0062 and ΔHpp = 0.6 mT. The radiation yield of SMX was calculated to be relatively low (G = 0.1) by ESR spectroscopy and no meaningful difference was observed in the comparison of unirradiated and 50 kGy gamma irradiated SMX by the Fourier transform infrared (FT-IR) technique, confirming that SMX is a radioresistive material. Although SMX could not be accepted to be a good dosimetric material, the identification of irradiated SMX from the unirradiated sample was possible even for the low absorbed radiation doses and for a relatively long time (three months) after the irradiation process. Decay activation energy of the radical species, which is mostly responsible for the central intense resonance line, is calculated to be 45.15 kJ/mol by using the signal intensity decay data derived from annealing studies. Four radical species with different spectroscopic properties were accepted to be responsible for the ESR spectra of gamma-irradiated SMX, by simulation calculations. It is concluded that SMX and SMX-containing drugs can be sterilized by gamma radiation and ESR spectroscopy is an appropriate technique for the characterization of these induced radical intermediates during the gamma irradiation process of SMX. Toxicology tests should also be done for its safe usage.

  5. Theoretical Studies of Elementary Hydrocarbon Species and Their Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Wesley D.; Schaefer, Henry F.

    The research program supported by this DOE grant carried out both methodological development and computational applications of first-principles theoretical chemistry based on quantum mechanical wavefunctions, as directed toward understanding and harnessing the fundamental chemical physics of combustion. To build and refine the world’s database of thermochemistry, spectroscopy, and chemical kinetics, predictive and definitive computational methods are needed that push the envelope of modern electronic structure theory. The application of such methods has been made to gain comprehensive knowledge of the paradigmatic reaction networks by which the n- and i-propyl, t-butyl, and n-butyl radicals are oxidized by O 2. Numerous ROOmore » and QOOH intermediates in these R + O 2 reaction systems have been characterized along with the interconnecting isomerization transition states and the barriers leading to fragmentation. Other combustion-related intermediates have also been studied, including methylsulfinyl radical, cyclobutylidene, and radicals derived from acetaldehyde and vinyl alcohol. Theoretical advances have been achieved and made available to the scientific community by implementation into PSI4, an open-source electronic structure computer package emphasizing automation, advanced libraries, and interoperability. We have pursued the development of universal explicitly correlated methods applicable to general electronic wavefunctions, as well as a framework that allows multideterminant reference functions to be expressed as a single determinant from quasiparticle operators. Finally, a rigorous analytical tool for correlated wavefunctions has been created to elucidate dispersion interactions, which play essential roles in many areas of chemistry, but whose effects are often masked and enigmatic. Our research decomposes and analyzes the coupled-cluster electron correlation energy in molecular systems as a function of interelectronic distance. Concepts are emerging that can be used to explain the influence of dispersion on the thermochemistry of large hydrocarbons, including fuels important to combustion technologies.« less

  6. Methemoglobin formation from butylated hydroxyanisole and oxyhemoglobin. Comparison with butylated hydroxytoluene and p-hydroxyanisole.

    PubMed

    Stolze, K; Nohl, H

    1992-01-01

    The widely used food additives butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) react with oxyhemoglobin, thereby forming methemoglobin. The reaction rates were measured using visible spectroscopy, and second order rate constants were established for BHA and compared with p-hydroxyanisole. Using ESR we investigated the involvement of free radical reaction intermediates. The expected one-electron oxidation product of BHA and BHT, the phenoxyl radical, could only be detected with pure 3-t-butyl-4-hydroxyanisole and oxyhemoglobin. With the commercial mixture of 2- and 3-t-butyl-4-hydroxyanisole a very strong ESR signal of a secondary free radical species was observed, similar to the one observed earlier with p-hydroxyanisole and dependent on the presence of free thiol groups, so that we assumed the intermediate existence of a perferryl species, the MetHb-H2O2 adduct. In a second series of experiments we investigated the reactivity of this postulated intermediate with BHA and BHT, starting with a pure MetHb/H2O2-phenol mixture in a stopped-flow apparatus linked to the ESR spectrometer, detecting the expected phenoxyl radicals from BHA and p-hydroxyanisole. Due to the low solubility and decreased reactivity of BHT only traces of phenoxyl type radical were found together with a high concentration of unreacted perferryl species. The reactivity of BHA, BHT and p-hydroxyanisole with free thiol groups is demonstrated by an increased reaction rate in the presence of the thiol group blocking substance NEM.

  7. Teaching Old Compounds New Tricks: DDQ-Photocatalyzed C-H Amination of Arenes with Carbamates, Urea, and N-Heterocycles.

    PubMed

    Das, Somnath; Natarajan, Palani; König, Burkhard

    2017-12-22

    The C-H amination of benzene derivatives was achieved using DDQ as photocatalyst and BocNH 2 as the amine source under aerobic conditions and visible light irradiation. Electron-deficient and electron-rich benzenes react as substrates with moderate to good product yields. The amine scope of the reaction comprises Boc-amine, carbamates, pyrazoles, sulfonimides and urea. Preliminary mechanistic investigations indicate arene oxidation by the triplet of DDQ to radical cations with different electrophilicity and a charge transfer complex between the amine and DDQ as intermediate of the reaction. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The electron is a catalyst

    NASA Astrophysics Data System (ADS)

    Studer, Armido; Curran, Dennis P.

    2014-09-01

    The electron is an efficient catalyst for conducting various types of radical cascade reaction that proceed by way of radical and radical ion intermediates. But because electrons are omnipresent, catalysis by electrons often passes unnoticed. In this Review, a simple analogy between acid/base catalysis and redox catalysis is presented. Conceptually, the electron is a catalyst in much the same way that a proton is a catalyst. The 'electron is a catalyst' paradigm unifies mechanistically an assortment of synthetic transformations that otherwise have little or no apparent relationship. Diverse radical cascades, including unimolecular radical substitution reactions (SRN1-type chemistry), base-promoted homolytic aromatic substitutions (BHAS), radical Heck-type reactions, radical cross-dehydrogenative couplings (CDC), direct arene trifluoromethylations and radical alkoxycarbonylations, can all be viewed as electron-catalysed reactions.

  9. Porphyrinoids as a platform of stable radicals

    PubMed Central

    Shimizu, Daiki

    2018-01-01

    The non-innocent ligand nature of porphyrins was observed for compound I in enzymatic cycles of cytochrome P450. Such porphyrin radicals were first regarded as reactive intermediates in catabolism, but recent studies have revealed that porphyrinoids, including porphyrins, ring-contracted porphyrins, and ring-expanded porphyrins, display excellent radical-stabilizing abilities to the extent that radicals can be handled like usual closed-shell organic molecules. This review surveys four types of stable porphyrinoid radical and covers their synthetic methods and properties such as excellent redox properties, NIR absorption, and magnetic properties. The radical-stabilizing abilities of porphyrinoids stem from their unique macrocyclic conjugated systems with high electronic and structural flexibilities. PMID:29675188

  10. Iron-Catalyzed Enantioselective Cross-Coupling Reactions of α-Chloroesters with Aryl Grignard Reagents.

    PubMed

    Jin, Masayoshi; Adak, Laksmikanta; Nakamura, Masaharu

    2015-06-10

    The first iron-catalyzed enantioselective cross-coupling reaction between an organometallic compound and an organic electrophile is reported. Synthetically versatile racemic α-chloro- and α-bromoalkanoates were coupled with aryl Grignard reagents in the presence of catalytic amounts of an iron salt and a chiral bisphosphine ligand, giving the products in high yields with acceptable and synthetically useful enantioselectivities (er up to 91:9). The produced α-arylalkanoates were readily converted to the corresponding α-arylalkanoic acids with high optical enrichment (er up to >99:1) via simple deprotections/recrystallizations. The results of radical probe experiments are consistent with a mechanism that involves the formation of an alkyl radical intermediate, which undergoes subsequent enantioconvergent arylation in an intermolecular manner. The developed asymmetric coupling offers not only facile and practical access to various chiral α-arylalkanoic acid derivatives, which are of significant pharmaceutical importance, but also a basis of controlling enantioselectivity in an iron-catalyzed organometallic transformation.

  11. An ab initio investigation of possible intermediates in the reaction of the hydroxyl and hydroperoxyl radicals

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Ab initio quantum chemical techniques are used to investigate covalently-bonded and hydrogen-bonded species that may be important intermediates in the reaction of hydroxyl and hydroperoxyl radicals. Stable structures of both types are identified. Basis sets of polarized double zeta quality and large scale configuration interaction wave functions are utilized. Based on electronic energies, the covalently bonded HOOOH species is 26.4 kcal/mol more stable than the OH and HO2 radicals. Similarly, the hydrogen bonded HO---HO2 species has an electronic energy 4.7 kcal/mol below that of the component radicals, after correction is made for the basis set superposition error. The hydrogen bonded form is planar, possesses one relatively normal hydrogen bond, and has the lowest energy 3A' and 1A' states that are essentially degenerate. The 1A" and 3A" excited states produced by rotation of the unpaired OH electron into the molecular plane are very slightly bound.

  12. Theoretical Study on Sers of Wagging Vibrations of Benzyl Radical Adsorbed on Silver Electrodes

    NASA Astrophysics Data System (ADS)

    Wu, De-Yin; Chen, Yan-Li; Tian, Zhong-Qun

    2016-06-01

    Electrochemical surface-enhanced Raman spectroscopy (EC-SERS) has been used to characterize adsorbed species widely but reaction intermediates rarely on electrodes. In previous studies, the observed SERS signals were proposed from surface benzyl species due to the electrochemical reduction of benzyl chloride on silver electrode surfaces. In this work, we reinvestigated the vibrational assignments of benzyl chloride and benzyl radical as the reaction intermediate. On the basis of density functional theoretical (DFT) calculations and normal mode analysis, our systematical results provide more reasonable new assignments for both surface species. Further, we investigated adsorption configurations, binding energies, and vibrational frequency shifts of benzyl radical interacting with silver. Our calculated results show that the wagging vibration displays significant vibrational frequency shift, strong coupling with some intramolecular modes in the phenyl ring, and significant changes in intensity of Raman signals. The study also provides absolute Raman intensity in benzyl halides and discuss the enhancement effect mainly due to the binding interaction with respect to free benzyl radical.

  13. Intermediates in the reaction of substrate-free cytochrome P450cam with peroxy acetic acid.

    PubMed

    Schünemann, V; Jung, C; Trautwein, A X; Mandon, D; Weiss, R

    2000-08-18

    Freeze-quenched intermediates of substrate-free cytochrome 57Fe-P450(cam) in reaction with peroxy acetic acid as oxidizing agent have been characterized by EPR and Mossbauer spectroscopy. After 8 ms of reaction time the reaction mixture consists of approximately 90% of ferric low-spin iron with g-factors and hyperfine parameters of the starting material; the remaining approximately 10% are identified as a free radical (S' = 1/2) by its EPR and as an iron(IV) (S= 1) species by its Mossbauer signature. After 5 min of reaction time the intermediates have disappeared and the Mossbauer and EPR-spectra exhibit 100% of the starting material. We note that the spin-Hamiltonian analysis of the spectra of the 8 ms reactant clearly reveals that the two paramagnetic species, e.g. the ferryl (iron(IV)) species and the radical, are not exchanged coupled. This led to the conclusion that under the conditions used, peroxy acetic acid oxidized a tyrosine residue (probably Tyr-96) into a tyrosine radical (Tyr*-96), and the iron(III) center of substrate-free P450(cam) to iron(IV).

  14. Simultaneous photocatalytic and microbial degradation of dye-containing wastewater by a novel g-C3N4-P25/photosynthetic bacteria composite

    PubMed Central

    Zhang, Xinying; Wu, Yan; Xiao, Gao; Tang, Zhenping; Wang, Meiyin; Liu, Fuchang; Zhu, Xuefeng

    2017-01-01

    Azo dyes are very resistant to light-induced fading and biodegradation. Existing advanced oxidative pre-treatment methods based on the generation of non-selective radicals cannot efficiently remove these dyes from wastewater streams, and post-treatment oxidative dye removal is problematic because it may leave many byproducts with unknown toxicity profiles in the outgoing water, or cause expensive complete mineralization. These problems could potentially be overcome by combining photocatalysis and biodegradation. A novel visible-light-responsive hybrid dye removal agent featuring both photocatalysts (g-C3N4-P25) and photosynthetic bacteria encapsulated in calcium alginate beads was prepared by self-assembly. This system achieved a removal efficiency of 94% for the dye reactive brilliant red X-3b and also reduced the COD of synthetic wastewater samples by 84.7%, successfully decolorized synthetic dye-contaminated wastewater and reduced its COD, demonstrating the advantages of combining photocatalysis and biocatalysis for wastewater purification. The composite apparently degrades X-3b by initially converting the dye into aniline and phenol derivatives whose aryl moieties are then attacked by free radicals to form alkyl derivatives, preventing the accumulation of aromatic hydrocarbons that might suppress microbial activity. These alkyl intermediates are finally degraded by the photosynthetic bacteria. PMID:28273118

  15. Thioperoxy derivative generated by UV-induced transformation of N-hydroxypyridine-2(1H)-thione isolated in low-temperature matrixes.

    PubMed

    Lapinski, Leszek; Gerega, Anna; Sobolewski, Andrzej L; Nowak, Maciej J

    2008-01-17

    Photochemical transformations of N-hydroxypyridine-2(1H)-thione and its deuterated isotopologue were studied using the matrix-isolation technique. Low-temperature Ar and N2 matrixes containing monomers of this compound were irradiated with continuous-wave near-UV light. Photogeneration of two products was observed in these experiments. The relative population of these photogenerated species was found to be dependent on the wavelength of the UV light used for irradiation. By comparison of the IR spectra of the photoproducts with the spectra simulated theoretically at the DFT(B3LYP)/6-311++G(d, p) level, the final and the intermediate products were identified as rotameric forms of 2-hydroxysulfanyl-pyridine. This is the first report on generation of this thioperoxy derivative of pyridine. The mechanism of photogeneration of 2-hydroxysulfanyl-pyridine involves a photoinduced cleavage of the N-O bond in N-hydroxypyridine-2(1H)-thione, generation of the .OH radical weakly bound with the remaining pyridylthiyl radical, and recombination of these two radicals by formation of the new -S-O- bond. A theoretical model supporting this interpretation was constructed on the basis of approximate coupled cluster (CC2) calculations of the potential energy surfaces of the ground and first excited singlet electronic states of the system. After electronic excitation of the monomeric N-hydroxypyridine-2(1H)-thione, the molecule evolves to the conical intersection with the potential energy surface of the ground state and then to the global minimum corresponding to 2-hydroxysulfanyl-pyridine.

  16. Radical prostatectomy--long-term oncological outcome from a community hospital.

    PubMed

    Tol-Fakkar, Maria; Hermansson, Carl Gustaf; Hugosson, Jonas; Pedersen, Knud; Aus, Gunnar

    2003-01-01

    Radical prostatectomy has recently been shown to prolong cancer-specific survival compared to watchful waiting in patients with localized prostate cancer. Most patients who seek medical advice for this disease are treated in hospitals in which the operation is performed relatively infrequently. The aim of this study is to report the oncological outcome at intermediate- to long-term follow-up after radical prostatectomy performed in a community hospital. A total of 148 patients underwent radical prostatectomy at Ryhov County Hospital between 1985 and 1997. Patients without T3 tumours, prostate-specific antigen (PSA) >10 ng/ml or poorly differentiated tumours were judged to be in a low-risk group, those with one risk factor to be in an intermediate group and those with two or more factors to be in a high-risk group. The projected biochemical disease free- and cancer-specific survival rates were compared between these risk groups. Median follow-up was 96 months for surviving patients. Patients in the low- and intermediate risk groups had equal 10-year PSA-free survival rates of 68.8%, while that in the high-risk group was only 19.3% (9-year data). Corresponding cancer-specific survival rates were 93% and 84%, respectively. The oncological outcome seems comparable to that reported in the literature, even when the operation is performed in a low-volume community-based setting.

  17. Cellular redox dysfunction in the development of cardiovascular diseases.

    PubMed

    Kanaan, Georges N; Harper, Mary-Ellen

    2017-11-01

    To meet its exceptionally high energy demands, the heart relies largely on fatty acid oxidation, which then drives the oxidative phosphorylation system in mitochondria. Each day, this system produces about 6kg of ATP to sustain heart function. Fatty acid oxidation is sometimes associated with high rates of mitochondrial reactive oxygen species (ROS) production. By definition, ROS are singlet electron intermediates formed during the partial reduction of oxygen to water and they include radical and non-radical intermediates like superoxide, hydrogen peroxide and hydroxyl radical. Superoxide can also interact with nitric oxide to produce peroxynitrite that in turn can give rise to other radical or non-radical reactive nitrogen species (RNS) like nitrogen dioxide, dinitrogen trioxide and others. While mitochondrial and cellular functions can be impaired by ROS if they accumulate, under normal physiological conditions ROS are important signaling molecules in the cardiovascular system. A fine balance between ROS production and antioxidant systems, including glutathione redox, is essential in the heart; otherwise the ensuing damage can contribute to pathogenic processes, which can culminate in endothelial dysfunction, atherosclerosis, hypertension, cardiac hypertrophy, arrhythmias, myocardial ischemia/reperfusion damage, and heart failure. Here we provide a succinct review of recent findings. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Time-Resolved Hydroxyl Radical Footprinting of RNA with X-Rays.

    PubMed

    Hao, Yumeng; Bohon, Jen; Hulscher, Ryan; Rappé, Mollie C; Gupta, Sayan; Adilakshmi, Tadepalli; Woodson, Sarah A

    2018-06-01

    RNA footprinting by hydroxyl radical cleavage provides 'snapshots' of RNA tertiary structure or protein interactions that bury the RNA backbone. Generation of hydroxyl radicals with a high-flux synchrotron X-ray beam provides analysis on a short timescale (5-100 msec), which enables the structures of folding intermediates or other transient conformational states to be determined in biochemical solutions or cells. This article provides protocols for using synchrotron beamlines for hydroxyl radical footprinting. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  19. Radical production from the interaction of ozone and PUFA as demonstrated by electron spin resonance spin-trapping techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pryor, W.A.; Prier, D.G.; Church, D.F.

    1981-02-01

    There is considerable evidence that indicates that a fraction of the damage caused by ozone to cellular systems involves radical-mediated reactions. The most direct method for probing the mechanism by which ozone reacts with target molecules such as polyunsaturated fatty acids involves the use of electron spin resonance. In 1968, Goldstein et al. reported that ESR signals were observed when 40 ppM ozone in air is bubbled through linoleic acid. We have repeated this experiment and have performed several experiments modified from this design; in none of these do we observe ESR signals. We have studied the reaction of ozonemore » with PUFA at -78/sup 0/C using spin traps. Spin traps themselves react with ozone, but the following protocol avoids that reaction. (1) Ozone in air or oxygen-free ozone is allowed to bubble through the sample in Freon-11 in an ESR tube at -78/sup 0/C; no ESR absorption is observed. (2) Unreacted ozone is flushed out with argon or nitrogen. (3) The spin trap in Freon-11 is added to give a 0.1 M solution, still at -78/sup 0/C; no ESR signal is observed. (4) The tube is allowed to warm slowly. At about -45/sup 0/C, the ESR spectra of spin adducts appear. Using this method with methyl linoleate we observe spin adducts of alkoxy radicals and also a signal that is consistent with a carbon radical with one ..cap alpha..-H. We hypothesize that an intermediate is formed from the reaction of ozone with PUFA that is stable at -78/sup 0/Cbut decomposes to form radicals at about -45/sup 0/C. We tentatively identify the intermediate as a trioxide on the basis of analogies and its temperature profile for decomposition to radicals. It appears reasonable to suggest that the reaction(s) responsible for the production of radicals under these low-temperature conditions also occurs at room temperature. Although the low-temperature intermediate cannot be observed at ambient temperatures, radicals from it could be responsible for the effects on autoxidation that are induced by ozone.« less

  20. Standard Gibbs free energies of reactions of ozone with free radicals in aqueous solution: quantum-chemical calculations.

    PubMed

    Naumov, Sergej; von Sonntag, Clemens

    2011-11-01

    Free radicals are common intermediates in the chemistry of ozone in aqueous solution. Their reactions with ozone have been probed by calculating the standard Gibbs free energies of such reactions using density functional theory (Jaguar 7.6 program). O(2) reacts fast and irreversibly only with simple carbon-centered radicals. In contrast, ozone also reacts irreversibly with conjugated carbon-centered radicals such as bisallylic (hydroxycylohexadienyl) radicals, with conjugated carbon/oxygen-centered radicals such as phenoxyl radicals, and even with nitrogen- oxygen-, sulfur-, and halogen-centered radicals. In these reactions, further ozone-reactive radicals are generated. Chain reactions may destroy ozone without giving rise to products other than O(2). This may be of importance when ozonation is used in pollution control, and reactions of free radicals with ozone have to be taken into account in modeling such processes.

  1. Cross-benzoin and Stetter-type reactions mediated by KOtBu-DMF via an electron-transfer process.

    PubMed

    Ragno, Daniele; Zaghi, Anna; Di Carmine, Graziano; Giovannini, Pier Paolo; Bortolini, Olga; Fogagnolo, Marco; Molinari, Alessandra; Venturini, Alessandro; Massi, Alessandro

    2016-10-18

    The condensation of aromatic α-diketones (benzils) with aromatic aldehydes (benzoin-type reaction) and chalcones (Stetter-type reaction) in DMF in the presence of catalytic (25 mol%) KOtBu is reported. Both types of umpolung processes proceed with good efficiency and complete chemoselectivity. On the basis of spectroscopic evidence (MS analysis) of plausible intermediates and literature reports, the occurrence of different ionic pathways have been evaluated to elucidate the mechanism of a model cross-benzoin-like reaction along with a radical route initiated by an electron-transfer process to benzil from the carbamoyl anion derived from DMF. This mechanistic investigation has culminated in a different proposal, supported by calculations and a trapping experiment, based on double electron-transfer to benzil with formation of the corresponding enediolate anion as the key reactive intermediate. A mechanistic comparison between the activation modes of benzils in KOtBu-DMF and KOtBu-DMSO systems is also described.

  2. Helium Nanodroplet Isolation of the Cyclobutyl, 1-Methylallyl, and Allylcarbinyl Radicals: Infrared Spectroscopy and Ab Initio Computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.

    Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less

  3. Helium Nanodroplet Isolation of the Cyclobutyl, 1-Methylallyl, and Allylcarbinyl Radicals: Infrared Spectroscopy and Ab Initio Computations

    DOE PAGES

    Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.

    2017-09-22

    Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less

  4. Electrochemical Behavior of Quinoxalin-2-one Derivatives at Mercury Electrodes and Its Analytical Use

    PubMed Central

    Zimpl, Milan; Skopalova, Jana; Jirovsky, David; Bartak, Petr; Navratil, Tomas; Sedonikova, Jana; Kotoucek, Milan

    2012-01-01

    Derivatives of quinoxalin-2-one are interesting compounds with potential pharmacological activity. From this point of view, understanding of their electrochemical behavior is of great importance. In the present paper, a mechanism of electrochemical reduction of quinoxalin-2-one derivatives at mercury dropping electrode was proposed. Pyrazine ring was found to be the main electroactive center undergoing a pH-dependent two-electron reduction process. The molecule protonization of nitrogen in the position 4 precedes the electron acceptance forming a semiquinone radical intermediate which is relatively stable in acidic solutions. Its further reduction is manifested by separated current signal. A positive mesomeric effect of the nonprotonized amino group in the position 7 of the derivative III accelerates the semiquinone reduction yielding a single current wave. The suggested reaction mechanism was verified by means of direct current polarography, differential pulse, cyclic and elimination voltammetry, and coulometry with subsequent GC/MS analysis. The understanding of the mechanism was applied in developing of analytical method for the determination of the studied compounds. PMID:22666117

  5. Free-radical chemistry of sulfite.

    PubMed Central

    Neta, P; Huie, R E

    1985-01-01

    The free-radical chemistry of sulfite oxidation is reviewed. Chemical transformations of organic and biological molecules induced by sulfite oxidation are summarized. The kinetics of the free-radical oxidations of sulfite are discussed, as are the kinetics of the reactions of the sulfite-derived radicals SO3 and the peroxy derivative SO5 with organic compounds. PMID:3830699

  6. Radicals and molecular products from the gas-phase pyrolysis of lignin model compounds. Cinnamyl alcohol

    PubMed Central

    Khachatryan, Lavrent; Xu, Meng-xia; Wu, Ang-jian; Pechagin, Mikhail; Asatryan, Rubik

    2016-01-01

    The experimental results on detection and identification of intermediate radicals and molecular products from gas-phase pyrolysis of cinnamyl alcohol (CnA), the simplest non-phenolic lignin model compound, over the temperature range of 400–800 °C are reported. The low temperature matrix isolation – electron paramagnetic resonance (LTMI-EPR) experiments along with the theoretical calculations, provided evidences on the generation of the intermediate carbon and oxygen centered as well as oxygen-linked, conjugated radicals. A mechanistic analysis is performed based on density functional theory to explain formation of the major products from CnA pyrolysis; cinnamaldehyde, indene, styrene, benzaldehyde, 1-propynyl benzene, and 2-propenyl benzene. The evaluated bond dissociation patterns and unimolecular decomposition pathways involve dehydrogenation, dehydration, 1,3-sigmatropic H-migration, 1,2-hydrogen shift, C—O and C—C bond cleavage processes. PMID:28344372

  7. Distribution of free radicals and intermediates during the photodegradation of polychlorinated biphenyls strongly affected by cosolvents and TiO₂ catalyst.

    PubMed

    Zhu, Xiangdong; Wang, Yujun; Qin, Wenxiu; Zhang, Shicheng; Zhou, Dongmei

    2016-02-01

    Polychlorinated biphenyls (PCBs) pose potential ecological risk because of their high toxicity and carcinogenicity. Photodegradation, which is an important process for the removal of PCBs, is greatly influenced by the cosolvent and catalyst. Hence, it is important to explore their effects on the photodegradation behavior of PCBs. In this study, 2,4,4'-trichlorobiphenyl (PCB28) was selected as a model compound, and the effects of two typical cosolvents, namely acetone and ethanol, and TiO2 catalyst on the distributions of free radicals and intermediates were investigated. Interestingly, the TiO2 catalyst did not promote PCB28 photodegradation. Moreover, the free radical distribution was greatly influenced in the presence of the TiO2 catalyst, while was only slightly affected in its absence by the cosolvent kinds. The main photodegradation pathways are proposed on the basis of the distribution of detected intermediates, which were significantly regulated by both the cosolvent and TiO2 catalyst. The results provide novel insights into the photodegradation of PCBs and may have important implications for choosing cosolvent in desorbing soil PCBs and consequently enhancing PCBs degradation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Sulfate radicals enable a non-enzymatic Krebs cycle precursor

    PubMed Central

    Keller, Markus A.; Kampjut, Domen; Harrison, Stuart A.; Ralser, Markus

    2017-01-01

    The evolutionary origins of the tricarboxylic acid cycle (TCA), or Krebs cycle, are so far unclear. Despite a few years ago, the existence of a simple non-enzymatic Krebs-cycle catalyst has been dismissed ‘as an appeal to magic’, citrate and other intermediates have meanwhile been discovered on a carbonaceous meteorite and do interconvert non-enzymatically. To identify the non-enzymatic Krebs cycle catalyst, we used combinatorial, quantitative high-throughput metabolomics to systematically screen iron and sulfate reaction milieus that orient on Archean sediment constituents. TCA cycle intermediates are found stable in water and in the presence of most iron and sulfate species, including simple iron-sulfate minerals. However, we report that TCA intermediates undergo 24 interconversion reactions in the presence of sulfate radicals that form from peroxydisulfate. The non-enzymatic reactions critically cover a topology as present in the Krebs cycle, the glyoxylate shunt and the succinic semialdehyde pathways. Assembled in a chemical network, the reactions achieve more than ninety percent carbon recovery. Our results show that a non-enzymatic precursor for the Krebs cycle is biologically sensible, efficient, and forms spontaneously in the presence of sulfate radicals. PMID:28584880

  9. Synthesis of the (N2)3- radical from Y2+ and its protonolysis reactivity to form (N2H2)2- via the Y[N(SiMe3)2]3/KC8 reduction system.

    PubMed

    Fang, Ming; Lee, David S; Ziller, Joseph W; Doedens, Robert J; Bates, Jefferson E; Furche, Filipp; Evans, William J

    2011-03-23

    Examination of the Y[N(SiMe(3))(2)](3)/KC(8) reduction system that allowed isolation of the (N(2))(3-) radical has led to the first evidence of Y(2+) in solution. The deep-blue solutions obtained from Y[N(SiMe(3))(2)](3) and KC(8) in THF at -35 °C under argon have EPR spectra containing a doublet at g(iso) = 1.976 with a 110 G hyperfine coupling constant. The solutions react with N(2) to generate (N(2))(2-) and (N(2))(3-) complexes {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2)) (1) and {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-η(2):η(2)-N(2))[K(THF)(6)] (2), respectively, and demonstrate that the Y[N(SiMe(3))(2)](3)/KC(8) reaction can proceed through an Y(2+) intermediate. The reactivity of (N(2))(3-) radical with proton sources was probed for the first time for comparison with the (N(2))(2-) and (N(2))(4-) chemistry. Complex 2 reacts with [Et(3)NH][BPh(4)] to form {[(Me(3)Si)(2)N](2)(THF)Y}(2)(μ-N(2)H(2)), the first lanthanide (N(2)H(2))(2-) complex derived from dinitrogen, as well as 1 as a byproduct, consistent with radical disproportionation reactivity.

  10. Peroxidase-type reactions suggest a heterolytic/nucleophilic O–O joining mechanism in the heme-dependent chlorite dismutase†

    PubMed Central

    Mayfield, Jeffrey A.; Blanc, Béatrice; Rodgers, Kenton R.; Lukat-Rodgers, Gudrun S.; DuBois, Jennifer L.

    2015-01-01

    Heme-containing chlorite dismutases (Clds) catalyze a highly unusual O–O bond forming reaction. The O–O cleaving reactions of hydrogen peroxide and peracetic acid (PAA) with the Cld from Dechloromonas aromatica (DaCld) were studied to better understand the Cl–O cleavage of the natural substrate and subsequent O–O bond formation. While reactions with H2O2 resulted in slow destruction of the heme, at acidic pH, heterolytic cleavage of the O–O bond of PAA cleanly yielded the ferryl porphyrin cation radical (Compound I). At alkaline pH, the reaction proceeds more rapidly and the first observed intermediate is a ferryl heme. Freezequench EPR confirmed that the latter has an uncoupled protein-based radical, indicating that Compound I is the first intermediate formed at all pH values and that radical migration is faster at alkaline pH. These results suggest by analogy that two-electron Cl–O bond cleavage to yield a ferryl-porphyrin cation radical is the most likely initial step in O–O bond formation from chlorite. PMID:24001266

  11. Meta-analysis of studies comparing oncologic outcomes of radical prostatectomy and brachytherapy for localized prostate cancer

    PubMed Central

    Cozzi, Gabriele; Musi, Gennaro; Bianchi, Roberto; Bottero, Danilo; Brescia, Antonio; Cioffi, Antonio; Cordima, Giovanni; Delor, Maurizio; Di Trapani, Ettore; Ferro, Matteo; Matei, Deliu Victor; Russo, Andrea; Mistretta, Francesco Alessandro; De Cobelli, Ottavio

    2017-01-01

    Background: The aim of this study was to compare oncologic outcomes of radical prostatectomy (RP) with brachytherapy (BT). Methods: A literature review was conducted according to the ‘Preferred reporting items for systematic reviews and meta-analyses’ (PRISMA) statement. We included studies reporting comparative oncologic outcomes of RP versus BT for localized prostate cancer (PCa). From each comparative study, we extracted the study design, the number and features of the included patients, and the oncologic outcomes expressed as all-cause mortality (ACM), PCa-specific mortality (PCSM) or, when the former were unavailable, as biochemical recurrence (BCR). All of the data retrieved from the selected studies were recorded in an electronic database. Cumulative analysis was conducted using the Review Manager version 5.3 software, designed for composing Cochrane Reviews (Cochrane Collaboration, Oxford, UK). Statistical heterogeneity was tested using the Chi-square test. Results: Our cumulative analysis did not show any significant difference in terms of BCR, ACM or PCSM rates between the RP and BT cohorts. Only three studies reported risk-stratified outcomes of intermediate- and high-risk patients, which are the most prone to treatment failure. Conclusions: our analysis suggested that RP and BT may have similar oncologic outcomes. However, the analysis included a limited number of studies, and most of them were retrospective, making it impossible to derive any definitive conclusion, especially for intermediate- and high-risk patients. In this scenario, appropriate urologic counseling remains of utmost importance. PMID:29662542

  12. Meta-analysis of studies comparing oncologic outcomes of radical prostatectomy and brachytherapy for localized prostate cancer.

    PubMed

    Cozzi, Gabriele; Musi, Gennaro; Bianchi, Roberto; Bottero, Danilo; Brescia, Antonio; Cioffi, Antonio; Cordima, Giovanni; Delor, Maurizio; Di Trapani, Ettore; Ferro, Matteo; Matei, Deliu Victor; Russo, Andrea; Mistretta, Francesco Alessandro; De Cobelli, Ottavio

    2017-11-01

    The aim of this study was to compare oncologic outcomes of radical prostatectomy (RP) with brachytherapy (BT). A literature review was conducted according to the 'Preferred reporting items for systematic reviews and meta-analyses' (PRISMA) statement. We included studies reporting comparative oncologic outcomes of RP versus BT for localized prostate cancer (PCa). From each comparative study, we extracted the study design, the number and features of the included patients, and the oncologic outcomes expressed as all-cause mortality (ACM), PCa-specific mortality (PCSM) or, when the former were unavailable, as biochemical recurrence (BCR). All of the data retrieved from the selected studies were recorded in an electronic database. Cumulative analysis was conducted using the Review Manager version 5.3 software, designed for composing Cochrane Reviews (Cochrane Collaboration, Oxford, UK). Statistical heterogeneity was tested using the Chi-square test. Our cumulative analysis did not show any significant difference in terms of BCR, ACM or PCSM rates between the RP and BT cohorts. Only three studies reported risk-stratified outcomes of intermediate- and high-risk patients, which are the most prone to treatment failure. our analysis suggested that RP and BT may have similar oncologic outcomes. However, the analysis included a limited number of studies, and most of them were retrospective, making it impossible to derive any definitive conclusion, especially for intermediate- and high-risk patients. In this scenario, appropriate urologic counseling remains of utmost importance.

  13. The scavenging reactions of nitrogen dioxide radical and carbonate radical by tea polyphenol derivatives: a pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Miao, Jin-Ling; Wang, Wen-Feng; Pan, Jing-Xi; Lu, Chang-Yuan; Li, Rong-Qun; Yao, Si-De

    2001-02-01

    The reactions of tea polyphenol derivatives, including epicatechin (EC) and epigallocatechin gallate (EGCG), with nitrogen dioxide radical (NO 2rad ) and carbonate radical (CO 3rad - ) have been studied in detail using time-resolved pulse radiolysis technique. In all the cases, the corresponding phenoxyl radical was formed through electron transfer reaction. From the build-up kinetics of the phenoxyl radicals and the decay kinetics of CO 3rad - radical, the reaction rate constants of EC, EGCG with NO 2rad and CO 3rad - were determined to be 9.0×10 7, 1.2×10 8 and 5.6×10 8, 6.6×10 8 dm 3 mol -1 s -1, respectively. Therefore, tea polyphenol derivatives proved to be efficient scavengers of NO 2rad and CO 3rad - radicals.

  14. Murine Macrophages Use Oxygen- and Nitric Oxide-Dependent Mechanisms To Synthesize S-Nitroso-Albumin and To Kill Extracellular Trypanosomes

    PubMed Central

    Gobert, Alain P.; Semballa, Silla; Daulouede, Sylvie; Lesthelle, Sophie; Taxile, Murielle; Veyret, Bernard; Vincendeau, Philippe

    1998-01-01

    Reactive nitrogen intermediates were synthesized spontaneously in cultures of macrophages from Trypanosoma brucei brucei-infected mice by an inducible nitric oxide (NO) synthase. This was inhibited by the addition of nitro-l-arginine. In this paper, we report the kinetics of the fixation of macrophage-derived NO on bovine serum albumin by using an enzyme-linked immunosorbent assay. S nitrosylation was confirmed by the Saville reaction, using mercuric chloride. It is known that reactive oxygen intermediates (ROI) are also synthesized by stimulated macrophages. The fact that NO is able to bind cysteine only under aerobic conditions led us to investigate the role of macrophage-derived ROI in the formation of S-nitrosylated proteins by activated macrophages. The immunoenzymatic signal decreased by 66 and 30% when superoxide dismutase and catalase, respectively, were added to the culture medium of macrophages from infected mice. In addition, the decrease in S-nitrosylated albumin formation correlated with the protection of extracellular trypanosomes from the cytostatic and cytotoxic activity of NO. Melatonin, a hydroxyl radical scavenger resulting from the decomposition of peroxynitrous acid, had no effect. All these data support the concept that an interaction between NO and ROI promoted the production of S-nitroso-albumin by activated macrophages from infected mice. PMID:9712749

  15. Direct detection of the triphenylpyrylium-derived short-lived intermediates in the photocatalyzed degradation of acetaminophen, acetamiprid, caffeine and carbamazepine.

    PubMed

    Martinez-Haya, R; Gomis, J; Arques, A; Amat, A M; Miranda, M A; Marin, M L

    2017-09-09

    Advanced oxidation processes are useful methodologies to accomplish abatement of contaminants; however, elucidation of the reaction mechanisms is hampered by the difficult detection of the short-lived primary key species involved in the photocatalytic processes. Nevertheless, herein the combined use of an organic photocatalyst such as triphenylpyrylium (TPP + ) and photophysical techniques based on emission and absorption spectroscopy allowed monitoring the photocatalyst-derived short-lived intermediates. This methodology has been applied to the photocatalyzed degradation of different pollutants, such as acetaminophen, acetamiprid, caffeine and carbamazepine. First, photocatalytic degradation of a mixture of the pollutants showed that acetaminophen was the most easily photodegraded, followed by carbamazepine and caffeine, being the abatement of acetamiprid almost negligible. This process was accompanied by mineralization, as demonstrated by trapping of carbon dioxide using barium hydroxide. Then, emission spectroscopy measurements (steady-state and time-resolved fluorescence) allowed demonstrating quenching of the singlet excited state of TPP + . Laser flash photolysis experiments with absorption detection showed that oxidation of contaminants is accompanied by TPP + reduction, with formation of a pyranyl radical (TPP), that constituted a fingerprint of the redox nature of the occurring process. The relative amounts of TPP detected was also correlated with the efficiency of the photodegradation process. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Direct detection of the triphenylpyrylium-derived short-lived intermediates in the photocatalyzed degradation of acetaminophen, acetamiprid, caffeine and carbamazepine.

    PubMed

    Martinez-Haya, R; Gomis, J; Arques, A; Amat, A M; Miranda, M A; Marin, M L

    2018-08-15

    Advanced oxidation processes are useful methodologies to accomplish abatement of contaminants; however, elucidation of the reaction mechanisms is hampered by the difficult detection of the short-lived primary key species involved in the photocatalytic processes. Nevertheless, herein the combined use of an organic photocatalyst such as triphenylpyrylium (TPP + ) and photophysical techniques based on emission and absorption spectroscopy allowed monitoring the photocatalyst-derived short-lived intermediates. This methodology has been applied to the photocatalyzed degradation of different pollutants, such as acetaminophen, acetamiprid, caffeine and carbamazepine. First, photocatalytic degradation of a mixture of the pollutants showed that acetaminophen was the most easily photodegraded, followed by carbamazepine and caffeine, being the abatement of acetamiprid almost negligible. This process was accompanied by mineralization, as demonstrated by trapping of carbon dioxide using barium hydroxide. Then, emission spectroscopy measurements (steady-state and time-resolved fluorescence) allowed demonstrating quenching of the singlet excited state of TPP + . Laser flash photolysis experiments with absorption detection showed that oxidation of contaminants is accompanied by TPP + reduction, with formation of a pyranyl radical (TPP), that constituted a fingerprint of the redox nature of the occurring process. The relative amounts of TPP detected was also correlated with the efficiency of the photodegradation process. Copyright © 2018. Published by Elsevier B.V.

  17. Theoretical study of the reactions of the hydroselenyl radical (HSe●) with the selenenic radical (HSeO●).

    PubMed

    Vega-Teijido, Mauricio Angel; Kieninger, Martina; Ventura, Oscar N

    2017-12-05

    The formation of selenium species in some biological processes involves the generation of ionic and radical intermediates such as RSe ● , RSe - , RSeO ● , and RSeO - , among others. We performed a theoretical study of the possible mechanisms for the reaction of the two simplest Se radicals-the hydroselenyl (HSe ● ) and selenenic (HSeO ● ) radicals, in which the possible products, intermediates, and transition-state structures were investigated. Density functional theory (DFT) was applied at the B3LYP/6-311++G(3df,3pd) level and the Ahlrichs Coulomb fitting basis sets were employed with an effective core potential (ECP) for both Se atoms. The same procedure was used to calculate the electronic density. All calculations were also performed using the M06-2X functional, which describes weaker bonds better than B3LYP does. In the reaction of interest, the so-called CR complex (HSe····SeOH) is formed initially. After passing through the transition state TS1, cis-HSeSeOH is obtained as a product. If a low barrier is then overcome (passing through the transition state TS32), the trans-HSeSeOH species is obtained. The CR complex can also rearrange into the intermediate INT after overcoming the barrier presented by the transition state TS2. Additionally, the decomposition of INT to H 2 O and 1 Se 2 is possible through another transition state. This reaction is not included in this study. We also observed a second possible route for the conversion of INT to one of the HSeSeOH species; this route occurs through two pathways (with transition states TS31 and TS32). A comparison of some of the results with those obtained for sulfur analogs along the same pathways is also presented in this work. Graphical abstract Electronic envelopes for HSeO ● and HSe ● radicals.

  18. EPR parameters of L-α-alanine radicals in aqueous solution: a first-principles study

    NASA Astrophysics Data System (ADS)

    Janbazi, Mehdi; T. Azar, Yavar; Ziaie, Farhood

    2018-07-01

    EPR (electron paramagnetic resonance) response for a wide range of possible alanine radicals has been analysed employing quantum chemical methods. The strong correlation between geometry and EPR parameter structure of these radicals has been shown in this research work. Significant solvent effect on EPR parameters has been shown employing both explicit and implicit solvent models. In a relatively good agreement with the experiment, stable conformation of these radicals in acidic and basic conditions was determined, and a new conformation was suggested based on possible proton transfer in the intermediate pH range. The employed methodology along with experimental results may be used for the characterisation of different radiation-induced amino acid radicals.

  19. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  20. Alcohols as alkylating agents in heteroarene C-H functionalization.

    PubMed

    Jin, Jian; MacMillan, David W C

    2015-09-03

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  1. Mechanism of the OH Radical Addition to Adenine from Quantum-Chemistry Determinations of Reaction Paths and Spectroscopic Tracking of the Intermediates.

    PubMed

    Francés-Monerris, Antonio; Merchán, Manuela; Roca-Sanjuán, Daniel

    2017-01-06

    The OH radical is a well-known mediator in the oxidation of biological structures like DNA. Over the past decades, the precise events taking place after reaction of DNA nucleobases with OH radical have been widely investigated by the scientific community. Thirty years after the proposal of the main routes for the reaction of • OH with adenine ( Vieira , A. ; Steenken , S. J. Am. Chem. Soc. 1990 , 112 , 6986 - 6994 ), the present work demonstrates that the OH radical addition to C4 position is a minor pathway. Instead, the dehydration process is mediated by the A5OH adduct. Conclusions are based on density functional theory calculations for the ground-state reactivity and highly accurate multiconfigurational computations for the excited states of the radical intermediates. The methodology has been also used to study the mechanism giving rise to the mutagens 8-oxoA and FAPyA. Taking into account the agreement between the experimental data and the theoretical results, it is concluded that addition to the C5 and C8 positions accounts for at least ∼44.5% of the total • OH reaction in water solution. Finally, the current findings suggest that hydrophobicity in the DNA/RNA surroundings facilitates the formation of 8-oxoA and FAPyA.

  2. Oxidative stress, free radicals and protein peroxides.

    PubMed

    Gebicki, Janusz M

    2016-04-01

    Primary free radicals generated under oxidative stress in cells and tissues produce a cascade of reactive secondary radicals, which attack biomolecules with efficiency determined by the reaction rate constants and target concentration. Proteins are prominent targets because they constitute the bulk of the organic content of cells and tissues and react readily with many of the secondary radicals. The reactions commonly lead to the formation of carbon-centered radicals, which generally convert in vivo to peroxyl radicals and finally to semistable hydroperoxides. All of these intermediates can initiate biological damage. This article outlines the advantages of the application of ionizing radiations to studies of radicals, with particular reference to the generation of desired radicals, studies of the kinetics of their reactions and correlating the results with events in biological systems. In one such application, formation of protein hydroperoxides in irradiated cells was inhibited by the intracellular ascorbate and glutathione. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Nitrolysis of the CN Single Bond and Related Chemistry of Nitro and Nitroso Groups.

    DTIC Science & Technology

    1988-03-01

    oxime of be 4,5-diphenyl-l-triphenylmethoxy-l,23- triazole (11). It was benzoyl cyanide (Scheme 6), for which radical intermediates hydrolysed by...S-Pnitroxide (a radical scavenger) or benzoyl peroxide (a radical *PhC CCN)- NO2 Ag PhCON--CPh suc)I I source). A partial extension of the overall...two anomethylenenitronate anion. (Attempts to prepare the pathways for fragmentation of the ester (3) (C,.H,0 N.O,): one ketenimine (15) by a

  4. Analysis of the kinetics and yields of OH radical production from the CH3OCH2 + O2 reaction in the temperature range 195-650 K: an experimental and computational study.

    PubMed

    Eskola, A J; Carr, S A; Shannon, R J; Wang, B; Blitz, M A; Pilling, M J; Seakins, P W; Robertson, S H

    2014-08-28

    The methoxymethyl radical, CH3OCH2, is an important intermediate in the low temperature combustion of dimethyl ether. The kinetics and yields of OH from the reaction of the methoxymethyl radical with O2 have been measured over the temperature and pressure ranges of 195-650 K and 5-500 Torr by detecting the hydroxyl radical using laser-induced fluorescence following the excimer laser photolysis (248 nm) of CH3OCH2Br. The reaction proceeds via the formation of an energized CH3OCH2O2 adduct, which either dissociates to OH + 2 H2CO or is collisionally stabilized by the buffer gas. At temperatures above 550 K, a secondary source of OH was observed consistent with thermal decomposition of stabilized CH3OCH2O2 radicals. In order to quantify OH production from the CH3OCH2 + O2 reaction, extensive relative and absolute OH yield measurements were performed over the same (T, P) conditions as the kinetic experiments. The reaction was studied at sufficiently low radical concentrations (∼10(11) cm(-3)) that secondary (radical + radical) reactions were unimportant and the rate coefficients could be extracted from simple bi- or triexponential analysis. Ab initio (CBS-GB3)/master equation calculations (using the program MESMER) of the CH3OCH2 + O2 system were also performed to better understand this combustion-related reaction as well as be able to extrapolate experimental results to higher temperatures and pressures. To obtain agreement with experimental results (both kinetics and yield data), energies of the key transition states were substantially reduced (by 20-40 kJ mol(-1)) from their ab initio values and the effect of hindered rotations in the CH3OCH2 and CH3OCH2OO intermediates were taken into account. The optimized master equation model was used to generate a set of pressure and temperature dependent rate coefficients for the component nine phenomenological reactions that describe the CH3OCH2 + O2 system, including four well-skipping reactions. The rate coefficients were fitted to Chebyshev polynomials over the temperature and density ranges 200 to 1000 K and 1 × 10(17) to 1 × 10(23) molecules cm(-3) respectively for both N2 and He bath gases. Comparisons with an existing autoignition mechanism show that the well-skipping reactions are important at a pressure of 1 bar but are not significant at 10 bar. The main differences derive from the calculated rate coefficient for the CH3OCH2OO → CH2OCH2OOH reaction, which leads to a faster rate of formation of O2CH2OCH2OOH.

  5. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity

    PubMed Central

    Li, Qing; Sun, Xueqi; Gu, Guodong

    2018-01-01

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains. PMID:29597269

  6. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity.

    PubMed

    Li, Qing; Sun, Xueqi; Gu, Guodong; Guo, Zhanyong

    2018-03-28

    Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating "click reaction" with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC 50 < 0.01 mg mL -1 ) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.

  7. Chemical Studies of Free Radical Relocalization

    DTIC Science & Technology

    2015-01-13

    Park, NC 27709-2211 combustion intermediates, rel;ocalization, infrared spectroscopy , computational quantum chemistry REPORT DOCUMENTATION PAGE 11...organotransition metal catalysis are underway. Summary of important results: I. Laboratory Spectroscopy of Gas-phase Hydrocarbon Radicals. We have carried out line...combination of gas-phase laboratory spectroscopy , photochemical studies, and ab initio computations. (1) Spectroscopy . Survey scans between 1800 and

  8. Guanosine radical reactivity explored by pulse radiolysis coupled with transient electrochemistry.

    PubMed

    Latus, A; Alam, M S; Mostafavi, M; Marignier, J-L; Maisonhaute, E

    2015-06-04

    We follow the reactivity of a guanosine radical created by a radiolytic electron pulse both by spectroscopic and electrochemical methods. This original approach allows us to demonstrate that there is a competition between oxidation and reduction of these intermediates, an important result to further analyse the degradation or repair pathways of DNA bases.

  9. A transition-metal-free synthesis of arylcarboxyamides from aryl diazonium salts and isocyanides.

    PubMed

    Xia, Zhonghua; Zhu, Qiang

    2013-08-16

    A transition-metal-free carboxyamidation process, using aryl diazonium tetrafluoroborates and isocyanides under mild conditions, has been developed. This novel conversion was initiated by a base and solvent induced aryl radical, followed by radical addition to isocyanide and single electron transfer (SET) oxidation, affording the corresponding arylcarboxyamide upon hydration of the nitrilium intermediate.

  10. Direct production of OH radicals upon CH overtone activation of (CH{sub 3}){sub 2}COO Criegee intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Fang; Beames, Joseph M.; Lester, Marsha I., E-mail: milester@sas.upenn.edu

    2014-12-21

    Ozonolysis of alkenes, a principle non-photolytic source of atmospheric OH radicals, proceeds through unimolecular decay of energized carbonyl oxide intermediates, known as Criegee intermediates. In this work, cold dimethyl-substituted Criegee intermediates are vibrationally activated in the CH stretch overtone region to drive the 1,4 hydrogen transfer reaction that leads to OH radical products. IR excitation of (CH{sub 3}){sub 2}COO reveals the vibrational states with sufficient oscillator strength, coupling to the reaction coordinate, and energy to surmount the effective barrier (≤ 16.0 kcal mol{sup −1}) to reaction. Insight on the dissociation dynamics is gleaned from homogeneous broadening of the spectral features,more » indicative of rapid intramolecular vibrational energy redistribution and/or reaction, as well as the quantum state distribution of the OH X{sup 2}Π (v = 0) products. The experimental results are compared with complementary electronic structure calculations, which provide the IR absorption spectrum and geometric changes along the intrinsic reaction coordinate. Additional theoretical analysis reveals the vibrational modes and couplings that permit (CH{sub 3}){sub 2}COO to access to the transition state region for reaction. The experimental and theoretical results are compared with an analogous recent study of the IR activation of syn-CH{sub 3}CHOO and its unimolecular decay to OH products [F. Liu, J. M. Beames, A. S. Petit, A. B. McCoy, and M. I. Lester, Science 345, 1596 (2014)].« less

  11. ESR studies on reactivity of protein-derived tyrosyl radicals formed by prostaglandin H synthase and ribonucleotide reductase.

    PubMed

    Lassmann, G; Curtis, J; Liermann, B; Mason, R P; Eling, T E

    1993-01-01

    Using ESR spectroscopy, the ability of enzyme inhibitors to quench protein-derived tyrosyl radicals was studied in two different enzymes, prostaglandin H synthase and ribonucleotide reductase. The prostaglandin H synthase inhibitors indomethacin, eugenol, and MK-410 effectively prevent the formation of tyrosyl radicals during the oxidation of arachidonic acid by prostaglandin H synthase from ram seminal vesicles. A direct reaction with preformed tyrosyl radicals was observed only with eugenol. The other prostaglandin H synthase inhibitors were ineffective. The ribonucleotide reductase inhibitors hydroxyurea and 4-hydroxyanisole, which effectively inactivate the tyrosyl radical in the active site of ribonucleotide reductase present in tumor cells, exhibit a different reactivity with tyrosyl radicals formed by prostaglandin H synthase. Hydroxyurea quenches preformed tyrosyl radicals in prostaglandin H synthase weakly, whereas 4-hydroxyanisole does not quench tyrosyl radicals in prostaglandin H synthase at all. Eugenol, which quenches preformed prostaglandin H synthase-derived tyrosyl radicals, also quenches the tyrosyl radical in ribonucleotide reductase. The results suggest that the reactivity of protein-linked tyrosyl radicals in ribonucleotide reductase and those formed during prostaglandin H synthase catalysis are very different and have unrelated roles in enzyme catalysis.

  12. Mechanism of Air Oxidation of the Fragrance Terpene Geraniol.

    PubMed

    Bäcktorp, Carina; Hagvall, Lina; Börje, Anna; Karlberg, Ann-Therese; Norrby, Per-Ola; Nyman, Gunnar

    2008-01-01

    The fragrance terpene geraniol autoxidizes upon air exposure and forms a mixture of oxidation products, some of which are skin sensitizers. Reactions of geraniol with O2 have been studied with DFT (B3LYP) and the computational results compared to experimentally observed product ratios. The oxidation is initiated by hydrogen abstraction, forming an allylic radical which combines with an O2 molecule to yield an intermediate peroxyl radical. In the subsequent step, geraniol differs from previously studied cases, in which the radical chain reaction is propagated through intermolecular hydrogen abstraction. The hydroxy-substituted allylic peroxyl radical prefers an intramolecular rearrangement, producing observable aldehydes and the hydroperoxyl radical, which in turn can propagate the radical reaction. Secondary oxidation products like epoxides and formates were also considered, and plausible reaction pathways for formation are proposed.

  13. Catalytic routes and oxidation mechanisms in photoreforming of polyols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanwald, Kai E.; Berto, Tobias F.; Eisenreich, Wolfgang

    2016-12-01

    Photocatalytic reforming of biomass-derived oxygenates leads to H 2 generation and evolution of CO 2 via parallel formation of organic intermediates through anodic oxidations on a Rh/TiO 2 photocatalyst. The reaction pathways and kinetics in the photoreforming of C 3–C 6 polyols were explored. Polyols are converted via direct and indirect hole transfer pathways resulting in (i) oxidative rupture of C–C bonds, (ii) oxidation to a-oxygen functionalized aldoses and ketoses (carbonyl group formation) and (iii) light-driven dehydration. Direct hole transfer to chemisorbed oxygenates on terminal Ti(IV)-OH groups, generating alkoxy-radicals that undergo ß-C–C-cleavage, is proposed for the oxidative C–C rupture. Carbonylmore » group formation and dehydration are attributed to indirect hole transfer at surface lattice oxygen sites [Ti_ _ _O_ _ _Ti] followed by the generation of carbon-centered radicals. Polyol chain length impacts the contribution of the oxidation mechanisms favoring the C–C bond cleavage (internal preferred over terminal) as the dominant pathway with higher polyol carbon number.« less

  14. An assessment of potential degradation products in the gas-phase reactions of alternative fluorocarbons in the troposphere

    NASA Technical Reports Server (NTRS)

    Niki, Hiromi

    1990-01-01

    Tropospheric chemical transformations of alternative hydrofluorocarbons (HCF's) and hydrochlorofluorocarbons (HCFC's) are governed by hydroxyl radical initiated oxidation processes, which are likely to be analogous to those known for alkanes and chloroalkanes. A schematic diagram is used to illustrate plausible reaction mechanisms for their atmospheric degradation, where R, R', and R'' denote the F- and/or Cl-substituted alkyl groups derived from HCF's and HCFC's subsequent th the initial H atom abstraction by HO radicals. At present, virtually no kinetic data exist for the majority of these reactions, particularly for those involving RO. Potential degradation intermediates and final products include a large variety of fluorine- and/or chlorine-containing carbonyls, acids, peroxy acids, alcohols, hydrogen peroxides, nitrates and peroxy nitrates, as summarized in the attached table. Probably atmospheric lifetimes of these compounds were also estimated. For some carbonyl and nitrate products shown in this table, there seem to be no significant gas-phase removal mechanisms. Further chemical kinetics and photochemical data are needed to quantitatively assess the atmospheric fate of HCF's and HCFC's, and of the degradation products postulated in this report.

  15. Formation of peroxynitrite during thiol-mediated reduction of sodium nitroprusside.

    PubMed

    Aleryani, S; Milo, E; Kostka, P

    1999-10-18

    Aerobic incubations of equimolar concentrations (5-500 microM) of sodium nitroprusside (SNP) and dithiothreitol (DTT) carried out at pH 7.4 in the absence of light caused a concentration-dependent increase in the rates of oxidation of dihydrorhodamine-123. The enhancement of the rates of oxidation under such conditions was only partially sensitive to the inhibition by 100 mM dimethyl sulfoxide implying the involvement of both peroxynitrite and hydroxyl radicals in the observed effects. The oxidation of dihydrorhodamine-123 in the presence of SNP and DTT was nearly completely abolished by superoxide dismutase (20 U/ml). It was found that such an effect of the enzyme was related primarily to the stabilization of an intermediate of SNP reduction formed upstream to the liberation of nitrosonium ligand. Increased rates of oxidation of dihydrorhodamine-123 were also observed during the reduction of SNP with either L-cysteine or glutathione. It is concluded that thiol-mediated reduction of SNP under aerobic conditions is accompanied by the formation of oxygen-derived free radicals. Nitrosonium ligand liberated from the product(s) of SNP reduction is, under such conditions, converted to peroxynitrite.

