Sample records for radical ring-opening polymerization

  1. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  2. Recent Developments of Versatile Photoinitiating Systems for Cationic Ring Opening Polymerization Operating at Any Wavelengths and under Low Light Intensity Sources.

    PubMed

    Lalevée, Jacques; Mokbel, Haifaa; Fouassier, Jean-Pierre

    2015-04-20

    Photoinitiators (PI) or photoinitiating systems (PIS) usable in light induced cationic polymerization (CP) and free radical promoted cationic polymerization (FRPCP) reactions (more specifically for cationic ring opening polymerization (ROP)) together with the involved mechanisms are briefly reviewed. The recent developments of novel two- and three-component PISs for CP and FRPCP upon exposure to low intensity blue to red lights is emphasized in details. Examples of such reactions under various experimental conditions are provided.

  3. Visible-Light Initiated Free-Radical/Cationic Ring-Opening Hybrid Photopolymerization of Methacrylate/Epoxy: Polymerization Kinetics, Crosslinking Structure, and Dynamic Mechanical Properties.

    PubMed

    Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette

    2015-04-01

    The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.

  4. Synthesis of Novel μ-Star Copolymers with Poly(N-Octyl Benzamide) and Poly(ε-Caprolactone) Miktoarms through Chain-Growth Condensation Polymerization, Styrenics-Assisted Atom Transfer Radical Coupling, and Ring-Opening Polymerization.

    PubMed

    Huang, Chih-Feng; Aimi, Junko; Lai, Kuan-Yu

    2017-02-01

    Star copolymers are known to phase separate on the nanoscale, providing useful self-assembled morphologies. In this study, the authors investigate synthesis and assembly behavior of miktoarm star (μ-star) copolymers. The authors employ a new strategy for the synthesis of unprecedented μ-star copolymers presenting poly(N-octyl benzamide) (PBA) and poly(ε-caprolactone) (PCL) arms: a combination of chain-growth condensation polymerization, styrenics-assisted atom transfer radical coupling, and ring-opening polymerization. Gel permeation chromatography, mass-analyzed laser desorption/ionization mass spectrometry, and 1 H NMR spectroscopy reveal the successful synthesis of a well-defined (PBA 11 ) 2 -(PCL 15 ) 4 μ-star copolymer (M n ,NMR ≈ 12 620; Đ = 1.22). Preliminary examination of the PBA 2 PCL 4 μ-star copolymer reveals assembled nanofibers having a uniform diameter of ≈20 nm. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Heterofunctional Glycopolypeptides by Combination of Thiol-Ene Chemistry and NCA Polymerization.

    PubMed

    Krannig, Kai-Steffen; Schlaad, Helmut

    2016-01-01

    Glycopolypeptides are prepared either by the polymerization of glycosylated amino acid N-carboxyanhydrides (NCAs) or by the post-polymerization functionalization of polypeptides with suitable functional groups. Here we present a method for the in-situ functionalization and (co-) polymerization of allylglycine N-carboxyanhydride in a facile one-pot procedure, combining radical thiol-ene photochemistry and nucleophilic ring-opening polymerization techniques, to yield well-defined heterofunctional glycopolypeptides.

  6. Nitroxide-mediated radical ring-opening copolymerization: chain-end investigation and block copolymer synthesis.

    PubMed

    Delplace, Vianney; Harrisson, Simon; Tardy, Antoine; Gigmes, Didier; Guillaneuf, Yohann; Nicolas, Julien

    2014-02-01

    Well-defined, degradable copolymers are successfully prepared by nitroxide-mediated radical ring opening polymerization (NMrROP) of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or methyl methacrylate (MMA), a small amount of acrylonitrile (AN) and cyclic ketene acetals (CKAs) of different structures. Phosphorous nuclear magnetic resonance allows in-depth chain-end characterization and gives crucial insights into the nature of the copoly-mer terminal sequences and the living chain fractions. By using a small library of P(OEGMA-co-AN-co-CKA) and P(MMA-co-AN-co-CKA) as macroinitiators, chain extensions with styrene are performed to furnish (amphiphilic) block copolymers comprising a degradable segment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Developing new methods for the mono-end functionalization of living ring opening metathesis polymers.

    PubMed

    Kilbinger, Andreas F M

    2012-01-01

    In this article we present a review of our recent results in one area of research we are involved in. All research efforts in our group focus on functional polymers and new ways of gaining higher levels of control with regard to the placement of functional groups within these polymers. Here, the living ring opening metathesis polymerization (ROMP) will be reviewed for which end-functionalization methods had been rare until very recently. Polymers carrying particular functional groups only at the chain-ends are, however, very interesting for a variety of industrial and academic applications. Polymeric surfactants and polymer-protein conjugates are two examples for the former and polymer-β-sheet-peptide conjugates one example for the latter. The functionalization of macroscopic or nanoscopic surfaces often relies on mono-end functional polymers. Complex macromolecular architectures are often constructed from macromolecules carrying exactly one functional group at their chain- end. The ring opening metathesis polymerization is particularly interesting in this context as it is one of the most functional group tolerant polymerization methods known. Additionally, high molecular weight polymers are readily accessible with this technique, a feature that living radical polymerizations often struggle to achieve. Finding new ways of functionalizing the polymer chain-end of ROMP polymers has therefore been a task long overdue. Here, we present our contribution to this area of research.

  8. Nucleophilically assisted and cationic ring-opening polymerization of tin-bridged [1]ferrocenophanes.

    PubMed

    Baumgartner, Thomas; Jäkle, Frieder; Rulkens, Ron; Zech, Gernot; Lough, Alan J; Manners, Ian

    2002-08-28

    To obtain mechanistic insight, detailed studies of the intriguing "spontaneous" ambient temperature ring-opening polymerization (ROP) of tin-bridged [1]ferrocenophanes Fe(eta-C(5)H(4))(2)SnR(2) 3a (R = t-Bu) and 3b (R = Mes) in solution have been performed. The investigations explored the influence of non-nucleophilic additives such as radicals and radical traps, neutral and anionic nucleophiles, Lewis acids, protic species, and other cationic electrophiles. Significantly, two novel methodologies and mechanisms for the ROP of strained [1]ferrocenophanes are proposed based on this study. First, as the addition of amine nucleophiles such as pyridine was found to strongly accelerate the polymerization rate in solution, a new nucleophilicallyassisted ROP methodology was proposed. This operates at ambient temperature in solution even in the presence of chlorosilanes but, unlike the anionic polymerization of ferrocenophanes, does not involve cyclopentadienyl anions. Second, the addition of small quantities of the electrophilic species H(+) and Bu(3)Sn(+) was found to lead to a cationic ROP process. These studies suggest that the "spontaneous" ROP of tin-bridged [1]ferrocenophanes may be a consequence of the presence of spurious, trace quantities of Lewis basic or acidic impurities. The new ROP mechanisms reported are likely to be of general significance for the ROP of other metallocenophanes (e.g., for thermal ROP in the melt) and for other metallacycles containing group 14 elements.

  9. Chromatographic assessment of two hybrid monoliths prepared via epoxy-amine ring-opening polymerization and methacrylate-based free radical polymerization using methacrylate epoxy cyclosiloxane as functional monomer.

    PubMed

    Wang, Hongwei; Ou, Junjie; Lin, Hui; Liu, Zhongshan; Huang, Guang; Dong, Jing; Zou, Hanfa

    2014-11-07

    Two kinds of hybrid monolithic columns were prepared by using methacrylate epoxy cyclosiloxane (epoxy-MA) as functional monomer, containing three epoxy moieties and one methacrylate group. One column was in situ fabricated by ring-opening polymerization of epoxy-MA and 1,10-diaminodecane (DAD) using a porogenic system consisting of isopropanol (IPA), H2O and ethanol at 65°C for 12h. The other was prepared by free radical polymerization of epoxy-MA and ethylene dimethacrylate (EDMA) using 1-propanol and 1,4-butanediol as the porogenic solvents at 60°C for 12h. Two hybrid monoliths were investigated on the morphology and chromatographic assessment. Although two kinds of monolithic columns were prepared with epoxy-MA, their morphologies looked rather different. It could be found that the epoxy-MA-DAD monolith possessed higher column efficiencies (25,000-34,000plates/m) for the separation of alkylbenzenes than the epoxy-MA-EDMA monolith (12,000-13,000plates/m) in reversed-phase nano-liquid chromatography (nano-LC). Depending on the remaining epoxy or methacrylate groups on the surface of two pristine monoliths, the epoxy-MA-EDMA monolith could be easily modified with 1-octadecylamine (ODA) via ring-opening reaction, while the epoxy-MA-DAD monolith could be modified with stearyl methacrylate (SMA) via free radical reaction. The chromatographic performance for the separation of alkylbenzenes on SMA-modified epoxy-MA-DAD monolith was remarkably improved (42,000-54,000 plates/m) when compared with that on pristine epoxy-MA-DAD monolith, while it was not obviously enhanced on ODA-modified epoxy-MA-EDMA monolith when compared with that on pristine epoxy-MA-EDMA monolith. The enhancement of the column efficiency of epoxy-MA-DAD monolith after modification might be ascribed to the decreased mass-transfer resistence. The two kinds of hybrid monoliths were also applied for separations of six phenols and seven basic compounds in nano-LC. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Syntheses and Post-Polymerization Modifications of Well-Defined Styrenic Polymers Containing Three-Membered Heterocyclic Functionalities

    NASA Astrophysics Data System (ADS)

    McLeod, David Charles

    Macromolecules that contain electrophilic moieties, such as benzyl halides, activated esters, and epoxides, will readily undergo efficient nucleophilic substitution reactions with a wide variety of compounds under mild conditions, and are therefore ideally suited to act as "universal" precursors to functional materials. Epoxide-containing polymers derived from the radical polymerization of commercially-available glycidyl methacrylate are often employed in this role; however, methacrylic polymers suffer from certain limitations as a result of the incorporated ester groups, which are not stabile in the presence of strong nucleophiles, acids, bases, or esterase enzymes. Styrenic polymers that do not contain labile carbonyl moieties are usually the precursors of choice when high chemical stability is desired in the end product, but the production of functional materials from epoxide-containing styrenic polymers is relatively unexplored. In this dissertation, improved methods were developed for synthesizing 4-vinylphenyloxirane (4VPO) and 4-vinylphenyl glycidyl ether (4VPGE), two of the better-known epoxide-containing styrenic monomers, in high-yield and purity. Well-defined, epoxide-containing styrenic polymers with targeted molecular weights, narrow molecular weight distributions, and controlled architectures (specifically, linear and star-shaped homopolymers, as well as linear block copolymers with styrene) were produced from 4VPO and 4VPGE for the first time using reversible-deactivation radical polymerization techniques, such as low-catalyst-concentration atom transfer radical polymerization (LCC ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. The robust nature and utility of poly4VPO and poly4VPGE were then demonstrated by the efficient, ring-opening modification of the pendant epoxide groups with a structurally- and functionally-diverse array of alcohols under acidic conditions at ambient temperature. The macromolecular compositions, architectures, and thermal stabilities of the resulting ?-hydroxy ether-functionalized homopolymers were evaluated using NMR and FTIR spectroscopy, size exclusion chromatography, and thermal gravimetric analysis. Aziridines and thiiranes (saturated, three-membered heterocycles containing either a single nitrogen or sulfur atom, respectively) are also susceptible to nucleophilic ring-opening reactions, and functional materials derived from aziridine- or thiirane-containing polymers could potentially have many interesting properties as a result of their high amine or thiol content, such as the ability to form pH- or redox-responsive structures. The synthesis of polymers containing aziridines that are activated towards nucleophilic ring-opening by C-aryl and/or N-sulfonyl substituents is unprecedented in the literature. Efficient methods for synthesizing styrenic monomers that contain these highly-reactive functionalities, namely 2-(4-vinylphenyl)aziridine (VPA) and its sulfonyl-activated derivative, N-mesyl-2-(4-vinylphenyl)aziridine (NMVPA), were developed utilizing 4VPO as a starting material. VPA was polymerized under LCC ATRP and RAFT conditions, but these methods were ineffective at producing well-defined polymers due to side reactions between the aziridine groups and the polymerization mediating compounds. Nitroxide-mediated radical polymerization (NMRP) produced well-defined polyVPA at low to moderate conversions of monomer, but cross-linking side reactions were evident at higher monomer conversions. Nearly all undesirable side reactions were prevented by attaching a mesyl group to the aziridine nitrogen atom, and well-defined polyNMVPA was realized under RAFT and NMRP conditions. Under ATRP conditions, reactions between the aziridine groups and catalyst still occurred, so the polymerization of NMVPA was not controlled using this technique. The synthesis of thiirane-containing styrenic polymers from either 2-(4-vinylphenyl)thiirane (VPT) or 2-((4-vinylphenoxy)methyl)thiirane (VPOMT), which were produced in a facile manner from 4VPO or 4VPGE, respectively, was attempted under conventional radical polymerization and RAFT polymerization conditions. Rapid desulfurization or ring-opening polymerization of VPT occurred when elevated temperatures or UV radiation was applied to reactions containing this monomer. The more-stable VPOMT monomer was successfully polymerized at elevated temperatures using thermally-labile azo-type initiators, and, under RAFT conditions, polymers of VPOMT increased in molecular weight as higher conversions of monomer were reached; however, the polymers produced under RAFT conditions were ill-defined and eventually underwent macrogelation, due to cross-linking side reactions of the thiirane moieties.

  11. Combinatorial and high-throughput approaches in polymer science

    NASA Astrophysics Data System (ADS)

    Zhang, Huiqi; Hoogenboom, Richard; Meier, Michael A. R.; Schubert, Ulrich S.

    2005-01-01

    Combinatorial and high-throughput approaches have become topics of great interest in the last decade due to their potential ability to significantly increase research productivity. Recent years have witnessed a rapid extension of these approaches in many areas of the discovery of new materials including pharmaceuticals, inorganic materials, catalysts and polymers. This paper mainly highlights our progress in polymer research by using an automated parallel synthesizer, microwave synthesizer and ink-jet printer. The equipment and methodologies in our experiments, the high-throughput experimentation of different polymerizations (such as atom transfer radical polymerization, cationic ring-opening polymerization and emulsion polymerization) and the automated matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF MS) sample preparation are described.

  12. Synthesis of Degradable Poly(vinyl alcohol) by Radical Ring-Opening Copolymerization and Ice Recrystallization Inhibition Activity.

    PubMed

    Hedir, Guillaume; Stubbs, Christopher; Aston, Phillip; Dove, Andrew P; Gibson, Matthew I

    2017-12-19

    Poly(vinyl alcohol) (PVA) is the most active synthetic mimic of antifreeze proteins and has extremely high ice recrystallization inhibition (IRI) activity. Addition of PVA to cellular cryopreservation solutions increases the number of recovered viable cells due to its potent IRI, but it is intrinsically nondegradable in vivo . Here we report the synthesis, characterization, and IRI activity of PVA containing degradable ester linkages. Vinyl chloroacetate (VClAc) was copolymerized with 2-methylene-1,3-dioxepane (MDO) which undergoes radical ring-opening polymerization to install main-chain ester units. The use of the chloroacetate monomer enabled selective deacetylation with retention of esters within the polymer backbone. Quantitative IRI assays revealed that the MDO content had to be finely tuned to retain IRI activity, with higher loadings (24 mol %) resulting in complete loss of IRI activity. These degradable materials will help translate PVA, which is nontoxic and biocompatible, into a range of biomedical applications.

  13. Study on ultrasonic assisted mechanism of ring opening polymerization of octamethylcyclotetrasiloxane (D4)

    NASA Astrophysics Data System (ADS)

    Ling, Huaxu; Yu, Xiaoxiang; Wang, Shifan; Wang, Xiaohui; Dong, Liming

    2018-06-01

    In this study, the linear high molecular weight polydimethylsiloxanes(PDMS) were synthesized by ultrasonic-assisted bulk ring-opening polymerization method, with D4 as the raw material, hexamethyldisilane(HMDS) as the capping agent and concentrated sulfuric acid as the catalyst. The mechanism of ring-opening polymerization assisted by ultrasound is discussed in detail, through the ultrasonic time, ultrasonic intensity and reaction temperature and other factors. The results showed that D4 ring-opening polymerization and PDMS depolymerization was a pair of reversible equilibrium reaction. Due to the influence of steric hindrance and viscosity, the ultrasonic action appears as the driving effect of D4 ring opening at the initial reaction, and the chain exchange or depolymerization of PDMS at the end of the reaction. Therefore, ultrasonic irradiation is believed to facilitate the rapid synthesis of high molecular weight PDMS at high monomer concentrations.

  14. Preparation of Bottlebrush Polymers via a One-Pot Ring-Opening Polymerization (ROP) and Ring-Opening Metathesis Polymerization (ROMP) Grafting-Through Strategy.

    PubMed

    Radzinski, Scott C; Foster, Jeffrey C; Matson, John B

    2016-04-01

    Bottlebrush polymers are synthesized using a tandem ring-opening polymerization (ROP) and ring-opening metathesis polymerization (ROMP) strategy. For the first time, ROP and ROMP are conducted sequentially in the same pot to yield well-defined bottlebrush polymers with molecular weights in excess of 10(6) Da. The first step of this process involves the synthesis of a polylactide macromonomer (MM) via ROP of d,l-lactide initiated by an alcohol-functionalized norbornene. ROMP grafting-through is then carried out in the same pot to produce the bottlebrush polymer. The applicability of this methodology is evaluated for different MM molecular weights and bottlebrush backbone degrees of polymerization. Size-exclusion chromatographic and (1)H NMR spectroscopic analyses confirm excellent control over both polymerization steps. In addition, bottlebrush polymers are imaged using atomic force microscopy and stain-free transmission electron microscopy on graphene oxide. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fastest Formation Routes of Nanocarbons in Solution Plasma Processes.

    PubMed

    Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2016-11-14

    Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C-H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma-solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C 2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene.

  16. Fastest Formation Routes of Nanocarbons in Solution Plasma Processes

    PubMed Central

    Morishita, Tetsunori; Ueno, Tomonaga; Panomsuwan, Gasidit; Hieda, Junko; Yoshida, Akihito; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2016-01-01

    Although solution-plasma processing enables room-temperature synthesis of nanocarbons, the underlying mechanisms are not well understood. We investigated the routes of solution-plasma-induced nanocarbon formation from hexane, hexadecane, cyclohexane, and benzene. The synthesis rate from benzene was the highest. However, the nanocarbons from linear molecules were more crystalline than those from ring molecules. Linear molecules decomposed into shorter olefins, whereas ring molecules were reconstructed in the plasma. In the saturated ring molecules, C–H dissociation proceeded, followed by conversion into unsaturated ring molecules. However, unsaturated ring molecules were directly polymerized through cation radicals, such as benzene radical cation, and were converted into two- and three-ring molecules at the plasma–solution interface. The nanocarbons from linear molecules were synthesized in plasma from small molecules such as C2 under heat; the obtained products were the same as those obtained via pyrolysis synthesis. Conversely, the nanocarbons obtained from ring molecules were directly synthesized through an intermediate, such as benzene radical cation, at the interface between plasma and solution, resulting in the same products as those obtained via polymerization. These two different reaction fields provide a reasonable explanation for the fastest synthesis rate observed in the case of benzene. PMID:27841288

  17. Polar-Nonpolar Radical Copolymerization under Li+ Catalysis

    DTIC Science & Technology

    2008-09-21

    bonds or aromatic rings. Thus, we propose that a transfer of a methyl radical from CB11Me12C to IB triggers a radical polymerization chain that yields ...b-PIB and the resulting CB11Me11 byproduct concurrently triggers a cationic polymerization chain that yields l-PIB terminated with a carborate anion...tetrahydrofuran and passed through a column of alumina about five times to remove the bulk of the catalyst. A Soxhlet apparatus was used to recover

  18. Ring-Opening Polymerization of Lactide to Form a Biodegradable Polymer

    ERIC Educational Resources Information Center

    Robert, Jennifer L.; Aubrecht, Katherine B.

    2008-01-01

    In this laboratory activity for introductory organic chemistry, students carry out the tin(II) bis(2-ethylhexanoate)/benzyl alcohol mediated ring-opening polymerization of lactide to form the biodegradable polymer polylactide (PLA). As the mechanism of the polymerization is analogous to that of a transesterification reaction, the experiment can be…

  19. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    PubMed

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  20. Green polymer chemistry: investigating the mechanism of radical ring-opening redox polymerization (R3P) of 3,6-dioxa-1,8-octanedithiol (DODT).

    PubMed

    Rosenthal-Kim, Emily Q; Puskas, Judit E

    2015-04-13

    The mechanism of the new Radical Ring-opening Redox Polymerization (R3P) of 3,6-dioxa-1,8-octanedithiol (DODT) by triethylamine (TEA) and dilute H2O2 was investigated. Scouting studies showed that the formation of high molecular weight polymers required a 1:2 molar ratio of DODT to TEA and of DODT to H2O2. Further investigation into the chemical composition of the organic and aqueous phases by 1H-NMR spectroscopy and mass spectrometry demonstrated that DODT is ionized by two TEA molecules (one for each thiol group) and thus transferred into the aqueous phase. The organic phase was found to have cyclic disulfide dimers, trimers and tetramers. Dissolving DODT and TEA in water before the addition of H2O2 yielded a polymer with Mn = 55,000 g/mol, in comparison with Mn = 92,000 g/mol when aqueous H2O2 was added to a DODT/TEA mixture. After polymer removal, MALDI-ToF MS analysis of the residual reaction mixtures showed only cyclic oligomers remaining. Below the LCST for TEA in water, 18.7 °C, the system yielded a stable emulsion, and only cyclic oligomers were found. Below DODT/TEA and H2O2 1:2 molar ratio mostly linear oligomers were formed, with <20% cyclic oligomers. The findings support the proposed mechanism of R3P.

  1. Preparation of Soypolymers by Ring-opening Polymerization of Epoxdized Soybean Oil

    USDA-ARS?s Scientific Manuscript database

    Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate in methylene chloride was conducted in an effort to develop useful biodegradable polymers. The resulting polymers (PESO) were characterized using Infrared (IR), differential scanning calorime...

  2. Ring-opening Polymerization of Epoxidized Soybean Oil

    USDA-ARS?s Scientific Manuscript database

    Ring opening polymerization of epoxidized soybean oil (ESO) initiated by boron trifluoride diethyl etherate, (BF3•OEt2), in methylene chloride was conducted in an effort to develop useful biodegradable polymers. The resulting polymers (PESO) were characterized using Infrared (IR), differential scan...

  3. INHIBITING THE POLYMERIZATION OF NUCLEAR COOLANTS

    DOEpatents

    Colichman, E.L.

    1959-10-20

    >The formation of new reactor coolants which contain an additive tbat suppresses polymerization of the primary dissoclation free radical products of the pyrolytic and radiation decomposition of the organic coolants is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to 5% of a powdered metal hydride chosen from the group consisting of the group IIA and IVA dispersed in the hydrocarbon.

  4. Selective polymerization catalysis: controlling the metal chain end group to prepare block copolyesters.

    PubMed

    Zhu, Yunqing; Romain, Charles; Williams, Charlotte K

    2015-09-30

    Selective catalysis is used to prepare block copolyesters by combining ring-opening polymerization of lactones and ring-opening copolymerization of epoxides/anhydrides. By using a dizinc complex with mixtures of up to three different monomers and controlling the chemistry of the Zn-O(polymer chain) it is possible to select for a particular polymerization route and thereby control the composition of block copolyesters.

  5. Functional Degradable Polymers by Radical Ring-Opening Copolymerization of MDO and Vinyl Bromobutanoate: Synthesis, Degradability and Post-Polymerization Modification.

    PubMed

    Hedir, Guillaume G; Bell, Craig A; O'Reilly, Rachel K; Dove, Andrew P

    2015-07-13

    The synthesis of vinyl bromobutanoate (VBr), a new vinyl acetate monomer derivative obtained by the palladium-catalyzed vinyl exchange reaction between vinyl acetate (VAc) and 4-bromobutyric acid is reported. The homopolymerization of this new monomer using the RAFT/MADIX polymerization technique leads to the formation of novel well-defined and controlled polymers containing pendent bromine functional groups able to be modified via postpolymerization modification. Furthermore, the copolymerization of vinyl bromobutanoate with 2-methylene-1,3-dioxepane (MDO) was also performed to deliver a range of novel functional degradable copolymers, poly(MDO-co-VBr). The copolymer composition was shown to be able to be tuned to vary the amount of ester repeat units in the polymer backbone, and hence determine the degradability, while maintaining a control of the final copolymers' molar masses. The addition of functionalities via simple postpolymerization modifications such as azidation and the 1,3-dipolar cycloaddition of a PEG alkyne to an azide is also reported and proven by (1)H NMR spectroscopy, FTIR spectroscopy, and SEC analyses. These studies enable the formation of a novel class of hydrophilic functional degradable copolymers using versatile radical polymerization methods.

  6. Newly Developed Techniques on Polycondensation, Ring-Opening Polymerization and Polymer Modification: Focus on Poly(Lactic Acid)

    PubMed Central

    Hu, Yunzi; Daoud, Walid A.; Cheuk, Kevin Ka Leung; Lin, Carol Sze Ki

    2016-01-01

    Polycondensation and ring-opening polymerization are two important polymer synthesis methods. Poly(lactic acid), the most typical biodegradable polymer, has been researched extensively from 1900s. It is of significant importance to have an up-to-date review on the recent improvement in techniques for biodegradable polymers. This review takes poly(lactic acid) as the example to present newly developed polymer synthesis techniques on polycondensation and ring-opening polymerization reported in the recent decade (2005–2015) on the basis of industrial technique modifications and advanced laboratory research. Different polymerization methods, including various solvents, heating programs, reaction apparatus and catalyst systems, are summarized and compared with the current industrial production situation. Newly developed modification techniques for polymer properties improvement are also discussed based on the case of poly(lactic acid). PMID:28773260

  7. Organocatalytic Ring-Opening Polymerization of Trimethylene Carbonate to Yield a Biodegradable Polycarbonate

    ERIC Educational Resources Information Center

    Chan, Julian M. W.; Zhang, Xiangyi; Brennan, Megan K.; Sardon, Haritz; Engler, Amanda C.; Fox, Courtney H.; Frank, Curtis W.; Waymouth, Robert M.; Hedrick, James L.

    2015-01-01

    In this laboratory experiment, students work in pairs to synthesize a simple aliphatic polycarbonate via ring-opening polymerization of trimethylene carbonate using 1,8-diazabicyclo[5.4.0]undec-7-ene and thiourea as organocatalysts. Following polymer isolation, students cool the material in a dry ice/acetone bath to observe its glass-transition…

  8. Different mechanisms at different temperatures for the ring-opening polymerization of lactide catalyzed by binuclear magnesium and zinc alkoxides.

    PubMed

    Sun, Yangyang; Cui, Yaqin; Xiong, Jiao; Dai, Zhongran; Tang, Ning; Wu, Jincai

    2015-10-07

    Two binuclear magnesium and zinc alkoxides supported by a bis-salalen type dinucleating heptadentate Schiff base ligand were synthesized and fully characterized. The two complexes are efficient initiators for the ring-opening polymerization (ROP) of L-lactide, affording polymers with narrow polydispersities and desirable molecular weights. Interestingly, the mechanisms for the ROP of lactide are different at different temperatures. At a high temperature of 130 °C, a coordination-insertion mechanism is reasonable for the bulk melt polymerization of lactide. At a low temperature, the alkoxide cannot initiate the ROP reaction; however, upon the addition of external benzyl alcohol into the system, the ROP of lactide can smoothly proceed via an "activated monomer" mechanism. In addition, these complexes display slight stereo-selectivity for the ring-opening polymerization of rac-lactide, affording partially isotactic polylactide in toluene with a Pm value of 0.59.

  9. Polymersome nanoreactors for enzymatic ring-opening polymerization.

    PubMed

    Nallani, Madhavan; de Hoog, Hans-Peter M; Cornelissen, Jeroen J L M; Palmans, Anja R A; van Hest, Jan C M; Nolte, Roeland J M

    2007-12-01

    Polystyrene-polyisocyanopeptide (PS-PIAT) polymersomes containing CALB in two different locations, one in the aqueous inner compartment and one in the bilayer, were investigated for enzymatic ring-opening polymerization of lactones in water. It is shown that the monomers 8-octanolactone and dodecalactone yield oligomers with this polymersome system. It is also observed that the polymerization activity is dependent on the position of the enzyme in the polymersome. SEM investigations show that the polymersome structures were destabilized during the polymerization. Further investigations show that the vesicular morphology of the polymersomes was destabilized only in the case of polymer product formation.

  10. Synthesis and structural studies of heterobimetallic alkoxide complexes supported by bis(phenolate) ligands: efficient catalysts for ring-opening polymerization of L-lactide.

    PubMed

    Chen, Hsuan-Ying; Liu, Mei-Yu; Sutar, Alekha Kumar; Lin, Chu-Chieh

    2010-01-18

    A series of heterobimetallic titanium(IV) complexes [LTi(O(i)Pr)(mu-O(i)Pr)(2)Li(THF)(2)], [LTi(O(i)Pr)(mu-O(i)Pr)(2)Na(THF)(2)], [LTi(mu-O(i)Pr)(2)Zn(O(i)Pr)(2)], and [LTi(mu-O(i)Pr)(2)Mg(O(i)Pr)(2)] (where L = bidentate bisphenol ligands) have been synthesized and characterized including a structural determination of [L(1)Ti(mu(2)-O(i)Pr)(2)(O(i)Pr)Li(THF)(2)] (1a). These complexes were investigated for their utility in the ring-opening polymerization (ROP) of l-lactide (LA). Polymerization activities have been shown to correlate with the electronic properties of the substituent within the bisphenol ligand. In contrast to monometallic titanium initiator 1e, all the heterobimetallic titanium initiators (Ti-Li, Ti-Na, Ti-Zn, and Ti-Mg) show enhanced catalytic activity toward ring-opening polymerization (ROP) of l-LA. In addition, the use of electron-donating methoxy or methylphenylsulfonyl functional ligands reveals the highest activity. The bisphenol bimetallic complexes give rise to controlled ring-opening polymerization, as shown by the linear relationship between the percentage conversion and the number-average molecular weight. The polymerization kinetics using 2c as an initiator were also studied, and the experimental results indicate that the reaction rate is first-order with respect to both monomer and catalyst concentration with a polymerization rate constant, k = 81.64 M(-1) min(-1).

  11. Synthesis and characterization of polymeric materials derived from 2,5-diketopiperazines and pyroglutamic acid

    NASA Astrophysics Data System (ADS)

    Parrish, Dennis Arch

    The research presented in this dissertation describes the investigation of 2,5-diketopiperazines (DKPs) as property modifiers for addition polymers and the self association behavior of pyroglutamic acid derivatives. The first project involved the copolymerization of methyl methacrylate and styrene with DKP-based methacrylate monomers. Low incorporations of serine- and aspartame-based DKPs in the copolymer resulted in dramatic increases in the glass transition temperature (Ts). The research presented in Chapter II focuses on the ring-opening reactions of pyroglutamic diketopiperazine (pyDKP). The original intent was to synthesize polymers containing backbone DKPs through ring-opening polymerization of the five-membered rings. However, it was discovered that regioselective ring-opening occurs at the six-membered ring to give pyroglutamic acid derivatives. Since this reaction had not been reported previously, the focus of research was altered to investigate the scope and limitations of the new reaction. The ring-opening reactions of pyDKP with diamines to give bispyroglutamides is described in Chapter IV. While these materials are not polymeric, they display polymeric behavior. It was found that multi-functional pyroglutamides display Tgs during thermal analysis, exhibit high thermal stability, and form melt-drawn fibers. In contrast, the materials have low solution viscosities and are freely soluble in water, ethanol, and chloroform. This behavior is attributed to non-covalent supramolecular associations. The final part of this dissertation involved the investigation of thermoreversible organic solvent gelators. The ring-opening reaction of pyDKP with long alkyl amines unexpectedly gelled the reaction solvent. A series of analogous gelators were synthesized, and the minimum concentration required for gelation in various solvents was determined. It was found that the nature of the solvent, alkyl chain length, and optical activity of the gelator determined gelator efficiency and gel structure.

  12. Versatile Tandem Ring-Opening/Ring-Closing Metathesis Polymerization: Strategies for Successful Polymerization of Challenging Monomers and Their Mechanistic Studies.

    PubMed

    Park, Hyeon; Kang, Eun-Hye; Müller, Laura; Choi, Tae-Lim

    2016-02-24

    Tandem ring-opening/ring-closing metathesis (RO/RCM) results in extremely fast living polymerization; however, according to previous reports, only monomers containing certain combinations of cycloalkenes, terminal alkynes, and nitrogen linkers successfully underwent tandem polymerization. After examining the polymerization pathways, we proposed that the relatively slow intramolecular cyclization might lead to competing side reactions such as intermolecular cross metathesis reactions to form inactive propagating species. Thus, we developed two strategies to enhance tandem polymerization efficiency. First, we modified monomer structures to accelerate tandem RO/RCM cyclization by enhancing the Thorpe-Ingold effect. This strategy increased the polymerization rate and suppressed the chain transfer reaction to achieve controlled polymerization, even for challenging syntheses of dendronized polymers. Alternatively, reducing the reaction concentration facilitated tandem polymerization, suggesting that the slow tandem RO/RCM cyclization step was the main reason for the previous failure. To broaden the monomer scope, we used monomers containing internal alkynes and observed that two different polymer units with different ring sizes were produced as a result of nonselective α-addition and β-addition on the internal alkynes. Thorough experiments with various monomers with internal alkynes suggested that steric and electronic effects of the alkyne substituents influenced alkyne addition selectivity and the polymerization reactivity. Further polymerization kinetics studies revealed that the rate-determining step of monomers containing certain internal alkynes was the six-membered cyclization step via β-addition, whereas that for other monomers was the conventional intermolecular propagation step, as observed in other chain-growth polymerizations. This conclusion agrees well with all those polymerization results and thus validates our strategies.

  13. Controlled Ring-Opening Metathesis Polymerization by Molybdenum and Tungsten Alkylidene Complexes

    DTIC Science & Technology

    1988-07-29

    weights and low polydispersities (as low as 1.03) consistent with a living catalyst system employing 50, 100, 200, and 400 eq of monomer. The reactions are...secondary metathesis of polymer chains Bulky alkoxide ligands Wittig-like reaction Ring-opening metathesis polymerization (ROMP) Feast monomer Cyclic...olefins Retro Diels-Alder reaction Norbornene (NBE) Low temperature column chromatography Endo-,endo-5,6-dicarbomethoxynorbornene Discrete, soluble

  14. Single chain technology: Toward the controlled synthesis of polymer nanostructures

    NASA Astrophysics Data System (ADS)

    Lyon, Christopher

    A technique for fabricating advanced polymer nanostructures enjoying recent popularity is the collapse or folding of single polymer chains in highly dilute solution mediated by intramolecular cross-linking. We term the resultant structures single-chain nanoparticles (SCNP). This technique has proven particularly valuable in the synthesis of nanomaterials on the order of 5 -- 20 nm. Many different types of covalent and non-covalent chemistries have been used to this end. This dissertation investigates the use of so-called single-chain technology to synthesize nanoparticles using modular techniques that allow for easy incorporation of functionality or special structural or characteristic features. Specifically, the synthesis of linear polymers functionalized with pendant monomer units and the subsequent intramolecular polymerization of these monomer units is discussed. In chapter 2, the synthesis of SCNP using alternating radical polymerization is described. Polymers functionalized with pendant styrene and stilbene groups are synthesized via a modular post-polymerization Wittig reaction. These polymers were exposed to radical initiators in the presence (and absence) of maleic anhydride and other electron deficient monomers in order to form intramolecular cross-links. Chapter 3 discusses templated acyclic diene metathesis (ADMET) polymerization using single-chain technology, starting with the controlled ring-opening polymerization of a glycidyl ether functionalized with an ADMET monomer. This polymer was then exposed to Grubbs' catalyst to polymerize the ADMET monomer units. The ADMET polymer was hydrolytically cleaved from the template and separated. Upon characterization, it was found that the daughter ADMET polymer had a similar degree of polymerization, but did not retain the low dispersity of the template. Chapter 4 details the synthesis of aldehyde- and diol-functionalized polymers toward the synthesis of SCNP containing dynamic, acid-degradable acetal cross-links. SCNP fabrication with these materials is beyond the scope of this dissertation.

  15. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.

    PubMed

    Sivalingam, G; Madras, Giridhar

    2004-01-01

    Enzymatic ring-opening polymerization of epsilon-caprolactone by various lipases was investigated in toluene at various temperatures. The determination of molecular weight and structural identification was carried out with gel permeation chromatography and proton NMR, respectively. Among the various lipases employed, an immobilized lipase from Candida antartica B (Novozym 435) showed the highest catalytic activity. The polymerization of epsilon-caprolactone by Novozym 435 showed an optimal temperature of 65 degrees C and an optimum toluene content of 50/50 v/v of toluene and epsilon-caprolactone. As lipases can degrade polyesters, a maximum in the molecular weight with time was obtained due to the competition of ring opening polymerization and degradation by specific chain end scission. The optimum temperature, toluene content, and the variation of molecular weight with time are consistent with earlier observations. A comprehensive model based on continuous distribution kinetics was developed to model these phenomena. The model accounts for simultaneous polymerization, degradation and enzyme deactivation and provides a technique to determine the rate coefficients for these processes. The dependence of these rate coefficients with temperature and monomer concentration is also discussed.

  16. Ring-opening polymerization of 19-electron [2]cobaltocenophanes: a route to high-molecular-weight, water-soluble polycobaltocenium polyelectrolytes.

    PubMed

    Mayer, Ulrich F J; Gilroy, Joe B; O'Hare, Dermot; Manners, Ian

    2009-08-05

    Water-soluble, high-molecular-weight polycobaltocenium polyelectrolytes have been prepared by ring-opening polymerization (ROP) techniques. Anionic polymerization of a strained 19-electron dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium chloride resulted in the formation of oligomers with up to nine repeat units. Thermal ROP of dicarba[2]cobaltocenophane followed by oxidation in the presence of ammonium nitrate resulted in the formation of high-molecular-weight polycobaltocenium nitrate, a redox-active cobalt-containing polyelectrolyte.

  17. New ROMP Synthesis of Ferrocenyl Dendronized Polymers.

    PubMed

    Liu, Xiong; Ling, Qiangjun; Zhao, Li; Qiu, Guirong; Wang, Yinghong; Song, Lianxiang; Zhang, Ying; Ruiz, Jaime; Astruc, Didier; Gu, Haibin

    2017-10-01

    First- and second-generation Percec-type dendronized ferrocenyl norbornene macromonomers containing, respectively, three and nine ferrocenyl termini are synthesized and polymerized by ring-opening metathesis polymerization using Grubbs' third-generation olefin metathesis catalyst with several monomer/catalyst feed ratios between 10 and 50. The rate of polymerization is highly dependent on the generation of the dendronized macromonomers, but all these ring-opening metathesis polymerization reactions are controlled, and near-quantitative monomer conversions are achieved. The numbers of ferrocenyl groups obtained are in agreement with the theoretical ones according to the cyclic voltammetry studies as determined using the Bard-Anson method. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Poly(DL-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate): synthesis, characterization, micellization behavior in aqueous solutions, and encapsulation of the hydrophobic drug dipyridamole.

    PubMed

    Karanikolopoulos, Nikos; Zamurovic, Miljana; Pitsikalis, Marinos; Hadjichristidis, Nikos

    2010-02-08

    We synthesized a series of well-defined poly(dl-lactide)-b-poly(N,N-dimethylamino-2-ethyl methacrylate) (PDLLA-b-PDMAEMA) amphiphilic diblock copolymers by employing a three-step procedure: (a) ring-opening polymerization (ROP) of dl-lactide using n-decanol and stannous octoate, Sn(Oct)(2), as the initiating system, (b) reaction of the PDLLA hydroxyl end groups with bromoisobutyryl bromide, and (c) atom transfer radical polymerization, ATRP, of DMAEMA with the newly created bromoisobutyryl initiating site. The aggregation behavior of the prepared block copolymers was investigated by dynamic light scattering and zeta potential measurements at 25 degrees C in aqueous solutions of different pH values. The hydrophobic drug dipyridamole was efficiently incorporated into the copolymer aggregates in aqueous solutions of pH 7.40. High partition coefficient values were determined by fluorescence spectroscopy.

  19. Opening Furan for Tailoring Properties of Bio-based Poly(Furfuryl Alcohol) Thermoset.

    PubMed

    Falco, Guillaume; Guigo, Nathanael; Vincent, Luc; Sbirrazzuoli, Nicolas

    2018-06-11

    This work shows how furan ring-opening reactions were controlled by polymerization conditions to tune the cross-link density in bio-based poly(furfuryl alcohol) (PFA). The influence of water and isopropyl alcohol (IPA) on the polymerization of furfuryl alcohol, and particularly on furan ring-opening, was investigated by means of 13 C NMR and FT-IR spectroscopy. Results indicated that formation of open structures were favored in the presence of solvents, thus leading to modification of the thermo-mechanical properties compared to PFA cross-linked without solvent. Dynamic mechanical analyses showed that when slightly more open structures were present in PFA it resulted in an important decrease of the cross-link density. Despite lower glass-transition temperature and lower elastic modulus for PFA polymerized with solvent, the thermal stability remains very high (>350 °C) even with more open structures in PFA. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of well-defined bisbenzoin end-functionalized poly(ε-caprolactone) macrophotoinitiator by combination of ROP and click chemistry and its use in the synthesis of star copolymers by photoinduced free radical promoted cationic polymerization

    PubMed Central

    Uyar, Zafer; Degirmenci, Mustafa; Genli, Nasrettin; Yilmaz, Ayse

    2017-01-01

    Abstract A new well-defined bisbenzoin group end-functionalized poly(ε-caprolactone) macrophotoinitiator (PCL-(PI)2) was synthesized by combination of ring opening polymerization (ROP) and click chemistry. The ROP of ε-CL monomer in bulk at 110 °C, by means of a hydroxyl functional initiator namely, 3-cyclohexene-1-methanol in conjunction with stannous-2-ethylhexanoate, (Sn(Oct)2), yielded a well-defined PCL with a cyclohexene end-chain group (PCL-CH). The bromination and subsequent azidation of the cyclohexene end-chain group gave bisazido functionalized poly(ε-caprolactone) (PCL-(N3)2). Separately, an acetylene functionalized benzoin photoinitiator (PI-alkyne) was synthesized by using benzoin and propargyl bromide. Then the click reaction between PCL-(N3)2 and PI-alkyne was performed by Cu(I) catalysis. The spectroscopic studies revealed that poly(ε-caprolactone) with bisbenzoin photoactive functional group at the chain end (PCL-(PI)2) with controlled chain length and low-polydispersity was obtained. This PCL-(PI)2 macrophotoinitiator was used as a precursor in photoinduced free radical promoted cationic polymerization to synthesize an AB2-type miktoarm star copolymer consisting of poly(ε-caprolactone) (PCL, as A block) and poly(cyclohexene oxide) (PCHO, as B block), namely PCL(PCHO)2. PMID:29491778

  1. Recent Advances in Ring-Opening Functionalization of Cycloalkanols by C-C σ-Bond Cleavage.

    PubMed

    Wu, Xinxin; Zhu, Chen

    2018-06-01

    Cycloalkanols prove to be privileged precursors for the synthesis of distally substituted alkyl ketones and polycyclic aromatic hydrocarbons (PAHs) by virtue of cleavage of their cyclic C-C bonds. Direct functionalization of cyclobutanols to build up other chemical bonds (e. g., C-F, C-Cl, C-Br, C-N, C-S, C-Se, C-C, etc.) has been achieved by using the ring-opening strategy. Mechanistically, the C-C cleavage of cyclobutanols can be involved in two pathways: (a) transition-metal catalyzed β-carbon elimination; (b) radical-mediated 'radical clock'-type ring opening. The recent advances of our group for the ring-opening functionalization of tertiary cycloalkanols are described in this account. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  3. Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands

    PubMed Central

    Pribisko, Melanie A.; Ahmed, Tonia S.; Grubbs, Robert H.

    2014-01-01

    Two new Ru-based metathesis catalysts, 3 and 4, have been synthesized for the purpose of comparing their catalytic properties to those of their cis-selective nitrate analogues, 1 and 2. Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2, they maintained high cis-selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis-selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer. PMID:25484484

  4. Z-Selective Ruthenium Metathesis Catalysts: Comparison of Nitrate and Nitrite X-type Ligands.

    PubMed

    Pribisko, Melanie A; Ahmed, Tonia S; Grubbs, Robert H

    2014-12-14

    Two new Ru-based metathesis catalysts, 3 and 4 , have been synthesized for the purpose of comparing their catalytic properties to those of their cis -selective nitrate analogues, 1 and 2 . Although catalysts 3 and 4 exhibited slower initiation rates than 1 and 2 , they maintained high cis -selectivity in homodimerization and ring-opening metathesis polymerization reactions. Furthermore, the nitrite catalysts displayed higher cis -selectivity than 2 for ring-opening metathesis polymerizations, and 4 delivered higher yields of polymer.

  5. Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-05-01

    Ring-opening polymerization (ROP) of disilaoxacyclopentanes has proven to be an excellent approach to sol-gel type hybrid organic-inorganic materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared by an organic base or Bronsted acid (formic or triflic acid), without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

  6. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  7. L-Lactide Ring-Opening Polymerization with Tris(acetylacetonate)Titanium(IV) for Renewable Material.

    PubMed

    Kim, Da Hee; Yoo, Ji Yun; Ko, Young Soo

    2016-05-01

    A new Ti-type of catalyst for L-lactide polymerization was synthesized by reaction of titanium(IV) isopropoxide (TTIP) with acetylacetone (AA). Moreover, PLA was prepared by the bulk ring-opening polymerization using synthesized Ti catalyst. Polymerization behaviors were examined depending on monomer/catalyst molar ratio, polymerization temperature and time. The structure of synthesized catalysts was verified with FT-IR and 1H NMR and the properties of poly(L-lactide) (PLLA) were examined by GPC, DSC and FT-IR. There existed about 30 minutes of induction time at the monomer/catalyst molar ratio of 300. The molecular weight (MW) increased as monomer/catalyst molar ratio increased. The MW increased almost linearly as polymerization progressed. Increasing polymerization temperature increased the molecular weight of PLLA as well as monomer/catalyst molar ratio. The melting point (T(m)) of polymers was in the range of 142 to 167 degrees C. Lower T(m) was expected to be resulted from relatively lower molecular weight.

  8. Effect of initiators on synthesis of poly(L-lactide) by ring opening polymerization

    NASA Astrophysics Data System (ADS)

    Pholharn, D.; Srithep, Y.; Morris, J.

    2017-06-01

    We studied the effect of several aliphatic alcohols, including1-dodecanol, 1-octanol and methanol, as initiators on synthesis of poly(L-lactide) (PLLA) by ring opening polymerization. The reaction starts with L-lactide monomer and uses stannous octoate as catalyst. Fourier transform infrared spectroscopy and X-ray diffraction analysis verified that PLLAs were produced successfully. Weight, number average molecular weight and polydispersity index of PLLAs were measured by gel permeation chromatography. The PLLA initiated by methanol (PLLA-Meth) presented the highest molecular weight and yield percent. From differential scanning calorimetry, PLLA-Meth showed the highest melting temperature at ∼167°C, crystallization temperature at 110°C and degree of crystallinity 80%. The thermal stability was assessed by thermogravimetric analysis: this confirmed that PLLA-Meth was superior with the highest degradation temperature compared to PLLA initiated by other initiators. We concluded that methanol was the most appropriate initiator for PLLA synthesis by ring opening polymerization.

  9. DNA bases ring-expanded with a cyclopentadiene free radical: a theoretical investigation of building blocks with diradical character.

    PubMed

    Zhao, Peiwen; Bu, Yuxiang

    2016-01-14

    In this work, we computationally design radical nucleobases which possess improved electronic properties, especially diradical properties through introducing a cyclopentadiene radical. We predict that the detailed electromagnetic features of base assemblies are based on the orientation of the extra five-membered cyclopentadiene ring. Broken symmetry DFT calculations take into account the relevant structures and properties. Our results reveal that both the radicalized DNA bases and the base pairs formed when they combine with their counterparts remain stable and display larger spin delocalization. The mode of embedding the cyclopentadiene free radical in the structures has some influence on the degree of π-conjugation, which results in various diradical characteristics. Single-layered radical base pairs all have an open-shell singlet ground state, but the energy difference between singlet and triplet is not significant. For two-layered radical base pairs, the situation is more complex. All of them have an open-shell state as their ground state, including an open-shell singlet state and an open-shell triplet state. That is, the majority of radical base pairs possess anti-ferromagnetic or ferromagnetic characteristics. We present here a more in-depth discussion and analyses to study the magnetic characteristics of radical bases and base pairs. As an important factor, two-layered radical base pairs also have been carefully analyzed. We hope that all the measurements and results presented here will stimulate further detailed insights into the related mechanisms in modified DNA bases and the design of better ring-expanded DNA magnetic materials.

  10. Organo-Lewis acid as cocatalyst for cationic homogenous metallocene Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2000-01-01

    The synthesis of the organo-Lewis acid perfluorobiphenylborane (PBB) and the activation of metallocenes for the formation of a variety of highly active homogeneous Ziegler-Natta metallocene olefin polymerization, copolymerization and ring-opening polymerization catalysts is described.

  11. Enzymatic preparation of novel thermoplastic di-block copolyesters containing poly[(R)-3-hydroxybutyrate] and poly(epsilon-caprolactone) blocks via ring-opening polymerization.

    PubMed

    Dai, Shiyao; Li, Zhi

    2008-07-01

    Enzymatic modification of a microbial polyester was achieved by the ring-opening polymerization of epsilon-caprolactone (CL) with low-molecular weight telechelic hydroxylated poly[( R)-3-hydroxybutyrate] (PHB-diol) as initiator and Novozym 435 (immobilized Candida antarctica Lipase B) as catalyst in anhydrous 1,4-dioxane or toluene. The ring-opening polymerization was investigated at different conditions with two different types of PHB-diols: PHB-diol(P), containing a primary OH and a secondary OH end groups, and PHB-diol(M), consisting of 91% PHB-diol(P) and 9% PHB-diol containing two secondary OH end groups. The reactions were followed by GPC analyses of the resulting polymers at different time points, and the optimal conditions were established to be 70 degrees C at a weight ratio of CL/enzyme/solvent of 8:1:24. The ring-opening polymerization of CL with PHB-diol(M) (Mn of 2380, NMR) at the molar ratio of 50:1 under the optimal conditions in 1,4-dioxane gave the corresponding poly[HB(56 wt %)-co-CL(44 wt %)] with Mn (NMR) of 3900 in 66% yield. Polymerization of CL and PHB-diol(P) ( Mn of 2010, NMR) at the same condition in toluene gave the corresponding poly[HB(28 wt %)-co-CL(72 wt %)] with Mn (NMR) of 7100 in 86% yield. Both polymers were characterized by (1)H and (13)C NMR and IR analyses as di-block copolyesters containing a PHB block with a secondary OH end group and a poly(epsilon-caprolactone) (PCL) block with a primary OH end group. NMR analyses and control experiments suggested no formation of random copolymers and no change of the PHB block during the reaction. The enzymatic ring-opening polymerization was selectively initiated by the primary OH group of PHB-diol, whereas the secondary OH group remained as an end group in the final polymers. The thermal properties of the di-block poly(HB-co-CL)s were analyzed by DSC, with excellent T g values for the elastomer domain: poly[HB(56 wt %)- co-CL(44 wt %)] with M n (NMR) of 3900 demonstrated a T g of -57 degrees C, Tm of 145, 123, and 53 degrees C; and poly[HB(28wt%)-co-CL(72wt%)] with Mn (NMR) of 7100 gave a Tg of -60 degrees C, Tm of 147 and 50 degrees C. Thus, the selective enzymatic ring-opening polymerization with PHB-diol as macro-initiator provides a new method for the preparation of PHB-based block copolymers as biomaterials with good thermoplastic properties and novel structures containing functional end groups.