  16. Free radicals in chemical carcinogenesis.

    PubMed

    Clemens, M R

    1991-12-15

    During the past decade, remarkable progress has been made in our understanding of cancer-causing agents, mechanisms of cancer formation and the behavior of cancer cells. Cancer is characterized primarily by an increase in the number of abnormal cells derived from a given normal tissue, invasion of adjacent tissues by these abnormal cells, and lymphatic or blood-borne spread of malignant cells to regional lymph nodes and to distant sites (metastasis). It has been estimated that about 75-80% of all human cancers are environmentally induced, 30-40% of them by diet. Only a small minority, possibly no more than 2% of all cases, result purely from inherent genetic changes. Several lines of evidence confirm that the fundamental molecular event or events that cause a cell to become malignant occur at the level of the DNA and a variety of studies indicate that the critical molecular event in chemical carcinogenesis is the interaction of the chemical agent with DNA. The demonstration that DNA isolated from tumor cells can transfect normal cells and render them neoplastic provides direct proof that an alteration of the DNA is responsible for cancer. The transforming genes, or oncogenes, have been identified by restriction endonuclease mapping. One of the characteristics of tumor cells generated by transformation with viruses, chemicals, or radiation is their reduced requirement for serum growth factors. A critical significance of electrophilic metabolites of carcinogenes in chemical carcinogenesis has been demonstrated. A number of "proximate" and "ultimate" metabolites, especially those of aromatic amines, were described. The "ultimate" forms of carcinogens actually interact with cellular constituents to cause neoplastic transformation and are the final metabolic products in most pathways. Recent evidence indicates that free radical derivatives of chemical carcinogens may be produced both metabolically and nonenzymatically during their metabolism. Free radicals carry no charge but do possess a single unpaired electron, making the radical extremely reactive. That such forms may be important in the introduction of neoplastic transformation by chemicals from two lines of evidence. (1) Various molecules that inhibit the formation of free radicals, many of which are termed antioxidants, can inhibit the carcinogenic action of a variety of chemical carcinogens. (2) There are relatively specific metabolic reactions of certain chemical carcinogens, particularly of polycyclic hydrocarbons, for which it has been shown to proceed through free radical intermediates. In conclusion, free radical processes with direct effects on DNA can be proposed for a variety of human and animal carcinogens.(ABSTRACT TRUNCATED AT 400 WORDS)

  17. Singlet versus Triplet Excited State Mediated Photoinduced Dehalogenation Reactions of Itraconazole in Acetonitrile and Aqueous Solutions.

    PubMed

    Zhu, Ruixue; Li, Ming-de; Du, Lili; Phillips, David Lee

    2017-04-06

    Photoinduced dehalogenation of the antifungal drug itraconazole (ITR) in acetonitrile (ACN) and ACN/water mixed solutions was investigated using femtosecond and nanosecond time-resolved transient absorption (fs-TA and ns-TA, respectively) and nanosecond time-resolved resonance Raman spectroscopy (ns-TR 3 ) experiments. An excited resonance energy transfer is found to take place from the 4-phenyl-4,5-dihydro-3H-1,2,4-triazol-3-one part of the molecule to the 1,3-dichlorobenzene part of the molecule when ITR is excited by ultraviolet light. This photoexcitation is followed by a fast carbon-halogen bond cleavage that leads to the generation of radical intermediates via either triplet and/or singlet excited states. It is found that the singlet excited state-mediated carbon-halogen cleavage is the predominant dehalogenation process in ACN solvent, whereas a triplet state-mediated carbon-halogen cleavage prefers to occur in the ACN/water mixed solutions. The singlet-to-triplet energy gap is decreased in the ACN/water mixed solvents and this helps facilitate an intersystem crossing process, and thus, the carbon-halogen bond cleavage happens mostly through an excited triplet state in the aqueous solutions examined. The ns-TA and ns-TR 3 results also provide some evidence that radical intermediates are generated through a homolytic carbon-halogen bond cleavage via predominantly the singlet excited state pathway in ACN but via mainly the triplet state pathway in the aqueous solutions. In strong acidic solutions, protonation at the oxygen and/or nitrogen atoms of the 1,2,4-triazole-3-one group appears to hinder the dehalogenation reactions. This may offer the possibility that the phototoxicity of ITR due to the generation of aryl or halogen radicals can be reduced by protonation of certain moieties in suitably designed ITR halogen-containing derivatives.

  18. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry

    PubMed Central

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-01-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4′-trihydroxy-trans-stilbene (trans-resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI–MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4′-dihydroxy-trans-stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI–MS/MS can be utilized to evaluate different metabolites in various conditions. PMID:27594817

  19. A Derivative Method with Free Radical Oxidation to Predict Resveratrol Metabolites by Tandem Mass Spectrometry.

    PubMed

    Liu, Wangta; Shiue, Yow-Ling; Lin, Yi-Reng; Lin, Hugo You-Hsien; Liang, Shih-Shin

    2015-10-01

    In this study, we demonstrated an oxidative method with free radical to generate 3,5,4'-trihydroxy- trans -stilbene ( trans -resveratrol) metabolites and detect sequentially by an autosampler coupling with liquid chromatography electrospray ionization tandem mass spectrometer (LC-ESI-MS/MS). In this oxidative method, the free radical initiator, ammonium persulfate (APS), was placed in a sample bottle containing resveratrol to produce oxidative derivatives, and the reaction progress was tracked by autosampler sequencing. Resveratrol, a natural product with purported cancer preventative qualities, produces metabolites including dihydroresveratrol, 3,4'-dihydroxy- trans -stilbene, lunularin, resveratrol monosulfate, and dihydroresveratrol monosulfate by free radical oxidation. Using APS free radical, the concentrations of resveratrol derivatives differ as a function of time. Besides simple, convenient and time- and labor saving, the advantages of free radical oxidative method of its in situ generation of oxidative derivatives followed by LC-ESI-MS/MS can be utilized to evaluate different metabolites in various conditions.

  20. Stability and anti-glycation properties of intermediate moisture apple products fortified with green tea.

    PubMed

    Lavelli, Vera; Corey, Mark; Kerr, William; Vantaggi, Claudia

    2011-07-15

    Intermediate moisture products made from blanched apple flesh and green tea extract (about 6mg of monomeric flavan 3-ols added per g of dry apple) or blanched apple flesh (control) were produced, and their quality attributes were investigated over storage for two months at water activity (a(w)) levels of 0.55 and 0.75, at 30°C. Products were evaluated for colour (L(∗), a(∗), and b(∗) Hunter's parameters), phytochemical contents (flavan 3-ols, chlorogenic acid, dihydrochalcones, ascorbic acid and total polyphenols), ferric reducing antioxidant potential, 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl radical-scavenging activity and ability to inhibit formation of fructose-induced advanced glycation end-products. During storage of the fortified and unfortified intermediate moisture apples, water availability was sufficient to support various chemical reactions involving phytochemicals, which degraded at different rates: ascorbic acid>flavan 3-ols>dihydrochalcones and chlorogenic acid. Colour variations occurred at slightly slower rates after green tea addition. In the intermediate moisture apple, antioxidant and anti-glycoxidative properties decreased at similar rates (half-life was about 80d at a(w) of 0.75, 30°C). In the green tea-fortified intermediate moisture apple, the antioxidant activity decreased at a slow rate (half-life was 165d at a(w) of 0.75, 30°C) and the anti-glycoxidative properties did not change, indicating that flavan 3-ol degradation involved the formation of derivatives that retained the properties of their parent compounds. Since these properties are linked to oxidative- and advanced glycation end-product-related diseases, these results suggest that green tea fortification of intermediate moisture apple products could be a valuable means of product innovation, to address consumers' nutritional needs. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Characterization of the product radical structure in the Co(II)-product radical pair state of coenzyme B12-dependent ethanolamine deaminase by using three-pulse 2H ESEEM spectroscopy.

    PubMed

    Warncke, Kurt

    2005-03-08

    Molecular structural features of the product radical in the Co(II)-product radical pair catalytic intermediate state in coenzyme B(12)- (adenosylcobalamin-) dependent ethanolamine deaminase from Salmonella typhimurium have been characterized by using X-band three-pulse electron spin-echo envelope modulation (ESEEM) spectroscopy in the disordered solid state. The Co(II)-product radical pair state was prepared by cryotrapping holoenzyme during steady-state turnover on excess 1,1,2,2-(2)H(4)-aminoethanol or natural abundance, (1)H(4)-aminoethanol. Simulation of the (2)H/(1)H quotient ESEEM (obtained at two microwave frequencies, 8.9 and 10.9 GHz) from the interaction of the unpaired electron localized at C2 of the product radical with nearby (2)H nuclei requires four types of coupled (2)H, which are assigned as follows: (a) a single strongly coupled (effective dipole distance, r(eff) = 2.3 A) (2)H in the C5' methyl group of 5'-deoxyadenosine, (b) two weakly coupled (r(eff) = 4.2 A) (2)H in the C5' methyl group, (c) one (2)H coupling from a beta-(2)H bonded to C1 of the product radical (isotropic hyperfine coupling, A(iso) = 4.7 MHz), and (d) a second type of C1 beta-(2)H coupling (A(iso) = 7.7 MHz). The two beta-(2)H couplings are proposed to arise from two C1-C2 rotamer states of the product radical that are present in approximately equal proportion. A model is presented, in which C5' is positioned at a distance of 3.3 A from C2, which is comparable with the C1-C5' distance in the Co(II)-substrate radical pair intermediate. Therefore, the C5'methyl group remains in close (van der Waals) contact with the substrate and product radical species during the radical rearrangement step of the catalytic cycle, and the C5' center is the sole mediator of radical pair recombination in ethanolamine deaminase.

  2. Methyl Radicals in Oxidative Coupling of Methane Directly Confirmed by Synchrotron VUV Photoionization Mass Spectroscopy

    PubMed Central

    Luo, Liangfeng; Tang, Xiaofeng; Wang, Wendong; Wang, Yu; Sun, Shaobo; Qi, Fei; Huang, Weixin

    2013-01-01

    Gas-phase methyl radicals have been long proposed as the key intermediate in catalytic oxidative coupling of methane, but the direct experimental evidence still lacks. Here, employing synchrotron VUV photoionization mass spectroscopy, we have directly observed the formation of gas-phase methyl radicals during oxidative coupling of methane catalyzed by Li/MgO catalysts. The concentration of gas-phase methyl radicals correlates well with the yield of ethylene and ethane products. These results lead to an enhanced fundamental understanding of oxidative coupling of methane that will facilitate the exploration of new catalysts with improved performance. PMID:23567985

  3. Synthesis of Resveratrol Tetramers via a Stereoconvergent Radical Equilibrium

    PubMed Central

    Keylor, Mitchell H.; Matsuura, Bryan S.; Griesser, Markus; Chauvin, Jean-Philippe R.; Harding, Ryan A.; Kirillova, Mariia S.; Zhu, Xu; Fischer, Oliver J.; Pratt, Derek A.; Stephenson, Corey R. J.

    2017-01-01

    Persistent free radicals have become indispensable in the synthesis of organic materials by living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Herein, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action. PMID:27940867

  4. Free radical generation induced by ultrasound in red wine and model wine: An EPR spin-trapping study.

    PubMed

    Zhang, Qing-An; Shen, Yuan; Fan, Xue-Hui; Martín, Juan Francisco García; Wang, Xi; Song, Yun

    2015-11-01

    Direct evidence for the formation of 1-hydroxylethyl radicals by ultrasound in red wine and air-saturated model wine is presented in this paper. Free radicals are thought to be the key intermediates in the ultrasound processing of wine, but their nature has not been established yet. Electron paramagnetic resonance (EPR) spin trapping with 5,5-dimethyl-l-pyrrolin N-oxide (DMPO) was used for the detection of hydroxyl free radicals and 1-hydroxylethyl free radicals. Spin adducts of hydroxyl free radicals were detected in DMPO aqueous solution after sonication while 1-hydroxylethyl free radical adducts were observed in ultrasound-processed red wine and model wine. The latter radical arose from ethanol oxidation via the hydroxyl radical generated by ultrasound in water, thus providing the first direct evidence of the formation of 1-hydroxylethyl free radical in red wine exposed to ultrasound. Finally, the effects of ultrasound frequency, ultrasound power, temperature and ultrasound exposure time were assessed on the intensity of 1-hydroxylethyl radical spin adducts in model wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Enantioselective conjugate additions of α-amino radicals via cooperative photoredox and Lewis acid catalysis.

    PubMed

    Ruiz Espelt, Laura; McPherson, Iain S; Wiensch, Eric M; Yoon, Tehshik P

    2015-02-25

    We report the highly enantioselective addition of photogenerated α-amino radicals to Michael acceptors. This method features a dual-catalyst protocol that combines transition metal photoredox catalysis with chiral Lewis acid catalysis. The combination of these two powerful modes of catalysis provides an effective, general strategy to generate and control the reactivity of photogenerated reactive intermediates.

  6. Photoproduction of One-Electron Reducing Intermediates by Chromophoric Dissolved Organic Matter (CDOM): Relation to O2- and H2O2 Photoproduction and CDOM Photooxidation.

    PubMed

    Zhang, Yi; Blough, Neil V

    2016-10-06

    A molecular probe, 3-amino-2,2,5,5,-tetramethy-1-pyrrolydinyloxy (3ap), was employed to determine the formation rates of one-electron reducing intermediates generated photochemically from both untreated and borohydride-reduced Suwanee River fulvic and humic acids (SRFA and SRHA, respectively). This stable nitroxyl radical reacts rapidly with reducing radicals and other one-electron reductants to produce a relatively stable product, the hydroxylamine, which can be derivatized with fluorescamine, separated by HPLC and quantified fluorimetrically. We provide evidence that O 2 and 3ap compete for the same pool(s) of photoproduced reducing intermediates, and that under appropriate experimental conditions, the initial rate of hydroxylamine formation (R H ) can provide an estimate of the initial rate of superoxide (O 2 - ) formation. However, comparison of the initial rates of H 2 O 2 formation (R H2O2 ) to that of R H show far larger ratios of R H /R H2O2 (∼6-13) than be accounted for by simple O 2 - dismutation (R H /R H2O2 = 2), implying a significant oxidative sink of O 2 - (∼67-85%). Because of their high reactivity with O 2 - and their likely importance in the photochemistry of CDOM, we suggest that coproduced phenoxy radicals could represent a viable oxidative sink. Because O 2 - /phenoxy radical reactions can lead to more highly oxidized products, O 2 - could be playing a far more significant role in the photooxidation of CDOM than has been previously recognized.

  7. Assaying Oxidative Coupling Activity of CYP450 Enzymes.

    PubMed

    Agarwal, Vinayak

    2018-01-01

    Cytochrome P450 (CYP450) enzymes are ubiquitous catalysts in natural product biosynthetic schemes where they catalyze numerous different transformations using radical intermediates. In this protocol, we describe procedures to assay the activity of a marine bacterial CYP450 enzyme Bmp7 which catalyzes the oxidative radical coupling of polyhalogenated aromatic substrates. The broad substrate tolerance of Bmp7, together with rearrangements of the aryl radical intermediates leads to a large number of products to be generated by the enzymatic action of Bmp7. The complexity of the product pool generated by Bmp7 thus presents an analytical challenge for structural elucidation. To address this challenge, we describe mass spectrometry-based procedures to provide structural insights into aryl crosslinked products generated by Bmp7, which can complement subsequent spectroscopic experiments. Using the procedures described here, for the first time, we show that Bmp7 can efficiently accept polychlorinated aryl substrates, in addition to the physiological polybrominated substrates for the biosynthesis of polyhalogenated marine natural products. © 2018 Elsevier Inc. All rights reserved.

  8. Enhancing and inhibiting effects of aromatic compounds on luminol-dimethylsulfoxide-OH(-) chemiluminescence and determination of intermediates in oxidative hair dyes by HPLC with chemiluminescence detection.

    PubMed

    Zhou, Jian; Xu, Hong; Wan, Guo-Hui; Duan, Chun-Feng; Cui, Hua

    2004-10-08

    The effect of 36 aromatic compounds on the luminol-dimethylsulfoxide-OH(-) chemiluminescence (CL) was systematically studied. It was found that dihydroxybenzenes, and ortho- and para-substituted aminophenols and phenylenediamines inhibited the CL and phenols with three or more than three hydroxyls except phloroglucin tended to enhance the CL. The CL inhibition and enhancement was proposed to be dependent on whether superoxide anion radical (O(2)(-)) was competitively consumed by compounds in the CL system. Trihydroxybenzenes were capable of generating superoxide anion radical, leading to the CL enhancement, whereas dihydroxybenzenes were superoxide anion radical scavenger, causing the CL inhibition. Based on the inhibited CL, a novel method for the simultaneous determination of p-phenylenediamine, o-phenylenediamine, p-aminophenol, o-aminophenol, resorcinol and hydroquinone by high-performance liquid chromatography coupled with chemiluminescence detection was developed. The method has been successfully applied to determine intermediates in oxidative hair dyes and wastewater of shampooing after hair dyed.

  9. Kinetics and thermochemistry of 2,5-dimethyltetrahydrofuran and related oxolanes: next next-generation biofuels.

    PubMed

    Simmie, John M

    2012-05-10

    The enthalpies of formation, entropies, specific heats at constant pressure, enthalpy functions, and all carbon-hydrogen and carbon-methyl bond dissociation energies have been computed using high-level methods for the cyclic ethers (oxolanes) tetrahydrofuran, 2-methyltetrahydrofuran, and 2,5-dimethyltetrahydrofuran. Barrier heights for hydrogen-abstraction reactions by hydrogen atoms and the methyl radical are also computed and shown to correlate with reaction energy change. The results show a pleasing consistency and considerably expands the available data for these important compounds. Abstraction by ȮH is accompanied by formation of both pre- and postreaction weakly bound complexes. The resulting radicals formed after abstraction undergo ring-opening reactions leading to readily recognizable intermediates, while competitive H-elimination reactions result in formation of dihydrofurans. Formation enthalpies of all 2,3- and 2,5-dihydrofurans and associated radicals are also reported. It is probable that the compounds at the center of this study will be relatively clean-burning biofuels, although formation of intermediate aldehydes might be problematic.

  10. Efficient elimination of caffeine from water using Oxone activated by a magnetic and recyclable cobalt/carbon nanocomposite derived from ZIF-67.

    PubMed

    Lin, Kun-Yi Andrew; Chen, Bo-Chau

    2016-02-28

    To eliminate caffeine, one of the most common pharmaceuticals and personal care products, from water, Oxone (peroxymonosulfate salt) was proposed to degrade it. To accelerate the generation of sulfate radicals from Oxone, a magnetic cobalt/carbon nanocomposite (CCN) was prepared from a one-step carbonization of a cobalt-based Zeolitic Imidazolate Framework (ZIF-67). The resultant CCN exhibits immobilized cobalt and increased porosity, and can be magnetically manipulated. These characteristics make CCN a promising heterogeneous catalyst to activate Oxone for caffeine degradation. Factors affecting the caffeine degradation were investigated, including CCN loading, Oxone dosage, temperature, pH, surfactants, salts and inhibitors. A higher CCN loading, Oxone dosage and temperature greatly improved the caffeine degradation by CCN-activated Oxone. Acidic conditions were also preferable over basic conditions for caffeine degradation. The addition of cetyltrimethylammonium bromide (CTAB) and NaCl both significantly hindered caffeine degradation because bromide from CTAB and chloride from NaCl scavenged sulfate radicals. Based on the effects of inhibitors (i.e., methanol and tert-butyl alcohol), the caffeine degradation by CCN-activated Oxone was considered to primarily involve sulfate radicals and, less commonly, hydroxyl radicals. The intermediates generated during the caffeine degradation were analyzed using GC-MS and a possible degradation pathway was proposed. CCN was also able to activate Oxone for caffeine degradation for multiple cycles without changing its catalytic activity. These features reveal that CCN is an effective and promising catalyst for the activation of Oxone for the degradation of caffeine.

  11. Expression of cardiac function genes in adult stem cells is increased by treatment with nitric oxide agents.

    PubMed

    Rebelatto, Carmen K; Aguiar, Alessandra M; Senegaglia, Alexandra C; Aita, Carlos M; Hansen, Paula; Barchiki, Fabiane; Kuligovski, Crisciele; Olandoski, Márcia; Moutinho, José A; Dallagiovanna, Bruno; Goldenberg, Samuel; Brofman, Paulo S; Nakao, Lia S; Correa, Alejandro

    2009-01-16

    Mesenchymal stem cells (MSCs) have received special attention for cardiomyoplasty because several studies have shown that they differentiate into cardiomyocytes both in vitro and in vivo. Nitric oxide (NO) is a free radical signaling molecule that regulates several differentiation processes including cardiomyogenesis. Here, we report an investigation of the effects of two NO agents (SNAP and DEA/NO), able to activate both cGMP-dependent and -independent pathways, on the cardiomyogenic potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived stem cells (ADSCs). The cells were isolated, cultured and treated with NO agents. Cardiac- and muscle-specific gene expression was analyzed by indirect immunofluorescence, flow cytometry, RT-PCR and real-time PCR. We found that untreated (control) ADSCs and BM-MSCs expressed some muscle markers and NO-derived intermediates induce an increased expression of some cardiac function genes in BM-MSCs and ADSCs. Moreover, NO agents considerably increased the pro-angiogenic potential mostly of BM-MSCs as determined by VEGF mRNA levels.

  12. The mechanism of the photochemical oxidation of water to oxygen with silver chloride colloids

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, K.; Thomas, J. K.

    1983-05-01

    Photoexcitation of silver chloride colloids in the presence of excess silver ions, leads to the decomposition of water. Hydroxyl radicals were found to be intermediates in the decomposition process. Irradiation leads to hydroxyl radicals, which recombine to give hydrogen peroxide, on the colloidal particle surface. Subsequent decomposition of H 2O 2 to give O 2 is catalyzed by silver ions. Addition of alcohols such as methanol and isopropanol reduce the oxygen yield, as they react with OH radicals and reduce the H 2O 2 yield.

  13. Atmospheric Oxidation Mechanism of Furfural Initiated by Hydroxyl Radicals.

    PubMed

    Zhao, Xiaocan; Wang, Liming

    2017-05-04

    Furfural is emitted into the atmosphere because of its potential applications as an intermediate to alkane fuels from biomass, industrial usages, and biomass burning. The kinetic and mechanistic information on the furfural chemistry is necessary to assess the fate of furfural in the atmosphere and its impact on the air quality. Here we studied the atmospheric oxidation mechanisms of furfural initiated by the OH radicals using quantum chemistry and kinetic calculations. The reaction of OH and furfural was initiated mainly by OH additions to C 2 and C 5 positions, forming R2 and R5 adducts, which could undergo rapid ring-breakage to form R2B and R5B, respectively. Our calculations showed that these intermediate radicals reacted rather slowly with O 2 under the atmospheric conditions because the additions of O 2 to these radicals are only slightly exothermic and highly reversible. Alternatively, these radicals would react directly with O 3 , NO 2 , HO 2 /RO 2 , etc. Namely, the atmospheric oxidation of furfural would unlikely result in ozone formation. Under typical atmospheric conditions, the main products in OH-initiated furfural oxidation include 2-oxo-3-pentene-1,5-dialdehyde, 5-hydroxy-2(5H)-furanone, 4-oxo-2- butenoic acid, and 2,5-furandione. These compounds will likely stay in the gas phase and are subject to further photo-oxidation.

  14. Electron Paramagnetic Resonance Spectroscopic Study on Nonequilibrium Reaction Pathways in the Photolysis of Solid Nitromethane (CH3NO2) and D3-Nitromethane (CD3NO2).

    PubMed

    Tsegaw, Yetsedaw Andargie; Sander, Wolfram; Kaiser, Ralf I

    2016-03-10

    Thin films of nitromethane (CH3NO2) along with its isotopically labeled counterpart D3-nitromethane (CD3NO2) were photolyzed at discrete wavelength between 266 nm (4.7 eV) and 121 nm (10.2 eV) to explore the underlying mechanisms involved in the decomposition of model compounds of energetic materials in the condensed phase at 5 K. The chemical modifications of the ices were traced in situ via electron paramagnetic resonance, thus focusing on the detection of (hitherto elusive) reaction intermediates and products with unpaired electrons. These studies revealed the formation of two carbon-centered radicals [methyl (CH3), nitromethyl (CH2NO2)], one oxygen-centered radical [methoxy (CH3O)], two nitrogen-centered radicals [nitrogen monoxide (NO), nitrogen dioxide (NO2)], as well as atomic hydrogen (H). The decomposition products of these channels and the carbon-centered nitromethyl (CH2NO2) radical in particular represent crucial reaction intermediates leading via sequential molecular mass growth processes in the exposed nitromethane samples to complex organic molecules as predicted previously by dynamics calculations. The detection of the nitromethyl (CH2NO2) radical along with atomic hydrogen (H) demonstrated the existence of a high-energy decomposition pathway, which is closed under collisionless conditions in the gas phase.

  15. Alcohols as alkylating agents in heteroarene C–H functionalization

    PubMed Central

    Jin, Jian; MacMillan, David W. C.

    2015-01-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  16. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui; Zhang, Lizhi

    2017-01-01

    In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.

  17. Comparative Effectiveness of Cancer Control and Survival after Robot-Assisted versus Open Radical Prostatectomy.

    PubMed

    Hu, Jim C; O'Malley, Padraic; Chughtai, Bilal; Isaacs, Abby; Mao, Jialin; Wright, Jason D; Hershman, Dawn; Sedrakyan, Art

    2017-01-01

    Robot-assisted surgery has been rapidly adopted in the U.S. for prostate cancer. Its adoption has been driven by market forces and patient preference, and debate continues regarding whether it offers improved outcomes to justify the higher cost relative to open surgery. We examined the comparative effectiveness of robot-assisted vs open radical prostatectomy in cancer control and survival in a nationally representative population. This population based observational cohort study of patients with prostate cancer undergoing robot-assisted radical prostatectomy and open radical prostatectomy during 2003 to 2012 used data captured in the SEER (Surveillance, Epidemiology, and End Results)-Medicare linked database. Propensity score matching and time to event analysis were used to compare all cause mortality, prostate cancer specific mortality and use of additional treatment after surgery. A total of 6,430 robot-assisted radical prostatectomies and 9,161 open radical prostatectomies performed during 2003 to 2012 were identified. The use of robot-assisted radical prostatectomy increased from 13.6% in 2003 to 2004 to 72.6% in 2011 to 2012. After a median followup of 6.5 years (IQR 5.2-7.9) robot-assisted radical prostatectomy was associated with an equivalent risk of all cause mortality (HR 0.85, 0.72-1.01) and similar cancer specific mortality (HR 0.85, 0.50-1.43) vs open radical prostatectomy. Robot-assisted radical prostatectomy was also associated with less use of additional treatment (HR 0.78, 0.70-0.86). Robot-assisted radical prostatectomy has comparable intermediate cancer control as evidenced by less use of additional postoperative cancer therapies and equivalent cancer specific and overall survival. Longer term followup is needed to assess for differences in prostate cancer specific survival, which was similar during intermediate followup. Our findings have significant quality and cost implications, and provide reassurance regarding the adoption of more expensive technology in the absence of randomized controlled trials. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Copper-Catalyzed Intermolecular Amidation and Imidation of Unactivated Alkanes

    PubMed Central

    2015-01-01

    We report a set of rare copper-catalyzed reactions of alkanes with simple amides, sulfonamides, and imides (i.e., benzamides, tosylamides, carbamates, and phthalimide) to form the corresponding N-alkyl products. The reactions lead to functionalization at secondary C–H bonds over tertiary C–H bonds and even occur at primary C–H bonds. [(phen)Cu(phth)] (1-phth) and [(phen)Cu(phth)2] (1-phth2), which are potential intermediates in the reaction, have been isolated and fully characterized. The stoichiometric reactions of 1-phth and 1-phth2 with alkanes, alkyl radicals, and radical probes were investigated to elucidate the mechanism of the amidation. The catalytic and stoichiometric reactions require both copper and tBuOOtBu for the generation of N-alkyl product. Neither 1-phth nor 1-phth2 reacted with excess cyclohexane at 100 °C without tBuOOtBu. However, the reactions of 1-phth and 1-phth2 with tBuOOtBu afforded N-cyclohexylphthalimide (Cy-phth), N-methylphthalimide, and tert-butoxycyclohexane (Cy-OtBu) in approximate ratios of 70:20:30, respectively. Reactions with radical traps support the intermediacy of a tert-butoxy radical, which forms an alkyl radical intermediate. The intermediacy of an alkyl radical was evidenced by the catalytic reaction of cyclohexane with benzamide in the presence of CBr4, which formed exclusively bromocyclohexane. Furthermore, stoichiometric reactions of [(phen)Cu(phth)2] with tBuOOtBu and (Ph(Me)2CO)2 at 100 °C without cyclohexane afforded N-methylphthalimide (Me-phth) from β-Me scission of the alkoxy radicals to form a methyl radical. Separate reactions of cyclohexane and d12-cyclohexane with benzamide showed that the turnover-limiting step in the catalytic reaction is the C–H cleavage of cyclohexane by a tert-butoxy radical. These mechanistic data imply that the tert-butoxy radical reacts with the C–H bonds of alkanes, and the subsequent alkyl radical combines with 1-phth2 to form the corresponding N-alkyl imide product. PMID:24405209

  19. [Research progress on free radicals in human body].

    PubMed

    Wang, Q B; Xu, F P; Wei, C X; Peng, J; Dong, X D

    2016-08-10

    Free radicals are the intermediates of metabolism, widely exist in the human bodies. Under normal circumstances, the free radicals play an important role in the metabolic process on human body, cell signal pathway, gene regulation, induction of cell proliferation and apoptosis, so as to maintain the normal growth and development of human body and to inhibit the growth of bacteria, virus and cancer. However, when organic lesion occurs affected by external factors or when equilibrium of the free radicals is tipped in the human body, the free radicals will respond integratedly with lipids, protein or nucleic acid which may jeopardize the health of human bodies. This paper summarizes the research progress of the free radicals conducted in recent years, in relations to the perspective of the types, origins, test methods of the free radicals and their relationship with human's health. In addition, the possible mechanisms of environmental pollutants (such as polycyclic aromatic hydrocarbons) mediating oxidative stress and free radicals scavenging in the body were also summarized.

  20. When Does Neoadjuvant Chemotherapy Really Avoid Radiotherapy? Clinical Predictors of Adjuvant Radiotherapy in Cervical Cancer.

    PubMed

    Papadia, Andrea; Bellati, Filippo; Bogani, Giorgio; Ditto, Antonino; Martinelli, Fabio; Lorusso, Domenica; Donfrancesco, Cristina; Gasparri, Maria Luisa; Raspagliesi, Francesco

    2015-12-01

    The aim of this study was to identify clinical variables that may predict the need for adjuvant radiotherapy after neoadjuvant chemotherapy (NACT) and radical surgery in locally advanced cervical cancer patients. A retrospective series of cervical cancer patients with International Federation of Gynecology and Obstetrics (FIGO) stages IB2-IIB treated with NACT followed by radical surgery was analyzed. Clinical predictors of persistence of intermediate- and/or high-risk factors at final pathological analysis were investigated. Statistical analysis was performed using univariate and multivariate analysis and using a model based on artificial intelligence known as artificial neuronal network (ANN) analysis. Overall, 101 patients were available for the analyses. Fifty-two (51 %) patients were considered at high risk secondary to parametrial, resection margin and/or lymph node involvement. When disease was confined to the cervix, four (4 %) patients were considered at intermediate risk. At univariate analysis, FIGO grade 3, stage IIB disease at diagnosis and the presence of enlarged nodes before NACT predicted the presence of intermediate- and/or high-risk factors at final pathological analysis. At multivariate analysis, only FIGO grade 3 and tumor diameter maintained statistical significance. The specificity of ANN models in evaluating predictive variables was slightly superior to conventional multivariable models. FIGO grade, stage, tumor diameter, and histology are associated with persistence of pathological intermediate- and/or high-risk factors after NACT and radical surgery. This information is useful in counseling patients at the time of treatment planning with regard to the probability of being subjected to pelvic radiotherapy after completion of the initially planned treatment.

  1. Intermediate selectivity in the oxidation of phenols using plasmonic Au/ZnO photocatalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Feng; Cojocaru, Bogdan E.; Williams, Luke S.

    Tunable reaction selectivity on a single catalyst is a continual goal in chemical syntheses. Herein, we report an unexpected light-directed intermediate selectivity using well-known plasmonic photocatalysts. We observed distinct intermediate selectivity behaviors between using UV and visible light irradiations. Chemical computations and quenching experiments suggest that the radicals generated by the plasmonic excitation govern the light-directed selectivity. As a result, the broader impact of this work ranges from selective yield of desirable intermediates for subsequent syntheses without tedious separation procedures, to arousing interest in examining new opportunities for plasmonic photocatalysts.

  2. Intermediate selectivity in the oxidation of phenols using plasmonic Au/ZnO photocatalysts

    DOE PAGES

    Lin, Feng; Cojocaru, Bogdan E.; Williams, Luke S.; ...

    2017-06-20

    Tunable reaction selectivity on a single catalyst is a continual goal in chemical syntheses. Herein, we report an unexpected light-directed intermediate selectivity using well-known plasmonic photocatalysts. We observed distinct intermediate selectivity behaviors between using UV and visible light irradiations. Chemical computations and quenching experiments suggest that the radicals generated by the plasmonic excitation govern the light-directed selectivity. As a result, the broader impact of this work ranges from selective yield of desirable intermediates for subsequent syntheses without tedious separation procedures, to arousing interest in examining new opportunities for plasmonic photocatalysts.

  3. New derivatives of 3,4-dihydroisoquinoline-3-carboxylic acid with free-radical scavenging, D-amino acid oxidase, acetylcholinesterase and butyrylcholinesterase inhibitory activity.

    PubMed

    Solecka, Jolanta; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Kawęcki, Robert; Lęczycka, Katarzyna; Osior, Agnieszka; Pietrzak, Bartłomiej; Pypowski, Krzysztof; Wyrzykowska, Agata

    2014-09-30

    A series of 3,4-dihydroisoquinoline-3-carboxylic acid derivatives were synthesised and tested for their free-radical scavenging activity using 2,2-diphenyl-1-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical (ABTS·+), superoxide anion radical (O2·-) and nitric oxide radical (·NO) assays. We also studied d-amino acid oxidase (DAAO), acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Almost each of newly synthesised compounds exhibited radical scavenging capabilities. Moreover, several compounds showed moderate inhibitory activities against DAAO, AChE and BuChE. Compounds with significant free-radical scavenging activity may be potential candidates for therapeutics used in oxidative-stress-related diseases.

  4. Free radical reactions of isoxazole and pyrazole derivatives of hispolon: kinetics correlated with molecular descriptors.

    PubMed

    Shaikh, Shaukat Ali M; Barik, Atanu; Singh, Beena G; Modukuri, Ramani V; Balaji, Neduri V; Subbaraju, Gottumukkala V; Naik, Devidas B; Priyadarsini, K Indira

    2016-12-01

    Hispolon (HS), a natural polyphenol found in medicinal mushrooms, and its isoxazole (HI) and pyrazole (HP) derivatives have been examined for free radical reactions and in vitro antioxidant activity. Reaction of these compounds with one-electron oxidant, azide radicals ([Formula: see text]) and trichloromethyl peroxyl radicals ([Formula: see text]), model peroxyl radicals, studied by nanosecond pulse radiolysis technique, indicated formation of phenoxyl radicals absorbing at 420 nm with half life of few hundred microseconds (μs). The formation of phenoxyl radicals confirmed that the phenolic OH is the active centre for free radical reactions. Rate constant for the reaction of these radicals with these compounds were in the order k HI ≅ k HP  >   k HS . Further the compounds were examined for their ability to inhibit lipid peroxidation in model membranes and also for the scavenging of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical and superoxide ([Formula: see text]) radicals. The results suggested that HP and HI are less efficient than HS towards these radical reactions. Quantum chemical calculations were performed on these compounds to understand the mechanism of reaction with different radicals. Lower values of adiabatic ionization potential (AIP) and elevated highest occupied molecular orbital (HOMO) for HI and HP compared with HS controlled their activity towards [Formula: see text] and [Formula: see text] radicals, whereas the contribution of overall anion concentration was responsible for higher activity of HS for DPPH, [Formula: see text], and lipid peroxyl radical. The results confirm the role of different structural moieties on the antioxidant activity of hispolon derivatives.

  5. First detection of ND in the solar-mass protostar IRAS16293-2422

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Caux, E.; Hily-Blant, P.; Parise, B.; Pagani, L.; Bottinelli, S.; Maret, S.; Vastel, C.; Ceccarelli, C.; Cernicharo, J.; Henning, T.; Castets, A.; Coutens, A.; Bergin, E. A.; Blake, G. A.; Crimier, N.; Demyk, K.; Dominik, C.; Gerin, M.; Hennebelle, P.; Kahane, C.; Klotz, A.; Melnick, G.; Schilke, P.; Wakelam, V.; Walters, A.; Baudry, A.; Bell, T.; Benedettini, M.; Boogert, A.; Cabrit, S.; Caselli, P.; Codella, C.; Comito, C.; Encrenaz, P.; Falgarone, E.; Fuente, A.; Goldsmith, P. F.; Helmich, F.; Herbst, E.; Jacq, T.; Kama, M.; Langer, W.; Lefloch, B.; Lis, D.; Lord, S.; Lorenzani, A.; Neufeld, D.; Nisini, B.; Pacheco, S.; Pearson, J.; Phillips, T.; Salez, M.; Saraceno, P.; Schuster, K.; Tielens, X.; van der Tak, F. F. S.; van der Wiel, M. H. D.; Viti, S.; Wyrowski, F.; Yorke, H.; Faure, A.; Benz, A.; Coeur-Joly, O.; Cros, A.; Güsten, R.; Ravera, L.

    2010-10-01

    Context. In the past decade, much progress has been made in characterising the processes leading to the enhanced deuterium fractionation observed in the ISM and in particular in the cold, dense parts of star forming regions such as protostellar envelopes. Very high molecular D/H ratios have been found for saturated molecules and ions. However, little is known about the deuterium fractionation in radicals, even though simple radicals often represent an intermediate stage in the formation of more complex, saturated molecules. The imidogen radical NH is such an intermediate species for the ammonia synthesis in the gas phase. Many of these light molecules however have their fundamental transitions in the submillimetre domain and their detection is hampered by the opacity of the atmosphere at these wavelengths. Herschel/HIFI represents a unique opportunity to study the deuteration and formation mechanisms of species not observable from the ground. Aims: We searched here for the deuterated radical ND in order to determine the deuterium fractionation of imidogen and constrain the deuteration mechanism of this species. Methods: We observed the solar-mass Class 0 protostar IRAS16293-2422 with the heterodyne instrument HIFI in Bands 1a (480-560 GHz), 3b (858-961 GHz), and 4a (949-1061 GHz) as part of the Herschel key programme CHESS (Chemical HErschel Survey of Star forming regions). Results: The deuterated form of the imidogen radical ND was detected and securely identified with 2 hyperfine component groups of its fundamental transition (N = 0-1) at 522.1 and 546.2 GHz, in absorption against the continuum background emitted from the nascent protostar. The 3 groups of hyperfine components of its hydrogenated counterpart NH were also detected in absorption. The absorption arises from the cold envelope, where many deuterated species have been shown to be abundant. The estimated column densities are ~2 × 1014 cm-2 for NH and ~ 1.3 × 1014 cm-2 for ND. We derive a very high deuterium fractionation with an [ND]/[NH] ratio of between 30 and 100%. Conclusions: The deuterium fractionation of imidogen is of the same order of magnitude as that in other molecules, which suggests that an efficient deuterium fractionation mechanism is at play. We discuss two possible formation pathways for ND, by means of either the reaction of N+ with HD, or deuteron/proton exchange with NH. Herschel is an ESA space observatory with science instruments provided by European-led principal Investigator consortia and with important participation from NASA.

  6. Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.

    PubMed

    Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei

    2008-12-25

    Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.

  7. Enantioselective Conjugate Additions of α-Amino Radicals via Cooperative Photoredox and Lewis Acid Catalysis

    PubMed Central

    Espelt, Laura Ruiz; McPherson, Iain S.; Wiensch, Eric M.; Yoon, Tehshik P.

    2015-01-01

    We report the highly enantioselective addition of photogenerated α-amino radicals to Michael acceptors. This method features a dual-catalyst protocol that combines transition metal photoredox catalysis with chiral Lewis acid catalysis. The combination of these two powerful modes of catalysis provides an effective, general strategy to generate and control the reactivity of photogenerated reactive intermediates. PMID:25668687

  8. Improvement of the lipophilic-oxygen radical absorbance capacity (L-ORAC) method and single-laboratory validation.

    PubMed

    Watanabe, Jun; Oki, Tomoyuki; Takebayashi, Jun; Yamasaki, Koji; Takano-Ishikawa, Yuko; Hino, Akihiro; Yasui, Akemi

    2013-01-01

    We improved the procedure for lipophilic-oxygen radical absorbance capacity (L-ORAC) measurement for better repeatability and intermediate precision. A sealing film was placed on the assay plate, and glass vials and microdispensers equipped with glass capillaries were used. The antioxidant capacities of food extracts can be evaluated by this method with nearly the same precision as antioxidant solutions.

  9. Final Technical Report: Vibrational Spectroscopy of Transient Combustion Intermediates Trapped in Helium Nanodroplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douberly, Gary Elliott

    The objective of our experimental research program is to isolate and stabilize transient intermediates and products of prototype combustion reactions. This will be accomplished by Helium Nanodroplet Isolation, a novel technique where liquid helium droplets freeze out high energy metastable configurations of a reacting system, permitting infrared spectroscopic characterizations of products and intermediates that result from hydrocarbon radical reactions with molecular oxygen and other small molecules relevant to combustion environments. The low temperature (0.4 K) and rapid cooling associated with He droplets provides a perfectly suited medium to isolate and probe a broad range of molecular radical and carbene systemsmore » important to combustion chemistry. The sequential addition of molecular species to He droplets often leads to the stabilization of high-energy, metastable cluster configurations that represent regions of the potential energy surface far from the global minimum. Single and double resonance IR laser spectroscopy techniques, along with Stark and Zeeman capabilities, are being used to probe the structural and dynamical properties of these systems.« less

  10. Microwave-assisted rapid photocatalytic degradation of malachite green in TiO2 suspensions: mechanism and pathways.

    PubMed

    Ju, Yongming; Yang, Shaogui; Ding, Youchao; Sun, Cheng; Zhang, Aiqian; Wang, Lianhong

    2008-11-06

    Microwave-assisted photocatalytic (MPC) degradation of malachite green (MG) in aqueous TiO2 suspensions was investigated. A 20 mg/L sample of MG was rapidly and completely decomposed in 3 min with the corresponding TOC removal efficiency of about 85%. To gain insight into the degradation mechanism, both GC-MS and LC-ESI-MS/MS techniques were employed to identify the major intermediates of MG degradation, including N-demethylation intermediates [(p-dimethylaminophenyl)(p-methylaminophenyl)phenylmethylium (DM-PM), (p-methylaminophenyl)(p-methylaminophenyl)phenylmethylium (MM-PM), (p-methylaminophenyl)(p-aminophenyl)phenylmethylium (M-PM)]; a decomposition compound of the conjugated structure (4-dimethylaminobenzophenone (DLBP)); products resulting from the adduct reaction of hydroxyl radical; products of benzene removal; and other open-ring intermediates such as phenol, terephthalic acid, adipic acid, benzoic acid, etc. The possible degradation mechanism of MG included five processes: the N-demethylation process, adduct products of the hydroxyl radical, the breakdown of chromophores such as destruction of the conjugated structure intermediate, removal of benzene, and an open-ring reaction. To the best of our knowledge, it is the first time the whole MG photodegradation processes have been reported.

  11. Evidence for the formation of a quinone methide during the oxidation of the insect cuticular sclerotizing precursor 1,2-dehydro-N-acetyldopamine.

    PubMed

    Sugumaran, M; Semensi, V; Kalyanaraman, B; Bruce, J M; Land, E J

    1992-05-25

    1,2-Dehydro-N-acetyldopamine (dehydro-NADA) is an important catecholamine derivative involved in the cross-linking of insect cuticular components during sclerotization. Since sclerotization is a vital process for the survival of insects, and is closely related to melanogenesis, it is of interest to unravel the chemical mechanisms participating in this process. The present paper reports on the mechanism by which dehydro-NADA is oxidatively activated to form reactive intermediate(s) as revealed by pulse radiolysis, electron spin resonance spectroscopy, high performance liquid chromatography, and ultraviolet-visible spectroscopic analysis. Pulse radiolytic one-electron oxidation of dehydro-NADA by N3. (k = 5.3 x 10(9) M-1 s-1) or Br2.- (k = 7.5 x 10(8) M-1 s-1) at pH6 resulted in the rapid generation of the corresponding semiquinone radical, lambda max 400 nm, epsilon = 20,700 M-1 cm-1. This semiquinone decayed to form a second transient intermediate, lambda max 485 nm, epsilon = 8000 M-1 cm-1, via a second order disproportionation process, k = 6.2 x 10(8) M-1 s-1. At pH 6 in the presence of azide, the first order decay of this second intermediate occurred over milliseconds; the rate decreases at higher pH. At pH 6 in the presence of bromide, the intermediate decayed much more slowly over seconds, k = 0.15 s-1. Under such conditions, the dependence of the first order decay constant upon parent dehydro-NADA concentration led to a second order rate constant of 8.5 x 10(2) M-1 s-1 for reaction of the intermediate with the parent, probably to form benzodioxan "dimers." (The term dimer is used for convenience; the products are strictly bisdehydrodimers of dehydro-NADA (see "Discussion" and Fig. 11)) Rate constants of 5.9 x 10(5), 4.5 x 10(5), 2.8 x 10(4) and 3.5 x 10(4) M-1 s-1 were also obtained for decay of the second intermediate in the presence of cysteine, cysteamine, o-phenylenediamine, and p-aminophenol, respectively. By comparison with the UV-visible spectroscopic properties of the two-electron oxidized species derived from dehydro-NADA and from 1,2-dehydro-N-acetyldopa methyl ester, it is concluded that the transient intermediate exhibiting absorbance at 485 nm is the quinone methide tautomer of the o-quinone of dehydro-NADA. Sclerotization of insect cuticle is discussed in the light of these findings.

  12. Diastereoselective radical addition to γ-alkyl-α-methylene-γ-butyrolactams and the synthesis of a chiral pyroglutamic acid derivative.

    PubMed

    Yajima, Tomoko; Yoshida, Eriko; Hamano, Masako

    2013-01-01

    The cis- and trans-stereoselective radical additions to α-methylene-γ-alkyl- γ-lactams were investigated and the scope and limitation of the reaction were also revealed. This stereoselective radical reaction was used for synthesis of chiral pyroglutamic acid derivatives starting from a commercially available chiral amino acid.

  13. The benzylperoxyl radical as a source of hydroxyl and phenyl radicals.

    PubMed

    Sander, Wolfram; Roy, Saonli; Bravo-Rodriguez, Kenny; Grote, Dirk; Sanchez-Garcia, Elsa

    2014-09-26

    The benzyl radical (1) is a key intermediate in the combustion and tropospheric oxidation of toluene. Because of its relevance, the reaction of 1 with molecular oxygen was investigated by matrix-isolation IR and EPR spectroscopy as well as computational methods. The primary reaction product of 1 and O2 is the benzylperoxyl radical (2), which exists in several conformers that can easily interconvert even at cryogenic temperatures. Photolysis of radical 2 at 365 nm results in a formal [1,3]-H migration and subsequent cleavage of the O-O bond to produce a hydrogen-bonded complex between the hydroxyl radical and benzaldehyde (4). Prolonged photolysis produces the benzoyl radical (5) and water, which finally yield the phenyl radical (7), CO, and H2O. Thus, via a sequence of exothermic reactions 1 is transformed into radicals of even higher reactivity, such as OH and 7. Our results have implications for the development of models for the highly complicated process of combustion of aromatic compounds. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Hemin-Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration.

    PubMed

    Xu, Huan; Yang, Zhen; Li, Hailing; Gao, Zhonghong

    2017-12-14

    Protein tyrosine nitration is implicated in the occurrence and progression of pathological conditions involving free radical reactions. It is well recognized that hemin can catalyze protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Generally, the catalytic efficiency is positively correlated to its peroxidase activity. In this study, however, it is found that the efficiency of hemin in catalyzing protein tyrosine nitration is largely suppressed after functionalization with graphene derivatives, even though its peroxidase-like activity is more than quadrupled. Further studies show that the oxidation of tyrosine is still observed for these composites; dityrosine formation, however, is greatly inhibited. Furthermore, these composites also exhibit strong effects on the oxidation of nitrite into nitrate. Therefore, we propose a mechanism in which hemin-graphene derivatives facilitate the oxidation of tyrosine and nitrite to produce tyrosyl radicals and nitrogen dioxide radicals in the presence of hydrogen peroxide, but graphene interlayers serve as barriers that hinder radical-radical coupling reactions; consequently, protein tyrosine nitration is restrained. This property of hemin-graphene derivatives, by which they catalyze substrate oxidation but suppress radical-radical coupling reactions, shows their great potential in selective oxidation procedures for byproduct removal. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Antioxidative properties of hydroxycinnamic acid derivatives and a phenylpropanoid glycoside. A pulse radiolysis study

    NASA Astrophysics Data System (ADS)

    Lin, Weizhen; Navaratnam, Suppiah; Yao, Side; Lin, Nianyun

    1998-10-01

    Spectral and redox properties of the phenoxyl radicals from hydroxycinnamic acid derivatives and one selected component of phenylpropanoid glycosides, verbascoside, were studied using pulse radiolysis techniques. On the basis of the pH dependence of phenoxyl radical absorptions, the p Ka values for deprotonation of sinapic acid radical and ferulic acid radical are 4.9 and 5.2. The rate constants of one electron oxidation of those antioxidants by azide radical and bromide radical ion were determined at pH 7. The redox potentials of those antioxidants were determined as 0.59-0.71 V vs NHE at pH 7 with reference standard 4-methoxyphenol and resorcinol.

  16. Photoisomerization and photodissociation dynamics of reactive free radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bise, Ryan T.

    2000-08-01

    The photofragmentation pathways of chemically reactive free radicals have been examined using the technique of fast beam photofragment translational spectroscopy. Measurements of the photodissociation cross-sections, product branching ratios, product state energy distributions, and angular distributions provide insight into the excited state potential energy surfaces and nonadiabatic processes involved in the dissociation mechanisms. Photodissociation spectroscopy and dynamics of the predissociativemore » $$\\tilde{A}$$ 2A 1 and $$\\tilde{B}$$ 2A 2 states of CH 3S have been investigated. At all photon energies, CH 3 + S( 3P j), was the main reaction channel. The translational energy distributions reveal resolved structure corresponding to vibrational excitation of the CH 3 umbrella mode and the S( 3P j) fine-structure distribution from which the nature of the coupled repulsive surfaces is inferred. Dissociation rates are deduced from the photofragment angular distributions, which depend intimately on the degree of vibrational excitation in the C-S stretch. Nitrogen combustion radicals, NCN, CNN and HNCN have also been studied. For all three radicals, the elimination of molecular nitrogen is the primary reaction channel. Excitation to linear excited triplet and singlet electronic states of the NCN radical generates resolved vibrational structure of the N 2 photofragment. The relatively low fragment rotational excitation suggests dissociation via a symmetric C 2V transition state. Resolved vibrational structure of the N 2 photofragment is also observed in the photodissociation of the HNCN radical. The fragment vibrational and rotational distributions broaden with increased excitation energy. Simple dissociation models suggest that the HNCN radical isomerizes to a cyclic intermediate (c-HCNN) which then dissociates via a tight cyclic transition state. In contrast to the radicals mentioned above, resolved vibrational structure was not observed for the ICNN radical due to extensive fragment rotational excitation, suggesting that intermediate bent states are strongly coupled along the dissociation pathway. The measurements performed in this Thesis have additionally refined the heats of formation and bond dissociation energies of these radicals and have unambiguously confirmed and added to the known electronic spectroscopy.« less

  17. Quantum mechanics/molecular mechanics studies on the mechanism of action of cofactor pyridoxal 5'-phosphate in ornithine 4,5-aminomutase.

    PubMed

    Pang, Jiayun; Scrutton, Nigel S; Sutcliffe, Michael J

    2014-09-01

    A computational study was performed on the experimentally elusive cyclisation step in the cofactor pyridoxal 5'-phosphate (PLP)-dependent D-ornithine 4,5-aminomutase (OAM)-catalysed reaction. Calculations using both model systems and a combined quantum mechanics/molecular mechanics approach suggest that regulation of the cyclic radical intermediate is achieved through the synergy of the intrinsic catalytic power of cofactor PLP and the active site of the enzyme. The captodative effect of PLP is balanced by an enzyme active site that controls the deprotonation of both the pyridine nitrogen atom (N1) and the Schiff-base nitrogen atom (N2). Furthermore, electrostatic interactions between the terminal carboxylate and amino groups of the substrate and Arg297 and Glu81 impose substantial "strain" energy on the orientation of the cyclic intermediate to control its trajectory. In addition the "strain" energy, which appears to be sensitive to both the number of carbon atoms in the substrate/analogue and the position of the radical intermediates, may play a key role in controlling the transition of the enzyme from the closed to the open state. Our results provide new insights into several aspects of the radical mechanism in aminomutase catalysis and broaden our understanding of cofactor PLP-dependent reactions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Specific Function of the Met-Tyr-Trp Adduct Radical and Residues Arg-418 and Asp-137 in the Atypical Catalase Reaction of Catalase-Peroxidase KatG*

    PubMed Central

    Zhao, Xiangbo; Khajo, Abdelahad; Jarrett, Sanchez; Suarez, Javier; Levitsky, Yan; Burger, Richard M.; Jarzecki, Andrzej A.; Magliozzo, Richard S.

    2012-01-01

    Catalase activity of the dual-function heme enzyme catalase-peroxidase (KatG) depends on several structural elements, including a unique adduct formed from covalently linked side chains of three conserved amino acids (Met-255, Tyr-229, and Trp-107, Mycobacterium tuberculosis KatG numbering) (MYW). Mutagenesis, electron paramagnetic resonance, and optical stopped-flow experiments, along with calculations using density functional theory (DFT) methods revealed the basis of the requirement for a radical on the MYW-adduct, for oxyferrous heme, and for conserved residues Arg-418 and Asp-137 in the rapid catalase reaction. The participation of an oxyferrous heme intermediate (dioxyheme) throughout the pH range of catalase activity is suggested from our finding that carbon monoxide inhibits the activity at both acidic and alkaline pH. In the presence of H2O2, the MYW-adduct radical is formed normally in KatG[D137S] but this mutant is defective in forming dioxyheme and lacks catalase activity. KatG[R418L] is also catalase deficient but exhibits normal formation of the adduct radical and dioxyheme. Both mutants exhibit a coincidence between MYW-adduct radical persistence and H2O2 consumption as a function of time, and enhanced subunit oligomerization during turnover, suggesting that the two mutations disrupting catalase turnover allow increased migration of the MYW-adduct radical to protein surface residues. DFT calculations showed that an interaction between the side chain of residue Arg-418 and Tyr-229 in the MYW-adduct radical favors reaction of the radical with the adjacent dioxyheme intermediate present throughout turnover in WT KatG. Release of molecular oxygen and regeneration of resting enzyme are thereby catalyzed in the last step of a proposed catalase reaction. PMID:22918833

  19. Risk Prediction Models of Locoregional Failure After Radical Cystectomy for Urothelial Carcinoma: External Validation in a Cohort of Korean Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, Ja Hyeon; Kim, Myong; Jeong, Chang Wook

    2014-08-01

    Purpose: To evaluate the predictive accuracy and general applicability of the locoregional failure model in a different cohort of patients treated with radical cystectomy. Methods and Materials: A total of 398 patients were included in the analysis. Death and isolated distant metastasis were considered competing events, and patients without any events were censored at the time of last follow-up. The model included the 3 variables pT classification, the number of lymph nodes identified, and margin status, as follows: low risk (≤pT2), intermediate risk (≥pT3 with ≥10 nodes removed and negative margins), and high risk (≥pT3 with <10 nodes removed ormore » positive margins). Results: The bootstrap-corrected concordance index of the model 5 years after radical cystectomy was 66.2%. When the risk stratification was applied to the validation cohort, the 5-year locoregional failure estimates were 8.3%, 21.2%, and 46.3% for the low-risk, intermediate-risk, and high-risk groups, respectively. The risk of locoregional failure differed significantly between the low-risk and intermediate-risk groups (subhazard ratio [SHR], 2.63; 95% confidence interval [CI], 1.35-5.11; P<.001) and between the low-risk and high-risk groups (SHR, 4.28; 95% CI, 2.17-8.45; P<.001). Although decision curves were appropriately affected by the incidence of the competing risk, decisions about the value of the models are not likely to be affected because the model remains of value over a wide range of threshold probabilities. Conclusions: The model is not completely accurate, but it demonstrates a modest level of discrimination, adequate calibration, and meaningful net benefit gain for prediction of locoregional failure after radical cystectomy.« less

  20. Free Radical Reactions in Food.

    ERIC Educational Resources Information Center

    Taub, Irwin A.