  12. Method of polymerizing exo-methylene cyclic organic compounds using homogeneous ring-opening catalysts

    DOEpatents

    Marks, Tobin J.; Yang, Xinmin; Jia, Li

    1994-01-01

    The regiospecific (1,2-Me.sub.2 C.sub.5 H.sub.3).sub.2 ZrMe.sup.+ MeB(C.sub.6 F.sub.5).sub.3.sup.- mediated ring-opening polymerization of methylenecyclobutane and its copolymerization with ethylene to polyolefins of microstructure--{CH.sub.2 CH.sub.2 CH.sub.2 C(CH.sub.2)]--.sub.n and {--[CH.sub.2 CHR]--.sub.x [CH.sub.2 CH.sub.2 CH.sub.2 C(CH.sub.2)]--.sub.y }.sub.n' respectively, is disclosed.

  13. Switching from Controlled Ring-Opening Polymerization (cROP) to Controlled Ring-Closing Depolymerization (cRCDP) by Adjusting the Reaction Parameters That Determine the Ceiling Temperature

    PubMed Central

    2016-01-01

    Full control over the ceiling temperature (Tc) enables a selective transition between the monomeric and polymeric state. This is exemplified by the conversion of the monomer 2-allyloxymethyl-2-ethyl-trimethylene carbonate (AOMEC) to poly(AOMEC) and back to AOMEC within 10 h by controlling the reaction from conditions that favor ring-opening polymerization (Tc > T0) (where T0 is the reaction temperature) to conditions that favor ring-closing depolymerization (Tc < T0). The ring-closing depolymerization (RCDP) mirrors the polymerization behavior with a clear relation between the monomer concentration and the molecular weight of the polymer, indicating that RCDP occurs at the chain end. The Tc of the polymerization system is highly dependent on the nature of the solvent, for example, in toluene, the Tc of AOMEC is 234 °C and in acetonitrile Tc = 142 °C at the same initial monomer concentration of 2 M. The control over the monomer to polymer equilibrium sets new standards for the selective degradation of polymers, the controlled release of active components, monomer synthesis and material recycling. In particular, the knowledge of the monomer to polymer equilibrium of polymers in solution under selected environmental conditions is of paramount importance for in vivo applications, where the polymer chain is subjected to both high dilution and a high polarity medium in the presence of catalysts, that is, very different conditions from which the polymer was formed. PMID:27783494

  14. Sol-gel chemistry by ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-02-07

    Sol-gel processing of materials is plagued by shrinkage during polymerization of the alkoxide monomers and processing (aging and drying) of the resulting gels. The authors have developed a new class of hybrid organic-inorganic materials based on the solventless ring-opening polymerization (ROP) of monomers bearing the 2,2,5,5-tetramethyl-2,5-disilaoxacyclopentyl group, which permits them to drastically reduce shrinkage in sol-gel processed materials. Because the monomers are polymerized through a chain growth mechanism catalyzed by base rather than the step growth mechanism normally used in sol-gel systems, hydrolysis and condensation products are entirely eliminated. Furthermore, since water is not required for hydrolysis, an alcohol solventmore » is not necessary. Monomers with two disilaoxacyclopentyl groups, separated by a rigid phenylene group or a more flexible alkylene group, were prepared through disilylation of the corresponding diacetylenes, followed by ring closure and hydrogenation. Anionic polymerization of these materials, either neat or with 2,2,5,5-tetramethyl-2,5-disila-1-oxacyclopentane as a copolymer, affords thermally stable transparent gels with no visible shrinkage. These materials provide an easy route to the introduction of sol-gel type materials in encapsulation of microelectronics, which they have successfully demonstrated.« less

  15. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization

    PubMed Central

    2016-01-01

    The need for polymers for high-end applications, coupled with the desire to mimic nature’s macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design. PMID:26795940

  16. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    PubMed

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  17. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Wei, Lulu; Lu, Beibei; Cui, Lin; Peng, Xueying; Wu, Jianning; Li, Deqiang; Liu, Zhiyong; Guo, Xuhong

    2017-12-01

    A novel type of amphiphilic pH-responsive folate-poly(ɛ-caprolactone)- block-poly(2-hydroxyethylmethacrylate)- co-poly(2-(dimethylamino)-ethylmethacrylate) (FA-PCL- b-P(HEMA- co-DMAEMA)) (MFP) block copolymers were designed and synthesized via atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) techniques. The molecular structures of the copolymers were confirmed with 1H NMR, FTIR and GPC measurements. The critical micelle concentration (CMC) of MFP in aqueous solution was extremely low (about 6.54 mg/L). The in vitro release behavior of DOX-loaded micelles was significantly accelerated when the pH value of solution decreased from 7.4 to 5.0. In vitro antitumor efficiency was evaluated by incubating DOX-loaded micelles with Hela cells. The results demonstrated that this copolymer possessed excellent biocompatibility, and FA-decorated micelles MFP showed higher cellular uptake than those micelles without the FA moiety, indicating their unique targetability. These folate-conjugated biodegradable micelles are highly promising for targeted cancer chemothe-rapy.

  18. Thermoset polymers via ring opening metathesis polymerization of functionalized oils

    DOEpatents

    Larock, Richard C; Henna, Phillip H; Kessier, Michael R

    2012-11-27

    The invention provides a method for producing a thermosetting resin from renewable oils, the method comprising supplying renewable oil molecules containing strained ring alkene moieties; reacting the alkene moieties with cyclic alkenes to create a polymer; and repeating the above two steps until the resin having desired characteristics are obtained. Also provided is a thermoset resin comprising functionalized renewable oil polymerized with a co-monomer.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speedmore » and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.« less

  20. Developments in the use of rare earth metal complexes as efficient catalysts for ring-opening polymerization of cyclic esters used in biomedical applications

    NASA Astrophysics Data System (ADS)

    Cota, Iuliana

    2017-04-01

    Biodegradable polymers represent a class of particularly useful materials for many biomedical and pharmaceutical applications. Among these types of polyesters, poly(ɛ-caprolactone) and polylactides are considered very promising for controlled drug delivery devices. These polymers are mainly produced by ring-opening polymerization of their respective cyclic esters, since this method allows a strict control of the molecular parameters (molecular weight and distribution) of the obtained polymers. The most widely used catalysts for ring-opening polymerization of cyclic esters are tin- and aluminium-based organometallic complexes; however since the contamination of the aliphatic polyesters by potentially toxic metallic residues is particularly of concern for biomedical applications, the possibility of replacing organometallic initiators by novel less toxic or more efficient organometallic complexes has been intensively studied. Thus, in the recent years, the use of highly reactive rare earth initiators/catalysts leading to lower polymer contamination has been developed. The use of rare earth complexes is considered a valuable strategy to decrease the polyester contamination by metallic residues and represents an attractive alternative to traditional organometallic complexes.

  1. Mechanochemical Ring-Opening Polymerization of Lactide: Liquid-Assisted Grinding for the Green Synthesis of Poly(lactic acid) with High Molecular Weight.

    PubMed

    Ohn, Nuri; Shin, Jihoon; Kim, Sung Sik; Kim, Jeung Gon

    2017-09-22

    Mechanochemical polymerization of lactide is carried out by using ball milling. Mechanical energy from collisions between the balls and the vessel efficiently promotes an organic-base-mediated metal- and solvent-free solid-state polymerization. Investigation of the parameters of the ball-milling synthesis revealed that the degree of lactide ring-opening polymerization could be modulated by the ball-milling time, vibration frequency, mass of the ball media, and liquid-assisted grinding. Liquid-assisted grinding was found to be an especially important factor for achieving a high degree of mechanochemical polymerization. Although polymer-chain scission from the strong collision energy prevented mechanical-force-driven high-molecular-weight polymer synthesis, the addition of only a small amount of liquid enabled sufficient energy dissipation and poly(lactic acid) was thereby obtained with a molecular weight of over 1×10 5  g mol -1 . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Persistent free radicals, heavy metals and PAHs generated in particulate soot emissions and residue ash from controlled combustion of common types of plastic.

    PubMed

    Valavanidis, Athanasios; Iliopoulos, Nikiforos; Gotsis, George; Fiotakis, Konstantinos

    2008-08-15

    The production and use of polymeric materials worldwide has reached levels of 150 million tonnes per year, and the majority of plastic materials are discarded in waste landfills where are burned generating toxic emissions. In the present study we conducted laboratory experiments for batch combustion/burning of commercial polymeric materials, simulating conditions of open fire combustion, with the purpose to analyze their emissions for chemical characteristics of toxicological importance. We used common types of plastic materials: poly(vinyl chloride) (PVC), low and high density poly(ethylene) (LDPE, HDPE), poly(styrene) (PS), poly(propylene) (PP) and poly(ethylene terephthalate) (PET). Samples of particulate smoke (soot) collected on filters and residue solid ash produced by controlled burning conditions at 600-750 degrees C are used for analysis. Emissions of particulate matter, persistent free radicals embedded in the carbonaceous polymeric matrix, heavy metals, other elements and PAHs were determined in both types of samples. Results showed that all plastics burned easily generating charred residue solid ash and black airborne particulate smoke. Persistent carbon- and oxygen-centered radicals, known for their toxic effects in inhalable airborne particles, were detected in both particulate smoke emissions and residue solid ash. Concentrations of heavy metals and other elements (determined by Inductively Coupled Plasma Emission Spectrometry, ICP, method) were measured in the airborne soot and residue ash. Toxic heavy metals, such as Pb, Zn, Cr, Ni, and Cd were relatively at were found at low concentrations. High concentrations were found for some lithophilic elements, such as Na, Ca, Mg, Si and Al in particulate soot and residue solid ash. Measurements of PAHs showed that low molecular weight PAHs were at higher concentrations in the airborne particulate soot than in the residue solid ash for all types of plastic. Higher-ringed PAHs were detected at higher concentrations in the residue solid ash of PVC as compared to those from the other types of plastic. The open-air burning of plastic material and their toxic emissions is of growing concern in areas of municipal solid waste where open-fires occur intentionally or accidentally. Another problem is building fires in which victims may suffer severe smoke inhalation from burning plastic materials in homes and in working places.

  3. Biocatalytic synthesis and polymerization via ROMP of new biobased phenolic monomers: a greener process towards sustainable antioxidant polymers

    NASA Astrophysics Data System (ADS)

    Diot-Néant, Florian; Migeot, Loïs; Hollande, Louis; Reano, Felix A.; Domenek, Sandra; Allais, Florent

    2017-12-01

    Antioxidant norbornene-based monomers bearing biobased sterically hindered phenols (SHP) - NDF (norbornene dihydroferulate) and NDS (norbornene dihydrosinapate) - have been successfully prepared through biocatalysis from naturally occurring ferulic and sinapic acids, respectively, in presence of Candida antarctica Lipase B (Cal-B). The ring opening metathesis polymerization (ROMP) of these monomers was investigated according to ruthenium catalyst type (GI) vs. (HGII) and monomer to catalyst molar ratio ([M]/[C]). The co-polymerization of antioxidant functionalized monomer (NDF or NDS) and non-active norbornene (N) has also been performed in order to adjust the number of SHP groups present per weight unit and tune the antioxidant activity of the copolymers. The polydispersity of the resulting copolymers was readily improved by a simple acetone wash to provide antioxidant polymers with well-defined structures. After hydrogenation with p-toluenesulfonylhydrazine (p-TSH), the radical scavenging ability of the resulting saturated polymers was evaluated using α,α-diphenyl-β-picrylhydrazyl (DPPH) analysis. Results demonstrated that polymers bearing sinapic acid SHP exhibited higher antiradical activity than the polymer bearing ferulic acid SHP. In addition it was also shown that only a small SHP content was needed in the copolymers to exhibit a potent antioxidant activity.

  4. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-08-04

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  5. Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers.

    PubMed

    Wan, Xuejuan; Liu, Tao; Liu, Shiyong

    2011-04-11

    We report on the facile synthesis of well-defined amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization (ROP) directly initiating from cyclic precursors, their self-assembling behavior in aqueous solution, and the application of micellar assemblies as controlled release drug nanocarriers. Starting from a trifunctional core molecule containing alkynyl, hydroxyl, and bromine moieties, alkynyl-(OH)-Br, macrocyclic poly(N-isopropylacrylamide) (c-PNIPAM) bearing a single hydroxyl functionality was prepared by atom transfer radical polymerization (ATRP), the subsequent end group transformation into azide functionality, and finally the intramacromolecular ring closure reaction via click chemistry. The target amphiphilic tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, was then synthesized via the ROP of ε-caprolactone (CL) by directly initiating from the cyclic precursor. In aqueous solution at 20 °C, (c-PNIPAM)-b-PCL self-assembles into spherical micelles consisting of hydrophobic PCL cores and well-solvated coronas of cyclic PNIPAM segments. For comparison, linear diblock copolymer with comparable molecular weight and composition, (l-PNIPAM)-b-PCL, was also synthesized. It was found that the thermoresponsive coronas of micelles self-assembled from (c-PNIPAM)-b-PCL exhibit thermoinduced collapse and aggregation at a lower critical thermal phase transition temperature (T(c)) compared with those of (l-PNIPAM)-b-PCL. Temperature-dependent drug release profiles from the two types of micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL loaded with doxorubicin (Dox) were measured, and the underlying mechanism for the observed difference in releasing properties was proposed. Moreover, MTT assays revealed that micelles of (c-PNIPAM)-b-PCL are almost noncytotoxic up to a concentration of 1.0 g/L, whereas at the same polymer concentration, micelles loaded with Dox lead to ∼60% cell death. Overall, chain topologies of thermoresponsive block copolymers, that is, (c-PNIPAM)-b-PCL versus (l-PNIPAM)-b-PCL, play considerable effects on the self-assembling and thermal phase transition properties and their functions as controlled release drug nanocarriers.

  6. Highly Active N,O Zinc Guanidine Catalysts for the Ring-Opening Polymerization of Lactide.

    PubMed

    Schäfer, Pascal M; Fuchs, Martin; Ohligschläger, Andreas; Rittinghaus, Ruth; McKeown, Paul; Akin, Enver; Schmidt, Maximilian; Hoffmann, Alexander; Liauw, Marcel A; Jones, Matthew D; Herres-Pawlis, Sonja

    2017-09-22

    New zinc guanidine complexes with N,O donor functionalities were prepared, characterized by X-Ray crystallography, and examined for their catalytic activity in the solvent-free ring-opening polymerization (ROP) of technical-grade rac-lactide at 150 °C. All complexes showed a high activity. The fastest complex [ZnCl 2 (DMEGasme)] (C1) produced colorless poly(lactide) (PLA) after 90 min with a conversion of 52 % and high molar masses (M w =69 100, polydispersity=1.4). The complexes were tested with different monomer-to-initiator ratios to determine the rate constant k p . Furthermore, a polymerization with the most active complex C1 was monitored by in situ Raman spectroscopy. Overall, conversion of up to 90 % can be obtained. End-group analysis was performed to clarify the mechanism. All four complexes combine robustness against impurities in the lactide with high polymerization rates, and they represent the fastest robust lactide ROP catalysts to date, opening new avenues to a sustainable ROP catalyst family for industrial use. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ring-Opening Polymerization of rac-Lactide with Aluminum Chiral Anilido-Oxazolinate Complexes

    PubMed Central

    2015-01-01

    A series of dimethylaluminum complexes (L1a–i)AlMe2 (2a–i, where HL1a–i = 2-(2′-ArNH)phenyl-4-R1-oxazoline) bearing chiral, bidentate anilido-oxazolinate ligands have been prepared and characterized. Six of the complexes, in the presence of an alcohol cocatalyst, are shown to be active initiators for the stereoselective ring-opening polymerization of rac-lactide in toluene solution and under bulk conditions, yielding polylactides with a range of tacticity from slightly isotactic to moderately heterotactic. The reactivity and selectivity of these catalysts are discussed on the basis of the effect of their substituents. PMID:24891754

  8. Functionalization of multi-walled carbon nanotubes by epoxide ring-opening polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Fanlong; Rhee, Kyong Yop; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2011-12-15

    In this study, covalent functionalization of carbon nanotubes (CNTs) was accomplished by surface-initiated epoxide ring-opening polymerization. FT-IR spectra showed that polyether and epoxide group covalently attached to the sidewalls of CNTs. TGA results indicated that the polyether was successfully grown from the CNT surface, with the final products having a polymer weight percentage of ca. 14-74 wt%. The O/C ratio of CNTs increased significantly from 5.1% to 29.8% after surface functionalization of CNTs. SEM and TEM images of functionalized CNTs exhibited that the tubes were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs atmore » the center. - Graphical abstract: Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers, forming core-shell structures with CNTs at the center. Highlights: Black-Right-Pointing-Pointer CNTs were functionalized by epoxide ring-opening polymerization. Black-Right-Pointing-Pointer Polyether and epoxide group covalently attached to the sidewalls of CNTs. Black-Right-Pointing-Pointer Functionalized CNTs have a polymer weight percentage of ca. 14-74 wt%. Black-Right-Pointing-Pointer Functionalized CNTs were enwrapped by polymer chains with thickness of several nanometers.« less

  9. Excimers from stable and persistent supramolecular radical-pairs in red/NIR-emitting organic nanoparticles and polymeric films.

    PubMed

    Blasi, Davide; Nikolaidou, Domna M; Terenziani, Francesca; Ratera, Imma; Veciana, Jaume

    2017-03-29

    In this work, the luminescence properties of new materials based on open-shell molecular systems are studied. In particular, we prepared polymeric films and organic nanoparticles (ONPs) doped with triphenylmethyl radical molecules. ONPs exhibit a uniform size distribution, spherical morphology and high colloidal stability. The emission spectrum of low-doped ONP suspensions and low-doped films is very similar to the emission spectrum of TTM in solution, while the luminescence lifetime and the luminescence quantum yield (LQY) are highly increased. Increasing the radical doping leads to a progressive decrease of the LQY and the appearance of a new broad excimeric band at longer wavelengths, both for ONPs and films. Thus, not only the luminescence properties were improved, but also the formation of excimers from stable and persistent supramolecular radical-pairs was observed for the first time. The good stability and luminescence properties with emission in the red-NIR region (650-800 nm), together with the open-shell nature of the emitter, make these free-radical excimer-forming materials promising candidates for optoelectronic and bioimaging applications.

  10. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1995-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R"'.sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R"', and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  11. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, Tobin J.; Eisen, Moris S.; Giardello, Michael A.

    1994-01-01

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C.sub.5 R'.sub.4-x R*.sub.x) A (C.sub.5 R".sub.4-y R'".sub.y) M Q.sub.p, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R', R", R'", and R* represent substituted and unsubstituted alkyl groups having 1-30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3.ltoreq.p.ltoreq.o. Related complexes may be prepared by alkylation of the corresponding dichorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form "cation-like" species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other .alpha.-olefin polymerization can be effected with very high efficiency and isospecificity.

  12. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1995-10-03

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C{sub 5}R{prime}{sub 4{minus}x}R*{sub x})A(C{sub 5}R{double_prime}{sub 4{minus}y}R{double_prime}{prime}{sub y})MQ{sub p}, where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R{prime}, R{double_prime}, R{double_prime}{prime}, and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3{>=}p{>=}0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form ``cation-like`` species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other {alpha}-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  13. Homogeneous catalysts for stereoregular olefin polymerization

    DOEpatents

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [<=] p [<=] 0. Related complexes may be prepared by alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  14. Method for making block siloxane copolymers

    DOEpatents

    Butler, N.L.; Jessop, E.S.; Kolb, J.R.

    1981-02-25

    A method for synthesizing block polysiloxane copolymers is disclosed. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  15. Method for making block siloxane copolymers

    DOEpatents

    Butler, Nora; Jessop, Edward S.; Kolb, John R.

    1982-01-01

    A method for synthesizing block polysiloxane copolymers. Diorganoscyclosiloxanes and an end-blocking compound are interacted in the presence of a ring opening polymerization catalyst, producing a blocked prepolymer. The prepolymer is then interacted with a silanediol, resulting in condensation polymerization of the prepolymers. A second end-blocking compound is subsequently introduced to end-cap the polymers and copolymers formed from the condensation polymerization.

  16. Helium Nanodroplet Isolation of the Cyclobutyl, 1-Methylallyl, and Allylcarbinyl Radicals: Infrared Spectroscopy and Ab Initio Computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.

    Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less

  17. Helium Nanodroplet Isolation of the Cyclobutyl, 1-Methylallyl, and Allylcarbinyl Radicals: Infrared Spectroscopy and Ab Initio Computations

    DOE PAGES

    Brown, Alaina R.; Franke, Peter R.; Douberly, Gary E.

    2017-09-22

    Gas-phase cyclobutyl radical (*C 4H 7) is produced via pyrolysis of cyclobutylmethyl nitrite (C 4H 7(CH 2)ONO). Other (C 4H 7)-C-center dot radicals, such as 1-methylallyl and allylcarbinyl, are similarly produced from nitrite precursors. Nascent radicals are promptly solvated in liquid He droplets, allowing for the acquisition of infrared spectra in the CH stretching region. For the cyclobutyl and 1-methylallyl radicals, anharmonic frequencies are predicted by VPT2+K simulations based upon a hybrid CCSD(T) force field with quadratic (cubic and quartic) force constants computed using the ANO1 (ANO0) basis set. A density functional theoretical method is used to compute the forcemore » field for the allylcarbinyl radical. For all *C 4H 7 radicals, resonance polyads in the 2800-3000 cm -1 region appear as a result of anharmonic coupling between the CH stretching fundamentals and CH, bend overtones and combinations. Upon pyrolysis of the cyclobutylmethyl nitrite precursor to produce the cyclobutyl radical, an approximately 2-fold increase in the source temperature leads to the appearance of spectral signatures that can be assigned to 1-methylallyl and 1,3-butadiene. On the basis of a previously reported *C 4H 7 potential energy surface, this result is interpreted as evidence for the unimolecular decomposition of the cyclobutyl radical via ring opening, prior to it being captured by helium droplets. On the *C 4H 7 potential surface, 1,3-butadiene is formed from cyclobutyl ring opening and H atom loss, and the 1-methylallyl radical is the most energetically stable intermediate along the decomposition pathway. Here, the allylcarbinyl radical is a higher-energy (C 4H 7)-C-center dot intermediate along the ring-opening path, and the spectral signatures of this radical are not observed under the same conditions that produce 1-methylallyl and 1,3-butadiene from the unimolecular decomposition of cyclobutyl.« less

  18. Multilayer Choline Phosphate Molecule Modified Surface with Enhanced Cell Adhesion but Resistance to Protein Adsorption.

    PubMed

    Chen, Xingyu; Yang, Ming; Liu, Botao; Li, Zhiqiang; Tan, Hong; Li, Jianshu

    2017-08-22

    Choline phosphate (CP), which is a new zwitterionic molecule, and has the reverse order of phosphate choline (PC) and could bind to the cell membrane though the unique CP-PC interaction. Here we modified a glass surface with multilayer CP molecules using surface-initiated atom-transfer radical polymerization (SI-ATRP) and the ring-opening method. Polymeric brushes of (dimethylamino)ethyl methacrylate (DMAEMA) were synthesized by SI-ATRP from the glass surface. Then the grafted PDMAEMA brushes were used to introduce CP groups to fabricate the multilayer CP molecule modified surface. The protein adsorption experiment and cell culture test were used to evaluate the biocompatibility of the modified surfaces by using human umbilical veinendothelial cells (HUVECs). The protein adsorption results demonstrated that the multilayer CP molecule decorated surface could prevent the adsorption of fibrinogen and serum protein. The adhesion and proliferation of cells were improved significantly on the multilayer CP molecule modified surface. Therefore, the biocompatibility of the material surface could be improved by the modified multilayer CP molecule, which exhibits great potential for biomedical applications, e.g., scaffolds in tissue engineering.

  19. Biocatalytic Synthesis of Poly(δ-Valerolactone) Using a Thermophilic Esterase from Archaeoglobus fulgidus as Catalyst

    PubMed Central

    Cao, Hong; Han, Haobo; Li, Guangquan; Yang, Jiebing; Zhang, Lingfei; Yang, Yan; Fang, Xuedong; Li, Quanshun

    2012-01-01

    The ring-opening polymerization of δ-valerolactone catalyzed by a thermophilic esterase from the archaeon Archaeoglobus fulgidus was successfully conducted in organic solvents. The effects of enzyme concentration, temperature, reaction time and reaction medium on monomer conversion and product molecular weight were systematically evaluated. Through the optimization of reaction conditions, poly(δ-valerolactone) was produced in 97% monomer conversion, with a number-average molecular weight of 2225 g/mol, in toluene at 70 °C for 72 h. This paper has produced a new biocatalyst for the synthesis of poly(δ-valerolactone), and also deeper insight has been gained into the mechanism of thermophilic esterase-catalyzed ring-opening polymerization. PMID:23202895

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsasser, Brigitta M.; Schoenen, Iris; Fels, Gregor

    Candida antarctica lipase B (CALB) efficiently catalyzes the ring-opening polymerization of lactones to high molecular weight products in good yield. In contrast, an efficient enzymatic synthesis of polyamides has so far not been described in the literature. This obvious difference in enzyme catalysis is the subject of our comparative study of the initial steps of a CALB catalyzed ring-opening polymerization of ε- caprolactone and ε-caprolactam. We have applied docking tools to generate the reactant state complex and performed quantum mechanical/molecular mechanical (QM/MM) calculations at the density functional theory (DFT) PBE0 level of theory to simulate the acylation of Ser105 bymore » the lactone and the lactam, respectively, via the corresponding first tetrahedral intermediates. We could identify a decisive difference in the accessibility of the two substrates in the ring-opening to the respective acyl enzyme complex as the attack of ε-caprolactam is hindered because of an energetically disfavored proton transfer during this part of the catalytic reaction while ε-caprolactone is perfectly processed along the widely accepted pathway using the catalytic triade of Ser105, His224, and Asp187. Since the generation of an acylated Ser105 species is the crucial step of the polymerization procedure, our results give an explanation for the unsatisfactory enzymatic polyamide formation and opens up new possibilities for targeted rational catalyst redesign in hope of an experimentally useful CALB catalyzed polyamide synthesis.« less

  1. Ring-Opening Metathesis Polymerization in Aqueous Media using a Macroinitiator Approach.

    PubMed

    Foster, Jeffery; Varlas, Spyridon; Blackman, Lewis; Arkinstall, Lucy; O'Reilly, Rachel Kerry

    2018-06-26

    Water-soluble and amphiphilic polymers are of great interest to industry and academia, as they can be used in applications such as biomaterials and drug delivery. Whilst ring-opening metathesis polymerization (ROMP) is a fast and functional group tolerant methodology for the synthesis of a wide range of polymers, its full potential for the synthesis of water-soluble polymers has yet to be realized. To address this we report a general strategy for the synthesis of block copolymers in aqueous milieu using a commercially available ROMP catalyst and a macroinitiator approach. This allows for excellent control in the preparation of block copolymers in water. If the second monomer is chosen such that it forms a water-insoluble polymer, polymerization-induced self-assembly (PISA) occurs and a variety of self-assembled nano-object morphologies can be accessed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polymerization of euphorbia oil with Lewis acid in carbon dioxide media

    USDA-ARS?s Scientific Manuscript database

    Boron trifluoride diethyl etherate (BF3-OEt2) Lewis acid catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, in liquid carbon dioxide was conducted in an effort to develop useful vegetable oil based polymers. The resulting polymers (RPEO) were characterized by FTIR, 1H-...

  3. Polymerization of euphorbia oil in carbon dioxide media

    USDA-ARS?s Scientific Manuscript database

    Boron trifluoride diethyl etherate (BF3•OEt2), Lewis acid, catalyzed ring-opening polymerization of euphorbia oil (EO), a natural epoxy oil, was conducted in carbon dioxide. The resulting polymers (RPEO) were characterized by FTIR, 1H-NMR, 13C-NMR, solid state 13C-NMR spectroscopies, differential sc...

  4. Understanding the Reaction Chemistry of 2,2':5',2''-Terthiophene Films with Vapor-Deposited Ag, Al, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Lingzi; Matz, Dallas L.; Pemberton, Jeanne E.

    The reaction chemistry of vapor-deposited 2,2':5',2''-terthiophene (α-3T) solid-state thin films with postdeposited Ag, Al, and Ca is investigated in ultrahigh vacuum using Raman spectroscopy. Vapor-deposited Ag forms nanoparticles on these films and induces considerable surface enhanced Raman scattering (SERS) along with a change in molecular symmetry of adjacent α-3T and formation of Ag–S bonds; no other reaction chemistry is observed. Vapor-deposited Al and Ca undergo chemical reaction with α-3T initiated by metal-to-α-3T electron transfer. For Al, the resulting product is predominantly amorphous carbon through initial radical formation and subsequent decomposition reactions. For Ca, the spectral evidence suggests two pathways: onemore » leading to α-3T polymerization and the other resulting in thiophene ring opening, both initiated by radical formation through Ca-to-α-3T electron transfer. These interfacial reactions reflect the complex chemistry that can occur between low work function metals and thiophene-based oligomers. This reactivity is strongly correlated with metal work function.« less

  5. Understanding the Reaction Chemistry of 2,2':5',2"-Terthiophene Films with Vapor-Deposited Ag, Al, and Ca

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sang, Lingzi; Matz, Dallas L.; Pemberton, Jeanne E.

    The reaction chemistry of vapor-deposited 2,2':5',2''-terthiophene (α-3T) solid-state thin films with postdeposited Ag, Al, and Ca is investigated in ultrahigh vacuum using Raman spectroscopy. Vapor-deposited Ag forms nanoparticles on these films and induces considerable surface enhanced Raman scattering (SERS) along with a change in molecular symmetry of adjacent α-3T and formation of Ag–S bonds; no other reaction chemistry is observed. Vapor-deposited Al and Ca undergo chemical reaction with α-3T initiated by metal-to-α-3T electron transfer. For Al, the resulting product is predominantly amorphous carbon through initial radical formation and subsequent decomposition reactions. For Ca, the spectral evidence suggests two pathways: onemore » leading to α-3T polymerization and the other resulting in thiophene ring opening, both initiated by radical formation through Ca-to-α-3T electron transfer. These interfacial reactions reflect the complex chemistry that can occur between low work function metals and thiophene-based oligomers. This reactivity is strongly correlated with metal work function.« less

  6. Interactions between manganese oxides and multiple-ringed aromatic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ''humic-like'' material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less

  7. Interactions between manganese oxides and multiple-ringed aromatic compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whelan, G.; Sims, R.C.

    1992-08-01

    Objective is to determine whether Mn reductive dissolution can oxidize multiple-ringed aromatics, such as PAHs, in an oxic environment? Research indicated that certain PAHs (eg, dihydrodiols and diones that form free-radical intermediates) are susceptible to oxidation and polymerization. Over 14 days, 83, 76, 54, 70, and 20% of the Mn was reduced by 2,3-, 1,3-, and 1,4-naphthalenediol, quinizarin, and 1,4-naphthoquinone, respectively. 100, 100, and 65% of the first three PAHs were oxidized, respectively. Aromatics with diol functional groups were more easily oxidized than those with only dione groups. Relatively insoluble compounds like quinizarin can be oxidized; insoluble ``humic-like`` material precipitated,more » indicating a polymerization-humification process. Results suggest that electron transfer/organic release from the oxide surface is the rate-limiting step.« less

  8. Initial Reactivity of Linkages and Monomer Rings in Lignin Pyrolysis Revealed by ReaxFF Molecular Dynamics.

    PubMed

    Zhang, Tingting; Li, Xiaoxia; Guo, Li

    2017-10-24

    The initial conversion pathways of linkages and their linked monomer units in lignin pyrolysis were investigated comprehensively by ReaxFF MD simulations facilitated by the unique VARxMD for reaction analysis. The simulated molecular model contains 15 920 atoms and was constructed on the basis of Adler's softwood lignin model. The simulations uncover the initial conversion ratio of various linkages and their linked aryl monomers. For linkages and their linked monomer aryl rings of α-O-4, β-O-4 and α-O-4 & β-5, the C α /C β ether bond cracking dominates the initial pathway accounting for at least up to 80% of their consumption. For the linkage of β-β & γ-O-α, both the C α -O ether bond cracking and its linked monomer aryl ring opening are equally important. Ring-opening reactions dominate the initial consumption of other 4-O-5, 5-5, β-1, β-2, and β-5 linkages and their linked monomers. The ether bond cracking of C α -O and C β -O occurs at low temperature, and the aryl ring-opening reactions take place at relatively high temperature. The important intermediates leading to the stable aryl ring opening are the phenoxy radicals, the bridged five-membered and three-membered rings and the bridged six-membered and three-membered rings. In addition, the reactivity of a linkage and its monomer aryl ring may be affected by other linkages. The ether bond cracking of α-O-4 and β-O-4 linkages can activate its neighboring linkage or monomer ring through the formed phenoxy radicals as intermediates. The important intermediates revealed in this article should be of help in deepening the understanding of the controlling mechanism for producing aromatic chemicals from lignin pyrolysis.

  9. Radical Nature of C-Lignin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berstis, Laura; Elder, Thomas; Crowley, Michael

    The recently discovered lignin composed of caffeoyl alcohol monolignols or C-lignin is particularly intriguing given its homogeneous, linear polymeric structure and exclusive benzodioxane linkage between monomers. By virtue of this simplified chemistry, the potential emerges for improved valorization strategies with C-lignin relative to other natural heterogeneous lignins. To better understand caffeoyl alcohol polymers, we characterize the thermodynamics of the radical recombination dimerization reactions forming the benzodioxane linkage and the bond dissociation into radical monolignol products. These properties are also predicted for the cross-coupling of caffeoyl alcohol with the natural monolignols, coniferyl alcohol, sinapyl alcohol, and p-coumaryl alcohol, in anticipation of polymers potentially enabled by genetic modification. The average BDEs for the C-lignin benzodioxanemore » $$\\alpha$$- and β-bonds are 56.5 and 63.4 kcal/mol, respectively, with similar enthalpies for heterodimers. The BDE of the $$\\alpha$$-bond within the benzodioxane linkage is consistently greater than that of the β-bond in all dimers of each stereochemical arrangement, explained by the ability the $$\\alpha$$-carbon radical generated to delocalize onto the adjacent phenyl ring. Relative thermodynamics of the heterodimers demonstrates that the substituents on the phenyl ring directly neighboring the bond coupling the monolignols more strongly impact the dimer bond strengths and product stability, compared to the substituents present on the terminal phenyl ring. Enthalpy comparisons furthermore demonstrate that the erythro stereochemical configurations of the benzodioxane bond are slightly less thermodynamically stable than the threo configurations. The overall differences in strength of bonds and reaction enthalpies between stereoisomers are generally found to be insignificant, supporting that postcoupling rearomatization is under kinetic control. Projecting the lowest-energy stereoisomer internal coordinates to longer polymer C-lignin strands highlights how significantly the stereochemical outcomes in polymerization may impact the macromolecular structure and in turn material and chemical properties. Lastly, through these comparisons of geometry, bond strengths, and reaction enthalpies, we shed light on the distinctive properties of C-lignin's radical recombination and decomposition chemistry, and its potential as a natural lignin solution for biorefinery feedstocks and unique materials science applications.« less

  10. Radical Nature of C-Lignin

    DOE PAGES

    Berstis, Laura; Elder, Thomas; Crowley, Michael; ...

    2016-05-17

    The recently discovered lignin composed of caffeoyl alcohol monolignols or C-lignin is particularly intriguing given its homogeneous, linear polymeric structure and exclusive benzodioxane linkage between monomers. By virtue of this simplified chemistry, the potential emerges for improved valorization strategies with C-lignin relative to other natural heterogeneous lignins. To better understand caffeoyl alcohol polymers, we characterize the thermodynamics of the radical recombination dimerization reactions forming the benzodioxane linkage and the bond dissociation into radical monolignol products. These properties are also predicted for the cross-coupling of caffeoyl alcohol with the natural monolignols, coniferyl alcohol, sinapyl alcohol, and p-coumaryl alcohol, in anticipation of polymers potentially enabled by genetic modification. The average BDEs for the C-lignin benzodioxanemore » $$\\alpha$$- and β-bonds are 56.5 and 63.4 kcal/mol, respectively, with similar enthalpies for heterodimers. The BDE of the $$\\alpha$$-bond within the benzodioxane linkage is consistently greater than that of the β-bond in all dimers of each stereochemical arrangement, explained by the ability the $$\\alpha$$-carbon radical generated to delocalize onto the adjacent phenyl ring. Relative thermodynamics of the heterodimers demonstrates that the substituents on the phenyl ring directly neighboring the bond coupling the monolignols more strongly impact the dimer bond strengths and product stability, compared to the substituents present on the terminal phenyl ring. Enthalpy comparisons furthermore demonstrate that the erythro stereochemical configurations of the benzodioxane bond are slightly less thermodynamically stable than the threo configurations. The overall differences in strength of bonds and reaction enthalpies between stereoisomers are generally found to be insignificant, supporting that postcoupling rearomatization is under kinetic control. Projecting the lowest-energy stereoisomer internal coordinates to longer polymer C-lignin strands highlights how significantly the stereochemical outcomes in polymerization may impact the macromolecular structure and in turn material and chemical properties. Lastly, through these comparisons of geometry, bond strengths, and reaction enthalpies, we shed light on the distinctive properties of C-lignin's radical recombination and decomposition chemistry, and its potential as a natural lignin solution for biorefinery feedstocks and unique materials science applications.« less

  11. Copper-Catalyzed Cyclopropanol Ring Opening Csp(3)-Csp(3) Cross-Couplings with (Fluoro)Alkyl Halides.

    PubMed

    Ye, Zhishi; Gettys, Kristen E; Shen, Xingyu; Dai, Mingji

    2015-12-18

    Novel and general copper-catalyzed cyclopropanol ring opening cross-coupling reactions with difluoroalkyl bromides, perfluoroalkyl iodides, monofluoroalkyl bromides, and 2-bromo-2-alkylesters to synthesize various β-(fluoro)alkylated ketones are reported. The reactions feature mild conditions and excellent functional group compatibility and can be scaled up to gram scale. Preliminary mechanistic studies suggest the involvement of radical intermediates. The difluoroalkyl-alkyl cross-coupling products can also be readily converted to more valuable and diverse gem-difluoro-containing compounds by taking advantage of the carbonyl group resulting from cyclopropanol ring opening.

  12. Lewis acid catalyzed ring-opening polymerization of natural epoxy oil (Euphorbia oil) in carbon dioxide media

    USDA-ARS?s Scientific Manuscript database

    In an attempt to build up useful application of plant oil based polymers, natural epoxy oil (euphorbia oil-EuO) was polymerized in liquid carbon dioxide in the presence of Lewis acid catalyst [Boron trifluoride diethyl etherate (BF3•OEt2)]. The resulting polymers (RPEuO) were characterized by FTIR ...

  13. A facile route to ketene-functionalized polymers for general materials applications

    NASA Astrophysics Data System (ADS)

    Leibfarth, Frank A.; Kang, Minhyuk; Ham, Myungsoo; Kim, Joohee; Campos, Luis M.; Gupta, Nalini; Moon, Bongjin; Hawker, Craig J.

    2010-03-01

    Function matters in materials science, and methodologies that provide paths to multiple functionality in a single step are to be prized. Therefore, we introduce a robust and efficient strategy for exploiting the versatile reactivity of ketenes in polymer chemistry. New monomers for both radical and ring-opening metathesis polymerization have been developed, which take advantage of Meldrum's acid as both a synthetic building block and a thermolytic precursor to dialkyl ketenes. The ketene-functionalized polymers are directly detected by their characteristic infrared absorption and are found to be stable under ambient conditions. The inherent ability of ketenes to provide crosslinking via dimerization and to act as reactive chemical handles via addition, provides simple methodology for application in complex materials challenges. Such versatile characteristics are illustrated by covalently attaching and patterning a dye through microcontact printing. The strategy highlights the significant opportunities afforded by the traditionally neglected ketene functional group in polymer chemistry.

  14. Postpolymerization Modifications of Alkene-Functional Polycarbonates for the Development of Advanced Materials Biomaterials.

    PubMed

    Thomas, Anthony W; Dove, Andrew P

    2016-12-01

    Functional aliphatic polycarbonates have attracted significant attention as materials for use as biomedical polymers in recent years. The incorporation of pendent functionality offers a facile method of modifying materials postpolymerization, thus enabling functionalities not compatible with ring-opening polymerization (ROP) to be introduced into the polymer. In particular, polycarbonates bearing alkene-terminated functional groups have generated considerable interest as a result of their ease of synthesis, and the wide range of materials that can be obtained by performing simple postpolymerization modifications on this functionality, for example, through radical thiol-ene addition, Michael addition, and epoxidation reactions. This review presents an in-depth appraisal of the methods used to modify alkene-functional polycarbonates postpolymerization, and the diversity of practical applications for which these materials and their derivatives have been used. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Molecularly Imprinted Biodegradable Nanoparticles

    NASA Astrophysics Data System (ADS)

    Gagliardi, Mariacristina; Bertero, Alice; Bifone, Angelo

    2017-01-01

    Biodegradable polymer nanoparticles are promising carriers for targeted drug delivery in nanomedicine applications. Molecu- lar imprinting is a potential strategy to target polymer nanoparticles through binding of endogenous ligands that may promote recognition and active transport into specific cells and tissues. However, the lock-and-key mechanism of molecular imprinting requires relatively rigid cross-linked structures, unlike those of many biodegradable polymers. To date, no fully biodegradable molecularly imprinted particles have been reported in the literature. This paper reports the synthesis of a novel molecularly- imprinted nanocarrier, based on poly(lactide-co-glycolide) (PLGA) and acrylic acid, that combines biodegradability and molec- ular recognition properties. A novel three-arm biodegradable cross-linker was synthesized by ring-opening polymerization of glycolide and lactide initiated by glycerol. The resulting macromer was functionalized by introduction of end-functions through reaction with acryloyl chloride. Macromer and acrylic acid were used for the synthesis of narrowly-dispersed nanoparticles by radical polymerization in diluted conditions in the presence of biotin as template molecule. The binding capacity of the imprinted nanoparticles towards biotin and biotinylated bovine serum albumin was twentyfold that of non-imprinted nanoparti- cles. Degradation rates and functional performances were assessed in in vitro tests and cell cultures, demonstrating effective biotin-mediated cell internalization.

  16. miktoarm polymer: controlled synthesis, characterization, and application as anticancer drug carrier

    NASA Astrophysics Data System (ADS)

    Lin, Wenjing; Nie, Shuyu; Xiong, Di; Guo, Xindong; Wang, Jufang; Zhang, Lijuan

    2014-05-01

    Amphiphilic A2(BC)2 miktoarm star polymers [poly(ɛ-caprolactone)]2-[poly(2-(diethylamino)ethyl methacrylate)- b- poly(poly(ethylene glycol) methyl ether methacrylate)]2 [(PCL)2(PDEA- b-PPEGMA)2] were developed by a combination of ring opening polymerization (ROP) and continuous activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP). The critical micelle concentration (CMC) values were extremely low (0.0024 to 0.0043 mg/mL), depending on the architecture of the polymers. The self-assembled empty and doxorubicin (DOX)-loaded micelles were spherical in morphologies, and the average sizes were about 63 and 110 nm. The release of DOX at pH 5.0 was much faster than that at pH 6.5 and pH 7.4. Moreover, DOX-loaded micelles could effectively inhibit the growth of cancer cells HepG2 with IC50 of 2.0 μg/mL. Intracellular uptake demonstrated that DOX was delivered into the cells effectively after the cells were incubated with DOX-loaded micelles. Therefore, the pH-sensitive (PCL)2(PDEA- b-PPEGMA)2 micelles could be a prospective candidate as anticancer drug carrier for hydrophobic drugs with sustained release behavior.

  17. Synthesis and structure of a ferric complex of 2,6-di(1H-pyrazol-3-yl)pyridine and its excellent performance in the redox-controlled living ring-opening polymerization of ε-caprolactone.

    PubMed

    Fang, Yang-Yang; Gong, Wei-Jie; Shang, Xiu-Juan; Li, Hong-Xi; Gao, Jun; Lang, Jian-Ping

    2014-06-14

    The reaction of FeCl3 with a pincer ligand, 2,6-di(1H-pyrazol-3-yl)pyridine (bppyH2), produced a mononuclear Fe(III) complex [Fe(bppyH2)Cl3] (1), which could be reduced to the corresponding Fe(II) dichloride complex [Fe(bppyH2)Cl2] (2) by suitable reducing agents such as Cp2Co or Fe powder. 1 and 2 exhibited a reversible transformation from each other with appropriate redox reagents. 1 could be utilized as a pre-catalyst to initiate the ring-opening polymerization of ε-caprolactone in the presence of alcohol but did not work. The 1/alcohol system displayed characteristics of a well-controlled polymerization with the resulting poly(ε-caprolactone) having low molecular weight distributions, a linear tendency of molecular weight evolution with conversion, and polymer growth observed for the sequential additions of ε-caprolactone monomer to the polymerization reaction. The polymerization was completely turned off by the in situ reduction of the catalytic Fe center via Cp2Co and then turned back upon the addition of [Cp2Fe]PF6. The rate of polymerization was modified by switching in situ between the Fe(III) and Fe(II) species.

  18. Amphiphilic polymers formed from ring-opening polymerization: a strategy for the enhancement of gene delivery.

    PubMed

    Zhang, Yi-Mei; Huang, Zheng; Zhang, Ji; Wu, Wan-Xia; Liu, Yan-Hong; Yu, Xiao-Qi

    2017-03-28

    Cationic liposomes and polymers are both important candidates for use as non-viral gene vectors. However, both of them have special shortcomings and application limits. This work is devoted to the combination of advantages of liposomes and polymers. The ring-opening polymerization strategy was used for the preparation of amphiphilic polymers from cyclen-based cationic small lipids. The non-hydrophobic polymer and the corresponding lipids were also prepared for performing structure-activity relationship studies. Gel electrophoresis results reveal that both the lipopolymers and liposomes could effectively condense DNA into nanoparticles and protect DNA from degradation. Compared to polymers, the DNA binding ability of liposomes is more affected by hydrophobic tails. Under the same dosage, the synthetic polymers have stronger DNA binding ability than the liposomes. In vitro transfection experiments show that the polymers could give better transfection efficiency, which was much higher than those of the corresponding liposomes and non-hydrophobic polymer. The oleyl moiety is suitable for lipidic vectors, but things were different for polymers. Under optimized conditions, up to 14.2 times higher transfection efficiency than that for 25 kDa bPEI could be obtained. More importantly, the lipopolymers showed much better serum tolerance, which was further confirmed by protein adsorption, gel electrophoresis, flow cytometry, and CLSM assays. The results indicate that ring-opening polymerization is a promising strategy for the enhancement of the gene delivery efficiency and biocompatibility of cationic lipids.

  19. Adsorption and ring-opening of lactide on the chiral metal surface Pt(321)S studied by density functional theory

    NASA Astrophysics Data System (ADS)

    Franke, J.-H.; Kosov, D. S.

    2015-01-01

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321)S. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with a functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franke, J.-H.; Kosov, D. S.

    We study the adsorption and ring-opening of lactide on the naturally chiral metal surface Pt(321){sup S}. Lactide is a precursor for polylactic acid ring-opening polymerization, and Pt is a well known catalyst surface. We study, here, the energetics of the ring-opening of lactide on a surface that has a high density of kink atoms. These sites are expected to be present on a realistic Pt surface and show enhanced catalytic activity. The use of a naturally chiral surface also enables us to study potential chiral selectivity effects of the reaction at the same time. Using density functional theory with amore » functional that includes the van der Waals forces in a first-principles manner, we find modest adsorption energies of around 1.4 eV for the pristine molecule and different ring-opened states. The energy barrier to be overcome in the ring-opening reaction is found to be very small at 0.32 eV and 0.30 eV for LL- and its chiral partner DD-lactide, respectively. These energies are much smaller than the activation energy for a dehydrogenation reaction of 0.78 eV. Our results thus indicate that (a) ring-opening reactions of lactide on Pt(321) can be expected already at very low temperatures, and Pt might be a very effective catalyst for this reaction; (b) the ring-opening reaction rate shows noticeable enantioselectivity.« less

  1. Towards Well-Defined Polysilylenes and Polyphosphazenes

    DTIC Science & Technology

    1992-05-25

    distribution), non - controlled degrees of polymerization and unknown end cyclopentasilanes 2 8 . The anionic intermediates have been observed groups. Some... control in polysilanes will be presented: ring-opening polymerization, and polymer modications.. Block and graft copolymers based on polysilanes will be...34sticks" to the surface of alkali metal and continues to grow to high possible to prepare polymers with controlled molecular weight, with low m"m

  2. Cyclopropenimine superbases: Competitive initiation processes in lactide polymerization

    DOE PAGES

    Stukenbroeker, Tyler S.; Bandar, Jeffrey S.; Zhang, Xiangyi; ...

    2015-07-30

    Cyclopropenimine superbases were employed in this study to catalyze the ring-opening polymerization of lactide. Polymerization occurred readily in the presence and absence of alcohol initiators. Polymerizations in the absence of alcohol initiators revealed a competitive initiation mechanism involving deprotonation of lactide by the cyclopropenimine to generate an enolate. NMR and MALDI-TOF analysis of the poly(lactides) generated from cyclopropenimines in the absence of alcohol initiators showed acylated lactide and hydroxyl end groups. Finally, model studies and comparative experiments with guanidine and phosphazene catalysts revealed the subtle influence of the nature of the superbase on competitive initiation processes.

  3. Exploring Closed-Shell Cationic Phenalenyl: From Catalysis to Spin Electronics.

    PubMed

    Mukherjee, Arup; Sau, Samaresh Chandra; Mandal, Swadhin K

    2017-07-18

    The odd alternant hydrocarbon phenalenyl (PLY) can exist in three different forms, a closed-shell cation, an open-shell radical, and a closed-shell anion, using its nonbonding molecular orbital (NBMO). The chemistry of PLY-based molecules began more than five decades ago, and so far, the progress has mainly involved the open-shell neutral radical state. Over the last two decades, we have witnessed the evolution of a range of PLY-based radicals generating an array of multifunctional materials. However, it has been admitted that the practical applications of PLY radicals are greatly challenged by the low stability of the open-shell (radical) state. Recently, we took a different route to establish the utility of these PLY molecules using the closed-shell cationic state. In such a design, the closed-shell unit of PLY can readily accept free electrons, stabilizing in its NBMO upon generation of the open-shell state of the molecule. Thus, one can synthetically avoid the unstable open-shell state but still take advantage of this state by in situ generating the radical through external electron transfer or spin injection into the empty NBMO. It is worth noting that such approaches using closed-shell phenalenyl have been missing in the literature. This Account focuses on our recent developments using the closed-shell cationic state of the PLY molecule and its application in broad multidisciplinary areas spanning from catalysis to spin electronics. We describe how this concept has been utilized to develop a variety of homogeneous catalysts. For example, this concept was used in designing an iron(III) PLY-based electrocatalyst for a single-compartment H 2 O 2 fuel cell, which delivered the best electrocatalytic activity among previously reported iron complexes, organometallic catalysts for various homogeneous organic transformations (hydroamination and polymerization), an organic Lewis acid catalyst for the ring opening of epoxides, and transition-metal-free C-H functionalization catalysts. Moreover, this concept of using the empty NBMO present in the closed-shell cationic state of the PLY moiety to capture electron(s) was further extended to an entirely different area of spin electronics to design a PLY-based spin-memory device, which worked by a spin-filtration mechanism using an organozinc compound based on a PLY backbone deposited over a ferromagnetic substrate. In this Account, we summarize our recent efforts to understand how this unexplored closed-shell state of the phenalenyl molecule, which has been known for over five decades, can be utilized in devising an array of materials that not only are important from an organometallic chemistry or organic chemistry point of view but also provide new understanding for device physics.

  4. Imidazoline and imidazolidine nitroxides as controlling agents in nitroxide-mediated pseudoliving radical polymerization

    NASA Astrophysics Data System (ADS)

    Edeleva, M. V.; Marque, S. R. A.; Bagryanskaya, E. G.

    2018-04-01

    Controlled, or pseudoliving, radical polymerization provides unique opportunities for the synthesis of structurally diverse polymers with a narrow molecular-weight distribution. These reactions occur under relatively mild conditions with broad tolerance to functional groups in the monomers. The nitroxide-mediated pseudoliving radical polymerization is of particular interest for the synthesis of polymers for biomedical applications. This review briefly describes one of the mechanisms of controlled radical polymerization. The studies dealing with the use of imidazoline and imidazolidine nitroxides as controlling agents for nitroxide-mediated pseudoliving radical polymerization of various monomers are summarized and analyzed. The publications addressing the key steps of the controlled radical polymerization in the presence of imidazoline and imidazolidine nitroxides and new approaches to nitroxide-mediated polymerization based on protonation of both nitroxides and monomers are considered. The bibliography includes 154 references.

  5. Improvement in Titanium Complexes Bearing Schiff Base Ligands in the Ring-Opening Polymerization of L-Lactide: A Dinuclear System with Hydrazine-Bridging Schiff Base Ligands.

    PubMed

    Tseng, Hsi-Ching; Chen, Hsing-Yin; Huang, Yen-Tzu; Lu, Wei-Yi; Chang, Yu-Lun; Chiang, Michael Y; Lai, Yi-Chun; Chen, Hsuan-Ying

    2016-02-15

    A series of titanium (Ti) complexes bearing hydrazine-bridging Schiff base ligands were synthesized and investigated as catalysts for the ring-opening polymerization (ROP) of L-lactide (LA). Complexes with electron withdrawing or steric bulky groups reduced the catalytic activity. In addition, the steric bulky substituent on the imine groups reduced the space around the Ti atom and then reduced LA coordination with Ti atom, thereby reducing catalytic activity. All the dinuclear Ti complexes exhibited higher catalytic activity (approximately 10-60-fold) than mononuclear L(Cl-H)-TiOPr2 did. The strategy of bridging dinuclear Ti complexes with isopropoxide groups in the ROP of LA was successful, and adjusting the crowded heptacoordinated transition state by the bridging isopropoxide groups may be the key to our successful strategy.

  6. Functionalized polycarbonate derived from tartaric acid: enzymatic ring-opening polymerization of a seven-membered cyclic carbonate.

    PubMed

    Wu, Ruizhi; Al-Azemi, Talal F; Bisht, Kirpal S

    2008-10-01

    Enantiomerically pure functional polycarbonate was synthesized from a novel seven-membered cyclic carbonate monomer derived from naturally occurring L-tartaric acid. The monomer was synthesized in three steps and screened for polymerization with four commercially available lipases from different sources at 80 degrees C, in bulk. The ring-opening polymerization (ROP) was affected by the source of the enzyme; the highest number-average molecular weight, M(n) = 15500 g/mol (PDI = 1.7; [alpha]D(20) = +77.8, T(m) = 58.8 degrees C) optically active polycarbonate was obtained with lipase Novozyme-435. The relationship between monomer conversion, reaction time, molecular weight, and molecular weight distribution were investigated for Novozyme-435 catalyzed ROP. Deprotection of the ketal groups was achieved with minimal polymer chain cleavage (M(n) = 10000 g/mol, PDI = 2.0) and resulted in optically pure polycarbonate ([alpha]D(20) = +56) bearing hydroxy functional groups. Deprotected poly(ITC) shows T(m) of 60.2 degrees C and DeltaH(f) = 69.56 J/g and similar to that of the poly(ITC), a glass transition temperature was not found. The availability of the pendant hydroxyl group is expected to enhance the biodegradability of the polymer and serves in a variety of potential biomedical applications such as polymeric drug delivery systems.

  7. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    PubMed

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  8. The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways.

    PubMed

    Tang, Xiaoyan; Hong, Miao; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y-X

    2016-11-02

    α-Methylene-γ-butyrolactone (MBL), a naturally occurring and biomass-sourced bifunctional monomer, contains both a highly reactive exocyclic C═C bond and a highly stable five-membered γ-butyrolactone ring. Thus, all previous work led to exclusive vinyl-addition polymerization (VAP) product P(MBL) VAP . Now, this work reverses this conventional chemoselectivity to enable the first ring-opening polymerization (ROP) of MBL, thereby producing exclusively unsaturated polyester P(MBL) ROP with M n up to 21.0 kg/mol. This elusive goal was achieved through uncovering the thermodynamic, catalytic, and processing conditions. A third reaction pathway has also been discovered, which is a crossover propagation between VAP and ROP processes, thus affording cross-linked polymer P(MBL) CLP . The formation of the three types of polymers, P(MBL) VAP , P(MBL) CLP , and P(MBL) ROP , can be readily controlled by adjusting the catalyst (La)/initiator (ROH) ratio, which is determined by the unique chemoselectivity of the La-X (X = OR, NR 2 , R) group. The resulting P(MBL) ROP is degradable and can be readily postfunctionalized into cross-linked or thiolated materials but, more remarkably, can also be fully recycled back to its monomer thermochemically. Computational studies provided the theoretical basis for, and a mechanistic understanding of, the three different polymerization processes and the origin of the chemoselectivity.

  9. Radical-Mediated Enzymatic Polymerizations

    PubMed Central

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  10. pH-responsive micelles based on (PCL)2(PDEA-b-PPEGMA)2 miktoarm polymer: controlled synthesis, characterization, and application as anticancer drug carrier.

    PubMed

    Lin, Wenjing; Nie, Shuyu; Xiong, Di; Guo, Xindong; Wang, Jufang; Zhang, Lijuan

    2014-01-01

    Amphiphilic A2(BC)2 miktoarm star polymers [poly(ϵ-caprolactone)]2-[poly(2-(diethylamino)ethyl methacrylate)-b- poly(poly(ethylene glycol) methyl ether methacrylate)]2 [(PCL)2(PDEA-b-PPEGMA)2] were developed by a combination of ring opening polymerization (ROP) and continuous activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP). The critical micelle concentration (CMC) values were extremely low (0.0024 to 0.0043 mg/mL), depending on the architecture of the polymers. The self-assembled empty and doxorubicin (DOX)-loaded micelles were spherical in morphologies, and the average sizes were about 63 and 110 nm. The release of DOX at pH 5.0 was much faster than that at pH 6.5 and pH 7.4. Moreover, DOX-loaded micelles could effectively inhibit the growth of cancer cells HepG2 with IC50 of 2.0 μg/mL. Intracellular uptake demonstrated that DOX was delivered into the cells effectively after the cells were incubated with DOX-loaded micelles. Therefore, the pH-sensitive (PCL)2(PDEA-b-PPEGMA)2 micelles could be a prospective candidate as anticancer drug carrier for hydrophobic drugs with sustained release behavior.

  11. New transition metal complexes and their ring-opened polymers

    NASA Astrophysics Data System (ADS)

    Apodaca, Paula

    An exciting new class of metallacycle (eta5-C5 H4Fe) (CO)2CH2SiR2 that undergoes ring-opening polymerization was recently reported by Sharma et al. [1]. We are interested in further expanding this research area by synthesizing related cyclopentadienyl derivatives containing Fe, Mo, and W in combination with other elements of the group 14. We report here the synthesis and crystal structure characterization of new germa-metallacyclobutanes of Mo and W. In addition, we have successfully synthesized and characterized new ring-opening polymers of the related germanium systems [(eta5-C5 H4Fe)(CO) 2(CH2GeR2)] n. The new polymers were characterized using various spectroscopic techniques and gel permeation chromatography. The recent report on the synthesis of a new class of siloxane polymers based upon base-catalyzed ring opening of phenylene-bridged cyclic siloxanes [2] encouraged us to investigate the related ferrocenyl (Fc, (C5H 5)Fe(C5H4)) siloxane systems. The incorporation of ferrocene could provide new materials with all the interesting properties usually associated with these groups such as thermal and photochemical stability, electrochemical activity and potentially conducting materials. Thus far a new required organometallic monomer containing Fc-R, where R = disilaoxacyclopentene 5 has been synthesized and completely characterized. Based-induced ring-opening polymerizations of 5 were attempted under different reaction conditions and produced, inter alia: (C5H5)Fe(C 5H4)C(SiMe2OH)=CH(SiMe2R), R = nBu (2), tBu (3), Ph (4). The single crystal X-ray structures and full spectroscopic analysis of such products has been accomplished. Furthermore, the reactivity of the ferrocenyl silanols concerning condensation and their behavior under acidic conditions has been investigated. 1Sharma, H.; Cervantes-Lee, F.; Pannell, K. H. J. Am. Chem. Soc. 2004, 126, 1326. 2 Loy, A. D.; Rahimian, K.; Samara, M. Angew. Chem. 1999, 38, 45.

  12. Healing efficiency of epoxy-based materials for structural application

    NASA Astrophysics Data System (ADS)

    Raimondo, Marialuigia; Guadagno, Liberata

    2012-07-01

    This paper describes a self-healing composite exhibiting high levels of healing efficiency under working conditions typical of aeronautic applications. The self-healing material is composed of a thermosetting epoxy matrix in which a catalyst of Ring Opening Metathesis Polymerization (ROMP) and nanocapsules are dispersed. The nanocapsules contain a monomer able to polymerize via ROMP. The preliminary results demonstrate an efficient self-repair function which is also active at very low temperatures.

  13. Cobalt-Mediated Radical Polymerization of Vinyl Acetate and Acrylonitrile in Supercritical Carbon Dioxide.

    PubMed

    Kermagoret, Anthony; Chau, Ngoc Do Quyen; Grignard, Bruno; Cordella, Daniela; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2016-03-01

    Cobalt-mediated radical polymerization (CMRP) of vinyl acetate (VAc) is successfully achieved in supercritical carbon dioxide (scCO2). CMRP of VAc is conducted using an alkyl-cobalt(III) adduct that is soluble in scCO2. Kinetics studies coupled to visual observations of the polymerization medium highlight that the melt viscosity and PVAc molar mass (Mn) are key parameters that affect the CMRP in scCO2. It is noticed that CMRP is controlled for Mn up to 10 000 g mol(-1), but loss of control is progressively observed for higher molar masses when PVAc precipitates in the polymerization medium. Low molar mass PVAc macroinitiator, prepared by CMRP in scCO2, is then successfully used to initiate the acrylonitrile polymerization. PVAc-b-PAN block copolymer is collected as a free flowing powder at the end of the process although the dispersity of the copolymer increases with the reaction time. Although optimization is required to decrease the dispersity of the polymer formed, this CMRP process opens new perspectives for macromolecular engineering in scCO2 without the utilization of fluorinated comonomers or organic solvents. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Shape-Persistent, Thermoresponsive Polypeptide Brushes Prepared by Vapor Deposition Surface-Initiated Ring-Opening Polymerization of α-Amino Acid N -Carboxyanhydrides

    DOE PAGES

    Shen, Yong; Desseaux, Solenne; Aden, Bethany; ...

    2015-04-20

    We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less

  15. Effect of ring-opening polymerization condition on the characteristic and mechanical properties of hydroxyapatite/poly(ethylene glutarate) biomaterials.

    PubMed

    Monvisade, Pathavuth; Siriphannon, Punnama; Tapcharoen, Walailak

    2009-09-01

    Preparation of hydroxyapatite/poly(ethylene glutarate) (HAp/PEG) composites was carried out by ring-opening polymerization (ROP) of cyclic oligo(ethylene glutarate) in porous HAp scaffolds using various reaction temperatures and times. The content of ROP-PEG interpenetrated into the porous HAp scaffold was about 13-18 wt % with the values of number average molecular weight (overline_M{n}) and weight average molecular weight (overline_M{W}) of 2120-3630 and 2760-5250 g/mol, respectively. The increase in polymerization time and temperature brought about increase in molecular weight of ROP-PEG, but decrease in its content. Compressive strength and compressive modulus of the HAp/PEG composites were about 5.8-20.1 and 105-208 MPa, respectively. These mechanical properties depend upon the effects of distribution, content, and molecular weight of ROP-PEG in the composites. In vitro bioactivity of the HAp/PEG composites was studied by soaking them in simulated body fluid (SBF) for 28 days. The formation of HAp nanocrystal on the composite surfaces through the consumption of calcium and phosphorus from the SBF solution was observed after soaking, indicating the bioactivity of these HAp/PEG composites.

  16. Characterization and thermal properties of polygenipin-crosslinked hide powders

    USDA-ARS?s Scientific Manuscript database

    Genipin is a naturally occurring iridoid compound, it is widely used as an ideal biological protein crosslinking agent due to its low toxicity compared to glutaraldehyde and formaldehyde. Under alkaline condition, genipin could undergo ring-opening polymerization via nucleophilic attack of hydroxyl ...

  17. TRANSITION METAL CATALYSIS IN CONTROLLED RADICAL POLYMERIZATION: ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Novel and diversified macromolecular structures, which include polymers with designed topologies (top), compostions (middle), and functionalities (bottom), can be prepared by atom transfer radical polymerization processes. These polymers can be synthesized from a large variety of...

  18. Candida antarctica Lipase B Chemically Immobilized on Epoxy-Activate Micro- and Nanobeads: Catalysts for Polyester Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen,B.; Hu, J.; Miller, E.

    2008-01-01

    Candida antarctica Lipase B (CALB) was covalently immobilized onto epoxy-activated macroporous poly(methyl methacrylate) Amberzyme beads (235 {mu}m particle size, 220 Angstroms pore size) and nanoparticles (nanoPSG, diameter 68 nm) with a poly(glycidyl methacrylate) outer region. Amberzyme beads allowed CALB loading up to 0.16 g of enzyme per gram of support. IR microspectroscopy generated images of Amberzyme-CALB beads showed CALB is localized within a 50 {mu}m thick loading front. IR microspectroscopy images, recorded prior to and after treatment of Amberzyme-CALB with DMSO/aqueous Triton X-100, are similar, confirming that CALB is largely chemically linked to Amberzyme. The activity of CALB immobilized onmore » Amberzyme, Lewatit (i.e., Novozym 435 catalyst), and nanoPSG was assessed for lactone ring-opening and step-condensation polymerizations. For example, the percent conversion of -caprolactone using the same amount of enzyme catalyzed by Amberzym-CALB, Novozym 435, and nanoPSG-CALB for 20 min was 7.0, 16, and 65%, respectively. Differences in CALB reactivity were discussed based on resin physical parameters and availability of active sites determined by active site titrations. Regardless of the matrix used and chemical versus physical immobilization, -CL ring-opening polymerizations occur by a chain growth mechanism without chain termination. To test Amberzyme-CALB stability, the catalyst was reused over three reaction cycles for -CL ring-opening polymerization (70 C, 70 min reactions) and glycerol/1, 8-octanediol/adipic acid polycondensation reactions (90 C, 64 h). Amberzyme-CALB was found to have far better stability for reuse relative to Novozym 435 for the polycondensation reaction.« less

  19. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    NASA Astrophysics Data System (ADS)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug conjugate by densely attaching the polyphosphoester block with azide-functionalized Paclitaxel by azide-alkyne Huisgen cycloaddition. This Paclitaxel drug conjugate provides a powerful platform for combinational cancer therapy and bioimaging due to its ultra-high Paclitaxel loading (> 65 wt%), high water solubility (>6.2 mg/mL for PTX) and easy functionalization. Another polyphosphoester-based nanoparticle system has been developed by a programmable process for the rapid and facile preparation of a family of nanoparticles with different surface charges and functionalities. The non-ionic, anionic, cationic and zwitterionic nanoparticles with hydrodynamic diameters between 13 nm to 21 nm and great size uniformity could be rapidly prepared from small molecules in 6 h or 2 days. The anionic and zwitterionic nanoparticles were designed to load silver ions to treat pulmonary infections, while the cationic nanoparticles are being applied to regulate lung injuries by serving as a degradable iNOS inhibitor conjugates. In addition, a direct synthesis of acid-labile polyphosphoramidate by organobase-catalyzed ring-opening polymerization and an improved two-step preparation of polyphosphoester ionomer by acid-assisted cleavage of phosphoramidate bonds on polyphosphoramidate were developed. Polyphosphoramidate and polyphosphoester ionomers may be applied to many applications, due to their unique chemical and physical properties.

  20. Polyacrylates with High Biomass Contents for Pressure-Sensitive Adhesives Prepared via Mini-emulsion Polymerization

    Treesearch

    Gang Pu; Matthew R. Dubay; Jiguang Zhang; Steven J. Severtson; Carl J. Houtman

    2012-01-01

    n-Butyl acrylate and other acrylic monomers were copolymerized with an acrylated macromonomer to produce polymers for pressure-sensitive adhesive (PSA) applications. Macromonomers were generated through the ring-opening copolymerization of L-lactide and ε-caprolactone with 2-hydroxyethyl...

  1. Study of soybean oil-based polymers for controlled release anticancer drugs

    USDA-ARS?s Scientific Manuscript database

    Soybean oil-based polymers were prepared by the ring-opening polymerization of epoxidized soybean oil with Lewis acid catalyst. The formed polymers (HPESO) could be converted into hydrogels through hydrolysis. Characterization and viscoelastic properties of this soy hydrogel and application in contr...

  2. Preparation of polyhedral oligomeric silsesquioxane based hybrid monoliths by ring-opening polymerization for capillary LC and CEC.

    PubMed

    Lin, Hui; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Ou, Junjie; Zou, Hanfa

    2013-09-01

    A new organic-inorganic hybrid monolith was prepared by the ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with 1,4-butanediamine (BDA) using 1-propanol, 1,4-butanediol, and PEG 10,000 as a porogenic system. Benefiting from the moderate phase separation process, the resulting poly(POSS-co-BDA) hybrid monolith possessed a uniform microstructure and exhibited excellent performance in chromatographic applications. Neutral, acidic, and basic compounds were successfully separated on the hybrid monolith in capillary LC (cLC), and high column efficiencies were achieved in all of the separations. In addition, as the amino groups could generate a strong EOF, the hybrid monolith was also applied in CEC for the separation of neutral and polar compounds, and a satisfactory performance was obtained. These results demonstrate that the poly(POSS-co-BDA) hybrid monolith is a good separation media in chromatographic separations of various types of compounds by both cLC and CEC. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. In Situ Generated Ruthenium-Arene Catalyst for Photoactivated Ring-Opening Metathesis Polymerization through Photolatent N-Heterocyclic Carbene Ligand.

    PubMed

    Pinaud, Julien; Trinh, Thi Kim Hoang; Sauvanier, David; Placet, Emeline; Songsee, Sriprapai; Lacroix-Desmazes, Patrick; Becht, Jean-Michel; Tarablsi, Bassam; Lalevée, Jacques; Pichavant, Loïc; Héroguez, Valérie; Chemtob, Abraham

    2018-01-09

    1,3-Bis(mesityl)imidazolium tetraphenylborate (IMesH + BPh 4 - ) can be synthesized in one step by anion metathesis between the corresponding imidazolium chloride and sodium tetraphenylborate. In the presence of 2-isopropylthioxanthone (sensitizer), an IMes N-heterocyclic carbene (NHC) ligand can be photogenerated under irradiation at 365 nm through coupled electron/proton transfer reactions. By combining this tandem NHC photogenerator system with metathesis inactive [RuCl 2 (p-cymene)] 2 precatalyst, the highly active RuCl 2 (p-cymene)(IMes) complex can be formed in situ, enabling a complete ring-opening metathesis polymerization (ROMP) of norbornene in the matter of minutes at room temperature. To the best of our knowledge, this is the first example of a photogenerated NHC. Its exploitation in photoROMP has resulted in a simplified process compared to current photocatalysts, because only stable commercial or easily synthesized reagents are required. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and Characterization of a Poly(ethylene glycol)-Poly(simvastatin) Diblock Copolymer

    PubMed Central

    Asafo-Adjei, Theodora A.; Dziubla, Thomas D.; Puleo, David A.

    2014-01-01

    Biodegradable polyesters are commonly used as drug delivery vehicles, but their role is typically passive, and encapsulation approaches have limited drug payload. An alternative drug delivery method is to polymerize the active agent or its precursor into a degradable polymer. The prodrug simvastatin contains a lactone ring that lends itself to ring-opening polymerization (ROP). Consequently, simvastatin polymerization was initiated with 5 kDa monomethyl ether poly(ethylene glycol) (mPEG) and catalyzed via stannous octoate. Melt condensation reactions produced a 9.5 kDa copolymer with a polydispersity index of 1.1 at 150 °C up to a 75 kDa copolymer with an index of 6.9 at 250 °C. Kinetic analysis revealed first-order propagation rates. Infrared spectroscopy of the copolymer showed carboxylic and methyl ether stretches unique to simvastatin and mPEG, respectively. Slow degradation was demonstrated in neutral and alkaline conditions. Lastly, simvastatin, simvastatin-incorporated molecules, and mPEG were identified as the degradation products released. The present results show the potential of using ROP to polymerize lactone-containing drugs such as simvastatin. PMID:25431653

  5. Integration of CuAAC Polymerization and Controlled Radical Polymerization into Electron Transfer Mediated "Click-Radical" Concurrent Polymerization.

    PubMed

    Xue, Wentao; Wang, Jie; Wen, Ming; Chen, Gaojian; Zhang, Weidong

    2017-03-01

    The successful chain-growth copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) polymerization employing Cu(0)/pentamethyldiethylenetriamine (PMDETA) and alkyl halide as catalyst is first investigated by a combination of nuclear magnetic resonance, gel-permeation chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. In addition, the electron transfer mediated "click-radical" concurrent polymerization utilizing Cu(0)/PMDETA as catalyst is successfully employed to generate well-defined copolymers, where controlled CuAAC polymerization of clickable ester monomer is progressed in the main chain acting as the polymer backbone, the controlled radical polymerization (CRP) of acrylic monomer is carried out in the side chain. Furthermore, it is found that there is strong collaborative effect and compatibility between CRP and CuAAC polymerization to improve the controllability. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. End-functionalized ROMP polymers for Biomedical Applications

    PubMed Central

    Madkour, Ahmad E.; Koch, Amelie H. R.; Lienkamp, Karen; Tew, Gregory N.

    2010-01-01

    We present two novel allyl-based terminating agents that can be used to end-functionalize living polymer chains obtained by ring-opening metathesis polymerization (ROMP) using Grubbs’ third generation catalyst. Both terminating agents can be easily synthesized and yield ROMP polymers with stable, storable activated ester groups at the chain-end. These end-functionalized ROMP polymers are attractive building blocks for advanced polymeric materials, especially in the biomedical field. Dye-labeling and surface-coupling of antimicrobially active polymers using these end-groups were demonstrated. PMID:21499549

  7. Tunable, Quantitative Fenton-RAFT Polymerization via Metered Reagent Addition.

    PubMed

    Nothling, Mitchell D; McKenzie, Thomas G; Reyhani, Amin; Qiao, Greg G

    2018-05-10

    A continuous supply of radical species is a key requirement for activating chain growth and accessing quantitative monomer conversions in reversible addition-fragmentation chain transfer (RAFT) polymerization. In Fenton-RAFT, activation is provided by hydroxyl radicals, whose indiscriminate reactivity and short-lived nature poses a challenge to accessing extended polymerization times and quantitative monomer conversions. Here, an alternative Fenton-RAFT procedure is presented, whereby radical generation can be finely controlled via metered dosing of a component of the Fenton redox reaction (H 2 O 2 ) using an external pumping system. By limiting the instantaneous flux of radicals and ensuring sustained radical generation over tunable time periods, metered reagent addition reduces unwanted radical "wasting" reactions and provides access to consistent quantitative monomer conversions with high chain-end fidelity. Fine tuning of radical concentration during polymerization is achieved simply via adjustment of reagent dose rate, offering significant potential for automation. This modular strategy holds promise for extending traditional RAFT initiation toward more tightly regulated radical concentration profiles and affords excellent prospects for the automation of Fenton-RAFT polymerization. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ring-opening polymerization of DD-lactide catalyzed by Novozyme 435.

    PubMed

    Hans, Marc; Keul, Helmut; Moeller, Martin

    2009-03-10

    In contrast to LLA, DLA is converted in toluene solution under mild reaction conditions (50-70 degrees C) using Novozyme 435 (immobilized CALB) to form the corresponding polymer. The influence of several parameters, such as enzyme concentration, temperature and monomer concentration, on the polymerization rate and the monomer conversion was studied. In contrast to the Novozyme 435 catalyzed polymerization of epsilon-caprolactone, enzyme deactivation occurs. It is attributed to the deprivation of water from the enzyme. This work points out that by careful selection of the reaction conditions, it is possible to obtain poly(D-lactide) in reasonable molecular weights and in high yields using Novozyme 435 catalysis.

  9. Visible-Light Organic Photocatalysis for Latent Radical-Initiated Polymerization via 2e–/1H+ Transfers: Initiation with Parallels to Photosynthesis

    PubMed Central

    2015-01-01

    We report the latent production of free radicals from energy stored in a redox potential through a 2e–/1H+ transfer process, analogous to energy harvesting in photosynthesis, using visible-light organic photoredox catalysis (photocatalysis) of methylene blue chromophore with a sacrificial sterically hindered amine reductant and an onium salt oxidant. This enables light-initiated free-radical polymerization to continue over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination and beyond the spatial reach of light by diffusion of the metastable leuco-methylene blue photoproduct. The present organic photoredox catalysis system functions via a 2e–/1H+ shuttle mechanism, as opposed to the 1e– transfer process typical of organometallic-based and conventional organic multicomponent photoinitiator formulations. This prevents immediate formation of open-shell (radical) intermediates from the amine upon light absorption and enables the “storage” of light-energy without spontaneous initiation of the polymerization. Latent energy release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leuco-methylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst. This robust approach for photocatalysis-based energy harvesting and extended release in the dark enables temporally controlled redox initiation of polymer syntheses under low-intensity short exposure conditions and permits visible-light-mediated synthesis of polymers at least 1 order of magnitude thicker than achievable with conventional photoinitiated formulations and irradiation regimes. PMID:24786755

  10. Visible-light organic photocatalysis for latent radical-initiated polymerization via 2e⁻/1H⁺ transfers: initiation with parallels to photosynthesis.

    PubMed

    Aguirre-Soto, Alan; Lim, Chern-Hooi; Hwang, Albert T; Musgrave, Charles B; Stansbury, Jeffrey W

    2014-05-21

    We report the latent production of free radicals from energy stored in a redox potential through a 2e(-)/1H(+) transfer process, analogous to energy harvesting in photosynthesis, using visible-light organic photoredox catalysis (photocatalysis) of methylene blue chromophore with a sacrificial sterically hindered amine reductant and an onium salt oxidant. This enables light-initiated free-radical polymerization to continue over extended time intervals (hours) in the dark after brief (seconds) low-intensity illumination and beyond the spatial reach of light by diffusion of the metastable leuco-methylene blue photoproduct. The present organic photoredox catalysis system functions via a 2e(-)/1H(+) shuttle mechanism, as opposed to the 1e(-) transfer process typical of organometallic-based and conventional organic multicomponent photoinitiator formulations. This prevents immediate formation of open-shell (radical) intermediates from the amine upon light absorption and enables the "storage" of light-energy without spontaneous initiation of the polymerization. Latent energy release and radical production are then controlled by the subsequent light-independent reaction (analogous to the Calvin cycle) between leuco-methylene blue and the onium salt oxidant that is responsible for regeneration of the organic methylene blue photocatalyst. This robust approach for photocatalysis-based energy harvesting and extended release in the dark enables temporally controlled redox initiation of polymer syntheses under low-intensity short exposure conditions and permits visible-light-mediated synthesis of polymers at least 1 order of magnitude thicker than achievable with conventional photoinitiated formulations and irradiation regimes.

  11. Gold Nanoparticles Grafted with PLL-b-PNIPAM: Interplay on Thermal/pH Dual-Response and Optical Properties.

    PubMed

    Li, Hui-Juan; Li, Peng-Yun; Li, Li-Ying; Haleem, Abdul; He, Wei-Dong

    2018-04-16

    Narrowly distributed poly(l-lysine- b - N -isopropylacrylamide) (PLL- b -PNIPAM) was prepared through ring-opening polymerization of ε-benzyloxycarbonyl-l-lysine N -carboxy-α-amino anhydride and atom transfer radical polymerization of NIPAM, followed with the removal of ε-benzyloxycarbonyl group. Then gold nanoparticles (AuNPs) grafted with PLL- b -PNIPAM (PNIPAM-PLL-AuNPs) were obtained by the reduction of chloroauric acid with sodium citrate in the presence of PLL- b -PNIPAM. PNIPAM-PLL-AuNPs and its precursors were thoroughly characterized by proton magnetic resonance spectroscope, Fourier transform infrared spectroscope, UV-vis spectroscope, transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, and circular dichroism. The obtained PNIPAM-PLL-AuNPs exhibited high colloid stability even at strong alkaline (pH = 12) and acidic (pH = 2) conditions. The thermal and pH dual-responsive behaviors of the grafting PLL- b -PNIPAM chains was observed to be affected by AuNPs, while not for the secondary structure of PLL chains. Correspondingly, the surface plasmon resonance (SPR) of AuNPs was found to be sensitive to both pH value and temperature. A blue shift in the SPR happened both with increasing pH value and increasing temperature. The stimuli-response was reversible in heating-cooling cycles. The gold nanoparticles with both pH and temperature response may have potential applications in biomedical areas and biosensors.

  12. LITHIUM CHLORIDE AS CATALYST FOR THE RING-OPENING POLYMERIZATION OF LACTIDE IN THE PRESENCE OF HYDROXYL-CONTAINING COMPOUNDS. (R826123)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. Step Transfer-Addition and Radical-Termination (START) Polymerization of α,ω-Unconjugated Dienes under Irradiation of Blue LED Light.

    PubMed

    Xu, Tianchi; Yin, Hongnan; Li, Xiaohong; Zhang, Lifen; Cheng, Zhenping; Zhu, Xiulin

    2017-07-01

    A new polymerization method, termed as step transfer-addition and radical-termination, is developed for the step-growth radical polymerization of α,ω-unconjugated dienes under irradiation of visible light at room temperature (25 °C) for the first time. α,ω-Diiodoperfluoroalkane monomers (signified as A) are added onto α,ω-unconjugated dienes (signified as B) alternatively and efficiently with the generation of perfluorocarbon-containing alternating copolymers (AB) n . Based on the combined analyses of polymerization kinetics and NMR spectra ( 1 H and 19 F), the mechanism of the novel polymerization method, including the side reaction, is proposed. This novel polymerization method provides a new strategy not only for the step-growth radical polymerization of α,ω-unconjugated dienes but also for the construction of high molecular weight perfluorocarbon-containing alternating copolymers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Study on the role of active radicals on plasma sterilization inside small diameter flexible polymeric tubes

    NASA Astrophysics Data System (ADS)

    Mstsuura, Hiroto; Fujiyama, Takatomo; Okuno, Yasuki; Furuta, Masakazu; Okuda, Shuichi; Takemura, Yuichiro

    2015-09-01

    Recently, atmospheric pressure discharge plasma has gathered attention in various fields. Among them, plasma sterilization with many types of plasma source has studied for decades and its mechanism is still an open question. If active radicals produced in plasma has main contribution of killing bacterias, direct contact of the so-called plasma flame might not be necessary. To confirm this, sterilization inside small diameter flexible polymeric tubes is studied in present work. DBD type plasma jet is produce by flowing helium gas in a glass tube. A long polymeric tube is connected and plasma jet is introduced into it. Plasma flame length depends on helium gas flow rate, but limited to about 10 cm in our experimental condition. E.colis set at the exit plasma source is easily killed during 10 min irradiation. At the tube end (about 20 cm away from plasma source exit), sterilization is possible with 30 min operation. This result shows that active radical is produced with helium plasma and mist contained in sample, and it can be transferred more than 20 cm during it life time. More plasma diagnostic data will also be shown at the conference. This work was partially supported by the ''ZE Research Program, IAE(ZE27B-4).

  15. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  16. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1998-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  17. Chemical treatment for silica-containing glass surfaces

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditons. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  18. Metal-chelating polymers by anionic ring-opening polymerization and their use in quantitative mass cytometry.

    PubMed

    Illy, Nicolas; Majonis, Daniel; Herrera, Isaac; Ornatsky, Olga; Winnik, Mitchell A

    2012-08-13

    Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd(3+) as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels-Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln(3+) ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types.

  19. Enhanced thermal and mechanical properties of PLA/MoS2 nanocomposites synthesized via the in-situ ring-opening polymerization

    NASA Astrophysics Data System (ADS)

    Chen, Pengpeng; Liang, Xiao; Xu, Ying; Zhou, Yifeng; Nie, Wangyan

    2018-05-01

    In this work, MoS2 nanosheets were employed to reinforce PLA. In order to promote the homogeneous dispersion of MoS2 in PLA and form a strong interface between MoS2 and PLA, the MoS2 nanosheets were firstly modified by mercapto-ethylamine, and then functionalized with PLA chains through ring-opening polymerization of poly(L-lactide). The XRD, XPS, TGA and 1H NMR characterizations confirmed the successful amino and PLA functionalization of MoS2 nanosheets. The obtained MoS2-g-PLA nanosheets were then introduced to reinforce PLA. SEM images displayed that the MoS2-g-PLA nanosheets were dispersed in PLA matrix uniformly. TGA results showed that initial decomposition temperature was improved from 275.6 °C to 334.8 °C with 0.5 wt% of MoS2-g-PLA nanosheets. The storage modulus of PLA/MoS2-g-PLA-0.5 wt% in the glass state and rubber state were both greatly enhanced compared with neat PLA.

  20. Bio-reducible polycations from ring-opening polymerization as potential gene delivery vehicles.

    PubMed

    Yu, Qing-Ying; Liu, Yan-Hong; Huang, Zheng; Zhang, Ji; Luan, Chao-Ran; Zhang, Qin-Fang; Yu, Xiao-Qi

    2016-07-06

    Synthetic polycations show great potential for the construction of ideal non-viral gene delivery systems. Several cationic polymers were synthesized by the epoxide ring-opening polymerization between diepoxide and various polyamines. Disulfide bonds were introduced to afford the polymers bio-reducibility, while the oxygen-rich structure might enhance the serum tolerance and biocompatibility. The polycations have much lower molecular weights than PEI 25 kDa, but still could well bind and condense DNA into nano-sized particles. DNA could be released from the polyplexes by addition of reductive DTT. Compared to PEI, the polycations have less cytotoxicity possibly due to their lower molecular weights and oxygen-rich structure. More significantly, these materials exhibit excellent serum tolerance than PEI, and up to 6 times higher transfection efficiency than PEI could be obtained in the presence of serum. The transfection mediated by was seldom affected even at a high concentration of serum. Much lower protein adsorption of polycations than PEI was proved by bovine serum albumin adsorption experiments. Flow cytometry also demonstrates their good serum resistance ability.

  1. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution.

    PubMed

    Liu, Peng; Wang, Qiong; Niu, Meixing; Wang, Dunyou

    2017-08-10

    Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.

  2. Amphiphilic Ferrocene-Containing PEG Block Copolymers as Micellar Nanocarriers and Smart Surfactants.

    PubMed

    Alkan, Arda; Wald, Sarah; Louage, Benoit; De Geest, Bruno G; Landfester, Katharina; Wurm, Frederik R

    2017-01-10

    An important and usually the only function of most surfactants in heterophase systems is stabilizing one phase in another, for example, droplets or particles in water. Surfactants with additional chemical or physical handles are promising in controlling the colloidal properties by external stimuli. The redox stimulus is an attractive feature; however, to date only a few ionic redox-responsive surfactants have been reported. Herein, the first nonionic and noncytotoxic ferrocene-containing block copolymers are prepared, carrying a hydrophilic poly(ethylene glycol) (PEG) chain and multiple ferrocenes in the hydrophobic segment. These amphiphiles were studied as redox-sensitive surfactants that destabilize particles as obtained in miniemulsion polymerization. Because of the nonionic nature of such PEG-based copolymers, they can stabilize nanoparticles even after the addition of ions, whereas particles stabilized with ionic surfactants would be destabilized by the addition of salt. The redox-active surfactants were prepared by the anionic ring-opening polymerization of ferrocenyl glycidyl ether, with PEG monomethyl ether as the macroinitiator. The resultant block copolymers with molecular weights (M n ) between 3600 and 8600 g mol -1 and narrow molecular weight distributions (M w /M n = 1.04-1.10) were investigated via 1 H nuclear magnetic resonance and diffusion ordered spectroscopy, size exclusion chromatography, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Furthermore, the block copolymers were used as building blocks for redox-responsive micelles and as redox-responsive surfactants in radical polymerization in miniemulsion to stabilize model polystyrene nanoparticles. Oxidation of iron to the ferrocenium species converted the amphiphilic block copolymers into double hydrophilic macromolecules, which led to the destabilization of the nanoparticles. This destabilization of nanoparticle dispersions may be useful for the formation of coatings and the recovery of surfactants.

  3. The structure and photochemical transformation of cyclopropylacetylene radical cation as revealed by matrix EPR and quantum chemical study

    NASA Astrophysics Data System (ADS)

    Shiryaeva, Ekaterina S.; Tyurin, Daniil A.; Feldman, Vladimir I.

    2012-05-01

    The primary radical cation of cyclopropylacetylene was first characterized by EPR spectroscopy in low-temperature freon matrices. The assignment was confirmed by specific deuteration and quantum-chemical calculations at PBE0 and CCSD(T) levels. Photolysis with visible light led to irreversible transformation of the initial species to a ring-open structure. Detailed computational analysis of energy and magnetic resonance parameters of possible reaction products justified formation of pent-3-en-1-yne radical cation (presumably, a (Z)-isomer). This conclusion was also supported by the effect of specific deuteration.

  4. Depolymerization dynamics of individual filaments of bacterial cytoskeletal protein FtsZ

    PubMed Central

    Mateos-Gil, Pablo; Paez, Alfonso; Hörger, Ines; Rivas, Germán; Vicente, Miguel; Tarazona, Pedro; Vélez, Marisela

    2012-01-01

    We report observation and analysis of the depolymerization filaments of the bacterial cytoskeletal protein FtsZ (filament temperature-sensitive Z) formed on a mica surface. At low concentration, proteins adsorbed on the surface polymerize forming curved filaments that close into rings that remain stable for some time before opening irreversibly and fully depolymerizing. The distribution of ring lifetimes (T) as a function of length (N), shows that the rate of ring aperture correlates with filament length. If this ring lifetime is expressed as a bond survival time, (Tb ≡ NT), this correlation is abolished, indicating that these rupture events occur randomly and independently at each monomer interface. After rings open irreversibly, depolymerization of the remaining filaments is fast, but can be slowed down and followed using a nonhydrolyzing GTP analogue. The histogram of depolymerization velocities of individual filaments has an asymmetric distribution that can be fit with a computer model that assumes two rupture rates, a slow one similar to the one observed for ring aperture, affecting monomers in the central part of the filaments, and a faster one affecting monomers closer to the open ends. From the quantitative analysis, we conclude that the depolymerization rate is affected both by nucleotide hydrolysis rate and by its exchange along the filament, that all monomer interfaces are equally competent for hydrolysis, although depolymerization is faster at the open ends than in central filament regions, and that all monomer–monomer interactions, regardless of the nucleotide present, can adopt a curved configuration. PMID:22566654

  5. Atom Transfer Radical Polymerization of Functionalized Vinyl Monomers Using Perylene as a Visible Light Photocatalyst

    PubMed Central

    Theriot, Jordan C.; Ryan, Matthew D.; French, Tracy A.; Pearson, Ryan M.; Miyake, Garret M.

    2016-01-01

    A standardized technique for atom transfer radical polymerization of vinyl monomers using perylene as a visible-light photocatalyst is presented. The procedure is performed under an inert atmosphere using air- and water-exclusion techniques. The outcome of the polymerization is affected by the ratios of monomer, initiator, and catalyst used as well as the reaction concentration, solvent, and nature of the light source. Temporal control over the polymerization can be exercised by turning the visible light source off and on. Low dispersities of the resultant polymers as well as the ability to chain-extend to form block copolymers suggest control over the polymerization, while chain end-group analysis provides evidence supporting an atom-transfer radical polymerization mechanism. PMID:27166728

  6. Synthesis of nanosized (<20 nm) polymer particles by radical polymerization in miniemulsion employing in situ surfactant formation.

    PubMed

    Guo, Yi; Zetterlund, Per B

    2011-10-18

    A novel method for synthesis of ultrafine polymeric nanoparticles of diameters less than 20 nm has been developed. The method is based on miniemulsion polymerization exploiting combination of the in situ surfactant generation approach (whereby the surfactant is formed at the oil-water interface by reaction between an organic acid and a base) and ultrasonication. Conventional radical polymerization and nitroxide-mediated radical polymerization of styrene have been conducted in miniemulsion using oleic acid/potassium hydroxide, demonstrating that particles with diameters less than 20 nm can be obtained by this approach at surfactant contents much lower than traditionally required in microemulsion polymerizations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Cyclopropyl conjugation and ketyl anions: when do things begin to fall apart?

    PubMed

    Tanko, J M; Li, Xiangzhong; Chahma, M'hamed; Jackson, Woodward F; Spencer, Jared N

    2007-04-11

    Results pertaining to the electrochemical reduction of 1,2-diacetylcyclopropane (5), 1-acetyl-2-phenylcyclopropane (6), 1-acetyl-2-benzoylcyclopropane (7), and 1,2-dibenzoylcyclopropane (8) are reported. While 6*- exists as a discrete species, the barrier to ring opening is very small (<1 kcal/mol) and the rate constant for ring opening is >10(7) s(-1). For 7 and 8, the additional resonance stabilization afforded by the benzoyl moieties results in significantly lower rate constants for ring opening, on the order of 10(5)-10(6) s(-1). Electron transfer to 8 serves to initiate an unexpected vinylcyclopropane --> cyclopentene type rearrangement, which occurs via a radical ion chain mechanism. The results for reduction of 5 are less clear-cut: The experimental results suggest that the reduction is unexceptional, with a symmetry coefficient alpha

  8. Method for chemical surface modification of fumed silica particles

    DOEpatents

    Grabbe, Alexis; Michalske, Terry Arthur; Smith, William Larry

    1999-01-01

    Dehydroxylated, silica-containing, glass surfaces are known to be at least partially terminated by strained siloxane rings. According to the invention, a surface of this kind is exposed to a selected silane compound or mixture of silane compounds under reaction-promoting conditions. The ensuing reaction results in opening of the strained siloxane rings, and termination of surface atoms by chemical species, such as organic or organosilicon species, having desirable properties. These species can be chosen to provide qualities such as hydrophobicity, or improved coupling to a polymeric coating.

  9. Catalysts and methods for ring opening metathesis polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schrock, Richard Royce; Autenrieth, Benjamin

    The present invention, among other things, provides highly syndiotactic poly(dicyclopentadiene) and/or hydrogenated poly(dicyclopentadiene), compositions thereof, and compounds and methods for preparing the same. In some embodiments, a provided compound is a compound of formula I, II or III. In some embodiments, a provided method comprises providing a compound of formula I, II or III.

  10. Ionomers and methods of making same and uses thereof

    DOEpatents

    Coates, Geoffrey W.; Kostalik, IV, Henry A.; Clark, Timothy J.; Robertson, Nicholas J.

    2016-11-15

    Ionomers comprising ionic groups such as, for example, tetraalkylammonium groups and methods of making such ionomers. For example, the ionomers can be produced by ring opening metathesis polymerization of alkene-containing monomers with tetraalkylammonium groups and, optionally, alkene-containing monomers without tetraalkylammonium groups. The ionomers can be used in applications such as, for example, fuel cell applications.

  11. Ion-Molecule Association in Acrylonitrile

    NASA Technical Reports Server (NTRS)

    Wilson, Paul F.; Milligan, Daniel B.; McEwan, Murray J.

    1997-01-01

    Acrylonitrile (propernenitrile or vinyl cyanide) polymerizes readily via a radical mechanism in solution at room temparature. The propensity to polymerize is sufficiently strong that it is usual to add a radical scavenger to the solution to prevent polymerization when oxygen (an inhibitor) is removed. Polymerization of acrylonitrile is also know to occur via nucleophilic addition of an anion by a michael-type reaction.

  12. Evidence for concerted ring opening and C-Br bond breaking in UV-excited bromocyclopropane.

    PubMed

    Pandit, Shubhrangshu; Preston, Thomas J; King, Simon J; Vallance, Claire; Orr-Ewing, Andrew J

    2016-06-28

    Photodissociation of gaseous bromocyclopropane via its A-band continuum has been studied at excitation wavelengths ranging from 230 nm to 267 nm. Velocity-map images of ground-state bromine atoms (Br), spin-orbit excited bromine atoms (Br(∗)), and C3H5 hydrocarbon radicals reveal the kinetic energies of these various photofragments. Both Br and Br(∗) atoms are predominantly generated via repulsive excited electronic states in a prompt photodissociation process in which the hydrocarbon co-fragment is a cyclopropyl radical. However, the images obtained at the mass of the hydrocarbon radical fragment identify a channel with total kinetic energy greater than that deduced from the Br and Br(∗) images, and with a kinetic energy distribution that exceeds the energetic limit for Br + cyclopropyl radical products. The velocity-map images of these C3H5 fragments have lower angular anisotropies than measured for Br and Br(∗), indicating molecular restructuring during dissociation. The high kinetic energy C3H5 signals are assigned to allyl radicals generated by a minor photochemical pathway which involves concerted C-Br bond dissociation and cyclopropyl ring-opening following single ultraviolet (UV)-photon absorption. Slow photofragments also contribute to the velocity map images obtained at the C3H5 radical mass, but the corresponding slow Br atoms are not observed. These features in the images are attributed to C3H5 (+) from the photodissociation of the C3H5Br(+) molecular cation following two-photon ionization of the parent compound. This assignment is confirmed by 118-nm vacuum ultraviolet ionization studies that prepare the molecular cation in its ground electronic state prior to UV photodissociation.

  13. Facile preparation of a cationic poly(amino acid) vesicle for potential drug and gene co-delivery

    NASA Astrophysics Data System (ADS)

    Ding, Jianxun; Xiao, Chunsheng; He, Chaoliang; Li, Mingqiang; Li, Di; Zhuang, Xiuli; Chen, Xuesi

    2011-12-01

    A novel pH-responsive poly(amino acid) grafted with oligocation was prepared through the combination of ring-opening polymerization (ROP) and subsequent atom transfer radical polymerization (ATRP). Firstly, poly(γ-2-chloroethyl-L-glutamate) (PCELG) with a pendent 2-chloroethyl group was synthesized through ROP of γ-2-chloroethyl-L-glutamate N-carboxyanhydride (CELG NCA) using n-hexylamine as the initiator. Then, PCELG was used to initiate the ARTP of 2-aminoethyl methacrylate hydrochloride (AMA), yielding poly(L-glutamate)-graft-oligo(2-aminoethyl methacrylate hydrochloride) (PLG-g-OAMA). The pKa of PLG-g-OAMA was 7.3 established by the acid-base titration method. The amphiphilic poly(amino acid) could directly self-assemble into a vesicle in PBS. The vesicle was characterized by TEM and DLS. Hydrophilic DOX·HCl was loaded into the hollow core of the vesicle. The in vitro release behavior of DOX·HCl from the vesicle in PBS could be adjusted by the solution pH. In vitro cell experiments revealed that the vesicle could reduce the toxicity of the DOX·HCl. In addition, the preliminary gel retardation assay displayed that PLG-g-OAMA could efficiently bind DNA at a PLG-g-OAMA/DNA weight ratio of 0.3 or above, indicating its potential use as a gene carrier. More in-depth studies of the PLG-g-OAMA vesicle for drug and gene co-delivery in vitro and in vivo are in progress.

  14. ATOM TRANSFER RADICAL POLYMERIZATION OF N-BUTYL METHACRYLATE IN AQUEOUS DISPERSED SYSTEMS: A MINIEMULSION APPROACH. (R826735)

    EPA Science Inventory

    Ultrasonication was applied in combination with a hydrophobe for the copper-mediated atom transfer radical polymerization of n-butyl methacrylate in an aqueous dispersed system. A controlled polymerization was successfully achieved, as demonstrated by a linear correlation between...

  15. A Deep Insight into the Details of the Interisomerization and Decomposition Mechanism of o-Quinolyl and o-Isoquinolyl Radicals. Quantum Chemical Calculations and Computer Modeling.

    PubMed

    Dubnikova, Faina; Tamburu, Carmen; Lifshitz, Assa

    2016-09-29

    The isomerization of o-quinolyl ↔ o-isoquinolyl radicals and their thermal decomposition were studied by quantum chemical methods, where potential energy surfaces of the reaction channels and their kinetics rate parameters were determined. A detailed kinetics scheme containing 40 elementary steps was constructed. Computer simulations were carried out to determine the isomerization mechanism and the distribution of reaction products in the decomposition. The calculated mole percent of the stable products was compared to the experimental values that were obtained in this laboratory in the past, using the single pulse shock tube. The agreement between the experimental and the calculated mole percents was very good. A map of the figures containing the mole percent's of eight stable products of the decomposition plotted vs T are presented. The fast isomerization of o-quinolyl → o-isoquinolyl radicals via the intermediate indene imine radical and the attainment of fast equilibrium between these two radicals is the reason for the identical product distribution regardless whether the reactant radical is o-quinolyl or o-isoquinolyl. Three of the main decomposition products of o-quinolyl radical, are those containing the benzene ring, namely, phenyl, benzonitrile, and phenylacetylene radicals. They undergo further decomposition mainly at high temperatures via two types of reactions: (1) Opening of the benzene ring in the radicals, followed by splitting into fragments. (2) Dissociative attachment of benzonitrile and phenyl acetylene by hydrogen atoms to form hydrogen cyanide and acetylene.