    1984-01-01

    Discusses reactions of free radicals that determine the chemistry of many fresh, processed, and stored foods. Focuses on reactions involving ascorbic acid, myoglobin, and palmitate radicals as representative radicals derived from a vitamin, metallo-protein, and saturated lipid. Basic concepts related to free radical structure, formation, and…

  1. Synthesis and Free Radical Scavenging Activity of New Hydroxybenzylidene Hydrazines.

    PubMed

    Sersen, Frantisek; Gregan, Fridrich; Kotora, Peter; Kmetova, Jarmila; Filo, Juraj; Loos, Dusan; Gregan, Juraj

    2017-05-29

    Hydroxybenzylidene hydrazines exhibit a wide spectrum of biological activities. Here, we report synthesis and free radical scavenging activity of nine new N-(hydroxybenzylidene)-N'-[2,6-dinitro-4-(trifluoromethyl)]phenylhydrazines. The chemical structures of these compounds were confirmed by 1H-NMR, 13C-NMR, 19F-NMR, IR spectroscopy, LC-MS, and elemental analysis. The prepared compounds were tested for their activity to scavenge 2,2-diphenyl-1-picrylhydrazyl (DPPH), galvinoxyl radical (GOR), and 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulphonic acid (ABTS) radicals. The free radical scavenging activity expressed as SC50 values of these compounds varied in a wide range, from a strong to no radical scavenging effect. The most effective radical scavengers were hydroxybenzylidene hydrazines containing three hydroxyl groups in the benzylidene part of their molecules. The prepared compounds were also tested for their activity to inhibit photosynthetic electron transport in spinach chloroplasts. IC50 values of these compounds varied in wide range, from an intermediate to no inhibitory effect.

  2. Predicting the effect of angular momentum on the dissociation dynamics of highly rotationally excited radical intermediates.

    PubMed

    Brynteson, Matthew D; Butler, Laurie J

    2015-02-07

    We present a model which accurately predicts the net speed distributions of products resulting from the unimolecular decomposition of rotationally excited radicals. The radicals are produced photolytically from a halogenated precursor under collision-free conditions so they are not in a thermal distribution of rotational states. The accuracy relies on the radical dissociating with negligible energetic barrier beyond the endoergicity. We test the model predictions using previous velocity map imaging and crossed laser-molecular beam scattering experiments that photolytically generated rotationally excited CD2CD2OH and C3H6OH radicals from brominated precursors; some of those radicals then undergo further dissociation to CD2CD2 + OH and C3H6 + OH, respectively. We model the rotational trajectories of these radicals, with high vibrational and rotational energy, first near their equilibrium geometry, and then by projecting each point during the rotation to the transition state (continuing the rotational dynamics at that geometry). This allows us to accurately predict the recoil velocity imparted in the subsequent dissociation of the radical by calculating the tangential velocities of the CD2CD2/C3H6 and OH fragments at the transition state. The model also gives a prediction for the distribution of angles between the dissociation fragments' velocity vectors and the initial radical's velocity vector. These results are used to generate fits to the previously measured time-of-flight distributions of the dissociation fragments; the fits are excellent. The results demonstrate the importance of considering the precession of the angular velocity vector for a rotating radical. We also show that if the initial angular momentum of the rotating radical lies nearly parallel to a principal axis, the very narrow range of tangential velocities predicted by this model must be convoluted with a J = 0 recoil velocity distribution to achieve a good result. The model relies on measuring the kinetic energy release when the halogenated precursor is photodissociated via a repulsive excited state but does not include any adjustable parameters. Even when different conformers of the photolytic precursor are populated, weighting the prediction by a thermal conformer population gives an accurate prediction for the relative velocity vectors of the fragments from the highly rotationally excited radical intermediates.

  3. Preignition and Autoignition Behavior of the Xylene Isomers

    DTIC Science & Technology

    2010-03-01

    of the carbon-carbon bond at the carbon atom one removed from the radical site (Law, 2006). 10 ketohydroperoxide produces another hydroxyl radical...paraffin, naphthene , and aromatic content of jet fuel samples fairly well (Holley et al., 2007). A more detailed chemical speciation has been...an intermediate from toluene oxidation in the PFR facility. This also removes concern that phenol may have reacted during the quenching process, if

  4. Theoretical insight into reaction mechanisms of 2,4-dinitroanisole with hydroxyl radicals for advanced oxidation processes.

    PubMed

    Zhou, Yang; Liu, Xiaoqiang; Jiang, Weidong; Shu, Yuanjie

    2018-01-24

    The detailed degradation mechanism of an insensitive explosive, 2,4-dinitroanisole (DNAN), in advanced oxidation processes (AOPs) was investigated computationally at the M06-2X/6-311 + G(d,p)/SMD level of theory. Results obtained show that the addition-elimination reaction is the dominant mechanism. The phenol products formed can continue to be oxidized to benzoquinone radicals that are often detected by experiments and may be the initial reactants of ring-opening reactions. The H-abstraction reaction is an unavoidable competing mechanism; the intermediate generated can also undergo the process of addition-elimination reaction. The nitro departure reaction involves not only hydroxyl radical (•OH), but also other active substances (such as •H). More importantly, we found that AOP technology can easily degrade DNAN, similar to TNT and DNT. Thus, this method is worth trying in experiments. The conclusions of this work provide theoretical support for such experimental research. Graphical abstract Possible pathways of degradation by •OH radicals in advanced oxidation processes (AOPs) of the typical insensitive explosive 2,4-dinitroanisole (DNAN) were investigated by density functional theory (DFT) methods. Based on the Gibbs free energy barriers and intermediates, the dominant reaction mechanism was determined. The conclusions will be helpful in utilizing AOP technology to remove DNAN pollution.

  5. Diastereoselective radical addition to γ-alkyl-α-methylene-γ-butyrolactams and the synthesis of a chiral pyroglutamic acid derivative

    PubMed Central

    Yoshida, Eriko; Hamano, Masako

    2013-01-01

    Summary The cis- and trans-stereoselective radical additions to α-methylene-γ-alkyl- γ-lactams were investigated and the scope and limitation of the reaction were also revealed. This stereoselective radical reaction was used for synthesis of chiral pyroglutamic acid derivatives starting from a commercially available chiral amino acid. PMID:23946839

  6. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron hole-hopping within the enzyme.

    PubMed

    Njuma, Olive J; Davis, Ian; Ndontsa, Elizabeth N; Krewall, Jessica R; Liu, Aimin; Goodwin, Douglas C

    2017-11-10

    KatG is a bifunctional, heme-dependent enzyme in the front-line defense of numerous bacterial and fungal pathogens against H 2 O 2 -induced oxidative damage from host immune responses. Contrary to the expectation that catalase and peroxidase activities should be mutually antagonistic, peroxidatic electron donors (PxEDs) enhance KatG catalase activity. Here, we establish the mechanism of synergistic cooperation between these activities. We show that at low pH values KatG can fully convert H 2 O 2 to O 2 and H 2 O only if a PxED is present in the reaction mixture. Stopped-flow spectroscopy results indicated rapid initial rates of H 2 O 2 disproportionation slowing concomitantly with the accumulation of ferryl-like heme states. These states very slowly returned to resting ( i.e. ferric) enzyme, indicating that they represented catalase-inactive intermediates. We also show that an active-site tryptophan, Trp-321, participates in off-pathway electron transfer. A W321F variant in which the proximal tryptophan was replaced with a non-oxidizable phenylalanine exhibited higher catalase activity and less accumulation of off-pathway heme intermediates. Finally, rapid freeze-quench EPR experiments indicated that both WT and W321F KatG produce the same methionine-tyrosine-tryptophan (MYW) cofactor radical intermediate at the earliest reaction time points and that Trp-321 is the preferred site of off-catalase protein oxidation in the native enzyme. Of note, PxEDs did not affect the formation of the MYW cofactor radical but could reduce non-productive protein-based radical species that accumulate during reaction with H 2 O 2 Our results suggest that catalase-inactive intermediates accumulate because of off-mechanism oxidation, primarily of Trp-321, and PxEDs stimulate KatG catalase activity by preventing the accumulation of inactive intermediates. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Oxidation of isoniazid by quinolinium dichromate in an aqueous acid medium and kinetic determination of isoniazid in pure and pharmaceutical formulations.

    PubMed

    Kulkarni, Raviraj M; Bilehal, Dinesh C; Nandibewoor, Sharanappa T

    2004-04-01

    The kinetics of oxidation of isoniazid in acidic medium was studied spectrophotometrically. The reaction between QDC and isoniazid in acid medium exhibits (4:1) stoichiometry (QDC:isoniazid). The reaction showed first order kinetics in quinolinium dichromate (QDC) concentration and an order of less than unity in isoniazid (INH) and acid concentrations. The oxidation reaction proceeds via a protonated QDC species, which forms a complex with isoniazid. The latter decomposes in a slow step to give a free radical derived from isoniazid and an intermediate chromium(V), which is followed, by subsequent fast steps to give the products. The reaction constants involved in the mechanism are evaluated. Isoniazid was analyzed by kinetic methods in pure and pharmaceutical formulations.

  8. Criegee intermediates in the indoor environment. New insights

    DOE PAGES

    Shallcross, D. E.; Taatjes, C. A.; Percival, C. J.

    2014-03-25

    Criegee intermediates are formed in the ozonolysis of alkenes and play an important role in indoor chemistry, notably as a source of OH radicals. Recent studies have shown that these Criegee intermediates react very quickly with NO 2, SO 2, and carbonyls, and in this study, steady-state calculations are used to inspect the potential impact of these data on indoor chemistry. It is shown that these reactions could accelerate NO 3 formation and SO 2 removal in the indoor environment significantly. In addition, reaction between Criegee intermediates and halogenated carbonyls could provide a significant loss process indoors, where currently onemore » does not exist.« less

  9. Antioxidative and myocardial protective effects of L-arginine in oxygen radical-induced injury of isolated perfused rat hearts.

    PubMed

    Suessenbacher, Astrid; Lass, Achim; Mayer, Bernd; Brunner, Friedrich

    2002-04-01

    Oxygen-derived free radicals and oxidants (reactive oxygen intermediates, ROI) have been implicated in cardiovascular diseases. The protective role of nitric oxide (NO) against ROI-mediated tissue injury is not resolved. We tested the effects of exogenous NO, L- and D-arginine and a NO synthase inhibitor on electrolysis-induced cardiac injury and the generation of ROI by electrolysis. Superoxide dismutase (SOD) and catalase were used for comparison. Hearts ( n=7) from male rats (350+/-30 g) were perfused in vitro at 10 ml min(-1) g(-1), ROI generated by electrolysis of the perfusion medium (15 mA, 10 s), and cardiac function and the level of isoluminol-derived chemiluminescence in electrolysed perfusion medium documented for 15 min ( n=4). The ROI-induced maximal reduction of left ventricular developed pressure to 55+/-5% of baseline, and a 2.2+/-0.1-fold rise in coronary perfusion pressure 3 min after electrolysis, were prevented by SOD (50 U ml(-1)), catalase (100 U ml(-1)), S-nitroso- N-acetyl- D,L-penicillamine (SNAP, 100 nmol l(-1)); L-arginine (1 mmol l(-1)), N(G)-nitro- L-arginine (L-NNA, 200 micromol l(-1)) or D-arginine (1 mmol l(-1)). The effect of L-arginine was concentration dependent. In all cases, the beneficial effects were closely matched by a near-total reduction of ROI in the perfusion medium.We conclude that, besides mimicking or enhancing NO activity, L-arginine and donor-derived exogenous NO are cardioprotective by reducing ROI-mediated tissue injury. The protective effect of L-NNA and D-arginine implies that the protection results from a direct chemical interaction between the drug and the oxidizing species.

  10. Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination.

    PubMed

    Lan, Shenyu; Feng, Jinxi; Xiong, Ya; Tian, Shuanghong; Liu, Shengwei; Kong, Lingjun

    2017-06-06

    Piezo-catalysis was first used to degrade a nondye pollutant, 4-chlorophenol (4-CP). In this process, hydrothermally synthesized tetragonal BaTiO 3 nano/micrometer-sized particles were used as the piezo-catalyst, and the ultrasonic irradiation with low frequency was selected as the vibration energy to cause the deformation of tetragonal BaTiO 3 . It was found that the piezoelectric potential from the deformation could not only successfully degrade 4-chlorophenol but also effectively dechlorinate it at the same time, and five kinds of dechlorinated intermediates, hydroquinone, benzoquinone, phenol, cyclohexanone, and cyclohexanol, were determined. This is the first sample of piezo-dechlorination. Although various active species, including h + , e - , •H, •OH, •O 2 - , 1 O 2 , and H 2 O 2 , were generated in the piezoelectric process, it was confirmed by ESR, scavenger studies, and LC-MS that the degradation and dechlorination were mainly attributed to •OH radicals. These •OH radicals were chiefly derived from the electron reduction of O 2 , partly from the hole oxidation of H 2 O. These results indicated that the piezo-catalysis was an emerging and effective advanced oxidation technology for degradation and dechlorination of organic pollutants.

  11. The gas phase origin of complex organic molecules precursors in prestellar cores

    NASA Astrophysics Data System (ADS)

    Bacmann, A.; Faure, A.

    2015-05-01

    Complex organic molecules (COMs) have long been observed in the warm regions surrounding nascent protostars. The recent discovery of oxygen-bearing COMs like methyl formate or dimethyl ether in prestellar cores (Bacmann et al. [2]), where gas and dust temperatures rarely exceed 10-15 K, has challenged the previously accepted models according to which COM formation relied on the diffusion of heavy radicals on warm (˜30 K) grains. Following these detections, new questions have arisen: do non-thermal processes play a role in increasing radical mobility or should new gas-phase routes be explored? The radicals involved in the formation of the aforementioned COMs, HCO and CH3O represent intermediate species in the grain-surface synthesis of methanol which proceeds via successive hydrogenations of CO molecules in the ice. We present here observations of methanol and its grain-surface precursors HCO, H2CO, CH3O in a sample of prestellar cores and derive their relative abundances. We find that the relative abundances HCO:H2CO:CH3O:CH3OH are constant across the core sample, close to 10:100:1:100. Our results also show that the amounts of HCO and CH3O are consistent with a gas-phase synthesis of these species from H2CO and CH3OH via radical-neutral or ion-molecule reactions followed by dissociative recombinations. Thus, while grain chemistry is necessary to explain the abundances of the parent volatile CH3OH, and possibly H2CO, the reactive species HCO and CH3O might be daughter molecules directly produced in the gas-phase.

  12. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.

    PubMed

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  13. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE

    NASA Astrophysics Data System (ADS)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C.; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5‧-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate.

  14. The CRDS method application for study of the gas-phase processes in the hot CVD diamond thin film.

    NASA Astrophysics Data System (ADS)

    Buzaianumakarov, Vladimir; Hidalgo, Arturo; Morell, Gerardo; Weiner, Brad; Buzaianu, Madalina

    2006-03-01

    For detailed analysis of problem related to the hot CVD carbon-containing nano-material growing, we have to detect different intermediate species forming during the growing process as well as investigate dependences of concentrations of these species on different experimental parameters (concentrations of the CJH4, H2S stable chemical compounds and distance from the filament system to the substrate surface). In the present study, the HS and CS radicals were detected using the Cavity Ring Down Spectroscopic (CRDS) method in the hot CVD diamond thin film for the CH4(0.4 %) + H2 mixture doped by H2S (400 ppm). The absolute absorption density spectra of the HS and CS radicals were obtained as a function of different experimental parameters. This study proofs that the HS and CS radicals are an intermediate, which forms during the hot filament CVD process. The kinetics approach was developed for detailed analysis of the experimental data obtained. The kinetics scheme includes homogenous and heterogenous processes as well as processes of the chemical species transport in the CVD chamber.

  15. Reactivity of [K₃(phen)₈][Cu(NPh₂)₂]₃--a possible intermediate in the copper(I)-catalyzed N-arylation of N-phenylaniline.

    PubMed

    Tseng, Chia-Kai; Lee, Chi-Rung; Tseng, Mei-Chun; Han, Chien-Chung; Shyu, Shin-Guang

    2014-05-21

    Complex [K3(phen)8][Cu(NPh2)2]3 (1, phen = phenanthroline) was isolated from the catalytic C-N cross coupling reaction based on the CuI-phen-tBuOK catalytic system. Complex 1 can react with 4-iodotoluene to give 4-methyl-N,N-diphenylaniline (3a) in 50% yield (based on all available NPh2(-) ligands of complex 1). In addition, 1 can also work as an effective catalyst for the C-N coupling reactions under the same reaction conditions, indicating that 1 may be an effective intermediate of the catalytic system. In the presence of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO), a radical scavenger, the stoichiometric reaction between complex 1 and 4-iodotoluene was significantly quenched to give a low yield of 12%. The results suggest that the radical path dominates in the reaction, with (phen)KNPh2 as the possible radical source. The structures of 1 and (phen)KNPh2 were both determined by single crystal X-ray diffraction studies.

  16. Imaging spectroscopy of the missing REMPI bands of methyl radicals: Final touches on all vibrational frequencies of the 3p Rydberg states

    NASA Astrophysics Data System (ADS)

    Pan, Huilin; Liu, Kopin

    2018-01-01

    (2 + 1) resonance-enhanced multiphoton ionization (REMPI) detection of methyl radicals, in particular that via the intermediate 3p Rydberg states, has shown to be a powerful method and thus enjoyed a wide range of applications. Methyl has six vibrational modes. Among them—including partially and fully deuterated isotopologs—four out of twenty vibrational frequencies in the intermediate 3p states have so far eluded direct spectroscopic determination. Here, by exploiting the imaging spectroscopy approach to a few judiciously selected chemical reactions, the four long-sought REMPI bands—CHD2(611), CH2D(311), CH2D(511), and CH2D(611)—are discovered, which complete the REMPI identification for probing any vibrational mode of excitation of methyl radical and its isotopologs. These results, in conjunction with those previously reported yet scattered in the literature, are summarized here for ready reference, which should provide all necessary information for further spectral assignments and future studies of chemical dynamics using this versatile REMPI scheme.

  17. Photostability enhancement of the pentacene derivative having two nitronyl nitroxide radical substituents.

    PubMed

    Shimizu, Akihiro; Ito, Akitaka; Teki, Yoshio

    2016-02-18

    Pentacene derivatives possessing nitronyl nitroxide radical substituents (1a and 1b) were synthesized, and their photochemical properties were evaluated. 1a with two radical substituents showed a remarkable enhancement of photostability compared with pentacene, 6,13-bis(triisopropylsilylethynyl)pentacene and the monoradical, 1b. This is understood due to the presence of the multiple deactivation pathways in the photoexcited states.

  18. Aqueous SOA formation from radical oligomerization of methyl vinyl ketone (MVK) and methacrolein (MACR)

    NASA Astrophysics Data System (ADS)

    Renard, P.; Siekmann, F.; Ravier, S.; Temime-Roussel, B.; Clément, J.; Ervens, B.; Monod, A.

    2013-12-01

    It is now accepted that one of the important pathways of secondary organic aerosol (SOA) formation occurs through aqueous phase chemistry in the atmosphere. However, the chemical mechanisms leading to macromolecules are still not well understood. It was recently shown that oligomer production by OH radical oxidation in the aerosol aqueous phase from α-dicarbonyl precursors, such as methylglyoxal and glyoxal, is irreversible and fast. We have investigated the aqueous phase photooxidation of MACR and MVK, which are biogenic organic compounds derived from isoprene. Aqueous phase photooxidation of MVK and MACR was investigated in a photoreactor using photolysis of H2O2 as OH radical source. Electrospray high resolution mass spectrometry analysis of the solutions brought clear evidence for the formation of oligomer systems having a mass range of up to 1800 Da within less than 15 minutes of reaction. Highest oligomer formation rates were obtained under conditions of low dissolved oxygen, highest temperature (T = 298 K) and highest precursor initial concentrations ([MVK]0 = 20 mM). A radical mechanism of oligomerization is proposed to explain the formation of the high molecular weight products. Furthermore, we quantified the total amount of carbon present in oligomers. Kinetic parameters of the proposed oligomerization mechanism are constrained by means of a box model that is able to reproduce the temporal evolution of intermediates and products as observed in the laboratory experiments. Additional model simulations for atmospherically-relevant conditions will be presented that show the extent to which these radical processes contribute to SOA formation in the atmospheric multiphase system as compared to other aqueous phase as well as traditional SOA sources. MVK time profile (as measured by UV Spectroscopy) and mass spectra (obtained using UPLC-ESI-MS for the retention time range 0-5 min in the positive mode) at 5, 10 and 50 min of reaction (MVK 20 mM, 25° C, under supersaturated O2 initial conditions).

  19. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling☆

    PubMed Central

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-01-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2.) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. PMID:26225731

  20. Singlet oxygen treatment of tumor cells triggers extracellular singlet oxygen generation, catalase inactivation and reactivation of intercellular apoptosis-inducing signaling.

    PubMed

    Riethmüller, Michaela; Burger, Nils; Bauer, Georg

    2015-12-01

    Intracellular singlet oxygen generation in photofrin-loaded cells caused cell death without discrimination between nonmalignant and malignant cells. In contrast, extracellular singlet oxygen generation caused apoptosis induction selectively in tumor cells through singlet oxygen-mediated inactivation of tumor cell protective catalase and subsequent reactivation of intercellular ROS-mediated apoptosis signaling through the HOCl and the NO/peroxynitrite signaling pathway. Singlet oxygen generation by extracellular photofrin alone was, however, not sufficient for optimal direct inactivation of catalase, but needed to trigger the generation of cell-derived extracellular singlet oxygen through the interaction between H2O2 and peroxynitrite. Thereby, formation of peroxynitrous acid, generation of hydroxyl radicals and formation of perhydroxyl radicals (HO2(.)) through hydroxyl radical/H2O2 interaction seemed to be required as intermediate steps. This amplificatory mechanism led to the formation of singlet oxygen at a sufficiently high concentration for optimal inactivation of membrane-associated catalase. At low initial concentrations of singlet oxygen, an additional amplification step needed to be activated. It depended on singlet oxygen-dependent activation of the FAS receptor and caspase-8, followed by caspase-8-mediated enhancement of NOX activity. The biochemical mechanisms described here might be considered as promising principle for the development of novel approaches in tumor therapy that specifically direct membrane-associated catalase of tumor cells and thus utilize tumor cell-specific apoptosis-inducing ROS signaling. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Gas Phase Molecular Spectroscopy: Electronic Spectroscopy of Combustion Intermediates, Chlorine Azide kinetics, and Rovibrational Energy Transfer in Acetylene

    NASA Astrophysics Data System (ADS)

    Freel, Keith A.

    This dissertation is composed of three sections. The first deals with the electronic spectroscopy of combustion intermediates that are related to the formation of polycyclic aromatic hydrocarbons. Absorption spectra for phenyl, phenoxy, benzyl, and phenyl peroxy radicals were recorded using the technique of cavity ring-down spectroscopy. When possible, molecular constants, vibrational frequencies, and excited state lifetimes for these radicals were derived from these data. The results were supported by theoretical predictions. The second section presents a study of electron attachment to chlorine azide (ClN3) using a flowing-afterglow Langmuir-probe apparatus. Electron attachment rates were measured to be 3.5x10-8 and 4.5x10-8 cm3s-1 at 298 and 400 K respectively. The reactions of ClN3 with eighteen cations and seventeen anions were characterized. Rate constants were measured using a selected ion flow tube. The ionization energy (>9.6eV), proton affinity (713+/-41 kJ mol-1), and electron affinity (2.48+/-0.2 eV) for ClN 3 were determined from these data. The third section demonstrates the use of double resonance spectroscopy to observe state-selected rovibrational energy transfer from the first overtone asymmetric stretch of acetylene. The total population removal rate constants from various rotational levels of the (1,0,1,00,00) vibrational state were determined to be in the range of (9-17) x 10 -10 cm3s-1. Rotational energy transfer accounted for approximately 90% of the total removal rate from each state. Therefore, the upper limit of vibrational energy transfer from the (1,0,1,0 0,00) state was 10%.

  2. Efficient depletion of ascorbate by amino acid and protein radicals under oxidative stress.

    PubMed

    Domazou, Anastasia S; Zelenay, Viviane; Koppenol, Willem H; Gebicki, Janusz M

    2012-10-15

    Ascorbate levels decrease in organisms subjected to oxidative stress, but the responsible reactions have not been identified. Our earlier studies have shown that protein C-centered radicals react rapidly with ascorbate. In aerobes, these radicals can react with oxygen to form peroxyl radicals. To estimate the relative probabilities of the reactions of ascorbate with protein C- and O-centered radicals, we measured by pulse radiolysis the rate constants of the reactions of C-centered radicals in Gly, Ala, and Pro with O₂ and of the resultant peroxyl radicals with ascorbate. Calculations based on the concentrations of ascorbate and oxygen in human tissues show that the relative probabilities of reactions of the C-centered amino acid radicals with O₂ and ascorbate vary between 1:2.6 for the pituitary gland and 1:0.02 for plasma, with intermediate ratios for other tissues. The high frequency of occurrence of Gly, Ala, and Pro in proteins and the similar reaction rate constants of their C-centered radicals with O₂ and their peroxo-radicals with ascorbate suggest that our results are also valid for proteins. Thus, the formation of protein C- or O-centered radicals in vivo can account for the loss of ascorbate in organisms under oxidative stress. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Radical-Mediated Enzymatic Carbon Chain Fragmentation-Recombination

    PubMed Central

    Zhang, Qi; Li, Yuxue; Chen, Dandan; Yu, Yi; Duan, Lian; Shen, Ben; Liu, Wen

    2010-01-01

    The radical S-adenosylmethionine (S-AdoMet) superfamily contains thousands of proteins that catalyze highly diverse conversions, most of which are poorly understood due to a lack of information regarding chemical products and radical-dependent transformations. We here report that NosL, involved in forming the indole side ring of the thiopeptide nosiheptide (NOS), is a radical S-AdoMet 3-methyl-2-indolic acid (MIA) synthase. NosL catalyzed an unprecedented carbon chain reconstitution of L-Trp to give MIA, showing removal of the Cα-N unit and shift of the carboxylate to the indole ring. Dissection of the enzymatic process upon the identification of products and a putative glycyl intermediate uncovered a radical-mediated, unusual fragmentation-recombination reaction. This finding unveiled a key step in radical S-AdoMet enzyme-catalyzed structural rearrangements during complex biotransformations. Additionally, NosL tolerated fluorinated L-Trps as the substrates, allowing for production of a regiospecifically halogenated thiopeptide that has not been found in over 80 entity-containing, naturally occurring thiopeptide family. PMID:21240261

  4. Electrochemiluminescence sensors for scavengers of hydroxyl radical based on its annihilation in CdSe quantum dots film/peroxide system.

    PubMed

    Jiang, Hui; Ju, Huangxian

    2007-09-01

    This work elucidated the detailed electrochemiluminescence (ECL) process of the thioglycolic acid-capped CdSe quantum dots (QDs) film/peroxide aqueous system. The QDs were first electrochemically reduced to form electrons-injected QDs approximately -1.1 V, which then reduced hydrogen peroxide to produce OH* radical. The intermediate OH* radical was a key species for producing holes-injected QDs. The ECL emission with a peak at -1.114 V was demonstrated to come from the 1Se-1Sh transition emission. Using thiol compounds as the model molecules to annihilate the OH* radical, their quenching effects on ECL emission were studied. This effect led to a novel strategy for ECL sensing of the scavengers of hydroxyl radical. The detection results of thiol compounds showed high sensitivity, good precision, and acceptable accuracy, suggesting the promising application of the proposed method for quick detection of both scavengers and generators of hydroxyl radical in different fields.

  5. 9-Substituted acridine derivatives as acetylcholinesterase and butyrylcholinesterase inhibitors possessing antioxidant activity for Alzheimer's disease treatment.

    PubMed

    Makhaeva, Galina F; Lushchekina, Sofya V; Boltneva, Natalia P; Serebryakova, Olga G; Rudakova, Elena V; Ustyugov, Alexey A; Bachurin, Sergey O; Shchepochkin, Alexander V; Chupakhin, Oleg N; Charushin, Valery N; Richardson, Rudy J

    2017-11-01

    We investigated the inhibitory activity of 4 groups of novel acridine derivatives against acetylcholinesterase (AChE), butyrylcholinesterase (BChE) and carboxylesterase (CaE) using the methods of enzyme kinetics and molecular docking. Antioxidant activity of the compounds was determined using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS + ) radical decolorization assay as their ability to scavenge free radicals. Analysis of the esterase profiles and antiradical activities of the acridine derivatives showed that 9-aryl(heteroaryl)-N-methyl-9,10-dihydroacridines have a high radical-scavenging activity but low potency as AChE and BChE inhibitors, whereas 9-aryl(heteroaryl)-N-methyl-acridinium tetrafluoroborates effectively inhibit cholinesterases but do not exhibit antiradical activity. In contrast, a group of derivatives of 9-heterocyclic amino-N-methyl-9,10-dihydroacridine has been found that combine effective inhibition of AChE and BChE with rather high radical-scavenging activity. The results of molecular docking well explain the observed features in the efficacy, selectivity, and mechanism of cholinesterase inhibition by the acridine derivatives. Thus, in a series of acridine derivatives we have found compounds possessing dual properties of effective and selective cholinesterase inhibition together with free radical scavenging, which makes promising the use of the acridine scaffold to create multifunctional drugs for the therapy of neurodegenerative diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Radiolysis of berberine or palmatine in aqueous solution

    NASA Astrophysics Data System (ADS)

    Marszalek, Milena; Wolszczak, Marian

    2011-01-01

    The reactions of hydrated electron (eaq-), hydrogen atom (H rad ) (reducing species) and Cl2•-, Br2•-, N,O•H radicals (oxidizing species) with berberine or palmatine in aqueous solution have been studied by steady-state and pulse radiolysis. The spectra of transient intermediates, leading to the final products, are presented. The rate constants of the reaction of eaq- and rad OH radical with both alkaloids in the homogenous solution and in the presence of DNA are reported. It is demonstrated that the primary products of the reaction of berberine and palmatine with eaq- and radicals generated during radiolysis are unstable and undergo further reactions.

  7. RRKM and master equation kinetic analysis of parallel addition reactions of isomeric radical intermediates in hydrocarbon flames

    NASA Astrophysics Data System (ADS)

    Winter, Pierre M.; Rheaume, Michael; Cooksy, Andrew L.

    2017-08-01

    We have calculated the temperature-dependent rate coefficients of the addition reactions of butadien-2-yl (C4H5) and acroylyl (C3H3O) radicals with ethene (C2H4), carbon monoxide (CO), formaldehyde (H2CO), hydrogen cyanide (HCN), and ketene (H2CCO), in order to explore the balance between kinetic and thermodynamic control in these combustion-related reactions. For the C4H5 radical, the 1,3-diene form of the addition products is more stable than the 1,2-diene, but the 1,2-diene form of the radical intermediate is stabilized by an allylic delocalization, which may influence the relative activation energies. For the reactions combining C3H3O with C2H4, CO, and HCN, the opposite is true: the 1,2-enone form of the addition products is more stable than the 1,3-enone, whereas the 1,3-enone is the slightly more stable radical species. Optimized geometries and vibrational modes were computed with the QCISD/aug-cc-pVDZ level and basis, followed by single-point CCSD(T)-F12a/cc-pVDZ-F12 energy calculations. Our findings indicate that the kinetics in all cases favor reaction along the 1,3 pathway for both the C4H5 and C3H3O systems. The Rice-Ramsperger-Kassel-Marcus (RRKM) microcanonical rate coefficients and subsequent solution of the chemical master equation were used to predict the time-evolution of our system under conditions from 500 K to 2000 K and from 10-5 bar to 10 bars. Despite the 1,3 reaction pathway being more favorable for the C4H5 system, our results predict branching ratios of the 1,2 to 1,3 product as high as 0.48 at 1 bar. Similar results hold for the acroylyl system under these combustion conditions, suggesting that under kinetic control the branching of these reactions may be much more significant than the thermodynamics would suggest. This effect may be partly attributed to the low energy difference between 1,2 and 1,3 forms of the radical intermediate. No substantial pressure-dependence is found for the overall forward reaction rates until pressures decrease below 0.1 bar.

  8. Intermediates in the Formation of Aromatics in Hydrocarbon Combustion

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    The formation of the first benzene ring is believed to be the rate limiting step in soot formation. Two different mechanisms have been proposed for formation of cyclic C6 species. The first involves the reaction of two acetylenes to give CH2CHCCH (vinyl acetylene), the loss of a H to give CHCHCCH (n-C41-13) or CH2CCCH (iso-C4H3), and addition of another acetylene to n-C4H3, followed by ring closure to give phenyl radical. Miller and Melius argue that only n-C4H3 leads to phenyl radical and since iso-C4H3 is more stable than n-C4H3 this mechanism is unlikely. An alternative mechanism proposed by them is formation of benzene from the dimerization of two CH2CCH (propargyl) radicals (formed by the reaction of singlet methylene with C2H2). We report reaction pathways and accurate energetics (from CASSCF/internally contracted CI calculations) for the reactions of CH(pi-2) and CH2-1 with acetylene, the reaction of vinylidene with acetylene, and the reaction of n-C4H3 and iso-C4H3 with acetylene. These calculations identify two new reactive intermediates CHCHCH ( a A"-2 ground state in Cs symmetry; spin coupling is a doublet from three singly occupied orbitals) and CHCCH (B-3 ground state in C2 symmetry) from the reaction of CH with acetylene. These species dimerize with no barrier to form benzene and para-benzyne, respectively. CHCCH is proposed as a reactive intermediate which can add to benzene to give higher polynuclear aromatic hydrocarbons or fullerenes. The addition of a C3H2 unit releases two C-C bond energies and thus the resulting addition product contains sufficient energy to break several CH bonds leading to a reduction in the H to C ratio as the cluster size increases. It is found that iso-C4H3 adds to acetylene to initially give a fulvene radical but that this species rearranges to phenyl radical. Thus, the reaction of acetylene with iso-C4H3 does lead to phenyl radical and the cyclization pathway may also contribute to formation of the initial benzene ring.

  9. Diffusive confinement of free radical intermediates in the OH radical oxidation of semisolid aerosols

    DOE PAGES

    Wiegel, Aaron A.; Liu, Matthew J.; Hinsberg, William D.; ...

    2017-02-07

    Multiphase chemical reactions (gas + solid/liquid) involve a complex interplay between bulk and interface chemistry, diffusion, evaporation, and condensation. Reactions of atmospheric aerosols are an important example of this type of chemistry: the rich array of particle phase states and multiphase transformation pathways produce diverse but poorly understood interactions between chemistry and transport. Their chemistry is of intrinsic interest because of their role in controlling climate. Their characteristics also make them useful models for the study of principles of reactivity of condensed materials under confined conditions. Previously, we have reported a computational study of the oxidation chemistry of a liquidmore » aliphatic aerosol. In this study, we extend the calculations to investigate nearly the same reactions at a semisolid gas-aerosol interface. A reaction-diffusion model for heterogeneous oxidation of triacontane by hydroxyl radicals (OH) is described, and its predictions are compared to measurements of aerosol size and composition, which evolve continuously during oxidation. Our results are also explicitly compared to those obtained for the corresponding liquid system, squalane, to pinpoint salient elements controlling reactivity. The diffusive confinement of the free radical intermediates at the interface results in enhanced importance of a few specific chemical processes such as the involvement of aldehydes in fragmentation and evaporation, and a significant role of radical-radical reactions in product formation. The simulations show that under typical laboratory conditions semisolid aerosols have highly oxidized nanometer-scale interfaces that encapsulate an unreacted core and may confer distinct optical properties and enhanced hygroscopicity. This highly oxidized layer dynamically evolves with reaction, which we propose to result in plasticization. The validated model is used to predict chemistry under atmospheric conditions, where the OH radical concentration is much lower. The oxidation reactions are more strongly influenced by diffusion in the particle, resulting in a more liquid-like character.« less

  10. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    ERIC Educational Resources Information Center

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borg, D.C.; Schaich, K.M.; Forman, A.

    Several laboratoreies contend that sometimes reducing free radicals reach directly with H/sub 2/O/sub 2/ to afford OH. in a metal-independent fashion, and others propose that often the strongly electrophilic reaction intermediate is either a metal-oxy complex or a crypto-hydroxyl radical (crypto-OH.) rather than OH., especially when lipid peroxidation is initiated. Our data imply that metal-independent OH. formation is not competitively significant in vivo and that adventitious metals probably were unrecognized in the reactions that prompted others to the contrary conclusion, while the confusing patterns of initiator and inhibitor reactivity that led to inferences of ferryl (or cupryl) intermediation or tomore » the concept of crypto-OH. are explicable by the extremely short reaction radius of OH., which we show can be formed in lipid milieux that are inaccessible to hydrophilic or macromolecular scavengers.« less

  12. Double C-H activation of ethane by metal-free SO2*+ radical cations.

    PubMed

    de Petris, Giulia; Cartoni, Antonella; Troiani, Anna; Barone, Vincenzo; Cimino, Paola; Angelini, Giancarlo; Ursini, Ornella

    2010-06-01

    The room-temperature C-H activation of ethane by metal-free SO(2)(*+) radical cations has been investigated under different pressure regimes by mass spectrometric techniques. The major reaction channel is the conversion of ethane to ethylene accompanied by the formation of H(2)SO(2)(*+), the radical cation of sulfoxylic acid. The mechanism of the double C-H activation, in the absence of the single activation product HSO(2)(+), is elucidated by kinetic studies and quantum chemical calculations. Under near single-collision conditions the reaction occurs with rate constant k=1.0 x 10(-9) (+/-30%) cm(3) s(-1) molecule(-1), efficiency=90%, kinetic isotope effect k(H)/k(D)=1.1, and partial H/D scrambling. The theoretical analysis shows that the interaction of SO(2)(*+) with ethane through an oxygen atom directly leads to the C-H activation intermediate. The interaction through sulfur leads to an encounter complex that rapidly converts to the same intermediate. The double C-H activation occurs by a reaction path that lies below the reactants and involves intermediates separated by very low energy barriers, which include a complex of the ethyl cation suitable to undergo H/D scrambling. Key issues in the observed reactivity are electron-transfer processes, in which a crucial role is played by geometrical constraints. The work shows how mechanistic details disclosed by the reactions of metal-free electrophiles may contribute to the current understanding of the C-H activation of ethane.

  13. New Insights into Low-Temperature Oxidation of Propane from Synchrotron Photoionization Mass Spectrometry and Multiscale Informatics Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.

    2015-07-16

    We investigated the low-temperature oxidation of propane at 4 Torr and temperatures of 530, 600, and 670 K. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl)2, at 248 nm, which rapidly generates a ~1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. Reactants, intermediates and products are probed with isomeric selectivity by time-resolved multiplexed photoionization mass spectrometry (MPIMS) with tunable synchrotron vacuum UV radiation as the ionization source. At all three temperatures, the major stable product species is propene, formed in the C3H7 + O2 reactions by direct HO2-eliminationmore » from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, we detect the C3H6O isomers methyloxirane, oxetane, acetone and propanal as minor products. Our measured yields of oxetane and methyloxirane, which are co-products of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multi-scale informatics approach that is presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L., Multi-Scale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Rections, submitted, 2015). The model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary radical-radical reactions.« less

  14. Formation of OH radicals in the gas phase ozonolysis of alkenes: the unexpected role of carbonyl oxides

    NASA Astrophysics Data System (ADS)

    Gutbrod, Roland; Schindler, Ralph N.; Kraka, Elfi; Cremer, Dieter

    1996-04-01

    According to CCSD(T)/TZ + 2P calculations, the decomposition of carbonyl oxide, H 2COO to HCO and OH radicals is unlikely in view of an activation enthalpy ΔΔHf0(298) of 31 kcal/mol. However, for dimethylcarbonyl oxide there is a low energy rearrangement mode ( ΔΔHf0(298): 14.4 kca/mol) which involves a H atom of ghe methyl group and which leads to a hydroperoxy methyl ethene intermediate, which in turn can decompose to OH and CH 2COCH 3 radicals ( ΔΔHf0(298): 23 kcal/mol). In the gas phase ozonolysis of alkyl substituted alkenes the formation of OH radicals is the most likely process. This has important consequences for the chemistry of the atmosphere.

  15. Iminium salts and their derivatives as models for catalytic water oxidation

    NASA Astrophysics Data System (ADS)

    Khatmullin, Renat R.

    The solar energy utilization is one of the most promising strategies for catering the ever-increasing energy demand in a renewable manner. For this reason, several approaches are pursued for solar energy storage, one of which involves the photocatalytic splitting of water. Over recent years, much research has been directed towards the design of transition-metal based water oxidation catalysts to obtain oxygen based on transition metal complexes. The major drawback of most of these catalysts is the cost of transition- metal complexes. For these reasons, the main focus of our research is based on the design of a fully organic catalyst suitable for water oxidation. Our group recently discovered that a flavinium ion performs electrode-mediated electrocatalytic water oxidation at large overpotentials. It was found that catalysis occurs only in the presence of the electrodes that produce active oxides on their surfaces. The mechanism of the catalysis by the flavinium ions was proposed to involve the coupling reaction two oxygen-centered radicals, one of which is derived from to the flavin moiety and the other one is formed at the electrode surface. The electrochemical oxidation of the formed peroxide species then proposed to release the oxygen molecule and recover the catalyst. However, it is important to note, that the detailed study of the mechanism is limited due the fact that electrode participates in the catalytic cycle. For these reasons, it is crucial to develop a fully homogeneous system to study the mechanism of the catalysis. One approach towards a fully molecular catalysis involves a system composed of two- iminium ion moieties joined covalently by a suitable linker. The mechanism of a catalysis is proposed to involve four individual steps: (i) pseudobase formation via a reaction of flavinium ions with water; (ii) proton-coupled oxidation of pseudobases to generate alkoxyl radicals; (iii) coupling of alkoxyl radicals to generate the peroxide intermediate; (iv) two-electron oxidation of the peroxide to release molecular oxygen and regenerate the catalyst. Therefore, we decided to study each individual step of the proposed mechanism above in great detail. A series of iminium salts and their pseudobases were synthesized. It was found that the efficiency of a pseudobase formation depends on the nature of heterocyclic ion and the nature of substituents bound to it. The proton-coupled electrocatalytic oxidation of pseudobases was studied using cyclic voltammetry. We found that the deprotonation of the amine radical cation formed after one-electron oxidation of pseudobase derivative occurs via two competing pathways: OH vs. C-H deprotonation. To elucidate the side responsible for C-H deprotonation event we synthesized the methoxy derivatives of iminium ions since these compounds do not contain an O-H proton. Additionally, to investigate the general chemistry of the alkoxyl radicals, we prepared 2- ethyl-4-nitroisoquinolinium hydroperoxide. Since hydroperoxides also tend to form alkoxyl radicals upon the decomposition, we decided to investigate the thermal behavior of 2-ethyl-4-nitroisoquinolinium hydroperoxide. The thermal decomposition was investigated using steady-state UV/Vis and NMR spectroscopy. Finally in order to study the two electron-oxidation processes of peroxide leading to the formation of oxygen we report the modified procedures for the synthesis of symmetric peroxide xanthrene based moiety.

  16. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions.

    PubMed

    Williams, Peggy E; Marshall, David L; Poad, Berwyck L J; Narreddula, Venkateswara R; Kirk, Benjamin B; Trevitt, Adam J; Blanksby, Stephen J

    2018-06-04

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions. Graphical Abstract.

  17. Comparing Positively and Negatively Charged Distonic Radical Ions in Phenylperoxyl Forming Reactions

    NASA Astrophysics Data System (ADS)

    Williams, Peggy E.; Marshall, David L.; Poad, Berwyck L. J.; Narreddula, Venkateswara R.; Kirk, Benjamin B.; Trevitt, Adam J.; Blanksby, Stephen J.

    2018-06-01

    In the gas phase, arylperoxyl forming reactions play a significant role in low-temperature combustion and atmospheric processing of volatile organic compounds. We have previously demonstrated the application of charge-tagged phenyl radicals to explore the outcomes of these reactions using ion trap mass spectrometry. Here, we present a side-by-side comparison of rates and product distributions from the reaction of positively and negatively charge tagged phenyl radicals with dioxygen. The negatively charged distonic radical ions are found to react with significantly greater efficiency than their positively charged analogues. The product distributions of the anion reactions favor products of phenylperoxyl radical decomposition (e.g., phenoxyl radicals and cyclopentadienone), while the comparable fixed-charge cations yield the stabilized phenylperoxyl radical. Electronic structure calculations rationalize these differences as arising from the influence of the charged moiety on the energetics of rate-determining transition states and reaction intermediates within the phenylperoxyl reaction manifold and predict that this influence could extend to intra-molecular charge-radical separations of up to 14.5 Å. Experimental observations of reactions of the novel 4-(1-carboxylatoadamantyl)phenyl radical anion confirm that the influence of the charge on both rate and product distribution can be modulated by increasing the rigidly imposed separation between charge and radical sites. These findings provide a generalizable framework for predicting the influence of charged groups on polarizable radicals in gas phase distonic radical ions.

  18. Degradation mechanisms of 4-chlorophenol in a novel gas-liquid hybrid discharge reactor by pulsed high voltage system with oxygen or nitrogen bubbling.

    PubMed

    Zhang, Yi; Zhou, Minghua; Hao, Xiaolong; Lei, Lecheng

    2007-03-01

    The effect of gas bubbling on the removal efficiency of 4-chlorophenol (4-CP) in aqueous solution has been investigated using a novel pulsed high voltage gas-liquid hybrid discharge reactor, which generates gas-phase discharge above the water surface simultaneously with the spark discharge directly in the liquid. The time for 100% of 4-CP degradation in the case of oxygen bubbling (7 min) was much shorter than that in the case of nitrogen bubbling (25 min) as plenty of hydrogen peroxide and ozone formed in oxygen atmosphere enhanced the removal efficiency of 4-CP. Except for the main similar intermediates (4-chlorocatechol, hydroquinone and 1,4-benzoquinone) produced in the both cases of oxygen and nitrogen bubbling, special intermediates (5-chloro-3-nitropyrocatechol, 4-chloro-2-nitrophenol, nitrate and nitrite ions) were produced in nitrogen atmosphere. The reaction pathway of 4-CP in the case of oxygen bubbling was oxygen/ozone attack on the radical hydroxylated derivatives of 4-CP. However, in the case of nitrogen bubbling, hydroxylation was the main reaction pathway with effect of N atom on degradation of 4-CP.

  19. Urate as a Physiological Substrate for Myeloperoxidase

    PubMed Central

    Meotti, Flavia C.; Jameson, Guy N. L.; Turner, Rufus; Harwood, D. Tim; Stockwell, Samantha; Rees, Martin D.; Thomas, Shane R.; Kettle, Anthony J.

    2011-01-01

    Urate and myeloperoxidase (MPO) are associated with adverse outcomes in cardiovascular disease. In this study, we assessed whether urate is a likely physiological substrate for MPO and if the products of their interaction have the potential to exacerbate inflammation. Urate was readily oxidized by MPO and hydrogen peroxide to 5-hydroxyisourate, which decayed to predominantly allantoin. The redox intermediates of MPO were reduced by urate with rate constants of 4.6 × 105 m−1 s−1 for compound I and 1.7 × 104 m−1 s−1 for compound II. Urate competed with chloride for oxidation by MPO and at hyperuricemic levels is expected to be a substantive substrate for the enzyme. Oxidation of urate promoted super-stoichiometric consumption of glutathione, which indicates that it is converted to a free radical intermediate. In combination with superoxide and hydrogen peroxide, MPO oxidized urate to a reactive hydroperoxide. This would form by addition of superoxide to the urate radical. Urate also enhanced MPO-dependent consumption of nitric oxide. In human plasma, stimulated neutrophils produced allantoin in a reaction dependent on the NADPH oxidase, MPO and superoxide. We propose that urate is a physiological substrate for MPO that is oxidized to the urate radical. The reactions of this radical with superoxide and nitric oxide provide a plausible link between urate and MPO in cardiovascular disease. PMID:21266577

  20. Release of Reactive Oxygen Intermediates (Superoxide Radicals, Hydrogen Peroxide, and Hydroxyl Radicals) and Peroxidase in Germinating Radish Seeds Controlled by Light, Gibberellin, and Abscisic Acid1

    PubMed Central

    Schopfer, Peter; Plachy, Claudia; Frahry, Gitta

    2001-01-01

    Germination of radish (Raphanus sativus cv Eterna) seeds can be inhibited by far-red light (high-irradiance reaction of phytochrome) or abscisic acid (ABA). Gibberellic acid (GA3) restores full germination under far-red light. This experimental system was used to investigate the release of reactive oxygen intermediates (ROI) by seed coats and embryos during germination, utilizing the apoplastic oxidation of 2′,7′-dichlorofluorescin to fluorescent 2′,7′-dichlorofluorescein as an in vivo assay. Germination in darkness is accompanied by a steep rise in ROI release originating from the seed coat (living aleurone layer) as well as the embryo. At the same time as the inhibition of germination, far-red light and ABA inhibit ROI release in both seed parts and GA3 reverses this inhibition when initiating germination under far-red light. During the later stage of germination the seed coat also releases peroxidase with a time course affected by far-red light, ABA, and GA3. The participation of superoxide radicals, hydrogen peroxide, and hydroxyl radicals in ROI metabolism was demonstrated with specific in vivo assays. ROI production by germinating seeds represents an active, developmentally controlled physiological function, presumably for protecting the emerging seedling against attack by pathogens. PMID:11299341

  1. Degradation and intermediates of diclofenac as instructive example for decomposition of recalcitrant pharmaceuticals by hydroxyl radicals generated with pulsed corona plasma in water.

    PubMed

    Banaschik, Robert; Jablonowski, Helena; Bednarski, Patrick J; Kolb, Juergen F

    2018-01-15

    Seven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps. By spin trap enhanced electron paramagnetic resonance spectroscopy (EPR), OH-adducts and superoxide anion radical adducts were detected and could be distinguished applying BMPO as a spin trap. The increase of concentrations of adducts follows qualitatively the increase of hydrogen peroxide concentrations. Hydrogen peroxide is eventually consumed in Fenton-like processes but the concentration is continuously increasing to about 2mM for a plasma treatment of 70min. Degradation of diclofenac is inversely following hydrogen peroxide concentrations. No qualitative differences between byproducts formed during plasma treatment or due to degradation via Fenton-induced processes were observed. Findings on degradation kinetics of diclofenac provide an instructive understanding of decomposition rates for recalcitrant pharmaceuticals with respect to their chemical structure. Accordingly, conclusions can be drawn for further development and a first risk assessment of the method which can also be applied towards other AOPs that rely on the generation of hydroxyl radicals. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. EPR spin trapping evidence of radical intermediates in the photo-reduction of bicarbonate/CO2 in TiO2 aqueous suspensions.

    PubMed

    Molinari, Alessandra; Samiolo, Luca; Amadelli, Rossano

    2015-05-01

    Using the EPR spin trapping technique, we prove that simultaneous reactions take place in illuminated suspensions of TiO2 in aqueous carbonate solutions (pH ≈ 7). The adsorbed HCO3(-) is reduced to formate as directly made evident by the detection of formate radicals (˙CO2(-)). In addition, the amount of OH˙ radicals from the photo-oxidation of water shows a linear dependence on the concentration of bicarbonate, indicating that electron scavenging by HCO3(-) increases the lifetime of holes. In a weakly alkaline medium, photo-oxidation of HCO3(-)/CO3(2-) to ˙CO3(-) interferes with the oxidation of water. A comparative analysis of different TiO2 samples shows that formation of ˙CO2(-) is influenced by factors related to the nature of the surface, once expected surface area effects are accounted for. Modification of the TiO2 surface with noble metal nanoparticles does not have unequivocal benefits: the overall activity improves with Pd and Rh but not with Ru, which favours HCO3(-) photo-oxidation even at pH = 7. In general, identification of radical intermediates of oxidation and reduction reactions can provide useful mechanistic information that may be used in the development of photocatalytic systems for the reduction of CO2 also stored in the form of carbonates.

  3. Ground and Excited-Electronic-State Dissociations of Hydrogen-Rich and Hydrogen-Deficient Tyrosine Peptide Cation Radicals

    NASA Astrophysics Data System (ADS)

    Viglino, Emilie; Lai, Cheuk Kuen; Mu, Xiaoyan; Chu, Ivan K.; Tureček, František

    2016-09-01

    We report a comprehensive study of collision-induced dissociation (CID) and near-UV photodissociation (UVPD) of a series of tyrosine-containing peptide cation radicals of the hydrogen-rich and hydrogen-deficient types. Stable, long-lived, hydrogen-rich peptide cation radicals, such as [AAAYR + 2H]+● and several of its sequence and homology variants, were generated by electron transfer dissociation (ETD) of peptide-crown-ether complexes, and their CID-MS3 dissociations were found to be dramatically different from those upon ETD of the respective peptide dications. All of the hydrogen-rich peptide cation radicals contained major (77%-94%) fractions of species having radical chromophores created by ETD that underwent photodissociation at 355 nm. Analysis of the CID and UVPD spectra pointed to arginine guanidinium radicals as the major components of the hydrogen-rich peptide cation radical population. Hydrogen-deficient peptide cation radicals were generated by intramolecular electron transfer in CuII(2,2 ':6 ',2 ″-terpyridine) complexes and shown to contain chromophores absorbing at 355 nm and undergoing photodissociation. The CID and UVPD spectra showed major differences in fragmentation for [AAAYR]+● that diminished as the Tyr residue was moved along the peptide chain. UVPD was found to be superior to CID in localizing Cα-radical positions in peptide cation radical intermediates.

  4. Radical-induced chemistry from VUV photolysis of interstellar ice analogues containing formaldehyde

    NASA Astrophysics Data System (ADS)

    Butscher, Teddy; Duvernay, Fabrice; Danger, Grégoire; Chiavassa, Thierry

    2016-09-01

    Surface processes and radical chemistry within interstellar ices are increasingly suspected to play an important role in the formation of complex organic molecules (COMs) observed in several astrophysical regions and cometary environments. We present new laboratory experiments on the low-temperature solid state formation of complex organic molecules - glycolaldehyde, ethylene glycol, and polyoxymethylene - through radical-induced reactivity from VUV photolysis of formaldehyde in water-free and water-dominated ices. Radical reactivity and endogenous formation of COMs were monitored in situ via infrared spectroscopy in the solid state and post photolysis with temperature programmed desorption (TPD) using a quadripole mass spectrometer. We show the ability of free radicals to be stored when formed at low temperature in water-dominated ices, and to react with other radicals or on double bonds of unsaturated molecules when the temperature increases. It experimentally confirms the role of thermal diffusion in radical reactivity. We propose a new pathway for formaldehyde polymerisation induced by HCO radicals that might explain some observations made by the Ptolemy instrument on board the Rosetta lander Philae. In addition, our results seem to indicate that H-atom additions on H2CO proceed preferentially through CH2OH intermediate radicals rather than the CH3O radical.

  5. EPR characterization of ascorbyl and sulfur dioxide anion radicals trapped during the reaction of bovine Cytochrome c Oxidase with molecular oxygen

    NASA Astrophysics Data System (ADS)

    Yu, Michelle A.; Egawa, Tsuyoshi; Yeh, Syun-Ru; Rousseau, Denis L.; Gerfen, Gary J.

    2010-04-01

    The reaction intermediates of reduced bovine Cytochrome c Oxidase (CcO) were trapped following its reaction with oxygen at 50 μs-6 ms by innovative freeze-quenching methods and studied by EPR. When the enzyme was reduced with either ascorbate or dithionite, distinct radicals were generated; X-band (9 GHz) and D-band (130 GHz) CW-EPR measurements support the assignments of these radicals to ascorbyl and sulfur dioxide anion radical (SO2-rad), respectively. The X-band spectra show a linewidth of 12 G for the ascorbyl radical and 11 G for the SO2-rad radical and an isotropic g-value of 2.005 for both species. The D-band spectra reveal clear distinctions in the g-tensors and powder patterns of the two species. The ascorbyl radical spectrum displays approximate axial symmetry with g-values of gx = 2.0068, gy = 2.0066, and gz = 2.0023. The SO2-rad>/SUP> radical has rhombic symmetry with g-values of gx = 2.0089, gy = 2.0052, and gz = 2.0017. When the contributions from the ascorbyl and SO2-rad radicals were removed, no protein-based radical on CcO could be identified in the EPR spectra.

  6. Asymmetric photoredox transition-metal catalysis activated by visible light.

    PubMed

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-06

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the 'green' synthesis of non-racemic chiral molecules.

  7. Asymmetric photoredox transition-metal catalysis activated by visible light

    NASA Astrophysics Data System (ADS)

    Huo, Haohua; Shen, Xiaodong; Wang, Chuanyong; Zhang, Lilu; Röse, Philipp; Chen, Liang-An; Harms, Klaus; Marsch, Michael; Hilt, Gerhard; Meggers, Eric

    2014-11-01

    Asymmetric catalysis is seen as one of the most economical strategies to satisfy the growing demand for enantiomerically pure small molecules in the fine chemical and pharmaceutical industries. And visible light has been recognized as an environmentally friendly and sustainable form of energy for triggering chemical transformations and catalytic chemical processes. For these reasons, visible-light-driven catalytic asymmetric chemistry is a subject of enormous current interest. Photoredox catalysis provides the opportunity to generate highly reactive radical ion intermediates with often unusual or unconventional reactivities under surprisingly mild reaction conditions. In such systems, photoactivated sensitizers initiate a single electron transfer from (or to) a closed-shell organic molecule to produce radical cations or radical anions whose reactivities are then exploited for interesting or unusual chemical transformations. However, the high reactivity of photoexcited substrates, intermediate radical ions or radicals, and the low activation barriers for follow-up reactions provide significant hurdles for the development of efficient catalytic photochemical processes that work under stereochemical control and provide chiral molecules in an asymmetric fashion. Here we report a highly efficient asymmetric catalyst that uses visible light for the necessary molecular activation, thereby combining asymmetric catalysis and photocatalysis. We show that a chiral iridium complex can serve as a sensitizer for photoredox catalysis and at the same time provide very effective asymmetric induction for the enantioselective alkylation of 2-acyl imidazoles. This new asymmetric photoredox catalyst, in which the metal centre simultaneously serves as the exclusive source of chirality, the catalytically active Lewis acid centre, and the photoredox centre, offers new opportunities for the `green' synthesis of non-racemic chiral molecules.