  16. Charge and Spin Currents in Open-Shell Molecules:  A Unified Description of NMR and EPR Observables.

    PubMed

    Soncini, Alessandro

    2007-11-01

    The theory of EPR hyperfine coupling tensors and NMR nuclear magnetic shielding tensors of open-shell molecules in the limit of vanishing spin-orbit coupling (e.g., for organic radicals) is analyzed in terms of spin and charge current density vector fields. The ab initio calculation of the spin and charge current density response has been implemented at the Restricted Open-Shell Hartree-Fock, Unrestricted Hartree-Fock, and unrestricted GGA-DFT level of theory. On the basis of this formalism, we introduce the definition of nuclear hyperfine coupling density, a scalar function of position providing a partition of the EPR observable over the molecular domain. Ab initio maps of spin and charge current density and hyperfine coupling density for small radicals are presented and discussed in order to illustrate the interpretative advantages of the newly introduced approach. Recent NMR experiments providing evidence for the existence of diatropic ring currents in the open-shell singlet pancake-bonded dimer of the neutral phenalenyl radical are directly assessed via the visualization of the induced current density.

  17. Dispersion polymerization of L-lactide utilizing ionic liquids as reaction medium

    NASA Astrophysics Data System (ADS)

    Fahmiati, Sri; Minami, Hideto; Haryono, Agus; Adilina, Indri B.

    2017-11-01

    Dispersion polymerization of L-lactide was proceeded in various ionic liquids. Ionic liquids as 1-Hexyl-3-methylimidazolium bis (trifluormethylsulfonyl) imide, [HMIM] [TFSI], 1-Butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide, [BMP] [TFSI], and N,N,N-Trimethyl-N-Propylammonium Bis (trifloromethanesulfonyl) imide, [TMPA] [TFSI], were employed as reaction medium that dissolved both of lactide and stabilizer (polyvinylprrolidone). Sn-supported on bentonite was used as a ring opening catalyst of L-lactide. Gel Permeation Chromatography result showed that poly-(L-lactic acid) were formed in ionic liquids [HMIM] [TFSI] and [BMP] [TFSI] with molecular weight as 19390 and 20844, respectively.

  18. Toward chemical propulsion: synthesis of ROMP-propelled nanocars.

    PubMed

    Godoy, Jazmin; Vives, Guillaume; Tour, James M

    2011-01-25

    The synthesis and ring-opening metathesis polymerization (ROMP) activity of two nanocars functionalized with an olefin metathesis catalyst is reported. The nanocars were attached to a Hoveyda-Grubbs first- or second-generation metathesis catalyst via a benzylidene moiety. The catalytic activity of these nanocars toward ROMP of 1,5-cyclooctadiene was similar to that of their parent catalysts. The activity of the Hoveyda-Grubbs first-generation catalyst-functionalized nanocar was further tested with polymerization of norbornene. Hence, the prospect is heightened for a ROMP process to propel nanocars across a surface by providing the translational force.

  19. Plasma Surface Modification of Polyaramid Fibers for Protective Clothing

    NASA Astrophysics Data System (ADS)

    Widodo, Mohamad

    2011-12-01

    The purpose of this research was to develop a novel process that would achieve biocidal properties on Kevlar fabric via atmospheric pressure plasma jet (APPJ) induced-graft polymerization of monomers. In the course of the study, experiments were carried out to understand plasma-monomer-substrate interactions, particularly, how each of the main parameters in the plasma processing affects the formation of surface radicals and eventually the degree of graft polymerization of monomers. The study also served to explore the possibility of developing plasma-initiated and plasma-controlled graft polymerization for continuous operation. In this regards, three methods of processing were studied, which included two-step plasma graft-polymerization with immersion, two-step and one-step plasma graft-polymerization with pad-dry. In general, plasma treatment did not cause visible damage to the surface of Kevlar fibers, except for the appearance of tiny globules distributed almost uniformly indicating a minor effect of plasma treatment to the surface morphology of the polymer. From the examination of SEM images, however, it was found that a very localized surface etching seemed to have taken place, especially at high RF power (800 W) and long time of exposure (60 s), even in plasma downstream mode of operation. It was suggested that a small amount of charged particles might have escaped and reached the substrate surface. High density of surface radicals, which is the prerequisite for high graft density and high antimicrobial activity, was achieved by the combination of high RF power and short exposure time or low RF power and long time of exposure. This was a clear indication that the formation of surface radicals is a function of amount of the dissipated energy, which also explained the two-factor interaction between the two process parameters. XPS results showed that hydrolysis of the anilide bond of PPTA chains took place to some extent on the surface of Kevlar, leading to the formation carboxylic and phenyl amine groups, which may provide additional active sites for grafting by way of hydrogen abstraction from the latter. Further analysis of XPS data, however, showed that macroradicals and active sites of grafting were formed at least at one of the carbon atoms in the aromatic ring. A reduction of microbial activity up to 3-log reduction was achieved by plasma treated Kevlar grafted by either diallyl diammonium chloride (DADMAC) or 3- ((trimethoxysilyl)-propyl) dimethylammonium chloride (TMS), with the latter being the one with better performance. It was found that high antimicrobial activity was obtained by the combination of high RF power, short time of exposure, and low concentration of monomer. Of the three processing methods studied, the one with immersion method produced higher graft yield. However, one-step plasma graft-polymerization with pad-dry method has proven itself more interesting due to its potential for an open continuous process. This research has been successful in producing effective antimicrobial properties on Kevlar fabric by plasma-initiated and plasma-controlled graft polymerization, which is unprecedented. The design of experiments showed that better results with higher order of log reduction can be obtained by process optimization, e.g. by using response surface methods. It would also be very beneficial to continue the research for the development of plasma graft-polymerization process with more rigorous design, which involves the use of crosslinker and antimicrobial monomers with different chemistry. A study that involves the development of a robust design for processes that perform consistently as intended under a wide range of user's conditions and yet produce high-level performance with high reliability would also be advantageous. The major implication of the findings from this research for the finishing of Kevlar is that a wide array of different surface functionalities may become more readily available now than ever. Plasma technology has made surface chemistry functionalization of Kevlar more straightforward and easier to perform, which opens new avenues for achieving functional and multifunctional Kevlar fabrics using a fast, more economic and environmentally friendly continuous process for niche market such as military applications and protective clothing for emergency responders.

  20. The rotational spectrum of the water-hydroperoxy radical (H2O-HO2) complex.

    PubMed

    Suma, Kohsuke; Sumiyoshi, Yoshihiro; Endo, Yasuki

    2006-03-03

    Peroxy radicals and their derivatives are elusive but important intermediates in a wide range of oxidation processes. We observed pure rotational transitions of the water-hydroperoxy radical complex, H2O-HO2, in a supersonic jet by means of a Fourier transform microwave spectrometer combined with a double-resonance technique. The observed rotational transitions were found to split into two components because of the internal rotation of the water moiety. The molecular constants for the two components were determined precisely, supporting a molecular structure in which HO2 acts as a proton donor to form a nearly planar five-membered ring, and one hydrogen atom of water sticks out from the ring plane. The structure and the spectral splittings due to internal rotation provide information on the nature of the bonding interaction between open- and closed-shell species, and they also provide accurate transition frequencies that are applicable to remote sensing of this complex, which may elucidate its potential roles in atmospheric and combustion chemistry.

  1. Design, synthesis, and characterization of new phosphazene related materials, and study the structure property correlations

    NASA Astrophysics Data System (ADS)

    Tian, Zhicheng

    The work described in this thesis is divided into three major parts, and all of which involve the exploration of the chemistry of polyphosphazenes. The first part (chapters 2 and 3) of my research is synthesis and study polyphoshazenes for biomedical applications, including polymer drug conjugates and injectable hydrogels for drug or biomolecule delivery. The second part (chapters 4 and 5) focuses on the synthesis of several organic/inorganic hybrid polymeric structures, such as diblock, star, brush and palm tree copolymers using living cationic polymerization and atom transfer radical polymerization techniques. The last part (chapters 6 and 7) is about exploratory synthesis of new polymeric structures with fluorinated side groups or cycloaliphatic side groups, and the study of new structure property relationships. Chapter 1 is an outline of the fundamental concepts for polymeric materials, as such the history, important definitions, and some introductory material for to polymer chemistry and physics. The chemistry and applications of phopshazenes is also briefly described. Chapter 2 is a description of the design, synthesis, and characterization of development of a new class of polymer drug conjugate materials based on biodegradable polyphosphazenes and antibiotics. Poly(dichlorophosphazene), synthesized by a thermal ring opening polymerization, was reacted with up to 25 mol% of ciprofloxacin or norfloxacin and three different amino acid esters (glycine, alanine, or phenylalanine) as cosubstituents via macromolecular substitutions. Nano/microfibers of several selected polymers were prepared by an electrospinning technique. Chapter 3 is concerned with the development of a class of injectable and biodegradable hydrogels based on water-soluble poly(organophosphazenes) containing oligo(ethylene glycol) methyl ethers and glycine ethyl esters. The hydrogels can be obtained by mixing alpha-cyclodextrin aqueous solution and poly(organophosphazenes) aqueous solution in various gelation rates depending on the polymer structures and the concentrations. The rheological measurements of the supramolecular hydrogels indicate a fast gelation process and flowable character under a large stain. Chapter 4 outlines the preparation of a number of amphiphilic diblock copolymers based on poly[bis(trifluoroethoxy)phosphazene] (TFE) as the hydrophobic block and poly(dimethylaminoethylmethacrylate) (PDMAEMA) as the hydrophilic block. The TFE block was synthesized first by the controlled living cationic polymerization of a phosphoranimine, followed by replacement of all the chlorine atoms using sodium trifluoroethoxide. To allow for the growth of the PDMAEMA block, 3-azidopropyl-2-bromo-2-methylpropanoate, an atom transfer radical polymerization (ATRP) initiator, was grafted onto the endcap of the TFE block via the 'click' reaction followed by the ATRP of 2-(dimethylamino)ethyl methacrylate (DMAEMA). Chapter 5 is a report on the design and assembly of polyphosphazene materials based on the non-covalent "host--guest" interactions either at the terminus of the polymeric main-chains or the pendant side-chains. The supramolecular interaction at the main chain terminus was used to produce amphiphilic palm-tree like pseudo-block copolymers via host-guest interactions between an adamantane end-functionalized polyphosphazene and a 4-armed beta-cyclodextrin (beta-CD) initiated poly[poly(ethylene glycol) methyl ether methacylate] branched-star type polymer. The formation of micelles of the obtained amphiphiles was analyzed by fluorescence technique, dynamic light scattering, transmission electron microscopy, and atomic force microscopy. Chapter 6 is an investigation of the influence of bulky fluoroalkoxy side groups on the properties of polyphosphazenes. A new series of mixed-substituent high polymeric poly(fluoroalkoxyphosphazenes) containing trifluoroethoxy and branched fluoroalkoxy side groups was synthesized and characterized by NMR and GPC methods. These polymers contained 19--29 mol% of di-branched hexafluoropropoxy groups or 4mol% of tri-branched tert-perfluorobutoxy groups, which serve as regio-irregularities to reduce the macromolecular microcrystallinity. The structure--property correlations of the polymers were then analyzed and interpreted by several techniques: specifically by the thermal behavior by DSC and TGA methods, the crystallinity by wide-angle X-ray diffraction, and the surface hydrophobicity/oleophobicity by contact angle measurements. (Abstract shortened by UMI.). Chapter 7 is an outline of the exploratory synthesis of a new series of phosphazene model cyclic trimers and single- and mixed- substituent high polymers containing cyclic aliphatic rings, --CnH2n-1 (where n = 4--8). The cylco-aliphatic side group containing phosphazenes expand the structural and property boundaries of phosphazene chemistry, and suggest additional approaches for studying slow macromolecular substitution reactions and substituent exchange reactions.

  2. Near-Infrared Free-Radical and Free-Radical-Promoted Cationic Photopolymerizations by In-Source Lighting Using Upconverting Glass.

    PubMed

    Kocaarslan, Azra; Tabanli, Sevcan; Eryurek, Gonul; Yagci, Yusuf

    2017-11-13

    A method is presented for the initiation of free-radical and free-radical-promoted cationic photopolymerizations by in-source lighting in the near-infrared (NIR) region using upconverting glass (UCG). This approach utilizes laser irradiation of UCG at 975 nm in the presence of fluorescein (FL) and pentamethyldiethylene triamine (PMDETA). FL excited by light emitted from the UCG undergoes electron-transfer reactions with PMDETA to form free radicals capable of initiating polymerization of methyl methacrylate. To execute the corresponding free-radical-promoted cationic polymerization of cyclohexene oxide, isobutyl vinyl ether, and N-vinyl carbazole, it was necessary to use FL, dimethyl aniline (DMA), and diphenyliodonium hexafluorophosphate as sensitizer, coinitiator, and oxidant, respectively. Iodonium ions promptly oxidize DMA radicals formed to the corresponding cations. Thus, cationic polymerization with efficiency comparable to the conventional irradiation source was achieved. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Zinc complexes supported by methyl salicylato ligands: synthesis, structure, and application in ring-opening polymerization of L-lactide.

    PubMed

    Petrus, Rafał; Sobota, Piotr

    2013-10-14

    Two novel zinc alkoxides supported by chelating methyl salicylato (MesalO; MesalOH = methyl salicylate) ligands were successfully synthesized and characterized. Reaction of MesalOH with ZnEt2 (2:1) gives a tetranuclear cluster [Zn(MesalO)2]4 (1), which by addition of pyridine is transformed to the mononuclear compound [Zn(MesalO)2(py)2] (2). Compounds 1 and 2 were characterized by elemental analysis, NMR, IR, and single crystal X-ray diffraction. The catalytic activity of both compounds was tested for the ring-opening polymerization (ROP) of L-lactide (L-LA). It was found that compounds 1 and 2 are efficient initiators of the ROP of L-LA, yielding cyclic PLLA with weight average molecular weights up to 100 kDa for 2. The treatment of 2 with 1 equiv. of BnOH in toluene afforded a dimeric compound [Zn(OBn)(MesalO)(py)]2 (3). The addition of L-LA to a combination of 1 and 4 equiv. of BnOH in THF or 2 and 1 equiv. of BnOH in toluene led to the rapid and efficient generation of PLLA with end-capped BnO groups.

  4. Block Copolymers: Synthesis and Applications in Nanotechnology

    NASA Astrophysics Data System (ADS)

    Lou, Qin

    This study is focused on the synthesis and study of (block) copolymers using reversible deactivation radical polymerizations (RDRPs), including atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization. In particular, two primary areas of study are undertaken: (1) a proof-of-concept application of lithographic block copolymers, and (2) the mechanistic study of the deposition of titania into block copolymer templates for the production of well-ordered titania nanostructures. Block copolymers have the ability to undergo microphase separation, with an average size of each microphase ranging from tens to hundreds of nanometers. As such, block copolymers have been widely considered for nanotechnological applications over the past two decades. The development of materials for various nanotechnologies has become an increasingly studied area as improvements in many applications, such as those found in the semiconductor and photovoltaic industries are constantly being sought. Significant growth in developments of new synthetic methods ( i.e. RDRPs) has allowed the production of block copolymers with molecular (and sometimes atomic) definition. In turn, this has greatly expanded the use of block copolymers in nanotechnology. Herein, we describe the synthesis of statistical and block copolymers of 193 nm photolithography methacrylate and acrylate resist monomers with norbornyl and adamantyl moieties using RAFT polymerization.. For these resist (block) copolymers, the phase separation behaviors were examined by atomic force microscopy (AFM). End groups were removed from the polymers to avoid complications during the photolithography since RAFT end groups absorb visible light. Poly(glycidyl methacrylate-block-polystyrene) (PGMA-b-PS) was synthesize by ATRP and demonstrated that this block copolymer acts as both a lithographic UV (365 nm) photoresist and a self-assembly material. The PGMA segments can undergo cationic ring-opening crosslinking and can act as a negative-tone photoresist. The PGMA-b-PS thin films were also studied for phase separation with ˜25 nm patterns using transmission electron microscopy (TEM). Poly(styrene-block-4-vinyl pyridine) (PS-b-P4VP) block copolymer thin films are shown to form perpendicular cylinder phase separated structures, and these may be used to template the formation of ordered titania nanostructures with sub-50 nm diameters on either silicon or indium tin oxide (ITO) substrates. A study of the mechanism of TiO2 formation within the P4VP cylinder phase was developed and tested. It was found that the titania nanostructure morphology is affected by pH and deposition temperatures, and successful deposition required the cross-linking of the P4VP phase in order to obtain individual nanostructures.

  5. Radical molecule and ion-molecule mechanisms in the polymerization of hydrocarbons and chlorosilanes in R.F. plasmas at low pressures (below 1.0 Torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar(+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.

  6. Radical and ion molecule mechanisms in the polymerization of hydrocarbons and chlorosilanes in RF plasmas at low pressures ( 1.0 torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar(+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.

  7. A Comparison of Gallium and Indium Alkoxide Complexes as Catalysts for Ring-Opening Polymerization of Lactide.

    PubMed

    Kremer, Alexandre B; Andrews, Ryan J; Milner, Matthew J; Zhang, Xu R; Ebrahimi, Tannaz; Patrick, Brian O; Diaconescu, Paula L; Mehrkhodavandi, Parisa

    2017-02-06

    The impact of the metal size and Lewis acidity on the polymerization activity of group 13 metal complexes was studied, and it was shown that, within the same ligand family, indium complexes are far more reactive and selective than their gallium analogues. To this end, gallium and aluminum complexes supported by a tridentate diaminophenolate ligand, as well as gallium complexes supported by N,N'-ethylenebis(salicylimine)(salen) ligands, were synthesized and compared to their indium analogues. Using the tridentate ligand set, it was possible to isolate the gallium chloride complexes 3 and (±)-4 and the aluminum analogues 5 and (±)-6. The alkoxygallium complex (±)-2, supported by a salen ligand, was also prepared and characterized and, along with the three-component system GaCl 3 /BnOH/NEt 3 , was tested for the ring-opening polymerization of lactide and ε-caprolactone. The polymerization rates and selectivities of both systems were significantly lower than those for the indium analogues. The reaction of (±)-2 with 1 equiv of lactide forms the first insertion product, which is stable in solution and can be characterized at room temperature. In order to understand the differences of the reactivity within the group 13 metal complexes, a Lewis acidity study using triethylphosphine oxide (the Gutmann-Beckett method) was undertaken for a series of aluminum, gallium, and indium halide complexes; this study shows that indium halide complexes are less Lewis acidic than their aluminum and gallium analogues. Density functional theory calculations show that the Mulliken charges for the indium complexes are higher than those for the gallium analogues. These data suggest that the impact of ligands on the reactivity is more significant than that of the metal Lewis acidity.

  8. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying

    PubMed Central

    2016-01-01

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry. PMID:27445061

  9. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    PubMed

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  10. Preparation of open tubular capillary columns by in situ ring-opening polymerization and their applications in cLC-MS/MS analysis of tryptic digest.

    PubMed

    Wang, Hongwei; Yao, Yating; Li, Ya; Ma, Shujuan; Peng, Xiaojun; Ou, Junjie; Ye, Mingliang

    2017-08-01

    An open tubular (OT) column (25 μm i.d.) was prepared by in situ ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxanes (POSS-epoxy) with 4-aminophenyl disulfide (APDS) in a binary porogenic system of ethanol/H 2 O. It was found that porogenic composition played an important role in the formation of OT stationary phases. The ratio of ethanol/H 2 O at 6/1 (v/v) would lead to the fabrication of hybrid monoliths, while the ratio of ethanol/H 2 O at 13/1 (v/v) would result in the synthesis of OT phases. In addition, the effects of precursor content and reaction duration on the thickness of OT stationary phases were investigated. Either lower precursor content or shorter reaction duration would produce thinner layer of OT column. The repeatability of OT columns was evaluated through relative standard deviation (RSD%) with benzene as the analyte. The run-to-run, column-to-column and batch-to-batch repeatabilities were 1.7%, 4.8% and 5.6%, respectively, exhibiting satisfactory repeatability of the OT column. Then tryptic digest of mouse liver proteins was used to evaluate the performance of the resulting OT columns (25 μm i.d. × 2.5 m in length) by cLC-MS/MS analysis, demonstrating their potential in proteome analysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers

    DOE PAGES

    McGrath, Alaina J.; Shi, Weichao; Rodriguez, Christina G.; ...

    2014-12-11

    Here, we report an effective strategy for the synthesis of semi-crystalline block copolyethers with well-defined architecture and stereochemistry. As an exemplary system, triblock copolymers containing either atactic (racemic) or isotactic ( R or S) poly(propylene oxide) end blocks with a central poly(ethylene oxide) mid-block were prepared by anionic ring-opening procedures. Stereochemical control was achieved by an initial hydrolytic kinetic resolution of racemic terminal epoxides followed by anionic ring-opening polymerization of the enantiopure monomer feedstock. The resultant triblock copolymers were highly isotactic (meso triads [ mm]% ~ 90%) with optical microscopy, differential scanning calorimetry, wide angle x-ray scattering and small anglemore » x-ray scattering being used to probe the impact of the isotacticity on the resultant polymer and hydrogel properties.« less

  12. Novel PLA modification of organic microcontainers based on ring opening polymerization: synthesis, characterization, biocompatibility and drug loading/release properties.

    PubMed

    Efthimiadou, E K; Tziveleka, L-A; Bilalis, P; Kordas, G

    2012-05-30

    In the current study, poly lactic acid (PLA) modified hollow crosslinked poly(hydroxyethyl methacrylate) (PHEMA) microspheres have been prepared, in order to obtain a stimulus-responsive, biocompatible carrier with sustained drug release properties. The synthetical process consisted of the preparation of poly(methacrylic acid)@poly(hydroxyethyl methacrylate-co-N,N'-methylene bis(acrylamide)) microspheres by a two stage distillation-precipitation polymerization technique using 2,2'-azobisisobutyronitrile as initiator. Following core removal, a PLA coating of the microspheres was formed, after ring opening polymerization of DL-lactide, attributing the initiator's role to the active hydroxyl groups of PHEMA. The anticancer drug daunorubicin (DNR) was selected for the study of loading and release behavior of the coated microspheres. The loading capacity of the PLA modified microspheres was found to be four times higher than that of the parent ones (16% compared to 4%). This coated microspherical carrier exhibited a moderate pH responsive drug release behavior due to the pH dependent water uptake of PHEMA, and PLA hydrolysis. The in vitro cytotoxicity of both the parent and the DNR-loaded or empty modified hollow microspheres has been also examined on MCF-7 breast cancer cells. The results showed that although the empty microspheres were moderately cytotoxic, the DNR-loaded microspheres had more potent anti-tumor effect than the free drug. Therefore, the prepared coated microspheres are interesting drug delivery systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Titanium, aluminum and zinc complexes containing diamine-bis(benzotriazole phenolate) ligands: Synthesis, structural characterization and catalytic studies for ring-opening polymerization of ε-caprolactone

    NASA Astrophysics Data System (ADS)

    Liu, Zheng-Tang; Li, Chen-Yu; Chen, Jhy-Der; Liu, Wan-Ling; Tsai, Chen-Yen; Ko, Bao-Tsan

    2017-04-01

    Structurally diverse metal complexes bearing diamine-bis(benzotriazole phenolate) (DiBTP) ligands have been synthesized and fully characterized by single crystal X-ray crystallography. The reaction of Ti(OiPr)4 with C8MEADiBTP-H2 or C8BEADiBTP-H2 (1.0 mol equiv.) generated the monomeric titanium alkoxy complexes [(C8MEADiBTP)Ti(OiPr)2] (1) and [(C8BEADiBTP)Ti(OiPr)2] (2), respectively. Moreover, C8BEADiBTP-H2 reacted with 2.0 molar equiv. of AlMe3 to give the tetra-coordinated di-aluminum complex [(C8BEADiBTP)Al2Me4] (3). Zinc complex [(C8BEADiBTP)Zn2Et2] (4) could be obtained by the alkane elimination of ZnEt2 (2.0 equiv.) with C8BEADiBTP-H2 as the pro-ligand under similar synthetic methods in good yield. Single-crystal X-ray diffraction indicates that 3 is a bimetallic aluminum dimethyl complex with a tetradentate C8BEADiBTP moiety chelating two metal atoms, whereas complex 4 displays the dinuclear feature containing both tetra- and penta-coordinated zinc atoms bonded by one ONNON-pentadentate C8BEADiBTP ligand. Catalytic studies for ring-opening polymerization of ε-caprolactone of complex 1-4 were systematic explored; the comparative studies of such polymerization were also discussed.

  14. Photoinitiated polymerization of 1-vinylimidazole

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, M.G.; Rodriguez, F.

    1984-04-01

    The photoinitiated polymerization of 1-vinylimidazole (VI) does not follow the classical kinetic scheme for free radical polymerization. Kinetic results for VI suggest a degradative addition reaction between the macroradical and the monomer to produce a relatively stable, unreactive radical, which does not reinitiate polymerization, is low, 1.5 kcal/mol. Among the 3 photoinitiators used, the highest quantum efficiency was demonstrated by 2,2'-diethoxyacetophenone followed by bezoin methyl ether and benzoin isopropyl ether. Under the experimental conditions used, the polymerization of VI does not proceed to complete conversion, and the phenomenon of dead-end polymerization is observed.

  15. A Review on Grafting of Biofibers for Biocomposites

    PubMed Central

    Wei, Liqing; McDonald, Armando G.

    2016-01-01

    A recent increase in the use of biofibers as low-cost and renewable reinforcement for the polymer biocomposites has been seen globally. Biofibers are classified into: lignocellulosic fibers (i.e., cellulose, wood and natural fibers), nanocellulose (i.e., cellulose nanocrystals and cellulose nanofibrils), and bacterial cellulose, while polymer matrix materials can be petroleum based or bio-based. Green biocomposites can be produced using both biobased fibers and polymers. Incompatibility between the hydrophilic biofibers and hydrophobic polymer matrix can cause performance failure of resulting biocomposites. Diverse efforts have focused on the modification of biofibers in order to improve the performances of biocomposites. “Grafting” copolymerization strategy can render the advantages of biofiber and impart polymer properties onto it and the performance of biocomposites can be tuned through changing grafting parameters. This review presents a short overview of various “grafting” methods which can be directly or potentially employed to enhance the interaction between biofibers and a polymer matrix for biocomposites. Major grafting techniques, including ring opening polymerization, grafting via coupling agent and free radical induced grafting, have been discussed. Improved properties such as mechanical, thermal, and water resistance have provided grafted biocomposites with new opportunities for applications in specific industries. PMID:28773429

  16. “Uncontrolled” Preparation of Disperse Poly(lactide)- block -poly(styrene)- block -poly(lactide) for Nanopatterning Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vanderlaan, Marie E.; Hillmyer, Marc A.

    We report the facile synthesis of well-defined ABA poly(lactide)-block-poly(styrene)-block-poly(lactide) (LSL) triblock copolymers having a disperse poly(styrene) midblock (Ð = 1.27–2.24). The direct synthesis of telechelic α,ω-hydroxypoly(styrene) (HO-PS-OH) midblocks was achieved using a commercially available difunctional free radical diazo initiator 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)propionamide]. Poly(lactide) (PLA) end blocks were subsequently grown from HO-PS-OH macroinitiators via ring-opening transesterification polymerization of (±)-lactide using the most common and prevalent catalyst system available, tin(II) 2-ethylhexanoate. Fourteen LSL triblock copolymers with total molar masses Mn,total = 24–181 kg/mol and PLA volume fractions fPLA = 0.15–0.68 were synthesized and thoroughly characterized. The self-assembly of symmetric triblocks was analyzed in themore » bulk using small-angle X-ray scattering and in thin films using grazing incidence small-angle X-ray scattering and atomic force microscopy. We demonstrate both the bulk and thin film self-assembly of LSL disperse triblocks gave well-organized nanostructures with uniform domain sizes suitable for nanopatterning applications.« less

  17. Solventless sol-gel chemistry through ring-opening polymerization of bridged disilaoxacyclopentanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RAHIMIAN,KAMYAR; LOY,DOUGLAS A.

    2000-04-04

    Disilaoxacyclopentanes have proven to be excellent precursors to sol-gel type materials. These materials have shown promise as precursors for encapsulation and microelectronics applications. The polymers are highly crosslinked and are structurally similar to traditional sol-gels, but unlike typical sol-gels they are prepared without the use of solvents and water, they have low VOC's and show little shrinkage during processing.

  18. Biodegradable polydepsipeptides.

    PubMed

    Feng, Yakai; Guo, Jintang

    2009-02-01

    This paper reviews the synthesis, characterization, biodegradation and usage of bioresorbable polymers based on polydepsipeptides. The ring-opening polymerization of morpholine-2,5-dione derivatives using organic Sn and enzyme lipase is discussed. The dependence of the macroscopic properties of the block copolymers on their structure is also presented. Bioresorbable polymers based on polydepsipeptides could be used as biomaterials in drug controlled release, tissue engineering scaffolding and shape-memory materials.

  19. Well-Defined High Molecular Weight Polystyrene with High Rates and High Livingness Synthesized via Two-Stage RAFT Emulsion Polymerization.

    PubMed

    Yan, Kun; Gao, Xiang; Luo, Yingwu

    2015-07-01

    A highly living polymer with over 100 kg mol(-1) molecular weight is very difficult to achieve by controlled radical polymerization since the unavoidable side reactions of irreversible radical termination and radical chain transfer to monomer reaction become significant. It is reported that over 500 kg mol(-1) polystyrene with high livingness and low dispersity could be synthesized by a facile two-stage reversible addition-fragmentation transfer emulsion polymerization. The monomer conversion reaches 90% within 10 h. High livingness of the product is ascribed to the extremely low initiator concentration and the chain transfer constant for monomer unexpectedly much lower than the well-accepted values in the conventional radical polymerization. The two-stage monomer feeding policy much decreases the dispersity of the product. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Mechanism of Cyclic Dye Regeneration During Eosin-Sensitized Photoinitiation in the Presence of Polymerization Inhibitors

    PubMed Central

    Avens, Heather J.; Bowman, Christopher N.

    2009-01-01

    A visible light photoinitiator, eosin, in combination with a tertiary amine coinitiator is found to initiate polymerization despite the presence of at least 1000-fold excess dissolved oxygen which functions as an inhibitor of radical polymerizations. Additionally, 0.4 µM eosin is able to overcome 100-fold excess (40 µM) 2,2,6,6-Tetramethyl-1-piperidinyloxy (TEMPO) inhibitor, initiating polymerization after only a 2 minute inhibition period. In contrast, 40 µM Irgacure-2959, a standard cleavage-type initiator, is unable to overcome even an equivalent amount of inhibitor (40 µM TEMPO). Through additional comparisons of these two initiation systems, a reaction mechanism is developed which is consistent with the kinetic data and provides an explanation for eosin’s relative insensitivity to oxygen, TEMPO and other inhibitors. A cyclic mechanism is proposed in which semi-reduced eosin radicals react by disproportionation with radical inhibitors and radical intermediates in the inhibition process to regenerate eosin and effectively consume inhibitor. In behavior similar to that of eosin, rose bengal, fluorescein, and riboflavin are also found to initiate polymerization despite the presence of excess TEMPO, indicating that cyclic regeneration likely enhances the photoinitiation kinetics of many dye photosensitizers. Selection of such dye initiation systems constitutes a valuable strategy for alleviating inhibitory effects in radical polymerizations. PMID:20098667

  1. Kinetics and mechanisms of cylindrospermopsin destruction by sulfate radical-based advanced oxidation processes.

    PubMed

    He, Xuexiang; de la Cruz, Armah A; O'Shea, Kevin E; Dionysiou, Dionysios D

    2014-10-15

    Cylindrospermopsin (CYN) is a potent cyanobacterial toxin frequently found in water bodies worldwide raising concerns over the safety of drinking and recreational waters. A number of technologies have been investigated to remove and/or degrade cyanotoxins with advanced oxidation processes (AOPs) being among the most promising and effective for water detoxification. In this study, the degradation of CYN by sulfate radical-based UV-254 nm-AOPs was evaluated. The UV/S2O8(2-) (UV/peroxydisulfate) was more efficient than UV/HSO5(-) (UV/peroxysulfate) and UV/H2O2 (UV/hydrogen peroxide) processes when natural water samples were used as reaction matrices. The observed UV fluence based pseudo-first-order rate constants followed the expected order of radical quantum yields. The presence of 200 μM natural organic matter (NOM) as carbon slightly inhibited the destruction of CYN; 1.24 mg L(-1)NO3(-) (nitrate) had no significant influence on the removal efficiency and 50 μg L(-1) Fe(2+) [iron (2+)] or Cu(2+) [copper (2+)] improved the performance of UV/S2O8(2-). The addition of tert-butyl alcohol (t-BuOH; hydroxyl radical scavenger) in the reaction yielded byproducts that indicated specific sites in CYN preferentially attacked by sulfate radicals (SRs). The predominant CYN degradation byproduct was P448 consistent with fragmentation of the C5C6 bond of the uracil ring. The subsequent formation of P420 and P392 through a stepwise loss of carbonyl group(s) further supported the fragmentation pathway at C5C6. The byproduct P432 was identified exclusively as mono-hydroxylation of CYN at tricyclic guanidine ring, whereas P414 was detected as dehydrogenation at the tricyclic ring. The elimination of sulfate group and the opening of tricyclic ring were also observed. The possible degradation pathways of CYN by SR-AOP were presented. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Identification of intermediates and assessment of ecotoxicity in the oxidation products generated during the ozonation of clofibric acid.

    PubMed

    Rosal, Roberto; Gonzalo, María S; Boltes, Karina; Letón, Pedro; Vaquero, Juan J; García-Calvo, E

    2009-12-30

    The degradation of an aqueous solution of clofibric acid was investigated during catalytic and non-catalytic ozonation. The catalyst, TiO(2), enhanced the production of hydroxyl radicals from ozone and raised the fraction or clofibric acid degraded by hydroxyl radicals. The rate constant for the reaction of clofibric acid and hydroxyl radicals was not affected by the presence of the catalyst. The toxicity of the oxidation products obtained during the reaction was assessed by means of Vibrio fischeri and Daphnia magna tests in order to evaluate the potential formation of toxic by-products. The results showed that the ozonation was enhanced by the presence of TiO(2,) the clofibric acid being removed completely after 15 min at pH 5. The evolution of dissolved organic carbon, specific ultraviolet absorption at 254 nm and the concentration of carboxylic acids monitored the degradation process. The formation of 4-chlorophenol, hydroquinone, 4-chlorocatechol, 2-hydroxyisobutyric acid and three non-aromatic compounds identified as a product of the ring-opening reaction was assessed by exact mass measurements performed by liquid chromatography coupled to time-of-flight mass spectrometry (LC-TOF-MS). The bioassays showed a significant increase in toxicity during the initial stages of ozonation following a toxicity pattern closely related to the formation of ring-opening by-products.

  3. Experimental and theoretical study of oxidative stability of alkylated furans used as gasoline blend components

    DOE PAGES

    Christensen, Earl; Fioroni, Gina M.; Kim, Seonah; ...

    2017-11-06

    Alkylated furans such as 2,5-dimethylfuran and 2-methylfuran can be produced from biomass and have very attractive properties for use as spark-ignition fuel blendstocks. Their high octane numbers, relatively high energy density, low water solubility, and minimal effect on gasoline blend volatility are potentially significant advantages over alcohol-based fuels. However, prior studies have reported poor oxidative stability for furanic compound-gasoline blends, as well as the potential for the formation of dangerous organic peroxides. We show that alkylated furans have very low oxidative stability compared to conventional gasoline. Upon oxidation they form highly polar ring-opening products that can react with the startingmore » furanic compound to form dimers, trimers, and higher polymers with intact furan rings. Dimers of the starting furan compounds were also observed. These gasoline-insoluble gums can be problematic for fuel storage or in vehicle fuel systems. Evaporation to dryness under ambient conditions also produced gum with similar composition. Gums produced via evaporation were found to contain peroxides; however, whether these pose a threat of shock initiated explosion has not been determined. We also propose a density functional theory-based analysis of possible reaction pathways, showing that OH radicals can form by reaction of the alkyl group and that addition of OH radicals to the furan ring is energetically favored and leads to ring opening products. As a result, antioxidant additives can be effective at limiting the oxidation reaction in gasoline, but require much higher concentrations than are commonly used in commercial gasolines.« less

  4. Experimental and theoretical study of oxidative stability of alkylated furans used as gasoline blend components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christensen, Earl; Fioroni, Gina M.; Kim, Seonah

    Alkylated furans such as 2,5-dimethylfuran and 2-methylfuran can be produced from biomass and have very attractive properties for use as spark-ignition fuel blendstocks. Their high octane numbers, relatively high energy density, low water solubility, and minimal effect on gasoline blend volatility are potentially significant advantages over alcohol-based fuels. However, prior studies have reported poor oxidative stability for furanic compound-gasoline blends, as well as the potential for the formation of dangerous organic peroxides. We show that alkylated furans have very low oxidative stability compared to conventional gasoline. Upon oxidation they form highly polar ring-opening products that can react with the startingmore » furanic compound to form dimers, trimers, and higher polymers with intact furan rings. Dimers of the starting furan compounds were also observed. These gasoline-insoluble gums can be problematic for fuel storage or in vehicle fuel systems. Evaporation to dryness under ambient conditions also produced gum with similar composition. Gums produced via evaporation were found to contain peroxides; however, whether these pose a threat of shock initiated explosion has not been determined. We also propose a density functional theory-based analysis of possible reaction pathways, showing that OH radicals can form by reaction of the alkyl group and that addition of OH radicals to the furan ring is energetically favored and leads to ring opening products. As a result, antioxidant additives can be effective at limiting the oxidation reaction in gasoline, but require much higher concentrations than are commonly used in commercial gasolines.« less

  5. Mechanistic studies aimed at the development of single site metal alkoxide catalysts for the production of polyoxygenates from renewable resources.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chisholm, Malcolm H.

    2015-12-15

    The work proposed herein follows on directly from the existing 3 year grant and the request for funding is for 12 months to allow completion of this work and graduation of current students supported by DOE. The three primary projects are as follows. 1.) A comparative study of the reactivity of LMg(OR) (solvent), where L= a β-diiminate or pyrromethene ligand, in the ring-opening of cyclic esters. 2.) The homopolymerization of expoxides, particularly propylene oxide and styrene oxide, and their copolymerizations with carbon dioxide or organic anhydrides to yield polycarbonates or polyesters, respectively. 3.) The development of well-defined bismuth (III) complexesmore » for ring-opening polymerizations that are tolerant of both air and water. In each of these topics special emphasis is placed on developing a detailed mechanistic understanding of the ring-opening event and how this is modified by the employment of specific metal and ligand combinations. This document also provides a report on findings of the past grant period that are not yet in the public domain/published and shows how the proposed work will bring the original project to conclusion.« less

  6. Analysis of the morphology, stability, and folding pathways of ring polymers with supramolecular topological constraints using molecular simulation and nonlinear manifold learning

    NASA Astrophysics Data System (ADS)

    Wang, Jiang; Ferguson, Andrew

    Ring polymers offer a wide range of natural and engineered functions and applications, including as circular bacterial DNA, crown ethers for cation chelation, and ``molecular machines'' such as mechanical nanoswitches. The morphology and dynamics of ring polymers are governed by the chemistry and degree of polymerization of the ring, and intramolecular and supramolecular topological constraints such as knots or mechanically-interlocked rings. We perform molecular dynamics simulations of polyethylene ring polymers as a function of degree of polymerization and in different topological states, including a knotted state, catenane state (two interlocked rings), and borromean state (three interlocked rings). Applying nonlinear manifold learning to our all-atom simulation trajectories, we extract low-dimensional free energy surfaces governing the accessible conformational states and their relative thermodynamic stability. The free energy surfaces reveal how degree of polymerization and topological constraints affect the thermally accessible conformations, chiral symmetry breaking, and folding and collapse pathways of the rings, and present a means to rationally engineer ring size and topology to preferentially stabilize particular conformational states.

  7. Gold Nanoparticles with Externally Controlled, Reversible Shifts of Local Surface Plasmon Resonance Bands

    PubMed Central

    Yavuz, Mustafa S.; Jensen, Gary C.; Penaloza, David P.; Seery, Thomas A. P.; Pendergraph, Samuel A.; Rusling, James F.; Sotzing, Gregory A.

    2010-01-01

    We have achieved reversible tunability of local surface plasmon resonance in conjugated polymer functionalized gold nanoparticles. This property was facilitated by the preparation of 3,4-ethylenedioxythiophene (EDOT) containing polynorbornene brushes on gold nanoparticles via surface-initiated ring-opening metathesis polymerization. Reversible tuning of the surface plasmon band was achieved by electrochemically switching the EDOT polymer between its reduced and oxidized states. PMID:19839619

  8. Surface-initiated ring-opening metathesis polymerization (SI-ROMP) to attach a tethered organic corona onto CdSe/ZnS core/shell quantum dots

    PubMed Central

    Vatansever, Fatma; Hamblin, Michael R.

    2016-01-01

    Core–shell CdSe/ZnS quantum dots (QDs) are useful as tunable photostable fluorophores for multiple applications in industry, biology, and medicine. However, to achieve the optimum optical properties, the surface of the QDs must be passivated to remove charged sites that might bind extraneous substances and allow aggregation. Here we describe a method of growing an organic polymer corona onto the QD surface using the bottom-up approach of surface-initiated ring-opening metathesis polymerization (SI-ROMP) with Grubbs catalyst. CdSe/ZnS QDs were first coated with mercaptopropionic acid by displacing the original trioctylphosphine oxide layer, and then reacted with 7-octenyl dimethyl chlorosilane. The resulting octenyl double bonds allowed the attachment of ruthenium alkylidene groups as a catalyst. A subsequent metathesis reaction with strained bicyclic monomers (norbornene-dicarbonyl chloride (NDC), and a mixture of NDC and norbornenylethylisobutyl-polyhedral oligomeric silsesquioxane (norbornoPOSS)) allowed the construction of tethered organic homo-polymer or co-polymer layers onto the QD. Compounds were characterized by FT-IR, 1H-NMR, X-ray photoelectron spectroscopy, differential scanning calorimetry, and transmission electron microscopy. Atomic force microscopy showed that the coated QDs were separate and non-aggregated with a range of diameter of 48–53 nm. PMID:28360819

  9. Facile preparation of a stable and functionalizable hybrid monolith via ring-opening polymerization for capillary liquid chromatography.

    PubMed

    Lin, Hui; Ou, Junjie; Tang, Shouwan; Zhang, Zhenbin; Dong, Jing; Liu, Zhongshan; Zou, Hanfa

    2013-08-02

    An organic-inorganic hybrid monolith was prepared by a single-step ring-opening polymerization of octaglycidyldimethylsilyl polyhedral oligomeric silsesquioxane (POSS) with poly(ethylenimine) (PEI). The obtained hybrid monoliths possessed high ordered 3D skeletal microstructure with dual retention mechanism that exhibits reversed-phase (RP) mechanism under polar mobile phase and hydrophilic-interaction liquid chromatography (HILIC) retention mechanism under less polar mobile phase. The high column efficiencies of 110,000N/m can be achieved for separation of alkylbenzenes in capillary reversed-phase liquid chromatography (cLC). Due to the robust property of hybrid monolith and the rich primary and secondary amino groups on its surface, the resulting hybrid monolith was easily modified with γ-gluconolactone and physically coated with cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC), respectively. The former was successfully applied for HILIC separation of neutral, basic and acidic polar compounds as well as small peptides, and the latter for enantioseparation of racemates in cLC. The high column efficiencies were achieved in all of those separations. These results demonstrated that the hybrid monolith (POSS-PEI) possessed high stability and good surface tailorbility, potentially being applied for other research fields. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Construction of hierarchically porous monoliths from covalent organic frameworks (COFs) and their application for bisphenol A removal.

    PubMed

    Liu, Zhongshan; Wang, Hongwei; Ou, Junjie; Chen, Lianfang; Ye, Mingliang

    2018-05-11

    Subject to synthetic conditions, covalent organic frameworks (COFs) are usually in powder form. Herein, taking an azine-linked COF as an example, detailed characterizations indicated that accessible aldehyde groups and hydrazine groups (CNNH 2 , 88 μmol g -1 ) concurrently existed on its surface. Intrigued by such feature, we have developed an approach based on ring-opening polymerization to shape COF powder into monoliths. The crystallinity and micropore of COF in monoliths were well remained, meanwhile, the ring-opening polymerization remarkably generated macropores ranging from 0.43 to 3.51 μm, indicating a hierarchically porous structure. The BET surface area of resultant monoliths with different COF mass fractions of 16%, 28% and 43% ranged from 105 to 281 m 2  g -1 . Due to the π-π interaction and hydrogen bond interaction, COF-based monoliths exhibited strong retention and rapid adsorption for bisphenol A (BPA) in aqueous medium. When 29 mL BPA solution (22.8 mg L -1 ) passed through COF-based monolith (28%), the adsorption capacity was up to 61.3 mg g -1 . Furthermore, the COF-based monolith demonstrated excellent cycle use for catalyzing Suzuki-Miyaura coupling reaction after being coordinated with palladium acetate. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Poly-amido-saccharides: Synthesis via Anionic Polymerization of a β-Lactam Sugar Monomer

    PubMed Central

    Dane, Eric L.; Grinstaff, Mark W.

    2013-01-01

    Chiral poly-amido-saccharides (PASs) with a defined molecular weight and narrow polydispersity are synthesized using an anionic ring-opening polymerization of a β-lactam sugar monomer. The PASs have a previously unreported main chain structure that is composed of pyranose rings linked through the 1- and 2-positions by an amide bond with α-stereochemistry. The monomer is synthesized in one-step from benzyl-protected d-glucal and polymerized using mild reaction conditions to give degrees of polymerization ranging from 25 to >150 in high yield. Computational modeling reveals how the monomer’s structure and steric bulk affect the thermodynamics and kinetics of polymerization. Protected and deprotected polymers and model compounds are characterized using a variety of methods (NMR, GPC, IR, DLS, etc.). Reductive debenzylation provides the deprotected, hydrophilic polymers in high yield. Based on circular dichroism, the deprotected polymers possess a regular secondary structure in aqueous solution, which agrees favorably with the prediction of a helical structure using molecular modeling. Furthermore, we provide evidence suggesting that the polymers bind the lectin concanavalin A at the same site as natural carbohydrates, showing the potential of these polymers to mimic natural polysaccharides. PASs offer the advantages associated with synthetic polymers, such as greater control over structure and derivitization, and less batch-to-batch variation. At the same time, they preserve many of the structural features of natural polysaccharides, such as a stereochemically regular, rigid pyranose backbone, that make natural carbohydrate polymers important materials both for their unique properties and useful applications. PMID:22937875

  12. Fluorinated bottlebrush polymers based on poly(trifluoroethyl methacrylate): Synthesis and characterizations

    DOE PAGES

    Xu, Yuewen; Wang, Weiyu; Wang, Yangyang; ...

    2015-11-25

    Bottlebrush polymers are densely grafted polymers with long side-chains attached to a linear polymeric backbone. Their unusual structures endow them with a number of unique and potentially useful properties in solution, in thin films, and in bulk. Despite the many studies of bottlebrushes that have been reported, the structure–property relationships for this class of materials are still poorly understood. In this contribution, we report the synthesis and characterization of fluorinated bottlebrush polymers based on poly(2,2,2-trifluoroethyl methacrylate). The synthesis was achieved by atom transfer radical polymerization (ATRP) using an α-bromoisobutyryl bromide functionalized norbornene initiator, followed by ring-opening metathesis polymerization (ROMP) usingmore » a third generation Grubbs’ catalyst (G3). Rheological characterization revealed that the bottlebrush polymer backbones remained unentangled as indicated by the lack of a rubbery plateau in the modulus. By tuning the size of the backbone of the bottlebrush polymers, near-spherical and elongated particles representing single brush molecular morphologies were observed in a good solvent as evidenced by TEM imaging, suggesting a semi-flexible nature of their backbones in dilute solutions. Thin films of bottlebrush polymers exhibited noticeably higher static water contact angles as compared to that of the macromonomer reaching the hydrophobic regime, where little differences were observed between each bottlebrush polymer. Further investigation by AFM revealed that the surface of the macromonomer film was relatively smooth; in contrast, the surface of bottlebrush polymers displayed certain degrees of nano-scale roughness (R q = 0.8–2.4 nm). The enhanced hydrophobicity of these bottlebrushes likely results from the preferential enrichment of the fluorine containing end groups at the periphery of the molecules and the film surface due to the side chain crowding effect. Furthermore, our results provide key information towards the design of architecturally tailored fluorinated polymers with desirable properties.« less

  13. A new polyester based on allyl α-hydroxy glutarate as shell for magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Nan, Alexandrina; Feher, Ioana Coralia

    2017-12-01

    Allyl side-chain-functionalized lactide was synthesized from commercially available glutamic acid and polymerized by ring opening polymerization using 4-dimethylaminopyridine as an organocatalyst in the presence of magnetic nanoparticles. The resulting magnetic nanostructures coated with the allyl-containing polyester were then functionalized with cysteine by thiol-ene click reaction leading to highly functionalized magnetic nano-platforms of practical interest. The polyester precursors were characterized by nuclear magnetic resonance and mass spectrometry. The morphology of magnetic nanostructures based on the functionalized polyester was determined by transmission electron microscopy TEM, while the chemical structure was investigated by FT-IR. TGA investigations and the magnetic properties of the magnetic nanostructures are also described.

  14. Microwave-assisted rapid photocatalytic degradation of malachite green in TiO2 suspensions: mechanism and pathways.

    PubMed

    Ju, Yongming; Yang, Shaogui; Ding, Youchao; Sun, Cheng; Zhang, Aiqian; Wang, Lianhong

    2008-11-06

    Microwave-assisted photocatalytic (MPC) degradation of malachite green (MG) in aqueous TiO2 suspensions was investigated. A 20 mg/L sample of MG was rapidly and completely decomposed in 3 min with the corresponding TOC removal efficiency of about 85%. To gain insight into the degradation mechanism, both GC-MS and LC-ESI-MS/MS techniques were employed to identify the major intermediates of MG degradation, including N-demethylation intermediates [(p-dimethylaminophenyl)(p-methylaminophenyl)phenylmethylium (DM-PM), (p-methylaminophenyl)(p-methylaminophenyl)phenylmethylium (MM-PM), (p-methylaminophenyl)(p-aminophenyl)phenylmethylium (M-PM)]; a decomposition compound of the conjugated structure (4-dimethylaminobenzophenone (DLBP)); products resulting from the adduct reaction of hydroxyl radical; products of benzene removal; and other open-ring intermediates such as phenol, terephthalic acid, adipic acid, benzoic acid, etc. The possible degradation mechanism of MG included five processes: the N-demethylation process, adduct products of the hydroxyl radical, the breakdown of chromophores such as destruction of the conjugated structure intermediate, removal of benzene, and an open-ring reaction. To the best of our knowledge, it is the first time the whole MG photodegradation processes have been reported.

  15. Advanced Bio-Based Nanocomposites and Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Spinella, Stephen Matthew

    The aim of the PhD thesis concerns with the modification of cellulose nanocrystals (CNCs) via esterification or a radical grafting "from" approach to achieve polymeric nanocomposites of exceptional properties (Chapters 1 to 4). In addition to CNCs modification, other green routes have been introduced in this thesis in order to environmentally friendly polyester-based materials, i.e. Chapters five and six. The second chapter focuses on expanding on a one-pot cellulose acid hydrolysis/Fischer esterification to produce highly compatible CNCs without any organic solvent. It consists of modifying CNCs with acetic- and lactic- acid and exploring how such surface chemistry has an effect of dispersion in the case of polylactide (PLA)-based nanocomposites. The degree of substitution for AA-CNCs and LA-CNCs, determined by FTIR, are 0.12 and 0.13, respectively. PLA-based materials represent the best bioplastics relating to its high stiffness and biodegradability, but suffer from its poor thermal performances, namely its Heat Deflection Temperature (HDT). To improve the HDT of PLA, nanocomposites have been therefore prepared with modified cellulose nanocrystals (CNCs) by melt blending. After blending at 5 wt-% loading of CNCs, LA-CNCs gives superior reinforcement below and above the glass temperature of PLA. An increase in PLA's heat deflection temperature by 10°C and 20°C is achieved by melt-blending PLA with 5 and 20 wt-% LA-CNCs, respectively. Chapter three concerns with expanding this process to a series of hydrophilic and hydrophobic acids yielding functional CNCs for electronic and biomedical applications. Hydrophilic acids include citric-, malonic- and malic acid. Modification with the abovementioned organic acids allows for the introduction of free acids onto the surface of CNCs. Modification with citric-, malonic- and malic- acid is verified by Fourier Transform Infrared Spectroscopy and 13C solid state magic-angle spinning (MAS) NMR experiments. The degree of substation of modified CNCs is determined by quantitative direct carbon MAS NMR for malonate CNCs, malate CNCs and Citrate CNCs are found to be 0.16, 0.22 and 0.18, respectively. Re-hydrolysis experiments are performed and the yield of citrate CNCs was increased to 55% with little effect on CNC crystallinity or morphology. Citrate CNCs are then used for a myriad of applications such as polymer reinforcement (polyvinyl alcohol (PVOH) and bio-temptation of inorganic nanoparticles. Introduction of just 1% citrate CNCs results in a 40°C increase in PVOH's thermal stability (T50%). Appendant citrate groups are used for the direct reduction of silver nanoparticles without any external reducing agents. Finally citrate CNCs are used to reinforce collagen hydrogels. Chapter four builds on "grafting from" reactions of poly(methyl methacrylate) (PMMA) onto the surface of CNCs to further increase the HDT of PLAs above 100°C. Taking advantage of the PMMA-PLLA miscibility, the presence of PMMA grafts on the CNC surface clearly improves CNC dispersion in PLLA, and reduces CNC aggregation thus enhancing the PLAs HDT. Herein "grafting from" reactions of poly(methyl methacrylate) (PMMA) on the surface of CNCs was is performed by free-radical grafting in water using two different redox initiators: Fe2+/H2O2 (Fenton's reagent) and ceric ammonium nitrate (CAN). The amount of grafted PMMA could be easily tuned according to the initiator and CAN clearly represents the most efficient initiator. From rheological data, high grafting levels favor the percolation of CNC with the development of a long-range 3D network. PLA's (HDT) higher was increased to over 130°C. Chapter five reports blending PLA with another renewable poly(o-hydroxytetradecanoic acid) (PC14).The goal of this chapter is to enhance the poor brittleness of PLA by blending with a rubbery polymer such as PC14. Like most polymer blends, PLA and PC14 are however found to be immiscible by simple blending. To achieve this goal, a fully bio-sourced PLA based polymer blend is conceived by incorporating small quantities of poly(o-hydroxytetradecanoic acid) (PC14). PC14 is produced by polycondensation, thus we explore ring opening polymerization of poly(w-pentadecalactone) using enzymatic reactive extrusion. The final chapter of this thesis concerns the feasibility of conducting an enzymatic ring-opening polymerization on the basis of lipase enzymes by reactive extrusion (REX) at high shear and temperature conditions. The ability of lipases to catalyze ring-opening and condensation polymerizations at relatively low temperatures (e.g. 70--90°C) is advantageous to reduce energy input and to preserve thermally sensitive chemical moieties. However, when high molecular weight polymer synthesis is desired, corresponding diffusional constraints must be overcome by either running reactions at higher temperatures (e.g. 150--220°C) or by adding solvent. Reactive extrusion (REX) has been used to overcome the aforementioned problems of bulk polymerizations that slows chain growth. In the chapter using immobilized Candida antarctica Lipase B (CALB) as catalyst at temperatures ranging from 90 to 130°C is investigated. (Abstract shortened by UMI.).

  16. Comparative study of the molecularly imprinted polymers prepared by reversible addition-fragmentation chain transfer "bulk" polymerization and traditional radical "bulk" polymerization.

    PubMed

    Ma, Yue; Pan, Guoqing; Zhang, Ying; Guo, Xianzhi; Zhang, Huiqi

    2013-05-01

    Bisphenol A (BPA) and propranolol-imprinted polymers have been prepared via both reversible addition-fragmentation chain transfer "bulk" polymerization (RAFTBP) and traditional radical "bulk" polymerization (TRBP) under similar reaction conditions, and their equilibrium binding properties were compared in detail for the first time. The chemical compositions, specific surface areas, equilibrium bindings, and selectivity of the obtained molecularly imprinted polymers (MIPs) were systematically characterized. The experimental results showed that the MIPs with molecular imprinting effects and quite fast binding kinetics could be readily prepared via RAFTBP, but they did not show improved template binding properties in comparison with those prepared via TRBP, which is in sharp contrast to many previous reports. This could be attributed to the heavily interrupted equilibrium between the dormant species and active radicals in the RAFT mechanism because of the occurrence of fast gelation during RAFTBP. The findings presented here strongly demonstrates that the application of controlled radical polymerizations (CRPs) in molecular imprinting does not always benefit the binding properties of the resultant MIPs, which is of significant importance for the rational use of CRPs in generating MIPs with improved properties. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Statistical Ring Opening Metathesis Copolymerization of Norbornene and Cyclopentene by Grubbs' 1st-Generation Catalyst.

    PubMed

    Nikovia, Christiana; Maroudas, Andreas-Philippos; Goulis, Panagiotis; Tzimis, Dionysios; Paraskevopoulou, Patrina; Pitsikalis, Marinos

    2015-08-27

    Statistical copolymers of norbornene (NBE) with cyclopentene (CP) were prepared by ring-opening metathesis polymerization, employing the 1st-generation Grubbs' catalyst, in the presence or absence of triphenylphosphine, PPh₃. The reactivity ratios were estimated using the Finemann-Ross, inverted Finemann-Ross, and Kelen-Tüdos graphical methods, along with the computer program COPOINT, which evaluates the parameters of binary copolymerizations from comonomer/copolymer composition data by integrating a given copolymerization equation in its differential form. Structural parameters of the copolymers were obtained by calculating the dyad sequence fractions and the mean sequence length, which were derived using the monomer reactivity ratios. The kinetics of thermal decomposition of the copolymers along with the respective homopolymers was studied by thermogravimetric analysis within the framework of the Ozawa-Flynn-Wall and Kissinger methodologies. Finally, the effect of triphenylphosphine on the kinetics of copolymerization, the reactivity ratios, and the kinetics of thermal decomposition were examined.

  18. Improved hybrid solar cells via in situ UV-polymerization.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tepavcevic, S.; Darling, S. B.; Dimitrijevic, N. M.

    One approach for making inexpensive inorganic-organic hybrid photovoltaic (PV) cells is to fill highly ordered TiO{sub 2} nanotube (NT) arrays with solid organic hole conductors such as conjugated polymers. Here, a new in situ UV polymerization method for growing polythiophene (UV-PT) inside TiO{sub 2} NTs is presented and compared to the conventional approach of infiltrating NTs with pre-synthesized polymer. A nanotubular TiO{sub 2} substrate is immersed in a 2,5-diiodothiophene (DIT) monomer precursor solution and then irradiated with UV light. The selective UV photodissociation of the C-I bond produces monomer radicals with intact {pi}-ring structure that further produce longer oligothiophene/PT molecules.more » Complete photoluminescence quenching upon UV irradiation suggests coupling between radicals created from DIT and at the TiO{sub 2} surface via a charge transfer complex. Coupling with the TiO{sub 2} surface improves UV-PT crystallinity and {pi}-{pi} stacking; flat photocurrent values show that charge recombination during hole transport through the polymer is negligible. A non-ideal, backside-illuminated setup under illumination of 620-nm light yields a photocurrent density of {approx} 5 {micro}A cm{sup -2} - surprisingly much stronger than with comparable devices fabricated with polymer synthesized ex situ. Since in this backside architecture setup we illuminate the cell through the Ag top electrode, there is a possibility for Ag plasmon-enhanced solar energy conversion. By using this simple in situ UV polymerization method that couples the conjugated polymer to the TiO{sub 2} surface, the absorption of sunlight can be improved and the charge carrier mobility of the photoactive layer can be enhanced.« less

  19. Nuclear Drug Delivery for Breast Cancer Chemotherapy

    DTIC Science & Technology

    2008-09-01

    similar results were obtained. 10.;)UI:SJI:IJI Il:l1lVl;) Polymer -drug conjugate, nuclear drug delivery, drug resistance, breast cancer 10...conjugates (5 Months): a. Synthesize linear polyethyleneimine (pEl, Mn ~5-10kDa) by ring-opening polymerization . b. React the PEl with proper 5-membered...functionalized CR-PEI. Milestone 1: Obtaining the FA- or LHRH-functionalized TCRC with optimal charge-reversal kinetics. TASK 2. To in vitro and in vivo evaluate

  20. Research in Energetic Compounds.

    DTIC Science & Technology

    1981-01-01

    The ring is thus amenable to electrophilic opening. Efforts to polymerize 3, 3-dinitrooxetane will be continued. An intermediate In the preparation of...r- nitronate salts and formaldehyde.2 This reaction is ported to give a stable dialkoxide salt. In order to explore markedly inhibited by a fluorine ...a to nitro as a manifes- further the chemistry of 2-fluoro-2-nitro-I,3-propanediol, tation of the " fluorine effect" or the destabilization of a we

  1. Computational Study of the Thermodynamics of Atmospheric Nitration of PAHs via OH-Radical-Initiated Reaction

    NASA Astrophysics Data System (ADS)

    Jariyasopit, N.; Cheong, P.; Simonich, S. L.

    2011-12-01

    Nitrated polycyclic aromatic hydrocarbons (NPAHs) are an important class of PAH derivatives that are more toxic than their parent PAHs (1) and are emitted from direct emission and secondary emission to the atmosphere. The secondary emissions, particularly the OH-radical initiated and NO3-radical-initiated reactions, have been shown to influence the NPAH concentrations in the atmosphere. Gas-phase reactions are thought to be the major sources of NPAHs containing four or fewer rings (2). Besides NPAHs, PAHs lead to a number of other products including oxygenated, hydroxy substituted and ring-opened PAH derivatives (3). For some PAHs, the OH-initiated and NO3-initiated reactions result in the formation of different NPAH isomers, allowing the ratio of these isomers to be used in the determination of direct or secondary emission sources. Previous studies have shown that the PAH gas-phase reactions with OH radical is initiated by the addition of OH radical to the aromatic ring to form hydroxycyclohexadienyl radicals (4). In the presence of NO2, these reactive intermediates readily nitrate with the elimination of water (4). The hydroxycyclohexadienyl-type radical intermediates are also prone to react with other species in the atmosphere or revert back to the original compound (3). The objective of this study was to investigate the thermodynamics of PAH nitration through day-time OH-radical-initiated reactions. The theoretical investigation were carried out using Density Functioanl Theory (B3LYP) and the 6-31G(d) basis set, as implemented in Gaussian03. A number of different PAHs were studied including fluoranthene, pyrene, as well as the molecular weight 302 PAHs such as dibenzo[a,l]pyrene. Computations were also used to predict unknown NPAHs formed by OH-radical-initiated reaction. All intermediates for the OH-radical addition and the following nitration were computed. We have discovered that the thermodynamic stability of the intermediates involved in the PAH oxygenation and nitration pathways are critical in explaining the atmospheric abundances of NPAHs. Specifically, we have found that the experimentally most abundant species had the most stable intermediates. Interestingly, the overall free energy of reaction was not a factor in determining the relative abundances of NPAHs.

  2. A pH and redox dual stimuli-responsive poly(amino acid) derivative for controlled drug release.

    PubMed

    Gong, Chu; Shan, Meng; Li, Bingqiang; Wu, Guolin

    2016-10-01

    A pH and redox dual stimuli-responsive poly(aspartic acid) derivative for controlled drug release was successfully developed through progressive ring-opening reactions of polysuccinimide (PSI). Polyethylene glycol (PEG) chains were grafted onto the polyaspartamide backbone via redox-responsive disulfide linkages, providing a sheddable shell for the polymeric micelles in a reductive environment. Phenyl groups were introduced into the polyaspartamide backbone via the aminolysis reaction of PSI to serve as the hydrophobic segment of micelles. The polyaspartamide scaffold was also functionalized with N-(3-aminopropyl)-imidazole to obtain the pH-responsiveness manifesting as a swelling of the core of micelles at a low pH. The polymeric micelles with a core-shell nanostructure forming in neutral media exhibited both pH and redox responsive characteristics. Doxorubicin (DOX) as a model drug was encapsulated into the core of micelles through both hydrophobic and π-π interactions between aromatic rings and the DOX-loaded polymeric micelles exhibited accelerated drug release behaviors in an acidic and reductive environment due to the swelling of hydrophobic cores and the shedding of PEG shells. Furthermore, the cytocompability of the polymer and the cytotoxicity of DOX-loaded micelles towards Hela cells under corresponding conditions were evaluated, and the endocytosis of DOX-loaded polymeric micelles and the intracellular drug release from micelles were observed. All obtained data indicated that the micelle was a promising candidate for controlled drug release. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Equilibrium polymerization of cyclic carbonate oligomers. III. Chain branching and the gel transition

    NASA Astrophysics Data System (ADS)

    Ballone, P.; Jones, R. O.

    2002-10-01

    Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.

  4. Combustion modeling and kinetic rate calculations for a stoichiometric cyclohexane flame. 1. Major reaction pathways.

    PubMed

    Zhang, Hongzhi R; Huynh, Lam K; Kungwan, Nawee; Yang, Zhiwei; Zhang, Shaowen

    2007-05-17

    The Utah Surrogate Mechanism was extended in order to model a stoichiometric premixed cyclohexane flame (P = 30 Torr). Generic rates were assigned to reaction classes of hydrogen abstraction, beta scission, and isomerization, and the resulting mechanism was found to be adequate in describing the combustion chemistry of cyclohexane. Satisfactory results were obtained in comparison with the experimental data of oxygen, major products and important intermediates, which include major soot precursors of C2-C5 unsaturated species. Measured concentrations of immediate products of fuel decomposition were also successfully reproduced. For example, the maximum concentrations of benzene and 1,3-butadiene, two major fuel decomposition products via competing pathways, were predicted within 10% of the measured values. Ring-opening reactions compete with those of cascading dehydrogenation for the decomposition of the conjugate cyclohexyl radical. The major ring-opening pathways produce 1-buten-4-yl radical, molecular ethylene, and 1,3-butadiene. The butadiene species is formed via beta scission after a 1-4 internal hydrogen migration of 1-hexen-6-yl radical. Cascading dehydrogenation also makes an important contribution to the fuel decomposition and provides the exclusive formation pathway of benzene. Benzene formation routes via combination of C2-C4 hydrocarbon fragments were found to be insignificant under current flame conditions, inferred by the later concentration peak of fulvene, in comparison with benzene, because the analogous species series for benzene formation via dehydrogenation was found to be precursors with regard to parent species of fulvene.

  5. Water-soluble polymers bearing phosphorylcholine group and other zwitterionic groups for carrying DNA derivatives.

    PubMed

    Lin, Xiaojie; Ishihara, Kazuhiko

    2014-01-01

    Water-soluble polymers with equal positive and negative charges in the same monomer unit, such as the phosphorylcholine group and other zwitterionic groups, exhibit promising potential in gene delivery with appreciable transfection efficiency, compared with the traditional poly(ethylene glycol)-based polycation-gene complexes. These zwitterionic polymers with various architectural structures and properties have been synthesized by various polymerization methods, such as conventional radical polymerization, atom-transfer radical-polymerization, reversible addition-fragmentation chain-transfer polymerization, and nitroxide-mediated radical polymerization. These techniques have been used to efficiently facilitate gene therapy by fabrication of non-viral vectors with high cytocompatibility, large gene-carrying capacity, effective cell-membrane permeability, and in vivo gene-loading/releasing functionality. Zwitterionic polymer-based gene delivery vectors systems can be categorized into soluble-polymer/gene mixing, molecular self-assembly, and polymer-gene conjugation systems. This review describes the preparation and characterization of various zwitterionic polymer-based gene delivery vectors, specifically water-soluble phospholipid polymers for carrying gene derivatives.

  6. Synthesis and activity of novel analogs of hemiasterlin as inhibitors of tubulin polymerization: modification of the A segment.

    PubMed

    Yamashita, Ayako; Norton, Emily B; Kaplan, Joshua A; Niu, Chuan; Loganzo, Frank; Hernandez, Richard; Beyer, Carl F; Annable, Tami; Musto, Sylvia; Discafani, Carolyn; Zask, Arie; Ayral-Kaloustian, Semiramis

    2004-11-01

    Analogs of hemiasterlin (1) and HTI-286 (2), which contain various aromatic rings in the A segment, were synthesized as potential inhibitors of tubulin polymerization. The structure-activity relationships related to stereo- and regio-chemical effects of substituents on the aromatic ring in the A segment were studied. Analogs, which carry a meta-substituted phenyl ring in the A segment show comparable activity for inhibition of tubulin polymerization to 2, as well as in the cell proliferation assay using KB cells containing P-glycoprotein, compared to those of 1 and 2.

  7. Synthesis of nanostructured materials in inverse miniemulsions and their applications.

    PubMed

    Cao, Zhihai; Ziener, Ulrich

    2013-11-07

    Polymeric nanogels, inorganic nanoparticles, and organic-inorganic hybrid nanoparticles can be prepared via the inverse miniemulsion technique. Hydrophilic functional cargos, such as proteins, DNA, and macromolecular fluoresceins, may be conveniently encapsulated in these nanostructured materials. In this review, the progress of inverse miniemulsions since 2000 is summarized on the basis of the types of reactions carried out in inverse miniemulsions, including conventional free radical polymerization, controlled/living radical polymerization, polycondensation, polyaddition, anionic polymerization, catalytic oxidation reaction, sol-gel process, and precipitation reaction of inorganic precursors. In addition, the applications of the nanostructured materials synthesized in inverse miniemulsions are also reviewed.

  8. Structural diversity and electronic properties in potassium silicides

    NASA Astrophysics Data System (ADS)

    Hao, Chun-Mei; Li, Yunguo; Huang, Hong-Mei; Li, Yan-Ling

    2018-05-01

    Stable potassium silicides in the complete compositional landscape were systematically explored up to 30 GPa using the variable-composition evolutionary structure prediction method. The results show that K4Si, K3Si, K5Si2, K2Si, K3Si2, KSi, KSi2, KSi3, and K8Si46 have their stability fields in the phase diagram. The spatial dimensional diversity of polymerized silicon atoms (0D "isolated" anion, dimer, Si4 group, 1D zigzag chain, 2D layer, and 3D network) under the potassium sublattice was uncovered as silicon content increases. Especially, the 2D layered silicon presents interestingly a variety of shapes, such as the "4 + 6" ring, "4 + 8"ring, and 8-membered ring. K-Si bonding exhibits a mixed covalency and ionicity, while Si-Si bonding is always of covalent character. Semiconductivity or metallicity mainly depends on the form of sublattices and K:Si ratio, which allows us to find more semiconductors in the Si-rich side when closed-shell K cations are encompassed by polymerized Si. The semiconducting silicides present strong absorption in the infrared and visible light range. These findings open up the avenue for experimental synthesis of alkali metal-IVA compounds and potential applications as battery electrode materials or photoelectric materials.

  9. Synthesis of selenium nano-composite (t-Se@PS) by surface initiated atom transfer radical polymerization.

    PubMed

    Wang, Michael C P; Gates, Byron D

    2012-09-04

    Selenium nanostructures, which are otherwise susceptible to oxidative damage, were encapsulated with a thin layer of polystyrene. The thin layer of polystyrene was grafted onto the surfaces of selenium by a surface initiated atom transfer radical polymerization reaction. These encapsulated nanostructures demonstrate an enhanced resistance towards corrosion.

  10. Magnetic Levitation To Characterize the Kinetics of Free-Radical Polymerization.

    PubMed

    Ge, Shencheng; Semenov, Sergey N; Nagarkar, Amit A; Milette, Jonathan; Christodouleas, Dionysios C; Yuan, Li; Whitesides, George M

    2017-12-27

    This work describes the development of magnetic levitation (MagLev) to characterize the kinetics of free-radical polymerization of water-insoluble, low-molecular-weight monomers that show a large change in density upon polymerization. Maglev measures density, and certain classes of monomers show a large change in density when monomers covalently join in polymer chains. MagLev characterized both the thermal polymerization of methacrylate-based monomers and the photopolymerization of methyl methacrylate and made it possible to determine the orders of reaction and the Arrhenius activation energy of polymerization. MagLev also made it possible to monitor polymerization in the presence of solids (aramid fibers, and carbon fibers, and glass fibers). MagLev offers a new analytical technique to materials and polymer scientists that complements other methods (even those based on density, such as dilatometry), and will be useful in investigating polymerizations, evaluating inhibition of polymerizations, and studying polymerization in the presence of included solid materials (e.g., for composite materials).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Yong; Desseaux, Solenne; Aden, Bethany

    We report that surface-grafting thermoresponsive polymers allows the preparation of thin polymer brush coatings with surface properties that can be manipulated by variation of temperature. In most instances, thermoresponsive polymer brushes are produced using polymers that dehydrate and collapse above a certain temperature. This report presents the preparation and properties of polymer brushes that show thermoresponsive surface properties, yet are shape-persistent in that they do not undergo main chain collapse. The polymer brushes presented here are obtained via vapor deposition surface-initiated ring-opening polymerization (SI-ROP) of γ-di- or tri(ethylene glycol)-modified glutamic acid N-carboxyanhydrides. Vapor deposition SI-ROP of γ-di- or tri(ethylene glycol)-modifiedmore » L- or D-glutamic acid N-carboxyanhydrides affords helical surface-tethered polymer chains that do not show any changes in secondary structure between 10 and 70 °C. QCM-D experiments, however, revealed significant dehydration of poly(γ-(2-(2-methoxyethoxy)ethyl)-l-glutamate) (poly(L-EG 2-Glu)) brushes upon heating from 10 to 40 °C. At the same time, AFM and ellipsometry studies did not reveal significant variations in film thickness over this temperature range, which is consistent with the shape-persistent nature of these polypeptide brushes and indicates that the thermoresponsiveness of the films is primarily due to hydration and dehydration of the oligo(ethylene glycol) side chains. The results we present here illustrate the potential of surface-initiated NCA ring-opening polymerization to generate densely grafted assemblies of polymer chains that possess well-defined secondary structures and tunable surface properties. These polypeptide brushes complement their conformationally unordered counterparts that can be generated via surface-initiated polymerization of vinyl-type monomers and represent another step forward to biomimetic surfaces and interfaces.« less

  12. In situ crosslinking of surface-initiated ring opening metathesis polymerization of polynorbornene for improved stability.

    PubMed

    Fursule, Ishan A; Abtahi, Ashkan; Watkins, Charles B; Graham, Kenneth R; Berron, Brad J

    2018-01-15

    In situ crosslinking is expected to increase the solvent stability of coatings formed by surface-initiated ring opening metathesis polymerization (SI ROMP). Solvent-associated degradation limits the utility of SI ROMP coatings. SI ROMP coatings have a unique capacity for post-functionalization through reaction of the unsaturated site on the polymer backbone. Any post-reaction scheme which requires a liquid solvent has the potential to degrade the coating and lower the thickness of the resulting film. We designed a macromolecular crosslinking group based on PEG dinorbornene. The PEG length is tailored to the expected mean chain to chain distance during surface-initiated polymerization. This crosslinking macromer is randomly copolymerized with norbornene through SI ROMP on a gold coated substrate. The solvent stability of polynorbornene coatings with and without PEG dinorbornene is quantitatively determined, and the mechanism of degradation is further supported through XPS and AFM analyses. The addition of the 0.25mol% PEG dinorbornene significantly increases the solvent stability of the SI ROMP coatings. The crosslinker presence in the more stable films is supported with observable PEG absorbances by FTIR and an increase in contact angle hysteresis when compared to non-crosslinked coatings. The oxidation of the SI ROMP coatings is supported by the observation of carbonyl oxygen in the polynorbornene coatings. The rapid loss of the non-crosslinked SI ROMP coating corresponds to nanoscale pitting across the surface and micron-scale regions of widespread film loss. The crosslinked coatings have uniform nanoscale pitting, but the crosslinked films show no evidence of micron-scale film damage. In all, the incorporation of minimal crosslinking content is a simple strategy for improving the solvent stability of SI ROMP coatings. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Spectroscopic analysis of radiation-generated changes in tensile properties of a polyetherimide film

    NASA Technical Reports Server (NTRS)

    Long, E. R., Jr.; Long, S. A. T.

    1985-01-01

    The effects of electron radiation on Ultem, a polyetherimide were studied for doses from 2 x 10 to the 9th power to 6 x 10 to the 9th power rad. Specimens were studied for tensile property testing and for electron paramagnetic resonance and infrared spectroscopic measurements of molecular structure. A Faraday cup design and a method for remote temperature measurement were developed. The spectroscopic data show that radiation caused dehydrogenation of methyl groups, rupture of main-chain ether linkage, and opening of imide rings, all to form radicals and indicate that the so-formed atomic hydrogen attached to phenyl radicals, but not to phenoxyl radicals, which would have formed hydroxyls. The observed decays of the radiation-generated phenoxyl, gem-dimethyl, and carbonyl radicals were interpreted as a combining of the radicals to form crosslinking. This crosslinking is the probable cause of the major reduction in the elongation of the tensile specimens after irradiation. Subsequent classical solubility tests indicate that the irradiation caused massive crosslinking.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Mingyi; Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com; Wu, Tao

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-raymore » photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.« less

  15. Synthesis and redox activity of "clicked" triazolylbiferrocenyl polymers, network encapsulation of gold and silver nanoparticles and anion sensing.

    PubMed

    Rapakousiou, Amalia; Deraedt, Christophe; Irigoyen, Joseba; Wang, Yanlan; Pinaud, Noël; Salmon, Lionel; Ruiz, Jaime; Moya, Sergio; Astruc, Didier

    2015-03-02

    The design of redox-robust polymers is called for in view of interactions with nanoparticles and surfaces toward applications in nanonetwork design, sensing, and catalysis. Redox-robust triazolylbiferrocenyl (trzBiFc) polymers have been synthesized with the organometallic group in the side chain by ring-opening metathesis polymerization using Grubbs-III catalyst or radical polymerization and with the organometallic group in the main chain by Cu(I) azide alkyne cycloaddition (CuAAC) catalyzed by [Cu(I)(hexabenzyltren)]Br. Oxidation of the trzBiFc polymers with ferricenium hexafluorophosphate yields the stable 35-electron class-II mixed-valent biferrocenium polymer. Oxidation of these polymers with Au(III) or Ag(I) gives nanosnake-shaped networks (observed by transmission electron microscopy and atomic force microscopy) of this mixed-valent Fe(II)Fe(III) polymer with encapsulated metal nanoparticles (NPs) when the organoiron group is located on the side chain. The factors that are suggested to be synergistically responsible for the NP stabilization and network formation are the polymer bulk, the trz coordination, the nearby cationic charge of trzBiFc, and the inter-BiFc distance. For instance, reduction of such an oxidized trzBiFc-AuNP polymer to the neutral trzBiFc-AuNP polymer with NaBH4 destroys the network, and the product flocculates. The polymers easily provide modified electrodes that sense, via the oxidized Fe(II)Fe(III) and Fe(III)Fe(III) polymer states, respectively, ATP(2-) via the outer ferrocenyl units of the polymer and Pd(II) via the inner Fc units; this recognition works well in dichloromethane, but also to a lesser extent in water with NaCl as the electrolyte.

  16. Novel self-healing materials chemistries for targeted applications

    NASA Astrophysics Data System (ADS)

    Wilson, Gerald O.

    Self-healing materials of the type developed by White and co-workers [1] were designed to autonomically heal themselves when damaged, thereby extending the lifetime of various applications in which such material systems are employed. The system was based on urea-formaldehyde microcapsules containing dicyclopentadiene (DCPD) and Grubbs' catalyst particles embedded together in an epoxy matrix. When a crack propagates through the material, it ruptures the microcapsules, releasing DCPD into the crack plane, where it comes in contact and reacts with the catalyst to initiate a ring opening metathesis polymerization (ROMP), bonding the crack and restoring structural continuity. The present work builds on this concept in several ways. Firstly, it expands the scope and versatility of the ROMP self-healing chemistry by incorporation into epoxy vinyl ester matrices. Major technical challenges in this application include protection of the catalyst from deactivation by aggressive curing agents, and optimization of the concentration of healing agents in the matrix. Secondly, new ruthenium catalysts are evaluated for application in ROMP-based self-healing materials. The use of alternative derivatives of Grubbs' catalyst gave rise to self-healing systems with improved healing efficiencies and thermal properties. Evaluation of the stability of these new catalysts to primary amine curing agents used in the curing of common epoxy matrices also led to the discovery and characterization of new ruthenium catalysts which exhibited ROMP initiation kinetics superior to those of first and second generation Grubbs' catalysts. Finally, free radical polymerization was evaluated for application in the development of bio-compatible self-healing materials. [1] White, S. R.; Sottos, N. R.; Geubelle, P. R.; Moore, J. S.; Kessler, M. R.; Sriram, S. R.; Brown, E. N.; Viswanathan, S. Nature 2001, 409, 794.

  17. Single Turnover at Molecular Polymerization Catalysts Reveals Spatiotemporally Resolved Reactions.

    PubMed

    Easter, Quinn T; Blum, Suzanne A

    2017-10-23

    Multiple active individual molecular ruthenium catalysts have been pinpointed within growing polynorbornene, thereby revealing information on the reaction dynamics and location that is unavailable through traditional ensemble experiments. This is the first single-turnover imaging of a molecular catalyst by fluorescence microscopy and allows detection of individual monomer reactions at an industrially important molecular ruthenium ring-opening metathesis polymerization (ROMP) catalyst under synthetically relevant conditions (e.g. unmodified industrial catalyst, ambient pressure, condensed phase, ca. 0.03 m monomer). These results further establish the key fundamentals of this imaging technique for characterizing the reactivity and location of active molecular catalysts even when they are the minor components. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Laser Induced Polymerization Reactions in Solid Propellant Binders.

    DTIC Science & Technology

    1982-06-18

    were -then evacuated in a glass vacuum desiccatbr to remove dissolved air and then opened to the atmosphere. Some samples were run under a nitrogen or...diacetate solution was prepared using acetonitrile as solvent. Molar absorbtivities at 266 and 355 nm for l,l’-ferrocenedicarboxylic acid were obtained with...increasing order of the electron withdrawing ability of the groups attached to the ferrocene ring. The order is as shown. r l,l’-Ferrocenedicarboxylic Acid

  19. Voltammetric Characterization of Soluble Polyacetylene Derivatives Obtained from the Ring-Opening Metathesis Polymerization (ROMP) of Substituted Cyclooctatetraenes

    DTIC Science & Technology

    1993-01-15

    emct ,t ,n electrochemical cis-trans isomerization on the first voltammetric sweep through either reductive or doping. Spectroelectrochemical studies...predominantly- cis poly-RCOT films was irreversible, and indicated the presence of an electrochemical cis-trans isomerization on the first voltammetric sweep ...electrochemical measurements were performed under N2(g) in a Vacuum Atmospheres dry box. Cyclic voltametry was performed using a 3-electrode configuration in a l

  20. A Novel method for the preparation of fluorescent C60 poly(amino acid) composites and their biological imaging.

    PubMed

    Xu, Dazhuang; Liu, Meiying; Huang, Qiang; Chen, Junyu; Huang, Hongye; Deng, Fengjie; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2018-04-15

    Recently, fullerene (C 60 ) and its derivatives have been widely explored for many applications owing to their enriched physical and chemical properties. Specifically, the synthesis and biomedical applications of fluorescent C 60 have been extensively investigated previously. However, the preparation of polymer-functionalized fluorescent C 60 has not been reported thus far. In this study, water-dispersible fluorescent C 60 polymer composites were successfully synthesized through the combination of the thiol-ene click reaction and subsequent ring-opening polymerization. First, 2-aminoethanethiol was introduced on the surface of C 60 by the thiol-ene click reaction. The surface of amino group-functionalized C 60 (C 60 -NH 2 ) was further modified with poly(amino acid)s via ring-open polymerization of GluEG N-carboxyanhydrides (NCAs). The morphology, functional groups, optical properties and biocompatibility were examined by a number of characterization equipment and assays in detail. We demonstrated that the resultant fluorescent C 60 poly(amino acid) (C 60 -GluEG) composites have a small size (about 5 nm), high water dispersibility, intense fluorescence and high photostability. Cell viability results implied that the C 60 -GluEG composites possess low cytotoxicity. Moreover, these C 60 -GluEG composites can easily penetrate into live cells, indicating their great potential for biological imaging applications. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Non-strinking siloxane polymers

    DOEpatents

    Loy, Douglas A.; Rahimian, Kamyar

    2001-01-01

    Cross-linked polymers formed by ring-opening polymerization of a precursor monomer of the general formula R[CH.sub.2 CH(Si(CH.sub.3).sub.2).sub.2 O].sub.2, where R is a phenyl group or an alkyl group having at least two carbon atoms. A cross-linked polymer is synthesized by mixing the monomer with a co-monomer of the general formula CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O in the presence of an anionic base to form a cross-linked polymer of recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2 [CH.sub.2 CHR.sup.2 (SiMe.sub.2).sub.2 O].sub.n, where R.sup.2 is hydrogen, phenyl, ethyl, propyl or butyl. If the precursor monomer is a liquid, the polymer can be directly synthesized in the presence of an anionic base to a cross-linked polymer containing recurring units of the general formula R(Me.sub.2 SiOCH.sub.2 CHSiMe.sub.2).sub.2. The polymers have approximately less than 1% porosity and are thermally stable at temperatures up to approximately 500.degree. C. The conversion to the cross-linked polymer occurs by ring opening polymerization and results in shrinkage of less than approximately 5% by volume.

  2. Correlation among Singlet-Oxygen Quenching, Free-Radical Scavenging, and Excited-State Intramolecular-Proton-Transfer Activities in Hydroxyflavones, Anthocyanidins, and 1-Hydroxyanthraquinones.

    PubMed

    Nagaoka, Shin-Ichi; Bandoh, Yuki; Nagashima, Umpei; Ohara, Keishi

    2017-10-26

    Singlet-oxygen ( 1 O 2 ) quenching, free-radical scavenging, and excited-state intramolecular proton-transfer (ESIPT) activities of hydroxyflavones, anthocyanidins, and 1-hydroxyanthraquinones were studied by means of laser, stopped-flow, and steady-state spectroscopies. In hydroxyflavones and anthocyanidins, the 1 O 2 quenching activity positively correlates to the free-radical scavenging activity. The reason for this correlation can be understood by considering that an early step of each reaction involves electron transfer from the unfused phenyl ring (B-ring), which is singly bonded to the bicyclic chromen or chromenylium moiety (A- and C-rings). Substitution of an electron-donating OH group at B-ring enhances the electron transfer leading to activation of the 1 O 2 quenching and free-radical scavenging. In 3-hydroxyflavones, the OH substitution at B-ring reduces the activity of ESIPT within C-ring, which can be explained in terms of the nodal-plane model. As a result, the 1 O 2 quenching and free-radical scavenging activities negatively correlate to the ESIPT activity. A catechol structure at B-ring is another factor that enhances the free-radical scavenging in hydroxyflavones. In contrast to these hydroxyflavones, 1-hydroxyanthraquinones having an electron-donating OH substituent adjacent to the O-H---O═C moiety susceptible to ESIPT do not show a simple correlation between their 1 O 2 quenching and ESIPT activities, because the OH substitution modulates these reactions.

  3. Synthesis of ethylene-propylene rubber graft copolymers by borane approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, T.C.; Janvikul, W.; Bernard, R.

    1994-01-01

    This paper describes a new method to prepare graft copolymers which have an EP rubber backbone and several free radical polymerized polymers grafted thereto. The process involves hydroboration of commercial EPDM rubbers, such as poly(ethylene-co-propylene-co-1,4-hexadiene) and poly(ethylene-co-propylene-co-5-ethylidene-2-norbornene), with 9-borabicyclononane (9-BBN). The resulting secondary alkyl-9-BBN moieties in the EPDM copolymer were then exposed to oxygen in the presence of free radical polymerizable monomers. Under certain conditions, the selective autoxidation reaction of secondary alkyl-9-BBN took place to create desirable polymeric radicals which can in situ initiate free radical polymerization. High graft efficiency was observed with controllable copolymer compositions. The graft copolymer ofmore » EP-g-PMMA is used to show the chemistry as well as some of the physical properties.« less

  4. Quantitative investigation of free radicals in bio-oil and their potential role in condensed-phase polymerization.

    PubMed

    Kim, Kwang Ho; Bai, Xianglan; Cady, Sarah; Gable, Preston; Brown, Robert C

    2015-03-01

    We report on the quantitative analysis of free radicals in bio-oils produced from pyrolysis of cellulose, organosolv lignin, and corn stover by EPR spectroscopy. Also, we investigated their potential role in condensed-phase polymerization. Bio-oils produced from lignin and cellulose show clear evidence of homolytic cleavage reactions during pyrolysis that produce free radicals. The concentration of free radicals in lignin bio-oil was 7.5×10(20)  spin g(-1), which was 375 and 138 times higher than free-radical concentrations in bio-oil from cellulose and corn stover. Pyrolytic lignin had the highest concentration in free radicals, which could be a combination of carbon-centered (benzyl radicals) and oxygen-centered (phenoxy radicals) organic species because they are delocalized in a π system. Free-radical concentrations did not change during accelerated aging tests despite increases in molecular weight of bio-oils, suggesting that free radicals in condensed bio-oils are stable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesizing a Trefoil Knotted Block Copolymer via Ring-Expansion Strategy

    DOE PAGES

    Cao, Pengfei; Rong, Li-Han; Mangadlao, Joey; ...

    2017-02-07

    We synthesized a synthetic trefoil knotted poly(e-caprolatone) block-poly(L-lactide) (TK-PLA-b-PCL) via a ring expansion strategy from a trefoil knotted tin (Sn) initiator. Ring closing reaction between the bis-copper(I) templated phenanthro line complex and dibutyldimethoxytin results in a templated trefoil knotted initiator. Furthermore, the bis-copper(I) templated trefoil knotted poly(L-lactide) (TK-PLA) can be synthesized by ring-opening polymerization of L-lactide monomer, and decomplexation reaction of the templated TK-PLA will result in a geniune TK-PLA without constraint from the copper template. Subsequent insertion of e caprolactone in the bis-copper(I) templated TK-PLA forms the templated trefoil knotted block copolymer, i.e., TK-PLA-b-PCL, and the copper-free TK-PLA-b-PCL canmore » be obtained by decomplexation reaction. Finally, both TK-PLA and TK-PLA-b-PCL are analyzed by the 1 H NMR, FT-IR, UV-vis, DLS, and GPC.« less

  6. Synthesis and polymerization of vinyl triazolium ionic liquids

    DOEpatents

    Luebke, David; Nulwala, Hunaid; Matyjaszewski, Krzysztof; Adzima, Brian

    2018-05-15

    Herein, we describe polymerized ionic liquids, demonstrate the synthesis of polymerized ionic liquids, and demonstrate the polymerization of triazolium monomers. One embodiment shows the polymeriazation of the triazolium monomers with bis(trifluoromethanesulfonyl)imide anions. In another embodiment we show the feasibility of copolymerizing with commodity monomers such as styrene using free radical polymerization techniques.

  7. Glucose Oxidase-Mediated Polymerization as a Platform for Dual-Mode Signal Amplification and Biodetection

    PubMed Central

    Berron, Brad J; Johnson, Leah M; Ba, Xiao; McCall, Joshua D; Alvey, Nicholas J; Anseth, Kristi S; Bowman, Christopher N

    2011-01-01

    We report the first use of a polymerization-based ELISA substrate solution employing enzymatically mediated radical polymerization as a dual-mode amplification strategy. Enzymes are selectively coupled to surfaces to generate radicals that subsequently lead to polymerization-based amplification (PBA) and biodetection. Sensitivity and amplification of the polymerization-based detection system were optimized in a microwell strip format using a biotinylated microwell surface with a glucose oxidase (GOx)–avidin conjugate. The immobilized GOx is used to initiate polymerization, enabling the detection of the biorecognition event visually or through the use of a plate reader. Assay response is compared to that of an enzymatic substrate utilizing nitroblue tetrazolium in a simplified assay using biotinylated wells. The polymerization substrate exhibits equivalent sensitivity (2 µg/mL of GOx-avidin) and over three times greater signal amplification than this traditional enzymatic substrate since each radical that is enzymatically generated leads to a large number of polymerization events. Enzyme-mediated polymerization proceeds in an ambient atmosphere without the need for external energy sources, which is an improvement upon previous PBA platforms. Substrate formulations are highly sensitive to both glucose and iron concentrations at the lowest enzyme concentrations. Increases in amplification time correspond to higher assay sensitivities with no increase in non-specific signal. Finally, the polymerization substrate generated a signal to noise ratio of 14 at the detection limit (156 ng/mL) in an assay of transforming growth factor-beta. Biotechnol. Bioeng. 2011; 108:1521–1528. © 2011 Wiley Periodicals, Inc. PMID:21337335

  8. Electron-transfer reactions in cyanine borate ion pairs: photopolymerization initiators sensitive to visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatterjee, S.; Gottschalk, P.; Davis, P.D.

    1988-03-30

    Photoinitiation of polymerization is a process of immense practical, economic, and theoretical importance. In typical examples the polymerization of an acrylate or styrene-derived monomer is initiated by irradiation of a sensitizer with ultraviolet light. The excited state of the sensitizer may dissociate directly to form active free radicals as in the case of the benzoin ethers, or it may first undergo a bimolecular electron-transfer reaction whose products initiate polymerization as is the case in the benzophenone-dimethylaniline system. Efforts to extend the range of useful photoinitiators of free-radical polymerization to the visible region of the spectrum have heretofore met with onlymore » modest success. These special initiators typically are sensitive only to blue light or suffer from thermal instability and have low quantum efficiencies. The authors report herein the discovery that triphenylalkylborate salts of cyanine dyes (Chart I) are photoinitiators of free-radical polymerization whose sensitivity throughout the entire visible spectral region is the result of a novel intra-ion-pair electron-transfer reaction.« less

  9. Synthesis and structural studies of lithium and sodium complexes with OOO-tridentate bis(phenolate) ligands: effective catalysts for the ring-opening polymerization of L-lactide.

    PubMed

    Huang, Yong; Tsai, Yueh-Hsuan; Hung, Wen-Chou; Lin, Chieh-Shen; Wang, Wei; Huang, Jui-Hsien; Dutta, Saikat; Lin, Chu-Chieh

    2010-10-18

    A series of lithium and sodium complexes with OOO-tridentate bis(phenolate) ligands have been synthesized and fully characterized. The reaction of 2,2'-dihydroxy-3,3',5,5'-tetrakis[(1-methyl-1-phenyl)ethyl]dibenzyl ether (L(1)-H(2)) with different ratios of (n)BuLi in toluene or tetrahydrofuran (THF) gave [Li(2)(L(1)-H)(2)] (1), [Li(4)L(1)(2)] (2), and [Li(2)L(1)(THF)(3)] (3), respectively. Similarly, [Na(L(1)-H)(THF)] (4), [Na(2)(L(1)-H)](2) (5), and [Na(4)L(1)(2)] (6) were prepared by the reaction of L(1)-H(2) and NaN[Si(CH(3))(3)](2) or sodium metal. In addition, the reaction of 2,2'-dihydroxy-3,3',5,5'-tetra-tert-butyldibenzyl ether (L(2)-H(2)) with (n)BuLi in toluene or THF yields Li(2)(L(2)-H)(2)] (7) and [Li(2)(L(2)-H)(2)(THF)(2)] (8), respectively. Further treatment of 7 with 2 mol equiv of benzyl alcohol provides [Li(2)(L(2)-H)(2)(BnOH)(2)] (9). Complexes 1-4 and 6-9 have been structurally characterized by single-crystal X-ray analysis. The dinuclear nature of complexes 1 and 3 was confirmed from their molecular structure. Complexes 2 and 6 illustrate tetranuclear species; however, complex 4 shows a mononuclear feature. A p-π interaction exists from the phenyl ring of the 2-(methyl-1-phenylethyl) groups to the central metal in complexes 2, 4, and 6, which could effectively stabilize the metal center. Among them, complexes 1, 2, and 5-9 displayed efficient catalytic behavior for the ring-opening polymerization of L-lactide in the presence of benzyl alcohol. Experimental results indicate that among these alkali-metal complexes, the sodium compound 6 displays a rapid catalytic polymerization of L-lactide in "living" fashion, yielding poly(L-lactide) with a controlled molecular weight and narrow polydispersity indices for a wide range of monomer-to-initiator ratios.

  10. Phenoxide and alkoxide complexes of Mg, Al and Zn, and their use for the ring-opening polymerization of ℇ-caprolactone with initiators of different natures.

    PubMed

    Minyaev, Mikhail E; Nifant'ev, Ilya E; Shlyakhtin, Andrey V; Ivchenko, Pavel V; Lyssenko, Konstantin A

    2018-05-01

    A new packing polymorph of bis(2,6-di-tert-butyl-4-methylphenolato-κO)bis(tetrahydrofuran-κO)magnesium, [Mg(C 15 H 23 O) 2 (C 4 H 8 O) 2 ] or Mg(BHT) 2 (THF) 2 , (BHT is the 2,6-di-tert-butyl-4-methylphenoxide anion and THF is tetrahydrofuran), (1), has the same space group (P2 1 ) as the previously reported modification [Nifant'ev et al. (2017d). Dalton Trans. 46, 12132-12146], but contains three crystallographically independent molecules instead of one. The structure of (1) exhibits rotational disorder of the tert-butyl groups and positional disorder of a THF ligand. The complex of bis(2,6-di-tert-butyl-4-methylphenolato-κO)bis(μ 2 -ethyl glycolato-κ 2 O,O':κO)dimethyldialuminium, [Al 2 (CH 3 ) 2 (C 4 H 7 O 3 ) 2 (C 15 H 23 O) 2 ] or [(BHT)AlMe(OCH 2 COOEt)] 2 , (2), is a dimer located on an inversion centre and has an Al 2 O 2 rhomboid core. The 2-ethoxy-2-oxoethanolate ligand (OCH 2 COOEt) displays a μ 2 -κ 2 O,O':κO semi-bridging coordination mode, forming a five-membered heteronuclear Al-O-C-C-O ring. The same ligand exhibits positional disorder of the terminal methyl group. The redetermined structure of the heptanuclear complex octakis(μ 3 -benzyloxo-κO:κO:κO)hexaethylheptazinc, [Zn 7 (C 2 H 5 ) 6 (C 7 H 7 O) 8 ] or [Zn 7 (OCH 2 Ph) 8 Et 6 ], (3), possesses a bicubic Zn 7 O 8 core located at an inversion centre and demonstrates positional disorder of one crystallographically independent phenyl group. Cambridge Structural Database surveys are given for complexes structurally analogous to (2) and (3). Complexes (2) and (3), as well as derivatives of (1), are of interest as catalysts for the ring-opening polymerization of ℇ-caprolactone, and polymerization results are reported.

  11. Fabrication of highly active Melem/Zn0.25Cd0.75S composites for the degradation of bisphenol A and methyl orange under visible light irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaodong; Yan, Tao; Liu, Xiaohuan; Ji, Pengge; Sun, Meng; Wei, Dong; Yan, Liangguo; Du, Bin

    2016-11-01

    Metal-free polymeric catalyst hold great promise owing to their abundant sources, low-cost fabrication and easy processibility. Melem, an important intermediate during condensation of melamine rings to graphitic carbon nitride (g-C3N4), was synthesized by simple solid phase polymerization process. A novel Melem/Zn0.25Cd0.75S composite was fabricated through a facile one-step hydrothermal method. The as-products were characterized by X-ray diffraction (XRD), UV-vis DRS spectroscopy, fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM). The TEM and HRTEM results reveal that Zn0.25Cd0.75S nanoparticles and Melem closely contact with each other to form an intimate interface. The as-prepared composites exhibit significantly enhanced visible light photocatalytic performance for the degradation of Methyl orange (MO) and Bisphenol A (BPA), which could be attributed to the effective photo-induced charges transfer and separation in Melem/Zn0.25Cd0.75S composites. On the basis of radical scavenger experiments, superoxide radicals and holes are suggested to play a critical role in MO degradation over Melem/Zn0.25Cd0.75S heterojunctions. A possible mechanism for charge separation and transfer in the Melem/Zn0.25Cd0.75S composites was proposed to explain the enhanced photocatalytic performance.

  12. Homogeneous reactions of hydrocarbons, silane, and chlorosilanes in radiofrequency plasmas at low pressures

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and radical-molecule mechanisms are responsible for the dissociation of hydrocarbon, silane, and chlorosilane monomers and the formation of polymerized species, respectively, in an RF plasma discharge. In a plasma containing a mixture of monomer and argon the rate-determining step for both dissociation and polymerization is governed by an ion-molecule type of interaction. Adding hydrogen or ammonia to the monomer-argon mixture transforms the rate-determining step from an ion-molecule interaction to a radical-molecule interaction for both monomer dissociation and polymerization.

  13. Free radicals generated during oxidation of green tea polyphenols: electron paramagnetic resonance spectroscopy combined with density functional theory calculations.

    PubMed

    Severino, Joyce Ferreira; Goodman, Bernard A; Kay, Christopher W M; Stolze, Klaus; Tunega, Daniel; Reichenauer, Thomas G; Pirker, Katharina F

    2009-04-15

    Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and (-)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O(2)(-)) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O(2)(-) oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O(2)(-) oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed.

  14. Self-Propagating Frontal Polymerization in Water at Ambient Pressure

    NASA Technical Reports Server (NTRS)

    Olten, Nesrin; Kraigsley, Alison; Ronney, Paul D.