  8. Structure and energetics of vinoxide and the X({sup 2}A{double{underscore}prime}) and A({sup 2}A{prime}) vinoxy radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alconcel, L.S.; Deyerl, H.J.; Zengin, V.

    1999-11-18

    Enolate anions are intermediates in many organic reactions that involve carbon-carbon or carbon-oxygen food formation. They also play a key role in the development of stereoselective and stereocontrolled syntheses of complex compounds. Enolate radicals are important intermediates in combustion and photochemical smog cycles. In particular, the vinoxy radical, C{sub 2}H{sub 3}O{sup {sm{underscore}bullet}} is a major product of the reaction of odd oxygen and ethylene. The photoelectron spectrum of binoxide, C{sub 2}H{sub 3}O{sup {minus}}, at 355 nm is reported, showing photodetachment to both the X({sup 2}A{double{underscore}prime}) ground and first excited A({sup 2}A{prime}) states of the vinoxy radical. Both direct interpretations andmore » Franck-Condon simulations of the photoelectron spectrum of this simple enolate anion have been used to obtain insights into the energetics and structures of the anion and the ground and first excited state of the neutral radical. Franck-Condon simulations were generated from ab initio geometry and frequency calculations using the CASSCF method and showed good agreement with the vibrational structure visible in the experimental spectrum. The electron affinity (E.A.{sub exp} = 1.795 {+-} 0.015 eV; E.A.{sub calc} = 1.82 eV) and separation energy of the ground and first excited states (T{sub 0,exp} = 1.015 {+-} 0.015 eV; T{sub 0,calc} = 0.92 eV) obtained from the ab initio calculations are in good accord with the experimental values.« less

  9. Fluorescence emission induced by the femtosecond filament transmitting through the butane/air flame

    NASA Astrophysics Data System (ADS)

    Li, Suyu; Li, Yanhua; Shi, Zhe; Sui, Laizhi; Li, He; Li, Qingyi; Chen, Anmin; Jiang, Yuanfei; Jin, Mingxing

    2018-01-01

    We measure the backward fluorescence spectra generated by the femtosecond filament transmitting through the butane/air flame, and study the fluorescence emission from combustion intermediates (CN, CH and C2 radicals), air (mainly N2 and N2+). It is found that the fluorescence emission from combustion intermediates, N2 and N2+ shows difference when the femtosecond filament transmits through different parts of the butane/air flame, and we attempt to analyze it in this paper. This study demonstrates that the filament-induced fluorescence technique can be utilized to sense the combustion intermediates.

  10. Distribution of stable free radicals among amino acids of isolated soy proteins.

    PubMed

    Lei, Qingxin; Liebold, Christopher M; Boatright, William L; Shah Jahan, M

    2010-09-01

    Application of deuterium sulfide to powdered isolated soy proteins (ISP) was used to quench stable free radicals and produce a single deuterium label on amino acids where free radicals reside. The deuterium labels rendered increases of isotope ratio for the specific ions of radical-bearing amino acids. Isotope ratio measurements were achieved by gas chromatography/mass spectrometry (GC/MS) analyses after the amino acids were released by acidic hydrolysis and converted to volatile derivatives with propyl chloroformate. The isotope enrichment data showed the stable free radicals were located on Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp but not on Val, Pro, Met, Phe, Lys, and His. Due to the low abundance of Ser, Thr, and Cys derivatives and the impossibility to accurately measure their isotope ratios, the radical bearing status for these amino acids remained undetermined even though their derivatives were positively identified from ISP hydrolysates. The relative isotope enrichment for radical-bearing amino acids Ala, Gly, Leu, Ile, Asx (Asp+Asn), Glx (Glu+Gln), and Trp were 8.67%, 2.96%, 2.90%, 3.94%, 6.03%, 3.91%, and 21.48%, respectively. Isotope ratio increase for Tyr was also observed but further investigation revealed such increase was mainly from nonspecific deuterium-hydrogen exchange not free radical quenching. The results obtained from the present study provide important information for a better understanding of the mechanisms of free radical formation and stabilization in "dry" ISP.

  11. Novel Reagents for Multi-Component Reactions

    NASA Astrophysics Data System (ADS)

    Wang, Yanguang; Basso, Andrea; Nenajdenko, Valentine G.; Gulevich, Anton V.; Krasavin, Mikhail; Bushkova, Ekaterina; Parchinsky, Vladislav; Banfi, Luca; Basso, Andrea; Cerulli, Valentina; Guanti, Giuseppe; Riva, Renata; Rozentsveig, Igor B.; Rozentsveig, Gulnur N.; Popov, Aleksandr V.; Serykh, Valeriy J.; Levkovskaya, Galina G.; Cao, Song; Shen, Li; Liu, Nianjin; Wu, Jingjing; Li, Lina; Qian, Xuhong; Chen, Xiaopeng; Wang, Hongbo; Feng, Jinwu; Wang, Yanguang; Lu, Ping; Heravi, Majid M.; Sadjadi, Samaheh; Kazemizadeh, Ali Reza; Ramazani, Ali; Kudyakova, Yulia S.; Goryaeva, Marina V.; Burgart, Yanina V.; Saloutin, Victor I.; Mossetti, Riccardo; Pirali, Tracey; Tron, Gian Cesare; Rozhkova, Yulia S.; Mayorova, Olga A.; Shklyaev, Yuriy V.; Zhdanko, Alexander G.; Nenajdenko, Valentine G.; Stryapunina, Olga G.; Plekhanova, Irina V.; Glushkov, Vladimir A.; Shklyaev, Yurii V.

    Ketenimines are a class of versatile and highly reactive intermediates that can participate in a variety of organic reactions, such as nucleophilic additions, radical additions, [2 + 2] and [2 + 4] cycloadditions, and sigmatropic rearrangements. In this presentation, we report on a series of multi-component reactions that involve a ketenimine intermediate. These reactions could furnish diverse heterocyclic compounds, including functionalized iminocoumarin, iminodihydroqunolines, iminothiochromens, pyrrolines, isoquinolines, pyridines, β-lactams, imino-1,2-dihydrocoumarins, and benzimidazoles.

  12. The preparation and antioxidant activity of the sulfanilamide derivatives of chitosan and chitosan sulfates.

    PubMed

    Zhong, Zhimei; Ji, Xia; Xing, Ronge; Liu, Song; Guo, Zhanyong; Chen, Xiaolin; Li, Pengcheng

    2007-06-01

    Chitosan (CS) and chitosan sulfates (CSS) with different molecular weight (Mw) were reacted with 4-acetamidobenzene sulfonyl chloride to obtain sulfanilamide derivatives of chitosan and chitosan sulfates (LSACS, HSACS, LSACSS, HSACSS). The preparation conditions such as different reaction time, temperature, solvent, and the molar ratio of reaction materials are discussed in this paper. Their structures were characterized by FTIR spectroscopy and elemental analyses. The antioxidant activities of the derivatives were investigated employing various established in vitro systems, such as hydroxyl-radical ((*)OH) superoxide anion (O2(*-)) scavenging and reducing power. All kinds of the compounds (HCS, LCS, HCSS, LCSS, HSACS, LSACS, HSACSS, LSACSS) showed stronger scavenging activity on hydroxyl radical than ascorbic acid (Vc). The inhibitory activities of the derivatives toward superoxide radical by the PMS-NADH system were obvious. The experiment showed that the superoxide radical scavenging effect of sulfanilamide derivatives of chitosan and chitosan sulfates was stronger than that of original CS and CSS. All of the derivatives were efficient in the reducing power. The results indicated that the sulfanilamide group were grafted on CS and CSS increased the reducing power of them obviously.

  13. Myeloperoxidase-induced Genomic DNA-centered Radicals*

    PubMed Central

    Gomez-Mejiba, Sandra E.; Zhai, Zili; Gimenez, Maria S.; Ashby, Michael T.; Chilakapati, Jaya; Kitchin, Kirk; Mason, Ronald P.; Ramirez, Dario C.

    2010-01-01

    Myeloperoxidase (MPO) released by activated neutrophils can initiate and promote carcinogenesis. MPO produces hypochlorous acid (HOCl) that oxidizes the genomic DNA in inflammatory cells as well as in surrounding epithelial cells. DNA-centered radicals are early intermediates formed during DNA oxidation. Once formed, DNA-centered radicals decay by mechanisms that are not completely understood, producing a number of oxidation products that are studied as markers of DNA oxidation. In this study we employed the 5,5-dimethyl-1-pyrroline N-oxide-based immuno-spin trapping technique to investigate the MPO-triggered formation of DNA-centered radicals in inflammatory and epithelial cells and to test whether resveratrol blocks HOCl-induced DNA-centered radical formation in these cells. We found that HOCl added exogenously or generated intracellularly by MPO that has been taken up by the cell or by MPO newly synthesized produces DNA-centered radicals inside cells. We also found that resveratrol passed across cell membranes and scavenged HOCl before it reacted with the genomic DNA, thus blocking DNA-centered radical formation. Taken together our results indicate that the formation of DNA-centered radicals by intracellular MPO may be a useful point of therapeutic intervention in inflammation-induced carcinogenesis. PMID:20406811

  14. Repair of oxidative DNA damage by amino acids.

    PubMed

    Milligan, J R; Aguilera, J A; Ly, A; Tran, N Q; Hoang, O; Ward, J F

    2003-11-01

    Guanyl radicals, the product of the removal of a single electron from guanine, are produced in DNA by the direct effect of ionizing radiation. We have produced guanyl radicals in DNA by using the single electron oxidizing agent (SCN)2-, itself derived from the indirect effect of ionizing radiation via thiocyanate scavenging of OH. We have examined the reactivity of guanyl radicals in plasmid DNA with the six most easily oxidized amino acids cysteine, cystine, histidine, methionine, tryptophan and tyrosine and also simple ester and amide derivatives of them. Cystine and histidine derivatives are unreactive. Cysteine, methionine, tyrosine and particularly tryptophan derivatives react to repair guanyl radicals in plasmid DNA with rate constants in the region of approximately 10(5), 10(5), 10(6) and 10(7) dm3 mol(-1) s(-1), respectively. The implication is that amino acid residues in DNA binding proteins such as histones might be able to repair by an electron transfer reaction the DNA damage produced by the direct effect of ionizing radiation or by other oxidative insults.

  15. Free radical generation by non-equilibrium atmospheric pressure plasma in alcohol-water mixtures: an EPR-spin trapping study

    NASA Astrophysics Data System (ADS)

    Uchiyama, Hidefumi; Ishikawa, Kenji; Zhao, Qing-Li; Andocs, Gabor; Nojima, Nobuyuki; Takeda, Keigo; Krishna, Murali C.; Ishijima, Tatsuo; Matsuya, Yuji; Hori, Masaru; Noguchi, Kyo; Kondo, Takashi

    2018-03-01

    Free radical species in aqueous solution—various alcohol-water reaction mixtures—by exposure to non-equilibrium cold atmospheric pressure Ar plasma (CAP), were monitored using electron paramagnetic resonance spin-trapping techniques with 3, 5-dibromo-4-nitrosobenzene sulfonate as a water soluble nitroso spin trap. The major radical species were formed by H-abstraction from alcohol molecules due to ·OH radicals. In the ethanol-water mixture ·CH2CH2OH produced by H abstraction from CH3 group of the ethanol and ·CH3 radicals were detected. The latter was due to the decomposition of unstable CH3·CHOH to form the ·CH3 radicals and the stable formaldehyde by C-C bond fission. These intermediates are similar to those observed by reaction with ·OH radicals generation in the H2O2-UV photolysis of the reaction mixtures. The evidence of ·CH3 radical formation in the pyrolytic decomposition of the reaction mixtures by exposure to ultrasound or in methane irradiated with microwave plasma have been reported previously. However, the pyrolytic ·CH3 radicals were not found in both plasma and H2O2-UV photolysis condition. These results suggests that free radicals produced by Ar-CAP are most likely due to the reaction between abundant ·OH radicals and alcohol molecules.

  16. Superoxide reaction with tyrosyl radicals generates para-hydroperoxy and para-hydroxy derivatives of tyrosine.

    PubMed

    Möller, Matías N; Hatch, Duane M; Kim, Hye-Young H; Porter, Ned A

    2012-10-10

    Tyrosine-derived hydroperoxides are formed in peptides and proteins exposed to enzymatic or cellular sources of superoxide and oxidizing species as a result of the nearly diffusion-limited reaction between tyrosyl radical and superoxide. However, the structure of these products, which informs their reactivity in biology, has not been unequivocally established. We report here the complete characterization of the products formed in the addition of superoxide, generated from xanthine oxidase, to several peptide-derived tyrosyl radicals, formed from horseradish peroxidase. RP-HPLC, LC-MS, and NMR experiments indicate that the primary stable products of superoxide addition to tyrosyl radical are para-hydroperoxide derivatives (para relative to the position of the OH in tyrosine) that can be reduced to the corresponding para-alcohol. In the case of glycyl-tyrosine, a stable 3-(1-hydroperoxy-4-oxocyclohexa-2,5-dien-1-yl)-L-alanine was formed. In tyrosyl-glycine and Leu-enkephalin, which have N-terminal tyrosines, bicyclic indolic para-hydroperoxide derivatives were formed ((2S,3aR,7aR)-3a-hydroperoxy-6-oxo-2,3,3a,6,7,7a-hexahydro-1H-indole-2-carboxylic acid) by the conjugate addition of the free amine to the cyclohexadienone. It was also found that significant amounts of the para-OH derivative were generated from the hydroxyl radical, formed on exposure of tyrosine-containing peptides to Fenton conditions. The para-OOH and para-OH derivatives are much more reactive than other tyrosine oxidation products and may play important roles in physiology and disease.

  17. Market entry, power, pharmacokinetics: what makes a successful drug innovation?

    PubMed

    Alt, Susanne; Helmstädter, Axel

    2018-02-01

    Depending on the timing of market entry, radical innovations can be distinguished from incremental innovations. Whereas a radical innovation typically is the first available derivative of a drug class, incremental innovations are launched later and show a certain benefit compared with the radical innovation. Here, we use historical market data relating to pharmacokinetic (PK), pharmacodynamic (PD), and other drug-related properties to investigate which derivatives within certain drug classes have been most successful on the market. Based on our investigations, we suggest naming the most successful drugs 'overtaking innovation', because they often exceed the market share of all the other derivatives. Seven drug classes showed that the overtaking innovation is never a radical innovation, but rather an early incremental innovation, with advantages in manageability and/or tolerance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Kinetics of oxidation of bilirubin and its protein complex by hydrogen peroxide in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Solomonov, A. V.; Rumyantsev, E. V.; Antina, E. V.

    2010-12-01

    A comparative study of oxidation reactions of bilirubin and its complex with albumin was carried out in aqueous solutions under the action of hydrogen peroxide and molecular oxygen at different pH values. Free radical oxidation of the pigment in both free and bound forms at pH 7.4 was shown not to lead to the formation of biliverdin, but to be associated with the decomposition of the tetrapyrrole chromophore into monopyrrolic products. The effective and true rate constants of the reactions under study were determined. It was assumed that one possible mechanism of the oxidation reaction is associated with the interaction of peroxyl radicals and protons of the NH groups of bilirubin molecules at the limiting stage with the formation of a highly reactive radical intermediate. The binding of bilirubin with albumin was found to result in a considerable reduction in the rate of the oxidation reaction associated with the kinetic manifestation of the protein protection effect. It was found that the autoxidation of bilirubin by molecular oxygen with the formation of biliverdin at the intermediate stage can be observed with an increase in the pH of solutions.

  19. Iodine-catalyzed diazo activation to access radical reactivity.

    PubMed

    Li, Pan; Zhao, Jingjing; Shi, Lijun; Wang, Jin; Shi, Xiaodong; Li, Fuwei

    2018-05-17

    Transition-metal-catalyzed diazo activation is a classical way to generate metal carbene, which are valuable intermediates in synthetic organic chemistry. An alternative iodine-catalyzed diazo activation is disclosed herein under either photo-initiated or thermal-initiated conditions, which represents an approach to enable carbene radical reactivity. This metal-free diazo activation strategy were successfully applied into olefin cyclopropanation and epoxidation, and applying this method to pyrrole synthesis under thermal-initiated conditions further demonstrates the unique reactivity using this method over typical metal-catalyzed conditions.

  20. Tris(trimethylsilyl) Phosphite as an Efficient Electrolyte Additive To Improve the Surface Stability of Graphite Anodes.

    PubMed

    Yim, Taeeun; Han, Young-Kyu

    2017-09-27

    Tris(trimethylsilyl) phosphite (TMSP) has received considerable attention as a functional additive for various cathode materials in lithium-ion batteries, but the effect of TMSP on the surface stability of a graphite anode has not been studied. Herein, we demonstrate that TMSP serves as an effective solid electrolyte interphase (SEI)-forming additive for graphite anodes in lithium-ion batteries (LIBs). TMSP forms SEI layers by chemical reactions between TMSP and a reductively decomposed ethylene carbonate (EC) anion, which is strikingly different from the widely known mechanism of the SEI-forming additives. TMSP is stable under cathodic polarization, but it reacts chemically with radical anion intermediates derived from the electrochemical reduction of the carbonate solvents to generate a stable SEI layer. These TMSP-derived SEI layers improve the interfacial stability of the graphite anode, resulting in a retention of 96.8% and a high Coulombic efficiency of 95.2%. We suggest the use of TMSP as a functional additive that effectively stabilizes solid electrolyte interfaces of both the anode and cathode in lithium-ion batteries.

  1. Role of oxidative metabolites of cocaine in toxicity and addiction: oxidative stress and electron transfer.

    PubMed

    Kovacic, Peter

    2005-01-01

    Cocaine is one of the principal drugs of abuse. Although impressive advances have been made, unanswered questions remain concerning mechanism of toxicity and addiction. Discussion of action mode usually centers on receptor binding and enzyme inhibition, with limited attention to events at the molecular level. This review provides extensive evidence in support of the hypothesis that oxidative metabolites play important roles comprising oxidative stress (OS), reactive oxygen species (ROS), and electron transfer (ET). The metabolites include norcocaine and norcocaine derivatives: nitroxide radical, N-hydroxy, nitrosonium, plus cocaine iminium and formaldehyde. Observed formation of ROS is rationalized by redox cycling involving several possible ET agents. Three potential ones are present in the form of oxidative metabolites, namely, nitroxide, nitrosonium, and iminium. Most attention has been devoted to the nitroxide-hydroxylamine couple which has been designated by various investigators as the principal source of ROS. The proximate ester substituent is deemed important for intramolecular stabilization of reactive intermediates. Reduction potential of nitroxide is in accord with plausibility of ET in the biological milieu. Toxicity by cocaine, with evidence for participation of OS, is demonstrated for many body components, including liver, central nervous system, cardiovascular system, reproductive system, kidney, mitochondria, urine, and immune system. Other adverse effects associated with ROS comprise teratogenesis and apoptosis. Examples of ROS generated are lipid peroxides and hydroxyl radical. Often observed were depletion of antioxidant defenses, and protection by added antioxidants, such as, thiol, salicylate, and deferoxamine. Considerable evidence supports the contention that oxidative ET metabolites of cocaine are responsible for much of the observed OS. Quite significantly, the pro-oxidant, toxic effects, including generation of superoxide and lipid peroxyl radicals, plus depletion of glutathione, elicited by nitroxide or the hydroxylamine derivative, were greater than for the parent drug. The formaldehyde metabolite also appears to play a role. Mechanistic similarity to the action of neurotoxin 3,3'-iminodipropionitrile is pointed out. A number of literature strategies for treatment of addiction are addressed. However, no effective interventions are currently available. An hypothesis for addiction is offered based on ET and ROS at low concentrations. Radicals may aid in cell signaling entailing redox processes which influence ion transport, neuromodulation, and transcription. Ideas are suggested for future work dealing with health promotion. These include use of AOs, both dietary and supplemental, trapping of the norcocaine metabolite by non-toxic complexing agents, and use of nitrones for capturing harmful radical species.

  2. Free-radical reactions induced by OH-radical attack on cytosine-related compounds: a study by a method combining ESR, spin trapping and HPLC.

    PubMed Central

    Hiraoka, W; Kuwabara, M; Sato, F; Matsuda, A; Ueda, T

    1990-01-01

    Free-radical reactions induced by OH-radical attack on cytosine-related compounds were investigated by a method combining ESR, spin trapping with 2-methyl-2-nitrosopropane and high-performance liquid chromatography (HPLC). Cytidine, 2'-deoxycytidine, cytidine 3'-monophosphate, cytidine 5'-monophosphate, 2'-deoxycytidine 5'-monophosphate and their derivatives, of which 5,6-protons at the base moiety were replaced by deuterons, and polycytidylic acid (poly(C] were employed as samples. OH radicals were generated by X-irradiating an N2O-saturated aqueous solution. Five spin adducts were separated by HPLC. Examination of them by ESR spectroscopy and UV photospectrometry showed that spin adducts assigned to C5 and C6 radicals due to OH addition to the 5,6 double-bond, a deaminated form of the spin adduct derived from a C5 radical due to the cyclization reaction between C5' of the sugar and C6 of the base, and a spin adduct assigned to the C4' radical due to H abstraction by OH radicals were produced. From these results the sites of OH-radical attack and the subsequent radical reactions in cytosine-related compounds were clarified. PMID:2157193

  3. Identification of oxidative coupling products of xylenols arising from laboratory-scale phytoremediation.

    PubMed

    Poerschmann, J; Schultze-Nobre, L; Ebert, R U; Górecki, T

    2015-01-01

    Oxidative coupling reactions take place during the passage of xylenols through a laboratory-scale helophyte-based constructed wetland system. Typical coupling product groups including tetramethyl-[1,1'-biphenyl] diols and tetramethyl diphenylether monools as stable organic intermediates could be identified by a combination of pre-chromatographic derivatization and GC/MS analysis. Structural assignment of individual analytes was performed by an increment system developed by Zenkevich to pre-calculate retention sequences. The most abundant analyte turned out to be 3,3',5,5'-tetramethyl-[1,1'-biphenyl]-4,4'-diol, which can be formed by a combination of radicals based on 2,6-xylenol or by an attack of a 2,6-xylenol-based radical on 2,6-xylenol. Organic intermediates originating from oxidative coupling could also be identified in anaerobic constructed wetland systems. This finding suggested the presence of (at least partly) oxic conditions in the rhizosphere. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Heterogeneous Nucleation of Trichloroethylene Ozonation Products in the Formation of New Fine Particles

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Sun, Xiaomin; Chen, Jianmin; Li, Xiang

    2017-02-01

    Free radicals in atmosphere have played an important role in the atmospheric chemistry. The chloro-Criegee free radicals are produced easily in the decomposition of primary ozonide (POZ) of the trichloroethylene, and can react with O2, NO, NO2, SO2 and H2O subsequently. Then the inorganic salts, polar organic nitrogen and organic sulfur compounds, oxygen-containing heterocyclic intermediates and polyhydroxy compounds can be obtained. The heterogeneous nucleation of oxidation intermediates in the formation of fine particles is investigated using molecular dynamics simulation. The detailed nucleation processes are reported. According to molecular dynamics simulation, the nucleation with a diameter of 2 nm is formed in the Organic Compounds-(NH4)2SO4-H2O system. The spontaneous nucleation is an important process in the formation of fine particles in atmosphere. The model study gives a good example from volatile organic compounds to new fine particles.

  5. Oxidation of DNA bases, deoxyribonucleosides and homopolymers by peroxyl radicals.

    PubMed Central

    Simandan, T; Sun, J; Dix, T A

    1998-01-01

    DNA base oxidation is considered to be a key event associated with disease initiation and progression in humans. Peroxyl radicals (ROO. ) are important oxidants found in cells whose ability to react with the DNA bases has not been characterized extensively. In this paper, the products resulting from ROO. oxidation of the DNA bases are determined by gas chromatography/MS in comparison with authentic standards. ROO. radicals oxidize adenine and guanine to their 8-hydroxy derivatives, which are considered biomarkers of hydroxyl radical (HO.) oxidations in cells. ROO. radicals also oxidize adenine to its hydroxylamine, a previously unidentified product. ROO. radicals oxidize cytosine and thymine to the monohydroxy and dihydroxy derivatives that are formed by oxidative damage in cells. Identical ROO. oxidation profiles are observed for each base when exposed as deoxyribonucleosides, monohomopolymers and base-paired dihomopolymers. These results have significance for the development, utilization and interpretation of DNA base-derived biomarkers of oxidative damage associated with disease initiation and propagation, and support the idea that the mutagenic potential of N-oxidized bases, when generated in cellular DNA, will require careful evaluation. Adenine hydroxylamine is proposed as a specific molecular probe for the activity of ROO. in cellular systems. PMID:9761719

  6. The interaction of radiation-generated radicals with myoglobin in aqueous solution—V. The indirect action of 2-methyl-2-hydroxypropyl radicals on oxymyoglobin

    NASA Astrophysics Data System (ADS)

    Whitburn, Kevin D.; Hoffman, Morton Z.

    The interaction of radiation-generated 2-methyl-2-hydroxypropyl radicals (derived from t-butyl alcohol) with oxymyoglobin has been examined at pH 7.3. In N 2O-saturated solutions, oxymyoglobin is converted to the ferri and ferryl derivatives of myoglobin; the production of ferrylmyoglobin is essentially eliminated when catalase is present in solution during irradiation. In deaerated solutions containing catalase, oxymyoglobin is converted to both ferro- and ferrimyoglobin during irradiation. When added O 2 is initially present, all compositional changes occur after irradiation; the presence of catalase diminishes, but does not eliminate, the extent of these postirradiation conversions of oxymyoglobin to the ferri and ferryl derivatives. These observations are interpreted in terms of the scavenging of the 2-methyl-2-hydroxypropyl radicals by O 2 to generate their peroxy analogs, which causes a displacement of the equilibrium between oxy- and ferromyoglobin. The peroxy radicals decay to produce H 2O 2, an organic peroxide, and other products. These peroxides subsequently react with ferromyoglobin to produce the ferryl form; the rate of the reaction increases with decreasing [O 2] as [ferromyoglobin] increases. This reaction is sufficiently fast in deaerated solution that substantial conversion of ferromyoglobin to ferrylmyoglobin occurs during the time of irradiation. The formation of the ferryl derivative in the presence of unconverted ferromyoglobin drives a concurrent synproportion reaction which produces ferrimyoglobin. Overall, no direct interaction of 2-methyl-2-hydroxypropyl radicals, nor their peroxy analogs, with myoglobin is indicated; all reactivity is accountable by the peroxide products of these radicals.

  7. Laboratory evidence for a key intermediate in the Venus atmosphere: Peroxychloroformyl radical

    PubMed Central

    Pernice, Holger; Garcia, Placido; Willner, Helge; Francisco, Joseph S.; Mills, Franklin P.; Allen, Mark; Yung, Yuk L.

    2004-01-01

    For two decades, the peroxychloroformyl radical, ClC(O)OO, has played a central role in models of the chemical stability of the Venus atmosphere. No confirmation, however, has been possible in the absence of laboratory measurements for ClC(O)OO. We report the isolation of ClC(O)OO in a cryogenic matrix and its infrared and ultraviolet spectral signatures. These experiments show that ClC(O)OO is thermally and photolytically stable in the Venus atmosphere. These experimental discoveries validate the existence of ClC(O)OO, confirm several longstanding model assumptions, and provide a basis for the astronomical search for this important radical species. PMID:15375212

  8. Laboratory Evidence for a Key Intermediate in the Venus Atmosphere: Peroxychloroformyl Radical

    NASA Technical Reports Server (NTRS)

    Pernice, Holger; Garcia, Placido; Willner, Helge; Francisco, Joseph S.; Mills, Franklin P.; Allen, Mark; Yung, Yuk L.

    2004-01-01

    For two decades, the peroxychloroformyl radical, ClC(O)OO, has played a central role in models of the chemical stability of the Venus atmosphere. No confirmation, however, has been possible in the absence of laboratory measurements for ClC(O)OO. We report the isolation of ClC(O)OO in a cryogenic matrix and its infrared and ultraviolet spectral signatures. These experiments show that ClC(O)OO is thermally and photolytically stable in the Venus atmosphere. These experimental discoveries validate the existence of ClC(O)OO, confirm several longstanding model assumptions, and provide a basis for the astronomical search for this important radical species.

  9. Influence of oxidative and nitrosative stress on accumulation of diphosphate intermediates of the non-mevalonate pathway of isoprenoid biosynthesis in corynebacteria and mycobacteria.

    PubMed

    Artsatbanov, V Yu; Vostroknutova, G N; Shleeva, M O; Goncharenko, A V; Zinin, A I; Ostrovsky, D N; Kapreliants, A S

    2012-04-01

    Artificial generation of oxygen superoxide radicals in actively growing cultures of Mycobacterium tuberculosis, Myc. smegmatis, and Corynebacterium ammoniagenes is followed by accumulation in the bacterial cells of substantial amounts of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate (MEcDP) - an intermediate of the non-mevalonate pathway of isoprenoid biosynthesis (MEP) - most possibly due to the interaction of the oxygen radicals with the 4Fe-4S group in the active center and inhibition of the enzyme (E)-4-oxy-3-methylbut-2-enyl diphosphate synthase (IspG). Cadmium ions known to inhibit IspG enzyme in chloroplasts (Rivasseau, C., Seemann, M., Boisson, A. M., Streb, P., Gout, E., Douce, R., Rohmer, M., and Bligny, R. (2009) Plant Cell Environ., 32, 82-92), when added to culture of Myc. smegmatis, substantially increase accumulation of MEcDP induced by oxidative stress with no accumulation of other organic phosphate intermediates in the cell. Corynebacterium ammoniagenes'', well-known for its ability to synthesize large amounts of MEcDP, was also shown to accumulate this unique cyclodiphosphate in actively growing culture when NO at low concentration is artificially generated in the medium. A possible role of the MEP-pathway of isoprenoid biosynthesis and a role of its central intermediate MEcDP in bacterial response to nitrosative and oxidative stress is discussed.

  10. Total free radical species and oxidation equivalent in polluted air.

    PubMed

    Wang, Guoying; Jia, Shiming; Niu, Xiuli; Tian, Haoqi; Liu, Yanrong; Chen, Xuefu; Li, Lan; Zhang, Yuanhang; Shi, Gaofeng

    2017-12-31

    Free radicals are the most important chemical intermediate or agent of the atmosphere and influenced by thousands of reactants. The free radicals determine the oxidizing power of the polluted air. Various gases present in smog or haze are oxidants and induce organ and cellular damage via generation of free radical species. At present, however, the high variability of total free radicals in polluted air has prevented the detection of possible trends or distributions in the concentration of those species. The total free radicals are a kind of contaminants with colorless, tasteless characteristics, and almost imperceptible by human body. Here we present total free radical detection and distribution characteristics, and analyze the effects of total free radicals in polluted air on human health. We find that the total free radical values can be described by not only a linear dependence on ozone at higher temperature period, but also a linear delay dependence on particulate matter at lower temperature period throughout the measurement period. The total free radical species distribution is decrease from west to east in Lanzhou, which closely related to the distribution of the air pollutants. The total free radical oxidation capacity in polluted air roughly matches the effects of tobacco smoke produced by the incomplete combustion of a controlled amount of tobacco in a smoke chamber. A relatively unsophisticated chromatographic fingerprint similarity is used for indicating preliminarily the effect of total free radicals in polluted air on human health. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. ELECTRON SPIN RESONANCE STUDIES ON PEROXIDE RADICALS IN IRRADIATED POLYPROPYLENE (in German)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, H.; Hellwege, K.-H.; Neudoerfl, P.

    1963-06-01

    Peroxide radicals are formed by oxidation of carbon radicals in irradiated isotactic polypropylene. An interpretation of their ESR spectra is given. The recombination of the peroxide radicals follows a chain reaction mechanism, which is derived from the reversibility of formation of peroxide radicals, the time dependence of their concentration, and from the oxygen consumption of samples containing peroxide radicals. The reactions are discussed in view of the radiation induced oxidative degradation of polypropylene. (auth)

  12. Synthesized TiO2/ZSM-5 composites used for the photocatalytic degradation of azo dye: Intermediates, reaction pathway, mechanism and bio-toxicity

    NASA Astrophysics Data System (ADS)

    Zhou, Kefu; Hu, Xin-Yan; Chen, Bor-Yann; Hsueh, Chung-Chuan; Zhang, Qian; Wang, Jiajie; Lin, Yu-Jung; Chang, Chang-Tang

    2016-10-01

    In this study, a one-step solid dispersion method was used to synthesize titanium dioxide (TiO2)/Zeolite Socony Mobil-5 (ZSM-5) composites with substantially reduced time and energy consumption. A degradation efficiency of more than 95% was achieved within 10 min using 50% PTZ (synthesized TiO2/ZSM-5 composites with TiO2 contents of 50 wt% loaded on ZSM-5) at pH 7 and 25 °C. The possible degradation pathway of azo-dye Reactive Black 5 (RB5) was investigated using gas chromatography-mass spectrometry and ion chromatography (IC). The bonds between the N atoms and naphthalene groups are likely attacked first and cleaved by hydroxyl radicals, ultimately resulting in the decolorization and mineralization of the azo dye. A comparative assessment of the characteristics of abiotic and biotic dye decolorization was completed. In addition, the toxicity effects of the degradation intermediates of azo-dye RB5 on cellular respiratory activity were analyzed. The bio-toxicity results showed that the decay rate constants of CO2 production from the azo-dye RB5 samples at different degradation times increased initially and subsequently decreased, indicating that intermediates of higher toxicity could adhere to the catalyst surface and gradually destroyed by further photocatalytic oxidation. Additionally, EDTA (hole scavengers) and t-BuOH (radical scavengers) were used to detect the main active oxidative species in the system. The results showed that the hydroxyl radicals are the main oxidation species in the photocatalytic process.

  13. Redox mechanisms in hepatic chronic wound healing and fibrogenesis

    PubMed Central

    Novo, Erica; Parola, Maurizio

    2008-01-01

    Reactive oxygen species (ROS) generated within cells or, more generally, in a tissue environment, may easily turn into a source of cell and tissue injury. Aerobic organisms have developed evolutionarily conserved mechanisms and strategies to carefully control the generation of ROS and other oxidative stress-related radical or non-radical reactive intermediates (that is, to maintain redox homeostasis), as well as to 'make use' of these molecules under physiological conditions as tools to modulate signal transduction, gene expression and cellular functional responses (that is, redox signalling). However, a derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, can play a significant role in the pathogenesis of major human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis. This review has been designed to first offer a critical introduction to current knowledge in the field of redox research in order to introduce readers to the complexity of redox signalling and redox homeostasis. This will include ready-to-use key information and concepts on ROS, free radicals and oxidative stress-related reactive intermediates and reactions, sources of ROS in mammalian cells and tissues, antioxidant defences, redox sensors and, more generally, the major principles of redox signalling and redox-dependent transcriptional regulation of mammalian cells. This information will serve as a basis of knowledge to introduce the role of ROS and other oxidative stress-related intermediates in contributing to essential events, such as the induction of cell death, the perpetuation of chronic inflammatory responses, fibrogenesis and much more, with a major focus on hepatic chronic wound healing and liver fibrogenesis. PMID:19014652

  14. A structural model of PpoA derived from SAXS-analysis-implications for substrate conversion.

    PubMed

    Koch, Christian; Tria, Giancarlo; Fielding, Alistair J; Brodhun, Florian; Valerius, Oliver; Feussner, Kirstin; Braus, Gerhard H; Svergun, Dmitri I; Bennati, Marina; Feussner, Ivo

    2013-09-01

    In plants and mammals, oxylipins may be synthesized via multi step processes that consist of dioxygenation and isomerization of the intermediately formed hydroperoxy fatty acid. These processes are typically catalyzed by two distinct enzyme classes: dioxygenases and cytochrome P450 enzymes. In ascomycetes biosynthesis of oxylipins may proceed by a similar two-step pathway. An important difference, however, is that both enzymatic activities may be combined in a single bifunctional enzyme. These types of enzymes are named Psi-factor producing oxygenases (Ppo). Here, the spatial organization of the two domains of PpoA from Aspergillus nidulans was analyzed by small-angle X-ray scattering and the obtained data show that the enzyme exhibits a relatively flat trimeric shape. Atomic structures of the single domains were obtained by template-based structure prediction and docked into the enzyme envelope of the low resolution structure obtained by SAXS. EPR-based distance measurements between the tyrosyl radicals formed in the activated dioxygenase domain of the enzyme supported the trimeric structure obtained from SAXS and the previous assignment of Tyr374 as radical-site in PpoA. Furthermore, two phenylalanine residues in the cytochrome P450 domain were shown to modulate the specificity of hydroperoxy fatty acid rearrangement. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Atmospheric degradation mechanisms of hydrogen containing chlorofluorocarbons (HCFC) and fluorocarbons (HFC)

    NASA Technical Reports Server (NTRS)

    Zellner, Reinhard

    1990-01-01

    The current knowledge of atmospheric degradation of hydrogen containing chlorofluorocarbons (HCFC 22 (CHClF2), HCFC 123 (CHCl2CF3), HCFC 124 (CHClFCF3), HCFC 141b (CFCl2CH3), HCFC 142b (CF2ClCH3)) and fluorocarbons (HFC 125 (CHF2CF3), HFC 134a (CH2FCF3), HFC 152a (CHF2CH3)) is assessed. Except for the initiation reaction by OH radicals, there are virtually no experimental data available concerning the subsequent oxidative breakdown of these molecules. However, from an analogy to the degradation mechanisms of simple alkanes, some useful guidelines as to the expected intermediates and final products can be derived. A noteable exception from this analogy, however, appears for the oxi-radicals. Here, halogen substitution induces new reaction types (C-Cl and C-C bond ruptures) which are unknown to the unsubstituted analogues and which modify the nature of the expected carbonyl products. Based on an evaluation of these processes using estimated bond strength data, the following simplified rules with regards to the chlorine content of the HCFC's may be deduced: (1) HCFC's containing one chlorine atom such as 22 and 142b seem to release their chlorine content essentially instantaneous with the initial attack on the parent by OH radicals, and for HCFC 124, such release is apparently prevented; (2) HCFC's such as 123 and 141b with two chlorine atoms are expected to release only one of these instantaneously; and the second chlorine atom may be stored in potentially long-lived carbonyl compounds such as CF3CClO or CClFO.

  16. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy.

    PubMed

    Zhuang, Xiaoxi; Ma, Xiaowei; Xue, Xiangdong; Jiang, Qiao; Song, Linlin; Dai, Luru; Zhang, Chunqiu; Jin, Shubin; Yang, Keni; Ding, Baoquan; Wang, Paul C; Liang, Xing-Jie

    2016-03-22

    Photodynamic therapy (PDT) offers an alternative for cancer treatment by using ultraviolet or visible light in the presence of a photosensitizer and molecular oxygen, which can produce highly reactive oxygen species that ultimately leading to the ablation of tumor cells by multifactorial mechanisms. However, this technique is limited by the penetration depth of incident light, the hypoxic environment of solid tumors, and the vulnerability of photobleaching reduces the efficiency of many imaging agents. In this work, we reported a cellular level dual-functional imaging and PDT nanosystem BMEPC-loaded DNA origami for photodynamic therapy with high efficiency and stable photoreactive property. The carbazole derivative BMEPC is a one- and two-photon imaging agent and photosensitizer with large two-photon absorption cross section, which can be fully excited by near-infrared light, and is also capable of destroying targets under anaerobic condition by generating reactive intermediates of Type I photodynamic reactions. However, the application of BMEPC was restricted by its poor solubility in aqueous environment and its aggregation caused quenching. We observed BMEPC-loaded DNA origami effectively reduced the photobleaching of BMEPC within cells. Upon binding to DNA origami, the intramolecular rotation of BMEPC became proper restricted, which intensify fluorescence emission and radicals production when being excited. After the BMEPC-loaded DNA origami are taken up by tumor cells, upon irradiation, BMEPC could generate free radicals and be released due to DNA photocleavage as well as the following partially degradation. Apoptosis was then induced by the generation of free radicals. This functional nanosystem provides an insight into the design of photosensitizer-loaded DNA origami for effective intracellular imaging and photodynamic therapy.

  17. Excited-state dynamics of pentacene derivatives with stable radical substituents.

    PubMed

    Ito, Akitaka; Shimizu, Akihiro; Kishida, Noriaki; Kawanaka, Yusuke; Kosumi, Daisuke; Hashimoto, Hideki; Teki, Yoshio

    2014-06-23

    The excited-state dynamics of pentacene derivatives with stable radical substituents were evaluated in detail through transient absorption measurements. The derivatives showed ultrafast formation of triplet excited state(s) in the pentacene moiety from a photoexcited singlet state through the contributions of enhanced intersystem crossing and singlet fission. Detailed kinetic analyses for the transient absorption data were conducted to quantify the excited-state characteristics of the derivatives. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The flash-quench technique in protein-DNA electron transfer: reduction of the guanine radical by ferrocytochrome c.

    PubMed

    Stemp, E D; Barton, J K

    2000-08-21

    Electron transfer from a protein to oxidatively damaged DNA, specifically from ferrocytochrome c to the guanine radical, was examined using the flash-quench technique. Ru(phen)2dppz2+ (dppz = dipyridophenazine) was employed as the photosensitive intercalator, and ferricytochrome c (Fe3+ cyt c), as the oxidative quencher. Using transient absorption and time-resolved luminescence spectroscopies, we examined the electron-transfer reactions following photoexcitation of the ruthenium complex in the presence of poly(dA-dT) or poly(dG-dC). The luminescence-quenching titrations of excited Ru(phen)2dppz2+ by Fe3+ cyt c are nearly identical for the two DNA polymers. However, the spectral characteristics of the long-lived transient produced by the quenching depend strongly upon the DNA. For poly(dA-dT), the transient has a spectrum consistent with formation of a [Ru(phen)2dppz3+, Fe2+ cyt c] intermediate, indicating that the system regenerates itself via electron transfer from the protein to the Ru(III) metallointercalator for this polymer. For poly(dG-dC), however, the transient has the characteristics expected for an intermediate of Fe2+ cyt c and the neutral guanine radical. The characteristics of the transient formed with the GC polymer are consistent with rapid oxidation of guanine by the Ru(III) complex, followed by slow electron transfer from Fe2+ cyt c to the guanine radical. These experiments show that electron holes on DNA can be repaired by protein and demonstrate how the flash-quench technique can be used generally in studying electron transfer from proteins to guanine radicals in duplex DNA.

  19. Generation of hydroxyl radicals and singlet oxygen during oxidation of rhododendrol and rhododendrol-catechol.

    PubMed

    Miyaji, Akimitsu; Gabe, Yu; Kohno, Masahiro; Baba, Toshihide

    2017-03-01

    The generation of hydroxyl radicals and singlet oxygen during the oxidation of 4-(4-hydroxyphenyl)-2-butanol (rhododendrol) and 4-(3,4-dihydroxyphenyl)-2-butanol (rhododendrol-catechol) with mushroom tyrosinase in a phosphate buffer (pH 7.4) was examined as the model for the reactive oxygen species generation via the two rhododendrol compounds in melanocytes. The reaction was performed in the presence of 5,5-dimethyl-1-pyrroline- N -oxide (DMPO) spin trap reagents for hydroxyl radical or 2,2,6,6-tetramethyl-4-piperidone (4-oxo-TEMP), an acceptor of singlet oxygen, and their electron spin resonances were measured. An increase in the electron spin resonances signal attributable to the adduct of DMPO reacting with the hydroxyl radical and that of 4-oxo-TEMP reacting with singlet oxygen was observed during the tyrosinase-catalyzed oxidation of rhododendrol and rhododendrol-catechol, indicating the generation of hydroxyl radical and singlet oxygen. Moreover, hydroxyl radical generation was also observed in the autoxidation of rhododendrol-catechol. We show that generation of intermediates during tyrosinase-catalyzed oxidation of rhododendrol enhances oxidative stress in melanocytes.

  20. Electron paramagnetic resonance (EPR) spectroscopy characterization of wheat grains from plants of different water stress tolerance.

    PubMed

    Łabanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bednarska, Elżbieta; Dłubacz, Aleksandra; Hartikainen, Helina

    2012-09-01

    Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants. Copyright © 2012 Elsevier GmbH. All rights reserved.

  1. Trapping and spectroscopic characterization of an FeIII-superoxo intermediate from a nonheme mononuclear iron-containing enzyme

    PubMed Central

    Mbughuni, Michael M.; Chakrabarti, Mrinmoy; Hayden, Joshua A.; Bominaar, Emile L.; Hendrich, Michael P.; Münck, Eckard; Lipscomb, John D.

    2010-01-01

    intermediates are well known in heme enzymes, but none have been characterized in the nonheme mononuclear FeII enzyme family. Many steps in the O2 activation and reaction cycle of FeII-containing homoprotocatechuate 2,3-dioxygenase are made detectable by using the alternative substrate 4-nitrocatechol (4NC) and mutation of the active site His200 to Asn (H200N). Here, the first intermediate (Int-1) observed after adding O2 to the H200N-4NC complex is trapped and characterized using EPR and Mössbauer (MB) spectroscopies. Int-1 is a high-spin (S1 = 5/2) FeIII antiferromagnetically (AF) coupled to an S2 = 1/2 radical (J ≈ 6 cm-1 in ). It exhibits parallel-mode EPR signals at g = 8.17 from the S = 2 multiplet, and g = 8.8 and 11.6 from the S = 3 multiplet. These signals are broadened significantly by hyperfine interactions (A17O ≈ 180 MHz). Thus, Int-1 is an AF-coupled species. The experimental observations are supported by density functional theory calculations that show nearly complete transfer of spin density to the bound O2. Int-1 decays to form a second intermediate (Int-2). MB spectra show that it is also an AF-coupled FeIII-radical complex. Int-2 exhibits an EPR signal at g = 8.05 arising from an S = 2 state. The signal is only slightly broadened by (< 3% spin delocalization), suggesting that Int-2 is a peroxo-FeIII-4NC semiquinone radical species. Our results demonstrate facile electron transfer between FeII, O2, and the organic ligand, thereby supporting the proposed wild-type enzyme mechanism. PMID:20837547

  2. Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.

    PubMed

    Hernández Anzaldo, Samuel; Arroyo Abad, Uriel; León García, Armando; Ramírez Rosales, Daniel; Zamorano Ulloa, Rafael; Reyes Ortega, Yasmi

    2016-06-27

    The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.

  3. Structure, stability, and properties of the trans peroxo nitrate radical: the importance of nondynamic correlation.

    PubMed

    Dutta, Achintya Kumar; Dar, Manzoor; Vaval, Nayana; Pal, Sourav

    2014-02-27

    We report a comparative single-reference and multireference coupled-cluster investigation on the structure, potential energy surface, and IR spectroscopic properties of the trans peroxo nitrate radical, one of the key intermediates in stratospheric NOX chemistry. The previous single-reference ab initio studies predicted an unbound structure for the trans peroxo nitrate radical. However, our Fock space multireference coupled-cluster calculation confirms a bound structure for the trans peroxo nitrate radical, in accordance with the experimental results reported earlier. Further, the analysis of the potential energy surface in FSMRCC method indicates a well-behaved minima, contrary to the shallow minima predicted by the single-reference coupled-cluster method. The harmonic force field analysis, of various possible isomers of peroxo nitrate also reveals that only the trans structure leads to the experimentally observed IR peak at 1840 cm(-1). The present study highlights the critical importance of nondynamic correlation in predicting the structure and properties of high-energy stratospheric NOx radicals.

  4. Emerging themes in radical SAM chemistry

    PubMed Central

    Shisler, Krista A; Broderick, Joan B

    2014-01-01

    Enzymes in the radical SAM (RS) superfamily catalyze a wide variety of reactions through unique radical chemistry. The characteristic markers of the superfamily include a [4Fe–4S] cluster coordinated to the protein via a cysteine triad motif, typically CX3CX2C, with the fourth iron coordinated by S-adenosylmethionine (SAM). The SAM serves as a precursor for a 5′-deoxyadenosyl radical, the central intermediate in nearly all RS enzymes studied to date. The SAM-bound [4Fe–4S] cluster is located within a partial or full triosephosphate isomerase (TIM) barrel where the radical chemistry occurs protected from the surroundings. In addition to the TIM barrel and a RS [4Fe–4S] cluster, many members of the superfamily contain additional domains and/or additional Fe–S clusters. Recently characterized superfamily members are providing new examples of the remarkable range of reactions that can be catalyzed, as well as new structural and mechanistic insights into these fascinating reactions. PMID:23141873

  5. Accretion Product Formation from Self- and Cross-Reactions of RO2 Radicals in the Atmosphere.

    PubMed

    Berndt, Torsten; Scholz, Wiebke; Mentler, Bernhard; Fischer, Lukas; Herrmann, Hartmut; Kulmala, Markku; Hansel, Armin

    2018-03-26

    Hydrocarbons are emitted into the Earth's atmosphere in very large quantities by human and biogenic activities. Their atmospheric oxidation processes almost exclusively yield RO 2 radicals as reactive intermediates whose atmospheric fate is not yet fully unraveled. Herein, we show that gas-phase reactions of two RO 2 radicals produce accretion products composed of the carbon backbone of both reactants. The rates for accretion product formation are very high for RO 2 radicals bearing functional groups, competing with those of the corresponding reactions with NO and HO 2 . This pathway, which has not yet been considered in the modelling of atmospheric processes, can be important, or even dominant, for the fate of RO 2 radicals in all areas of the atmosphere. Moreover, the vapor pressure of the formed accretion products can be remarkably low, characterizing them as an effective source for the secondary organic aerosol. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. A detailed kinetic modeling study of toluene oxidation in a premixed laminar flame

    PubMed Central

    Tian, Zhenyu; Pitz, William J.; Fournet, René; Glaude, Pierre-Alexander; Battin-Leclerc, Frédérique

    2013-01-01

    An improved chemical kinetic model for the toluene oxidation based on experimental data obtained in a premixed laminar low-pressure flame with vacuum ultraviolet (VUV) photoionization and molecular beam mass spectrometry (MBMS) techniques has been proposed. The present mechanism consists of 273 species up to chrysene and 1740 reactions. The rate constants of reactions of toluene decomposition, reaction with oxygen, ipso-additions and metatheses with abstraction of phenylic H-atom are updated; new pathways of C4 + C2 species giving benzene and fulvene are added. Based on the experimental observations, combustion intermediates such as fulvenallene, naphtol, methylnaphthalene, acenaphthylene, 2-ethynylnaphthalene, phenanthrene, anthracene, 1-methylphenanthrene, pyrene and chrysene are involved in the present mechanism. The final toluene model leads to an overall satisfactory agreement between the experimentally observed and predicted mole fraction profiles for the major products and most combustion intermediates. The toluene depletion is governed by metathese giving benzyl radicals, ipso-addition forming benzene and metatheses leading to C6H4CH3 radicals. A sensitivity analysis indicates that the unimolecular decomposition via the cleavage of a methyl C-H bond has a strong inhibiting effect, while decomposition via C-C bond breaking, ipso-addition of H-atom to toluene, decomposition of benzyl radicals and reactions related to C6H4CH3 radicals have promoting effect for the consumption of toluene. Moreover, flow rate analysis is performed to illustrate the formation pathways of mono- and polycyclic aromatics. PMID:23762016

  7. Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals.

    PubMed

    Hawkins, Clare L; Davies, Michael J

    2002-01-01

    Stimulated monocytes and neutrophils generate hypochlorite (HOCl) via the release of the enzyme myeloperoxidase and hydrogen peroxide. HOCl is a key bactericidal agent, but can also damage host tissue. As there is a strong link between chronic inflammation and some cancers, we have investigated HOCl damage to DNA, RNA, and polynucleotides. Reaction of HOCl with these materials is shown to yield multiple semistable chloramines (RNHCl/RR'NCl), which are the major initial products, and account for 50-95% of the added HOCl. These chloramines decay by thermal and metal-ion catalyzed processes, to give nucleoside-derived, nitrogen-centered, radicals. The latter have been characterized by EPR spin trapping. The propensity for radical formation with polynucleotides is cytidine > adenosine = guanosine > uridine = thymidine. The rates of decay, and yield of radicals formed, are dependent on the nature of the nucleobase on which they are formed, with chloramines formed from ring heterocyclic amine groups being less stable than those formed on exocyclic amines (RNH2 groups). Evidence is presented for chlorine transfer from the former, kinetically favored, sites to the more thermodynamically favored exocyclic amines. EPR experiments have also provided evidence for the rapid addition of pyrimidine-derived nitrogen-centered radicals to other nucleobases to give dimers and the oxidation of DNA by radicals derived from preformed nucleoside chloramines. Direct reaction of HOCl with plasmid DNA gives rise to single- and double-strand breaks via chloramine-mediated reactions. Preformed nucleoside chloramines also induce plasmid cleavage, though this only occurs to a significant extent with unstable thymidine- and uridine-derived chloramines, where radical formation is rapid. Overall the data rationalize the preferential formation of chlorinated 2'-deoxycytidine and 2'-deoxyadenosine in DNA and suggest that DNA damage induced by HOCl, and preformed chloramines, occurs at sequence-specific sites.

  8. Photochemically Induced Intramolecular Radical Cyclization Reactions with Imines.

    PubMed

    Lefebvre, Corentin; Michelin, Clément; Martzel, Thomas; Djou'ou Mvondo, Vaneck; Bulach, Véronique; Abe, Manabu; Hoffmann, Norbert

    2018-02-16

    The photochemically induced intramolecular hydrogen abstraction or hydrogen atom transfer in cyclic imines 8a,b followed by a cyclization is investigated. Two types of products are observed, one resulting from the formation of a C-C bond, the other from the formation of a C-N bond. A computational study reveals that hydrogen is exclusively transferred to the imine nitrogen leading to a triplet diradical intermediate. After intersystem crossing, the resulting zwitterionic intermediate undergoes cyclization leading to the final product.

  9. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials▿

    PubMed Central

    Creek, Darren J.; Charman, William N.; Chiu, Francis C. K.; Prankerd, Richard J.; Dong, Yuxiang; Vennerstrom, Jonathan L.; Charman, Susan A.

    2008-01-01

    The reaction of spiro- and dispiro-1,2,4-trioxolane antimalarials with heme has been investigated to provide further insight into the mechanism of action for this important class of antimalarials. A series of trioxolanes with various antimalarial potencies was found to be unreactive in the presence of Fe(III) hemin, but all were rapidly degraded by reduced Fe(II) heme. The major reaction product from the heme-mediated degradation of biologically active trioxolanes was an alkylated heme adduct resulting from addition of a radical intermediate. Under standardized reaction conditions, a correlation (R2 = 0.88) was found between the extent of heme alkylation and in vitro antimalarial activity, suggesting that heme alkylation may be related to the mechanism of action for these trioxolanes. Significantly less heme alkylation was observed for the clinically utilized artemisinin derivatives compared to the equipotent trioxolanes included in this study. PMID:18268087

  10. 77 FR 14022 - Guidance for Industry on Chemistry, Manufacturing, and Controls Information-Fermentation-Derived...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ...] Guidance for Industry on Chemistry, Manufacturing, and Controls Information--Fermentation-Derived... (CMC) Information-- Fermentation-Derived Intermediates, Drug Substances, and Related Drug Products for... to submit to support the CMC information for fermentation-derived intermediates, drug substances, and...

  11. A Free-Radical Pathway to Hydrogenated Phenanthrene in Molecular Clouds-Low Temperature Growth of Polycyclic Aromatic Hydrocarbons.

    PubMed

    Thomas, Aaron M; Lucas, Michael; Yang, Tao; Kaiser, Ralf I; Fuentes, Luis; Belisario-Lara, Daniel; Mebel, Alexander M

    2017-08-05

    The hydrogen-abstraction/acetylene-addition mechanism has been fundamental to unravelling the synthesis of polycyclic aromatic hydrocarbons (PAHs) detected in combustion flames and carbonaceous meteorites like Orgueil and Murchison. However, the fundamental reaction pathways accounting for the synthesis of complex PAHs, such as the tricyclic anthracene and phenanthrene along with their dihydrogenated counterparts, remain elusive to date. By investigating the hitherto unknown chemistry of the 1-naphthyl radical with 1,3-butadiene, we reveal a facile barrierless synthesis of dihydrophenanthrene adaptable to low temperatures. These aryl-type radical additions to conjugated hydrocarbons via resonantly stabilized free-radical intermediates defy conventional wisdom that PAH growth is predominantly a high-temperature phenomenon and thus may represent an overlooked path to PAHs as complex as coronene and corannulene in cold regions of the interstellar medium like in the Taurus Molecular Cloud. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Why are sec-alkylperoxyl bimolecular self-reactions orders of magnitude faster than the analogous reactions of tert-alkylperoxyls? The unanticipated role of CH hydrogen bond donation.

    PubMed

    Lee, Richmond; Gryn'ova, Ganna; Ingold, K U; Coote, Michelle L

    2016-08-24

    High-level ab initio calculations are used to identify the mechanism of secondary (and primary) alkylperoxyl radical termination and explain why their reactions are much faster than their tertiary counterparts. Contrary to existing literature, the decomposition of both tertiary and non-tertiary tetroxides follows the same asymmetric two-step bond cleavage pathway to form a caged intermediate of overall singlet multiplicity comprising triplet oxygen and two alkoxyl radicals. The alpha hydrogen atoms of non-tertiary species facilitate this process by forming unexpected CHO hydrogen bonds to the evolving O2. For non-tertiary peroxyls, subsequent alpha hydrogen atom transfer then yields the experimentally observed non-radical products, ketone, alcohol and O2, whereas for tertiary species, this reaction is precluded and cage escape of the (unpaired) alkoxyl radicals is a likely outcome with important consequences for autoxidation.