    2003-01-01

    Advances in polymer chemistry have led to the development of monomers and initiation agents that enable propagating free-radical polymerization fronts to exist. These fronts are driven by the exothermicity of the polymerization reaction and the transport of heat from the polymerized product to the reactant monomer/solvent/initiator solution. The thermal energy transported to the reactant solution causes the initiator to decompose, yielding free radicals, which start the free radical polymerization process as discussed in recent reviews. The use of polymerization processes based on propagating fronts has numerous applications. Perhaps the most important of these is that it enables rapid curing of polymers without external heating since the polymerization process itself provides the high temperatures necessary to initiate and sustain polymerization. This process also enables more uniform curing of arbitrarily thick samples since it does not rely on heat transfer from an external source, which will necessarily cause the temperature history of the sample to vary with distance from the surface according to a diffusion-like process. Frontal polymerization also enables filling and sealing of structures having cavities of arbitrary shape without having to externally heat the structure. Water at atmospheric pressure is most convenient solvent to employ and the most important for practical applications (because of the cost and environmental issues associated with DMSO and other solvents). Nevertheless, to our knowledge, steady, self-propagating polymerization fronts have not been reported in water at atmospheric pressure. Currently, polymerization fronts require a high boiling point solvent (either water at high pressures or an alternative solvent such as dimethyl sulfoxide (DMSO) (boiling point 189 C at atmospheric pressure.) Early work on frontal polymerization, employed pressures up to 5000 atm in order to avoid boiling of the monomer/solvent/initiator solution. High boiling point solutions are needed because in order to produce a propagating front, a high front temperature is needed to produce sufficiently rapid decomposition of the free radical initiator and subsequent free radical polymerization and heat release at a rate faster than heat losses remove thermal energy from the system. (While the conduction heat loss rate increases linearly with temperature, the free radical initiator decomposition is a high activation energy process whose rate increases much more rapidly than linearly with temperature, thus as the temperature decreases, the ratio of heat loss to heat generation increases, eventually leading to extinction of the front if the temperature is too low.) In order to obtain atmospheric pressure frontal polymerization in water, it is necessary to identify a monomer/initiator combination that is water soluble and will not extinguish even when the peak temperature (T*) is less than 100 C. In this work acrylic acid (AA) was chosen as the monomer because is it one of the most reactive monomers and can polymerize readily at low temperatures even without initiators. Ammonium persulfate (AP) was chosen as the initiator because it decomposes readily at low temperatures, produces relatively few bubbles and is commercially available. The propagation rates and extinction conditions of the fronts are studied for a range of AA and AP concentrations. Small amounts of fumed silica powder (Cab-o-sil, Cabot Corporation) were added to the solutions to inhibit buoyancy induced convection in the solutions; future studies will investigate the effects of buoyant convection within the solutions.

  15. Formyl-ended heterobifunctional poly(ethylene oxide): synthesis of poly(ethylene oxide) with a formyl group at one end and a hydroxyl group at the other end.

    PubMed

    Nagasaki, Y; Kutsuna, T; Iijima, M; Kato, M; Kataoka, K; Kitano, S; Kadoma, Y

    1995-01-01

    Well-defined poly(ethylene oxide) (PEO) with a formyl group at one end and a hydroxyl group at the other terminus was synthesized by the anionic ring opening polymerization of ethylene oxide (EO) with a new organometallic initiator possessing an acetal moiety, potassium 3,3-diethoxypropyl alkoxide. Hydrolysis of the acetal moiety produced a formyl group-terminated heterobifunctional PEO with a hydroxyl group at the other end.

  16. Free Radical Addition Polymerization Kinetics without Steady-State Approximations: A Numerical Analysis for the Polymer, Physical, or Advanced Organic Chemistry Course

    ERIC Educational Resources Information Center

    Iler, H. Darrell; Brown, Amber; Landis, Amanda; Schimke, Greg; Peters, George

    2014-01-01

    A numerical analysis of the free radical addition polymerization system is described that provides those teaching polymer, physical, or advanced organic chemistry courses the opportunity to introduce students to numerical methods in the context of a simple but mathematically stiff chemical kinetic system. Numerical analysis can lead students to an…

  17. Test of the ``radical-like polymerization'' scheme in molecular dynamics on the behavior of polymers under shock loading

    NASA Astrophysics Data System (ADS)

    Lemarchand, Claire; Bousquet, David; Schnell, Benoît; Pineau, Nicolas

    2017-06-01

    The behavior of polymer melts under shock loading is a question attracting more and more attention because of applications such as polymer-bonded explosives, light-weight armor and civilian protective equipment, like sports and car equipment. Molecular dynamics (MD) simulations are a very good tool to characterize the microscopic response of the polymer to a shock wave. To do so, the initial configuration of the polymer melt needs to be realistic. The ``radical-like polymerization'' scheme is a method to obtain near equilibrium configurations of a melt of long polymer chains. It consists in adding one neighboring monomer at a time to each growing chain. Between each polymerization step an MD run is performed to relax the new configuration. We test how details of our implementation of the ``radical-like polymerization'' scheme can impact or not Hugoniot curves and changes of chain configuration under shock. We compare our results to other simulation and experimental results on reference polymers.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redline, Erica Marie; Bolintineanu, Dan S.; Lane, J. Matthew

    The aim of this study was to alter polymerization chemistry to improve network homogeneity in free-radical crosslinked systems. It was hypothesized that a reduction in heterogeneity of the network would lead to improved mechanical performance. Experiments and simulations were carried out to investigate the connection between polymerization chemistry, network structure and mechanical properties. Experiments were conducted on two different monomer systems - the first is a single monomer system, urethane dimethacrylate (UDMA), and the second is a two-monomer system consisting of bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) in a ratio of 70/30 BisGMA/TEGDMA by weight. Themore » methacrylate systems were crosslinked using traditional radical polymeriza- tion (TRP) with azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as an initiator; TRP systems were used as the control. The monomers were also cross-linked using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a type of controlled radical polymerization (CRP). FTIR and DSC were used to monitor reac- tion kinetics of the systems. The networks were analyzed using NMR, DSC, X-ray diffraction (XRD), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). These techniques were employed in an attempt to quantify differences between the traditional and controlled radical polymerizations. While a quantitative methodology for characterizing net- work morphology was not established, SAXS and AFM have shown some promising initial results. Additionally, differences in mechanical behavior were observed between traditional and controlled radical polymerized thermosets in the BisGMA/TEGDMA system but not in the UDMA materials; this finding may be the result of network ductility variations between the two materials. Coarse-grained molecular dynamics simulations employing a novel model of the CRP reaction were carried out for the UDMA system, with parameters calibrated based on fully atomistic simulations of the UDMA monomer in the liquid state. Detailed metrics based on network graph theoretical approaches were implemented to quantify the bond network topology resulting from simulations. For a broad range of polymerization parameters, no discernible differences were seen between TRP and CRP UDMA simulations at equal conversions, although clear differences exist as a function of conversion. Both findings are consistent with experiments. Despite a number of shortcomings, these models have demonstrated the potential of molecular simulations for studying network topology in these systems.« less

  19. Multi input single output model predictive control of non-linear bio-polymerization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arumugasamy, Senthil Kumar; Ahmad, Z.

    This paper focuses on Multi Input Single Output (MISO) Model Predictive Control of bio-polymerization process in which mechanistic model is developed and linked with the feedforward neural network model to obtain a hybrid model (Mechanistic-FANN) of lipase-catalyzed ring-opening polymerization of ε-caprolactone (ε-CL) for Poly (ε-caprolactone) production. In this research, state space model was used, in which the input to the model were the reactor temperatures and reactor impeller speeds and the output were the molecular weight of polymer (M{sub n}) and polymer polydispersity index. State space model for MISO created using System identification tool box of Matlab™. This state spacemore » model is used in MISO MPC. Model predictive control (MPC) has been applied to predict the molecular weight of the biopolymer and consequently control the molecular weight of biopolymer. The result shows that MPC is able to track reference trajectory and give optimum movement of manipulated variable.« less

  20. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.

    PubMed

    Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian

    2018-05-09

    Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.

  1. PREPARATION OF BLOCK COPOLYMERS OF POLY(STYRENE) AND POLY(T-BUTYL ACRYLATE) OF VARIOUS MOLECULAR WEIGHTS AND ARCHITECTURES BY ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Block copolymers of polystyrene and poly(t-butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N,NToluene nitration in irradiated nitric acid and nitrite solutions

    NASA Astrophysics Data System (ADS)

    Elias, Gracy; Mincher, Bruce J.; Mezyk, Stephen P.; Muller, Jim; Martin, Leigh R.

    2011-04-01

    The kinetics, mechanisms, and stable products produced for the nitration of aryl alkyl mild ortho-para director toluene in irradiated nitric acid and neutral nitrite solutions were investigated using γ and pulse radiolysis. Electron pulse radiolysis was used to determine the bimolecular rate constants for the reaction of toluene with different transient species produced by irradiation. HPLC with UV detection, GC-MS and LC-MS, were used to assess the stable reaction products. Free-radical based nitration reaction products were found in irradiated acidic and neutral media. In 6.0 M HNO3, ring substitution, side chain substitution, and oxidation, produced different nitrated toluene products. For ring substitution, nitrogen oxide radicals were added mainly to cyclohexadienyl radicals, whereas for side chain substitution, these radicals were added to the carbon-centered benzyl radical produced by H-atom abstraction. In neutral nitrite solutions, radiolytically-induced ring nitration products approached a statistically random distribution, suggesting a direct free-radical reaction involving addition of the rad NO2 radical.

  2. THE RADIATION-INDUCED POLYMERIZATION OF ISOBUTENE: A LIQUID PHASE IONIC REACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collinson, E.; Dainton, F.S.; Gillis, H.A.

    1959-06-01

    New evidence is presented in support of the suggestion that the gamma - ray-induced polymerization of liquid isobutene at -78 deg C proceeds solely by a cationic mechanism. Attempts to polymerize isobutene at -78 deg C with free radicals from the photolysis of diacetyl, benzoin and benzil were unsuccessful but the benzil solution irradiated with ultraviolet light at 77 deg K was shown by electron spin resonance measurements to give rise to radicals from the isobutene. Isobutene irradiated in the pure state at a gamma -ray dose rate of 7 x 10/sup 17/ e.v. ml/sup -1/ min/sup -1/ polymerized withmore » G(-C/sub 4/H/sub 8/) = 3.0 plus or minus 1.7 x 10/sup 2/. Solutions of FeCl/sub 3/, DPPH, benzoquinone and iodine in isobutene were also irradiated with gamma -rays. Of these solutes, only benzoquinone reduced the polymerization rate to zero, and DPPH had no significant effect. The effects of FeCl/sub 3/ and I/2 on the polymerization were complicated by other factors. The measured yields of conversion of the solutes after irradiation were G(-DPPH) =3.7 plus or minus 0.2, G(Fe(II)) = 3.0 plus or minus 0.5 and G(-Q) = 1.5 plus or minus 0.2. The electron spin resonance spectrum of isobutene irradiated with gamma -rays at 77 deg K showed the presence of H atoms which disappeared rapidly, and a more stable radical, the spectrum of which consisted of 6 peaks having an over-all spacing of 158 gauss at the operating frequency of 9400 Mc sec./sup -1/. The same six peak pattern was obtained from cyclopropane irradiated with gamma rays at 77 deg K and from a solution of benzil in isoDutene irradiated with ultraviolet light at 77 deg K. It is concluded that the radical responsible for this spectrum is either the cyclopropyl radical or the methyl substituted allyl radical, the latter being the less likely. The most likely initiating ion is considered to be (CH/sub 3/)/sub 3/C/sup +/, and a mechanism consistent with the available data is proposed. (auth)« less

  3. Suicide Inhibition of Cytochrome P450 Enzymes by Cyclopropylamines via a Ring-opening Mechanism: Proton-Coupled Electron Transfer Makes a Difference

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoqian; Li, Xiao-Xi; Liu, Yufang; Wang, Yong

    2017-01-01

    N-benzyl-N-cyclopropylamine (BCA) has been attracting great interests for decades for its partial suicide inactivation role to cytochrome P450 (P450) via a ring-opening mechanism besides acting as a role of normal substrates. Understanding the mechanism of such partial inactivation is vital to the clinical drug design. Thus, density functional theoretical (DFT) calculations were carried out on such P450-catalyzed reactions, not only on the metabolic pathway, but on the ring-opening inactivation one. Our theoretical results demonstrated that, in the metabolic pathway, besides the normal carbinolamine, an unexpected enamine was formed via the dual hydrogen abstraction (DHA) process, in which the competition between rotation of the H-abstracted substrate radical and the rotation of hydroxyl group of the protonated Cpd II moiety plays a significant role in product branch; In the inactivation pathway, the well-noted single electron transfer (SET) mechanism-involved process was invalidated for its high energy barrier, a proton-coupled electron transfer (PCET(ET)) mechanism plays a role. Our results are consistent with other related theoretical works on heteroatom-hydrogen (X-H, X = O, N) activation and revealed new features. The revealed mechanisms will play a positive role in relative drug design.

  4. Novel polymeric materials from vegetable oils and vinyl monomers: preparation, properties, and applications.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2009-01-01

    Veggie-based products: Vegetable-oil-based polymeric materials, prepared by free radical, cationic, and olefin metathesis polymerizations, range from soft rubbers to ductile or rigid plastics, and to high-performance biocomposites and nanocomposites. They display a wide range of thermophysical and mechanical properties and may find promising applications as alternatives to petroleum-based polymers.Vegetable oils are considered to be among the most promising renewable raw materials for polymers, because of their ready availability, inherent biodegradability, and their many versatile applications. Research on and development of vegetable oil based polymeric materials, including thermosetting resins, biocomposites, and nanocomposites, have attracted increasing attention in recent years. This Minireview focuses on the latest developments in the preparation, properties, and applications of vegetable oil based polymeric materials obtained by free radical, cationic, and olefin metathesis polymerizations. The novel vegetable oil based polymeric materials obtained range from soft rubbery materials to ductile or rigid plastics and to high-performance biocomposites and nanocomposites. These vegetable oil based polymeric materials display a wide range of thermophysical and mechanical properties and should find useful applications as alternatives to their petroleum-based counterparts.

  5. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matz, Dallas L.; Schalnat, Matthew C.; Pemberton, Jeanne E.

    The reaction between small organic molecules and low work function metals is of interest in organometallic, astronomical, and optoelectronic device chemistry. Here, thin, solid-state, amorphous benzene and pyridine films are reacted with Ca at 30 K under ultrahigh vacuum with the reaction progress monitored by Raman spectroscopy. Although both films react with Ca to produce product species identifiable by their vibrational spectroscopic signatures, benzene is less reactive with Ca than pyridine. Benzene reacts by electron transfer from Ca to benzene producing multiple species including the phenyl radical anion, the phenyl radical, and the benzyne diradical. Pyridine initially reacts along amore » similar electron transfer pathway as indicated by the presence of the corresponding pyridyl radical and pyridyne diradical species, but these pyridyl radicals are less stable and subject to further ring-opening reactions that lead to a complex array of smaller molecule reaction products and ultimately amorphous carbon. The elucidation of this reaction pathway provides insight into the reactions of aromatics with Ca that are relevant in the areas of catalysis, astrochemistry, and organic optoelectronics.« less

  7. The formation of RCCCO and CCC(O)R (R = Me, Ph) neutral radicals from ionic precursors in the gas phase: the rearrangement of CCC(O)Ph.

    PubMed

    Peppe, Salvatore; McAnoy, Andrew M; Dua, Suresh; Bowie, John H

    2004-01-01

    Neutrals MeCCCO, CCC(O)Me, PhCCCO and CCC(O)Ph have been made by neutralisation of [MeCCCO](+), [CCC(O)Me](-), [PhCCCO](+) and [CC(CO)Ph](-). Neutrals MeCCCO, CCC(O)Me and PhCCCO are stable for the microsecond duration of the neutralisation experiment. A joint experimental and theoretical study (energies calculated at the B3LYP/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory) suggests that the neutral radical CCC(O)Ph rearranges via a four-centred ipso radical cyclisation/ring opening to form the isomer PhCCCO in an exothermic reaction. (13)C labelling confirms that the rearrangement does not involve O migration. Some of the PhCCCO radicals formed in this reaction are sufficiently energised to effect decomposition to give PhCC and CO. Copyright 2004 John Wiley & Sons, Ltd.

  8. New type of bonding formed from an overlap between pi aromatic and pi C=O molecular orbitals stabilizes the coexistence in one molecule of the ionic and neutral meso-ionic forms of imidazopyridine.

    PubMed

    Hoffmann, Marcin; Plutecka, Agnieszka; Rychlewska, Urszula; Kucybala, Zdzislaw; Paczkowski, Jerzy; Pyszka, Ilona

    2005-05-26

    New bis(imidazo)pyridine dye has been synthesized and tested as a potential photoinitaitor for free-radical polymerization induced with the visible emission of an argon ion laser. The X-ray analysis based on data collected at 170 and 130 K, as well as density functional theory (DFT) calculations, revealed the presence of two different forms of imidazopyridine rings within the same molecule. These two forms of the same moiety had not only different geometries but different electronic structures as well. One of the imidazopyridine rings was in the ionic form, while the other was in the meso-ionic form. DFT calculations provided an explanation for such an observed phenomena. The averaging of ionic and meso-ionic forms of imidazopyridine rings within the same molecule is hindered because of an attractive interaction between them. Analysis of electronic density revealed that, indeed, a new type of bonding is formed as the result of an overlap between pi aromatic and pi C=O molecular orbitals. This bonding, like the hydrogen bond, is primarily of electrostatic character, and its energy was estimated at 3.5 kcal/mol.

  9. Trimethyl phosphite as a trap for alkoxy radicals formed from the ring opening of oxiranylcarbinyl radicals. Conversion to alkenes. Mechanistic applications to the study of C-C versus C-O ring cleavage.

    PubMed

    Ding, Bangwei; Bentrude, Wesley G

    2003-03-19

    Trimethyl phosphite, (MeO)(3)P, is introduced as an efficient and selective trap in oxiranylcarbinyl radical (2) systems, formed from haloepoxides 8-13 under thermal AIBN/n-Bu(3)SnH conditions at about 80 degrees C. Initially, the transformations of 8-13, in the absence of phosphite, to allyl alcohol 7 and/or vinyl ether 5 were measured quantitatively (Table 1). Structural variations in the intermediate oxiranylcarbinyl (2), allyloxy (3), and vinyloxycarbinyl (4) radicals involve influences of the thermodynamics and kinetics of the C-O (2 --> 3, k(1)) and C-C (2 --> 4, k(2)) radical scission processes and readily account for the changes in the amounts of product vinyl ether (5) and allyl alcohol (7) formed. Added (MeO)(3)P is inert to vinyloxycarbinyl radical 4 and selectively and rapidly traps allyloxy radical 3, diverting it to trimethyl phosphate and allyl radical 6. Allyl radicals (6) dimerize or are trapped by n-Bu(3)SnH to give alkenes, formed from haloepoxides 8, 9, and 13 in 69-95% yields. Intermediate vinyloxycarbinyl radicals (4), in the presence or absence of (MeO)(3)P, are trapped by n-Bu(3)SnH to give vinyl ethers (5). The concentrations of (MeO)(3)P and n-Bu(3)SnH were varied independently, and the amounts of phosphate, vinyl ether (5), and/or alkene from haloepoxides 10, 11, and 13 were carefully monitored. The results reflect readily understood influences of changes in the structures of radicals 2-4, particularly as they influence the C-O (k(1)) and C-C (k(2)) cleavages of intermediate oxiranylcarbinyl radical 2 and their reverse (k(-1), k(-2)). Diversion by (MeO)(3)P of allyloxy radicals (3) from haloepoxides 11 and 12 fulfills a prior prediction that under conditions closer to kinetic control, products of C-O scission, not just those of C-C scission, may result. Thus, for oxiranylcarbinyl radicals from haloepoxides 11, 12, and 13, C-O scission (k(1), 2 --> 3) competes readily with C-C cleavage (k(2), 2 --> 4), even though C-C scission is favored thermodynamically.

  10. Formal radical cyclization onto benzene rings: a general method and its use in the synthesis of ent-nocardione A.

    PubMed

    Clive, Derrick L J; Fletcher, Stephen P; Liu, Dazhan

    2004-05-14

    An indirect method is described for effecting radical cyclization onto a benzene ring. Cross-conjugated dienones 6, which are readily prepared from phenols, undergo radical cyclization (6 --> 7 --> 8), and the products (8) are easily aromatized. The method has been applied to the synthesis of ent-nocardione A (21).

  11. Radical Polymerization of Diene Hydrocarbons in a Presence of Peroxide of Hydrogen and Solvent. 1. Effectiveness of Initiation and Rate of Expansion H2O2 during Oligomerization in Metallic Equipment

    DTIC Science & Technology

    1990-04-10

    the hydroxyl groups. These are liquid oligobutadienes of brand R-15M and R-45M (firm "Sinclair Retgochemical Suc."/OSA) [5, 6, 10] and hydroxyl... ionic mechanism. Most promising, in view of simplicity and cheapness, is considered the I DOC - 90010000 PAGE - method of the radical polymerization of...Initiators of polimerization in this method are the hydroxyl radicals, which are generated during the homolytic decomposition of peroxide of hydrogen PDO

  12. Porphyrinoids as a platform of stable radicals

    PubMed Central

    Shimizu, Daiki

    2018-01-01

    The non-innocent ligand nature of porphyrins was observed for compound I in enzymatic cycles of cytochrome P450. Such porphyrin radicals were first regarded as reactive intermediates in catabolism, but recent studies have revealed that porphyrinoids, including porphyrins, ring-contracted porphyrins, and ring-expanded porphyrins, display excellent radical-stabilizing abilities to the extent that radicals can be handled like usual closed-shell organic molecules. This review surveys four types of stable porphyrinoid radical and covers their synthetic methods and properties such as excellent redox properties, NIR absorption, and magnetic properties. The radical-stabilizing abilities of porphyrinoids stem from their unique macrocyclic conjugated systems with high electronic and structural flexibilities. PMID:29675188

  13. Rational approach to polymer-supported catalysts: synergy between catalytic reaction mechanism and polymer design.

    PubMed

    Madhavan, Nandita; Jones, Christopher W; Weck, Marcus

    2008-09-01

    Supported catalysis is emerging as a cornerstone of transition metal catalysis, as environmental awareness necessitates "green" methodologies and transition metal resources become scarcer and more expensive. Although these supported systems are quite useful, especially in their capacity for transition metal catalyst recycling and recovery, higher activity and selectivity have been elusive compared with nonsupported catalysts. This Account describes recent developments in polymer-supported metal-salen complexes, which often surpass nonsupported analogues in catalytic activity and selectivity, demonstrating the effectiveness of a systematic, logical approach to designing supported catalysts from a detailed understanding of the catalytic reaction mechanism. Over the past few decades, a large number of transition metal complex catalysts have been supported on a variety of materials ranging from polymers to mesoporous silica. In particular, soluble polymer supports are advantageous because of the development of controlled and living polymerization methods that are tolerant to a wide variety of functional groups, including controlled radical polymerizations and ring-opening metathesis polymerization. These methods allow for tuning the density and structure of the catalyst sites along the polymer chain, thereby enabling the development of structure-property relationships between a catalyst and its polymer support. The fine-tuning of the catalyst-support interface, in combination with a detailed understanding of catalytic reaction mechanisms, not only permits the generation of reusable and recyclable polymer-supported catalysts but also facilitates the design and realization of supported catalysts that are significantly more active and selective than their nonsupported counterparts. These superior supported catalysts are accessible through the optimization of four basic variables in their design: (i) polymer backbone rigidity, (ii) the nature of the linker, (iii) catalyst site density, and (iv) the nature of the catalyst attachment. Herein, we describe the design of polymer supports tuned to enhance the catalytic activity or decrease, or even eliminate, decomposition pathways of salen-based transition metal catalysts that follow either a monometallic or a bimetallic reaction mechanism. These findings result in the creation of some of the most active and selective salen catalysts in the literature.

  14. The effect of polymerization mode on monomer conversion, free radical entrapment, and interaction with hydroxyapatite of commercial self-adhesive cements.

    PubMed

    D'Alpino, Paulo Henrique Perlatti; Silva, Marília Santos; Vismara, Marcus Vinícius Gonçalves; Di Hipólito, Vinicius; Miranda González, Alejandra Hortencia; de Oliveira Graeff, Carlos Frederico

    2015-06-01

    This study evaluated the degree of conversion, the free radical entrapment, and the chemical interaction of self-adhesive resin cements mixed with pure hydroxyapatite, as a function of the polymerization activation mode among a variety of commercial self-adhesive cements. Four cements (Embrace WetBond, MaxCem Elite, Bifix SE, and RelyX U200) were mixed, combined with hydroxyapatite, dispensed into molds, and distributed into three groups, according to polymerization protocols: IP (photoactivation for 40s); DP (delayed photoactivation, 10 min self-curing plus 40s light-activated); and CA (chemical activation, no light exposure). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=10). The free radical entrapment values of the resin cements were characterized using Electron Paramagnetic Resonance (EPR) and the concentration of spins (number of spins/mass) calculated (n=3). Values were compared using two-way ANOVA and Tukey's post-hoc test (α=5%). X-ray diffraction (XRD) characterized the crystallinity of hydroxyapatite as a function of the chemical interactions with the resin cements. The tested parameters varied as a function of resin cement and polymerization protocol. Embrace WetBond and RelyX U200 demonstrated dependence on photoactivation (immediate or delayed), whereas MaxCem Elite exhibited dependence on the chemical activation mode. Bifix SE presented the best balance based on the parameters analyzed, irrespective of the activation protocol. Choice of polymerization protocol affects the degree of conversion, free radical entrapment, and the chemical interaction between hydroxyapatite and self-adhesive resin cement mixtures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Free Radical Polymerization of Styrene: A Radiotracer Experiment

    ERIC Educational Resources Information Center

    Mazza, R. J.

    1975-01-01

    Describes an experiment designed to acquaint the chemistry student with polymerization reactions, vacuum techniques, liquid scintillation counting, gas-liquid chromatography, and the handling of radioactive materials. (MLH)

  16. Engineering PCL/lignin nanofibers as an antioxidant scaffold for the growth of neuron and Schwann cell.

    PubMed

    Wang, Jing; Tian, Lingling; Luo, Baiwen; Ramakrishna, Seeram; Kai, Dan; Loh, Xian Jun; Yang, In Hong; Deen, G Roshan; Mo, Xiumei

    2018-05-12

    Antioxidant is critical for the successful of nerve tissue regeneration, and biomaterials with antioxidant activity might be favorable for peripheral nerve repair. Lignin, a biopolymer from wood with excellent antioxidant properties, is still "unexplored" as biomaterials. To design an antioxidative bioscaffold for nerve regeneration, here we synthesized lignin-polycaprolactone (PCL) copolymers via solvent free ring-opening polymerization (ROP). Then such lignin-PCL copolymers were incorporated with PCL and engineered into nanofibrous scaffolds for supporting the growth of neuron and Schwann cell. Our results showed that the addition of lignin-PCL enhanced the mechanical properties of PCL nanofibers and endowed them with good antioxidant properties (up to 98.3 ± 1.9% free radical inhibition within 4 h). Cell proliferation assay showed that PCL/lignin-PCL nanofibers increased cell viability compared to PCL fibers, especially after an oxidative challenge. Moreover, Schwann cells and dorsal root ganglion (DRG) neurons cultured on the nanofibers to assess their potential for nerve regeneration. These results suggested that nanofibers with lignin copolymers promoted cell proliferation of both BMSCs and Schwann cells, enhanced myelin basic protein expressions of Schwann cells and stimulated neurite outgrowth of DRG neurons. In all, these sustainable, intrinsically antioxidant nanofibers may be a potential candidate for nerve TE applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Effects of phenylpropanoid and iridoid glycosides on free radical-induced impairment of endothelium-dependent relaxation in rat aortic rings.

    PubMed

    Ismailoglu, U B; Saracoglu, I; Harput, U S; Sahin-Erdemli, I

    2002-02-01

    The protective effect of phenylpropanoid glycosides, forsythoside B and alyssonoside, and the iridoid glycoside lamiide, isolated from the aerial parts of Phlomis pungens var. pungens, against free radical-induced impairment of endothelium-dependent relaxation in isolated rat aorta was investigated. Aortic rings were exposed to free radicals by the electrolysis of the physiological bathing solution. Free radical-induced inhibition of the endothelium-dependent relaxation in response to acetylcholine was countered by incubation of the aortic rings before electrolysis with the aqueous extract (200 microg/ml), phenylpropanoid fraction (100 microg/ml) and iridoid fraction (150 microg/ml) of P. pungens var. pungens. Major components of the phenylpropanoid fraction forsythoside B and alyssonoside also prevented the inhibition of the acetylcholine response, at 10(-4) M concentration. However, the major component of iridoid fraction lamiide was found ineffective at the same concentration. The protective activity of phenylpropanoid glycosides against the free radical-induced impairment of endothelium-dependent relaxation may be related to their free radical scavenging property.

  18. Self-healing of polymeric materials: The effect of the amount of DCPD confined within microcapsules

    NASA Astrophysics Data System (ADS)

    Chipara, Dorina M.; Perez, Alma; Lozano, Karen; Elamin, Ibrahim; Villarreal, Jahaziel; Salinas, Alfonso; Chipara, Mircea

    2013-03-01

    The self-healing SH) of polymers is based on the dispersion of a catalyst and of microcapsules filled with monomer within the polymeric matrix. Sufficiently large external stresses will rupture the microcapsule, releasing the monomer which will diffuse through the polymer and eventually will reach a catalyst particle igniting a polymerization reaction. The classical SH system includes first generation Grubbs catalyst and poly-urea formaldehyde microcapsules filled with DCPD. The polymerization reaction is a ring-opening metathesis. The size and the mechanical features of microcapsules are critical in controlling the SH process. Research was focused on the effect of DCPD on the size and thickness of microcapsules. Microscopy was used to determine the size of microcapsules (typically in the range of 10-4 m) and the thickness of the microcapsules (ranging between 10-6 to 10-8 m). Research revealed a thick disordered layer over a thin and more compact wall. Raman spectroscopy confirmed the confinement of DCPD, TGA measurements aimed to a better understanding of the degradation processes in inert atmosphere, and mechanical tests supported the ignition of self-healing properties. This research has been supported by National Science Foundation under DMR (PREM) grant 0934157.

  19. Polymerization initated at sidewalls of carbon nanotubes

    NASA Technical Reports Server (NTRS)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  1. Impregnation of β-tricalcium phosphate robocast scaffolds by in situ polymerization.

    PubMed

    Martínez-Vázquez, Francisco J; Perera, Fidel H; van der Meulen, Inge; Heise, Andreas; Pajares, Antonia; Miranda, Pedro

    2013-11-01

    Ring-opening polymerization of ε-caprolactone (ε-CL) and L-lactide (LLA) was performed to impregnate β-tricalcium phosphate (β-TCP) scaffolds fabricated by robocasting. Concentrated colloidal inks prepared from β-TCP commercial powders were used to fabricate porous structures consisting of a 3D mesh of interpenetrating rods. ε-CL and LLA were in situ polymerized within the ceramic structure by using a lipase and stannous octanoate, respectively, as catalysts. The results show that both the macropores inside the ceramic mesh and the micropores within the ceramic rods are full of polymer in either case. The mechanical properties of scaffolds impregnated by in situ polymerization (ISP) are significantly increased over those of the bare structures, exhibiting similar values than those obtained by other, more aggressive, impregnation methods such as melt-immersion (MI). ISP using enzymatic catalysts requires a reduced processing temperature which could facilitate the incorporation of growth factors and other drugs into the polymer composition, thus enhancing the bioactivity of the composite scaffold. The implications of these results for the optimization of the mechanical and biological performance of scaffolds for bone tissue engineering applications are discussed. Copyright © 2013 Wiley Periodicals, Inc.

  2. Tribochemical synthesis of nano-lubricant films from adsorbed molecules at sliding solid interface: Tribo-polymers from α-pinene, pinane, and n-decane

    NASA Astrophysics Data System (ADS)

    He, Xin; Barthel, Anthony J.; Kim, Seong H.

    2016-06-01

    The mechanochemical reactions of adsorbed molecules at sliding interfaces were studied for α-pinene (C10H16), pinane (C10H18), and n-decane (C10H22) on a stainless steel substrate surface. During vapor phase lubrication, molecules adsorbed at the sliding interface could be activated by mechanical shear. Under the equilibrium adsorption condition of these molecules, the friction coefficient of sliding steel surfaces was about 0.2 and a polymeric film was tribochemically produced. The synthesis yield of α-pinene tribo-polymers was about twice as much as pinane tribo-polymers. In contrast to these strained bicyclic hydrocarbons, n-decane showed much weaker activity for tribo-polymerization at the same mechanical shear condition. These results suggested that the mechanical shear at tribological interfaces could induce the opening of the strained ring structure of α-pinene and pinane, which leads to polymerization of adsorbed molecules at the sliding track. On a stainless steel surface, such polymerization reactions of adsorbed molecules do not occur under typical surface reaction conditions. The mechanical properties and boundary lubrication efficiency of the produced tribo-polymer films are discussed.

  3. In situ AFM investigation of electrochemically induced surface-initiated atom-transfer radical polymerization.

    PubMed

    Li, Bin; Yu, Bo; Zhou, Feng

    2013-02-12

    Electrochemically induced surface-initiated atom-transfer radical polymerization is traced by in situ AFM technology for the first time, which allows visualization of the polymer growth process. It affords a fundamental insight into the surface morphology and growth mechanism simultaneously. Using this technique, the polymerization kinetics of two model monomers were studied, namely the anionic 3-sulfopropyl methacrylate potassium salt (SPMA) and the cationic 2-(metharyloyloxy)ethyltrimethylammonium chloride (METAC). The growth of METAC is significantly improved by screening the ammonium cations by the addition of ionic liquid electrolyte in aqueous solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthesis and Purification of Tunable High Tg Electro-Optical Polymers by Ring Opening Metathesis Polymerization

    DTIC Science & Technology

    2011-09-01

    The amic acid was dissolved in DMF (100 mL) at 100 °C. Acetic anhydride (14.8 g, 0.145 mol) and anhydrous sodium acetate (0.8 g, 0.01 mol) were...exo-N-[(E)-2-(ethyl(4-((4-nitrophenyl)diazenyl)phenyl)amino)ethyl benzoate ] nadimide (5). DPTS (0.44 g, 1.41 mmol), exo-N-(p-Carboxyphenyl...agent for a Ru-based catalyst when extracted with aqueous sodium bicarbonate (28, 29). We reasoned that MNA could enhance the solubility of the

  5. Synthesis of Side Chain Liquid Crystal Polymers by Living Ring Opening Metathesis Polymerization. 3. Influence of Molecular Weight, Interconnecting Unit and Substituent on the Mesomorphic behavior of Polymers with Laterally Attached Mesogens

    DTIC Science & Technology

    1992-04-08

    polymethylsiloxanes, 6 -7 polyacrylates ,2,4,5 polymethacrylates, 1 ,3 and polychloroacrylates, 5 exhibit only nematic mesophases regardless of the...corresponding carboxyl chloride. Potassium bicyclo[2.2.1]hept-2-ene-5- carboxylate was prepared by titrating a methanolic solution of the carboxylic acid...Esterification of the Corresponding Benzyl Bromides. Monomers 1I-n were prepared in 47-88% yield using the following procedure. A mixture of potassium bicyclo

  6. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs.

    PubMed

    Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan

    2015-06-28

    Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant kinetic stability that have potential for use as an anti-cancer drug delivery carrier for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Heteroleptic tin(II) initiators for the ring-opening (co)polymerization of lactide and trimethylene carbonate: mechanistic insights from experiments and computations.

    PubMed

    Wang, Lingfang; Kefalidis, Christos E; Sinbandhit, Sourisak; Dorcet, Vincent; Carpentier, Jean-François; Maron, Laurent; Sarazin, Yann

    2013-09-27

    The tin(II) complexes {LO(x)}Sn(X) ({LO(x)}(-) =aminophenolate ancillary) containing amido (1-4), chloro (5), or lactyl (6) coligands (X) promote the ring-opening polymerization (ROP) of cyclic esters. Complex 6, which models the first insertion of L-lactide, initiates the living ROP of L-LA on its own, but the amido derivatives 1-4 require the addition of alcohol to do so. Upon addition of one to ten equivalents of iPrOH, precatalysts 1-4 promote the ROP of trimethylene carbonate (TMC); yet, hardly any activity is observed if tert-butyl (R)-lactate is used instead of iPrOH. Strong inhibition of the reactivity of TMC is also detected for the simultaneous copolymerization of L-LA and TMC, or for the block copolymerization of TMC after that of L-LA. Experimental and computational data for the {LO(x)}Sn(OR)complexes (OR=lactyl or lactidyl) replicating the active species during the tin(II)-mediated ROP of L-LA demonstrate that the formation of a five-membered chelate is largely favored over that of an eight-membered one, and that it constitutes the resting state of the catalyst during this (co)polymerization. Comprehensive DFT calculations show that, out of the four possible monomer insertion sequences during simultaneous copolymerization of L-LA and TMC: 1) TMC then TMC, 2) TMC then L-LA, 3) L-LA then L-LA, and 4) L-LA then TMC, the first three are possible. By contrast, insertion of L-LA followed by that of TMC (i.e., insertion sequence 4) is endothermic by +1.1 kcal mol(-1), which compares unfavorably with consecutive insertions of two L-LA units (i.e., insertion sequence 3) (-10.2 kcal mol(-1)). The copolymerization of L-LA and TMC thus proceeds under thermodynamic control. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Radiation-induced polymerization of glass-forming systems. IV. Effect of the homogeneity of polymerization phase and polymer concentration on temperature dependence of initial polymerization rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-06-01

    The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less

  9. Polymerization Simulator for Introductory Polymer and Material Science Courses

    ERIC Educational Resources Information Center

    Chirdon, William M.

    2010-01-01

    This work describes how molecular simulation of polymerization reactions can be used to enrich introductory polymer or material science courses to give students a deeper understanding of free-radical chain and stepwise growth polymerization reactions. These simulations have proven to be effective media for instruction that do not require material…

  10. Methyleneation of peptides by N,N,N,N-tetramethylethylenediamine (TEMED) under conditions used for free radical polymerization: a mechanistic study.

    PubMed

    Shirangi, Mehrnoosh; Sastre Toraño, Javier; Sellergren, Börje; Hennink, Wim E; Somsen, Govert W; van Nostrum, Cornelus F

    2015-01-21

    Free radical polymerization is often used to prepare protein and peptide-loaded hydrogels for the design of controlled release systems and molecular imprinting materials. Peroxodisulfates (ammonium peroxodisulfates (APS) or potassium peroxodisulfates (KPS)) with N,N,N,N-tetramethylethylenediamine (TEMED) are frequently used as initiator and catalyst. However, exposure to these free radical polymerization reagents may lead to modification of the protein and peptide. In this work, we show the modification of lysine residues by ammonium peroxodisulfate (APS)/TEMED of the immunostimulant thymopentin (TP5). Parallel studies on a decapeptide and a library of 15 dipeptides were performed to reveal the mechanism of modification. LC-MS of APS/TEMED-exposed TP5 revealed a major reaction product with an increased mass (+12 Da) with respect to TP5. LC-MS(2) and LC-MS(3) were performed to obtain structural information on the modified peptide and localize the actual modification site. Interpretation of the obtained data demonstrates the formation of a methylene bridge between the lysine and arginine residue in the presence of TEMED, while replacing TEMED with a sodium bisulfite catalyst did not show this modification. Studies with the other peptides showed that the TEMED radical can induce methyleneation on peptides when lysine is next to arginine, proline, cysteine, aspargine, glutamine, histidine, tyrosine, tryptophan, and aspartic acid residues. Stability of peptides and protein needs to be considered when using APS/TEMED in in situ polymerization systems. The use of an alternative catalyst such as sodium bisulfite may preserve the chemical integrity of peptides during in situ polymerization.

  11. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  12. Free-radical solution-polymerization of trifluoronitrosomethane with tetrafluoroethylene

    NASA Technical Reports Server (NTRS)

    Gdickman, S. A.

    1972-01-01

    Heavy-walled glass reactor, equipped with aerosol-compatible couplings and needle valve and charged with solvent and initiator, is utilized for polymerization. Polymer conversions and reactor/vessel operation are discussed.

  13. Extreme population inversion in the fragments formed by UV photoinduced S-H bond fission in 2-thiophenethiol.

    PubMed

    Ingle, Rebecca A; Karsili, Tolga N V; Dennis, Gregg J; Staniforth, Michael; Stavros, Vasilios G; Ashfold, Michael N R

    2016-04-28

    H atom loss following near ultraviolet photoexcitation of gas phase 2-thiophenethiol molecules has been studied experimentally, by photofragment translational spectroscopy (PTS) methods, and computationally, by ab initio electronic structure calculations. The long wavelength (277.5 ≥ λ(phot) ≥ 240 nm) PTS data are consistent with S-H bond fission after population of the first (1)πσ* state. The partner thiophenethiyl (R) radicals are formed predominantly in their first excited Ã(2)A' state, but assignment of a weak signal attributable to H + R(X˜(2)A'') products allows determination of the S-H bond strength, D0 = 27,800 ± 100 cm(-1) and the Ã-X˜ state splitting in the thiophenethiyl radical (ΔE = 3580 ± 100 cm(-1)). The deduced population inversion between the à and X˜ states of the radical reflects the non-planar ground state geometry (wherein the S-H bond is directed near orthogonal to the ring plane) which, post-photoexcitation, is unable to planarise sufficiently prior to bond fission. This dictates that the dissociating molecules follow the adiabatic fragmentation pathway to electronically excited radical products. π* ← π absorption dominates at shorter excitation wavelengths. Coupling to the same (1)πσ* potential energy surface (PES) remains the dominant dissociation route, but a minor yield of H atoms attributable to a rival fragmentation pathway is identified. These products are deduced to arise via unimolecular decay following internal conversion to the ground (S0) state PES via a conical intersection accessed by intra-ring C-S bond extension. The measured translational energy disposal shows a more striking change once λ(phot) ≤ 220 nm. Once again, however, the dominant decay pathway is deduced to be S-H bond fission following coupling to the (1)πσ* PES but, in this case, many of the evolving molecules are deduced to have sufficiently near-planar geometries to allow passage through the conical intersection at extended S-H bond lengths and dissociation to ground (X˜) state radical products. The present data provide no definitive evidence that complete ring opening can compete with fast S-H bond fission following near UV photoexcitation of 2-thiophenethiol.

  14. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  15. Evidence that Additions of Grignard Reagents to Aliphatic Aldehydes Do Not Involve Single-Electron-Transfer Processes.

    PubMed

    Otte, Douglas A L; Woerpel, K A

    2015-08-07

    Addition of allylmagnesium reagents to an aliphatic aldehyde bearing a radical clock gave only addition products and no evidence of ring-opened products that would suggest single-electron-transfer reactions. The analogous Barbier reaction also did not provide evidence for a single-electron-transfer mechanism in the addition step. Other Grignard reagents (methyl-, vinyl-, t-Bu-, and triphenylmethylmagnesium halides) also do not appear to add to an alkyl aldehyde by a single-electron-transfer mechanism.

  16. Photostability and Performance of Polystyrene Films Containing 1,2,4-Triazole-3-thiol Ring System Schiff Bases.

    PubMed

    Ali, Gassan Q; El-Hiti, Gamal A; Tomi, Ivan Hameed R; Haddad, Raghad; Al-Qaisi, Alaa J; Yousif, Emad

    2016-12-09

    Series of 4-(4-substituted benzylideneamino)-5-(3,4,5-trimethoxyphenyl)-4 H -1,2,4-triazole-3-thiols were synthesized and their structures were confirmed. The synthesized Schiff bases were used as photostabilizers for polystyrene against photodegradation. Polystyrene polymeric films containing synthesized Schiff bases (0.5% by weight) were irradiated (λ max = 365 nm and light intensity = 6.43 × 10 -9 ein·dm -3 ·s -1 ) at room temperature. The photostabilization effect of 1,2,4-triazole-3-thiols Schiff bases was determined using various methods. All the additives used enhanced the photostability of polystyrene films against irradiation compared with the result obtained in the absence of Schiff base. The Schiff bases can act as photostabilizers for polystyrene through the direct absorption of UV radiation and/or radical scavengers.

  17. RAFT-Polymerization-Induced Self-Assembly and Reorganizations: Ultrahigh-Molecular-Weight Polymer and Morphology-Tunable Micro-/Nanoparticles in One Pot.

    PubMed

    Zhang, Xiao-Yun; Liu, Dong-Ming; Lv, Xin-Hu; Sun, Miao; Sun, Xiao-Li; Wan, Wen-Ming

    2016-11-01

    A one-pot method is introduced for the successful synthesis of narrow-distributed (Đ = 1.22) vinyl polymer with both ultrahigh molecular weight (UHMW) (M w = 1.31 × 10 6 g mol -1 ) and micro-/nanomorphology under mild conditions. The method involves the following four stages: homogeneous polymerization, polymerization-induced self-assembly (PISA), PISA and reorganization, and PISA and multiple reorganizations. The key points to the production of UHMW polystyrene are to minimize radical termination by segregating radicals in different nanoreactors and to ensure sufficient chain propagation by promoting further reorganizations of these reactors in situ. This method therefore endows polymeric materials with the outstanding properties of both UHMW and tunable micro-/nanoparticles under mild conditions in one pot. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modeling the gas-phase thermochemistry of organosulfur compounds.

    PubMed

    Vandeputte, Aäron G; Sabbe, Maarten K; Reyniers, Marie-Françoise; Marin, Guy B

    2011-06-27

    Key to understanding the involvement of organosulfur compounds in a variety of radical chemistries, such as atmospheric chemistry, polymerization, pyrolysis, and so forth, is knowledge of their thermochemical properties. For organosulfur compounds and radicals, thermochemical data are, however, much less well documented than for hydrocarbons. The traditional recourse to the Benson group additivity method offers no solace since only a very limited number of group additivity values (GAVs) is available. In this work, CBS-QB3 calculations augmented with 1D hindered rotor corrections for 122 organosulfur compounds and 45 organosulfur radicals were used to derive 93 Benson group additivity values, 18 ring-strain corrections, 2 non-nearest-neighbor interactions, and 3 resonance corrections for standard enthalpies of formation, standard molar entropies, and heat capacities for organosulfur compounds and organosulfur radicals. The reported GAVs are consistent with previously reported GAVs for hydrocarbons and hydrocarbon radicals and include 77 contributions, among which 26 radical contributions, which, to the best of our knowledge, have not been reported before. The GAVs allow one to estimate the standard enthalpies of formation at 298 K, the standard entropies at 298 K, and standard heat capacities in the temperature range 300-1500 K for a large set of organosulfur compounds, that is, thiols, thioketons, polysulfides, alkylsulfides, thials, dithioates, and cyclic sulfur compounds. For a validation set of 26 organosulfur compounds, the mean absolute deviation between experimental and group additively modeled enthalpies of formation amounts to 1.9  kJ  mol(-1). For an additional set of 14 organosulfur compounds, it was shown that the mean absolute deviations between calculated and group additively modeled standard entropies and heat capacities are restricted to 4 and 2 J  mol(-1)  K(-1), respectively. As an alternative to Benson GAVs, 26 new hydrogen-bond increments are reported, which can also be useful for the prediction of radical thermochemistry. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. NMR, ESI/MS, and MALDI-TOF/MS analysis of pear juice polymeric proanthocyanidins with potent free radical scavenging activity.

    PubMed

    Es-Safi, Nour-Eddine; Guyot, Sylvain; Ducrot, Paul-Henri

    2006-09-20

    The structure of a polymeric proanthocyanidin fraction isolated from pear juice was characterized by NMR, ESI/MS, and MALDI-TOF/MS analyses, and its antioxidant activity was investigated using the DPPH free radical scavenging method. The results obtained from 13C NMR analysis showed the predominance of signals representative of procyanidins. Typical signals in the chemical shift region between 70 and 90 ppm demonstrated the exclusive presence of epicatechin units. The results obtained through negative ESI/MS analysis showed singly and doubly charged ions corresponding to the molecular mass of procyanidins with a degree of polymerization up to 22. The spectra obtained through MALDI-TOF/MS analysis revealed the presence of two series of tannin oligomers. Supporting the observations from NMR spectroscopy, the first series consists of well-resolved tannin identified as procyanidin polymers units with chain lengths of up to 25. A second series of monogalloyl flavan-3-ols polymers with polymerization degree up to 25 were also detected. This is the first mass spectrometric evidence confirming the existence of galloylated procyanidin oligomers in pear fruits. Within each of these oligomers, various signals exist suggesting the presence of several oligomeric tannins. The antioxidant properties of the polymeric fraction were investigated through reduction of the DPPH free radical, and the results obtained showed that the polymeric fraction exhibited a higher antioxidant power compared to those of (+)-catechin and B3 procyanidin dimer.

  20. Preparation of poly(vinyl alcohol)/kaolinite nanocomposites via in situ polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jia Xin; Department of Chemistry, Hexi University, Zhangye 734000; Li Yanfeng

    2008-03-04

    Poly(vinyl alcohol)/kaolinite intercalated nanocomposites (Kao-PVA) were prepared via in situ intercalation radical polymerization. Vinyl acetate (VAc) was intercalated into kaolinite by a displacement method using dimethyl sulfoxide/kaolinite (Kao-DMSO) as the intermediate. Then, PVAc/kaolinite (Kao-PVAc) was obtained via radical polymerization with benzoyl peroxide (BPO) as initiator. Last, PVAc/kaolinite was saponified via direct-hydrolysis with NaOH solution in order to obtain PVA/kaolinite nanocomposites, which was characterized by Fourier-Transformation spectroscopy (FTIR), wide X-ray diffraction (WXRD) and transmission electron microscopy (TEM). Their differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) results of the obtained PVA/kaolinite suggested that the thermal properties had an obvious improvement.

  1. p -Carborane Conjugation in Radical Anions of Cage–Cage and Cage–Phenyl Compounds

    DOE PAGES

    Cook, Andrew R.; Valášek, Michal; Funston, Alison M.; ...

    2017-12-14

    Optical electron transfer (intervalence) transitions in radical anions of p-carborane oligomers attest to delocalization of electrons between two p-carboranes cages or a p-carborane and a phenyl ring. Oligomers of the 12 vertex p-carborane (C 2B 10H 12) cage, [12], with up to 3 cages were synthesized, as well as p-carboranes with one or two trimethylsilylphenyl groups, [6], attached to the carbon termini. Pulse radiolysis in tetrahydrofuran produced radical anions, determined redox potentials by equilibria and measured their absorption spectra. Density functional theory computations provided critical insight into the optical electron transfer bands and electron delocalization. One case, [6–12–6], showed bothmore » Robin–Day class II and III transitions. The class III transition resulted from a fully delocalized excess electron across both benzene rings and the central p-carborane, with an electronic coupling H ab = 0.46 eV between the cage and either benzene. This unprecedented finding shows that p-carborane bridges are not simply electron withdrawing insulators. In other cases with more than ~1/2 of the excess electron localized on a [12], large cage distortions were triggered, producing a partially open cage with a nido-like structure. This resulted in class II transitions with similar Hab but massive reorganization energies. The computations also predicted delocalization in radical cations, but complexities in cation formation allowed only tentative experimental support of the predictions. Thus, the results with anions provide clear evidence for carborane conjugation that might be exploited in molecular wire materials, which are classically composed of all π-conjugated molecules.« less

  2. p -Carborane Conjugation in Radical Anions of Cage–Cage and Cage–Phenyl Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Andrew R.; Valášek, Michal; Funston, Alison M.