  13. Pentan isomers compound flame front structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mansurov, Z.A.; Mironenko, A.W.; Bodikov, D.U.

    1995-08-13

    The fuels (hexane, pentane, diethyl ether) and conditions investigated in this study are relevant to engine knock in spark- ignition engines. A review is provided of the field of low temperature hydrocarbon oxidation. Studies were made of radical and stable intermediate distribution in the front of cool flames: Maximum concentrations of H atoms and peroxy radicals were observed in the luminous zone of the cool flame front. Peroxy radicals appear before the luminous zone at 430 K due to diffusion. H atoms were found in cool flames of butane and hexane. H atoms diffuses from the luminous zone to themore » side of the fresh mixture, and they penetrate into the fresh mixture to a small depth. Extension of action sphear of peroxy radicals in the fresh mixture is much greater than that of H atoms due to their small activity and high concentrations.« less

  14. Experimental and theoretical study of 2,6-difluorophenylnitrene, its radical cation, and their rearrangement products in argon matrices.

    PubMed

    Carra, Claudio; Nussbaum, Rafael; Bally, Thomas

    2006-06-12

    2,6-Difluorophenylnitrene was reinvestigated both experimentally, in Ar matrices at 10 K, and computationally, by DFT and CASSCF/CASPT2 calculations. Almost-pure samples of both neutral rearrangement products (the bicyclic azirine and the cyclic ketenimine) of a phenylnitrene were prepared and characterized for the first time. These samples were then subjected to X-irradiation in the presence of CH2Cl2 as an electron scavenger, which led to ionization of the neutral intermediates. Thereby, it was shown that only the phenylnitrene and the cyclic ketenimine yield stable radical cations, whereas the bicyclic azirine decays to both of these compounds on ionization. The cyclic ketenimine yields a novel aromatic azatropylium-type radical cation. The electronic structure of the title compound is discussed in detail, and its relation to those of the iso-pi-electronic benzyl radical and phenylcarbene is traced.

  15. Influence of anoxia on the induction of mutations by phenylalanine radicals during gamma-irradiation of plasmid DNA in aqueous solution.

    PubMed

    Kuipers, Gitta K; Slotman, Ben J; Reitsma-Wijker, Carola A; van Andel, Rob J; Poldervaart, Hester A; Lafleur, M Vincent M

    2004-12-21

    When DNA is irradiated in aqueous solution, most of the damage is inflicted by water-derived radicals. This is called the indirect effect of ionizing radiation. However in whole cells not only the primary formed water radicals play a role, because some cellular compounds form secondary radicals which can also damage DNA. It is known that the amino acid phenylalanine is able to react with water radicals, resulting in the production of secondary phenylalanine radicals which can damage and inactivate DNA. In a previous study the influence of the presence of phenylalanine during gamma-irradiation of DNA in aqueous solution under oxic conditions was studied. Under anoxic irradiation conditions different amounts and types of reactive water-derived radicals are formed compared to oxic conditions and also different phenylalanine radicals are formed. Therefore, this study examines the influence of the presence of phenylalanine under anoxic conditions on the gamma-radiation-induced mutation spectrum. The results indicate that phenylalanine radicals are damaging to DNA, but less effective compared to primary water radicals. On the mutational level, in the presence of phenylalanine radicals under anoxic conditions, the amount of mutations on G:C base pairs was significantly decreased as compared to oxic conditions. Furthermore, the results of this study indicate that nucleotide excision repair is involved in repair of both inactivating and mutagenic damage induced by phenylalanine radicals under anoxic conditions.

  16. Redox mediators in visible light photocatalysis: photocatalytic radical thiol-ene additions.

    PubMed

    Tyson, Elizabeth L; Niemeyer, Zachary L; Yoon, Tehshik P

    2014-02-07

    Synthetically useful radical thiol-ene reactions can be initiated by visible light irradiation in the presence of transition metal polypyridyl photocatalysts. The success of this method relies upon the use of p-toluidine as an essential additive. Using these conditions, high-yielding thiol-ene reactions of cysteine-containing biomolecules can be accomplished using biocompatibile wavelengths of visible light, under aqueous conditions, and with the thiol component as the limiting reagent. We present evidence that p-toluidine serves as a redox mediator that is capable of catalyzing the otherwise inefficient photooxidation of thiols to the key thiyl radical intermediate. Thus, we show that co-catalytic oxidants can be important in the design of synthetic reactions involving visible light photoredox catalysis.

  17. The photochemistry of anthropogenic nonmethane hydrocarbons in the troposphere

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Augustsson, T. R.; Levine, J. S.

    1983-01-01

    A lumped, nonmethane hydrocarbon (NMHC) chemical mechanism is presently applied to a one-dimensional photochemical model of the troposphere. The profiles of OH, HO2, NO(x), and HNO3, showed only slight changes when NMHC chemistry was added. The integrated column of peroxyacetylnitrate (PAN), when NMHC chemistry was included, comprised 17 percent of the odd nitrogen budget. Advection is noted as an important possible mechanism for the removal of PAN at midlatitudes. The inclusion of such intermediate lifetime species as aldehydes and olefins has both provided additional sources of short-lived NMHC radicals, such as the peroxyacetyl radical that is the radical precursor of PAN, and offered a more detailed description of the concentrations of short-lived species and the overall NMHC chemistry.

  18. Kinetics and Near-Infrared Spectroscopy of Organic Peroxy Radicals

    NASA Astrophysics Data System (ADS)

    Smarte, M. D.; Okumura, M.

    2016-12-01

    Organic peroxy radicals are important intermediates in atmospheric chemistry with fates that control the rate of radical propagation in an oxidation mechanism. Laboratory methods for detecting peroxy radicals are essential to measuring precise rate constants that constrain these fates. In this work, we discuss the use of near-infrared cavity ringdown spectroscopy to detect organic peroxy radicals for the purpose of laboratory kinetics measurements. We focus on chlorine-substituted peroxy radicals generated in the oxidation of alkenes by chlorine, a minor tropospheric oxidant found in marine and coastal regions. Previous kinetics experiments on peroxy radicals have largely used UV absorption spectroscopy via the dissociative B-X transition. However, the spectra produced are featureless and exhibit substantial overlap; determining the concentration profile of an individual peroxy radical can be an arduous task. In our work, we probe the forbidden peroxy radical A-X transition in the near-infrared. While this approach requires overcoming small cross sections ( 10-21 cm2), the A state is bound and leads to structured absorption spectra that may be useful in constraining the kinetics of mixtures of organic peroxy radicals formed in the oxidation of complex hydrocarbons. Only a few kinetics studies utilizing the A-X transition exist in the literature and they are focused on small, unsubstituted species. This presentation explores the ability of the A-X transition to unravel the kinetics of more complex peroxy radicals in laboratory experiments using several example systems: (1) Determining rate constants for the self and cross reactions of β-chloroethylperoxy and HO2. (2) Detecting the second generation of peroxy radicals formed from alkoxy radical decomposition in the chlorine-initiated oxidation of 2-butene. (3) Observing different rates of reactivity with NO across the pool of peroxy radical isomers formed in the chlorine-initiated oxidation of isoprene.

  19. The temperature dependence of the rate constant for the reaction of hydroxyl radicals with nitric acid

    NASA Technical Reports Server (NTRS)

    Kurylo, M. J.; Cornett, K. D.; Murphy, J. L.

    1982-01-01

    The rate constant for the reaction of hydroxyl radicals with nitric acid in the 225-443 K temperature range has been measured by means of the flash photolysis resonance fluorescence technique. Above 300 K, the rate constant levels off in a way that can only be explained by the occurrence of two reaction channels, of which one, operative at low temperatures, proceeds through the formation of an adduct intermediate. The implications of these rate constant values for stratospheric reaction constants is discussed.

  20. Lipid-derived free radical production in superantigen-induced interstitial pneumonia

    PubMed Central

    Miyakawa, Hisako; Mason, Ronald P.; Jiang, JinJie; Kadiiska, Maria B.

    2009-01-01

    We studied the free radical generation involved in the development of interstitial pneumonia (IP) in an animal model of autoimmune disease. We observed an electron spin resonance (ESR) spectrum of α-(4-pyridyl-1-oxide)-N-tert-butylnitrone (POBN) radical adducts detected in the lipid extract of lungs in autoimmune-prone mice after intratracheal instillation of staphylococcal enterotoxin B. The POBN adducts detected by ESR were paralleled by infiltration of macrophages and neutrophils in the bronchoalveolar lavage fluid. To further investigate the mechanism of free radical generation, mice were pretreated with the macrophage toxicant gadolinium chloride, which significantly suppressed the radical generation. Free radical generation was also decreased by pretreatment with the xanthine oxidase (XO) inhibitor allopurinol, the iron chelator Desferal, and the inducible nitric oxide synthase (iNOS) inhibitor 1400W. Histopathologically, these drugs significantly reduced both the cell infiltration to alveolar septal walls and the synthesis of pulmonary collagen fibers. Experiments with NADPH oxidase knockout mice showed that NADPH oxidase did not contribute to lipid radical generation. These results suggest that lipid-derived carbon-centered free radical production is important in the manifestation of IP and that a macrophage toxicant, an XO inhibitor, an iron chelator, and an iNOS inhibitor protect against both radical generation and the manifestation of IP. PMID:19376221

  1. New insights into low-temperature oxidation of propane from synchrotron photoionization mass spectrometry and multi-scale informatics modeling

    DOE PAGES

    Welz, Oliver; Burke, Michael P.; Antonov, Ivan O.; ...

    2015-04-10

    We studied low-temperature propane oxidation at P = 4 Torr and T = 530, 600, and 670 K by time-resolved multiplexed photoionization mass spectrometry (MPIMS), which probes the reactants, intermediates, and products with isomeric selectivity using tunable synchrotron vacuum UV ionizing radiation. The oxidation is initiated by pulsed laser photolysis of oxalyl chloride, (COCl) 2, at 248 nm, which rapidly generates a ~1:1 mixture of 1-propyl (n-propyl) and 2-propyl (i-propyl) radicals via the fast Cl + propane reaction. At all three temperatures, the major stable product species is propene, formed in the propyl + O 2 reactions by direct HOmore » 2 elimination from both n- and i-propyl peroxy radicals. The experimentally derived propene yields relative to the initial concentration of Cl atoms are (20 ± 4)% at 530 K, (55 ± 11)% at 600 K, and (86 ± 17)% at 670 K at a reaction time of 20 ms. The lower yield of propene at low temperature reflects substantial formation of propyl peroxy radicals, which do not completely decompose on the experimental time scale. In addition, C 3H 6O isomers methyloxirane, oxetane, acetone, and propanal are detected as minor products. Our measured yields of oxetane and methyloxirane, which are coproducts of OH radicals, suggest a revision of the OH formation pathways in models of low-temperature propane oxidation. The experimental results are modeled and interpreted using a multiscale informatics approach, presented in detail in a separate publication (Burke, M. P.; Goldsmith, C. F.; Klippenstein, S. J.; Welz, O.; Huang H.; Antonov I. O.; Savee J. D.; Osborn D. L.; Zádor, J.; Taatjes, C. A.; Sheps, L. Multiscale Informatics for Low-Temperature Propane Oxidation: Further Complexities in Studies of Complex Reactions. J. Phys. Chem A. 2015, DOI: 10.1021/acs.jpca.5b01003). Additionally, we found that the model predicts the time profiles and yields of the experimentally observed primary products well, and shows satisfactory agreement for products formed mostly via secondary radical–radical reactions.« less

  2. Structural and pH Dependence of Excited State PCET Reactions Involving Reductive Quenching of the MLCT Excited State of [Ru II(bpy) 2(bpz)] 2+ by Hydroquinones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebedeva, Natalia V.; Schmidt, Robert D.; Concepcion, Javier J.

    2011-01-01

    The proton-coupled electron transfer (PCET) reaction between the bpz-based photoexcited ³MLCT state of [Ru II(bpy) 2(bpz)] 2+ (bpy = 2,2'-bipyridine, bpz = 2,2'-bipyrazine) and a series of substituted hydroquinones (H₂Q) has been studied by transient absorption (TA) and time-resolved electron paramagnetic resonance (TREPR) spectroscopy at X-band. When the reaction is carried out in a CH₃CN/H₂O mixed solvent system with unsubstituted hydroquinone, the neutral semiquinone radical (4a) and its conjugate base, the semiquinone radical anion (4b), are both observed. Variation of the acid strength in the solvent mixture allows the acid/base dependence of the PCET reaction to be investigated. In solutionsmore » with very low acid concentrations, TREPR spectra exclusively derived from radical anion 4b are observed, while at very high acid concentrations, the spectrum is assigned to the protonated structure 4a. At intermediate acid concentrations, either a superposition of spectra is observed (slow exchange between 4a and 4b) or substantial broadening in the TREPR spectrum is observed (fast exchange between 4a and 4b). Variation of substituents on the H₂Q ring substantially alter this acid/base dependence and provide a means to investigate electronic effects on both the ET and PT components of the PCET process. The TA results suggest a change in mechanism from PCET to direct ET quenching in strongly basic solutions and with electron withdrawing groups on the H₂Q ring system. Changing the ligand on the Ru complex also alters the acid/base dependence of the TREPR spectra through a series of complex equilibria between protonated and deprotonated hydroquinone radicals and anions. The relative intensities of the signals from radical 4a versus 4b can be rationalized quantitatively in terms of these equilibria and the relevant pK{sub a} values. An observed equilibrium deuterium isotope effect supports the conclusion that the post-PCET HQ •/Q •- equilibrium is the most important in determining the 4a/4b ratio at early delay times.« less

  3. Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes.

    PubMed

    Cheng, Xin; Guo, Hongguang; Zhang, Yongli; Wu, Xiao; Liu, Yang

    2017-04-15

    The reaction between persulfate (PS) and carbon nanotubes (CNTs) for the degradation of 2,4-dichlorophenol (2,4-DCP) was investigated. It was demonstrated that CNTs could efficiently activate PS for the degradation of 2,4-DCP. Results suggested that the neither hydroxyl radical (OH) nor sulfate radical (SO 4 - ) was produced therein. For the first time, the generation of singlet oxygen ( 1 O 2 ) was proved by several methods including electron paramagnetic resonance spectrometry (EPR) and liquid chromatography mass spectrometry measurements. Moreover, the generation of the superoxide radical as a precursor of the singlet oxygen was also confirmed by using certain scavengers and EPR measurement, in which the presence of molecular oxygen was not required as a precursor of 1 O 2 . The efficient generation of 1 O 2 using the PS/CNTs system without any light irradiation can be employed for the selective oxidation of aqueous organic compounds under neutral conditions with the mineralization and toxicity evaluated. A kinetic model was developed to theoretically evaluate the adsorption and oxidation of 2,4-DCP on the CNTs. Accordingly, a catalytic mechanism was proposed involving the formation of a dioxirane intermediate between PS and CNTs, and the subsequent decomposition of this intermediate into 1 O 2 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Using a Radical-Derived Character E-Learning Platform to Increase Learner Knowledge of Chinese Characters

    ERIC Educational Resources Information Center

    Chen, Hsueh-Chih; Hsu, Chih-Chun; Chang, Li-Yun; Lin, Yu-Chi; Chang, Kuo-En; Sung, Yao-Ting

    2013-01-01

    The present study is aimed at investigating the effect of a radical-derived Chinese character teaching strategy on enhancing Chinese as a Foreign Language (CFL) learners' Chinese orthographic awareness. An e-learning teaching platform, based on statistical data from the Chinese Orthography Database Explorer (Chen, Chang, Chou, Sung, & Chang,…

  5. Caffeoylquinic acid derived free radicals identified during antioxidant reactions of bitter tea (Ilex latifolia and Ilex kudincha).

    PubMed

    Pirker, Katharina Franziska; Goodman, Bernard Albert

    2010-12-01

    In order to provide some insight into the chemical basis for the antioxidant behaviour of bitter tea, the Chinese medicinal beverage derived from leaves of Ilex kudincha or Ilex latifolia, free radicals generated during the oxidation of aqueous extracts of dried leaves have been investigated by electron paramagnetic resonance (EPR) spectroscopy. With both beverages, the major components in the EPR spectra after accelerated autoxidation under alkaline conditions or oxidation with the superoxide anion radical were comparable to those derived from reactions of caffeoylquinic acids. Thus these reaction products have sufficient stability for biological activity, and the present results suggest that such molecules contribute appreciably to the antioxidant chemistry of these beverages.

  6. H₃PW₁₂O₄₀/TiO₂ catalyst-induced photodegradation of bisphenol A (BPA): kinetics, toxicity and degradation pathways.

    PubMed

    Lu, Nan; Lu, Ying; Liu, Fangyuan; Zhao, Kun; Yuan, Xing; Zhao, Yahui; Li, Yuan; Qin, Hongwei; Zhu, Jia

    2013-05-01

    A series of experiments were conducted to investigate the kinetics of bisphenol A (2,2-bis(4-hydroxyphenyl)propane, BPA) degradation using H₃PW₁₂O₄₀/TiO₂ (PW₁₂/TiO₂) composite catalyst, toxicity of BPA intermediate products and degradation pathways. The results showed that the BPA photodegradation using PW₁₂/TiO₂ catalyst followed the first-order kinetics, and under the optimal experimental conditions at H₃PW₁₂O₄₀ loading amount of 6.3%, BPA initial concentration of 5 mg L(-1), and the solution pH of 8.2, the kinetic constant was 3.7-fold larger than that of pristine TiO₂. The hydroxyl radicals derived from the electroreduction of dissolved oxygen with electrons via chain reactions was the main reactive oxygen species. According to the identified intermediates, 4-isopropanolphenol, hydroquinone, 4-hydroxybenzoic acid, and phenol, the possible BPA photodegradation pathways were proposed. Upon 12h irradiation, 77% BPA (20 mg L(-1)) was mineralized and the toxicity to Daphnia magna (D. magna) was almost disappeared, implying the strong oxidation ability of PW₁₂/TiO₂ catalyst. The studies provide important information about the BPA degradation and promote the technical development for BPA removal. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives

    NASA Astrophysics Data System (ADS)

    Hamlaoui, Ikram; Bencheraiet, Reguia; Bensegueni, Rafik; Bencharif, Mustapha

    2018-03-01

    In this study, the antioxidant capacity of three chalcone derivatives was evaluated by DPPH free radical scavenging. Experimental data showed low antioxidant activity (IC50±SD) of these molecules in comparison with BHT. The mechanism of DPPH radical scavenging elucidated by means of density functional theory (DFT) calculations. The tested compounds and their corresponding radicals and anions were optimized using B3LYP functional with 6-31G (d,p) basis set in the gas phase. The C-PCM model was used to perform solvent medium calculations. On the basis of theoretical calculations, it was shown that HAT mechanism was predominant in the gas phase, whereas SET-PT and SPLET mechanisms were favored in the presence of the solvent. Moreover, the HOMO orbitals and spin density distribution was evaluated to predict the probable sites for free radical attack.

  8. Collision induced dissociation of protonated N-nitrosodimethylamine by ion trap mass spectrometry: Ultimate carcinogens in gas phase

    NASA Astrophysics Data System (ADS)

    Kulikova, Natalia; Baker, Michael; Gabryelski, Wojciech

    2009-12-01

    Collision induced dissociation of protonated N-nitrosodimethylamine (NDMA) and isotopically labeled N-nitrosodimethyl-d6-amine (NDMA-d6) was investigated by sequential ion trap mass spectrometry to establish mechanisms of gas phase reactions leading to intriguing products of this potent carcinogen. The fragmentation of (NDMA + H+) occurs via two dissociation pathways. In the alkylation pathway, homolytic cleavage of the N-O bond of N-dimethyl, N'-hydroxydiazenium ion generates N-dimethyldiazenium distonic ion which reacts further by a CH3 radical loss to form methanediazonium ion. Both methanediazonium ion and its precursor are involved in ion/molecule reactions. Methanediazonium ion showed to be capable of methylating water and methanol molecules in the gas phase of the ion trap and N-dimethyldiazenium distonic ion showed to abstract a hydrogen atom from a solvent molecule. In the denitrosation pathway, a tautomerization of N-dimethyl, N'-hydroxydiazenium ion to N-nitrosodimethylammonium intermediate ion results in radical cleavage of the N-N bond of the intermediate ion to form N-dimethylaminium radical cation which reacts further through [alpha]-cleavage to generate N-methylmethylenimmonium ion. Although the reactions of NDMA in the gas phase are different to those for enzymatic conversion of NDMA in biological systems, each activation method generates the same products. We will show that collision induced dissociation of N-nitrosodiethylamine (NDEA) and N-nitrosodipropylamine (NDPA) is also a feasible approach to gain information on formation, stability, and reactivity of alkylating agents originating from NDEA and NDPA. Investigating such biologically relevant, but highly reactive intermediates in the condensed phase is hampered by the short life-times of these transient species.

  9. Spectroscopic evidence for an engineered, catalytically active Trp radical that creates the unique reactivity of lignin peroxidase.

    PubMed

    Smith, Andrew T; Doyle, Wendy A; Dorlet, Pierre; Ivancich, Anabella

    2009-09-22

    The surface oxidation site (Trp-171) in lignin peroxidase (LiP) required for the reaction with veratryl alcohol a high-redox-potential (1.4 V) substrate, was engineered into Coprinus cinereus peroxidase (CiP) by introducing a Trp residue into a heme peroxidase that has similar protein fold but lacks this activity. To create the catalytic activity toward veratryl alcohol in CiP, it was necessary to reproduce the Trp site and its negatively charged microenvironment by means of a triple mutation. The resulting D179W+R258E+R272D variant was characterized by multifrequency EPR spectroscopy. The spectra unequivocally showed that a new Trp radical [g values of g(x) = 2.0035(5), g(y) = 2.0027(5), and g(z) = 2.0022(1)] was formed after the [Fe(IV)=O Por(*+)] intermediate, as a result of intramolecular electron transfer between Trp-179 and the porphyrin. Also, the EPR characterization crucially showed that [Fe(IV)=O Trp-179(*)] was the reactive intermediate with veratryl alcohol. Accordingly, our work shows that it is necessary to take into account the physicochemical properties of the radical, fine-tuned by the microenvironment, as well as those of the preceding [Fe(IV)=O Por(*+)] intermediate to engineer a catalytically competent Trp site for a given substrate. Manipulation of the microenvironment of the Trp-171 site in LiP allowed the detection by EPR spectroscopy of the Trp-171(*), for which direct evidence has been missing so far. Our work also highlights the role of Trp residues as tunable redox-active cofactors for enzyme catalysis in the context of peroxidases with a unique reactivity toward recalcitrant substrates that require oxidation potentials not realized at the heme site.

  10. Detection of HOCl-mediated protein oxidation products in the extracellular matrix of human atherosclerotic plaques.

    PubMed Central

    Woods, Alan A; Linton, Stuart M; Davies, Michael J

    2003-01-01

    Oxidation is believed to play a role in atherosclerosis. Oxidized lipids, sterols and proteins have been detected in early, intermediate and advanced human lesions at elevated levels. The spectrum of oxidized side-chain products detected on proteins from homogenates of advanced human lesions has been interpreted in terms of the occurrence of two oxidative mechanisms, one involving oxygen-derived radicals catalysed by trace transition metal ions, and a second involving chlorinating species (HOCl or Cl2), generated by the haem enzyme myeloperoxidase (MPO). As MPO is released extracellularly by activated monocytes (and possibly macrophages) and is a highly basic protein, it would be expected to associate with polyanions such as the glycosaminoglycans of the extracellular matrix, and might result in damage being localized at such sites. In this study proteins extracted from extracellular matrix material obtained from advanced human atherosclerotic lesions are shown to contain elevated levels of oxidized amino acids [3,4-dihydroxyphenylalanine (DOPA), di-tyrosine, 2-hydroxyphenylalanine ( o-Tyr)] when compared with healthy (human and pig) arterial tissue. These matrix-derived materials account for 83-96% of the total oxidized protein side-chain products detected in these plaques. Oxidation of matrix components extracted from healthy artery tissue, and model proteins, with reagent HOCl is shown to give rise to a similar pattern of products to those detected in advanced human lesions. The detection of elevated levels of DOPA and o-Tyr, which have been previously attributed to the occurrence of oxygen-radical-mediated reactions, by HOCl treatment, suggests an alternative route to the formation of these materials in plaques. This is believed to involve the formation and subsequent decomposition of protein chloramines. PMID:12456264

  11. Biotic nitrosation of diclofenac in a soil aquifer system (Katari watershed, Bolivia).

    PubMed

    Chiron, Serge; Duwig, Céline

    2016-09-15

    Up till now, the diclofenac (DCF) transformation into its nitrogen-derivatives, N-nitroso-DCF (NO-DCF) and 5-nitro-DCF (NO2-DCF), has been mainly investigated in wastewater treatment plant under nitrification or denitrification processes. This work reports, for the first time, an additional DCF microbial mediated nitrosation pathway of DCF in soil under strictly anoxic conditions probably involving codenitrification processes and fungal activities. This transformation pathway was investigated by using field observations data at a soil aquifer system (Katari watershed, Bolivia) and by carrying out soil slurry batch experiments. It was also observed for diphenylamine (DPA). Field measurements revealed the occurrence of NO-DCF, NO2-DCF and NO-DPA in groundwater samples at concentration levels in the 6-68s/L range. These concentration levels are more significant than those previously reported in wastewater treatment plant effluents taking into account dilution processes in soil. Interestingly, the p-benzoquinone imine of 5-OH-DCF was also found to be rather stable in surface water. In laboratory batch experiments under strictly anoxic conditions, the transformation of DCF and DPA into their corresponding N-nitroso derivatives was well correlated to denitrification processes. It was also observed that NO-DCF evolved into NO2-DCF while NO-DPA was stable. In vitro experiments showed that the Fisher-Hepp rearrangement could not account for NO2-DCF formation. One possible mechanism might be that NO-DCF underwent spontaneous NO loss to give the resulting intermediates diphenylaminyl radical or nitrenium cation which might evolve into NO2-DCF in presence of NO2 radical or nitrite ion, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Effects of tryptophan derivatives and β-carboline alkaloids on radiation- and peroxide-induced transformations of ethanol

    NASA Astrophysics Data System (ADS)

    Sverdlov, R. L.; Brinkevich, S. D.; Shadyro, O. I.

    2014-05-01

    The subject of this study was investigation of interactions of tryptophan and its derivatives, including structurally related β-carboline alkaloids with oxygen- and carbon-centered radicals being formed during radiation- and peroxide-induced transformations of ethanol. It was shown that the above named compounds suppressed recombination and disproportionation reactions of α-hydroxyethyl radicals. The inhibitory effects of tryptophan, 5-hydroxytryptophan and serotonin were mainly realized by means of reduction and addition reactions, while those of β-carboline alkaloids - harmine, harmane and harmaline - were due to oxidation reactions. Melatonin displayed low reactivity towards α-hydroxyethyl radicals. Tryptophan derivatives and β-carboline alkaloids were found to inhibit radiation-induced oxidation of ethanol while being virtually not used up. The low transformation yields of tryptophan, 5-hydroxytryptophan and serotonin, as well as β-carboline alkaloids, indicate their capability of regeneration, which could occur on interaction of tryptophan with О-2 and НО2, or on oxidation of α-hydroxyethyl radicals by β-carboline alkaloids.

  13. Anti-inflammatory, cyclooxygenase (COX)-2, COX-1 inhibitory, and free radical scavenging effects of Rumex nepalensis.

    PubMed

    Gautam, Raju; Karkhile, Kailas V; Bhutani, Kamlesh K; Jachak, Sanjay M

    2010-10-01

    Evaluation of the topical anti-inflammatory activity of chloroform and ethyl acetate extracts of RUMEX NEPALENSIS roots in a TPA-induced acute inflammation mouse model demonstrated a significant reduction in ear edema. The extracts were further tested on purified enzymes for COX-1 and COX-2 inhibition to elucidate their mechanism of action, and a strong inhibition was observed. Six anthraquinones and two naphthalene derivatives were isolated from the ethyl acetate extract. Among the isolated compounds, emodin was found to be a potent inhibitor with slight selectivity towards COX-2, and nepodin exhibited selectivity towards COX-1. Emodin, endocrocin, and nepodin also exhibited significant topical anti-inflammatory activity in mice. Interestingly, nepodin showed better radical scavenging activity than trolox and ascorbic acid against DPPH and ABTS radicals. The strong radical scavenging activity of chloroform and ethyl acetate extracts could be explained by the presence of nepodin as well as by the high phenolic content of the ethyl acetate extract. Thus, the anti-inflammatory effect of R. NEPALENSIS roots was assumed to be mediated through COX inhibition by anthraquinones and naphthalene derivatives and through the radical scavenging activities of naphthalene derivatives. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Gas-phase tropospheric chemistry of 2,3,7,8-tetrafuorinated dibenzo-p-dioxin.

    PubMed

    Zhang, Chenxi; Sun, Xiaomin

    2014-01-15

    Growing attention has been devoted to understanding the formation and destruction of polyfluorinated dibenzo-p-dioxins (PFDDs). High-accuracy molecular orbital calculations have been performed to investigate the tropospheric oxidation reaction of 2,3,7,8-tetrafuorinated dibenzo-p-dioxin (TFDD) initiated by OH radical, NO3 radical and O3. The rate constant of TFDD reaction triggered by the OH radical, NO3 radical and O3 is about 2.30 × 10(-11)cm(3) molecule(-l) s(-l), 3.18 × 10(-13)cm(3) molecule(-l) s(-l), and 3.30 × 10(-19)cm(3) molecule(-l) s(-l), respectively. OH radical is the major gas phase tropospheric sink for TFDD. Once TFDD-OH intermediates are produced in the initial reactions, they can react with tropospheric O2 subsequently to generate peroxy radical isomers. The TFDD-OH-O2 can further react with tropospheric NO via isomerization or combination, resulting that the dioxin ring will be ruptured completely. This study can serve as a template for tropospheric degradation of the gaseous PFDDs, which is beneficial for assessing their tropospheric behaviors. © 2013 Elsevier B.V. All rights reserved.

  15. Glycerol dehydratation by the B12-independent enzyme may not involve the migration of a hydroxyl group: a computational study.

    PubMed

    Feliks, Mikolaj; Ullmann, G Matthias

    2012-06-21

    A combination of continuum electrostatic and density functional calculations has been employed to study the mechanism of the B(12)-independent glycerol dehydratase, a novel glycyl-radical enzyme involved in the microbial conversion of glycerol to 3-hydroxylpropionaldehyde. The calculations indicate that the dehydratation of glycerol by the B(12)-independent enzyme does not need to involve a mechanistically complicated migration of the middle hydroxyl group to one of the two terminal positions of a molecule, as previously suggested. Instead, the reaction can proceed in three elementary steps. First, a radical transfer from the catalytically active Cys433 to the ligand generates a substrate-related intermediate. Second, a hydroxyl group splits off at the middle position of the ligand and is protonated by the neighboring His164 to form a water molecule. The other active site residue Glu435 accepts a proton from one of the terminal hydroxyl groups of the ligand and a C═O double bond is created. Third, the reaction is completed by a radical back transfer from the product-related intermediate to Cys433. On the basis of our calculations, the catalytic functions of the active site residues have been suggested. Cys433 is a radical relay site; His164 and Glu435 make up a proton accepting/donating system; Asn156, His281, and Asp447 form a network of hydrogen bonds responsible for the electrostatic stabilization of the transition state. A synergistic participation of these residues in the reaction seems to be crucial for the catalysis.

  16. Learning Activity Package, Algebra.

    ERIC Educational Resources Information Center

    Evans, Diane

    A set of ten teacher-prepared Learning Activity Packages (LAPs) in beginning algebra and nine in intermediate algebra, these units cover sets, properties of operations, number systems, open expressions, solution sets of equations and inequalities in one and two variables, exponents, factoring and polynomials, relations and functions, radicals,…

  17. Nanoceria as Antioxidant: Synthesis and Biomedical Applications

    USDA-ARS?s Scientific Manuscript database

    The therapeutic application of nanomaterials has been a focus of numerous studies in the past decade. Due to its unique redox properties, cerium oxide (ceria) is finding widespread use in the treatment of medical disorders caused by the reactive oxygen intermediates (ROI). The radical-scavenging rol...

  18. Transition-Metal Hydride Radical Cations.

    PubMed

    Hu, Yue; Shaw, Anthony P; Estes, Deven P; Norton, Jack R

    2016-08-10

    Transition-metal hydride radical cations (TMHRCs) are involved in a variety of chemical and biochemical reactions, making a more thorough understanding of their properties essential for explaining observed reactivity and for the eventual development of new applications. Generally, these species may be treated as the ones formed by one-electron oxidation of diamagnetic analogues that are neutral or cationic. Despite the importance of TMHRCs, the generally sensitive nature of these complexes has hindered their development. However, over the last four decades, many more TMHRCs have been synthesized, characterized, isolated, or hypothesized as reaction intermediates. This comprehensive review focuses on experimental studies of TMHRCs reported through the year 2014, with an emphasis on isolated and observed species. The methods used for the generation or synthesis of TMHRCs are surveyed, followed by a discussion about the stability of these complexes. The fundamental properties of TMHRCs, especially those pertaining to the M-H bond, are described, followed by a detailed treatment of decomposition pathways. Finally, reactions involving TMHRCs as intermediates are described.

  19. A kinetic study of enhancing effect by phenolic compounds on the hydroxyl radical generation during ozonation.

    PubMed

    Han, Y H; Ichikawa, K; Utsumi, H

    2004-01-01

    Ozone decomposition in aqueous solution proceeds through a radical type chain mechanism. These reactions involve the very reactive and catalytic intermediates O2- radical, OH radical, HO2 radical, OH-, H2O2, etc. OH radical is proposed as an important factor in the ozonation of water among them. In the present study, the enhancing effects of several phenolic compounds; phenol, 2-, 3-, 4-monochloro, 2,4-dichloro, 2,4,6-trichlorophenol on OH radical generation were mathematically evaluated using the electron spin resonance (ESR)/spin-trapping technique. OH radical was trapped with a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) as a stable adduct, DMPO-OH. The initial velocities of DMPO-OH generation in ozonated water containing phenolic compounds were quantitatively measured using a combined system of ESR spectroscopy with stopped-flow apparatus, which was controlled by homemade software. The initial velocities of DMPO-OH generation increased as a function of the ozone concentration. The relation among ozone concentration, amount of phenolic compounds and the initial velocity (v0) of DMPO-OH generation was mathematically analyzed and the following equation was obtained, v0 (10(-6) M/s) = (A' x [PhOHs (10(-9) M)] + 0.0005) exp (60 x [ozone (10(-9) M)]). The equation fitted very well with the experimental results, and the correlation coefficient was larger than 0.98.

  20. Breaking Benzene Aromaticity-Computational Insights into the Mechanism of the Tungsten-Containing Benzoyl-CoA Reductase.

    PubMed

    Culka, Martin; Huwiler, Simona G; Boll, Matthias; Ullmann, G Matthias

    2017-10-18

    Aromatic compounds are environmental pollutants with toxic and carcinogenic properties. Despite the stability of aromatic rings, bacteria are able to degrade the aromatic compounds into simple metabolites and use them as growth substrates under oxic or even under anoxic conditions. In anaerobic microorganisms, most monocyclic aromatic growth substrates are converted to the central intermediate benzoyl-coenzyme A, which is enzymatically reduced to cyclohexa-1,5-dienoyl-CoA. The strictly anaerobic bacterium Geobacter metallireducens uses the class II benzoyl-CoA reductase complex for this reaction. The catalytic BamB subunit of this complex harbors an active site tungsten-bis-pyranopterin cofactor with the metal being coordinated by five protein/cofactor-derived sulfur atoms and a sixth, so far unknown, ligand. Although BamB has been biochemically and structurally characterized, its mechanism still remains elusive. Here we use continuum electrostatic and QM/MM calculations to model benzoyl-CoA reduction by BamB. We aim to elucidate the identity of the sixth ligand of the active-site tungsten ion together with the interplay of the electron and proton transfer events during the aromatic ring reduction. On the basis of our calculations, we propose that benzoyl-CoA reduction is initiated by a hydrogen atom transfer from a W(IV) species with an aqua ligand, yielding W(V)-[OH - ] and a substrate radical intermediate. In the next step, a proton-assisted second electron transfer takes place with a conserved active-site histidine serving as the second proton donor. Interestingly, our calculations suggest that the electron for the second reduction step is taken from the pyranopterin cofactors rather than from the tungsten ion. The resulting cationic radical, which is distributed over both pyranopterins, is stabilized by conserved anionic amino acid residues. The stepwise mechanism of the reduction shows similarities to the Birch reduction known from organic chemistry. However, the strict coupling of protons and electrons allows the reaction to proceed under milder conditions.

  1. Isotopic studies of trans- and cis-HOCO using rotational spectroscopy: Formation, chemical bonding, and molecular structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, Michael C., E-mail: mccarthy@cfa.harvard.edu; Martinez, Oscar; Crabtree, Kyle N.

    2016-03-28

    HOCO is an important intermediate in combustion and atmospheric processes because the OH + CO → H + CO{sub 2} reaction represents the final step for the production of CO{sub 2} in hydrocarbon oxidation, and theoretical studies predict that this reaction proceeds via various intermediates, the most important being this radical. Isotopic investigations of trans- and cis-HOCO have been undertaken using Fourier transform microwave spectroscopy and millimeter-wave double resonance techniques in combination with a supersonic molecular beam discharge source to better understand the formation, chemical bonding, and molecular structures of this radical pair. We find that trans-HOCO can be producedmore » almost equally well from either OH + CO or H + CO{sub 2} in our discharge source, but cis-HOCO appears to be roughly two times more abundant when starting from H + CO{sub 2}. Using isotopically labelled precursors, the OH + C{sup 18}O reaction predominately yields HOC{sup 18}O for both isomers, but H{sup 18}OCO is observed as well, typically at the level of 10%-20% that of HOC{sup 18}O; the opposite propensity is found for the {sup 18}OH + CO reaction. DO + C{sup 18}O yields similar ratios between DOC{sup 18}O and D{sup 18}OCO as those found for OH + C{sup 18}O, suggesting that some fraction of HOCO (or DOCO) may be formed from the back-reaction H + CO{sub 2}, which, at the high pressure of our gas expansion, can readily occur. The large {sup 13}C Fermi-contact term (a{sub F}) for trans- and cis-HO{sup 13}CO implicates significant unpaired electronic density in a σ-type orbital at the carbon atom, in good agreement with theoretical predictions. By correcting the experimental rotational constants for zero-point vibration motion calculated theoretically using second-order vibrational perturbation theory, precise geometrical structures have been derived for both isomers.« less

  2. Fundamental mechanisms and reactions in non-catalytic subcritical hydrothermal processes: A review.

    PubMed

    Yousefifar, Azadeh; Baroutian, Saeid; Farid, Mohammed M; Gapes, Daniel J; Young, Brent R

    2017-10-15

    The management and disposal of solid waste is of increasing concern across the globe. Hydrothermal processing of sludge has been suggested as a promising solution to deal with the considerable amounts of sludge produced worldwide. Such a process not only degrades organic compounds and reduces waste volume, but also provides an opportunity to recover valuable substances. Hydrothermal processing comprises two main sub-processes: wet oxidation (WO) and thermal hydrolysis (TH), in which the formation of various free radicals results in the production of different intermediates. Volatile fatty acids (VFAs), especially acetic acid, are usually the main intermediates which remain as a by-product of the process. This paper aims to review the fundamental mechanism for hydrothermal processing of sludge, and the formation of different free radicals and intermediates therein. In addition, the proposed kinetic models for the two processes (WO and TH) from the literature are reviewed and the advantages and disadvantages of each model are outlined. The effect of mass transfer as a critical component of the design and development of the processes, which has been neglected in most of these proposed models, is also reviewed, and the effect of influencing parameters on the processes' controlling step (reaction or mass transfer) is discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Damage of polyesters by the atmospheric free radical oxidant NO3 •: a product study involving model systems

    PubMed Central

    Goeschen, Catrin

    2013-01-01

    Summary Manufactured polymer materials are used in increasingly demanding applications, but their lifetime is strongly influenced by environmental conditions. In particular, weathering and ageing leads to dramatic changes in the properties of the polymers, which results in decreased service life and limited usage. Despite the heavy reliance of our society on polymers, the mechanism of their degradation upon exposure to environmental oxidants is barely understood. In this work, model systems of important structural motifs in commercial high-performing polyesters were used to study the reaction with the night-time free radical oxidant NO3 • in the absence and presence of other radical and non-radical oxidants. Identification of the products revealed ‘hot spots’ in polyesters that are particularly vulnerable to attack by NO3 • and insight into the mechanism of oxidative damage by this environmentally important radical. It is suggested that both intermediates as well as products of these reactions are potentially capable of promoting further degradation processes in polyesters under environmental conditions. PMID:24204400

  4. Combining UV photodissociation action spectroscopy with electron transfer dissociation for structure analysis of gas-phase peptide cation-radicals.

    PubMed

    Shaffer, Christopher J; Pepin, Robert; Tureček, František

    2015-12-01

    We report the first example of using ultraviolet (UV) photodissociation action spectroscopy for the investigation of gas-phase peptide cation-radicals produced by electron transfer dissociation. z-Type fragment ions (●) Gly-Gly-Lys(+), coordinated to 18-crown-6-ether (CE), are generated, selected by mass and photodissociated in the 200-400 nm region. The UVPD action spectra indicate the presence of valence-bond isomers differing in the position of the Cα radical defect, (α-Gly)-Gly-Lys(+) (CE), Gly-(α-Gly)-Lys(+) (CE) and Gly-Gly-(α-Lys(+))(CE). The isomers are readily distinguishable by UV absorption spectra obtained by time-dependent density functional theory (TD-DFT) calculations. In contrast, conformational isomers of these radical types are calculated to have similar UV spectra. UV photodissociation action spectroscopy represents a new tool for the investigation of transient intermediates of ion-electron reactions. Specifically, z-type cation radicals are shown to undergo spontaneous hydrogen atom migrations upon electron transfer dissociation. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II.

    PubMed

    Pathak, Vinay; Prasad, Ankush; Pospíšil, Pavel

    2017-01-01

    Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex.

  6. Formation of singlet oxygen by decomposition of protein hydroperoxide in photosystem II

    PubMed Central

    Pathak, Vinay; Prasad, Ankush

    2017-01-01

    Singlet oxygen (1O2) is formed by triplet-triplet energy transfer from triplet chlorophyll to O2 via Type II photosensitization reaction in photosystem II (PSII). Formation of triplet chlorophyll is associated with the change in spin state of the excited electron and recombination of triplet radical pair in the PSII antenna complex and reaction center, respectively. Here, we have provided evidence for the formation of 1O2 by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. Protein hydroperoxide is formed by protein oxidation initiated by highly oxidizing chlorophyll cation radical and hydroxyl radical formed by Type I photosensitization reaction. Under highly oxidizing conditions, protein hydroperoxide is oxidized to protein peroxyl radical which either cyclizes to dioxetane or recombines with another protein peroxyl radical to tetroxide. These highly unstable intermediates decompose to triplet carbonyls which transfer energy to O2 forming 1O2. Data presented in this study show for the first time that 1O2 is formed by decomposition of protein hydroperoxide in PSII membranes deprived of Mn4O5Ca complex. PMID:28732060

  7. Substrate-Tuned Catalysis of the Radical S-Adenosyl-L-Methionine Enzyme NosL Involved in Nosiheptide Biosynthesis.

    PubMed

    Ji, Xinjian; Li, Yongzhen; Ding, Wei; Zhang, Qi

    2015-07-27

    NosL is a radical S-adenosyl-L-methionine (SAM) enzyme that converts L-Trp to 3-methyl-2-indolic acid, a key intermediate in the biosynthesis of a thiopeptide antibiotic nosiheptide. In this work we investigated NosL catalysis by using a series of Trp analogues as the molecular probes. Using a benzofuran substrate 2-amino-3-(benzofuran-3-yl)propanoic acid (ABPA), we clearly demonstrated that the 5'-deoxyadenosyl (dAdo) radical-mediated hydrogen abstraction in NosL catalysis is not from the indole nitrogen but likely from the amino group of L-Trp. Unexpectedly, the major product of ABPA is a decarboxylated compound, indicating that NosL was transformed to a novel decarboxylase by an unnatural substrate. Furthermore, we showed that, for the first time to our knowledge, the dAdo radical-mediated hydrogen abstraction can occur from an alcohol hydroxy group. Our study demonstrates the intriguing promiscuity of NosL catalysis and highlights the potential of engineering radical SAM enzymes for novel activities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A stable Fe{sup III}-Fe{sup IV} replacement of tyrosyl radical in a class I ribonucleotide reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voevodskaya, N.; Lendzian, F.; Graeslund, A.

    2005-05-20

    Ribonucleotide reductase (RNR) of Chlamydia trachomatis is a class I RNR enzyme composed of two homodimeric components, proteins R1 and R2. In class I RNR, R1 has the substrate binding site, whereas R2 has a diferric site and normally in its active form a stable tyrosyl free radical. C. trachomatis RNR is unusual, because its R2 component has a phenylalanine in the place of the radical carrier tyrosine. Replacing the tyrosyl radical, a paramagnetic Fe{sup III}-Fe{sup IV} species (species X, normally a transient intermediate in the process leading to radical formation) may provide the oxidation equivalent needed to start themore » catalytic process via long range electron transfer from the active site in R1. Here EPR spectroscopy shows that in C. trachomatis RNR, species X can become essentially stable when formed in a complete RNR (R1/R2/substrate) complex, adding further weight to the possible role of this species X in the catalytic reaction.« less

  9. On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices

    NASA Astrophysics Data System (ADS)

    McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.

    2016-06-01

    The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.

  10. Vibrational Spectroscopy of Ions and Radicals Present in the Interstellar Medium and in Planetary Atmospheres: A Theoretical Study

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.

    2004-01-01

    Anharmonic vibrational frequencies and intensities are calculated for OH(H2O)n and H(H2O)n radicals (that form on icy particles of the interstellar medium), HCO radical (the main intermediate in the synthesis of organic molecules in space), NH2(-) and C2H(-) anions, H5(+) cation, and other systems relevant to interstellar chemistry. In addition to pure ions and radicals, their complexes with water are studied to assess the effects of water environment on infrared spectra. The calculations are performed using the correlation-corrected vibrational self-consistent field (CC-VSCF) method with ab initio potential surfaces at the MP2 and CCSD(T) levels. Fundamental, overtone, and combination excitations are computed. The results are in good agreement with available experimental data and provide reliable predictions for vibrational excitations not yet measured in laboratory experiments. The data should be useful for interpretation of astronomically observed spectra and identification of ions and radicals present in the interstellar medium and in planetary atmospheres.

  11. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content.

    PubMed

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-04-15

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical-lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)-MS/MS (tandem MS), four E,Z-linoleate allyl radical-CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical-CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content.

  12. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    NASA Astrophysics Data System (ADS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-03-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4-47.2 kJ mol-1) are low and also the Gibbs free energies have high negative values ((-27.4) to (-5.9) kJ mol-1). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate.

  13. Formation mechanism of glycolaldehyde and ethylene glycol in astrophysical ices from HCO• and •CH2OH recombination: an experimental study

    NASA Astrophysics Data System (ADS)

    Butscher, T.; Duvernay, F.; Theule, P.; Danger, G.; Carissan, Y.; Hagebaum-Reignier, D.; Chiavassa, T.

    2015-10-01

    Among all existing complex organic molecules, glycolaldehyde HOCH2CHO and ethylene glycol HOCH2CH2OH are two of the largest detected molecules in the interstellar medium. We investigate both experimentally and theoretically the low-temperature reaction pathways leading to glycolaldehyde and ethylene glycol in interstellar grains. Using infrared spectroscopy, mass spectroscopy and quantum calculations, we investigate formation pathways of glycolaldehyde and ethylene glycol based on HCO• and •CH2OH radical-radical recombinations. We also show that •CH2OH is the main intermediate radical species in the H2CO to CH3OH hydrogenation processes. We then discuss astrophysical implications of the chemical pathway we propose on the observed gas-phase ethylene glycol and glycolaldehyde.

  14. Origins of Stereoselectivity in the trans-Diels-Alder Paradigm

    PubMed Central

    Paton, Robert S.; Mackey, Joel L.; Kim, Woo Han; Lee, Jun Hee; Danishefsky, Samuel J.; Houk, K. N.

    2010-01-01

    The regioselectivity and stereoselectivity aspects of the Diels-Alder/radical hydrodenitration reaction sequence leading to trans-fused ring systems have been investigated with density functional calculations. A continuum of transition structures representing Diels-Alder and hetero-Diels-Alder cycloadditions as well as a sigmatropic rearrangement have been located, and they all lie very close in energy on the potential energy surface. All three pathways are found to be important in the formation of the Diels-Alder adduct. Reported regioselectivities are reproduced by the calculations. The stereoselectivity of radical hydrodenitration of the cis-Diels-Alder adduct is found to be related to the relative conformational stabilities of bicyclic radical intermediates. Overall, the computations provide understanding of the regioselectivities and stereoselectivities of the trans-Diels-Alder paradigm. PMID:20557046

  15. A Deep Insight into the Details of the Interisomerization and Decomposition Mechanism of o-Quinolyl and o-Isoquinolyl Radicals. Quantum Chemical Calculations and Computer Modeling.

    PubMed

    Dubnikova, Faina; Tamburu, Carmen; Lifshitz, Assa

    2016-09-29

    The isomerization of o-quinolyl ↔ o-isoquinolyl radicals and their thermal decomposition were studied by quantum chemical methods, where potential energy surfaces of the reaction channels and their kinetics rate parameters were determined. A detailed kinetics scheme containing 40 elementary steps was constructed. Computer simulations were carried out to determine the isomerization mechanism and the distribution of reaction products in the decomposition. The calculated mole percent of the stable products was compared to the experimental values that were obtained in this laboratory in the past, using the single pulse shock tube. The agreement between the experimental and the calculated mole percents was very good. A map of the figures containing the mole percent's of eight stable products of the decomposition plotted vs T are presented. The fast isomerization of o-quinolyl → o-isoquinolyl radicals via the intermediate indene imine radical and the attainment of fast equilibrium between these two radicals is the reason for the identical product distribution regardless whether the reactant radical is o-quinolyl or o-isoquinolyl. Three of the main decomposition products of o-quinolyl radical, are those containing the benzene ring, namely, phenyl, benzonitrile, and phenylacetylene radicals. They undergo further decomposition mainly at high temperatures via two types of reactions: (1) Opening of the benzene ring in the radicals, followed by splitting into fragments. (2) Dissociative attachment of benzonitrile and phenyl acetylene by hydrogen atoms to form hydrogen cyanide and acetylene.

  16. Effect of concentration and molecular weight of chitosan and its derivative on the free radical scavenging ability.

    PubMed

    Li, Huili; Xu, Qing; Chen, Yun; Wan, Ajun

    2014-03-01

    Chitosan is a biodegradable and biocompatible natural scaffold material, which has numerous applications in biomedical sciences. In this study, the in vitro antioxidant activity of chitosan scaffold material was investigated by the chemiluminescence signal generated from the hydroxyl radical (•OH) scavenging assay. The scavenging mechanism was also discussed. The results indicated that the free radical scavenging ability of chitosan scaffold material significantly depends on the chitosan concentration and shows interesting kinetic change. Within the experimental concentration range, the optimal concentration of chitosan was 0.2 mg/mL. The molecular weight of chitosan also attributed to the free radical scavenging ability. Comparison between chitosan and its derivative found that carboxymethyl chitosan possessed higher scavenging ability. Copyright © 2013 Society of Plastics Engineers.

  17. Free radical derivatives formed from cyclooxygenase-catalyzed dihomo-γ-linolenic acid peroxidation can attenuate colon cancer cell growth and enhance 5-fluorouracil's cytotoxicity.

    PubMed

    Xu, Yi; Qi, Jin; Yang, Xiaoyu; Wu, Erxi; Qian, Steven Y

    2014-01-01

    Dihomo-γ-linolenic acid (DGLA) and its downstream fatty acid arachidonic acid (AA) are both nutritionally important ω-6 polyunsaturated fatty acids (ω-6s). Evidence shows that, via COX-mediated peroxidation, DGLA and its metabolites (1-series prostaglandins) are associated with anti-tumor activity, while AA and its metabolites (2-series prostaglandins) could be tightly implicated in various cancer diseases. However, it still remains a mystery why DGLA and AA possess contrasting bioactivities. Our previous studies showed that DGLA could go through an exclusive C-8 oxygenation pathway during COX-catalyzed lipid peroxidation in addition to a C-15 oxygenation pathway shared by both DGLA and AA, and that the exclusive C-8 oxygenation could lead to the production of distinct DGLA׳s free radical derivatives that may be correlated with DGLA׳s anti-proliferation activity. In the present work, we further investigate the anti-cancer effect of DGLA׳s free radical derivatives and their associated molecular mechanisms. Our study shows that the exclusive DGLA׳s free radical derivatives from C-8 oxygenation lead to cell growth inhibition, cell cycle arrest and apoptosis in the human colon cancer cell line HCA-7 colony 29, probably by up-regulating the cancer suppressor p53 and the cell cycle inhibitor p27. In addition, these exclusive radical derivatives were also able to enhance the efficacy of 5-Fluorouracil (5-FU), a widely used chemo-drug for colon cancer. For the first time, we show how DGLA׳s radical pathway and metabolites are associated with DGLA׳s anti-cancer activities and able to sensitize colon cancer cells to chemo-drugs such as 5-FU. Our findings could be used to guide future development of a combined chemotherapy and dietary care strategy for colon cancer treatment.

  18. 76 FR 13629 - Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Information-Fermentation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...] Draft Guidance for Industry on Chemistry, Manufacturing, and Controls Information--Fermentation-Derived... Controls (CMC) Information-- Fermentation-Derived Intermediates, Drug Substances, and Related Drug Products... documentation to submit to support the CMC information for fermentation-derived intermediates, drug substances...

  19. An Easy-to-Machine Electrochemical Flow Microreactor: Efficient Synthesis of Isoindolinone and Flow Functionalization.

    PubMed

    Folgueiras-Amador, Ana A; Philipps, Kai; Guilbaud, Sébastien; Poelakker, Jarno; Wirth, Thomas

    2017-11-27

    Flow electrochemistry is an efficient methodology to generate radical intermediates. An electrochemical flow microreactor has been designed and manufactured to improve the efficiency of electrochemical flow reactions. With this device only little or no supporting electrolytes are needed, making processes less costly and enabling easier purification. This is demonstrated by the facile synthesis of amidyl radicals used in intramolecular hydroaminations to produce isoindolinones. The combination with inline mass spectrometry facilitates a much easier combination of chemical steps in a single flow process. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  20. Synthesis of 2-Aryl- and 2-Vinylpyrrolidines via Copper-Catalyzed Coupling of Styrenes and Dienes with Potassium β-Aminoethyl Trifluoroborates.

    PubMed

    Um, Chanchamnan; Chemler, Sherry R

    2016-05-20

    2-Arylpyrrolidines occur frequently in bioactive compounds, and thus, methods to access them from readily available reagents are valuable. We report a copper-catalyzed intermolecular carboamination of vinylarenes with potassium N-carbamoyl-β-aminoethyltrifluoroborates. The reaction occurs with terminal, 1,2-disubstituted, and 1,1-disubstituted vinylarenes bearing a number of functional groups. 1,3-Dienes are also good substrates, and their reactions give 2-vinylpyrrolidines. Radical clock mechanistic experiments are consistent with the presence of carbon radical intermediates and do not support participation of carbocations.

  1. Domino-Fluorination-Protodefluorination Enables Decarboxylative Cross-Coupling of α-Oxocarboxylic Acids with Styrene via Photoredox Catalysis.

    PubMed

    Zhang, Muliang; Xi, Junwei; Ruzi, Rehanguli; Li, Nan; Wu, Zhongkai; Li, Weipeng; Zhu, Chengjian

    2017-09-15

    Domino-fluorination-protodefluorination decarboxylative cross-coupling of α-keto acids with styrene has been developed via photoredox catalysis. The critical part of this strategy is the formation of the carbon-fluorine (C-F) bond by the capture of a carbon-centered radical intermediate, which will overcome side reactions during the styrene radical functionalization process. Experimental studies have provided evidence indicating a domino-fluorination-protodefluorination pathway with α-keto acid initiating the photoredox cycle. The present catalytic protocol also affords a novel approach for the construction of α,β-unsaturated ketones under mild conditions.