    Optical electron transfer (intervalence) transitions in radical anions of p-carborane oligomers attest to delocalization of electrons between two p-carboranes cages or a p-carborane and a phenyl ring. Oligomers of the 12 vertex p-carborane (C 2B 10H 12) cage, [12], with up to 3 cages were synthesized, as well as p-carboranes with one or two trimethylsilylphenyl groups, [6], attached to the carbon termini. Pulse radiolysis in tetrahydrofuran produced radical anions, determined redox potentials by equilibria and measured their absorption spectra. Density functional theory computations provided critical insight into the optical electron transfer bands and electron delocalization. One case, [6–12–6], showed bothmore » Robin–Day class II and III transitions. The class III transition resulted from a fully delocalized excess electron across both benzene rings and the central p-carborane, with an electronic coupling H ab = 0.46 eV between the cage and either benzene. This unprecedented finding shows that p-carborane bridges are not simply electron withdrawing insulators. In other cases with more than ~1/2 of the excess electron localized on a [12], large cage distortions were triggered, producing a partially open cage with a nido-like structure. This resulted in class II transitions with similar Hab but massive reorganization energies. The computations also predicted delocalization in radical cations, but complexities in cation formation allowed only tentative experimental support of the predictions. Thus, the results with anions provide clear evidence for carborane conjugation that might be exploited in molecular wire materials, which are classically composed of all π-conjugated molecules.« less

  3. Coordination Polymers Containing 1,3-Phenylenebis-((1H-1,2,4-triazol-1-yl)methanone) Ligand: Synthesis and ε-Caprolactone Polymerization Behavior.

    PubMed

    Bello-Vieda, Nestor J; Murcia, Ricardo A; Muñoz-Castro, Alvaro; Macías, Mario A; Hurtado, John J

    2017-11-10

    The reaction of isophthaloyl dichloride with 1 H -1,2,4-triazole afforded the new ligand 1,3-phenylenebis(1,2,4-triazole-1-yl)methanone ( 1 ). A series of Co(II), Cu(II), Zn(II) and Ni(II) complexes were synthesized using 1 and then characterized by melting point analysis, elemental analysis, theoretical calculations, thermogravimetric analysis, X-ray powder diffraction, nuclear magnetic resonance, infrared and Raman spectroscopy. Experimental and computational studies predict the formation of coordination polymers (CPs). The cobalt and copper CPs and zinc(II) complex were found to be good initiators for the ring-opening polymerization of ε-caprolactone (CL) under solvent-free conditions. ¹H-NMR analysis showed that the obtained polymers of CL were mainly linear and had terminal hydroxymethylene groups. Differential scanning calorimetry showed that the obtained polycaprolactones had high crystallinity, and TGA showed that they had decomposition temperatures above 400 °C. These results provide insight and guidance for the design of metal complexes with potential applications in the polymerization of CL.

  4. Mechanistic Studies of ε-Caprolactone Polymerization by (salen)AlOR Complexes and a Predictive Model for Cyclic Ester Polymerizations

    PubMed Central

    2016-01-01

    Aluminum alkoxide complexes (2) of salen ligands with a three-carbon linker and para substituents having variable electron-withdrawing capabilities (X = NO2, Br, OMe) were prepared, and the kinetics of their ring-opening polymerization (ROP) of ε-caprolactone (CL) were investigated as a function of temperature, with the aim of drawing comparisons to similar systems with two-carbon linkers investigated previously (1). While 1 and 2 exhibit saturation kinetics and similar dependences of their ROP rates on substituents X (invariant Keq, similar Hammett ρ = +1.4(1) and 1.2(1) for k2, respectively), ROP by 2 was significantly faster than for 1. Theoretical calculations confirm that, while the reactant structures differ, the transition state geometries are quite similar, and by analyzing the energetics of the involved distortions accompanying the structural changes, a significant contribution to the basis for the rate differences was identified. Using this knowledge, a simplified computational method for evaluating ligand structural influences on cyclic ester ROP rates is proposed that may have utility for future catalyst design. PMID:26900488

  5. Deciphering Stability of Five-Membered Heterocyclic Radicals: Balancing Act Between Delocalization and Ring Strain.

    PubMed

    Sah, Chitranjan; Yadav, Ajit Kumar; Venkataramani, Sugumar

    2018-06-21

    Computational studies on five-membered heterocycles with single heteroatom and their isomeric dehydro-borole 1a-1c, cyclopentadiene 2a-2c, pyrrole 3a-3c, furan 4b-4c, phosphole 5a-5c, and thiophene 6b-6c radicals have been carried out. Geometrical aspects through ground state electronic structures and stability aspects using bond dissociation energies (BDE) and radical stabilization energies (RSE) have been envisaged in this regard. Spin densities, electrostatic potentials (ESP), and natural bond orbital (NBO) analysis unveiled the extent of spin delocalization. The estimated nucleus-independent chemical shifts (NICS) values revealed the difference in aromaticity characteristics of radicals. Particularly the heteroatom centered radicals exhibit odd electron π-delocalized systems with a quasi-antiaromatic character. Various factors such as, the relative position of the radical center with respect to heteroatoms, resonance, ring strain and orbital interactions influence the stability that follows the order: heteroatom centered > β-centered > α-centered radicals. Among the influences of various factors, we confirmed the existence of a competition between delocalization and the ring strain, and the interplay of both decides the overall stability order.

  6. Radiolysis of paracetamol in dilute aqueous solution

    NASA Astrophysics Data System (ADS)

    Szabó, László; Tóth, Tünde; Homlok, Renáta; Takács, Erzsébet; Wojnárovits, László

    2012-09-01

    Using radiolytic experiments hydroxyl radical (main reactant in advanced oxidation processes) was shown to effectively destroy paracetamol molecules. The basic reaction is attachment to the ring. The hydroxy-cyclohexadienyl radical produced in the further reactions may transform to hydroxylated paracetamol derivatives or to quinone type molecules and acetamide. The initial efficiency of aromatic ring destruction in the absence of dissolved O2 is c.a. 10%. The efficiency is 2-3 times higher in the presence of O2 due to its reaction with intermediate hydroxy-cyclohexadienyl radical and the subsequent ring destruction reactions through peroxi radical. Upon irradiation the toxicity of solutions at low doses increases with the dose and then at higher doses it decreases. This is due to formation of compounds with higher toxicity than paracetamol (e.g. acetamide, hidroquinone). These products, however, are highly sensitive to irradiation and degrade easily.

  7. Hydroperoxide Traces in Common Cyclic Ethers as Initiators for Controlled RAFT Polymerizations.

    PubMed

    Eggers, Steffen; Abetz, Volker

    2018-04-01

    Herein, a reversible addition-fragmentation chain transfer (RAFT) polymerization is introduced for reactive monomers like N-acryloylpyrrolidine or N,N-dimethylacrylamide working without a conventional radical initiator. As a very straightforward proof of principle, the method takes advantage of the usually inconvenient radical-generating hydroperoxide contaminations in cyclic ethers like tetrahydrofuran or 1,4-dioxane, which are very common solvents in polymer sciences. The polymerizations are surprisingly well controlled and the polymers can be extended with a second block, indicating their high livingness. "Solvent-initiated" RAFT polymerizations hence prove to be a feasible access to tailored materials with minimal experimental effort and standard laboratory equipment, only requiring the following ingredients: hydroperoxide-contaminated solvent, monomer, and RAFT agent. In other respects, however, the potential coinitiating ability of the used solvent is to be considered when investigating the kinetics of RAFT polymerizations or aiming for the synthesis of high-livingness polymers, e.g., multiblock copolymers. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Coating and dispersion of ceramic nanoparticles by UV-ozone etching assisted surface-initiated living radical polymerization.

    PubMed

    Arita, Toshihiko

    2010-10-01

    Commercially available unmodified ceramic nanoparticles (NPs) in dry powder state were surface-modified and dispersed in almost single-crystal size. The surface-initiated living radical polymerization after just UV-ozone soft etching enables one to graft polymers onto the surface of ceramic NPs and disperse them in solvents. Furthermore, a number of NPs were dispersed with single-crystal sizes. The technique developed here could be applied to almost all ceramic NPs including metal nitrides.

  9. Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study

    NASA Technical Reports Server (NTRS)

    Kim, S.; Westmoreland, D.

    1994-01-01

    The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.

  10. Application of an Addition-Fragmentation-Chain Transfer Monomer in Di(meth)acrylate Network Formation to Reduce Polymerization Shrinkage Stress.

    PubMed

    Shah, Parag K; Stansbury, Jeffrey W; Bowman, Christopher N

    2017-08-14

    A new addition-fragmentation chain transfer (AFT) capable moiety was incorporated into a dimethacrylate monomer that participated readily in network formation by copolymerizing with multifunctional methacrylates or acrylates. The process of AFT occurred simultaneously with photopolymerization of the AFT monomer (AFM) and other (meth)acrylate monomers leading to polymer stress relaxation via network reconfiguration. At low loading levels of the AFM, a significant reduction in shrinkage stress, especially for acrylate monomers, was observed with nominal effects on conversion. At higher loading levels of the AFM, the photopolymerization reaction kinetics and final double bond conversion were significantly lowered along with a delay in the gel-point conversion. Electron paramagnetic resonance studies during polymerization revealed the presence of a distinct radical species that was present in proportional quantities to the AFM content in the system. The lifetime and the character of the persistent radicals were altered due to the presence of the distinctive radical, in turn affecting the polymerization kinetics. With polymerization conducted at higher irradiance, the differential conversion between the control resin and samples with moderate AFM content was minimal, especially for the methacrylate-based formulations.

  11. Anodic electrodeposition of NiTSPP from aqueous basic media.

    PubMed

    Pérez-Morales, Marta; Muñoz, Eulogia; Martín-Romero, María T; Camacho, Luis

    2005-06-07

    The oxidative electrodeposition of NiTSPP (tetrakis(4-sulfonatophenyl) Ni porphyrin) on ITO electrode from 0.1 M NaOH aqueous solution has been studied, and UV-visible and reflection FTIR spectroscopies have been used to analyze the composition of such film. By use of UV-vis spectroscopy, small absorbance of the film and an almost nulling effect on the Soret band of the porphyrin along the Ni(III)/Ni(II) redox process were observed. The reflection FTIR spectroscopy detected the presence of Ni-OH groups in the reduced film and as well the state of the porphyrin molecules as radical cation. Moreover, the porphyrin has been quantified by means of the area of the vibration bands assigned to the sulfonate groups by using as reference a Langmuir-Blodgett film containing a known surface concentration of NiTSPP. These results lead us propose the formation of a conductor salt by electrocrystallization, with stoichiometries TSPP/Ni(II)(OH)2 and TSPP/Ni(III)OOH, for its reduced and oxidized forms, respectively. In these two forms, the porphyrin rings will be present as radical cation, which may be stabilized through its dimerization or polymerization.

  12. New Insights into the Electroreduction of Ethylene Sulfite as Electrolyte Additive for Facilitating Solid Electrolyte Interphase of Lithium Ion Battery

    PubMed Central

    Sun, Youmin; Wang, Yixuan

    2017-01-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIB) the supermolecular clusters [(ES)Li+(PC)m](PC)n (m=1–2; n=0, 6, and 9) were used to investigate the electroreductive decompositions of the electrolyte additive, ethylene sulfite (ES), as well as the solvent, propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has lower energy barrier than those of paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or the reduction potential dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A>C>D, which further signifies the importance of the concerted new path in facilitating the SEI. The hybrid models, the supermolecular cluster augmented by polarized continuum model, PCM-[(ES)Li+(PC)2](PC)n (n=0,6, and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li+ in [(ES)Li+(PC)2](PC)n (n=6, and 9) partially compensates the overestimation of solvent effects arising from the PCM model for the naked (ES)Li+(PC)2, and the theoretical reduction potential with PCM-[(ES)Li+(PC)2](PC)6 (1.90–1.93V) agrees very well with the experimental one (1.8–2.0V). PMID:28220165

  13. New insights into the electroreduction of ethylene sulfite as an electrolyte additive for facilitating solid electrolyte interphase formation in lithium ion batteries.

    PubMed

    Sun, Youmin; Wang, Yixuan

    2017-03-01

    To help understand the solid electrolyte interphase (SEI) formation facilitated by electrolyte additives of lithium-ion batteries (LIBs) the supermolecular clusters [(ES)Li + (PC) m ](PC) n (m = 1-2; n = 0, 6 and 9) were used to investigate the electroreductive decompositions of the electrolyte additive ethylene sulfite (ES) as well as the solvent propylene carbonate (PC) with density functional theory. The results show that ES can be reduced prior to PC, resulting in a reduction precursor that will then undergo a ring opening decomposition to yield a radical anion. A new concerted pathway (path B) was located for the ring opening of the reduced ES, which has a much lower energy barrier than the previously reported stepwise pathway (path A). The transition state for the ring opening of PC induced by the reduced ES (path C, indirect path) is closer to that of path A than path B in energy. The direct ring opening of the reduced PC (path D) has a lower energy barrier than paths A, B and C, yet it is less favorable than the latter paths in terms of thermodynamics (vertical electron affinity or reduction potential and dissociation energy). The overall rate constant including the initial reduction and the subsequent ring opening for path B is the largest among the four paths, followed by paths A > C > D, which further signifies the importance of the concerted new path in facilitating the SEI formation. The hybrid models, the supermolecular clusters augmented by a polarized continuum model, PCM-[(ES)Li + (PC) 2 ](PC) n (n = 0, 6 and 9), were used to further estimate the reduction potential by taking into account both explicit and implicit solvent effects. The second solvation shell of Li + in [(ES)Li + (PC) 2 ](PC) n (n = 6 and 9) partially compensates the overestimation of solvent effects arising from the PCM for the naked (ES)Li + (PC) 2 , and the theoretical reduction potential of PCM-[(ES)Li + (PC) 2 ](PC) 6 (1.90-1.93 V) agrees very well with the experimental one (1.8-2.0 V).

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.

    Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO 2 permeability and CO 2/N 2 selectivity. The overall gas separation performance (CO 2 permeability 6800 Barrer; CO 2/N 2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO 2-philicity within rubbery polymer matrices influences gasmore » transport properties. Key parameters for tuning gas transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less

  15. A One-Step Route to CO2 -Based Block Copolymers by Simultaneous ROCOP of CO2 /Epoxides and RAFT Polymerization of Vinyl Monomers.

    PubMed

    Wang, Yong; Zhao, Yajun; Ye, Yunsheng; Peng, Haiyan; Zhou, Xingping; Xie, Xiaolin; Wang, Xianhong; Wang, Fosong

    2018-03-26

    The one-step synthesis of well-defined CO 2 -based diblock copolymers was achieved by simultaneous ring-opening copolymerization (ROCOP) of CO 2 /epoxides and RAFT polymerization of vinyl monomers using a trithiocarbonate compound bearing a carboxylic group (TTC-COOH) as the bifunctional chain transfer agent (CTA). The double chain-transfer effect allows for independent and precise control over the molecular weight of the two blocks and ensures narrow polydispersities of the resultant block copolymers (1.09-1.14). Notably, an unusual axial group exchange reaction between the aluminum porphyrin catalyst and TTC-COOH impedes the formation of homopolycarbonates. By taking advantage of the RAFT technique, it is able to meet the stringent demand for functionality control to well expand the application scopes of CO 2 -based polycarbonates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and Self-Assembly of Block Copolymers Containing Temperature Sensitive and Degradable Chain Segments.

    PubMed

    Gong, Hong-Liang; Lei, Lei; Shi, Shu-Xian; Xia, Yu-Zheng; Chen, Xiao-Nong

    2018-05-01

    In this work, polylactide-b-poly(N-isopropylacrylamide) were synthesized by the combination of controlled ring-opening polymerization and reversible addition fragmentation chain transfer polymerization. These block copolymers with molecular weight range from 7,900 to 12,000 g/mol and narrow polydispersity (≤1.19) can self-assemble into micelles (polylactide core, poly(N-isopropylacrylamide) shell) in water at certain temperature range, which have been evidenced by laser particle size analyzer proton nuclear magnetic resonance and transmission electron microscopy. Such micelles exhibit obvious thermo-responsive properties: (1) Poly(N-isopropylacrylamide) blocks collapse on the polylactide core as system temperature increase, leading to reduce of micelle size. (2) Micelles with short poly(N-isopropylacrylamide) blocks tend to aggregate together when temperature increased, which is resulted from the reduction of the system hydrophilicity and the decreased repulsive force between micelles.

  17. Preparation and Characterization of InP/Poly(methyl methacrylate) Nanocomposite Films.

    PubMed

    Kwon, Younghoon; Kim, Jongsung

    2017-04-01

    Quantum dots (QDs) are nanocrystalline semiconductors with many unusual optical properties. They exhibit very high fluorescence intensities and possess exceptional stability against photo-bleaching. In this study, we report the preparation of InP QDs-poly(methyl methacrylate) (PMMA) hybrids by fabricating QDs via a thermal decomposition reaction, followed by radical polymerization. The InP QDs were synthesized using indium(III) chloride and tris(dimethylamino)phosphine. Flexible composite films were obtained by radical polymerization using methyl methacrylate (MMA) as the monomer and 2,2′-azobis(2-methylpropionitrile) (AIBN) as a radical initiator. The PL intensity of the QDs was lowered upon composite formation with PMMA. However, the composites exhibited higher thermal stability than pure PMMA.

  18. Synthesis and characterization of novel P(HEMA-LA-MADQUAT) micelles for co-delivery of methotrexate and Chrysin in combination cancer chemotherapy.

    PubMed

    Davaran, Soodabeh; Fazeli, Hamed; Ghamkhari, Aliyeh; Rahimi, Fariborz; Molavi, Ommoleila; Anzabi, Maryam; Salehi, Roya

    2018-08-01

    A Novel poly [2-hydroxyethyl methacrylate-Lactide-dimethylaminoethyl methacrylate quaternary ammonium alkyl halide] [P(HEMA-LA-MADQUAT)] copolymer was synthesized through combination of ring opening polymerization (ROP) and 'free' radical initiated polymerization methods. This newly developed copolymer was fully characterized by FT-IR, 1 HNMR and 13 CNMR spectroscopy. Micellization of the copolymer was performed by dialysis membrane method and obtained micelles were characterized by FESEM, dynamic light scattering (DLS), zeta potential (ξ), and critical micelle concentration (CMC) measurements. This copolymer was developed with the aim of co-delivering two different anticancer drugs: methotrexate (MTX) and chrysin. In vitro cytotoxicity effect of MTX@Chrysin-loaded P(HEMA-LA-MADQUAT) was also studied through assessing the survival rate of breast cancer cell line (MCF-7) and DAPI staining assays. Cationic micelle (and surface charge of + 7.6) with spherical morphology and an average diameter of 55 nm and CMC of 0.023 gL -1 was successfully obtained. Micelles showed the drug loaded capacity around 87.6 and 86.5% for MTX and Chrysin, respectively. The cytotoxicity assay of a drug-free nanocarrier on MCF-7 cell lines indicated that this developed micelles were suitable nanocarriers for anticancer drugs. Furthermore, the MTX@Chrysin-loaded micelle had more efficient anticancer performance than free dual anticancer drugs (MTX @ chrysin), confirmed by MTT assay and DAPI stainingmethods. Therefore, we envision that this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies. Therefore, this recently developed novel micelle can enhance the efficacy of chemotherapeutic agents, MTX and Chrysin, combination chemotherapy and has the potential to be used as an anticancer drug delivery system for in vivo studies.

  19. Spontaneous actin dynamics in contractile rings

    NASA Astrophysics Data System (ADS)

    Kruse, Karsten; Wollrab, Viktoria; Thiagarajan, Raghavan; Wald, Anne; Riveline, Daniel

    Networks of polymerizing actin filaments are known to be capable to self-organize into a variety of structures. For example, spontaneous actin polymerization waves have been observed in living cells in a number of circumstances, notably, in crawling neutrophils and slime molds. During later stages of cell division, they can also spontaneously form a contractile ring that will eventually cleave the cell into two daughter cells. We present a framework for describing networks of polymerizing actin filaments, where assembly is regulated by various proteins. It can also include the effects of molecular motors. We show that the molecular processes driven by these proteins can generate various structures that have been observed in contractile rings of fission yeast and mammalian cells. We discuss a possible functional role of each of these patterns. The work was supported by Agence Nationale de la Recherche, France, (ANR-10-LABX-0030-INRT) and by Deutsche Forschungsgemeinschaft through SFB1027.

  20. Grafting of Ring-Opened Cyclopropylamine Thin Films on Silicon (100) Hydride via UV Photoionization.

    PubMed

    Tung, J; Ching, J Y; Ng, Y M; Tew, L S; Khung, Y L

    2017-09-13

    The grafting of cyclopropylamine onto a silicon (100) hydride (Si-H) surface via a ring-opening mechanism using UV photoionization is described here. In brief, radicals generated from the Si-H surface upon UV irradiation were found to behave in classical hydrogen abstraction theory manner by which the distal amine group was first hydrogen abstracted and the radical propagated down to the cyclopropane moiety. This subsequently liberated the strained bonds of the cyclopropane group and initiated the surface grafting process, producing a thin film approximately 10-15 nm in height. Contact angle measurements also showed that such photoionization irradiation had yielded an extremely hydrophilic surface (∼21.3°) and X-ray photoelectron spectroscopy also confirmed the coupling was through the Si-C linkage. However, when the surface underwent high-temperature hydrosilylation (>160 °C), the reaction proceeded predominantly through the nucleophilic NH 2 group to form a Si-N linkage to the surface. This rendered the surface hydrophobic and hence suggested that the Si-H homolysis model may not be the main process. To the best of our knowledge, this was the first attempt reported in the literature to use photoionization to directly graft cyclopropylamine onto a silicon surface and in due course generate a highly rich NH-terminated surface that was found to be highly bioactive in promoting cell viability on the basis of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide studies.

  1. Highly conductive side chain block copolymer anion exchange membranes.

    PubMed

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  2. Functional Interfaces Constructed by Controlled/Living Radical Polymerization for Analytical Chemistry.

    PubMed

    Wang, Huai-Song; Song, Min; Hang, Tai-Jun

    2016-02-10

    The high-value applications of functional polymers in analytical science generally require well-defined interfaces, including precisely synthesized molecular architectures and compositions. Controlled/living radical polymerization (CRP) has been developed as a versatile and powerful tool for the preparation of polymers with narrow molecular weight distributions and predetermined molecular weights. Among the CRP system, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) are well-used to develop new materials for analytical science, such as surface-modified core-shell particles, monoliths, MIP micro- or nanospheres, fluorescent nanoparticles, and multifunctional materials. In this review, we summarize the emerging functional interfaces constructed by RAFT and ATRP for applications in analytical science. Various polymers with precisely controlled architectures including homopolymers, block copolymers, molecular imprinted copolymers, and grafted copolymers were synthesized by CRP methods for molecular separation, retention, or sensing. We expect that the CRP methods will become the most popular technique for preparing functional polymers that can be broadly applied in analytical chemistry.

  3. Synthesis of Well-defined Amphiphilic Block Copolymers by Organotellurium-Mediated Living Radical Polymerization (TERP).

    PubMed

    Kumar, Santosh; Changez, Mohammad; Murthy, C N; Yamago, Shigeru; Lee, Jae-Suk

    2011-10-04

    Low-molecular weight amphiphilic diblock copolymers, polystyrene-block-poly (2-vinylpyridine) (PS-b-P2VP), and (P2VP-b-PS) with different block ratios were synthesized for the first time via organotellurium-mediated living radical polymerization (TERP). For both the homo- and block copolymerizations, good agreement between the theoretical, and experimental molecular weights was found with nearly 100% yield in every case. The molecular weight distribution for all the samples ranged between 1.10 and 1.24, which is well below the theoretical lower limit of 1.50 for a conventional free radical polymerization. Furthermore, a very simple approach to producing highly dense arrays of titania nanoparticles (TiO2 ) is presented using a site-selective reaction of titanium tetraisopropoxide within the P2VP domains of micellar film of P2VP-b-PS in toluene through the sol-gel method. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A short review of radiation-induced raft-mediated graft copolymerization: A powerful combination for modifying the surface properties of polymers in a controlled manner

    NASA Astrophysics Data System (ADS)

    Barsbay, Murat; Güven, Olgun

    2009-12-01

    Surface grafting of polymeric materials is attracting increasing attention as it enables the preparation of new materials from known and commercially available polymers having desirable bulk properties such as thermal stability, elasticity, permeability, etc., in conjunction with advantageous newly tailored surface properties such as biocompatibility, biomimicry, adhesion, etc. Ionizing radiation, particularly γ radiation is one of the most powerful tools for preparing graft copolymers as it generates radicals on most substrates. With the advent of living free-radical polymerization techniques, application of γ radiation has been extended to a new era of grafting; grafting in a controlled manner to achieve surfaces with tailored and well-defined properties. This report presents the current use of γ radiation in living free-radical polymerization and highlights the use of both techniques together as a combination to present an advance in the ability to prepare surfaces with desired, tunable and well-defined properties.

  5. Monodisperse, polymeric microspheres produced by irradiation of slowly thawing frozen drops

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu (Inventor); Hyson, Michael T. (Inventor); Chung, Sang-Kun (Inventor); Colvin, Michael S. (Inventor); Chang, Manchium (Inventor)

    1991-01-01

    Monodisperse, polymeric microspheres are formed by injecting uniformly shaped droplets of radiation polymerizable monomers, preferably a biocompatible monomer, having covalent binding sites such as hydroxyethylmethacrylate, into a zone, impressing a like charge on the droplet so that they mutually repel each other, spheroidizing the droplets within the zone and collecting the droplets in a pool of cryogenic liquid. As the droplets enter the liquid, they freeze into solid, glassy microspheres, which vaporizes a portion of the cryogenic liquid to form a layer. The like-charged microspheres, suspended within the layer, move to the edge of the vessel holding the pool, are discharged, fall and are collected. The collected microspheres are irradiated while frozen in the cryogenic liquid to form latent free radicals. The frozen microspheres are then slowly thawed to activate the free radicals which polymerize the monomer to form evenly-sized, evenly-shaped, monodisperse polymeric microspheres.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.

    1,4-Dimethoxybenzene derivatives are materials of choice for use as catholytes in nonaqueous redox flow batteries, as they exhibit high open-circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring-addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10-bis(2-methoxyethoxy)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. As a result, a hybrid flow cell containingmore » BODMA is operated for 150 charge–discharge cycles with minimal loss of capacity.« less

  7. Kinetics and thermochemistry of 2,5-dimethyltetrahydrofuran and related oxolanes: next next-generation biofuels.

    PubMed

    Simmie, John M

    2012-05-10

    The enthalpies of formation, entropies, specific heats at constant pressure, enthalpy functions, and all carbon-hydrogen and carbon-methyl bond dissociation energies have been computed using high-level methods for the cyclic ethers (oxolanes) tetrahydrofuran, 2-methyltetrahydrofuran, and 2,5-dimethyltetrahydrofuran. Barrier heights for hydrogen-abstraction reactions by hydrogen atoms and the methyl radical are also computed and shown to correlate with reaction energy change. The results show a pleasing consistency and considerably expands the available data for these important compounds. Abstraction by ȮH is accompanied by formation of both pre- and postreaction weakly bound complexes. The resulting radicals formed after abstraction undergo ring-opening reactions leading to readily recognizable intermediates, while competitive H-elimination reactions result in formation of dihydrofurans. Formation enthalpies of all 2,3- and 2,5-dihydrofurans and associated radicals are also reported. It is probable that the compounds at the center of this study will be relatively clean-burning biofuels, although formation of intermediate aldehydes might be problematic.

  8. Reassessing the atmospheric oxidation mechanism of toluene

    NASA Astrophysics Data System (ADS)

    Ji, Yuemeng; Zhao, Jun; Terazono, Hajime; Misawa, Kentaro; Levitt, Nicholas P.; Li, Yixin; Lin, Yun; Peng, Jianfei; Wang, Yuan; Duan, Lian; Pan, Bowen; Zhang, Fang; Feng, Xidan; An, Taicheng; Marrero-Ortiz, Wilmarie; Secrest, Jeremiah; Zhang, Annie L.; Shibuya, Kazuhiko; Molina, Mario J.; Zhang, Renyi

    2017-08-01

    Photochemical oxidation of aromatic hydrocarbons leads to tropospheric ozone and secondary organic aerosol (SOA) formation, with profound implications for air quality, human health, and climate. Toluene is the most abundant aromatic compound under urban environments, but its detailed chemical oxidation mechanism remains uncertain. From combined laboratory experiments and quantum chemical calculations, we show a toluene oxidation mechanism that is different from the one adopted in current atmospheric models. Our experimental work indicates a larger-than-expected branching ratio for cresols, but a negligible formation of ring-opening products (e.g., methylglyoxal). Quantum chemical calculations also demonstrate that cresols are much more stable than their corresponding peroxy radicals, and, for the most favorable OH (ortho) addition, the pathway of H extraction by O2 to form the cresol proceeds with a smaller barrier than O2 addition to form the peroxy radical. Our results reveal that phenolic (rather than peroxy radical) formation represents the dominant pathway for toluene oxidation, highlighting the necessity to reassess its role in ozone and SOA formation in the atmosphere.

  9. Soluble, Highly Conjugated Derivatives of Polyacetylene from the Ring-Opening Metathesis Polymerization of Monosubstituted Cyclooctatetraenes: Synthesis and the Relationship Between Polymer Structure and Physical Properties

    DTIC Science & Technology

    1993-01-15

    through a pad of Celite into a flask equipped with a sidearm stopcock and the volume of the solution was not adjusted. Neopentyl lithium was...The resonance at 2.5 ppm (A) was irradiated and both this resonance and the resonance at 2.8 ppm (B) were integrated. An ethylene glycol temperature...angles for different side groups in model compound S (MM2 results, C3 = cyclopropyl, Np = neopentyl ). Figure 14. Values of torsion angle el at 10 fs

  10. Second and third order nonlinear optical properties of conjugated molecules and polymers

    NASA Technical Reports Server (NTRS)

    Perry, Joseph W.; Stiegman, Albert E.; Marder, Seth R.; Coulter, Daniel R.; Beratan, David N.; Brinza, David E.

    1988-01-01

    Second- and third-order nonlinear optical properties of some newly synthesized organic molecules and polymers are reported. Powder second-harmonic-generation efficiencies of up to 200 times urea have been realized for asymmetric donor-acceptor acetylenes. Third harmonic generation chi(3)s have been determined for a series of small conjugated molecules in solution. THG chi(3)s have also been determined for a series of soluble conjugated copolymers prepared using ring-opening metathesis polymerization. The results are discussed in terms of relevant molecular and/or macroscopic structural features of these conjugated organic materials.

  11. Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure-Property Relationships.

    PubMed

    Longo, Julie M; Sanford, Maria J; Coates, Geoffrey W

    2016-12-28

    Polyesters synthesized through the alternating copolymerization of epoxides and cyclic anhydrides compose a growing class of polymers that exhibit an impressive array of chemical and physical properties. Because they are synthesized through the chain-growth polymerization of two variable monomers, their syntheses can be controlled by discrete metal complexes, and the resulting materials vary widely in their functionality and physical properties. This polymer-focused review gives a perspective on the current state of the field of epoxide/anhydride copolymerization mediated by discrete catalysts and the relationships between the structures and properties of these polyesters.

  12. Microwave-assisted synthesis and micellization behavior of soy-based copoly(2-oxazoline)s.

    PubMed

    Hoogenboom, Richard; Leenen, Mark A M; Huang, Haiying; Fustin, Charles-André; Gohy, Jean-François; Schubert, Ulrich S

    2006-01-01

    Polymers based on renewable resources are promising candidates for replacing common organic polymers, and thus, for reducing oil consumption. In this contribution we report the microwave-assisted synthesis of block and statistical copolymers from 2-ethyl-2-oxazoline and 2-"soy alkyl"-2-oxazoline via a cationic ring-opening polymerization mechanism. The synthesized copolymers were characterized by gel permeation chromatography and 1 H-NMR spectroscopy. The micellization of these amphiphilic copolymers was investigated by dynamic light scattering and atomic force microscopy to examine the effect of hydrophobic block length and monomer distribution on the resulting micellar characteristics.

  13. Synthesis, characterization and catalytic activity of novel large network polystyrene-immobilized organic bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tassi, Marco; Bartollini, Elena; Adriaensens, Peter

    2015-12-07

    In view of searching for efficient polymeric supports for organic bases to be used in environmentally friendly reaction conditions, novel gel-type cross-linked polystyrenes functionalized with diethylamine and 1,5,7-triazabicyclo[4.4.0]dec-5-ene, have been prepared. Moreover, the structural properties and morphology of these catalysts have been determined by extensive solid state NMR experiments, FTIR spectroscopy and SEM/TEM microscopy. SPACeR-supported bases were found to exhibit high catalytic activity in the epoxide ring opening by phenols. Finally, a range of β-substituted alcohols have been readily and regioselectively synthesized.

  14. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles.

    PubMed

    Bhuiyan, D; Jablonsky, M J; Kolesov, I; Middleton, J; Wick, T M; Tannenbaum, R

    2015-03-01

    In this study, we developed a novel synthesis method to create a complex collagen-based biopolymer that promises to possess the necessary material properties for a bone graft substitute. The synthesis was carried out in several steps. In the first step, a ring-opening polymerization reaction initiated by hydroxyapatite nanoparticles was used to polymerize d,l-lactide and glycolide monomers to form poly(lactide-co-glycolide) co-polymer. In the second step, the polymerization product was coupled with succinic anhydride, and subsequently was reacted with N-hydroxysuccinimide in the presence of dicyclohexylcarbodiimide as the cross-linking agent, in order to activate the co-polymer for collagen attachment. In the third and final step, the activated co-polymer was attached to calf skin collagen type I, in hydrochloric acid/phosphate buffer solution and the precipitated co-polymer with attached collagen was isolated. The synthesis was monitored by proton nuclear magnetic resonance, infrared and Raman spectroscopies, and the products after each step were characterized by thermal and mechanical analysis. Calculations of the relative amounts of the various components, coupled with initial dynamic mechanical analysis testing of the resulting biopolymer, afforded a preliminary assessment of the structure of the complex biomaterial formed by this novel polymerization process. Copyright © 2015. Published by Elsevier Ltd.

  15. Radical-induced generation of small silver particles in SPEEK/PVA polymer films and solutions: UV-Vis, EPR, and FT-IR studies.

    PubMed

    Korchev, A S; Konovalova, T; Cammarata, V; Kispert, L; Slaten, L; Mills, G

    2006-01-03

    The present study is centered on the processes involved in the photochemical generation of nanometer-sized Ag particles via illumination at 350 nm of aqueous solutions and cross linked films containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol). Optical and electron paramagnetic resonance experiments, including electron nuclear double resonance data, proved conclusively that the photogenerated chromophore exhibiting a band with lambda(max) = 565 nm is an alpha-hydroxy aromatic (ketyl) radical of the polymeric ketone. This reducing species was produced by illumination of either solutions or films, but the radical lifetime extended from minutes in the fluid phase to hours in the solid. Direct evidence is presented that this long-lived chromophore reduces Ag(I), Cu(II), and Au(III) ions in solution. A rate constant of k = 1.4 x 10(3) M(-)(1) s(-)(1) was obtained for the reduction of Ag(+) by the ketyl radical from the post-irradiation formation of Ag crystallites. FTIR results confirmed that the photoprocess yielding polymeric ketyl radicals involves a reaction between the macromolecules. The photochemical oxidation of the polymeric alcohol, as well as the formation of light-absorbing macromolecular products and polyols, indicates that the sulfonated polyketone experienced transformations similar to those encountered during illumination of the benzophenone/2-propanol system.

  16. Polymeric Ionic Networks with High Charge Density: Solid-like Electrolytes in Lithium Metal Batteries

    DOE PAGES

    Zhang, Pengfei; Li, Mingtao; Jiang, Xueguang; ...

    2015-11-02

    Polymerized ionic networks (PINs) with six ion pairs per repeating unit are synthesized by nucleophilic-substitution-mediated polymerization or radical polymerization of monomers bearing six 1-vinylimidazolium cations. PIN-based solid-like electrolytes show good ionic conductivities (up to 5.32 × 10 -3 S cm -1 at 22 °C), wide electrochemical stability windows (up to 5.6 V), and good interfacial compatibility with the electrodes.

  17. Theranostic reduction-sensitive gemcitabine prodrug micelles for near-infrared imaging and pancreatic cancer therapy

    NASA Astrophysics Data System (ADS)

    Han, Haijie; Wang, Haibo; Chen, Yangjun; Li, Zuhong; Wang, Yin; Jin, Qiao; Ji, Jian

    2015-12-01

    A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy.A biodegradable and reduction-cleavable gemcitabine (GEM) polymeric prodrug with in vivo near-infrared (NIR) imaging ability was reported. This theranostic GEM prodrug PEG-b-[PLA-co-PMAC-graft-(IR820-co-GEM)] was synthesized by ring-opening polymerization and ``click'' reaction. The as-prepared reduction-sensitive prodrug could self-assemble into prodrug micelles in aqueous solution confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In vitro drug release studies showed that these prodrug micelles were able to release GEM in an intracellular-mimicking reductive environment. These prodrug micelles could be effectively internalized by BxPC-3 pancreatic cancer cells, which were observed by confocal laser scanning microscopy (CLSM). Meanwhile, a methyl thiazolyl tetrazolium (MTT) assay demonstrated that this prodrug exhibited high cytotoxicity against BxPC-3 cells. The in vivo whole-animal near-infrared (NIR) imaging results showed that these prodrug micelles could be effectively accumulated in tumor tissue and had a longer blood circulation time than IR820-COOH. The endogenous reduction-sensitive gemcitabine prodrug micelles with the in vivo NIR imaging ability might have great potential in image-guided pancreatic cancer therapy. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06734k

  18. The [C{sub 6}H{sub 10}]{sup {sm{underscore}bullet}+} hypersurface: The parent radical cation Diels-Alder reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffmann, M.; Schaefer, H.F. III

    1999-07-21

    Various possible reaction pathways between ethene and butadiene radical cation (cis- and trans-), have been investigated at different levels of theory up to UCCSD(T)/DZP/UMP2(fc)/DZP and with density functional theory at B3LYP/DZP. A stepwise addition involving open chain intermediates and leading to the Diels-Alder product, the cyclohexene radical cation, was found to have a total activation barrier {Delta}G{sup 298{ne}} = 6.3 kcal mol{sup {minus}1} and a change in free Gibbs energy, {Delta}G{sup 298}, of {minus}33.5 kcal mol{sup {minus}1}. On the E{degree} potential energy surface, all transition states are lower in energy than separated ethene and butadiene, the exothermicity {Delta}E = -45.6more » kcal mol{sup {minus}1}. A more direct path could be characterized as stepwise with one intermediate only at the SCF level but not at electron-correlated levels and hence might actually be a concerted strongly asynchronous addition with a very small or no activation barrier (UCCSD(T)/DZP/UHF/6-31G* gives a {Delta}G{sup 298{ne}} of 0.8 kcal mol{sup {minus}1}). The critical step for another alternative, the cyclobutanation-vinylcyclobutane/cyclohexene rearrangement, is a 1,3-alkyl shift which involves a barrier ({Delta}G{sup 298{ne}}) only 1.7 kcal mol{sup {minus}1} higher than that of stop use addition for both cis-, and trans-butadiene radical cation. However, from the (ethene and trans-butadiene) reactions, ring expansion of the vinylcyclobutane radical cation intermediate, to a methylene cyclopentane radical cation, requires an activation only 1.3 kcal mol{sup {minus}1} larger than for (trans-butadiene radical). While cis/trans isomerization of free butadiene radical cation requires a high activation (24.9 kcal mol{sup {minus}1}), a reaction sequence involving addition of ethene (to stepwise give an open chain intermediate and vinyl cyclobutane radical cation) has a barrier of only 3.5 kcal mol{sup {minus}1} ({Delta}G{sup 298{ne}}). This sequence also makes ethene and butadiene radical cations to exchange terminal methylene groups.« less

  19. Fabrication of supramolecular star-shaped amphiphilic copolymers for ROS-triggered drug release.

    PubMed

    Zuo, Cai; Peng, Jinlei; Cong, Yong; Dai, Xianyin; Zhang, Xiaolong; Zhao, Sijie; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Wei, Hua

    2018-03-15

    Star-shaped copolymers with branched structures can form unimolecular micelles with better stability than the micelles self-assembled from conventional linear copolymers. However, the synthesis of star-shaped copolymers with precisely controlled degree of branching (DB) suffers from complicated sequential polymerizations and multi-step purification procedures, as well as repeated optimizations of polymer compositions. The use of a supramolecular host-guest pair as the block junction would significantly simplify the preparation. Moreover, the star-shaped copolymer-based unimolecular micelle provides an elegant solution to the tradeoff between extracellular stability and intracellular high therapeutic efficacy if the association/dissociation of the supramolecular host-guest joint can be triggered by the biologically relevant stimuli. For this purpose, in this study, a panel of supramolecular star-shaped amphiphilic block copolymers with 9, 12, and 18 arms were designed and fabricated by host-guest complexations between the ring-opening polymerization (ROP)-synthesized star-shaped poly(ε-caprolactone) (PCL) with 3, 4, and 6 arms end-capped with ferrocene (Fc) (PCL-Fc) and the atom transfer radical polymerization (ATRP)-produced 3-arm poly(oligo ethylene glycol) methacrylates (POEGMA) with different degrees of polymerization (DPs) of 24, 30, 47 initiated by β-cyclodextrin (β-CD) (3Br-β-CD-POEGMA). The effect of DB and polymer composition on the self-assembled properties of the five star-shaped copolymers was investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM), and fluorescence spectrometery. Interestingly, the micelles self-assembled from 12-arm star-shaped copolymers exhibited greater stability than the 9- and 18-arm formulations. The potential of the resulting supramolecular star-shaped amphiphilic copolymers as drug carriers was evaluated by an in vitro drug release study, which confirmed the ROS-triggered accelerated drug release from the doxorubicin (DOX)-loaded supramolecular star-shaped micelles due to the oxidation-induced dissociation of β-CD/Fc pair and the consequent loss of the colloidal stability of the star-shaped micelles. Studies of the delivery efficacy by an in vitro cytotoxicity study further indicated that higher DBs and longer hydrophilic arm compromised the therapeutic efficacy of the DOX-loaded supramolecular star-shaped micelles, resulting in significantly reduced cytotoxicity, as measured by increased IC 50 value. Overall, our results revealed that the screening of hydrophilic block by DB and MW for an optimized star-shaped copolymer should balance the stability versus therapeutic efficacy tradeoff for a comprehensive consideration. Therefore, the 12-arm star-shaped copolymer with POEGMA 30 is the best formulation tested. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Ruthenium Grubbs' catalyst nanostructures grown by UV-excimer-laser ablation for self-healing applications

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Nechache, R.; Haddad, E.; Jamroz, W.; Merle, P. G.; Rosei, F.

    2012-10-01

    A self healing composite material consisting of 5-Ethylidene-2-Norbornene (5E2N) monomer reacted with Ruthenium Grubbs' Catalyst (RGC) was prepared. First, the kinetics of the 5E2N ring opening metathesis polymerization (ROMP) reaction RGC was studied as a function of temperature. We show that the polymerization reaction is still effective in a large temperature range (-15 to 45 °C), occurring at short time scales (less than 1 min at 40 °C). Second, the amount of RGC required for ROMP reaction significantly decreased through its nanostructuration by means of a UV-excimer laser ablation process. RGC nanostructures of few nanometers in size where successfully obtained directly on silicon substrates. The X-ray photoelectron spectroscopy data strongly suggest that the RGC still keep its original stoichiometry after nanostructuration. More importantly, the associated ROMP reaction was successfully achieved at an extreme low RGC concentration equivalent to (11.16 ± 1.28) × 10-4 Vol.%, occurring at very short time reaction. This approach opens new prospects for using healing agent nanocomposite materials for self-repair functionality, thereby obtaining a higher catalytic efficiency per unit mass.

  1. Micromechanical characterization of single-walled carbon nanotube reinforced ethylidene norbornene nanocomposites for self-healing applications

    NASA Astrophysics Data System (ADS)

    Aïssa, B.; Haddad, E.; Jamroz, W.; Hassani, S.; Farahani, R. D.; Merle, P. G.; Therriault, D.

    2012-10-01

    We report on the fabrication of self-healing nanocomposite materials, consisting of single-walled carbon nanotube (SWCNT) reinforced 5-ethylidene-2-norbornene (5E2N) healing agent—reacted with ruthenium Grubbs catalyst—by means of ultrasonication, followed by a three-roll mixing mill process. The kinetics of the 5E2N ring opening metathesis polymerization (ROMP) was studied as a function of the reaction temperature and the SWCNT loads. Our results demonstrated that the ROMP reaction was still effective in a large temperature domain ( - 15-45 °C), occurring at very short time scales (less than 1 min at 40 °C). On the other hand, the micro-indentation analysis performed on the SWCNT/5E2N nanocomposite material after its ROMP polymerization showed a clear increase in both the hardness and the Young modulus—up to nine times higher than that of the virgin polymer—when SWCNT loads range only from 0.1 to 2 wt%. The approach demonstrated here opens new prospects for using carbon nanotube and healing agent nanocomposite materials for self-repair functionality, especially in a space environment.

  2. Rapid Three-Dimensional Printing in Water Using Semiconductor-Metal Hybrid Nanoparticles as Photoinitiators.

    PubMed

    Pawar, Amol Ashok; Halivni, Shira; Waiskopf, Nir; Ben-Shahar, Yuval; Soreni-Harari, Michal; Bergbreiter, Sarah; Banin, Uri; Magdassi, Shlomo

    2017-07-12

    Additive manufacturing processes enable fabrication of complex and functional three-dimensional (3D) objects ranging from engine parts to artificial organs. Photopolymerization, which is the most versatile technology enabling such processes through 3D printing, utilizes photoinitiators that break into radicals upon light absorption. We report on a new family of photoinitiators for 3D printing based on hybrid semiconductor-metal nanoparticles. Unlike conventional photoinitiators that are consumed upon irradiation, these particles form radicals through a photocatalytic process. Light absorption by the semiconductor nanorod is followed by charge separation and electron transfer to the metal tip, enabling redox reactions to form radicals in aerobic conditions. In particular, we demonstrate their use in 3D printing in water, where they simultaneously form hydroxyl radicals for the polymerization and consume dissolved oxygen that is a known inhibitor. We also demonstrate their potential for two-photon polymerization due to their giant two-photon absorption cross section.

  3. Simulation of SOA formation and composition from oxidation of toluene and m-xylene in chamber experiments

    NASA Astrophysics Data System (ADS)

    Xu, J.; Liu, Y.; Nakao, S.; Cocker, D.; Griffin, R. J.

    2013-12-01

    Aromatic hydrocarbons contribute an important fraction of anthropogenic reactive volatile organic compounds (VOCs) in the urban atmosphere. Photo-oxidation of aromatic hydrocarbons leads to secondary organic products that have decreased volatilities or increased solubilities and can form secondary organic aerosol (SOA). Despite the crucial role of aromatic-derived SOA in deteriorating air quality and harming human health, its formation mechanism is not well understood and model simulation of SOA formation still remains difficult. The dependence of aromatic SOA formation on nitrogen oxides (NOx) is not captured fully by most SOA formation models. Most models predict SOA formation under high NOx levels well but underestimate SOA formation under low NOx levels more representative of the ambient atmosphere. Thus, it is crucial to investigate the NOx-dependent chemistry in aromatic photo-oxidation systems and correspondingly update SOA formation models. In this study, NOx-dependent mechanisms of toluene and m-xylene SOA formation are updated using the gas-phase Caltech Atmospheric Chemistry Mechanism (CACM) coupled to a gas/aerosol partitioning model. The updated models were optimized by comparing to eighteen University of California, Riverside United States Environmental Protection Agency (EPA) chamber experiment runs under both high and low NOx conditions. Correction factors for vapor pressures imply uncharacterized aerosol-phase association chemistry. Simulated SOA speciation implies the importance of ring-opening products in governing SOA formation (up to 40%~60% for both aromatics). The newly developed model can predict strong decreases of m-xylene SOA yield with increasing NOx. Speciation distributions under varied NOx levels implies that the well-known competition between RO2 + HO2 and RO2 + NO (RO2 = peroxide bicyclic radical) may not be the only factor influencing SOA formation. The reaction of aromatic peroxy radicals with NO competing with its self-cyclization also affects NOx-dependence of SOA formation. Comparison of SOA formation yield and composition between two aromatics implies aldehyde/ketone chemistry from ring-opening route and chemistry for phenolic route play important roles in governing SOA formation and that ring-opening aldehydes and phenolic nitrates are produced to a greater extent in the toluene system, leading to higher SOA yields for toluene than for m-xylene.

  4. Higher Order π-Conjugated Polycyclic Hydrocarbons with Open-Shell Singlet Ground State: Nonazethrene versus Nonacene.

    PubMed

    Huang, Rui; Phan, Hoa; Herng, Tun Seng; Hu, Pan; Zeng, Wangdong; Dong, Shao-Qiang; Das, Soumyajit; Shen, Yongjia; Ding, Jun; Casanova, David; Wu, Jishan

    2016-08-17

    Higher order acenes (i.e., acenes longer than pentacene) and extended zethrenes (i.e., zethrenes longer than zethrene) are theoretically predicted to have an open-shell singlet ground state, and the radical character is supposed to increase with extension of molecular size. The increasing radical character makes the synthesis of long zethrenes and acenes very challenging, and so far, the longest reported zethrene and acene derivatives are octazethrene and nonacene, respectively. In addition, there is a lack of fundamental understanding of the differences between these two closely related open-shell singlet systems. In this work, we report the first synthesis of a challenging nonazethrene derivative, HR-NZ, and its full structural and physical characterizations including variable temperature NMR, ESR, SQUID, UV-vis-NIR absorption and electrochemical measurements. Compound HR-NZ has an open-shell singlet ground state with a moderate diradical character (y0 = 0.48 based on UCAM-B3LYP calculation) and a small singlet-triplet gap (ΔES-T = -5.2 kcal/mol based on SQUID data), thus showing magnetic activity at room temperature. It also shows amphoteric redox behavior, with a small electrochemical energy gap (1.33 eV). Its electronic structure and physical properties are compared with those of Anthony's nonacene derivative JA-NA and other zethrene derivatives. A more general comparison between higher order acenes and extended zethrenes was also conducted on the basis of ab initio electronic structure calculations, and it was found that zethrenes and acenes have very different spatial localization of the unpaired electrons. As a result, a faster decrease of singlet-triplet energy gap and a faster increase of radical character with increase of the number of benzenoid rings were observed in zethrene series. Our studies reveal that spatial localization of the frontier molecular orbitals play a very important role on the nature of radical character as well as the excitation energy.