  2. Thermal, photonic and magnetic studies of thiazyl radicals

    NASA Astrophysics Data System (ADS)

    Beldjoudi, Yassine

    Chapter 1 provides an overview of the area of 1,2,3,5-dithiadiazolyl (DTDA) radical chemistry which is central to this thesis, including a review of the crystal engineering principles and the physical properties of DTDA radicals, focusing on structure-property relationships. The magnetic properties of the beta-polymorph of p-NCC 6F4CNSSN have been almost exhaustively studied since 1993 when it was found to exhibit the highest magnetic ordering temperature (T N = 36 K) for an organic magnet. Conversely the structure and physical properties of the alpha-polymorph have barely been explored. The conditions for the selective preparation of alpha and beta-polymorphs of this radical are investigated in Chapter 2. The relative polymorph stability is probed through detailed DSC and PXRD studies and the magnetic properties of the alpha-polymorph fully examined through dc and ac susceptibility measurements coupled with heat capacity studies. In Chapters 3 and 4, systematic structural studies on the variation of substituent groups are undertaken, comprising a series of alkoxy-functionalised perfluorophenyl DTDA radicals, p-ROC6F4CNSSN (R = Me, Et, Pr, Bu) and a comparison of the substitution pattern of the tolyl group on PhDTDA derivatives, MeC6H4C6H 4CNSSN and their polymorphs. These studies use a combination of single crystal and VT-PXRD, SQUID magnetometry and VT EPR spectroscopy combined with DSC measurements and computational studies to probe relative polymorph stabilities and magnetic properties. A new generation of DTDA radicals where the R substituent is "non-innocent" are described in Chapters 5 and 6. In Chapter 5 the synthesis and characterisation of a series of DTDA-functionalised polyaromatic hydrocarbons (PAH) are described and their polymorphism examined as well as their solution and solid state optical properties. These reveal fluorescence quantum efficiencies up to 50%. Radical stability can be enhanced through incorporation into polymer matrices (PMMA and PS) which retard hydrolysis and prototype OLEDs based on a fluorescent DTDA exhibiting a luminance of almost 2000 Cd/m2 is described. Chapter 6 describes two stilbene-based DTDA diradicals in which the potential for thermal and photochemical cis/trans isomerisation, ring closure or [2+2] cycloaddition was explored. Solution photochemistry reactions, monitored by 1H NMR, UV/vis and fluorescence studies and EPR spectroscopy) revealed a trans/cis isomerisation, followed by ring-closure to afford a dihydrophenanthrene intermediate which undergoes H-atom migration with quenching of radical paramagnetism. Subsequent thermal treatment affords a phenanthrene-based diradical species with an increase in sample paramagnetism. Chapter 7 provides a brief overview of the results obtained in this thesis, the insight that these results provide within this research area and the potential for future exploitation.

  3. Reaction of hydroxyl radicals with azacytosines: a pulse radiolysis and theoretical study.

    PubMed

    Pramod, G; Prasanthkumar, K P; Mohan, Hari; Manoj, V M; Manoj, P; Suresh, C H; Aravindakumar, C T

    2006-10-12

    Pulse radiolysis and density functional theory (DFT) calculations at B3LYP/6-31+G(d,p) level have been carried out to probe the reaction of the water-derived hydroxyl radicals (*OH) with 5-azacytosine (5Ac) and 5-azacytidine (5Acyd) at near neutral and basic pH. A low percentage of nitrogen-centered oxidizing radicals, and a high percentage of non-oxidizing carbon-centered radicals were identified based on the reaction of transient intermediates with 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate), ABTS2-. Theoretical calculations suggests that the N3 atom in 5Ac is the most reactive center as it is the main contributor of HOMO, whereas C5 atom is the prime donor for the HOMO of cytosine (Cyt) where the major addition site is C5. The order of stability of the adduct species were found to be C6-OH_5Ac*>C4-OH_5Ac*>N3-OH_5Ac*>N5-OH_5Ac* both in the gaseous and solution phase (using the PCM model) respectively due to the additions of *OH at C6, C4, N3, and N5 atoms. These additions occur in direct manner, without the intervention of any precursor complex formation. The possibility of a 1,2-hydrogen shift from the C6 to N5 in the nitrogen-centered C6-OH_5Ac* radical is considered in order to account for the experimental observation of the high yield of non-oxidizing radicals, and found that such a conversion requires activation energy of about 32 kcal/mol, and hence this possibility is ruled out. The hydrogen abstraction reactions were assumed to occur from precursor complexes (hydrogen bonded complexes represented as S1, S2, S3, and S4) resulted from the electrostatic interactions of the lone pairs on the N3, N5, and O8 atoms with the incoming *OH radical. It was found that the conversion of these precursor complexes to their respective transition states has ample barrier heights, and it persists even when the effect of solvent is considered. It was also found that the formation of precursor complexes itself is highly endergonic in solution phase. Hence, the abstraction reactions will not occur in the present case. Finally, the time dependent density functional theory (TDDFT) calculations predicted an absorption maximum of 292 nm for the N3-OH_5Ac* adduct, which is close to the experimentally observed spectral maxima at 290 nm. Hence, it is assumed that the addition to the most reactive center N3, which results the N3-OH_5Ac* radical, occurs via a kinetically driven process.

  4. From a remarkable manifestation of polar effects in a radical fragmentation to the convergent synthesis of highly functionalized ketones.

    PubMed

    Debien, Laurent; Zard, Samir Z

    2013-03-13

    A new radical addition/C-C bond fragmentation process is reported. Vinyl carbinols derived from 2-methyl-2-phenylpropanal react with radicals generated from xanthates to give the corresponding ketones. The radical cleavage reaction proceeds under mild conditions, in good to high yield, and in the presence of the unprotected carbinol. Highly functionalized 1,5-diketones and pyridines are readily available using this approach.

  5. Measurement of interferences associated with the detection of the hydroperoxy radical in the atmosphere using laser-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Lew, Michelle M.; Dusanter, Sebastien; Stevens, Philip S.

    2018-01-01

    One technique used to measure concentrations of the hydroperoxy radical (HO2) in the atmosphere involves chemically converting it to OH by addition of NO and subsequent detection of OH. However, some organic peroxy radicals (RO2) can also be rapidly converted to HO2 (and subsequently OH) in the presence of NO, interfering with measurements of ambient HO2 radical concentrations. This interference must be characterized for each instrument to determine to what extent various RO2 radicals interfere with measurements of HO2 and to assess the impact of this interference on past measurements. The efficiency of RO2-to-HO2 conversion for the Indiana University laser-induced fluorescence-fluorescence assay by gas expansion (IU-FAGE) instrument was measured for a variety of RO2 radicals. Known quantities of OH and HO2 radicals were produced from the photolysis of water vapor at 184.9 nm, and RO2 radicals were produced by the reaction of several volatile organic compounds (VOCs) with OH. The conversion efficiency of RO2 radicals to HO2 was measured when NO was added to the sampling cell for conditions employed during several previous field campaigns. For these conditions, approximately 80 % of alkene-derived RO2 radicals and 20 % of alkane-derived RO2 radicals were converted to HO2. Based on these measurements, interferences from various RO2 radicals contributed to approximately 35 % of the measured HO2 signal during the Mexico City Metropolitan Area (MCMA) 2006 campaign (MCMA-2006), where the measured VOCs consisted of a mixture of saturated and unsaturated species. However, this interference can contribute more significantly to the measured HO2 signal in forested environments dominated by unsaturated biogenic emissions such as isoprene.

  6. High-intensity focused ultrasound (HIFU) in prostate cancer: a single centre experience in patients with low, intermediate or high-risk of progression.

    PubMed

    Callea, Andrea; Piccinni, Roberto; Zizzi, Vito; Sblendorio, Domenico; Berardi, Bartolomeo; Tempesta, Antonio; Gala, Francesco Giuseppe; Traficante, Antonio

    2010-12-01

    High-intensity focused ultrasound (HIFU) is a minimally invasive treatment based on thermal ablation of tissues which are warmed up to 85 degrees C in the focal area. Clinical studies have shown such treatment modality to be safe and effective in the management of localised prostate cancer as well as of local recurrences after radical prostatectomy or radiotherapy. From May 2002 to June 2010, 171 patients with no previous treatment for prostate cancer, aged 44 to 86 years (mean 74.7) underwent 197 HIFU treatments; 22 patients needed a second treatment as the first was incomplete (4 patients) or because of recurrence (18 patients). The prognosis subgroups were defined as low-risk in 29 patients (clinical stage T1-T2a, PSA < or = 10 ng/mL and Gleason score lower than 7), intermediate-risk in 47 patients (clinical stage T2b or PSA 10 - 20 ng/mL or Gleason score of 7), and high-risk in 95 patients (clinical stage > or = T2c or PSA > 20 ng/mL or Gleason score higher than 7). At a mean follow-up of 67.9 months, biochemical success rate (PSA constantly < 0.5 ng/ml) was obtained in 84.2% of low and intermediate risk patients and in 43.1% of high risk patients; post-treatment biopsies (6 months after treatment) revealed no residual tumour in 93.4% of low or intermediate risk patients and in 63.1% of high risk patients. Radical prostatectomy remains the "gold standard" for localised prostate cancer. However, HIFU seems to be a promising alternative and less invasive treatment modality with an encouraging success rate, at least in the short-term, in patients with low and medium risk of progression, not candidates for radical surgery; in cancers with clinical stage > or = T2c, or PSA > 20 ng/mL, or Gleason score higher than 7 seems to get good results in about half of patients.

  7. Kinetics of the benzyl + O(3P) reaction: a quantum chemical/statistical reaction rate theory study.

    PubMed

    da Silva, Gabriel; Bozzelli, Joseph W

    2012-12-14

    The resonance stabilized benzyl radical is an important intermediate in the combustion of aromatic hydrocarbons and in polycyclic aromatic hydrocarbon (PAH) formation in flames. Despite being a free radical, benzyl is relatively stable in thermal, oxidizing environments, and is predominantly removed through bimolecular reactions with open-shell species other than O(2). In this study the reaction of benzyl with ground-state atomic oxygen, O((3)P), is examined using quantum chemistry and statistical reaction rate theory. C(7)H(7)O energy surfaces are generated at the G3SX level, and include several novel pathways. Transition state theory is used to describe elementary reaction kinetics, with canonical variational transition state theory applied for barrierless O atom association with benzyl. Apparent rate constants and branching ratios to different product sets are obtained as a function of temperature and pressure from solving the time-dependent master equation, with RRKM theory for microcanonical k(E). These simulations indicate that the benzyl + O reaction predominantly forms the phenyl radical (C(6)H(5)) plus formaldehyde (HCHO), with lesser quantities of the C(7)H(6)O products benzaldehyde, ortho-quinone methide, and para-quinone methide (+H), along with minor amounts of the formyl radical (HCO) + benzene. Addition of O((3)P) to the methylene site in benzyl produces a highly vibrationally excited C(7)H(7)O* adduct, the benzoxyl radical, which can β-scission to benzaldehyde + H and phenyl + HCHO. In order to account for the experimental observation of benzene as the major reaction product, a roaming radical mechanism is proposed that converts the nascent products phenyl and HCHO to benzene + HCO. Oxygen atom addition at the ortho and para ring sites in benzyl, which has not been previously considered, is shown to lead to the quinone methides + H; these species are less-stable isomers of benzaldehyde that are proposed as important combustion intermediates, but are yet to be identified experimentally. Franck-Condon simulations of the benzaldehyde, o-quinone methide, and p-quinone methide photoelectron spectra suggest that these C(7)H(6)O isomers could be distinguished using tunable VUV photoionization mass spectrometry.

  8. Azulene-to-naphthalene rearrangement: the Car-Parrinello metadynamics method explores various reaction mechanisms.

    PubMed

    Stirling, András; Iannuzzi, Marcella; Laio, Alessandro; Parrinello, Michele

    2004-10-18

    We studied the thermal intramolecular and radical rearrangement of azulene to naphthalene by employing a novel metadynamics method based on Car-Parrinello molecular dynamics. We demonstrate that relatively short simulations can provide us with several possible reaction mechanisms for the rearrangement. We show that different choices of the collective coordinates can steer the reaction along different pathways, thus offering the possibility of choosing the most probable mechanism. We consider herein three intramolecular mechanisms and two radical pathways. We found the norcaradiene pathway to be the preferable intramolecular mechanism, whereas the spiran mechanism is the favored radical route. We obtained high activation energies for all the intramolecular pathways (81.5-98.6 kcal mol(-1)), whereas the radical routes have activation energies of 24-39 kcal mol(-1). The calculations have also resulted in elementary steps and intermediates not yet considered. A few attractive features of the metadynamics method in studying chemical reactions are pointed out.

  9. The Rise of Radicals in Bioinorganic Chemistry.

    PubMed

    Gray, Harry B; Winkler, Jay R

    2016-10-01

    Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O 2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) and tryptophan (Trp) residues have been found in many O 2 -reactive enzymes, raising the possibility that they play an antioxidant protective role. In blue copper proteins with plastocyanin-like domains, Tyr/Trp clusters are uncommon in the low-potential single-domain electron-transfer proteins and in the two-domain copper nitrite reductases. The two-domain muticopper oxidases, however, exhibit clusters of Tyr and Trp residues near the trinuclear copper active site where O 2 is reduced. These clusters may play a protective role to ensure that reactive oxygen species are not liberated during O 2 reduction.

  10. Reaction of atomic hydrogen with formic acid.

    PubMed

    Cao, Qian; Berski, Slawomir; Latajka, Zdzislaw; Räsänen, Markku; Khriachtchev, Leonid

    2014-04-07

    We study the reaction of atomic hydrogen with formic acid and characterize the radical products using IR spectroscopy in a Kr matrix and quantum chemical calculations. The reaction first leads to the formation of an intermediate radical trans-H2COOH, which converts to the more stable radical trans-cis-HC(OH)2via hydrogen atom tunneling on a timescale of hours at 4.3 K. These open-shell species are observed for the first time as well as a reaction between atomic hydrogen and formic acid. The structural assignment is aided by extensive deuteration experiments and ab initio calculations at the UMP2 and UCCSD(T) levels of theory. The simplest geminal diol radical trans-cis-HC(OH)2 identified in the present work as the final product of the reaction should be very reactive, and further reaction channels are of particular interest. These reactions and species may constitute new channels for the initiation and propagation of more complex organic species in the interstellar clouds.

  11. Molecular weight growth in Titan's atmosphere: Branching pathways for the reaction of 1-propynyl radical (H 3CC≡C˙) with small alkenes and alkynes

    DOE PAGES

    Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.; ...

    2015-07-16

    The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C 2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C 2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product frommore » the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d 4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH 3 = 73%) and (–H = 14%, –CH 3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.« less

  12. Molecular weight growth in Titan's atmosphere: branching pathways for the reaction of 1-propynyl radical (H3CC≡C˙) with small alkenes and alkynes.

    PubMed

    Kirk, Benjamin B; Savee, John D; Trevitt, Adam J; Osborn, David L; Wilson, Kevin R

    2015-08-28

    The reaction of small hydrocarbon radicals (i.e.˙CN, ˙C2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC[triple bond, length as m-dash]C˙), a likely product from the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (-H = 27%, -CH3 = 73%) and (-H = 14%, -CH3 = 86%), respectively. Together, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.

  13. Molecular weight growth in Titan's atmosphere: Branching pathways for the reaction of 1-propynyl radical (H 3CC≡C˙) with small alkenes and alkynes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Benjamin B.; Savee, John D.; Trevitt, Adam J.

    The reaction of small hydrocarbon radicals (i.e. ˙CN, ˙C 2H) with trace alkenes and alkynes is believed to play an important role in molecular weight growth and ultimately the formation of Titan's characteristic haze. Current photochemical models of Titan's atmosphere largely assume hydrogen atom abstraction or unimolecular hydrogen elimination reactions dominate the mechanism, in contrast to recent experiments that reveal significant alkyl radical loss pathways during reaction of ethynyl radical (˙C 2H) with alkenes and alkynes. In this study, the trend is explored for the case of a larger ethynyl radical analogue, the 1-propynyl radical (H3CC≡C˙), a likely product frommore » the high-energy photolysis of propyne in Titan's atmosphere. Using synchrotron vacuum ultraviolet photoionization mass spectrometry, product branching ratios are measured for the reactions of 1-propynyl radical with a suite of small alkenes (ethylene and propene) and alkynes (acetylene and d 4-propyne) at 4 Torr and 300 K. Reactions of 1-propynyl radical with acetylene and ethylene form single products, identified as penta-1,3-diyne and pent-1-en-3-yne, respectively. These products form by hydrogen atom loss from the radical-adduct intermediates. The reactions of 1-propynyl radical with d4-propyne and propene form products from both hydrogen atom and methyl loss, (–H = 27%, –CH 3 = 73%) and (–H = 14%, –CH 3 = 86%), respectively. Altogether, these results indicate that reactions of ethynyl radical analogues with alkenes and alkynes form significant quantities of products by alkyl loss channels, suggesting that current photochemical models of Titan over predict both hydrogen atom production as well as the efficiency of molecular weight growth in these reactions.« less

  14. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives.

    PubMed

    Amić, Ana; Marković, Zoran; Klein, Erik; Dimitrić Marković, Jasmina M; Milenković, Dejan

    2018-04-25

    The role of antiradical moieties (catechol, guaiacyl and carboxyl group) and molecular conformation in antioxidative potency of dihydrocaffeic acid (DHCA) and dihydroferulic acid (DHFA) was investigated by density functional theory (DFT) method. The thermodynamic preference of different reaction paths of double (2H + /2e - ) free radical scavenging mechanisms was estimated. Antiradical potency of DHCA and DHFA was compared with that exerted by their unsaturated analogs - caffeic acid (CA) and ferulic acid (FA). Cis/trans and anti-isomers of studied cinnamic acid derivatives may scavenge free radicals via double processes by involvement of catechol or guaiacyl moiety. Carboxyl group of syn-isomers may also participate in the inactivation of free radicals. Gibbs free energies of reactions with various free radicals indicate that syn-DHCA and syn-DHFA, colon catabolites that could be present in systemic circulation in low μM concentrations, have a potential to contribute to health benefits by direct free radical scavenging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Antioxidant properties of a radical-scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate.

    PubMed

    Mendis, Eresha; Rajapakse, Niranjan; Kim, Se-Kwon

    2005-02-09

    Hoki (Johnius belengerii) skin gelatin was hydrolyzed with three commercial enzymes to identify radical-scavenging potencies of derived peptides. Peptides derived from tryptic hydrolysate exhibited the highest scavenging activities on superoxide, carbon-centered 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals assessed by ESR spectroscopy. Following consecutive chromatographic separations of tryptic hydroolysate, the peptide sequence His-Gly-Pro-Leu-Gly-Pro-Leu (797 Da) acted as a strong radical scavenger under studied conditions. Further, this peptide could act as an antioxidant against linoleic acid peroxidation and the activity was closer to the highly active synthetic antioxidant butylated hydroxytoluene (BHT). In addition, antioxidative enzyme levels in cultured human hepatoma cells were increased in the presence of this peptide and it was presumed to be the peptide involved in maintaining the redox balance in the cell environment. Present data indicate that free-radical-scavenging activities of hoki skin gelatin peptides substantially contribute to their antioxidant properties measured in different oxidative systems.

  16. Tocotrienol prevents AAPH-induced neurite degeneration in neuro2a cells.

    PubMed

    Fukui, Koji; Sekiguchi, Hidekazu; Takatsu, Hirokatsu; Koike, Taisuke; Koike, Tatsuro; Urano, Shiro

    2013-01-01

    Reactive oxygen species induce neurite degeneration before inducing cell death. However, the degenerative mechanisms have not yet been elucidated. While tocotrienols have a known neuroprotective function, the underlying mechanism remains unclear and may or may not involve antioxidant action. In this study, we hypothesize that free radical-derived membrane injury is one possible mechanism for inducing neurite degeneration. Therefore, we examined the potential neuroprotective effect of tocotrienols mediated through its antioxidant activity. Mouse neuroblastoma neuro2a cells were used to examine the effect of the water-soluble free radical generator 2,2'-azobis(2-methylpropionamide) dihydrochloride (AAPH) on neurite dynamics. After 24 hours of AAPH treatment, cell viability, neurite number, and the number of altered neurites were measured in the presence or absence of α-tocotrienol. Treatment of neuro2a cells with a low concentration of AAPH induces neurite degeneration, but not cell death. Treatment with 5 µM α-tocotrienol significantly inhibited neurite degeneration in AAPH-treated neuro2a cells. Furthermore, morphological changes in AAPH-treated neuro2a cells were similar to those observed with colchicine treatment. α-Tocotrienol may scavenge AAPH-derived free radicals and alkoxyl radicals that are generated from AAPH-derived peroxyl radicals on cell membranes. Therefore, α-tocotrienol may have a neuroprotective effect mediated by its antioxidant activity.

  17. Laboratory spectroscopy of methoxymethanol in the millimeter-wave range

    NASA Astrophysics Data System (ADS)

    Motiyenko, Roman A.; Margulès, Laurent; Despois, Didier; Guillemin, Jean-Claude

    2018-02-01

    Methoxymethanol, CH3OCH2OH is a very interesting candidate for detection in the interstellar medium since it can be formed in the recombination reaction between two radicals considered as intermediates in methanol formation: CH3O (already detected in the ISM) and CH2OH.

  18. Creating Tech Wizards: Tech-Savvy Students Help Teachers Transform Practice

    ERIC Educational Resources Information Center

    Breiner, Beth

    2009-01-01

    In eastern Pennsylvania, middle schoolers are teaching the teachers how to use technology effectively in the classroom. This article describes the Technology Wizards program which was developed by the Carbon Lehigh Intermediate Unit's Department of Instructional Innovation. It is a radical departure from traditional educational professional…

  19. Impact of ambient gases on the mechanism of [Cs8Nb6O19]-promoted nerve-agent decomposition† †Dedicated to the memory of Prof. Keiji Morokuma. ‡ ‡Electronic supplementary information (ESI) available: (1) The calculated transition states, intermediates and products of the GB hydrolysis and their important geometry parameters (in Å) for X = SO2, (2) the calculated adsorption energies (in kcal mol–1) of NO2 radicals to Cs8Nb6O19, (3) Cartesian coordinates for all reported structures in xyz format. (structure.xyz). See DOI: 10.1039/c7sc04997h

    PubMed Central

    Kaledin, Alexey L.; Driscoll, Darren M.; Troya, Diego; Collins-Wildman, Daniel L.

    2018-01-01

    The impact of ambient gas molecules (X), NO2, CO2 and SO2 on the structure, stability and decontamination activity of Cs8Nb6O19 polyoxometalate was studied computationally and experimentally. It was found that Cs8Nb6O19 absorbs these molecules more strongly than it adsorbs water and Sarin (GB) and that these interactions hinder nerve agent decontamination. The impacts of diamagnetic CO2 and SO2 molecules on polyoxoniobate Cs8Nb6O19 were fundamentally different from that of NO2 radical. At ambient temperatures, weak coordination of the first NO2 radical to Cs8Nb6O19 conferred partial radical character on the polyoxoniobate and promoted stronger coordination of the second NO2 adsorbent to form a stable diamagnetic Cs8Nb6O19/(NO2)2 species. Moreover, at low temperatures, NO2 radicals formed stable dinitrogen tetraoxide (N2O4) that weakly interacted with Cs8Nb6O19. It was found that both in the absence and presence of ambient gas molecules, GB decontamination by the Cs8Nb6O19 species proceeds via general base hydrolysis involving: (a) the adsorption of water and the nerve agent on Cs8Nb6O19/(X), (b) concerted hydrolysis of a water molecule on a basic oxygen atom of the polyoxoniobate and nucleophilic addition of the nascent OH group to the phosphorus center of Sarin, and (c) rapid reorganization of the formed pentacoordinated-phosphorus intermediate, followed by dissociation of either HF or isopropanol and formation of POM-bound isopropyl methyl phosphonic acid (i-MPA) or methyl phosphonofluoridic acid (MPFA), respectively. The presence of the ambient gas molecules increases the energy of the intermediate stationary points relative to the asymptote of the reactants and slightly increases the hydrolysis barrier. These changes closely correlate with the Cs8Nb6O19–X complexation energy. The most energetically stable intermediates of the GB hydrolysis and decontamination reaction were found to be Cs8Nb6O19/X-MPFA-(i-POH) and Cs8Nb6O19/X-(i-MPA)-HF both in the absence and presence of ambient gas molecules. The high stability of these intermediates is due to, in part, the strong hydrogen bonding between the adsorbates and the protonated [Cs8Nb6O19/X/H]+-core. Desorption of HF or/and (i-POH) and regeneration of the catalyst required deprotonation of the [Cs8Nb6O19/X/H]+-core and protonation of the phosphonic acids i-MPA and MPFA. This catalyst regeneration is shown to be a highly endothermic process, which is the rate-limiting step of the GB hydrolysis and decontamination reaction both in the absence and presence of ambient gas molecules. PMID:29719688

  20. Free radical kinetics on irradiated fennel

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2008-09-01

    Herein, an electron spin resonance study on the behavior of organic radicals in fennel before and after irradiation is reported. The spectrum of irradiated fennel composed of the spectrum component derived from the un-irradiated sample (near g=2.005) and the spectra components derived from carbohydrates. The time decay of intensity spectral components was well explained by first-order kinetics with a variety of rate constants. Especially, the signal at near g=2.02 ascribed to stable cellulose-derivative components is expected to be a good indicator in the identification of irradiated plant samples.

  1. Seasonal and spatial variabilities in the water chemistry of prairie pothole wetlands influence the photoproduction of reactive intermediates.

    PubMed

    McCabe, Andrew J; Arnold, William A

    2016-07-01

    The hydrology and water chemistry of prairie pothole wetlands vary spatially and temporally, on annual and decadal timescales. Pesticide contamination of wetlands arising from agricultural activities is a foremost concern. Photochemical reactions are important in the natural attenuation of pesticides and may be important in limiting ecological and human exposure. Little is known, however, about the variable influence of wetland water chemistry on indirect photochemistry. In this study, seasonal water samples were collected from seven sites throughout the prairie pothole region over three years to understand the spatiotemporal dynamics of reactive intermediate photoproduction. Samples were classified by the season in which they were collected (spring, summer, or fall) and the typical hydroperiod of the wetland surface water (temporary or semi-permanent). Under photostable conditions, steady-state concentrations and apparent quantum yields or quantum yield coefficients were measured for triplet excited states of dissolved organic matter, singlet oxygen, hydroxyl radical, and carbonate radical under simulated sunlight. Steady-state concentrations and quantum yields increased on average by 15% and 40% from spring to fall, respectively. Temporary wetlands had 40% higher steady-state concentrations of reactive intermediates than semi-permanent wetlands, but 50% lower quantum yields. Computed quantum yields for reactive intermediate formation were used to predict the indirect photochemical half-lives of seven pesticides in average temporary and semi-permanent prairie pothole wetlands. As a first approximation, the predictions agree to within two orders of magnitude of previously reported half-lives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Pulse radiolysis in model studies toward radiation processing

    NASA Astrophysics Data System (ADS)

    Von Sonntag, C.; Bothe, E.; Ulanski, P.; Deeble, D. J.

    1995-02-01

    Using the pulse radiolysis technique, the OH-radical-induced reactions of poly(vinyl alcohol) PVAL, poly(acrylic acid) PAA, poly(methacrylic acid) PMA, and hyaluronic acid have been investigated in dilute aqueous solution. The reactions of the free-radical intermediates were followed by UV-spectroscopy and low-angle laser light-scattering; the scission of the charged polymers was also monitored by conductometry. For more detailed product studies, model systems such as 2,4-dihydroxypentane (for PVAL) and 2,4-dimethyl glutaric acid (for PAA) was also investigated. With PVA, OH-radicals react predominantly by abstraction of an H-atom in α-position to the hydroxyl group (70%). The observed bimolecular decay rate constant of the PVAL-radicals decreases with time. This has been interpreted as being due to an initially fast decay of proximate radicals and a decrease of the probability of such encounters with time. Intramolecular crosslinking (loop formation) predominates at high doses per pulse. In the presence of O 2, peroxyl radicals are formed which in the case of the α-hydroxyperoxyl radicals can eliminate HO 2-radicals in competition with bimolecular decay processes which lead to a fragmentation of the polymer. In PAA, radicals both in α-position (characterized by an absorption near 300 nm) and in β-position to the carboxylate groups are formed in an approximately 1:2 ratio. The lifetime of the radicals increases with increasing electrolytic dissociation of the polymer. The β-radicals undergo a slow (intra- as well as intermolecular) H-abstraction yielding α-radicals, in competition to crosslinking and scission reactions. In PMA only β-radicals are formed. Their fragmentation has been followed by conductometry. In hyaluronic acid, considerable fragmeentation is observed even in the absence of oxygen which, in fact, has some protective effect against this process. Thus free-radical attack on this important biopolymer makes it especially vulnerable with respect to a reduction of its viscosity, and in rheumatic diseases this effect may be the reason for their painfulnes.

  3. The lightest organic radical cation for charge storage in redox flow batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao

    2016-08-25

    Electrochemically reversible fluids of high energy density are promising materials for capturing the electrical energy generated from intermittent sources like solar and wind. To meet this technological challenge there is a need to understand the fundamental limits and interplay of electrochemical potential, stability and solubility in “lean” derivatives of redox-active molecules. Here we describe the process of molecular pruning, illustrated for 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene, a molecule known to produce a persistently stable, high-potential radical cation. By systematically shedding molecular fragments considered important for radical cation steric stabilization, we discovered a minimalistic structure that retains long-term stability in its oxidized form. Interestingly, wemore » find the tert-butyl groups are unnecessary; high stability of the radical cation and high solubility are both realized in derivatives having appropriately positioned arene methyl groups. These stability trends are rationalized by mechanistic considerations of the postulated decomposition pathways. We suggest that the molecular pruning approach will uncover lean redox active derivatives for electrochemical energy storage leading to materials with long-term stability and high intrinsic capacity.« less

  4. IRON AND FREE RADICAL OXIDATIONS IN CELL MEMBRANES

    PubMed Central

    Schafer, Freya Q.; Yue Qian, Steven; Buettner, Garry R.

    2013-01-01

    Brain tissue being rich in polyunsaturated fatty acids, is very susceptible to lipid peroxidation. Iron is well known to be an important initiator of free radical oxidations. We propose that the principal route to iron-mediated lipid peroxidations is via iron-oxygen complexes rather than the reaction of iron with hydrogen peroxide, the Fenton reaction. To test this hypothesis, we enriched leukemia cells (K-562 and L1210 cells) with docosahexaenoic acid (DHA) as a model for brain tissue, increasing the amount of DHA from approximately 3 mole % to 32 mole %. These cells were then subjected to ferrous iron and dioxygen to initiate lipid peroxidation in the presence or absence of hydrogen peroxide. Lipid-derived radicals were detected using EPR spin trapping with α-(4-pyridyl-1-oxide)-N-t-butylnitrone (POBN). As expected, lipid-derived radical formation increases with increasing cellular lipid unsaturation. Experiments with Desferal demonstrate that iron is required for the formation of lipid radicals from these cells. Addition of iron to DHA-enriched L1210 cells resulted in significant amounts of radical formation; radical formation increased with increasing amount of iron. However, the exposure of cells to hydrogen peroxide before the addition of ferrous iron did not increase cellular radical formation, but actually decreased spin adduct formation. These data suggest that iron-oxygen complexes are the primary route to the initiation of biological free radical oxidations. This model proposes a mechanism to explain how catalytic iron in brain tissue can be so destructive. PMID:10872752

  5. p53 Mutagenesis by Benzo[a]pyrene derived Radical Cations

    PubMed Central

    Sen, Sushmita; Bhojnagarwala, Pratik; Francey, Lauren; Lu, Ding; Jeffrey Field, Trevor M. Penning

    2013-01-01

    Benzo[a]pyrene (B[a]P), a major human carcinogen in combustion products such as cigarette smoke and diesel exhaust, is metabolically activated into DNA-reactive metabolites via three different enzymatic pathways. The pathways are the anti-(+)-benzo[a]pyrene 7,8-diol 9, 10-epoxide pathway (P450/ epoxide hydrolase catalyzed) (B[a]PDE), the benzo[a]pyrene o-quinone pathway (aldo ketose reductase (AKR) catalyzed) and the B[a]P radical cation pathway (P450 peroxidase catalyzed). We used a yeast p53 mutagenesis system to assess mutagenesis by B[a]P radical cations. Because radical cations are short-lived, they were generated in situ by reacting B[a]P with cumene hydroperoxide (CuOOH) and horse radish peroxidase (HRP) and then monitoring the generation of the more stable downstream products, B[a]P-1,6-dione and B[a]P-3,6-dione. Based on the B[a]P-1,6 and 3,6-dione formation, approximately 4µM of radical cation was generated. In the mutagenesis assays, the radical cations produced in situ showed a dose-dependent increase in mutagenicity from 0.25 µM to 10 µM B[a]P with no significant increase seen with further escalation to 50 µM B[a]P. However, mutagenesis was 200-fold less than with the AKR pathway derived B[a]P, 7–8 dione. Mutant p53 plasmids, which yield red colonies, were recovered from the yeast to study the pattern and spectrum of mutations. The mutation pattern observed was G to T (31%) > G to C (29%) > G to A (14%). The frequency of codons mutated by the B[a]P radical cations was essentially random and not enriched at known cancer hotspots. The quinone products of radical cations, B[a]P-1,6-dione and B[a]P-3,6-dione were more mutagenic than the radical cation reactions, but still less mutagenic than AKR derived B[a]P-7,8-dione. We conclude that B[a]P radical cations and their quinone products are weakly mutagenic in this yeast-based system compared to redox cycling PAH o-quinones. PMID:22768918

  6. Nitration of particle-associated PAHs and their derivatives (nitro-, oxy-, and hydroxy-PAHs) with NO 3 radicals

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Yang, Bo; Gan, Jie; Liu, Changgeng; Shu, Xi; Shu, Jinian

    2011-05-01

    The heterogeneous reactions of typical polycyclic aromatic hydrocarbons (PAHs) and their derivatives (nitro-, oxy-, and hydroxy-PAHs) adsorbed on azelaic acid particles with NO 3 radicals are investigated using a flow-tube reactor coupled to a vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The mono-nitro-, di-nitro-, and poly-nitro-products from successive nitro-substitution reactions of PAHs and their derivatives are observed in real time with VUV-ATOFMS. 9-Nitroanthracene, anthraquinone, anthrone, 9,10-dinitroanthracene, 2-, 4-, and 9-nitrophenanthrene, 1-nitropyrene, 1,3-, 1,6-, and 1,8-dinitropyrene, 7-nitrobenzo[ a]anthracene, and benzo[ a]anthracene-7,12-dione are identified by GC/MS analysis of the reaction products of PAHs and their derivatives coated on the inner bottom surface of the conical flasks with NO 3 radicals. Other oxygenated products are tentatively assigned. 1-Nitropyrene is the only mono-nitrated product detected in the reaction of surface-bound pyrene with gas-phase NO 3 radicals. This phenomenon is different from what has been observed in previous studies of the gas-phase pyrene nitration, showing that 2-nitropyrene is the sole nitration product. The experimental results may reveal the discrepancies between the heterogeneous and homogeneous nitrations of pyrene.

  7. Halogen radicals contribute to photooxidation in coastal and estuarine waters

    PubMed Central

    Parker, Kimberly M.; Mitch, William A.

    2016-01-01

    Although halogen radicals are recognized to form as products of hydroxyl radical (•OH) scavenging by halides, their contribution to the phototransformation of marine organic compounds has received little attention. We demonstrate that, relative to freshwater conditions, seawater halides can increase photodegradation rates of domoic acid, a marine algal toxin, and dimethyl sulfide, a volatile precursor to cloud condensation nuclei, up to fivefold. Using synthetic seawater solutions, we show that the increased photodegradation is specific to dissolved organic matter (DOM) and halides, rather than other seawater salt constituents (e.g., carbonates) or photoactive species (e.g., iron and nitrate). Experiments in synthetic and natural coastal and estuarine water samples demonstrate that the halide-specific increase in photodegradation could be attributed to photochemically generated halogen radicals rather than other photoproduced reactive intermediates [e.g., excited-state triplet DOM (3DOM*), reactive oxygen species]. Computational kinetic modeling indicates that seawater halogen radical concentrations are two to three orders of magnitude greater than freshwater •OH concentrations and sufficient to account for the observed halide-specific increase in photodegradation. Dark •OH generation by gamma radiolysis demonstrates that halogen radical production via •OH scavenging by halides is insufficient to explain the observed effect. Using sensitizer models for DOM chromophores, we show that halogen radicals are formed predominantly by direct oxidation of Cl− and Br− by 3DOM*, an •OH-independent pathway. Our results indicate that halogen radicals significantly contribute to the phototransformation of algal products in coastal or estuarine surface waters. PMID:27162335

  8. Definition of compartment-based radical surgery in uterine cancer: modified radical hysterectomy in intermediate/high-risk endometrial cancer using peritoneal mesometrial resection (PMMR) by M Höckel translated to robotic surgery.

    PubMed

    Kimmig, Rainer; Aktas, Bahriye; Buderath, Paul; Wimberger, Pauline; Iannaccone, Antonella; Heubner, Martin

    2013-08-16

    The technique of compartment-based radical hysterectomy was originally described by M Höckel as total mesometrial resection (TMMR) for standard treatment of stage I and II cervical cancer. However, with regard to the ontogenetically-defined compartments of tumor development (Müllerian) and lymph drainage (Müllerian and mesonephric), compartments at risk may also be defined consistently in endometrial cancer. This is the first report in the literature on the compartment-based surgical approach to endometrial cancer. Peritoneal mesometrial resection (PMMR) with therapeutic lymphadenectomy (tLNE) as an ontogenetic, compartment-based oncologic surgery could be beneficial for patients in terms of surgical radicalness as well as complication rates; it can be standardized for compartment-confined tumors. Supported by M Höckel, PMMR was translated to robotic surgery (rPMMR) and described step-by-step in comparison to robotic TMMR (rTMMR). Patients (n = 42) were treated by rPMMR (n = 39) or extrafascial simple hysterectomy (n = 3) with/without bilateral pelvic and/or periaortic robotic therapeutic lymphadenectomy (rtLNE) for stage I to III endometrial cancer, according to International Federation of Gynecology and Obstetrics (FIGO) classification. Tumors were classified as intermediate/high-risk in 22 out of 40 patients (55%) and low-risk in 18 out of 40 patients (45%), and two patients showed other uterine malignancies. In 11 patients, no adjuvant external radiotherapy was performed, but chemotherapy was applied. No transition to open surgery was necessary. There were no intraoperative complications. The postoperative complication rate was 12% with venous thromboses, (n = 2), infected pelvic lymph cyst (n = 1), transient aphasia (n = 1) and transient dysfunction of micturition (n = 1). The mean difference in perioperative hemoglobin concentrations was 2.4 g/dL (± 1.2 g/dL) and one patient (2.4%) required transfusion. During follow-up (median 17 months), one patient experienced distant recurrence and one patient distant/regional recurrence of endometrial cancer (4.8%), but none developed isolated locoregional recurrence. There were two deaths from endometrial cancer during the observation period (4.8%). We conclude that rPMMR and rtLNE are feasible and safe with regard to perioperative morbidity, thus, it seems promising for the treatment of intermediate/high-risk endometrial cancer in terms of surgical radicalness and complication rates. This could be particularly beneficial for morbidly obese and seriously ill patients.

  9. Manganese Catalysts for C–H activation: An Experimental/Theoretical Study Identifies the Stereoelectronic Factor that Controls the Switch between Hydroxylation and Desaturation Pathways

    PubMed Central

    Hull, Jonathan F.; Balcells, David; Sauer, Effiette L. O.; Raynaud, Christophe; Brudvig, Gary W.; Crabtree, Robert H.; Eisenstein, Odile

    2010-01-01

    We describe competitive C–H activation chemistry of two types, desaturation and hydroxylation, using synthetic manganese catalysts with several substrates. 9,10-dihydrophenanthrene (DHP) gives the highest desaturation activity, the final products being phenanthrene (P1) and phenanthrene-9,10-oxide (P3), the latter being thought to arise from epoxidation of some of the phenanthrene. The hydroxylase pathway also occurs as suggested by the presence of the dione product, phenanthrene-9,10-dione (P2), thought to arise from further oxidation of hydroxylation intermediate 9-hydroxy-9,10-dihydrophenanthrene. The experimental work together with the DFT calculations shows that the postulated Mn oxo active species, [Mn(O)(tpp)(Cl)] (tpp = tetraphenyl porphyrin), can promote the oxidation of dihydrophenanthrene by either desaturation or hydroxylation pathways. The calculations show that these two competing reactions have a common initial step – radical H abstraction from one of the DHP sp3 C–H bonds. The resulting Mn hydroxo intermediate is capable of promoting not only OH rebound (hydroxylation) but also a second H abstraction adjacent to the first (desaturation). Like the active MnV=O species, this MnIV-OH species also has radical character on oxygen and can thus give H abstraction. Both steps have very low and therefore very similar energy barriers, leading to a product mixture. Since the radical character of the catalyst is located on the oxygen p orbital perpendicular to the MnIV-OH plane, the orientation of the organic radical with respect to this plane determines which reaction, desaturation or hydroxylation, will occur. Stereoelectronic factors such as the rotational orientation of the OH in the enzyme active site is thus likely to constitute the switch between hydroxylation and desaturation behavior. PMID:20481432

  10. Oxidation mechanisms of CF2Br2 and CH2Br2 induced by air nonthermal plasma.

    PubMed

    Schiorlin, Milko; Marotta, Ester; Dal Molin, Marta; Paradisi, Cristina

    2013-01-02

    Oxidation mechanisms in air nonthermal plasma (NTP) at room temperature and atmospheric pressure were investigated in a corona reactor energized by +dc, -dc, or +pulsed high voltage.. The two bromomethanes CF(2)Br(2) and CH(2)Br(2) were chosen as model organic pollutants because of their very different reactivities with OH radicals. Thus, they served as useful mechanistic probes: they respond differently to the presence of humidity in the air and give different products. By FT-IR analysis of the postdischarge gas the following products were detected and quantified: CO(2) and CO in the case of CH(2)Br(2), CO(2) and F(2)C ═ O in the case of CF(2)Br(2). F(2)C ═ O is a long-lived oxidation intermediate due to its low reactivity with atmospheric radicals. It is however removed from the NTP processed gas by passage through a water scrubber resulting in hydrolysis to CO(2) and HF. Other noncarbon containing products of the discharge were also monitored by FT-IR analysis, including HNO(3) and N(2)O. Ozone, an important product of air NTP, was never detected in experiments with CF(2)Br(2) and CH(2)Br(2) because of the highly efficient ozone depleting cycles catalyzed by BrOx species formed from the bromomethanes. It is concluded that, regardless of the type of corona applied, CF(2)Br(2) reacts in air NTP via a common intermediate, the CF(2)Br radical. The possible reactions leading to this radical are discussed, including, for -dc activation, charge exchange with O(2)(-), a species detected by APCI mass spectrometry.

  11. Thermochemical and kinetic analysis on the reactions of O2 with products from OH addition to isobutene, 2-hydroxy-1,1-dimethylethyl, and 2-hydroxy-2-methylpropyl radicals: HO2 formation from oxidation of neopentane, Part II.

    PubMed

    Sun, Hongyan; Bozzelli, Joseph W; Law, Chung K

    2007-06-14

    Unimolecular dissociation of a neopentyl radical to isobutene and methyl radical is competitive with the neopentyl association with O2 ((3)Sigma(g)-) in thermal oxidative systems. Furthermore, both isobutene and the OH radical are important primary products from the reactions of neopentyl with O2. Consequently, the reactions of O2 with the 2-hydroxy-1,1-dimethylethyl and 2-hydroxy-2-methylpropyl radicals resulting from the OH addition to isobutene are important to understanding the oxidation of neopentane and other branched hydrocarbons. Reactions that correspond to the association of radical adducts with O2((3)Sigma(g)-) involve chemically activated peroxy intermediates, which can isomerize and react to form one of several products before stabilization. The above reaction systems were analyzed with ab initio and density functional calculations to evaluate the thermochemistry, reaction paths, and kinetics that are important in neopentyl radical oxidation. The stationary points of potential energy surfaces were analyzed based on the enthalpies calculated at the CBS-Q level. The entropies, S(degrees)298, and heat capacities, C(p)(T), (0

  12. Role of water and carbonates in photocatalytic transformation of CO{sub 2} to CH{sub 4} on titania.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, N. M.; Vijayan, B. K.; Poluektov, O. G.

    Using the electron paramagnetic resonance technique, we have elucidated the multiple roles of water and carbonates in the overall photocatalytic reduction of carbon dioxide to methane over titania nanoparticles. The formation of H atoms (reduction product) and {center_dot}OH radicals (oxidation product) from water, and CO{sub 3}{sup -} radical anions (oxidation product) from carbonates, was detected in CO{sub 2}-saturated titania aqueous dispersion under UV illumination. Additionally, methoxyl, {center_dot}OCH{sub 3}, and methyl, {center_dot}CH{sub 3}, radicals were identified as reaction intermediates. The two-electron, one-proton reaction proposed as an initial step in the reduction of CO{sub 2} on the surface of TiO{sub 2} ismore » supported by the results of first-principles calculations.« less

  13. Role of Water and Carbonates in Photocatalytic Transformation of CO2 to CH4 on Titania

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dimitrijevic, Nada; Vijayan, Baiju K.; Poluektov, Oleg G.

    Using the electron paramagnetic resonance technique, we have elucidated the multiple roles of water and carbonates in the overall photocatalytic reduction of carbon dioxide to methane over titania nanoparticles. The formation of H atoms (reduction product) and {sm_bullet}OH radicals (oxidation product) from water, and CO{sub 3}{sup -} radical anions (oxidation product) from carbonates, was detected in CO{sub 2}-saturated titania aqueous dispersion under UV illumination. Additionally, methoxyl, {sm_bullet}OCH{sub 3}, and methyl, {sm_bullet}CH{sub 3}, radicals were identified as reaction intermediates. The two-electron, one-proton reaction proposed as an initial step in the reduction of CO{sub 2}, on the surface of TiO{sub 2}, ismore » supported by the results of first-principles calculations.« less

  14. Oxidation of aqueous polyselenide solutions. A mechanistic pulse radiolysis study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldbach, A.; Saboungi, M.L.; Johnson, J.A.

    2000-05-04

    The oxidation of aqueous polyselenide solutions was studied by pulse radiolysis in the presence of N{sub 2}O at pH 12.3; the hydroxyl radical OH was the predominant oxidant, while hydrogen selenide anions HSe{sup {minus}} and triselenide dianions Se{sub 3}{sup 2{minus}} were the major selenide species in the starting solution. The progress of the oxidation was monitored by optical spectroscopy. Transient polyselenides appeared immediately after the electron pulse and rapidly proceeded to form adducts with HSe{sup {minus}}, i.e., HSe{sub 2}{sup 2{minus}} and H{sub 2}Se{sub 2}{sup {minus}}, and a fairly long-lived intermediate that was identified as the diselenide radical anion Se{sub 2}{supmore » {minus}}. These radicals recombine to give eventually the tetraselenide dianion, Se{sub 4}{sup 2{minus}}.« less

  15. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    NASA Astrophysics Data System (ADS)

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-09-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions.

  16. Two tyrosyl radicals stabilize high oxidation states in cytochrome c oxidase for efficient energy conservation and proton translocation

    NASA Astrophysics Data System (ADS)

    Rousseau, Denis

    2012-02-01

    The reaction of hydrogen peroxide (H2O2) with oxidized bovine cytochrome c oxidase (bCcO) was studied by electron paramagnetic resonance (EPR) to determine the properties of radical intermediates. Two distinct radicals with widths of 12 and 46 G are directly observed by X-band CW-EPR in the reaction of bCcO with H2O2 at pH 6 and pH 8. High-frequency EPR (D-band) provides assignments to tyrosine for both radicals based on well-resolved g-tensors. The 46 G wide radical has extensive hyperfine structure and can be fit with parameters consistent with Y129. However, the 12 G wide radical has minimal hyperfine structure and can be fit using parameters unique to the post-translationally modified Y244 in CcO. The results are supported by mixed quantum mechanics and molecular mechanics calculations. This study reports spectroscopic evidence of a radical formed on the modified tyrosine in CcO and resolves the much debated controversy of whether the wide radical seen at low pH in the bovine system is a tyrosine or tryptophan. A model is presented showing how radical formation and migration may play an essential role in proton translocation. This work was done in collaboration with Michelle A. Yu, Tsuyoshi Egawa, Syun-Ru Yeh and Gary J. Gerfen from Albert Einstein College of Medicine; Kyoko Shinzawa-Itoh and Shinya Yoshikawa from the University of Hyogo; and Victor Guallar from the Barcelona Supercomputing Center.

  17. ESR evidence for radical production from the reaction of ozone with unsaturated lipids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Church, D.F.; McAdams, M.L..; Pryor, W.A.

    1991-03-15

    The authors report electron spin resonance (ESR) spin trapping evidence for radical production by the reaction of ozone with unsaturated compounds. Soy and egg phosphatidylcholine liposomes, fatty acid emulsions, and homogeneous aqueous solutions of 3-hexenoic acid were treated with ozone in the presence of the spin trap {alpha}-phenyl-N-tert-butyl nitrone (PBN). Under these conditions, they observe spin adducts resulting from the trapping of both organic carbon- and oxygen-centered radicals. When the lipid-soluble antioxidant alpha-tocopherol is included in the liposomal systems, the formation of spin adducts is completely inhibited. The authors suggest that radicals giving rise to these spin adducts arise formmore » the rapid decomposition of the 1,2,3-trioxolane intermediate that is initially formed when ozone reacts with the carbon-carbon double bonds of the substrates. These free radicals are not formed by the decomposition of the Criegee ozonide, since little of the ozonide is formed in the presence of water. Although hydrogen peroxide is the predominate peroxidic product of the ozone/alkene reaction, its decomposition is not responsible for the observed radical production since neither catalase nor iron chelators significantly affect the spin adduct yield. The radical yield is approximately 1%. Since a polyunsaturated fatty acid (PUFA) such as linoleic acid produces much higher concentrations of spin trappable radicals than does the monounsaturated fatty oleic acid, the results also suggest that sites in the lung containing higher levels of PUFA may be an important target for radical formation.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xiongyi; Groves, John T.

    Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C–H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R–H) by high-valent iron-oxo species (Fe n=O) generates a substrate radical and a reduced iron hydroxide, [Fe n-1–OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R–OH, rebound to a non-oxygen atom affording R–X, electron transfer of the incipient radicalmore » to yield a carbocation, R +, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C–H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C–H transformations are selected to illustrate how the behaviors of the radical pair [Fe n-1–OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of “radical rebound” processes as a general paradigm for developing novel C–H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic “radical rebound” with synthetic organic chemistry.« less

  19. Radical scavenger can scavenge lipid allyl radicals complexed with lipoxygenase at lower oxygen content

    PubMed Central

    Koshiishi, Ichiro; Tsuchida, Kazunori; Takajo, Tokuko; Komatsu, Makiko

    2006-01-01

    Lipoxygenases have been proposed to be a possible factor that is responsible for the pathology of certain diseases, including ischaemic injury. In the peroxidation process of linoleic acid by lipoxygenase, the E,Z-linoleate allyl radical–lipoxygenase complex seems to be generated as an intermediate. In the present study, we evaluated whether E,Z-linoleate allyl radicals on the enzyme are scavenged by radical scavengers. Linoleic acid, the content of which was greater than the dissolved oxygen content, was treated with soya bean lipoxygenase-1 (ferric form) in the presence of radical scavenger, CmP (3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl). The reaction rate between oxygen and lipid allyl radical is comparatively faster than that between CmP and lipid allyl radical. Therefore a reaction between linoleate allyl radical and CmP was not observed while the dioxygenation of linoleic acid was ongoing. After the dissolved oxygen was depleted, CmP stoichiometrically trapped linoleate-allyl radicals. Accompanied by this one-electron redox reaction, the resulting ferrous lipoxygenase was re-oxidized to the ferric form by hydroperoxylinoleate. Through the adduct assay via LC (liquid chromatography)–MS/MS (tandem MS), four E,Z-linoleate allyl radical–CmP adducts corresponding to regio- and diastereo-isomers were detected in the linoleate/lipoxygenase system, whereas E,E-linoleate allyl radical–CmP adducts were not detected at all. If E,Z-linoleate allyl radical is liberated from the enzyme, the E/Z-isomer has to reach equilibrium with the thermodynamically favoured E/E-isomer. These data suggested that the E,Z-linoleate allyl radicals were not liberated from the active site of lipoxygenase before being trapped by CmP. Consequently, we concluded that the lipid allyl radicals complexed with lipoxygenase could be scavenged by radical scavengers at lower oxygen content. PMID:16396633

  20. Electrons initiate efficient formation of hydroperoxides from cysteine.

    PubMed

    Gebicki, Janusz M

    2016-09-01

    Amino acid and protein hydroperoxides can constitute a significant hazard if formed in vivo. It has been suggested that cysteine can form hydroperoxides after intramolecular hydrogen transfer to the commonly produced cysteine sulfur-centered radical. The resultant cysteine-derived carbon-centered radicals can react with oxygen at almost diffusion-controlled rate, forming peroxyl radicals which can oxidize other molecules and be reduced to hydroperoxides in the process. No cysteine hydroperoxides have been found so far. In this study, dilute air-saturated cysteine solutions were exposed to radicals generated by ionizing radiation and the hydroperoxides measured by an iodide assay. Of the three primary radicals present, the hydroxyl, hydrogen atoms and hydrated electrons, the first two were ineffective. However, electrons did initiate the generation of hydroperoxides by removing the -SH group and forming cysteine-derived carbon radicals. Under optimal conditions, 100% of the electrons reacting with cysteine produced the hydroperoxides with a 1:1 stoichiometry. Maximum hydroperoxide yields were at pH 5.5, with fairly rapid decline under more acid or alkaline conditions. The hydroperoxides were stable between pH 3 and 7.5, and decomposed in alkaline solutions. The results suggest that formation of cysteine hydroperoxides initiated by electrons is an unlikely event under physiological conditions.

  1. Protective effect of human recombinant copper-zinc superoxide dismutase on zone of stasis survival in burns in rats.

    PubMed

    Shalom, Avshalom; Kramer, Eyal; Westreich, Melvyn

    2011-06-01

    Superoxide dismutase, acting as a scavenger of oxygen free radicals, has shown mixed results in increasing burn wound survival. Originally, we demonstrated that human recombinant copper-zinc superoxide dismutase (Hr-CuZnSOD) could increase the survival of failing ischemic flaps in a rat model. Because of the possible similar pathophysiology of tissue ischemia in flaps and the zone of stasis in burns, we conducted a later study using 2 groups of rats with standardized intermediate burns, to ascertain whether Hr-CuZnSOD could increase zone of stasis survival in rats. The results showed that postburn Hr-CuZnSOD failed to improve zone of stasis survival in burns. We decided to undertake a new controlled study to ascertain whether there is a protective effect of Hr-CuZnSOD in cases of intermediate burns. We used 2 groups of rats, one of which received prophylactic treatments with Hr-CuZnSOD before the induction of standardized intermediate burns. Results showed that preburn Hr-CuZnSOD also failed to improve zone of stasis survival in burns. Further studies are needed to adequately understand the effect of oxygen free radicals in burn wound pathophysiology and to determine whether Hr-CuZnSOD has a role in the clinical management of burns or should be abandoned.

  2. Synthesis of amino acids

    DOEpatents

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  3. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  4. Synthesis of alpha-amino acids

    DOEpatents

    Davis, J.W. Jr.

    1983-01-25

    A method is described for synthesizing alpha amino acids proceeding through novel intermediates of the formulas: R[sub 1]R[sub 2]C(OSOCl)CN, R[sub 1]R[sub 2]C(Cl)CN and [R[sub 1]R[sub 2]C(CN)O][sub 2]SO wherein R[sub 1] and R[sub 2] are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art. No Drawings

  5. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the snythesis methods of the prior art.

  6. Synthesis of alpha-amino acids

    DOEpatents

    Davis, Jr., Jefferson W.

    1983-01-01

    A method for synthesizing alpha amino acids proceding through novel intermediates of the formulas: R.sub.1 R.sub.2 C(OSOCl)CN, R.sub.1 R.sub.2 C(Cl)CN and [R.sub.1 R.sub.2 C(CN)O].sub.2 SO wherein R.sub.1 and R.sub.2 are each selected from hydrogen monovalent substituted and unsubstituted hydrocarbon radicals of 1 to 12 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  7. Measuring sunscreen protection against solar-simulated radiation-induced structural radical damage to skin using ESR/spin trapping: development of an ex vivo test method.

    PubMed

    Haywood, Rachel; Volkov, Arsen; Andrady, Carima; Sayer, Robert

    2012-03-01

    The in vitro star system used for sunscreen UVA-testing is not an absolute measure of skin protection being a ratio of the total integrated UVA/UVB absorption. The in vivo persistent-pigment-darkening method requires human volunteers. We investigated the use of the ESR-detectable DMPO protein radical-adduct in solar-simulator-irradiated skin substitutes for sunscreen testing. Sunscreens SPF rated 20+ with UVA protection, reduced this adduct by 40-65% when applied at 2 mg/cm(2). SPF 15 Organic UVA-UVB (BMDBM-OMC) and TiO(2)-UVB filters and a novel UVA-TiO(2) filter reduced it by 21, 31 and 70% respectively. Conventional broad-spectrum sunscreens do not fully protect against protein radical-damage in skin due to possible visible-light contributions to damage or UVA-filter degradation. Anisotropic spectra of DMPO-trapped oxygen-centred radicals, proposed intermediates of lipid-oxidation, were detected in irradiated sunscreen and DMPO. Sunscreen protection might be improved by the consideration of visible-light protection and the design of filters to minimise radical leakage and lipid-oxidation.

  8. Reaction kinetics and mechanisms of organosilicon fungicide flusilazole with sulfate and hydroxyl radicals.

    PubMed

    Mercado, D Fabio; Bracco, Larisa L B; Arques, Antonio; Gonzalez, Mónica C; Caregnato, Paula

    2018-01-01

    Flusilazole is an organosilane fungicide used for treatments in agriculture and horticulture for control of diseases. The reaction kinetics and mechanism of flusilazole with sulfate and hydroxyl radicals were studied. The rate constant of the radicals with the fungicide were determined by laser flash photolysis of peroxodisulfate and hydrogen peroxide. The results were 2.0 × 10 9 s -1 M -1 for the reaction of the fungicide with HO and 4.6 × 10 8  s -1  M -1 for the same reaction with SO 4 - radicals. The absorption spectra of organic intermediates detected by laser flash photolysis of S 2 O 8 2- with flusilazole, were identified as α-aminoalkyl and siloxyl radicals and agree very well with those estimated employing the time-dependent density functional theory with explicit account for bulk solvent effects. In the continuous photolysis experiments, performed by photo-Fenton reaction of the fungicide, the main degradation products were: (bis(4-fluorophenyl)-hydroxy-methylsilane) and the non-toxic silicic acid, diethyl bis(trimethylsilyl) ester, in ten and twenty minutes of reaction, respectively. Copyright © 2017. Published by Elsevier Ltd.

  9. Synthesis and Biological Evaluation of 3-Benzylidene-4-chromanone Derivatives as Free Radical Scavengers and α-Glucosidase Inhibitors.

    PubMed

    Takao, Koichi; Yamashita, Marimo; Yashiro, Aruki; Sugita, Yoshiaki

    2016-01-01

    A series of 3-benzylidene-4-chromanone derivatives (3-20) were synthesized and the structure-activity relationships for antioxidant and α-glucosidase inhibitory activities were evaluated. Among synthesized compounds, compounds 5, 13, 18, which contain catechol moiety, showed the potent 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity (5: EC50 13 µM; 13: EC50 14 µM; 18: EC50 13 µM). The compounds 12, 14, 18 showed higher α-glucosidase inhibitory activity (12: IC50 15 µM; 14: IC50 25 µM; 18: IC50 28 µM). The compound 18 showed both of potent DPPH radical scavenging and α-glucosidase inhibitory activities. These data suggest that 3-benzylidene-4-chromanone derivatives, such as compound 18, may serve as the lead compound for the development of novel α-glucosidase inhibitors with antioxidant activity.

  10. Effects of hydroxylated benzaldehyde derivatives on radiation-induced reactions involving various organic radicals

    NASA Astrophysics Data System (ADS)

    Ksendzova, G. A.; Samovich, S. N.; Sorokin, V. L.; Shadyro, O. I.

    2018-05-01

    In the present paper, the effects of hydroxylated benzaldehyde derivatives and gossypol - the known natural occurring compound - on formation of decomposition products resulting from radiolysis of ethanol and hexane in deaerated and oxygenated solutions were studied. The obtained data enabled the authors to make conclusions about the effects produced by the structure of the compounds under study on their reactivity towards oxygen- and carbon-centered radicals. It has been found that 2,3-dihydroxybenzaldehyde, 4,6-di-tert-butyl-2,3-dihydroxybenzaldehyde and 4,6-di-tert-butyl-3-(1,3-dioxane-2-yl)-1,2-dihydroxybenzene are not inferior in efficiency to butylated hydroxytoluene - the industrial antioxidant - as regards suppression of the radiation-induced oxidation processes occurring in hexane. The derivatives of hydroxylated benzaldehydes were shown to have a significant influence on radiation-induced reactions involving α-hydroxyalkyl radicals.

  11. A Balancing Act: Stability versus Reactivity of Mn(O) Complexes.

    PubMed

    Neu, Heather M; Baglia, Regina A; Goldberg, David P

    2015-10-20

    A large class of heme and non-heme metalloenzymes utilize O2 or its derivatives (e.g., H2O2) to generate high-valent metal-oxo intermediates for performing challenging and selective oxidations. Due to their reactive nature, these intermediates are often short-lived and very difficult to characterize. Synthetic chemists have sought to prepare analogous metal-oxo complexes with ligands that impart enough stability to allow for their characterization and an examination of their inherent reactivity. The challenge in designing these molecules is to achieve a balance between their stability, which should allow for their in situ characterization or isolation, and their reactivity, in which they can still participate in interesting chemical transformations. This Account focuses on our recent efforts to generate and stabilize high-valent manganese-oxo porphyrinoid complexes and tune their reactivity in the oxidation of organic substrates. Dioxygen can be used to generate a high-valent Mn(V)(O) corrolazine (Mn(V)(O)(TBP8Cz)) by irradiation of Mn(III)(TBP8Cz) with visible light in the presence of a C-H substrate. Quantitative formation of the Mn(V)(O) complex occurs with concomitant selective hydroxylation of the benzylic substrate hexamethylbenzene. Addition of a strong H(+) donor converted this light/O2/substrate reaction from a stoichiometric to a catalytic process with modest turnovers. The addition of H(+) likely activates a transient Mn(V)(O) complex to achieve turnover, whereas in the absence of H(+), the Mn(V)(O) complex is an unreactive "dead-end" complex. Addition of anionic donors to the Mn(V)(O) complex also leads to enhanced reactivity, with a large increase in the rate of two-electron oxygen atom transfer (OAT) to thioether substrates. Spectroscopic characterization (Mn K-edge X-ray absorption and resonance Raman spectroscopies) revealed that the anionic donors (X(-)) bind to the Mn(V) ion to form six-coordinate [Mn(V)(O)(X)](-) complexes. An unusual "V-shaped" Hammett plot for the oxidation of para-substituted thioanisole derivatives suggested that six-coordinate [Mn(V)(O)(X)](-) complexes can act as both electrophiles and nucleophiles, depending on the nature of the substrate. Oxidation of the Mn(V)(O) corrolazine resulted in the in situ generation of a Mn(V)(O) π-radical cation complex, [Mn(V)(O)(TBP8Cz(•+))](+), which exhibited more than a 100-fold rate increase in the oxidation of thioethers. The addition of Lewis acids (LA; Zn(II), B(C6F5)3) to the closed-shell, diamagnetic Mn(V)(O)(TBP8Cz) stabilized a paramagnetic valence tautomer Mn(IV)(O)(TBP8Cz(•+))(LA), which was characterized as a second π-radical cation complex by NMR, EPR, UV-vis, and high resolution cold spray ionization MS. The Mn(IV)(O)(TBP8Cz(•+))(LA) complexes are able to abstract H(•) from phenols and exhibit a rate enhancement of up to ∼100-fold over the parent Mn(V)(O) valence tautomer. In contrast, a large decrease in rate is observed for OAT for the Mn(IV)(O)(TBP8Cz(•+))(LA) complexes. The rate enhancement for hydrogen atom transfer (HAT) may derive from the higher redox potential for the π-radical cation complex, while the large rate decrease seen for OAT may come from a decrease in electrophilicity for an Mn(IV)(O) versus Mn(V)(O) complex.

  12. Total antioxidant potential of resinous exudates from Heliotropium species, and a comparison of the ABTS and DPPH methods.

    PubMed

    Lissi, E A; Modak, B; Torres, R; Escobar, J; Urzua, A

    1999-06-01

    Total reactive antioxidant potential (TRAP) of resinous exudates from Heliotropium species was evaluated by measuring the bleaching of stable free radicals. The antioxidant capacity of the resinous exudates in Trolox equivalents, evaluated from the bleaching of ABTS derived radical cations, ranged from 2.0 M (H. huascoense) to 5.2 M (H. stenophyllum), indicating a very high concentration of phenolic compounds. Considerably smaller values were obtained by measuring the bleaching of DPPH radicals. The ratio between the values obtained employing ABTS derived radicals and DPPH, ranged from 37 (H. megalanthum) to 4.5 (H. chenopodiaceum variety typica). The magnitude of the difference can be considered as an indication of the relative reactivity of the antioxidants present in the exudates. Similar ratios were observed when stoichiometric coefficients were evaluated for representative purified flavonoids obtained from the resinous exudates.

  13. Quantum chemical study of the mechanism of reaction between NH (X 3sigma-) and H2, H2O, and CO2 under combustion conditions.

    PubMed

    Mackie, John C; Bacskay, George B

    2005-12-29

    Reactions of ground-state NH (3sigma-) radicals with H2, H2O, and CO2 have been investigated quantum chemically, whereby the stationary points of the appropriate reaction potential energy surfaces, that is, reactants, products, intermediates, and transition states, have been identified at the G3//B3LYP level of theory. Reaction between NH and H2 takes place via a simple abstraction transition state, and the rate coefficient for this reaction as derived from the quantum chemical calculations, k(NH + H2) = (1.1 x 10(14)) exp(-20.9 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K, is found to be in good agreement with experiment. For reaction between triplet NH and H2O, no stable intermediates were located on the triplet reaction surface although several stable species were found on the singlet surface. No intersystem crossing seam between triplet NH + H2O and singlet HNO + H2 (the products of lowest energy) was found; hence there is no evidence to support the existence of a low-energy pathway to these products. A rate coefficient of k(NH + H2O) = (6.1 x 10(13)) exp(-32.8 kcal mol(-1)/RT) cm3 mol(-1) s(-1) between 1000 and 2000 K for the reaction NH (3sigma-) + H2O --> NH2 (2B) + OH (2pi) was derived from the quantum chemical results. The reverse rate coefficient, calculated via the equilibrium constant, is in agreement with values used in modeling the thermal de-NO(x) process. For the reaction between triplet NH and CO2, several stable intermediates on both triplet and singlet reaction surfaces were located. Although a pathway from triplet NH + CO2 to singlet HNO + CO involving intersystem crossing in an HN-CO2 adduct was discovered, no pathway of sufficiently low activation energy was discovered to compare with that found in an earlier experiment [Rohrig, M.; Wagner, H. G. Proc. Combust. Inst. 1994, 25, 993.].

  14. Reactions of inorganic free radicals with liver protecting drugs

    NASA Astrophysics Data System (ADS)

    György, I.; Blázovics, A.; Fehér, J.; Földiák, G.

    Liver protecting drugs, silibinin, a flavonolignane, and the dihydroquinoline derivates, CH 402 and MTDQ-DA, were shown to inhibit processes in which enzymatically or non-enzymatically generated free radicals were involved. Inorganic free radicals (N 3, (SCN) -2, OH, Trp, CO -2, O -2) produced by pulse radiolysis readily react with the compounds, which transform into exceptionally long-lived, unreactive transients. Time evolution of the UV and visible spectra indicate that oxidising radicals form a phenoxyl type radical from silibinin, while OH forms an adduct by attacking, simultaneously, at various sites of the molecule. Superoxide radicals reduce silibinin and oxidise CH 402 and MTDQ-DA. It is concluded that the drugs might exhibit antioxidant behavior in living systems.

  15. Semantic vs. Phonetic Decoding Strategies in Non-Native Readers of Chinese

    ERIC Educational Resources Information Center

    Williams, Clay H.

    2010-01-01

    This dissertation examines the effects of semantic and phonetic radicals on Chinese character decoding by high-intermediate level Chinese as a Foreign Language (CFL) learners. The results of the main study (discussed in Chapter #5) suggest that the CFL learners tested have a well-developed semantic pathway to recognition; however, their…

  16. Incomplete Combustion of Hydrogen: Trapping a Reaction Intermediate

    ERIC Educational Resources Information Center

    Mattson, Bruce; Hoette, Trisha

    2007-01-01

    The combustion of hydrogen in air is quite complex with at least 28 mechanistic steps and twelve reaction species. Most of the species involved are radicals (having unpaired electrons) in nature. Among the various species generated, a few are stable, including hydrogen peroxide. In a normal hydrogen flame, the hydrogen peroxide goes on to further…

  17. Two-photon excitation cross-section in light and intermediate atoms

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1980-01-01

    The method of explicit summation over the intermediate states is used along with LS coupling to derive an expression for two-photon absorption cross section in light and intermediate atoms in terms of integrals over radial wave functions. Two selection rules, one exact and one approximate, are also derived. In evaluating the radial integrals, for low-lying levels, the Hartree-Fock wave functions, and for high-lying levels, hydrogenic wave functions obtained by the quantum defect method are used. A relationship between the cross section and the oscillator strengths is derived. Cross sections due to selected transitions in nitrogen, oxygen, and chlorine are given. The expression for the cross section is useful in calculating the two-photon absorption in light and intermediate atoms.

  18. Mechanism insight of PFOA degradation by ZnO assisted-photocatalytic ozonation: Efficiency and intermediates.

    PubMed

    Wu, Dan; Li, Xukai; Tang, Yiming; Lu, Ping; Chen, Weirui; Xu, Xiaoting; Li, Laisheng

    2017-08-01

    Zinc oxide (ZnO) nanorods were prepared by a directly pyrolysis method and employed as catalyst for perfluorooctanoic acid (PFOA) degradation. Comparative experiments were conducted to discuss the catalytic activity and flexibility of ZnO. After ZnO addition, the best PFOA degradation efficiency (70.5%) was achieved by ZnO/UV/O 3 system, only 9.5% by sole ozonation and 18.2% by UV 254 light irradiation. PFOA degradation was sensitive with pH value and temperature. The better PFOA removal efficiency was achieved at acidic condition. A novel relationship was found among PFOA degradation efficiency with hydroxyl radicals and photo-generated holes. Hydroxyl radicals generated on the surfaces of ZnO nanorods played dominant roles in PFOA degradation. PFOA degradation was found to follow the photo-Kolbe reaction mechanism. C 2 -C 7 shorter-chain perfluorocarboxylic acids and fluoride ion were detected as main intermediates during PFOA degradation process. Based on the results, a proposal degradation pathway was raised. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA

    PubMed Central

    Alvarez, Luis A.; Kovačič, Lidija; Rodríguez, Javier; Gosemann, Jan-Hendrik; Kubica, Malgorzata; Pircalabioru, Gratiela G.; Friedmacher, Florian; Cean, Ada; Ghişe, Alina; Sărăndan, Mihai B.; Puri, Prem; Daff, Simon; Plettner, Erika; von Kriegsheim, Alex; Bourke, Billy; Knaus, Ulla G.

    2016-01-01

    Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host–pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H2O2), but its consequences on extracellular pathogens are unknown. Here we show that H2O2, released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches. PMID:27562167

  20. NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA.

    PubMed

    Alvarez, Luis A; Kovačič, Lidija; Rodríguez, Javier; Gosemann, Jan-Hendrik; Kubica, Malgorzata; Pircalabioru, Gratiela G; Friedmacher, Florian; Cean, Ada; Ghişe, Alina; Sărăndan, Mihai B; Puri, Prem; Daff, Simon; Plettner, Erika; von Kriegsheim, Alex; Bourke, Billy; Knaus, Ulla G

    2016-09-13

    Strengthening the host immune system to fully exploit its potential as antimicrobial defense is vital in countering antibiotic resistance. Chemical compounds released during bidirectional host-pathogen cross-talk, which follows a sensing-response paradigm, can serve as protective mediators. A potent, diffusible messenger is hydrogen peroxide (H2O2), but its consequences on extracellular pathogens are unknown. Here we show that H2O2, released by the host on pathogen contact, subverts the tyrosine signaling network of a number of bacteria accustomed to low-oxygen environments. This defense mechanism uses heme-containing bacterial enzymes with peroxidase-like activity to facilitate phosphotyrosine (p-Tyr) oxidation. An intrabacterial reaction converts p-Tyr to protein-bound dopa (PB-DOPA) via a tyrosinyl radical intermediate, thereby altering antioxidant defense and inactivating enzymes involved in polysaccharide biosynthesis and metabolism. Disruption of bacterial signaling by DOPA modification reveals an infection containment strategy that weakens bacterial fitness and could be a blueprint for antivirulence approaches.

  1. Resonance-enhanced two-photon excitation of CaI

    NASA Astrophysics Data System (ADS)

    Casero-Junquera, Elena; Lawruszczuk, Rafal; Rostas, Joëlle; Taieb, Guy

    1994-07-01

    Induced fluorescence following visible (620-655 nm) laser excitation of the CaI radical has been detected not only in the same region (B, A-X transitions), but also in the UV (315-330 nm). The UV two-photon excitation spectrum consists of narrow bands appearing at laser frequencies located within certain bands of the Δ v = 1, 0 sequences of the B 2Σ +-X 2Σ + and A 2Π 1/2-X 2Σ + systems. The main peaks are tentatively assigned to resonance-enhanced excitation of a single vibrational level of the lowest Rydberg D 2Σ + state from successive vibrational levels of the ground state. The excitation process is a one-color two-photon optical—optical-double-resonance via B 2Σ + and A 2Π 1/2 intermediate levels. This analysis is supported by the absorption spectrum observed long ago by Walters and Barratt. The absorption and laser excitation complementary data have been used to derive approximate molecular constants for the D state.

  2. Identification and temporal behavior of radical intermediates formed during the combustion and pyrolysis of gaseous fuels: Kinetic pathways to soot formation. Final performance report, July 1, 1994--June 30, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kern, R.D.

    1998-09-01

    The authors have developed software in-house to automate the processing of peak heights recorded from the shock tube: time-of-flight mass spectrometer (TOF) experiments in a format suitable for the modeling programs and have performed numerous ab initio calculations to provide energy barrier values and thermodynamic data for several key reactions in various reaction mechanisms. Each of the studies described here has contributed to the understanding of the detailed kinetics of the reactions of acyclic fuels, the thermal decompositions of aromatic ring compounds, the shock tube techniques dedicated to combustion science problems, and the role of theoretical chemistry in providing essentialmore » thermodynamic and kinetics information necessary for constructing plausible reaction mechanisms. The knowledge derived from these investigations is applicable not only to the area of pre-particle soot formation chemistry, but also to various incineration and coal pyrolysis problems.« less

  3. Pulse radiolysis studies of 3,5-dimethyl pyrazole derivatives of selenoethers.

    PubMed

    Barik, Atanu; Singh, Beena G; Sharma, Asmita; Jain, Vimal K; Priyadarsini, K Indira

    2014-11-06

    One electron redox reaction of two asymmetric 3,5-dimethyl pyrazole derivatives of selenoethers attached to ethanoic acid (DPSeEA) and propionic acid (DPSePA) were studied by pulse radiolysis technique using transient absorption detection. The reaction of the hydroxyl ((•)OH) radical with DPSeEA or DPSePA at pH 7 produced transients absorbing at 500 nm and at 300 nm, respectively. The absorbance at 500 nm increased with increasing parent concentration indicating formation of dimer radical cations. From the absorbance changes, the equilibrium constants for the formation of dimer radical cation of DPSeEA and DPSePA were estimated as 2020 and 1608 M(-1), respectively. The rate constants at pH 7 for the reaction of the (•)OH radical with DPSeEA and DPSePA were determined to be 9.6 × 10(9) and 1.4 × 10(10) M(-1) s(-1), respectively. The dimer radical cation of DPSeEA and DPSePA decayed by first order kinetics with a rate constant of 2.8 × 10(4) and 5.5 × 10(3) s(-1), respectively. The yield of radical cations of DPSeEA and DPSePA were estimated from the secondary electron transfer reaction, which corresponds to 38% and 48% of (•)OH radical yield, respectively. Some fraction of monomer radical cation undergoes decarboxylation reaction, and the yield of decarboxylation was 25% and 20% for DPSeEA and DPSePA, respectively. These results have implication in understanding their antioxidant activity. The reaction of trichloromethyl peroxyl radical, glutathione, and ascorbic acid further support their antioxidant behavior.

  4. Sulfur Radical-Induced Redox Modifications in Proteins: Analysis and Mechanistic Aspects.

    PubMed

    Schöneich, Christian

    2017-03-10

    The sulfur-containing amino acids cysteine (Cys) and methionine (Met) are prominent protein targets of redox modification during conditions of oxidative stress. Here, two-electron pathways have received widespread attention, in part due to their role in signaling processes. However, Cys and Met are equally prone to one-electron pathways, generating intermediary radicals and/or radial ions. These radicals/radical ions can generate various reaction products that are not commonly monitored in redox proteomic studies, but they may be relevant for the fate of proteins during oxidative stress. Recent Advances: Time-resolved kinetic studies and product analysis have expanded our mechanistic understanding of radical reaction pathways of sulfur-containing amino acids. These reactions are now studied in some detail for Met and Cys in proteins, and homocysteine (Hcy) chemically linked to proteins, and the role of protein radical reactions in physiological processes is evolving. Radical-derived products from Cys, Hcy, and Met can react with additional amino acids in proteins, leading to secondary protein modifications, which are potentially remote from initial points of radical attack. These products may contain intra- and intermolecular cross-links, which may lead to protein aggregation. Protein sequence and conformation will have a significant impact on the formation of such products, and a thorough understanding of reaction mechanisms and specifically how protein structure influences reaction pathways will be critical for identification and characterization of novel reaction products. Future studies must evaluate the biological significance of novel reaction products that are derived from radical reactions of sulfur-containing amino acids. Antioxid. Redox Signal. 26, 388-405.

  5. Weakly Bound Free Radicals in Combustion: "Prompt" Dissociation of Formyl Radicals and Its Effect on Laminar Flame Speeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labbe, Nicole J.; Sivaramakrishnan, Raghu; Goldsmith, C. Franklin

    2016-01-07

    Weakly bound free radicals have low-dissociation thresholds such that at high temperatures, timescales for dissociation and collisional relaxation become comparable, leading to significant dissociation during the vibrational-rotational relaxation process. Here we characterize this “prompt” dissociation of formyl (HCO), an important combustion radical, using direct dynamics calculations for OH + CH2O and H + CH2O (key HCO-forming reactions). For all other HCO-forming reactions, presumption of a thermal incipient HCO distribution was used to derive prompt dissociation fractions. Inclusion of these theoretically derived HCO prompt dissociation fractions into combustion kinetics models provides an additional source for H-atoms that feeds chain branching reactions.more » Simulations using these updated combustion models are therefore shown to enhance flame propagation in 1,3,5-trioxane and acetylene. The present results suggest that HCO prompt dissociation should be included when simulating flames of hydrocarbons and oxygenated molecules and that prompt dissociations of other weakly bound radicals may also impact combustion simulations« less

  6. In situ generation of a hydroxyl radical by nanoporous activated carbon derived from rice husk for environmental applications: kinetic and thermodynamic constants.

    PubMed

    Karthikeyan, S; Sekaran, G

    2014-03-07

    The objective of this investigation is to evaluate the hydroxyl radical (˙OH) generation using nanoporous activated carbon (NPAC), derived from rice husk, and dissolved oxygen in water. The in situ production of the ˙OH radical was confirmed through the DMPO spin trapping method in EPR spectroscopy and quantitative determination by a deoxyribose assay procedure. NPAC served as a heterogeneous catalyst to degrade 2-deoxy-d-ribose (a reference compound) using hydroxyl radical generated from dissolved oxygen in water at temperatures in the range 313-373 K and pH 6, with first order rate constants (k = 9.2 × 10(-2) min(-1), k = 1.2 × 10(-1) min(-1), k = 1.3 × 10(-1) min(-1) and k = 1.68 × 10(-1) min(-1)). The thermodynamic constants for the generation of hydroxyl radicals by NPAC and dissolved oxygen in water were ΔG -1.36 kJ mol(-1) at 313 K, ΔH 17.73 kJ mol(-1) and ΔS 61.01 J mol(-1) K(-1).

  7. Imaging free radicals in organelles, cells, tissue, and in vivo with immuno-spin trapping.

    PubMed

    Mason, Ronald Paul

    2016-08-01

    The accurate and sensitive detection of biological free radicals in a reliable manner is required to define the mechanistic roles of such species in biochemistry, medicine and toxicology. Most of the techniques currently available are either not appropriate to detect free radicals in cells and tissues due to sensitivity limitations (electron spin resonance, ESR) or subject to artifacts that make the validity of the results questionable (fluorescent probe-based analysis). The development of the immuno-spin trapping technique overcomes all these difficulties. This technique is based on the reaction of amino acid- and DNA base-derived radicals with the spin trap 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) to form protein- and DNA-DMPO nitroxide radical adducts, respectively. These adducts have limited stability and decay to produce the very stable macromolecule-DMPO-nitrone product. This stable product can be detected by mass spectrometry, NMR or immunochemistry by the use of anti-DMPO nitrone antibodies. The formation of macromolecule-DMPO-nitrone adducts is based on the selective reaction of free radical addition to the spin trap and is thus not subject to artifacts frequently encountered with other methods for free radical detection. The selectivity of spin trapping for free radicals in biological systems has been proven by ESR. Immuno-spin trapping is proving to be a potent, sensitive (a million times higher sensitivity than ESR), and easy (not quantum mechanical) method to detect low levels of macromolecule-derived radicals produced in vitro and in vivo. Anti-DMPO antibodies have been used to determine the distribution of free radicals in cells and tissues and even in living animals. In summary, the invention of the immuno-spin trapping technique has had a major impact on the ability to accurately and sensitively detect biological free radicals and, subsequently, on our understanding of the role of free radicals in biochemistry, medicine and toxicology. Published by Elsevier B.V.

  8. In silico modelling of thiazolidine derivatives with antioxidant potency: Models quantify the degree of contribution of molecular fragments towards the free radical scavenging ability

    NASA Astrophysics Data System (ADS)

    De, Biplab; Adhikari, Indrani; Nandy, Ashis; Saha, Achintya; Goswami, Binoy Behari

    2017-06-01

    Design and development of antioxidant supplements constitute an essential aspect of research in order to derive molecules that would help to combat the free radical invasion to the human body and curb oxidative stress related diseases. The present work deals with the development of in silico models for a series of thiazolidine derivatives having antioxidant potential. The objective of the work is to obtain models that would help to design new thazolidine derivatives based on substituent modification and thereby predict their activity profile. The QSAR model thus developed helps in quantification of the extent of contribution of the various molecular fragments towards the activity of the molecules, while the 3D pharmacophore model provides a brief idea of the essential molecular features that help the molecules to interact with the neighbouring free radicals. Both the models have been extensively validated which ensures their predictive ability as well the potential to search molecular databases for selection of thiazolidine derivatives with potent antioxidant activity. The models can thus be utilised effectively for database searching with the aim to isolate active antioxidants belonging to the thiazolidine group.

  9. Chain-breaking antioxidant activity of hydroxylated and methoxylated magnolol derivatives: the role of H-bonds.

    PubMed

    Baschieri, Andrea; Pulvirenti, Luana; Muccilli, Vera; Amorati, Riccardo; Tringali, Corrado

    2017-07-26

    Chemical modification of magnolol, an uncommon dimeric neolignan contained in Magnolia genus trees, provides a unique array of polyphenols having interesting biological activity potentially related to radical scavenging. The chain-breaking antioxidant activity of four new hydroxylated and methoxylated magnolol derivatives was explored by experimental and computational methods. The measurement of the rate constant of the reaction with ROO˙ radicals (k inh ) in an apolar solvent showed that the introduction of hydroxyl groups ortho to the phenolic OH in magnolol increased the k inh value, being 2.4 × 10 5 M -1 s -1 and 3.3 × 10 5 M -1 s -1 for the mono and the dihydroxy derivatives respectively (k inh of magnolol is 6.1 × 10 4 M -1 s -1 ). The di-methoxylated derivative is less reactive than magnolol (k inh = 1.1 × 10 4 M -1 s -1 ), while the insertion of both hydroxyl and methoxyl groups showed no effect (6.0 × 10 4 M -1 s -1 ). Infrared spectroscopy and theoretical calculations allowed a rationalization of these results and pointed out the crucial role of intramolecular H-bonds. We also show that a correct estimation of the rate constant of the reaction with ROO˙ radicals, by using BDE(OH) calculations, requires that the geometry of the radical is as close as possible to that of the parent phenol.

  10. Carbene-catalysed reductive coupling of nitrobenzyl bromides and activated ketones or imines via single-electron-transfer process

    PubMed Central

    Li, Bao-Sheng; Wang, Yuhuang; Proctor, Rupert S. J.; Zhang, Yuexia; Webster, Richard D.; Yang, Song; Song, Baoan; Chi, Yonggui Robin

    2016-01-01

    Benzyl bromides and related molecules are among the most common substrates in organic synthesis. They are typically used as electrophiles in nucleophilic substitution reactions. These molecules can also be activated via single-electron-transfer (SET) process for radical reactions. Representative recent progress includes α-carbon benzylation of ketones and aldehydes via photoredox catalysis. Here we disclose the generation of (nitro)benzyl radicals via N-heterocyclic carbene (NHC) catalysis under reductive conditions. The radical intermediates generated via NHC catalysis undergo formal 1,2-addition with ketones to eventually afford tertiary alcohol products. The overall process constitutes a formal polarity-inversion of benzyl bromide, allowing a direct coupling of two initially electrophilic carbons. Our study provides a new carbene-catalysed reaction mode that should enable unconventional transformation of (nitro)benzyl bromides under mild organocatalytic conditions. PMID:27671606

  11. Chapter 8: Pyrolysis Mechanisms of Lignin Model Compounds Using a Heated Micro-Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robichaud, David J.; Nimlos, Mark R.; Ellison, G. Barney

    2015-10-03

    Lignin is an important component of biomass, and the decomposition of its thermal deconstruction products is important in pyrolysis and gasification. In this chapter, we investigate the unimolecular pyrolysis chemistry through the use of singly and doubly substituted benzene molecules that are model compounds representative of lignin and its primary pyrolysis products. These model compounds are decomposed in a heated micro-reactor, and the products, including radicals and unstable intermediates, are measured using photoionization mass spectrometry and matrix isolation infrared spectroscopy. We show that the unimolecular chemistry can yield insight into the initial decomposition of these species. At pyrolysis and gasificationmore » severities, singly substituted benzenes typically undergo bond scission and elimination reactions to form radicals. Some require radical-driven chain reactions. For doubly substituted benzenes, proximity effects of the substituents can change the reaction pathways.« less

  12. Free radical scavenging activity and neuroprotective potentials of D138, one Cu(II)/Zn(II) Schiff-base complex derived from N,N'-bis(2-hydroxynaphthylmethylidene)-1,3-propanediamine.

    PubMed

    Wang, Che; Cai, Zheng-Xu; You, Zhong-Lu; Guo, Hui-Shu; Shang, De-Jing; Wang, Xiao-Ling; Zhang, Liang; Ma, Li-Jie; Tan, Jun; Le, Wei-Dong; Li, Song

    2014-09-01

    There is increasing evidence that free radicals play an important role in neuronal damages induced by diabetes mellitus or cerebral ischemia insults. Antioxidants with free radical scavenging activities have been shown to be beneficial and neuroprotective for these pathological conditions. Here, we report free radical scavenging activity and neuroprotective potential of D138, one copper(II)/zinc(II) Schiff-base complex derived from N,N'-2(2-hydroxynaphthylmethylidene)-1,3-propanediamine. The data from three in vitro assays, 2,2-diphenyl-1-picrylhydrazyl assay, nitro blue tetrazolium assay and hydroxyl radical scavenging assay, indicated that D138 presented a potent free radical scavenging activity. The neuroprotective and antioxidative effects of D138 were further evaluated in vivo using bilateral common carotid artery occlusion (BCCAO) mouse model and streptozotocin (STZ) diabetic mouse model. Our results indicated that treatment of D138 significantly ameliorated the hippocampal neuronal damage and the oxidative stress levels in these animal models. Moreover, D138 also reversed the behavioral deficiencies induced by BCCAO or STZ, as assessed by Y-maze test and fear conditioning test. In conclusion, all these findings support that D138 exerts free radical scavenging and neuroprotective activities and has the potentials to be a potent therapeutic candidate for brain oxidative damage induced by cerebral ischemia or diabetes mellitus.

  13. OH Production from Reactions of Organic Peroxy Radicals with HO2 : Recent Studies on Ether-Derived Peroxy Radicals

    NASA Astrophysics Data System (ADS)

    Orlando, J. J.; Tyndall, G. S.; Kegley Owen, C. S.; Reynoldson, N.

    2013-12-01

    There is now ample evidence supporting significant formation of OH radicals in the reaction of HO2 with certain organic peroxy radicals (RO2). These reaction channels serve to promote radical propagation, and thus have the potential to alter HOx budgets and partitioning and hence tropospheric oxidative capacity. While much focus has been placed on OH production from reactions involving carbonyl-containing RO2 species, it is also the case that other oxygen- substituted peroxy species (e.g., CH3OCH2OO, HOCH2OO) likely generate OH in their reactions with HO2 (see ref. 1 and refs therein). In this work, the Cl-atom-initiated oxidation of two ethers, diethyl and diisopropyl ether, is investigated over ranges of conditions in an environmental chamber, using both FTIR and GC-FID methods for product quantification. Preliminary analysis suggests that significant OH production is occurring in the reaction of HO2 with CH3CH2OCH(OO)CH3, and also provides evidence for a rapid unimolecular reaction of diisopropyl ether-derived peroxy radicals. Details of these and other results will be described. 1. Orlando, J. J., and G. S. Tyndall, 2012: Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance, Chemical Society Reviews, 41, 6294-6317, doi: 10.1039/C2CS35166H.

  14. Oxoferryl-porphyrin radical catalytic intermediate in cytochrome bd oxidases protects cells from formation of reactive oxygen species.

    PubMed

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-03-16

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b(558) that donates electrons to a binuclear heme b(595)/heme d center. The reaction with O(2) and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O(2), the O-O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b(595). Compound I accumulates to 0.75-0.85 per enzyme in agreement with its much higher rate of formation (~20,000 s(-1)) compared with its rate of decay (~1,900 s(-1)). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b(558) before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O-O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O-O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species.

  15. Oxoferryl-Porphyrin Radical Catalytic Intermediate in Cytochrome bd Oxidases Protects Cells from Formation of Reactive Oxygen Species*

    PubMed Central

    Paulus, Angela; Rossius, Sebastiaan Gijsbertus Hendrik; Dijk, Madelon; de Vries, Simon

    2012-01-01

    The quinol-linked cytochrome bd oxidases are terminal oxidases in respiration. These oxidases harbor a low spin heme b558 that donates electrons to a binuclear heme b595/heme d center. The reaction with O2 and subsequent catalytic steps of the Escherichia coli cytochrome bd-I oxidase were investigated by means of ultra-fast freeze-quench trapping followed by EPR and UV-visible spectroscopy. After the initial binding of O2, the O–O bond is heterolytically cleaved to yield a kinetically competent heme d oxoferryl porphyrin π-cation radical intermediate (compound I) magnetically interacting with heme b595. Compound I accumulates to 0.75–0.85 per enzyme in agreement with its much higher rate of formation (∼20,000 s−1) compared with its rate of decay (∼1,900 s−1). Compound I is next converted to a short lived heme d oxoferryl intermediate (compound II) in a phase kinetically matched to the oxidation of heme b558 before completion of the reaction. The results indicate that cytochrome bd oxidases like the heme-copper oxidases break the O–O bond in a single four-electron transfer without a peroxide intermediate. However, in cytochrome bd oxidases, the fourth electron is donated by the porphyrin moiety rather than by a nearby amino acid. The production of reactive oxygen species by the cytochrome bd oxidase was below the detection level of 1 per 1000 turnovers. We propose that the two classes of terminal oxidases have mechanistically converged to enzymes in which the O–O bond is broken in a single four-electron transfer reaction to safeguard the cell from the formation of reactive oxygen species. PMID:22287551

  16. The tetrahydrobiopterin radical with high- and low-spin heme in neuronal nitric oxide synthase -- a new indicator of the extent of NOS coupling

    PubMed Central

    Krzyaniak, Matthew D.; Cruce, Alex A.; Vennam, Preethi; Lockart, Molly; Berka, Vladimir; Tsai, Ah-Lim; Bowman, Michael K.

    2016-01-01

    Reaction intermediates trapped during the single-turnover reaction of the neuronal ferrous nitric oxide synthase oxygenase domain (Fe(II)nNOSOX) show four EPR spectra of free radicals. Fully-coupled nNOSOX with cofactor (tetrahydrobiopterin, BH4) and substrate (l-arginine) forms the typical BH4 cation radical with an EPR spectrum ~4.0 mT wide and hyperfine tensors similar to reports for a biopterin cation radical in inducible NOSOX (iNOSOX). With excess thiol, nNOSox lacking BH4 and l-arg is known to produce superoxide. In contrast, we find that nNOSOX with BH4 but no l-arg forms two radicals with rather different, fast (~ 250 µs at 5 K) and slower (~ 500 µs at 20 K), electron spin relaxation rates and a combined ~7.0 mT wide EPR spectrum. Rapid freeze-quench CW- and pulsed-EPR measurements are used to identify these radicals and their origin. These two species are the same radical with identical nuclear hyperfine couplings, but with spin-spin couplings to high-spin (4.0 mT component) or low-spin (7.0 mT component) Fe(III) heme. Uncoupled reactions of nNOS leave the enzyme in states that can be chemically reduced to sustain unregulated production of NO and reactive oxygen species in ischemia-reperfusion injury. The broad EPR signal is a convenient indicator of uncoupled nNOS reactions producing low-spin Fe(III) heme. PMID:27989753

  17. Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and C–H activation

    DOE PAGES

    Huang, Xiongyi; Groves, John T.

    2016-12-01

    Since our initial report in 1976, the oxygen rebound mechanism has become the consensus mechanistic feature for an expanding variety of enzymatic C–H functionalization reactions and small molecule biomimetic catalysts. For both the biotransformations and models, an initial hydrogen atom abstraction from the substrate (R–H) by high-valent iron-oxo species (Fe n=O) generates a substrate radical and a reduced iron hydroxide, [Fe n-1–OH ·R]. This caged radical pair then evolves on a complicated energy landscape through a number of reaction pathways, such as oxygen rebound to form R–OH, rebound to a non-oxygen atom affording R–X, electron transfer of the incipient radicalmore » to yield a carbocation, R +, desaturation to form olefins, and radical cage escape. These various flavors of the rebound process, often in competition with each other, give rise to the wide range of C–H functionalization reactions performed by iron-containing oxygenases. In this review, we first recount the history of radical rebound mechanisms, their general features, and key intermediates involved. We will discuss in detail the factors that affect the behavior of the initial caged radical pair and the lifetimes of the incipient substrate radicals. Several representative examples of enzymatic C–H transformations are selected to illustrate how the behaviors of the radical pair [Fe n-1–OH ·R] determine the eventual reaction outcome. Finally, we discuss the powerful potential of “radical rebound” processes as a general paradigm for developing novel C–H functionalization reactions with synthetic, biomimetic catalysts. We envision that new chemistry will continue to arise by bridging enzymatic “radical rebound” with synthetic organic chemistry.« less

  18. Infrared Absorption Spectroscopy and Chemical Kinetics of Free Radicals. Final Performance Report, August 1, 1985--July 31, 1994

    DOE R&D Accomplishments Database

    Curl, R. F.; Glass, G. P.

    1995-06-01

    This research was directed at the detection, monitoring, and study (by infrared absorption spectroscopy) of the chemical kinetic behavior of small free radical species thought to be important intermediates in combustion. The work typically progressed from the detection and analysis of the infrared spectrum of combustion radical to the utilization of the infrared spectrum thus obtained in the investigation of chemical kinetics of the radical species. The methodology employed was infrared kinetic spectroscopy. In this technique the radical is produced by UV flash photolysis using an excimer laser and then its transient infrared absorption is observed using a single frequency cw laser as the source of the infrared probe light. When the probe laser frequency is near the center of an absorption line of the radical produced by the flash, the transient infrared absorption rises rapidly and then decays as the radical reacts with the precursor or with substances introduced for the purpose of studying the reaction kinetics or with itself. The decay times observed in these studies varied from less than one microsecond to more than one millisecond. By choosing appropriate time windows after the flash and the average infrared detector signal in a window as data channels, the infrared spectrum of the radical may be obtained. By locking the infrared probe laser to the center of the absorption line and measuring the rate of decay of the transient infrared absorption signal as the chemical composition of the gas mixture is varied, the chemical kinetics of the radical may be investigated. In what follows the systems investigated and the results obtained are outlined.

  19. Mechanism for degradation of Nafion in PEM fuel cells from quantum mechanics calculations.

    PubMed

    Yu, Ted H; Sha, Yao; Liu, Wei-Guang; Merinov, Boris V; Shirvanian, Pezhman; Goddard, William A

    2011-12-14

    We report results of quantum mechanics (QM) mechanistic studies of Nafion membrane degradation in a polymer electrolyte membrane (PEM) fuel cell. Experiments suggest that Nafion degradation is caused by generation of trace radical species (such as OH(●), H(●)) only when in the presence of H(2), O(2), and Pt. We use density functional theory (DFT) to construct the potential energy surfaces for various plausible reactions involving intermediates that might be formed when Nafion is exposed to H(2) (or H(+)) and O(2) in the presence of the Pt catalyst. We find a barrier of 0.53 eV for OH radical formation from HOOH chemisorbed on Pt(111) and of 0.76 eV from chemisorbed OOH(ad), suggesting that OH might be present during the ORR, particularly when the fuel cell is turned on and off. Based on the QM, we propose two chemical mechanisms for OH radical attack on the Nafion polymer: (1) OH attack on the S-C bond to form H(2)SO(4) plus a carbon radical (barrier: 0.96 eV) followed by decomposition of the carbon radical to form an epoxide (barrier: 1.40 eV). (2) OH attack on H(2) crossover gas to form hydrogen radical (barrier: 0.04 eV), which subsequently attacks a C-F bond to form HF plus carbon radicals (barrier as low as 1.00 eV). This carbon radical can then decompose to form a ketone plus a carbon radical with a barrier of 0.86 eV. The products (HF, OCF(2), SCF(2)) of these proposed mechanisms have all been observed by F NMR in the fuel cell exit gases along with the decrease in pH expected from our mechanism. © 2011 American Chemical Society

  20. Putative anticancer potential of novel 4-thiazolidinone derivatives: cytotoxicity toward rat C6 glioma in vitro and correlation of general toxicity with the balance of free radical oxidation in rats.

    PubMed

    Коbylinska, Lesya I; Boiko, Nataliya M; Panchuk, Rostyslav R; Grytsyna, Iryna I; Klyuchivska, Olga Yu; Biletska, Liliya P; Lesyk, Roman B; Zіmenkovsky, Borys S; Stoika, Rostyslav S

    2016-04-23

    To evaluate the cytotoxic action of 4-thiazolidinone derivatives (ID 3288, ID 3882, and ID 3833) toward rat glioma C6 cells and to compare the effects of these compounds and doxorubicin on the balance of free radical oxidation (FRO) and antioxidant activity (AOA) in the serum of rats. Glioma cells were treated with ID 3882, ID 3288, ID 3833, and doxorubicin, and their cytotoxicity was studied using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and Trypan blue exclusion test, light and fluorescent microscopy, and flow cytometric study of cell cycling and apoptosis, including measuring of Annexin V-positive cells. The contents of superoxide radical, hydrogen peroxide, hydroxyl radical, malonic dialdehyde, and hydrogen sulfide were measured in the serum of rats. Enzymatic activity of superoxide dismutase (SOD), catalase (Cat), and glutathione peroxydase (GPO) was determined. Among novel 4-thiazolidinone derivatives, ID 3288 was most toxic toward rat glioma C6 cells, even compared with doxorubicin. All applied derivatives were less active than doxorubicin in inducing reactive oxygen species-related indicators in the serum of rats. A similar effect was observed when enzymatic indicators of AOA processes were measured. While doxorubicin inhibited the activity of SOD, GPO, and Cat, the effects of 4-thiazolidinone derivatives were less prominent. Novel 4-thiazolidinone derivatives differ in their antineoplastic action toward rat glioma C6 cells, and ID 3288 possesses the highest activity compared to doxorubicin. Measurement of indicators of FRO and AOA in the serum of rats treated with these compounds showed their lower general toxicity compared with doxorubicin's toxicity.

  1. A comprehensive experimental and detailed chemical kinetic modelling study of 2,5-dimethylfuran pyrolysis and oxidation

    PubMed Central

    Somers, Kieran P.; Simmie, John M.; Gillespie, Fiona; Conroy, Christine; Black, Gráinne; Metcalfe, Wayne K.; Battin-Leclerc, Frédérique; Dirrenberger, Patricia; Herbinet, Olivier; Glaude, Pierre-Alexandre; Dagaut, Philippe; Togbé, Casimir; Yasunaga, Kenji; Fernandes, Ravi X.; Lee, Changyoul; Tripathi, Rupali; Curran, Henry J.

    2013-01-01

    The pyrolytic and oxidative behaviour of the biofuel 2,5-dimethylfuran (25DMF) has been studied in a range of experimental facilities in order to investigate the relatively unexplored combustion chemistry of the title species and to provide combustor relevant experimental data. The pyrolysis of 25DMF has been re-investigated in a shock tube using the single-pulse method for mixtures of 3% 25DMF in argon, at temperatures from 1200–1350 K, pressures from 2–2.5 atm and residence times of approximately 2 ms. Ignition delay times for mixtures of 0.75% 25DMF in argon have been measured at atmospheric pressure, temperatures of 1350–1800 K at equivalence ratios (ϕ) of 0.5, 1.0 and 2.0 along with auto-ignition measurements for stoichiometric fuel in air mixtures of 25DMF at 20 and 80 bar, from 820–1210 K. This is supplemented with an oxidative speciation study of 25DMF in a jet-stirred reactor (JSR) from 770–1220 K, at 10.0 atm, residence times of 0.7 s and at ϕ = 0.5, 1.0 and 2.0. Laminar burning velocities for 25DMF-air mixtures have been measured using the heat-flux method at unburnt gas temperatures of 298 and 358 K, at atmospheric pressure from ϕ = 0.6–1.6. These laminar burning velocity measurements highlight inconsistencies in the current literature data and provide a validation target for kinetic mechanisms. A detailed chemical kinetic mechanism containing 2768 reactions and 545 species has been simultaneously developed to describe the combustion of 25DMF under the experimental conditions described above. Numerical modelling results based on the mechanism can accurately reproduce the majority of experimental data. At high temperatures, a hydrogen atom transfer reaction is found to be the dominant unimolecular decomposition pathway of 25DMF. The reactions of hydrogen atom with the fuel are also found to be important in predicting pyrolysis and ignition delay time experiments. Numerous proposals are made on the mechanism and kinetics of the previously unexplored intermediate temperature combustion pathways of 25DMF. Hydroxyl radical addition to the furan ring is highlighted as an important fuel consuming reaction, leading to the formation of methyl vinyl ketone and acetyl radical. The chemically activated recombination of HȮ2 or CH3Ȯ2 with the 5-methyl-2-furanylmethyl radical, forming a 5-methyl-2-furylmethanoxy radical and ȮH or CH3Ȯ radical is also found to exhibit significant control over ignition delay times, as well as being important reactions in the prediction of species profiles in a JSR. Kinetics for the abstraction of a hydrogen atom from the alkyl side-chain of the fuel by molecular oxygen and HȮ2 radical are found to be sensitive in the estimation of ignition delay times for fuel-air mixtures from temperatures of 820–1200 K. At intermediate temperatures, the resonantly stabilised 5-methyl-2-furanylmethyl radical is found to predominantly undergo bimolecular reactions, and as a result sub-mechanisms for 5-methyl-2-formylfuran and 5-methyl-2-ethylfuran, and their derivatives, have also been developed with consumption pathways proposed. This study is the first to attempt to simulate the combustion of these species in any detail, although future refinements are likely necessary. The current study illustrates both quantitatively and qualitatively the complex chemical behavior of what is a high potential biofuel. Whilst the current work is the most comprehensive study on the oxidation of 25DMF in the literature to date, the mechanism cannot accurately reproduce laminar burning velocity measurements over a suitable range of unburnt gas temperatures, pressures and equivalence ratios, although discrepancies in the experimental literature data are highlighted. Resolving this issue should remain a focus of future work. PMID:24273333

  2. Capturing the radical ion-pair intermediate in DNA guanine oxidation

    PubMed Central

    Jie, Jialong; Liu, Kunhui; Wu, Lidan; Zhao, Hongmei; Song, Di; Su, Hongmei

    2017-01-01

    Although the radical ion pair has been frequently invoked as a key intermediate in DNA oxidative damage reactions and photoinduced electron transfer processes, the unambiguous detection and characterization of this species remain formidable and unresolved due to its extremely unstable nature and low concentration. We use the strategy that, at cryogenic temperatures, the transient species could be sufficiently stabilized to be detectable spectroscopically. By coupling the two techniques (the cryogenic stabilization and the time-resolved laser flash photolysis spectroscopy) together, we are able to capture the ion-pair transient G+•⋯Cl− in the chlorine radical–initiated DNA guanine (G) oxidation reaction, and provide direct evidence to ascertain the intricate type of addition/charge separation mechanism underlying guanine oxidation. The unique spectral signature of the radical ion-pair G+•⋯Cl− is identified, revealing a markedly intense absorption feature peaking at 570 nm that is distinctive from G+• alone. Moreover, the ion-pair spectrum is found to be highly sensitive to the protonation equilibria within guanine-cytosine base pair (G:C), which splits into two resolved bands at 480 and 610 nm as the acidic proton transfers along the central hydrogen bond from G+• to C. We thus use this exquisite sensitivity to track the intrabase-pair proton transfer dynamics in the double-stranded DNA oligonucleotides, which is of critical importance for the description of the proton-coupled charge transfer mechanisms in DNA. PMID:28630924

  3. Role of reactive oxygen intermediates in the interferon-mediated depression of hepatic drug metabolism and protective effect of N-acetylcysteine in mice.

    PubMed

    Ghezzi, P; Bianchi, M; Gianera, L; Landolfo, S; Salmona, M

    1985-08-01

    Interferon (IFN) and IFN inducers are known to depress hepatic microsomal cytochrome P-450 levels, and the liver toxicity of IFN was reported to be lethal in newborn mice. We have observed that administration to mice of IFN and IFN inducers caused a marked increase in liver xanthine oxidase activity. Because this enzyme is well known to produce reactive oxygen intermediates and cytochrome P-450 was reported to be sensitive to the oxidative damage, we have tested the hypothesis that a free radical mechanism could mediate the depression of cytochrome P-450 levels by IFN. Administration to mice of the IFN inducer polyinosinic-polycytidylic acid (2 mg/kg i.p.) caused a 29 to 52% decrease in liver cytochrome P-450. Concomitant p.o. administration of the free radical scavenger, N-acetylcysteine (as a 2.5% solution in drinking water), or the xanthine oxidase inhibitor, allopurinol (100 mg/kg), protected against the IFN-mediated depression of P-450 kg), protected against the IFN-mediated depression of P-450 levels. The results suggest that an increased endogenous generation of free radicals, possibly due to the induction of xanthine oxidase, is implicated in the IFN-mediated depression of liver drug metabolism. The relevance of these data also extends to cases in which this side effect is observed in pathological situations (e.g., viral diseases and administration of vaccines) associated with an induction of IFN.

  4. Chemical Conversion Pathways and Kinetic Modeling for the OH-Initiated Reaction of Triclosan in Gas-Phase

    PubMed Central

    Zhang, Xue; Zhang, Chenxi; Sun, Xiaomin; Kang, Lingyan; Zhao, Yan

    2015-01-01

    As a widely used antimicrobial additive in daily consumption, attention has been paid to the degradation and conversion of triclosan for a long time. The quantum chemistry calculation and the canonical variational transition state theory are employed to investigate the mechanism and kinetic property. Besides addition and abstraction, oxidation pathways and further conversion pathways are also considered. The OH radicals could degrade triclosan to phenols, aldehydes, and other easily degradable substances. The conversion mechanisms of triclosan to the polychlorinated dibenzopdioxin and furan (PCDD/Fs) and polychlorinated biphenyls (PCBs) are clearly illustrated and the toxicity would be strengthened in such pathways. Single radical and diradical pathways are compared to study the conversion mechanism of dichlorodibenzo dioxin (DCDD). Furthermore, thermochemistry is discussed in detail. Kinetic property is calculated and the consequent ratio of kadd/ktotal and kabs/ktotal at 298.15 K are 0.955 and 0.045, respectively. Thus, the OH radical addition reactions are predominant, the substitute position of OH radical on triclosan is very important to generate PCDD and furan, and biradical is also a vital intermediate to produce dioxin. PMID:25867482

  5. Mitigation of 3-Monochloro-1,2-propanediol Ester Formation by Radical Scavengers.

    PubMed

    Zhang, Hai; Jin, Pengwei; Zhang, Min; Cheong, Ling-Zhi; Hu, Peng; Zhao, Yue; Yu, Liangli; Wang, Yong; Jiang, Yuanrong; Xu, Xuebing

    2016-07-27

    The present study investigated the possible mechanism of free radical scavengers on mitigation of 3-monochloro-1,2-propanediol (3-MCPD) fatty acid ester formation in vegetable oils. The electron spin resonance investigation showed that the concentration of free radicals could be clearly decreased in 1,2-distearoyl-sn-glycerol (DSG) samples by all four antioxidants (l-ascorbyl palmitate, α-tocopherol, lipophilic tea polyphenols, and rosemary extract) at 120 °C for 20 min under a N2 atmosphere. Moreover, the rosemary extract exhibited the highest inhibition efficiency. The Fourier transform infrared spectroscopy examination of DSG with α-tocopherol at 25 and 120 °C revealed that α-tocopherol could prevent the involvement of an ester carbonyl group of DSG in forming the cyclic acyloxonium free radical intermediate. Furthermore, the ultraperformance liquid chromatography-quadrupole-time-of-flight mass spectrometry analysis showed that α-tocopherol could suppress the formation of 3-MCPD di- and monoesters. Finally, the four antioxidants could decrease 3-MCPD esters in the palm oil during deodorization. Particularly, the rosemary extract also showed the highest efficiency in 3-MCPD ester mitigation.

  6. 5-(Halomethyl)uridine derivatives as potential antitumor radiosensitizers: A DFT study

    NASA Astrophysics Data System (ADS)

    Wang, Shoushan; Zhang, Min; Liu, Peng; Xie, Shilei; Cheng, Faliang; Wang, Lishi

    2018-01-01

    Considering the fact that the efficiency of the uridine-5-methyl radical in producing cytotoxic DNA intrastrand cross-link lesions is greatly higher than that of the uridine-5-yl radical, the radiosensitizing action of 5-(halomethyl)uridines (5-XCH2U, X = F, Cl, or Br) is studied in the present work. It is found that 5-XCH2U has sufficient electron affinity to capture a pre-hydrated or a hydrated electron, and electron attachment leads to significantly facile X- elimination forming the uridine-5-methyl radical. All these three halogenated uridine derivatives are shown to be potential radiosensitizers, with their radiosensitizing abilities increased in an order 5-FCH2U < 5-ClCH2U ≈ 5-BrCH2U.

  7. Pd-catalyzed versus uncatalyzed, PhI(OAc)2-mediated cyclization reactions of N6-([1,1'-biaryl]-2-yl)adenine nucleosides.

    PubMed

    Satishkumar, Sakilam; Poudapally, Suresh; Vuram, Prasanna K; Gurram, Venkateshwarlu; Pottabathini, Narender; Sebastian, Dellamol; Yang, Lijia; Pradhan, Padmanava; Lakshman, Mahesh K

    2017-11-09

    In this work we have assessed reactions of N 6 -([1,1'-biaryl]-2-yl)adenine nucleosides with Pd(OAc) 2 and PhI(OAc) 2 , via a Pd II /Pd IV redox cycle. The substrates are readily obtained by Pd/Xantphos-catalyzed reaction of adenine nucleosides with 2-bromo-1,1'-biaryls. In PhMe, the N 6 -biarylyl nucleosides gave C6-carbazolyl nucleoside analogues by C-N bond formation with the exocyclic N 6 nitrogen atom. In the solvent screening for the Pd-catalyzed reactions, an uncatalyzed process was found to be operational. It was observed that the carbazolyl products could also be obtained in the absence of a metal catalyst by reaction with PhI(OAc) 2 in 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Thus, under Pd catalysis and in HFIP, reactions proceed to provide carbazolyl nucleoside analogues, with some differences. If reactions of N 6 -biarylyl nucleoside substrates were conducted in MeCN, formation of aryl benzimidazopurinyl nucleoside derivatives was observed in many cases by C-N bond formation with the N 1 ring nitrogen atom of the purine (carbazole and benzimidazole isomers are readily separated by chromatography). Whereas Pd II /Pd IV redox is responsible for carbazole formation under the metal-catalyzed conditions, in HFIP and MeCN radical cations and/or nitrenium ions can be intermediates. An extensive set of radical inhibition experiments was conducted and the data are presented.

  8. Oxidation of carbon monoxide, hydrogen peroxide and water at a boron doped diamond electrode: the competition for hydroxyl radicals.

    PubMed

    Kisacik, Izzet; Stefanova, Ana; Ernst, Siegfried; Baltruschat, Helmut

    2013-04-07

    Boron doped diamond (BDD) electrodes have an extremely high over-voltage for oxygen evolution from water, which favours its use in oxidation processes of other compounds at high potentials. We used a rotating ring disc (RRDE) assembly and differential electrochemical mass spectrometry (DEMS) in order to monitor the consumption or the production of species in the course of the electrode processes. By intercepting the intermediate of the electrochemical water oxidation with chemical reactions we demonstrate clearly, albeit indirectly, that in the water oxidation process at BDD above 2.5 V the first step is the formation of ˙OH radicals. The electro-oxidation of CO to CO2 at BDD electrodes proceeds only via a first attack by ˙OH radicals followed by a further electron transfer to the electrode. At potentials below the onset of oxygen evolution from water, H2O2 is oxidised by a direct electron transfer to the BDD electrode, while at higher potentials, two different reactions paths compete for the ˙OH radicals formed in the first electron transfer from water: one, where these ˙OH radicals react with each other followed by further electron transfers leading to O2 on the one hand and one, where ˙OH radicals react with other species like H2O2 or CO with subsequent electron transfers on the other hand.

  9. Conceptual DFT Study of the Local Chemical Reactivity of the Colored BISARG Melanoidin and Its Protonated Derivative

    PubMed Central

    Frau, Juan; Glossman-Mitnik, Daniel

    2018-01-01

    This computational study assessed eight fixed RSH (range-separated hybrid) density functionals that include CAM-B3LYP, LC-ωPBE, M11, MN12SX, N12SX, ωB97, ωB97X, and ωB97XD related to the Def2TZVP basis sets together with the SMD solvation model in the calculation the molecular structure and reactivity properties of the BISARG intermediate melanoidin pigment (5-(2-(E)-(Z)-5-[(2-furyl)methylidene]-3-(4-acetylamino-4-carboxybutyl)-2-imino-1,3-dihydroimidazol-4-ylideneamino(E)-4-[(2-furyl)methylidene]-5-oxo-1H-imidazol-1-yl)-2-acetylaminovaleric acid) and its protonated derivative, BISARG(p). The chemical reactivity descriptors for the systems were calculated via the Conceptual Density Functional Theory. The choice of active sites applicable to nucleophilic, electrophilic as well as radical attacks were made by linking them with Fukui functions indices, electrophilic and nucleophilic Parr functions, and the condensed Dual Descriptor Δf(r). The study found the MN12SX and N12SX density functionals to be the most appropriate in predicting the chemical reactivity of the molecular systems under study starting from the knowledge of the HOMO, LUMO, and HOMO-LUMO gap energies. PMID:29765937

  10. Conceptual DFT Study of the Local Chemical Reactivity of the Colored BISARG Melanoidin and Its Protonated Derivative.

    PubMed

    Frau, Juan; Glossman-Mitnik, Daniel

    2018-01-01

    This computational study assessed eight fixed RSH (range-separated hybrid) density functionals that include CAM-B3LYP, LC-ωPBE, M11, MN12SX, N12SX, ωB97, ωB97X, and ωB97XD related to the Def2TZVP basis sets together with the SMD solvation model in the calculation the molecular structure and reactivity properties of the BISARG intermediate melanoidin pigment (5-(2-(E)-(Z)-5-[(2-furyl)methylidene]-3-(4-acetylamino-4-carboxybutyl)-2-imino-1,3-dihydroimidazol-4-ylideneamino(E)-4-[(2-furyl)methylidene]-5-oxo-1H-imidazol-1-yl)-2-acetylaminovaleric acid) and its protonated derivative, BISARG(p). The chemical reactivity descriptors for the systems were calculated via the Conceptual Density Functional Theory. The choice of active sites applicable to nucleophilic, electrophilic as well as radical attacks were made by linking them with Fukui functions indices, electrophilic and nucleophilic Parr functions, and the condensed Dual Descriptor Δf( r ). The study found the MN12SX and N12SX density functionals to be the most appropriate in predicting the chemical reactivity of the molecular systems under study starting from the knowledge of the HOMO, LUMO, and HOMO-LUMO gap energies.

  11. Targeting the Nrf2/Amyloid-Beta Liaison in Alzheimer's Disease: A Rational Approach.

    PubMed

    Simoni, Elena; Serafini, Melania M; Caporaso, Roberta; Marchetti, Chiara; Racchi, Marco; Minarini, Anna; Bartolini, Manuela; Lanni, Cristina; Rosini, Michela

    2017-07-19

    Amyloid is a prominent feature of Alzheimer's disease (AD). Yet, a linear linkage between amyloid-β peptide (Aβ) and the disease onset and progression has recently been questioned. In this context, the crucial partnership between Aβ and Nrf2 pathways is acquiring paramount importance, offering prospects for deciphering the Aβ-centered disease network. Here, we report on a new class of antiaggregating agents rationally designed to simultaneously activate transcription-based antioxidant responses, whose lead 1 showed interesting properties in a preliminary investigation. Relying on the requirements of Aβ recognition, we identified the catechol derivative 12. In SH-SY5Y neuroblastoma cells, 12 combined remarkable free radical scavenger properties to the ability to trigger the Nrf2 pathway and induce the Nrf2-dependent defensive gene NQO1 by means of electrophilic activation of the transcriptional response. Moreover, 12 prevented the formation of cytotoxic stable oligomeric intermediates, being significantly more effective, and per se less toxic, than prototype 1. More importantly, as different chemical features were exploited to regulate Nrf2 and Aβ activities, the two pathways could be tuned independently. These findings point to compound 12 and its derivatives as promising tools for investigating the therapeutic potential of the Nrf2/Aβ cellular network, laying foundation for generating new drug leads to confront AD.

  12. Carnivorous pitcher plant uses free radicals in the digestion of prey.

    PubMed

    Chia, Tet Fatt; Aung, Hnin Hnin; Osipov, Anatoly N; Goh, Ngoh Khang; Chia, Lian Sai

    2004-01-01

    A study of the involvement of free oxygen radicals in trapping and digestion of insects by carnivorous plants was the main goal of the present investigation. We showed that the generation of oxygen free radicals by pitcher fluid of Nepenthes is the first step of the digestion process, as seen by EPR spin trapping assay and gel-electrophoresis. The EPR spectrum of N. gracilis fluid in the presence of DMPO spin trap showed the superposition of the hydroxyl radical spin adduct signal and of the ascorbyl radical signal. Catalase addition decreased the generation of hydroxyl radicals showing that hydroxyl radicals are generated from hydrogen peroxide, which can be derived from superoxide radicals. Gel-electrophoresis data showed that myosin, an abundant protein component of insects, can be rapidly broken down by free radicals and protease inhibitors do not inhibit this process. Addition of myoglobin to the pitcher plant fluid decreased the concentration of detectable radicals. Based on these observations, we conclude that oxygen free radicals produced by the pitcher plant aid in the digestion of the insect prey.

  13. Combining the Power of Irmpd with Ion-Molecule Reactions: the Structure and Reactivity of Radical Ions of Cysteine and its Derivatives

    NASA Astrophysics Data System (ADS)

    Lesslie, Michael; Osburn, Sandra; Berden, Giel; Oomens, J.; Ryzhov, Victor

    2015-06-01

    Most of the work on peptide radical cations has involved protons as the source of charge. Nonetheless, using metal ions as charge sources often offers advantages like stabilization of the structure via multidentate coordination and the elimination of the "mobile proton". Moreover, characterization of metal-bound amino acids is of general interest as the interaction of peptide side chains with metal ions in biological systems is known to occur extensively. In the current study, we generate thiyl radicals of cysteine and homocysteine in the gas phase complexed to alkali metal ions. Subsequently, we utilize infrared multiple-photon dissociation (IRMPD) and ion-molecule reactions (IMR) to characterize the structure and reactivity of these radical ions. Our group has worked extensively with the cysteine-based radical cations and anions, characterizing the gas-phase reactivity and rearrangement of the amino acid and several of its derivatives. In a continuation of this work, we are perusing the effects of metal ions as the charge bearing species on the reactivity of the sulfur radical. Our S-nitroso chemistry can easily be used in conjunction with metal ion coordination to produce initial S-based radicals in peptide radical-metal ion complexes. In all cases we have been able to achieve radical formation with significant yield to study reactivity. Ion-molecule reactions of metallated radicals with allyl iodide, dimethyl disulfide, and allyl bromide have all shown decreasing reactivity going down group 1A. Recently, we determined the experimental IR spectra for the homocysteine radical cation with Li+, Na+, and K+ as the charge bearing species at the FELIX facility. For comparison, the protonated IR spectrum of homocysteine has previously been obtained by our group. A preliminary match of the IR spectra has been confirmed. Finally, calculations are underway to determine the bond distances of all the metal adduct structures.

  14. Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy.

    PubMed

    Larsen, Delmar S; van Stokkum, Ivo H M; Vengris, Mikas; van Der Horst, Michael A; de Weerd, Frank L; Hellingwerf, Klaas J; van Grondelle, Rienk

    2004-09-01

    Photoactive yellow protein is the protein responsible for initiating the "blue-light vision" of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This "incoherent" manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I(0) and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates.

  15. Incoherent Manipulation of the Photoactive Yellow Protein Photocycle with Dispersed Pump-Dump-Probe Spectroscopy

    PubMed Central

    Larsen, Delmar S.; van Stokkum, Ivo H. M.; Vengris, Mikas; van der Horst, Michael A.; de Weerd, Frank L.; Hellingwerf, Klaas J.; van Grondelle, Rienk

    2004-01-01

    Photoactive yellow protein is the protein responsible for initiating the “blue-light vision” of Halorhodospira halophila. The dynamical processes responsible for triggering the photoactive yellow protein photocycle have been disentangled with the use of a novel application of dispersed ultrafast pump-dump-probe spectroscopy, where the photocycle can be started and interrupted with appropriately tuned and timed laser pulses. This “incoherent” manipulation of the photocycle allows for the detailed spectroscopic investigation of the underlying photocycle dynamics and the construction of a fully self-consistent dynamical model. This model requires three kinetically distinct excited-state intermediates, two (ground-state) photocycle intermediates, I0 and pR, and a ground-state intermediate through which the protein, after unsuccessful attempts at initiating the photocycle, returns to the equilibrium ground state. Also observed is a previously unknown two-photon ionization channel that generates a radical and an ejected electron into the protein environment. This second excitation pathway evolves simultaneously with the pathway containing the one-photon photocycle intermediates. PMID:15345564

  16. Direct Structural and Chemical Characterization of the Photolytic Intermediates of Methylcobalamin Using Time-Resolved X-ray Absorption Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subramanian, Ganesh; Zhang, Xiaoyi; Kodis, Gerdenis

    Cobalt-carbon bond cleavage is crucial to most natural and synthetic applications of the cobalamin class of compounds, and here we present the first direct electronic and geometric structural characteristics of intermediates formed following photoexcitation of methylcobalamin (MeCbl) using time-resolved X-ray absorption spectroscopy (XAS). We catch transients corresponding to two intermediates, in the hundreds of picoseconds and a few microseconds. Highlights of the picosecond intermediate, which is reduced in comparison to the ground state, are elongation of the upper axial Co-C bond and relaxation of the corrin ring. This is not so with the recombining photocleaved products captured at a fewmore » microseconds, where the Co-C bond almost (yet not entirely) reverts to its ground state configuration and a substantially elongated lower axial Co-NIm bond is observed. The reduced cobalt site here confirms formation of methyl radical as the photoproduct.« less

  17. Vibrational analysis of carbonyl modes in different stages of light-induced cyclopyrimidine dimer repair reactions

    NASA Astrophysics Data System (ADS)

    Schmitz, Matthias; Tavan, Paul; Nonella, Marco

    2001-11-01

    The formation of cyclopyrimidine dimers is a DNA defect, which is repaired by the enzyme DNA photolyase in a light-induced reaction. Radical anions of the dimers have been suggested to occur as short-lived intermediates during repair. For their identification time-resolved Fourier-transform infrared (FTIR) spectroscopy will be a method of choice. To support and guide such spectroscopic studies we have calculated the vibrational spectra of various pyrimidine compounds using density functional methods. Our results suggest that the carbonyl vibrations of these molecules can serve as marker modes to identify and distinguish intermediates of the repair reaction.

  18. Pathological and 3 Tesla Volumetric Magnetic Resonance Imaging Predictors of Biochemical Recurrence after Robotic Assisted Radical Prostatectomy: Correlation with Whole Mount Histopathology.

    PubMed

    Tan, Nelly; Shen, Luyao; Khoshnoodi, Pooria; Alcalá, Héctor E; Yu, Weixia; Hsu, William; Reiter, Robert E; Lu, David Y; Raman, Steven S

    2018-05-01

    We sought to identify the clinical and magnetic resonance imaging variables predictive of biochemical recurrence after robotic assisted radical prostatectomy in patients who underwent multiparametric 3 Tesla prostate magnetic resonance imaging. We performed an institutional review board approved, HIPAA (Health Insurance Portability and Accountability Act) compliant, single arm observational study of 3 Tesla multiparametric magnetic resonance imaging prior to robotic assisted radical prostatectomy from December 2009 to March 2016. Clinical, magnetic resonance imaging and pathological information, and clinical outcomes were compiled. Biochemical recurrence was defined as prostate specific antigen 0.2 ng/cc or greater. Univariate and multivariate regression analysis was performed. Biochemical recurrence had developed in 62 of the 255 men (24.3%) included in the study at a median followup of 23.5 months. Compared to the subcohort without biochemical recurrence the subcohort with biochemical recurrence had a greater proportion of patients with a high grade biopsy Gleason score, higher preoperative prostate specific antigen (7.4 vs 5.6 ng/ml), intermediate and high D'Amico classifications, larger tumor volume on magnetic resonance imaging (0.66 vs 0.30 ml), higher PI-RADS® (Prostate Imaging-Reporting and Data System) version 2 category lesions, a greater proportion of intermediate and high grade radical prostatectomy Gleason score lesions, higher pathological T3 stage (all p <0.01) and a higher positive surgical margin rate (19.3% vs 7.8%, p = 0.016). On multivariable analysis only tumor volume on magnetic resonance imaging (adjusted OR 1.57, p = 0.016), pathological T stage (adjusted OR 2.26, p = 0.02), positive surgical margin (adjusted OR 5.0, p = 0.004) and radical prostatectomy Gleason score (adjusted OR 2.29, p = 0.004) predicted biochemical recurrence. In this cohort tumor volume on magnetic resonance imaging and pathological variables, including Gleason score, staging and positive surgical margins, significantly predicted biochemical recurrence. This suggests an important new imaging biomarker. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  19. Vibrational non-equilibrium in the hydrogen-oxygen reaction. Comparison with experiment

    NASA Astrophysics Data System (ADS)

    Skrebkov, Oleg V.

    2015-03-01

    A theoretical model is proposed for the chemical and vibrational kinetics of hydrogen oxidation based on consistent accounting of the vibrational non-equilibrium of the HO2 radical that forms as a result of the bimolecular recombination H+O2 → HO2. In the proposed model, the chain branching H+O2 = O+OH and inhibiting H+O2+M = HO2+M formal reactions are treated (in the terms of elementary processes) as a single multi-channel process of forming, intramolecular energy redistribution between modes, relaxation, and unimolecular decay of the comparatively long-lived vibrationally excited HO2 radical, which is able to react and exchange energy with the other components of the mixture. The model takes into account the vibrational non-equilibrium of the starting (primary) H2 and O2 molecules, as well as the most important molecular intermediates HO2, OH, O2(1Δ), and the main reaction product H2O. It is shown that the hydrogen-oxygen reaction proceeds in the absence of vibrational equilibrium, and the vibrationally excited HO2(v) radical acts as a key intermediate in a fundamentally important chain branching process and in the generation of electronically excited species O2(1Δ), O(1D), and OH(2Σ+). The calculated results are compared with the shock tube experimental data for strongly diluted H2-O2 mixtures at 1000 < T < 2500 K, 0.5 < p < 4 atm. It is demonstrated that this approach is promising from the standpoint of reconciling the predictions of the theoretical model with experimental data obtained by different authors for various compositions and conditions using different methods. For T < 1500 K, the nature of the hydrogen-oxygen reaction is especially non-equilibrium, and the vibrational non-equilibrium of the HO2 radical is the essence of this process. The quantitative estimation of the vibrational relaxation characteristic time of the HO2 radical in its collisions with H2 molecules has been obtained as a result of the comparison of different experimental data on induction time measurements with the relevant calculations.

  20. Taming Radical Pairs in Nanocrystalline Ketones: Photochemical Syn-thesis of Compounds with Vicinal Stereogenic All-Carbon Quaternary Centers.

    PubMed

    Dotson, Jordan J; Perez-Estrada, Salvador; Garcia-Garibay, Miguel A

    2018-05-29

    Here we describe the use of crystalline ketones to control the fate of the radical pair intermediates generated in the Norrish type I photodecarbonylation reaction to render it a powerful tool in the challenging synthesis of sterically congested carbon-carbon bonds. This methodology makes the synthetically more accessible hexasusbtituted ketones as ideal synthons for the construction of adjacent, all-carbon substituted, stereogenic quaternary stereocenters. We describe here the structural and thermochemical parameters required of the starting ketone in order to react in the solid state. Finally, the scope and scalability of the reaction and its application in the total synthesis of two natural products is described.

  1. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia Xin; Department of Chemistry, Hexi University, Zhangye 734000; Li Yanfeng

    2008-03-04

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement.

  2. Electrochemical study of quinone redox cycling: A novel application of DNA-based biosensors for monitoring biochemical reactions.

    PubMed

    Ensafi, Ali A; Jamei, Hamid Reza; Heydari-Bafrooei, Esmaeil; Rezaei, B

    2016-10-01

    This paper presents the results of an experimental investigation of voltammetric and impedimetric DNA-based biosensors for monitoring biological and chemical redox cycling reactions involving free radical intermediates. The concept is based on associating the amounts of radicals generated with the electrochemical signals produced, using differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). For this purpose, a pencil graphite electrode (PGE) modified with multiwall carbon nanotubes and poly-diallydimethlammonium chloride decorated with double stranded fish sperm DNA was prepared to detect DNA damage induced by the radicals generated from a redox cycling quinone (i.e., menadione (MD; 2-methyl-1,4-naphthoquinone)). Menadione was employed as a model compound to study the redox cycling of quinones. A direct relationship was found between free radical production and DNA damage. The relationship between MD-induced DNA damage and free radical generation was investigated in an attempt to identify the possible mechanism(s) involved in the action of MD. Results showed that DPV and EIS were appropriate, simple and inexpensive techniques for the quantitative and qualitative comparisons of different reducing reagents. These techniques may be recommended for monitoring DNA damages and investigating the mechanisms involved in the production of redox cycling compounds. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Antioxidant capacities vary substantially among cultivars of rabbiteye blueberry (Vaccinium ashei Reade)

    USDA-ARS?s Scientific Manuscript database

    Fruit from forty-two blueberry cultivars, including thirty-six rabbiteye (Vaccinium ashei Reade), three V. ashei hybrid derivatives and three northern highbush (V. corymbosum L.) were evaluated for their antioxidant activities against peroxyl free radicals, hydroxyl radicals, hydrogen peroxide, supe...

  4. Electron spin resonance characterization of radical components in irradiated black pepper skin and core

    NASA Astrophysics Data System (ADS)

    Yamaoki, Rumi; Kimura, Shojiro; Ohta, Masatoshi

    2011-11-01

    Characteristics of free radical components of irradiated black pepper fruit (skin) and the pepper seed (core) were analyzed using electron spin resonance. A weak signal near g=2.005 was observed in black pepper before irradiation. Complex spectra near g=2.005 with three lines (the skin) or seven lines (the core) were observed in irradiated black pepper (both end line width; ca. 6.8 mT). The spectral intensities decreased considerably at 30 days after irradiation, and continued to decrease steadily thereafter. The spectra simulated on the basis of the content and the stability of radical components derived from plant constituents, including fiber, starch, polyphenol, mono- and disaccharide, were in good agreement with the observed spectra. Analysis showed that the signal intensities derived from fiber in the skin for an absorbed dose were higher, and the rates of decrease were lower, than that in the core. In particular, the cellulose radical component in the skin was highly stable.

  5. EPR Spectroscopy of Radical Ions of a 2,3-Diamino-1,4-naphthoquinone Derivative.

    PubMed

    Tarábek, Ján; Wen, Jin; Dron, Paul I; Pospíšil, Lubomír; Michl, Josef

    2018-05-18

    We report the electron paramagnetic resonance spectra of the radical cation and radical anion of 1,2,2,3-tetramethyl-2,3-dihydro-1 H-naphtho[2,3- d]imidazole-4,9-dione (1) and its doubly 13 C labeled analogue 2, of interest for singlet fission. The hyperfine coupling constants are in excellent agreement with density functional theory calculations and establish the structures beyond doubt. Unlike the radical cation 1 •+ , the radical anion 1 •- and its parent 1 have pyramidalized nitrogen atoms and inequivalent methyl groups 15 and 16, in agreement with the calculations. The distinction is particularly clear with the labeled analogue 2 •- .

  6. OH Radical Reactions with Nitroimidazole and Nitrotriazole Derivatives

    NASA Astrophysics Data System (ADS)

    Gümüş, Selçuk

    2012-04-01

    The reactions between hydroxyl radical and 5-nitro-1H-imidazole (A), 2-nitro-1H-imidazole (B), and 3-nitro-4H-1,2,4-triazole (C) were theoretically investigated using B3LYP/6-31G(d,p) level of theory. The OH radical additions to double bonds were explored in bulk solvent (water). The data presented show that the barriers to reaction were very low, 3-7 kcal/mol, indicating fast reactions. Thermodynamically, OH addition to position 2 of structure A leads to the most stable radical product. The main geometrical parameters are reported for reactants, transition states, and radical products together with some energetic data of the nitro-imidazolone-type final compounds.

  7. Synthetic use of the primary kinetic isotope effect in hydrogen atom transfer 2: generation of captodatively stabilised radicals.

    PubMed

    Wood, Mark E; Bissiriou, Sabine; Lowe, Christopher; Windeatt, Kim M

    2013-04-28

    Using C-3 di-deuterated morpholin-2-ones bearing N-2-iodobenzyl and N-3-bromobut-3-enyl radical generating groups, only products derived from the more stabilised C-3, rather than the less stabilised C-5 translocated radicals, were formed after intramolecular 1,5-hydrogen atom transfer, suggesting that any kinetic isotope effect present was not sufficient to offset captodative stabilisation.

  8. Mechanistic analysis of intramolecular free radical reactions toward synthesis of 7-azabicyclo[2.2.1]heptane derivatives.

    PubMed

    Soriano, Elena; Marco-Contelles, José

    2009-06-05

    The mechanisms for the formation of conformationally constrained epibatidine analogues by intramolecular free radical processes have been computationally addressed by means of DFT methods. The mechanism and the critical effect of the 7-nitrogen protecting group on the outcome of these radical-mediated cyclizations are discussed. Theoretical findings account for unexpected experimental results and can assist in the selection of proper precursors for a successful cyclization.

  9. cis-β-Bromostyrene derivatives from cinnamic acids via a tandem substitutive bromination-decarboxylation sequence.

    PubMed

    Tang, Khanh G; Kent, Greggory T; Erden, Ihsan; Wu, Weiming

    2017-10-04

    cis -β-Bromostyrene derivatives were synthesized stereospecifically from cinnamic acids through β-lactone intermediates. The synthetic sequence did not require the purification of the β-lactone intermediates although they were found to be stable and readily purified in most cases.

  10. Myeloperoxidase: a target for new drug development?

    PubMed Central

    Malle, E; Furtmüller, P G; Sattler, W; Obinger, C

    2007-01-01

    Myeloperoxidase (MPO), a member of the haem peroxidase-cyclooxygenase superfamily, is abundantly expressed in neutrophils and to a lesser extent in monocytes and certain type of macrophages. MPO participates in innate immune defence mechanism through formation of microbicidal reactive oxidants and diffusible radical species. A unique activity of MPO is its ability to use chloride as a cosubstrate with hydrogen peroxide to generate chlorinating oxidants such as hypochlorous acid, a potent antimicrobial agent. However, evidence has emerged that MPO-derived oxidants contribute to tissue damage and the initiation and propagation of acute and chronic vascular inflammatory disease. The fact that circulating levels of MPO have been shown to predict risks for major adverse cardiac events and that levels of MPO-derived chlorinated compounds are specific biomarkers for disease progression, has attracted considerable interest in the development of therapeutically useful MPO inhibitors. Today, detailed information on the structure of ferric MPO and its complexes with low- and high-spin ligands is available. This, together with a thorough understanding of reaction mechanisms including redox properties of intermediates, enables a rationale attempt in developing specific MPO inhibitors that still maintain MPO activity during host defence and bacterial killing but interfere with pathophysiologically persistent activation of MPO. The various approaches to inhibit enzyme activity of MPO and to ameliorate adverse effects of MPO-derived oxidants will be discussed. Emphasis will be put on mechanism-based inhibitors and high-throughput screening of compounds as well as the discussion of physiologically useful HOCl scavengers. PMID:17592500

  11. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air.

    PubMed

    Zhao, Yue; Wingen, Lisa M; Perraud, Véronique; Greaves, John; Finlayson-Pitts, Barbara J

    2015-05-21

    Ozonolysis of alkenes is an important source of secondary organic aerosol (SOA) in the atmosphere. However, the mechanisms by which stabilized Criegee intermediates (SCI) react to form and grow the particles, and in particular the contributions from oligomers, are not well understood. In this study, ozonolysis of trans-3-hexene (C6H12), as a proxy for small alkenes, was investigated with an emphasis on the mechanisms of particle formation and growth. Ozonolysis experiments were carried out both in static Teflon chambers (18-20 min reaction times) and in a glass flow reactor (24 s reaction time) in the absence and presence of OH or SCI scavengers, and under different relative humidity (RH) conditions. The chemical composition of polydisperse and size-selected SOA particles was probed using different mass spectrometric techniques and infrared spectroscopy. Oligomers having SCI as the chain unit are found to be the dominant components of such SOA particles. The formation mechanism for these oligomers suggested by our results follows the sequential addition of SCI to organic peroxy (RO2) radicals, in agreement with previous studies by Moortgat and coworkers. Smaller particles are shown to have a relatively greater contribution from longer oligomers. Higher O/C ratios are observed in smaller particles and are similar to those of oligomers resulting from RO2 + nSCI, supporting a significant role for longer oligomers in particle nucleation and early growth. Under atmospherically relevant RH of 30-80%, water vapor suppresses oligomer formation through scavenging SCI, but also enhances particle nucleation. Under humid conditions, or in the presence of formic or hydrochloric acid as SCI scavengers, peroxyhemiacetals are formed by the acid-catalyzed particle phase reaction between oligomers from RO2 + nSCI and a trans-3-hexene derived carbonyl product. In contrast to the ozonolysis of trans-3-hexene, oligomerization involving RO2 + nSCI does not appear to be prevalent in the ozonolysis of α-cedrene (C15H24), indicating different particle formation mechanisms for small and large complex alkenes that need to be taken into account in atmospheric models.

  12. Novel hydrazones - antioxidant potential and stabilization via polysaccharide particles

    NASA Astrophysics Data System (ADS)

    Hristova-Avakumova, N.; Nikolova-Mladenova, B.; Yoncheva, K.; Hadjimitova, V.

    2017-01-01

    In this study, we aimed to: i) determine the impact of three new isonicotinoyl hydrazones derivatives in in vitro systems used to investigate free radical processes - radical scavenging approach (ABTS and DPPH) and iron induced peroxidation in lipid containing model systems and ii) evaluate the potential of polysaccharide-based particles to act as protective carriers preserving the antioxidant activity (AOA) of the tested compounds. The tested compounds revealed excellent antioxidant effectiveness in the ABTS system. In the DPPH radical scavenging assay the compounds exhibited very weak or absence of AOA. The data from the iron induced peroxidation methods disclosed better antioxidant properties of the derivatives in the system containing egg yolk homogenate which is more plausible compared to the lecithin containing one. The incorporation of a bromine atom on 5th position in salicylaldehyde moiety is associated with diminishment of the radical scavenging activity in the systems containing stable free radicals but its AOA reduction after encapsulation during the storage was only 9.17%. The obtained data indicate that compounds have proven themselves as promising candidates for further evaluation as antioxidant agents. Their encapsulation in chitosan-alginate particles could be a useful approach for improving the stability of their antioxidant properties.

  13. On radicalizing behaviorism: A call for cultural analysis

    PubMed Central

    Malagodi, E. F.

    1986-01-01

    Our culture at large continues many practices that work against the well-being of its members and its chances for survival. Our discipline has failed to realize its potential for contributing to the understanding of these practices and to the generation of solutions. This failure of realization is in part a consequence of the general failure of behavior analysts to view social and cultural analysis as a fundamental component of radical behaviorism. This omission is related to three prevailing practices of our discipline. First, radical behaviorism is characteristically defined as a “philosophy of science,” and its concerns are ordinarily restricted to certain epistemological issues. Second, theoretical extensions to social and cultural phenomena too often depend solely upon principles derived from the analysis of behavior. Third, little attention has been directed at examining the relationships that do, or that should, exist between our discipline and related sciences. These practices themselves are attributed to certain features of the history of our field. Two general remedies for this situation are suggested: first, that radical behaviorism be treated as a comprehensive world view in which epistemological, psychological, and cultural analyses constitute interdependent components; second, that principles derived from compatible social-science disciplines be incorporated into radical behaviorism. PMID:22478643

  14. Missing Peroxy Radical Sources within a Summertime Ponderosa Pine Forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, G. M.; Cantrell, Chris; Kim, S.

    2014-05-13

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptvmore » and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Peroxy radical sinks are unlikely to be overestimated, suggesting missing sources. A close comparison of model results with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within the forest, and we conclude that a similar mechanism may underlie many such anomalous findings.« less

  15. Missing Peroxy Radical Sources Within a Rural Forest Canopy

    NASA Technical Reports Server (NTRS)

    Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.; hide

    2013-01-01

    Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations.

  16. Standard Electrode Potentials Involving Radicals in Aqueous Solution: Inorganic Radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Armstrong, David A.; Huie, Robert E.; Koppenol, Willem H.

    2015-12-01

    Recommendations are made for standard potentials involving select inorganic radicals in aqueous solution at 25 °C. These recommendations are based on a critical and thorough literature review and also by performing derivations from various literature reports. The recommended data are summarized in tables of standard potentials, Gibbs energies of formation, radical pK a’s, and hemicolligation equilibrium constants. In all cases, current best estimates of the uncertainties are provided. An extensive set of Data Sheets is appended that provide original literature references, summarize the experimental results, and describe the decisions and procedures leading to each of the recommendations

  17. Interaction of aromatic alcohols, aldehydes and acids with α-hydroxyl-containing carbon-centered radicals: A steady state radiolysis study

    NASA Astrophysics Data System (ADS)

    Samovich, S. N.; Brinkevich, S. D.; Shadyro, O. I.

    2013-01-01

    Benzaldehyde and its derivatives efficaciously oxidize in aqueous solutions α-hydroxyl-containing carbon-centered radicals (α-HCR) of various structures, suppressing thereby the radical recombination and fragmentation reactions. The compounds containing cinnamic moieties are capable of adding α-hydroxyethyl radicals (α-HER) to the carbon-carbon double bonds conjugated with the aromatic system to form molecular products identifiable by mass spectrometry. On radiolysis of aqueous ethanol solutions, reduction of α-HER by aromatic alcohols and acids has been shown to proceed via formation of their adducts with hydrated electron species.

  18. Radical chemistry of artemisinin

    NASA Astrophysics Data System (ADS)

    Denisov, Evgenii T.; Solodova, S. L.; Denisova, Taisa G.

    2010-12-01

    The review summarizes physicochemical characteristics of the natural sesquiterpene peroxide artemisinin. The kinetic schemes of transformations of artemisinin radicals under anaerobic conditions are presented and analyzed. The sequence of radical reactions of artemisinin in the presence of oxygen is considered in detail. Special emphasis is given to the intramolecular chain oxidation resulting in the transformation of artemisinin into polyatomic hydroperoxide. The kinetic characteristics of elementary reaction steps involving alkyl, alkoxyl, and peroxyl radicals generated from artemisinin are discussed. The results of testing of artemisinin and its derivatives for the antimalarial activity and the scheme of the biochemical synthesis of artemisinin in nature are considered.

  19. Tandem SN2' nucleophilic substitution/oxidative radical cyclization of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds.

    PubMed

    Zhang, Zhen; Li, Cheng; Wang, Shao-Hua; Zhang, Fu-Min; Han, Xue; Tu, Yong-Qiang; Zhang, Xiao-Ming

    2017-04-11

    A novel and efficient tandem S N 2' nucleophilic substitution/oxidative radical cyclization reaction of aryl substituted allylic alcohols with 1,3-dicarbonyl compounds has been developed by using Mn(OAc) 3 as an oxidant, which enables the expeditious synthesis of polysubstituted dihydrofuran (DHF) derivatives in moderate to high yields. The use of weakly acidic hexafluoroisopropanol (HFIP) as the solvent rather than AcOH has successfully improved the yields and expanded the substrate scope of this type of radical cyclization reactions. Mechanistic studies confirmed the cascade reaction process involving a final radical cyclization.

  20. Ferryl Protonation in Oxoiron(IV) Porphyrins and Its Role in Oxygen Transfer

    DOE PAGES

    Boaz, Nicholas C.; Bell, Seth R.; Groves, John T.

    2015-02-04

    Ferryl porphyrins, P–Fe IVmore » $=$O, are central reactive intermediates in the catalytic cycles of numerous heme proteins and a variety of model systems. There has been considerable interest in elucidating factors, such as terminal oxo basicity, that may control ferryl reactivity. Here in this study, the sulfonated, water-soluble ferryl porphyrin complexes tetramesitylporphyrin, oxoFe IVTMPS (FeTMPS-II), its 2,6-dichlorophenyl analogue, oxoFe IVTDClPS (FeTDClPS-II), and two other analogues are shown to be protonated under turnover conditions to produce the corresponding bis-aqua-iron(III) porphyrin cation radicals. The results reveal a novel internal electromeric equilibrium, P–Fe IV$=$O $$\\leftrightarrows$$ P +–Fe III(OH 2) 2. Reversible pKa values in the range of 4–6.3 have been measured for this process by pH-jump, UV–vis spectroscopy. Ferryl protonation has important ramifications for C–H bond cleavage reactions mediated by oxoiron(IV) porphyrin cation radicals in protic media. Both solvent O–H and substrate C–H deuterium kinetic isotope effects are observed for these reactions, indicating that hydrocarbon oxidation by these oxoiron(IV) porphyrin cation radicals occurs via a solvent proton-coupled hydrogen atom transfer from the substrate that has not been previously described. The effective FeO–H bond dissociation energies for FeTMPS-II and FeTDClPS-II were estimated from similar kinetic reactivities of the corresponding oxoFe IVTMPS + and oxoFe IVTDClPS + species to be ~92–94 kcal/mol. Similar values were calculated from the two-proton P +–Fe III(OH 2) 2 pK a obs and the porphyrin oxidation potentials, despite a 230 mV range for the iron porphyrins examined. Thus, the iron porphyrin with the lower ring oxidation potential has a compensating higher basicity of the ferryl oxygen. The solvent-derived proton adds significantly to the driving force for C–H bond scission.« less

  1. Modelling total OH reactivity: atmospheric implications of the missing OH sink

    NASA Astrophysics Data System (ADS)

    Ferracci, V.; Archibald, A. T.; Heimann, I.; Pyle, J. A.

    2016-12-01

    The removal of the majority of reactive trace gases emitted into the atmosphere is initiated by reaction with the hydroxyl radical (OH). Over the last decade, a number of field campaigns have measured the chemical loss rate of OH, also known as total OH reactivity, in a variety of regions across the planet, from urban areas to remote forests. In most cases, comparison of the measured total OH reactivity with that calculated from the sum of the individual OH sinks (obtained via the simultaneous detection of species such as VOCs and NOx) highlighted the presence of "missing" reactivity (up to 80 % of the total measured reactivity), indicating that a significant sink of the hydroxyl radical is currently not accounted for in tropospheric oxidation schemes. Potential candidates for the missing OH reactivity are previously undetected biogenic VOCs, reactive intermediates of the oxidation of known biogenic VOCs (mainly isoprene), or a combination of the two. In this work the Met Office's Unified Model with the United Kingdom Chemistry and Aerosols scheme (UM-UKCA) was used to investigate the potential impacts of a simulated missing OH sink. UM-UKCA is a chemistry-climate model which includes detailed tropospheric chemistry derived from a combination of the JPL-NASA and IUPAC kinetic evaluations as well as the Master Chemical Mechanism database. The missing OH sink was simulated in a number of scenarios: initially, by including in the model chemical reactions that were only recently characterised (e.g., peroxy radicals + OH), then by adding a new chemical tracer, along with its reaction with OH, that would account for most of the missing reactivity observed in the various campaigns across the globe. Sensitivity of the model to the abundance and regional distribution of the new chemical tracer, and to the kinetics and hypothetical products of its reaction with OH are discussed, as well as the impacts of the missing OH sink on the tropospheric ozone budget and methane lifetime, with associated implications for air quality and global warming respectively.

  2. Inhibition effects of flavonoids on 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline formation and alkoxy radical scavenging capabilities of flavonoids in a model system.

    PubMed

    Shao, Zeping; Han, Zhonghui; Zhang, Jinhui; Zhang, Yan; Wang, Shuo

    2018-06-01

    Heterocyclic aromatic amines (HAAs) have been considered as carcinogenic and mutagenic chemicals generated during thermal processing of protein-rich foods that can be inhibited by some flavonoids. Free radical scavenging is a major characteristic of flavonoids. The half-maximal inhibitory concentration (IC 50 ) values of nine flavonoids were determined by evaluating their capacity to inhibit 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx) and 2-amino-3,7,8-trimethylimidazo[4,5-f]quinoxaline (7,8-DiMeIQx) formation in a model system. The results of the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) test validated that MeIQx and 7,8-DiMeIQx formed via a free radical pathway. Electron spin resonance (ESR) spectroscopic analysis with spin trapping (α-(4-pyridyl N-oxide)-N-tert-butylnitrone (POBN) spin adduct, a N  = 15.2 G and a H  = 2.7 G) revealed that an alkoxy radical was the generated intermediate. The scavenging capacities of the nine flavonoids on alkoxy radicals were then evaluated based on the ESR spectra of the POBN spin adducts. The weak correlation between the alkoxy radical scavenging capacities and IC 50 of the flavonoids suggested that their inhibitory activity against MeIQx and 7,8-DiMeIQx formation operates by a more complex mechanism than simply scavenging alkoxy radicals. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.

    PubMed

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Yanwei; Xing, Lisha; Wang, Jia

    2013-10-15

    Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakdale, James S.; Ye, Jianchao; Smith, William L.

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  5. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE PAGES

    Oakdale, James S.; Ye, Jianchao; Smith, William L.; ...

    2016-11-28

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  6. Method of selective reduction of halodisilanes with alkyltin hydrides

    DOEpatents

    D'Errico, John J.; Sharp, Kenneth G.

    1989-01-01

    The invention relates to the selective and sequential reduction of halodisilanes by reacting these compounds at room temperature or below with trialkyltin hydrides or dialkyltin dihydrides without the use of free radical intermediates. The alkyltin hydrides selectively and sequentially reduce the Si-Cl, Si-Br or Si-I bonds while leaving intact the Si-Si and Si-F bonds present.

  7. Modeling of experimental treatment of acetaldehyde-laden air and phenol-containing water using corona discharge technique.

    PubMed

    Faungnawakij, Kajornsak; Sano, Noriaki; Charinpanitkul, Tawatchai; Tanthapanichakoon, Wiwut

    2006-03-01

    Acetaldehyde-laden air and phenol-contaminated water were experimentally treated using corona discharge reactions and gas absorption in a single water-film column. Mathematical modeling of the combined treatment was developed in this work. Efficient removal of the gaseous acetaldehyde was achieved while the corona discharge reactions produced short-lived species such as O and O- as well as ozone. Direct contact of the radicals and ions with water was known to produce aqueous OH radical, which contributes to the decomposition of organic contaminants: phenol, absorbed acetaldehyde, and intermediate byproducts in the water. The influence of initial phenol concentration ranging from 15 to 50 mg L(-1) and that of influent acetaldehyde ranging from 0 to 200 ppm were experimentally investigated and used to build the math model. The maximum energetic efficiency of TOC, phenol, and acetaldehyde were obtained at 25.6 x 10(-9) mol carbon J(-1), 25.0 x 10(-9) mol phenol J(-1), and 2.0 x 10(-9) mol acetaldehyde J(-1), respectively. The predictions for the decomposition of acetaldehyde, phenol, and their intermediates were found to be in good agreement with the experimental results.

  8. Charge Transfer Processes in OPV Materials as Revealed by EPR Spectroscopy

    DOE PAGES

    Niklas, Jens; Poluektov, Oleg

    2017-03-03

    Understanding charge separation and charge transport at a molecular level is crucial for improving the efficiency of organic photovoltaic (OPV) cells. Under illumination of Bulk Heterojunction (BHJ) blends of polymers and fullerenes, various paramagnetic species are formed including polymer and fullerene radicals, radical pairs, and photoexcited triplet states. Light-induced Electron Paramagnetic Resonance (EPR) spectroscopy is ideally suited to study these states in BHJ due to its selectivity in probing the paramagnetic intermediates. Some advanced EPR techniques like light-induced ENDOR spectroscopy and pulsed techniques allow the determination of hyperfine coupling tensors, while high-frequency EPR allows the EPR signals of the individualmore » species to be resolved and their g-tensors to be determined. In these magnetic resonance parameters reveal details about the delocalization of the positive polaron on the various polymer donors which is important for the efficient charge separation in BHJ systems. Time-resolved EPR can contribute to the study of the dynamics of charge separation, charge transfer and recombination in BHJ by probing the unique spectral signatures of charge transfer and triplet states. Furthermore, the potential of the EPR also allows characterization of the intermediates and products of BHJ degradation.« less

  9. Determination of Combustion Product Radicals in a Hydrocarbon Fueled Rocket Exhaust Plume

    NASA Technical Reports Server (NTRS)

    Langford, Lester A.; Allgood, Daniel C.; Junell, Justin C.

    2007-01-01

    The identification of metallic effluent materials in a rocket engine exhaust plume indicates the health of the engine. Since 1989, emission spectroscopy of the plume of the Space Shuttle Main Engine (SSME) has been used for ground testing at NASA's Stennis Space Center (SSC). This technique allows the identification and quantification of alloys from the metallic elements observed in the plume. With the prospect of hydrocarbon-fueled rocket engines, such as Rocket Propellant 1 (RP-1) or methane (CH4) fueled engines being considered for use in future space flight systems, the contributions of intermediate or final combustion products resulting from the hydrocarbon fuels are of great interest. The effect of several diatomic molecular radicals, such as Carbon Dioxide , Carbon Monoxide, Molecular Carbon, Methylene Radical, Cyanide or Cyano Radical, and Nitric Oxide, needs to be identified and the effects of their band systems on the spectral region from 300 nm to 850 nm determined. Hydrocarbon-fueled rocket engines will play a prominent role in future space exploration programs. Although hydrogen fuel provides for higher engine performance, hydrocarbon fuels are denser, safer to handle, and less costly. For hydrocarbon-fueled engines using RP-1 or CH4 , the plume is different from a hydrogen fueled engine due to the presence of several other species, such as CO2, C2, CO, CH, CN, and NO, in the exhaust plume, in addition to the standard H2O and OH. These species occur as intermediate or final combustion products or as a result of mixing of the hot plume with the atmosphere. Exhaust plume emission spectroscopy has emerged as a comprehensive non-intrusive sensing technology which can be applied to a wide variety of engine performance conditions with a high degree of sensitivity and specificity. Stennis Space Center researchers have been in the forefront of advancing experimental techniques and developing theoretical approaches in order to bring this technology to a more mature stage.

  10. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO 2-elimination channels yielding conjugated cyclic coproducts

    DOE PAGES

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.; ...

    2015-04-13

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C 5H 8O), cyclohexanone (CHO; C 6H 10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH 3–C 5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O 2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in themore » R + O 2 reactions is chain-terminating HO 2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO 2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O 2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O 2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO 2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO 2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  11. H-atom addition and abstraction reactions in mixed CO, H2CO and CH3OH ices - an extended view on complex organic molecule formation

    NASA Astrophysics Data System (ADS)

    Chuang, K.-J.; Fedoseev, G.; Ioppolo, S.; van Dishoeck, E. F.; Linnartz, H.

    2016-01-01

    Complex organic molecules (COMs) have been observed not only in the hot cores surrounding low- and high-mass protostars, but also in cold dark clouds. Therefore, it is interesting to understand how such species can be formed without the presence of embedded energy sources. We present new laboratory experiments on the low-temperature solid state formation of three complex molecules - methyl formate (HC(O)OCH3), glycolaldehyde (HC(O)CH2OH) and ethylene glycol (H2C(OH)CH2OH) - through recombination of free radicals formed via H-atom addition and abstraction reactions at different stages in the CO→H2CO→CH3OH hydrogenation network at 15 K. The experiments extend previous CO hydrogenation studies and aim at resembling the physical-chemical conditions typical of the CO freeze-out stage in dark molecular clouds, when H2CO and CH3OH form by recombination of accreting CO molecules and H-atoms on ice grains. We confirm that H2CO, once formed through CO hydrogenation, not only yields CH3OH through ongoing H-atom addition reactions, but is also subject to H-atom-induced abstraction reactions, yielding CO again. In a similar way, H2CO is also formed in abstraction reactions involving CH3OH. The dominant methanol H-atom abstraction product is expected to be CH2OH, while H-atom additions to H2CO should at least partially proceed through CH3O intermediate radicals. The occurrence of H-atom abstraction reactions in ice mantles leads to more reactive intermediates (HCO, CH3O and CH2OH) than previously thought, when assuming sequential H-atom addition reactions only. This enhances the probability to form COMs through radical-radical recombination without the need of UV photolysis or cosmic rays as external triggers.

  12. Low temperature (550-700 K) oxidation pathways of cyclic ketones: Dominance of HO 2-elimination channels yielding conjugated cyclic coproducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheer, Adam M.; Welz, Oliver; Vasu, Subith S.

    The low-temperature oxidation of three cyclic ketones, cyclopentanone (CPO; C 5H 8O), cyclohexanone (CHO; C 6H 10 O), and 2-methyl-cyclopentanone (2-Me-CPO; CH 3–C 5H7 O), is studied between 550 and 700 K and at 4 or 8 Torr total pressure. Initial fuel radicals R are formedvia fast H-abstraction from the ketones by laser-photolytically generated chlorine atoms. Intermediates and products from the subsequent reactions of these radicals in the presence of excess O 2 are probed with time and isomeric resolution using multiplexed photoionization mass spectrometry with tunable synchrotron ionizing radiation. For CPO and CHO the dominant product channel in themore » R + O 2 reactions is chain-terminating HO 2-elimination yielding the conjugated cyclic coproducts 2-cyclopentenone and 2-cyclohexenone, respectively. Results on oxidation of 2-Me-CPO also show a dominant contribution from HO 2-elimination. Moreover, the photoionization spectrum of the co-product suggests formation of 2-methyl-2-cyclopentenone and/or 2-cyclohexenone, resulting from a rapid Dowd–Beckwith rearrangement, preceding addition to O 2, of the initial (2-oxocyclopentyl)methyl radical to 3-oxocyclohexyl. Cyclic ethers, markers for hydroperoxyalkyl radicals (QOOH), key intermediates in chain-propagating and chain-branching low-temperature combustion pathways, are only minor products. The interpretation of the experimental results is supported by stationary point calculations on the potential energy surfaces of the associated R + O 2 reactions at the CBS-QB3 level. Furthermore, the calculations indicate that HO 2-elimination channels are energetically favored and product formation via QOOH is disfavored. Lastly, the prominence of chain-terminating pathways linked with HO 2 formation in low-temperature oxidation of cyclic ketones suggests little low-temperature reactivity of these species as fuels in internal combustion engines.« less

  13. Gas-Phase Ozonolysis of Cycloalkenes: Formation of Highly Oxidized RO2 Radicals and Their Reactions with NO, NO2, SO2, and Other RO2 Radicals.

    PubMed

    Berndt, Torsten; Richters, Stefanie; Kaethner, Ralf; Voigtländer, Jens; Stratmann, Frank; Sipilä, Mikko; Kulmala, Markku; Herrmann, Hartmut

    2015-10-15

    The gas-phase reaction of ozone with C5-C8 cycloalkenes has been investigated in a free-jet flow system at atmospheric pressure and a temperature of 297 ± 1 K. Highly oxidized RO2 radicals bearing at least 5 O atoms in the molecule and their subsequent reaction products were detected in most cases by means of nitrate-CI-APi-TOF mass spectrometry. Starting from a Criegee intermediate after splitting-off an OH-radical, the formation of these RO2 radicals can be explained via an autoxidation mechanism, meaning RO2 isomerization (ROO → QOOH) and subsequently O2 addition (QOOH + O2 → R'OO). Time-dependent RO2 radical measurements concerning the ozonolysis of cyclohexene indicate rate coefficients of the intramolecular H-shifts, ROO → QOOH, higher than 1 s(-1). The total molar yield of highly oxidized products (predominantly RO2 radicals) from C5-C8 cycloalkenes in air is 4.8-6.0% affected with a calibration uncertainty by a factor of about two. For the most abundant RO2 radical from cyclohexene ozonolysis, O,O-C6H7(OOH)2O2 ("O,O" stands for two O atoms arising from the ozone attack), the determination of the rate coefficients of the reaction with NO2, NO, and SO2 yielded (1.6 ± 0.5) × 10(-12), (3.4 ± 0.9) × 10(-11), and <10(-14) cm(3) molecule(-1) s(-1), respectively. The reaction of highly oxidized RO2 radicals with other peroxy radicals (R'O2) leads to detectable accretion products, RO2 + R'O2 → ROOR' + O2, which allows to acquire information on peroxy radicals not directly measurable with the nitrate ionization technique applied here. Additional experiments using acetate as the charger ion confirm conclusively the existence of highly oxidized RO2 radicals and closed-shell products. Other reaction products, detectable with this ionization technique, give a deeper insight in the reaction mechanism of cyclohexene ozonolysis.

  14. Asymmetric radical alkylation of N-sulfinimines under visible light photocatalytic conditions.

    PubMed

    Garrido-Castro, Alberto F; Choubane, Houcine; Daaou, Mortada; Maestro, M Carmen; Alemán, José

    2017-07-06

    In this communication, a new photocatalytic strategy for the addition of alkyl-radical derivatives to N-sulfinimines with complete diastereoselectivity and moderate to good yields is presented. This is the first asymmetric photocatalytic addition to N-sulfinimines under visible light irradiation with smooth conditions and functional group tolerance.

  15. Tyrosine-lipid peroxide adducts from radical termination: para coupling and intramolecular Diels-Alder cyclization.

    PubMed

    Shchepin, Roman; Möller, Matias N; Kim, Hye-young H; Hatch, Duane M; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael; Porter, Ned A

    2010-12-15

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogues of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR spectroscopy as well as by mass spectrometry (MS). The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic (13)C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl (13)C chemical shifts at ~198 ppm. All of the NMR HMBC and HSQC correlations support the structure assignments of the primary and Diels-Alder adducts, as does MS collision-induced dissociation data. Kinetic rate constants and activation parameters for the IMDA reaction were determined, and the primary adducts were reduced with cuprous ion to give a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found in either the primary or cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts, which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein cross-links via interprotein Michael adducts.

  16. Tyrosine-Lipid Peroxide Adducts from Radical Termination: Para-Coupling and Intramolecular Diels-Alder Cyclization

    PubMed Central

    Shchepin, Roman; Möller, Matias N.; Kim, Hye-young H.; Hatch, Duane M.; Bartesaghi, Silvina; Kalyanaraman, Balaraman; Radi, Rafael

    2013-01-01

    Free radical co-oxidation of polyunsaturated lipids with tyrosine or phenolic analogs of tyrosine gave rise to lipid peroxide-tyrosine (phenol) adducts in both aqueous micellar and organic solutions. The novel adducts were isolated and characterized by 1D and 2D NMR as well as by mass spectrometry. The spectral data suggest that the polyunsaturated lipid peroxyl radicals give stable peroxide coupling products exclusively at the para position of the tyrosyl (phenoxy) radicals. These adducts have characteristic 13C chemical shifts at 185 ppm due to the cross-conjugated carbonyl of the phenol-derived cyclohexadienone. The primary peroxide adducts subsequently undergo intramolecular Diels-Alder (IMDA) cyclization, affording a number of diastereomeric tricyclic adducts that have characteristic carbonyl 13C chemical shifts at ~198 ppm. All NMR HMBC and HSQC correlations support the structure assignment of the primary and Diels-Alder adducts, as does MS collision induced dissociation. Kinetic rate constants and activation parameters for the IMDA reaction were determined and the primary adducts were reduced with cuprous ion giving a phenol-derived 4-hydroxycyclohexa-2,5-dienone. No products from adduction of peroxyls at the phenolic ortho position were found either in the primary or the cuprous reduction product mixtures. These studies provide a framework for understanding the nature of lipid-protein adducts formed by peroxyl-tyrosyl radical-radical termination processes. Coupling of lipid peroxyl radicals with tyrosyl radicals leads to cyclohexenone and cyclohexadienone adducts which are of interest in and of themselves since, as electrophiles, they are likely targets for protein nucleophiles. One consequence of lipid peroxyl reactions with tyrosyls may therefore be protein-protein crosslinks via interprotein Michael adducts. PMID:21090613

  17. Free-radical mediated synthesis of enantiomerically pure, highly functionalized inositols from carbohydrates.

    PubMed

    Marco-Contelles, J; Pozuelo, C; de Opazo, E

    2001-06-15

    We report the synthesis, free-radical cyclization of precursors 1,2,7-trideoxy-7-iodo-3,4:5,6-di-O-isopropylidene-D-gluco-hept-1-enitol (1), methyl 7-O-acetyl-6-O-benzyl-8-bromo-2,3,8-trideoxy-4,5-O-isopropylidene-D-gluco-oct-2-enonate (2) and 5-O-acetyl-4-O-benzyl-6-bromo-6-deoxy-2,3-O-isopropylidene-D-glucose-O-benzyloxime (3), readily prepared from D-glucose, and some selected transformations of the carbocycles obtained from these intermediates. In compound 1 we have installed a terminal double bond and an iodide as radical acceptor and leaving group, respectively. Compounds 2 and 3 are epsilon-bromo aldehydes substituted with alpha,beta-unsaturated ester and oxime ether functions as radical traps, respectively. The tributyltin hydride mediated ring closure of these radical precursors have afforded a series of interesting, diverse and highly functionalized carbocycles which can be considered useful building blocks for the synthesis of branched-chain cyclitols, aminocyclitols and aminoconduritols. In these processes, a good chemical yield and high stereoselectivity has been found in the newly formed stereocenters. Particularly interesting has been the finding that the stereochemical outcome of the free-radical cyclization is independent of the ratio of isomers (E or Z) in oxime ether 3. These results show the power and the state of art of this strategy for the stereocontrolled synthesis of enantiomerically pure inositols from carbohydrates.

  18. Experimental study and detailed modeling of toluene degradation in a low-pressure stoichiometric premixed CH4/O2/N2 flame.

    PubMed

    Bakali, A El; Dupont, L; Lefort, B; Lamoureux, N; Pauwels, J F; Montero, M

    2007-05-17

    Temperature and mole fraction profiles have been measured in laminar stoichiometric premixed CH4/O2/N2 and CH4/1.5%C6H5CH3/O2/N2 flames at low pressure (0.0519 bar) by using thermocouple, molecular beam/mass spectrometry (MB/MS), and gas chromatography/mass spectrometry (GC/MS) techniques. The present study completes our previous work performed on the thermal degradation of benzene in CH4/O2/N2 operating at similar conditions. Mole fraction profiles of reactants, final products, and reactive and stable intermediate species have been analyzed. The main intermediate aromatic species analyzed in the methane-toluene flame were benzene, phenol, ethylbenzene, benzylalcohol, styrene, and benzaldehyde. These new experimental results have been modeled with our previous model including submechanisms for aromatics (benzene up to p-xylene) and aliphatic (C1 up to C7) oxidation. Good agreement has been observed for the main species analyzed. The main reaction paths governing the degradation of toluene in the methane flame were identified, and it occurs mainly via the formation of benzene (C6H5CH3 + H = C6H6 + CH3) and benzyl radical (C6H5CH3 + H = C6H5CH2 + H2). Due to the abundance of methyl radicals, it was observed that recombination of benzyl and methyl is responsible for main monosubstitute aromatic species analyzed in the methane-toluene flame. The oxidation of these substitute species led to cyclopentadienyl radical as observed in a methane-benzene flame.

  19. Direct detection of pyridine formation by the reaction of CH (CD) with pyrrole: a ring expansion reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soorkia, Satchin; Taatjes, Craig A.; Osborn, David L.

    The reaction of the ground state methylidyne radical CH (X2Pi) with pyrrole (C4H5N) has been studied in a slow flow tube reactor using Multiplexed Photoionization Mass Spectrometry coupled to quasi-continuous tunable VUV synchrotron radiation at room temperature (295 K) and 90 oC (363 K), at 4 Torr (533 Pa). Laser photolysis of bromoform (CHBr3) at 248 nm (KrF excimer laser) is used to produce CH radicals that are free to react with pyrrole molecules in the gaseous mixture. A signal at m/z = 79 (C5H5N) is identified as the product of the reaction and resolved from 79Br atoms, and themore » result is consistent with CH addition to pyrrole followed by Helimination. The Photoionization Efficiency curve unambiguously identifies m/z = 79 as pyridine. With deuterated methylidyne radicals (CD), the product mass peak is shifted by +1 mass unit, consistent with the formation of C5H4DN and identified as deuterated pyridine (dpyridine). Within detection limits, there is no evidence that the addition intermediate complex undergoes hydrogen scrambling. The results are consistent with a reaction mechanism that proceeds via the direct CH (CD) cycloaddition or insertion into the five-member pyrrole ring, giving rise to ring expansion, followed by H atom elimination from the nitrogen atom in the intermediate to form the resonance stabilized pyridine (d-pyridine) molecule. Implications to interstellar chemistry and planetary atmospheres, in particular Titan, as well as in gas-phase combustion processes, are discussed.« less

  20. Ionic liquids as an electrolyte for the electro synthesis of organic compounds.

    PubMed

    Kathiresan, Murugavel; Velayutham, David

    2015-12-25

    The use of ionic liquids (ILs) as a solvent and an electrolyte for electro organic synthesis has been reviewed. To date several ILs exist, however the ILs based on tetraalkylammonium, pyrrolidinium, piperidinium and imidazolium cations with BF4(-), PF6(-), and TFSI anions have been widely used and explored the most. Electro organic synthesis in ionic liquid media leading to the synthesis of a wide range of organic compounds has been discussed. Anodic oxidation or cathodic reduction will generate radical cation or anion intermediates, respectively. These radicals can undergo self coupling or coupling with other molecules yielding organic compounds of interest. The cation of the IL is known to stabilize the radical anion extensively. This stabilization effect has a specific impact on the electrochemical CO2 reduction and coupling to various organics. The relative stability of the intermediates in IL leads to the formation of specific products in higher yields. Electrochemical reduction of imidazolium or thiazolium based ILs generates N-heterocyclic carbenes that have been shown to catalyze a wide range of base or nucleophile catalyzed organic reactions in IL media, an aspect that falls into the category of organocatalysis. Electrochemical fluorination or selective electrochemical fluorination is another fascinating area that delivers selectively fluorinated organic products in Et3N·nHF or Et4NF·nHF adducts (IL) via anodic oxidation. Oxidative polymerization in ILs has been explored the most; although morphological changes were observed compared to the conventional methods, polymers were obtained in good yields and in some cases ILs were used as dopants to improve the desired properties.

Top