  5. Squarylium-triazine dyad as a highly sensitive photoradical generator for red light.

    PubMed

    Kawamura, Koichi; Schmitt, Julien; Barnet, Maxime; Salmi, Hanene; Ley, Christian; Allonas, Xavier

    2013-09-16

    New dyads, based on squarylium dye and substituted-triazine, were synthesized that exhibit an intramolecular photodissociative electron-transfer reaction. The compounds were used as a red-light photoradical generator. The photochemical activity of the dyad was compared to the corresponding unlinked systems (S+T) by determining the rate constant of electron transfer. The efficiency of the radical generation from the dyad compared to the unlinked system was demonstrated by measuring the maximum rate of free radical polymerization of acrylates in film. An excellent relationship between the rate of electron transfer and the rate of polymerization was found, evidencing the interest of this new approach to efficiently produce radicals under red light. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Helmet of a laminate construction of polycarbonate and polysulfone polymeric material

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J. (Inventor); Dawn, Frederic S. (Inventor)

    1991-01-01

    An article of laminate construction is disclosed which is comprised of an underlayer of polycarbonate polymer material to which is applied a chemically resistant outer layer of polysulfone. The layers which are joined by compression-heat molding, are molded to form the shape of a body protective shell such as a space helmet comprising a shell of polycarbonate, polysulfone laminate construction attached at its open end to a sealing ring adapted for connection to a space suit. The front portion of the shell provides a transparent visor for the helmet. An outer visor of polycarbonate polysulfone laminate construction is pivotally mounted to the sealing ring for covering the transparent visor portion of the shell during extravehicular activities. The polycarbonate under layer of the outer visor is coated on its inner surface with a vacuum deposit of gold to provide additional thermal radiation resistance.

  7. Synthesis of crystalline gels on a light-induced polymerization 3D printer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gong, Jin; Mao, Yuchen; Miyazaki, Takuya; Zhu, Meifang

    2017-04-01

    3D printing, also knows as Additive Manufacturing (AM), was first commercialized in 1986, and has been growing at breakneck speed since 2009 when Stratasys' key patent expired. Currently the 3D printing machines coming on the market can be broadly classified into three categories from the material state point of view: plastic filament printers, powder (or pellet) printers, film printers and liquid photopolymer printers. Much of the work in our laboratory revolves around the crystalline gels. We have succeeded in developing them with high toughness, high flexibility, particularly with many functions as shape memory, energy storage, freshness-retaining, water-absorbing, etc. These crystalline gels are synthesized by light-induced radical polymerization that involves light-reactive monomer having the property of curing with light of a sufficient energy to drive the reaction from liquid to solid. Note that the light-induced polymerized 3D printing uses the same principle. To open up the possibilities for broader application of our crystalline functional gels, we are interested in making them available for 3D printing. In this paper, we share the results of our latest research on the 3D printing of crystalline gels on light-induced 3D printers.

  8. Quantum cascade laser based monitoring of CF{sub 2} radical concentration as a diagnostic tool of dielectric etching plasma processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hübner, M.; Lang, N.; Röpcke, J.

    2015-01-19

    Dielectric etching plasma processes for modern interlevel dielectrics become more and more complex by the introduction of new ultra low-k dielectrics. One challenge is the minimization of sidewall damage, while etching ultra low-k porous SiCOH by fluorocarbon plasmas. The optimization of this process requires a deeper understanding of the concentration of the CF{sub 2} radical, which acts as precursor in the polymerization of the etch sample surfaces. In an industrial dielectric etching plasma reactor, the CF{sub 2} radical was measured in situ using a continuous wave quantum cascade laser (cw-QCL) around 1106.2 cm{sup −1}. We measured Doppler-resolved ro-vibrational absorption lines andmore » determined absolute densities using transitions in the ν{sub 3} fundamental band of CF{sub 2} with the aid of an improved simulation of the line strengths. We found that the CF{sub 2} radical concentration during the etching plasma process directly correlates to the layer structure of the etched wafer. Hence, this correlation can serve as a diagnostic tool of dielectric etching plasma processes. Applying QCL based absorption spectroscopy opens up the way for advanced process monitoring and etching controlling in semiconductor manufacturing.« less

  9. β-Cyclodextrin polymer brushes decorated magnetic colloidal nanocrystal clusters for the release of hydrophobic drugs

    NASA Astrophysics Data System (ADS)

    Lv, Shaonan; Zhao, Meiqin; Cheng, Changjing; Zhao, Zhigang

    2014-05-01

    β-Cyclodextrin (β-CD) polymer brushes decorated magnetic Fe3O4 colloidal nanocrystal clusters (Fe3O4@PG-CD) were fabricated by a combination of surface-initiated atom transfer radical polymerization on the surface of Br-anchored Fe3O4 colloidal nanocrystal clusters (Fe3O4-Br) and ring-opening reaction of epoxy groups. The resulted Fe3O4@PG-CD hybrid nanoparticles were characterized by several methods including Fourier transform infrared, transmission electron microscope, dynamic light scattering instrument, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Moreover, the potential of as-synthesized Fe3O4@PG-CD as a carrier of hydrophobic anticancer drug 5-fluorouracil (5-FU) was also investigated. The results showed that the prepared Fe3O4@PG-CD have core/shell structure and high saturated magnetism. 5-FU could be loaded into the Fe3O4@PG-CD via the formation of β-CD/5-FU inclusion complex. Furthermore, the Fe3O4@PG-CD displayed a high loading capacity and pH-dependent release behavior for 5-FU. The release behavior demonstrated a simple Fickian diffusion in the acidic environment (pH 2.0 and 4.0) but neither non-Fickian nor anomalous when neutral. The results reveal that this nanosystem seems to be a very promising vehicle for the hydrophobic drugs for pH-dependent controlled release.

  10. In vitro characterization of pH-sensitive azithromycin-loaded methoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) micelles.

    PubMed

    Teng, Fangfang; Deng, Peizong; Song, Zhimei; Zhou, Feilong; Feng, Runliang; Liu, Na

    2017-06-15

    In order to improve azithromycin's antibacterial activity in acidic medium, monomethoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) copolymer was synthesized through allylation, free radical addition, ring-opening polymerization and amidation reactions with methoxy poly (ethylene glycol) as raw material. Drug loading capacity and encapsulation efficiency of azithromycin-loaded micelles prepared via thin film hydration method were 11.58±0.86% and 96.06±1.93%, respectively. The drug-loaded micelles showed pH-dependent property in the respects of particle size, zeta potential at the range of pH 5.5-7.8. It could control drug in vitro release and demonstrate higher release rate at pH 6.0 than that at pH 7.4. In vitro antibacterial experiment indicated that the activity of azithromycin-loaded micelles against S. aureus was superior to free azithromycin in medium at both pH 6.0 and pH 7.4. Using fluorescein as substitute with pH-dependent fluorescence decrease property, laser confocal fluorescence microscopy analysis confirmed that cellular uptake of micelles was improved due to protonation of copolymer's imidazole groups at pH 6.0. The enhanced cellular uptake and release of drug caused its activity enhancement in acidic medium when compared with free drug. The micellar drug delivery system should be potential application in the field of bacterial infection treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Ground state structure of high-energy-density polymeric carbon monoxide

    NASA Astrophysics Data System (ADS)

    Xia, Kang; Sun, Jian; Pickard, Chris J.; Klug, Dennis D.; Needs, Richard J.

    2017-04-01

    Crystal structure prediction methods and first-principles calculations have been used to explore low-energy structures of carbon monoxide (CO). Contrary to the standard wisdom, the most stable structure of CO at ambient pressure was found to be a polymeric structure of P n a 21 symmetry rather than a molecular solid. This phase is formed from six-membered (four carbon + two oxygen) rings connected by C=C double bonds with two double-bonded oxygen atoms attached to each ring. Interestingly, the polymeric P n a 21 phase of CO has a much higher energy density than trinitrotoluene (TNT). On compression to about 7 GPa, P n a 21 is found to transform into another chainlike phase of C c symmetry which has similar ring units to P n a 21 . On compression to 12 GPa, it is energetically favorable for CO to polymerize into a purely single bonded C m c a phase, which is stable over a wide pressure range and transforms into the previously known C m c m phase at around 100 GPa. Thermodynamic stability of these structures was verified using calculations with different density functionals, including hybrid and van der Waals corrected functionals.

  12. Modeling the chemistry of plasma polymerization using mass spectrometry.

    PubMed

    Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver

    2003-04-01

    The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.

  13. Modeling FtsZ ring formation in the bacterial cell-anisotropic aggregation via mutual interactions of polymer rods.

    PubMed

    Fischer-Friedrich, Elisabeth; Gov, Nir

    2011-04-01

    The cytoskeletal protein FtsZ polymerizes to a ring structure (Z ring) at the inner cytoplasmic membrane that marks the future division site and scaffolds the division machinery in many bacterial species. FtsZ is known to polymerize in the presence of GTP into single-stranded protofilaments. In vivo, FtsZ polymers become associated with the cytoplasmic membrane via interaction with the membrane-binding proteins FtsA and ZipA. The FtsZ ring structure is highly dynamic and undergoes constantly polymerization and depolymerization processes and exchange with the cytoplasmic pool. In this theoretical study, we consider a scenario of Z ring self-organization via self-enhanced attachment of FtsZ polymers due to end-to-end interactions and lateral interactions of FtsZ polymers on the membrane. With the assumption of exclusively circumferential polymer orientations, we derive coarse-grained equations for the dynamics of the pool of cytoplasmic and membrane-bound FtsZ. To capture stochastic effects expected in the system due to low particle numbers, we simulate our computational model using a Gillespie-type algorithm. We obtain ring- and arc-shaped aggregations of FtsZ polymers on the membrane as a function of monomer numbers in the cell. In particular, our model predicts the number of FtsZ rings forming in the cell as a function of cell geometry and FtsZ concentration. We also calculate the time of FtsZ ring localization to the midplane in the presence of Min oscillations. Finally, we demonstrate that the assumptions and results of our model are confirmed by 3D reconstructions of fluorescently-labeled FtsZ structures in E. coli that we obtained.

  14. Sub-nanometer pore formation in single-molecule-thick polyurea molecular-sieving membrane: a computational study.

    PubMed

    Park, Seongjin; Lansac, Yves; Jang, Yun Hee

    2018-06-07

    A polymeric network of 1-(4-tritylphenyl)urea (TPU) built via layer-by-layer cross-linking polymerization has been proposed to be an excellent mesh equipped with single-molecule-thick pores (i.e., cyclic poly-TPU rings), which can sieve glucose (∼0.7 nm) out of its mixture with urea for hemodialysis applications. Monte Carlo search for the lowest-energy conformation of various sizes of poly-TPU rings unravels the origin of narrow pore size distribution, which is around the sizes of dimer and trimer rings (0.3-0.8 nm). Flexible rings larger than the dimer and trimer rings, in particular tetramer rings, prefer a twisted conformation in the shape of the infinity symbol (∞, which looks like two dimer rings joined together) locked by a hydrogen bond between diphenylurea linker groups facing each other. Translocation energy profiles across these TPU rings reveal their urea-versus-glucose sieving mechanism: glucose is either too large (to enter dimers and twisted tetramers) or too perfectly fit (to exit trimers), leaving only a dimer-sized free space in the ring, whereas smaller-sized urea and water pass through these effective dimer-sized rings (bare dimers, twisted tetramers, and glucose-filled trimers) without encountering a substantial energy barrier or trap.

  15. Dual-component system dimethyl sulfoxide/LiCl as a solvent and catalyst for homogeneous ring-opening grafted polymerization of ε-caprolactone onto xylan.

    PubMed

    Zhang, Xue-Qin; Chen, Ming-Jie; Liu, Chuan-Fu; Sun, Run-Cang

    2014-01-22

    The preparation of xylan-graft-poly(ε-caprolactone) (xylan-g-PCL) copolymers was investigated by homogeneous ring-opening polymerization (ROP) in a dual-component system containing Lewis base LiCl and strong polar aprotic solvent dimethyl sulfoxide (DMSO). DMSO/LiCl acted as solvent, base, and catalyst for the ROP reaction. The effects of the parameters, including the reaction temperature, molar ratio of ε-caprolactone (ε-CL) to anhydroxylose units (AXU) in xylan, and reaction time, on the degree of substitution (DS) and weight percent of PCL side chain (WPCL) were investigated. The results showed that xylan-g-PCL copolymers with low DS in the range of 0.03-0.39 were obtained under the given conditions. The Fourier transform infrared spectroscopy (FTIR), (1)H nuclear magnetic resonance (NMR), (13)C NMR, (1)H-(1)H correlation spectroscopy (COSY), and (1)H-(13)C correlation two-dimensional (2D) NMR [heteronuclear single-quantum coherence (HSQC)] characterization provided more evidence of the attachment of side chains onto xylan. Only one ε-CL was confirmed to be attached onto xylan with each side chain. Integration of resonances assigned to the substituted C2 and C3 in the HSQC spectrum also indicated 69.23 and 30.77% of PCL side chains attached to AXU at C3 and C2 positions, respectively. Although the attachment of PCL onto xylan led to the decreased thermal stability of xylan, the loss of unrecovered xylan fractions with low molecular weight because of the high solubility of xylan in DMSO/LiCl resulted in the increased thermal stability of the samples. This kind of xylan derivative has potential application in environmentally friendly and biodegradable materials considering the good biodegradability of xylan and PCL.

  16. Facile preparation of well-defined AB2 Y-shaped miktoarm star polypeptide copolymer via the combination of ring-opening polymerization and click chemistry.

    PubMed

    Rao, Jingyi; Zhang, Yanfeng; Zhang, Jingyan; Liu, Shiyong

    2008-10-01

    Well-defined AB2 Y-shaped miktoarm star polypeptide copolymer, PZLL-b-(PBLG)2, was synthesized via a combination of ring-opening polymerization (ROP) of alpha-amino acid N-carboxyanhydride (NCA) and click chemistry, where PZLL is poly(epsilon-benzyloxycarbonyl-L-lysine) and PBLG is poly(gamma-benzyl-L-glutamate). First, two types of primary-amine-containing initiators, N-aminoethyl 3,5-bis(propargyloxyl)-benzamide and 3-azidopropylamine, were synthesized and employed for the ROP of NCA, leading to the formation of dialkynyl-terminated PZLL and azide-terminated PBLG, dialkynyl-PZLL and PBLG-N3, respectively. The subsequent copper(I)-catalyzed cycloaddition reaction between dialkynyl-PZLL and slightly excess PBLG-N3 led to facile preparation of PZLL-b-(PBLG)2 Y-shaped miktoarm star polypeptide copolymer. The excess PBLG-N3 was scavenged off by reacting with alkynyl-functionalized Wang resin. The obtained Y-shaped miktoarm star polypeptide copolymer was characterized by gel permeation chromatograph (GPC), Fourier transform-infrared spectroscopy (FT-IR), and (1)H NMR. Moreover, after the hydrolysis of protecting benzyl and benzyloxycarbonyl groups of PZLL-b-(PBLG)2, water-soluble pH-responsive Y-shaped miktoarm star polypeptide copolymer, PLL-b-(PLGA)2, was obtained, where PLL is poly(L-lysine) and PLGA is poly(L-glutamic acid). It can self-assemble into PLGA-core micelles at acidic pH and PLL-core micelles at alkaline pH, accompanied with the coil-to-helix transition of PLGA and PLL sequences, respectively. The spontaneous pH-responsive supramolecular assembly of PLL-b-(PLGA)2 miktoarm star polypeptide copolymer has been investigated via a combination of (1)H NMR, laser light scattering (LLS), transmission electron microscopy (TEM), and circular dichroism (CD) spectroscopy.

  17. Open conversion during minimally invasive radical prostatectomy: impact on perioperative complications and predictors from national data.

    PubMed

    Sharma, Vidit; Meeks, Joshua J

    2014-12-01

    Despite the increased use of minimally invasive radical prostatectomy, open conversion may occur due to surgical complications, surgeon inexperience or failure to progress. We used nationally representative data to quantify the impact of open conversion compared to nonconverted minimally invasive radical prostatectomy and open radical prostatectomy, and identify predictors of open conversion. Years 2004 to 2010 of the Nationwide Inpatient Sample were queried for patients who underwent radical prostatectomy to analyze the association of open conversion during minimally invasive radical prostatectomy with Clavien complications. Multivariate regression models yielded significant predictors of open conversion. From 2004 to 2010, 134,398 (95% CI 111,509-157,287) minimally invasive radical prostatectomies were performed with a 1.8% (95% CI 1.4-2.1) open conversion rate, translating to 2,360 (95% CI 2,001-2,720) conversions. Open conversion cases had a longer length of stay (4.17 vs 1.71 days, p <0.001) and higher hospital charges ($51,049 vs $37,418, p <0.001) than nonconverted cases. Of open conversion cases 45.2% experienced a complication vs 7.2% and 12.9% of minimally invasive radical prostatectomy and open radical prostatectomy cases, respectively (p <0.001). After adjusting for age and comorbidities, open conversion was associated with significantly increased odds of a Clavien grade 1, 2, 3 and 4 complication compared to nonconverted minimally invasive radical prostatectomy and open radical prostatectomy (OR range 2.913 to 15.670, p <0.001). Significant multivariate predictors of open conversion were obesity (OR 1.916), adhesions (OR 3.060), anemia (OR 5.692) and surgeon volume for minimally invasive radical prostatectomy less than 25 cases per year (OR 7.376) (all p <0.01). Open conversion during minimally invasive radical prostatectomy is associated with a higher than expected increase in complications compared to open radical prostatectomy and minimally invasive radical prostatectomy after adjusting for age and comorbidities. External validation of predictors of open conversion may prove useful in minimizing open conversion during minimally invasive radical prostatectomy. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Copper-mediated homogeneous living radical polymerization of acrylamide with waxy potato starch-based macroinitiator.

    PubMed

    Fan, Yifei; Cao, Huatang; van Mastrigt, Frank; Pei, Yutao; Picchioni, Francesco

    2018-07-15

    Cu 0 -mediated living radical polymerization (Cu 0 -mediated LRP) was employed in this research for the synthesis of starch-g-polyacrylamide (St-g-PAM). The use of a controlled radical grafting technique is necessary, as compared to the traditional free-radical polymerization methods, in order to obtain a well-defined structure of the final product. This is in turn essential for studying the relationship between such structure and the end-properties. Waxy potato starch-based water-soluble macroinitiator was first synthesized by esterification with 2-bromopropionyl bromide in the mixture of dimethylacetamide and lithium chloride. With the obtained macroinitiator, St-g-PAM was homogeneously synthesized by aqueous Cu 0 -mediated LRP using CuBr/hexamethylated tris(2-aminoethyl)amine (Me 6 Tren) as catalyst. The successful synthesis of the macroinitiator and St-g-PAM was proved by NMR, FT-IR, SEM, XRD and TGA analysis. The molecular weight and polydispersity of PAM chains were analyzed by gel permeation chromatography (GPC) after hydrolyzing the starch backbone. Monomer conversion was monitored by gas chromatography (GC), on the basis of which the kinetics were determined. A preliminarily rheological study was performed on aqueous solutions of the prepared materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oakdale, James S.; Ye, Jianchao; Smith, William L.

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  20. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography [A post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon polymerization

    DOE PAGES

    Oakdale, James S.; Ye, Jianchao; Smith, William L.; ...

    2016-11-28

    Here, two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

  1. Proximity effects in the electron impact mass spectra of 2-substituted benzazoles

    NASA Astrophysics Data System (ADS)

    Chantler, Thomas; Perrin, Victoria L.; Donkor, Rachel E.; Cawthorne, Richard S.; Bowen, Richard D.

    2004-08-01

    The 70 eV electron impact mass spectra of a wide range of 2-substituted benzazoles are reported and discussed. Particular attention is paid to the mechanistic significance and analytical utility of [M-H]+ and [M-X]+ signals in the spectra of benzazoles in which the 2-substituent contains a terminal aryl group with one or more substituents, X. Loss of H[radical sign] or X[radical sign] occurs preferentially from an ortho-position from ionized 2-benzylbenzimidazoles, 2-phenethylbenzimidazoles, 2-styrylbenzimidazoles, 2-styrylbenzoxazoles and 2-styrylbenzothiazoles. In the three styrylbenzazole series, the [M-H]+ and/or [M-X]+ signals dominate the spectra. This unusually facile loss of H[radical sign] or X[radical sign] may be attributed to a proximity effect, in which cyclization of the ionized molecule is followed by elimination of an ortho-substituent to give an exceptionally stable polycyclic ion. Formation of a new five- or six-membered ring by the proximity effect occurs rapidly; cyclization to a seven-membered ring takes place rather less readily; but formation of a ring with only four atoms or more than seven atoms is not observed to a significant extent. The proximity effect competes effectively with loss of a methyl radical by simple cleavage of an ethyl, isopropyl and even a t-butyl group in the pendant aromatic ring of ionized 2-(4-alkylstyryl)benzazoles.

  2. Benzoin Radicals as Reducing Agent for Synthesizing Ultrathin Copper Nanowires.

    PubMed

    Cui, Fan; Dou, Letian; Yang, Qin; Yu, Yi; Niu, Zhiqiang; Sun, Yuchun; Liu, Hao; Dehestani, Ahmad; Schierle-Arndt, Kerstin; Yang, Peidong

    2017-03-01

    In this work, we report a new, general synthetic approach that uses heat driven benzoin radicals to grow ultrathin copper nanowires with tunable diameters. This is the first time carbon organic radicals have been used as a reducing agent in metal nanowire synthesis. In-situ temperature dependent electron paramagnetic resonance (EPR) spectroscopic studies show that the active reducing agent is the free radicals produced by benzoins under elevated temperature. Furthermore, the reducing power of benzoin can be readily tuned by symmetrically decorating functional groups on the two benzene rings. When the aromatic rings are modified with electron donating (withdrawing) groups, the reducing power is promoted (suppressed). The controllable reactivity gives the carbon organic radical great potential as a versatile reducing agent that can be generalized in other metallic nanowire syntheses.

  3. Nanostructured hybrid hydrogels prepared by a combination of atom transfer radical polymerization and free radical polymerization

    PubMed Central

    Bencherif, Sidi A.; Siegwart, Daniel J.; Srinivasan, Abiraman; Horkay, Ferenc; Hollinger, Jeffrey O.; Washburn, Newell R.; Matyjaszewski, Krzysztof

    2012-01-01

    A new method to prepare nanostructured hybrid hydrogels by incorporating well-defined poly(oligo (ethylene oxide) monomethyl ether methacrylate) (POEO300MA) nanogels of sizes 110–120 nm into a larger three-dimensional (3D) matrix was developed for drug delivery scaffolds for tissue engineering applications. Rhodamine B isothiocyanate-labeled dextran (RITC-Dx) or fluorescein isothiocyanate-labeled dextran (FITC-Dx)-loaded POEO300MA nanogels with pendant hydroxyl groups were prepared by activators generated electron transfer atom transfer radical polymerization (AGET ATRP) in cyclohexane inverse miniemulsion. Hydroxyl-containing nanogels were functionalized with methacrylated groups to generate photoreactive nanospheres. 1H NMR spectroscopy confirmed that polymerizable nanogels were successfully incorporated covalently into 3D hyaluronic acid-glycidyl methacrylate (HAGM) hydrogels after free radical photo-polymerization (FRP). The introduction of disulfide moieties into the polymerizable groups resulted in a controlled release of nanogels from cross-linked HAGM hydrogels under a reducing environment. The effect of gel hybridization on the macroscopic properties (swelling and mechanics) was studied. It is shown that swelling and nanogel content are independent of scaffold mechanics. In-vitro assays showed the nanostructured hybrid hydrogels were cytocompatible and the GRGDS (Gly–Arg–Gly–Asp–Ser) contained in the nanogel structure promoted cell–substrate interactions within 4 days of incubation. These nanostructured hydrogels have potential as an artificial extracellular matrix (ECM) impermeable to low molecular weight biomolecules and with controlled pharmaceutical release capability. Moreover, the nanogels can control drug or biomolecule delivery, while hyaluronic acid based-hydrogels can act as a macroscopic scaffold for tissue regeneration and regulator for nanogel release. PMID:19592087

  4. Ethylene biosynthesis by 1-aminocyclopropane-1-carboxylic acid oxidase: a DFT study.

    PubMed

    Bassan, Arianna; Borowski, Tomasz; Schofield, Christopher J; Siegbahn, Per E M

    2006-11-24

    The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.

  5. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging.

    PubMed

    Li, Xiaojie; Qian, Yinfeng; Liu, Tao; Hu, Xianglong; Zhang, Guoying; You, Yezi; Liu, Shiyong

    2011-09-01

    We report on the fabrication of multifunctional polymeric unimolecular micelles as an integrated platform for cancer targeted drug delivery and magnetic resonance imaging (MRI) contrast enhancement under in vitro and in vivo conditions. Starting from a fractionated fourth-generation hyperbranched polyester (Boltorn H40), the ring-opening polymerization of ɛ-caprolactone (CL) from the periphery of H40 and subsequent terminal group esterification with 2-bromoisobutyryl bromide afforded star copolymer-based atom transfer radical polymerization (ATRP) macroinitiator, H40-PCL-Br. Well-defined multiarm star block copolymers, H40-PCL-b-P(OEGMA-co-AzPMA), were then synthesized by the ATRP of oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA) and 3-azidopropyl methacrylate (AzPMA). This was followed by the click reaction of H40-PCL-b-P(OEGMA-co-AzPMA) with alkynyl-functionalized cancer cell-targeting moieties, alkynyl-folate, and T(1)-type MRI contrast agents, alkynyl-DOTA-Gd (DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrakisacetic acid), affording H40-PCL-b-P(OEGMA-Gd-FA). In aqueous solution, the amphiphilic multiarm star block copolymer exists as structurally stable unimolecular micelles possessing a hyperbranched polyester core, a hydrophobic PCL inner layer, and a hydrophilic P(OEGMA-Gd-FA) outer corona. H40-PCL-b-P(OEGMA-Gd-FA) unimolecular micelles are capable of encapsulating paclitaxel, a well-known hydrophobic anticancer drug, with a loading content of 6.67 w/w% and exhibiting controlled release of up to 80% loaded drug over a time period of ∼120 h. In vitro MRI experiments demonstrated considerably enhanced T(1) relaxivity (18.14 s(-1) mM(-1)) for unimolecular micelles compared to 3.12 s(-1) mM(-1) for that of the small molecule counterpart, alkynyl-DOTA-Gd. Further experiments of in vivo MR imaging in rats revealed good accumulation of unimolecular micelles within rat liver and kidney, prominent positive contrast enhancement, and relatively long duration of blood circulation. The reported unimolecular micelles-based structurally stable nanocarriers synergistically integrated with cancer targeted drug delivery and controlled release and MR imaging functions augur well for their potential applications as theranostic systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Engineering a horseradish peroxidase C stable to radical attacks by mutating multiple radical coupling sites.

    PubMed

    Kim, Su Jin; Joo, Jeong Chan; Song, Bong Keun; Yoo, Young Je; Kim, Yong Hwan

    2015-04-01

    Peroxidases have great potential as industrial biocatalysts. In particular, the oxidative polymerization of phenolic compounds catalyzed by peroxidases has been extensively examined because of the advantage of this method over other conventional chemical methods. However, the industrial application of peroxidases is often limited because of their rapid inactivation by phenoxyl radicals during oxidative polymerization. In this work, we report a novel protein engineering approach to improve the radical stability of horseradish peroxidase isozyme C (HRPC). Phenylalanine residues that are vulnerable to modification by the phenoxyl radicals were identified using mass spectrometry analysis. UV-Vis and CD spectra showed that radical coupling did not change the secondary structure or the active site of HRPC. Four phenylalanine (Phe) residues (F68, F142, F143, and F179) were each mutated to alanine residues to generate single mutants to examine the role of these sites in radical coupling. Despite marginal improvement of radical stability, each single mutant still exhibited rapid radical inactivation. To further reduce inactivation by radical coupling, the four substitution mutations were combined in F68A/F142A/F143A/F179A. This mutant demonstrated dramatic enhancement of radical stability by retaining 41% of its initial activity compared to the wild-type, which was completely inactivated. Structure and sequence alignment revealed that radical-vulnerable Phe residues of HPRC are conserved in homologous peroxidases, which showed the same rapid inactivation tendency as HRPC. Based on our site-directed mutagenesis and biochemical characterization, we have shown that engineering radical-vulnerable residues to eliminate multiple radical coupling can be a good strategy to improve the stability of peroxidases against radical attack. © 2014 Wiley Periodicals, Inc.

  7. Camptothecin prodrug nanomicelle based on a boronate ester-linked diblock copolymer as the carrier of doxorubicin with enhanced cellular uptake.

    PubMed

    Gao, Ya; Xiao, Yi; Liu, Shiyuan; Yu, Jiahui

    2018-02-01

    A novel pH-sensitive polymeric prodrug of camptothecin (CPT) by polymerizing γ-camptothecin-glutamate N-carboxyanhydride (Glu (CPT)-NCA) on boronate ester-linked poly (ethyleneglycol) (PEG) directly via the amine-initiated ring open polymerization (ROP) has been developed. The resulting amphiphilic prodrug (mPEG-BC-PGluCPT) could self-assemble into nanoparticles and encapsulate doxorubicin (Dox) simultaneously in aqueous solution for dual-drug delivery. The formation of polymeric prodrug micelles (mPEG-BC@PGluCPT) was confirmed by the measurements of critical aggregation concentration (CAC), particle size, and morphology observations. The mPEG-BC@PGluCPT micelles were colloidally stable in solutions for two weeks. Polymeric prodrug micelles mPEG-BC@PGluCPT and Dox-loaded micelles mPEG-BC@PGluCPT⋅Dox showed sustained drug release profiles over 48 h. As expected, drug release was accelerated by the decreasement of pH value from 7.4 to 6.0, which demonstrated pH-dependent manner of drug release. Additionally, it was found that cellular uptake of mPEG-BC@PGluCPT⋅Dox micelles on HepG2 cells was higher than that on HL-7702 cells, especially in culture medium at pH 6.0. The enhanced cellular uptake of mPEG-BC@PGluCPT⋅Dox micelles under acidic condition on HepG2 cells resulted in the higher cytotoxicity of mPEG-BC@PGluCPT⋅Dox micelles at acidic pH than that at pH 7.4.

  8. Synthesis and Characterization of Stimuli-Responsive Star-Like Polypept(o)ides: Introducing Biodegradable PeptoStars.

    PubMed

    Holm, Regina; Weber, Benjamin; Heller, Philipp; Klinker, Kristina; Westmeier, Dana; Docter, Dominic; Stauber, Roland H; Barz, Matthias

    2017-06-01

    Star-like polymers are one of the smallest systems in the class of core crosslinked polymeric nanoparticles. This article reports on a versatile, straightforward synthesis of three-arm star-like polypept(o)ide (polysarcosine-block-polylysine) polymers, which are designed to be either stable or degradable at elevated levels of glutathione. Polypept(o)ides are a recently introduced class of polymers combining the stealth-like properties of the polypeptoid polysarcosine with the functionality of polypeptides, thus enabling the synthesis of materials completely based on endogenous amino acids. The star-like homo and block copolymers are synthesized by living nucleophilic ring opening polymerization of the corresponding N-carboxyanhydrides (NCAs) yielding polymeric stars with precise control over the degree of polymerization (X n = 25, 50, 100), Poisson-like molecular weight distributions, and low dispersities (Đ = 1.06-1.15). Star-like polypept(o)ides display a hydrodynamic radius of 5 nm (μ 2 < 0.05) as determined by dynamic light scattering (DLS). While star-like polysarcosines and polypept(o)ides based on disulfide containing initiators are stable in solution, degradation occurs at 100 × 10 -3 m glutathione concentration. The disulfide cleavage yields the respective polymeric arms, which possess Poisson-like molecular weight distributions and low dispersities (Đ = 1.05-1.12). Initial cellular uptake and toxicity studies reveal that PeptoStars are well tolerated by HeLa, HEK 293, and DC 2.4 cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis of isotactic-heterotactic stereoblock (hard-soft) poly(lactide) with tacticity control through immortal coordination polymerization.

    PubMed

    Zhao, Wei; Wang, Yang; Liu, Xinli; Chen, Xuesi; Cui, Dongmei

    2012-10-01

    A one-pot method for the preparation of a new family of PLA materials is reported that combines heterotactic (soft) and isotactic stereoblocks (hard). The ring-opening polymerization of rac-lactide with a salan-rare-earth-metal-alkyl complex in the presence of excess triethanolamine was performed in an immortal mode to give three-armed heterotactic poly(lactide) (soft) with excellent end-hydroxy fidelity. The in situ addition of a salen-aluminum-alkyl precursor to the above polymerization system under any monomer-conversion conditions activated the "dormant" hydroxy-ended PLA chains to propagate through the incorporation of the remaining rac-lactide monomer, but with isospecific selectivity (hard). The resultant PLA had a three-armed architecture with controlled molecular weight and extremely narrow molecular-weight distribution (PDI<1.08). More strikingly, each side-arm simultaneously possessed highly heterotactic (soft) and highly isotactic (hard) segments and the ratio of these two stereoregular sequences could be swiftly adjusted by tuning the addition time of the salen-aluminum-alkyl precursor to the polymerization system. Therefore, star-shaped hard-soft stereoblock poly(lactide)s with various P(m) values and crystallinity were achieved in a single reactor for the first time. This strategy should be applicable to the synthesis of a series of new types of stereoblock polyesters by using an immortal-polymerization process and a proper choice of specific, selective metal-based catalysts. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Rise and Fall: Poly(phenyl vinyl ketone) Photopolymerization and Photodegradation under Visible and UV Radiation.

    PubMed

    Reeves, Jennifer A; Allegrezza, Michael L; Konkolewicz, Dominik

    2017-07-01

    Vinyl ketone polymers, including phenyl vinyl ketone (PVK), are an important class of polymers due to their ability to degrade upon irradiation with ultraviolet light which makes them useful for a variety of applications. However, traditional radical methods for synthesizing PVK polymers give rise to poor control or are unable to produce block copolymers. This work uses reversible addition-fragmentation chain transfer polymerization (RAFT) and photochemistry to polymerize PVK. When visible blue radiation of 440 ± 10 nm is used as the light source for the photopolymerization, rapid polymerization and well-defined polymers are created. This RAFT method uses PVK as both monomer and radical initiator, exciting the PVK mono-mer by 440 ± 10 nm irradiation to avoid the use of an additional radical initiator. Once the poly-mer is synthesized, it is stable against degradation by blue light (440 ± 10 nm), but upon exposure to ultraviolet (UV) radiation (310 ± 20 nm) significant decrease in molecular weight is observed. The degradation is observed for all poly(PVK) materials synthesized. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Poly(meth)acrylates obtained by cascade reaction.

    PubMed

    Popescu, Dragos; Keul, Helmut; Moeller, Martin

    2011-04-04

    Preparation, purification, and stabilization of functional (meth)acrylates with a high dipole moment are complex, laborious, and expensive processes. In order to avoid purification and stabilization of the highly reactive functional monomers, a concept of cascade reactions was developed comprising enzymatic monomer synthesis and radical polymerization. Transacylation of methyl acrylate (MA) and methyl methacrylate (MMA) with different functional alcohols, diols, and triols (1,2,6-hexanetriol and glycerol) in the presence of Novozyme 435 led to functional (meth)acrylates. After the removal of the enzyme by means of filtration, removal of excess (meth)acrylate and/or addition of a new monomer, e.g., 2-hydroxyethyl (meth)acrylate the (co)polymerization via free radical (FRP) or nitroxide mediated radical polymerization (NMP) resulted in poly[(meth)acrylate]s with predefined functionalities. Hydrophilic, hydrophobic as well as ionic repeating units were assembled within the copolymer. The transacylation of MA and MMA with diols and triols carried out under mild conditions is an easy and rapid process and is suitable for the preparation of sensitive monomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optically active helical vinylterphenyl polymers: chiral teleinduction in radical polymerization and tunable stereomutation.

    PubMed

    Wang, Rong; Zhang, Jie; Wan, Xinhua

    2015-04-01

    Helical vinyl aromatic polymers are emerging as interesting chiral materials due to their dynamic tailorability, synthetic simplicity, and outstanding chemical and physical stabilities. This Personal Account discusses long-range chirality transfer in the radical polymerization of vinylterphenyl monomers and tunable stereomutation of the resultant polymers. It begins with a general introduction to the design, synthesis, and characterization of helical poly{(+)-2,5-bis[4'-((S)-2-methylbutyloxy)phenyl]styrene}, the first one of this series of polymers. Then, long-range chirality transfer during radical polymerization of terphenyl-based vinyl monomers is explained. After that, the chiroptical property control of the resultant polymers by means of the transition from kinetically controlled conformation to thermodynamically controlled conformation and external stimulus is described. This Personal Account concludes by discussing the advantages and disadvantages of the strategy of using vinylterphenyls to obtain optically active helical polymers and providing a short outlook, especially emphasizing the importance of tacticity on the chiroptical properties of polymers. Copyright © 2015 The Chemical Society of Japan and Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. [Fundamentals of plasma chemistry and its application to drug engineering].

    PubMed

    Kuzuya, M

    1996-04-01

    In this review, our novel research works in both low temperature plasma chemistry and solid state plasma chemistry were described. As for low temperature plasma, the ESR study on plasma-induced radicals of several selected conventional polymers was shown including the detailed analyses of the radical structure and the mechanism by which the radicals were formed on typical degradable methacrylic polymers and cross-linkable polystyrene. One of the pharmaceutical applications of the plasma processing for drug delivery system (DDS) was also described, which includes the preparations of double-compressed tablet consisting of drugs as a core material and various types of polymers as a wall material followed by plasma-irradiation on such a tablet. As for solid state plasma, the detailed reaction mechanism of solid state mechanochemical polymerization was shown including the solid state single electron transfer and the special feature of the resulting polymers. The structural criteria for polymerizable monomer derived from the quantum chemical considerations were also established. Based on the above findings, we synthesized various polymeric prodrugs by mechanochemical polymerization and studied the nature of hydrolyses (drug release).

  14. Adhesion strength of norbornene-based self-healing agents to an amine-cured epoxy

    NASA Astrophysics Data System (ADS)

    Huang, Guang Chun; Lee, Jong Keun; Kessler, Michael R.; Yoon, Sungho

    2009-07-01

    Self-healing is triggered by crack propagation through embedded microcapsules in an epoxy matrix, which then release the liquid healing agent into the crack plane. Subsequent exposure of the healing agent to the chemical catalyst initiates ring-opening metathesis polymerization (ROMP) and bonding of the crack faces. In order to improve self-healing functionality, it is necessary to enhance adhesion of polymerized healing agent within the crack to the matrix resin. In this study, shear bond strength between different norbornene-based healing agents and an amine-cured epoxy resin was evaluated using the single lap shear test method (ASTM D3163, modified). The healing agents tested include endodicyclopentadiene (endo-DCPD), 5-ethylidene-2-norbornene (ENB) and DCPD/ENB blends. 5-Norbornene-2-methanol (NBM) was used as an adhesion promoter, containing hydroxyl groups to form hydrogen bonds with the amine-cured epoxy. A custom synthesized norbornene-based crosslinking agent was also added to improve adhesion for ENB by increasing the crosslinking density of the adhesive after ROMP. The healing agents were polymerized with varying loadings of the 1st generation Grubbs' catalyst at different reaction times and temperatures.

  15. Synthesis and self-assembly of four-armed star copolymer based on poly(ethylene brassylate) hydrophobic block as potential drug carries

    NASA Astrophysics Data System (ADS)

    Chen, Jiucun; Li, Junzhi; Liu, Jianhua; Weng, Bo; Xu, Liqun

    2016-05-01

    A novel well-defined four-armed star poly(ethylene brassylate)- b-poly(poly(ethylene glycol)methyl ether methacrylate) (s-PEB- b-P(PEGMA)) was synthesized and self-assembled via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization (RAFT) in this work. It proceeded firstly with the synthesis of hydrophobic four-armed star homopolymer of ethylene brassylate (EB) via ROP with organic catalyst, followed by the esterification reaction of s-PEB with chain transfer agent. Afterward, RAFT polymerization of PEGMA monomer was initialed using PEB-based macro-RAFT agent, resulting in the target amphiphilic four-armed star copolymer. The obtained s-PEB- b-P(PEGMA) can assemble into micelles with PEB segments as core and P(PEGMA) segments as shell in aqueous solution. The self-assembly behavior was studied by dynamic light scattering and transmission electron microscope. The micelles of s-PEB- b-P(PEGMA) exhibited higher loading capacity of the anticancer drug doxorubicin (DOX). The investigation of DOX release from the micelles demonstrated that the release rate of the hydrophobic drug could be effectively controlled.

  16. Polymeric Coatings for Combating Biocorrosion

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  17. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization

    NASA Astrophysics Data System (ADS)

    Niu, Jia; Lunn, David J.; Pusuluri, Anusha; Yoo, Justin I.; O'Malley, Michelle A.; Mitragotri, Samir; Soh, H. Tom; Hawker, Craig J.

    2017-06-01

    The capability to graft synthetic polymers onto the surfaces of live cells offers the potential to manipulate and control their phenotype and underlying cellular processes. Conventional grafting-to strategies for conjugating preformed polymers to cell surfaces are limited by low polymer grafting efficiency. Here we report an alternative grafting-from strategy for directly engineering the surfaces of live yeast and mammalian cells through cell surface-initiated controlled radical polymerization. By developing cytocompatible PET-RAFT (photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization), synthetic polymers with narrow polydispersity (Mw/Mn < 1.3) could be obtained at room temperature in 5 minutes. This polymerization strategy enables chain growth to be initiated directly from chain-transfer agents anchored on the surface of live cells using either covalent attachment or non-covalent insertion, while maintaining high cell viability. Compared with conventional grafting-to approaches, these methods significantly improve the efficiency of grafting polymer chains and enable the active manipulation of cellular phenotypes.

  18. FROM ATOM TRANSFER RADICAL ADDITION TO ATOM TRANSFER RADICAL POLYMERIZATION. (R829580)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. Efficient Homodifunctional Bimolecular Ring-Closure Method for Cyclic Polymers by Combining RAFT and Self-Accelerating Click Reaction.

    PubMed

    Qu, Lin; Sun, Peng; Wu, Ying; Zhang, Ke; Liu, Zhengping

    2017-08-01

    An efficient metal-free homodifunctional bimolecular ring-closure method is developed for the formation of cyclic polymers by combining reversible addition-fragmentation chain transfer (RAFT) polymerization and self-accelerating click reaction. In this approach, α,ω-homodifunctional linear polymers with azide terminals are prepared by RAFT polymerization and postmodification of polymer chain end groups. By virtue of sym-dibenzo-1,5-cyclooctadiene-3,7-diyne (DBA) as small linkers, well-defined cyclic polymers are then prepared using the self-accelerating double strain-promoted azide-alkyne click (DSPAAC) reaction to ring-close the azide end-functionalized homodifunctional linear polymer precursors. Due to the self-accelerating property of DSPAAC ring-closing reaction, this novel method eliminates the requirement of equimolar amounts of telechelic polymers and small linkers in traditional bimolecular ring-closure methods. It facilitates this method to efficiently and conveniently produce varied pure cyclic polymers by employing an excess molar amount of DBA small linkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Oxidation of Oil Sands Process-Affected Water by Potassium Ferrate(VI).

    PubMed

    Wang, Chengjin; Klamerth, Nikolaus; Huang, Rongfu; Elnakar, Haitham; Gamal El-Din, Mohamed

    2016-04-19

    This paper investigates the oxidation of oil sands process-affected water (OSPW) by potassium ferrate(VI). Due to the selectivity of ferrate(VI) oxidation, two-ring and three-ring fluorescing aromatics were preferentially removed at doses <100 mg/L Fe(VI), and one-ring aromatics were removed only at doses ≥100 mg/L Fe(VI). Ferrate(VI) oxidation achieved 64.0% and 78.4% removal of naphthenic acids (NAs) at the dose of 200 mg/L and 400 mg/L Fe(VI) respectively, and NAs with high carbon number and ring number were removed preferentially. (1)H nuclear magnetic resonance ((1)H NMR) spectra indicated that the oxidation of fluorescing aromatics resulted in the opening of some aromatic rings. Electron paramagnetic resonance (EPR) analysis detected signals of organic radical intermediates, indicating that one-electron transfer is one of the probable mechanisms in the oxidation of NAs. The inhibition effect of OSPW on Vibrio fischeri and the toxicity effect on goldfish primary kidney macrophages (PKMs) were both reduced after ferrate(VI) oxidation. The fluorescing aromatics in OSPW were proposed to be an important contributor to this acute toxicity. Degradation of model compounds with ferrate(VI) was also investigated and the results confirmed our findings in OSPW study.

  1. Synthesis and characterization of L-lactide and polylactic acid (PLA) from L-lactic acid for biomedical applications

    NASA Astrophysics Data System (ADS)

    Rahmayetty, Sukirno, Prasetya, Bambang; Gozan, Misri

    2017-02-01

    Lactide is the monomer for the polymer polylactic acid (PLA) from lactic acid through polycondensation and depolymerization process. The properties of PLA strongly depend on the quality of the lactide monomer from which it is synthesized. Optical purity of lactide produced in depolymerization process confirmed to be L-lactide. The highest yield of crude lactide was 38.5% at temperature 210 °C with average molecular weight (Mn) of oligomer was 2389. Ring opening polymerization of lactide using Candida rugosa lipase as biocatalyst to PLLA synthesis has been achieved to generate useful biomedical materials free from heavy metal.

  2. Synthesis and Side Chain Liquid Crystal Polymers by Living Ring Opening Metathesis Polymerization. 5. Influence of Mesogenic Group and Interconnecting Group on the Thermotropic Behavior of the Resulting Polymers

    DTIC Science & Technology

    1992-07-22

    Scheme I. The first nucleophilic displacement of halide of an n-haloalkan-l-ol with 4-cyano-4’-hydroxybiphenyl employed potassium carbonate in...21 𔃼 polysiloxanes, 23.24 and polyacrylates . 2- All these polymers exhibit an odd-even effect. If one considers the total number of atoms between the...0.019 mol) and 4’-methoxy-4-hydroxybiphenyl (4.0g, 0.020 tool) were heated at 100°C in 40 mL of dimethylformamide in the presence of potassium carbonate

  3. Enzymatic Continuous Flow Synthesis of Thiol-Terminated Poly(δ-Valerolactone) and Block Copolymers.

    PubMed

    Zhu, Ning; Huang, Weijun; Hu, Xin; Liu, Yihuan; Fang, Zheng; Guo, Kai

    2018-04-01

    Thiol-terminated poly(δ-valerolactone) is directly synthesized via enzymatic 6-mercapto-1-hexanol initiated ring-opening polymerization in both batch and microreactor. By using Candida antartica Lipase B immobilized tubular reactor, narrowly dispersed poly(δ-valerolactone) with higher thiol fidelity is more efficiently prepared in contrast to the batch reactor. Moreover, the integrated enzyme packed tubular reactor system is established to perform the chain extension experiments. Thiol-terminated poly(δ-valerolactone)-block-poly(ε-caprolactone) and poly(ε-caprolactone)-block-poly(δ-valerolactone) are easily prepared by modulating the monomer introduction sequence. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Synthetic Mimic of Antimicrobial Peptide with Nonmembrane-Disrupting Antibacterial Properties

    PubMed Central

    2008-01-01

    Polyguanidinium oxanorbornene (PGON) was synthesized from norbornene monomers via ring-opening metathesis polymerization. This polymer was observed to be strongly antibacterial against Gram-negative and Gram-positive bacteria as well as nonhemolytic against human red blood cells. Time-kill studies indicated that this polymer is lethal and not just bacteriostatic. In sharp contrast to previously reported SMAMPs (synthetic mimics of antimicrobial peptides), PGON did not disrupt membranes in vesicle-dye leakage assays and microscopy experiments. The unique biological properties of PGON, in same ways similar to cell-penetrating peptides, strongly encourage the examination of other novel guanidino containing macromolecules as powerful and selective antimicrobial agents. PMID:18850741

  5. Free-Radical Polymerization Using the Rotating-Sector Method.

    ERIC Educational Resources Information Center

    Moss, Stephen J.

    1982-01-01

    Discusses principles of a particular approach in teaching elementary kinetics of polymerization. Although the treatment discussed is more difficult for students to grasp, problems may be reduced using a computer program. The program, written in Applesoft Basic, is available from the author together with sample output. (JN)

  6. Role of Kekulé and Non-Kekulé Structures in the Radical Character of Alternant Polycyclic Aromatic Hydrocarbons: A TAO-DFT Study

    PubMed Central

    Yeh, Chia-Nan; Chai, Jeng-Da

    2016-01-01

    We investigate the role of Kekulé and non-Kekulé structures in the radical character of alternant polycyclic aromatic hydrocarbons (PAHs) using thermally-assisted-occupation density functional theory (TAO-DFT), an efficient electronic structure method for the study of large ground-state systems with strong static correlation effects. Our results reveal that the studies of Kekulé and non-Kekulé structures qualitatively describe the radical character of alternant PAHs, which could be useful when electronic structure calculations are infeasible due to the expensive computational cost. In addition, our results support previous findings on the increase in radical character with increasing system size. For alternant PAHs with the same number of aromatic rings, the geometrical arrangements of aromatic rings are responsible for their radical character. PMID:27457289

  7. Atomistic Model for the Polyamide Formation from β-Lactam Catalyzed by Candida Antarctica Lipase B

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baum, Iris; Elsasser, Brigitta M.; Schwab, Leendert

    2011-04-01

    Candida antarctica lipase B (CALB) is an established biocatalyst for a variety of transesterification, amidation, and polymerization reactions. In contrast to polyesters, polyamides are not yet generally accessible via enzymatic polymerization. In this regard, an enzyme-catalyzed ring-opening polymerization of {beta}-lactam (2-azetidinone) using CALB is the first example of an enzymatic polyamide formation yielding unbranched poly({beta}-alanine), nylon 3. The performance of this polymerization, however, is poor, considering the maximum chain length of 18 monomer units with an average length of 8, and the molecular basis of the reaction so far is not understood. We have employed molecular modeling techniques using dockingmore » tools, molecular dynamics, and QM/MM procedures to gain insight into the mechanistic details of the various reaction steps involved. As a result, we propose a catalytic cycle for the oligomerization of {beta}-lactam that rationalizes the activation of the monomer, the chain elongation by additional {beta}-lactam molecules, and the termination of the polymer chain. In addition, the processes leading to a premature chain termination are studied. Particularly, the QM/MM calculation enables an atomistic description of all eight steps involved in the catalytic cycle, which features an in situ-generated {beta}-alanine as the elongating monomer and which is compatible with the experimental findings.« less

  8. Polymeric micellar pH-sensitive drug delivery system for doxorubicin.

    PubMed

    Hrubý, Martin; Konák, Cestmír; Ulbrich, Karel

    2005-03-02

    A novel polymeric micellar pH-sensitive system for delivery of doxorubicin (DOX) is described. Polymeric micelles were prepared by self-assembly of amphiphilic diblock copolymers in aqueous solutions. The copolymers consist of a biocompatible hydrophilic poly(ethylene oxide) (PEO) block and a hydrophobic block containing covalently bound anthracycline antibiotic DOX. The starting block copolymers poly(ethylene oxide)-block-poly(allyl glycidyl ether) (PEO-PAGE) with a very narrow molecular weight distribution (Mw/Mn ca. 1.05) were prepared by anionic ring opening polymerization using sodium salt of poly(ethylene oxide) monomethyl ether as macroinitiator and allyl glycidyl ether as functional monomer. The copolymers were covalently modified via reactive double bonds by the addition of methyl sulfanylacetate. The resulting ester subsequently reacted with hydrazine hydrate yielding polymer hydrazide. The hydrazide was coupled with DOX yielding pH-sensitive hydrazone bonds between the drug and carrier. The resulting conjugate containing ca. 3 wt.% DOX forms micelles with Rh(a)=104 nm in phosphate-buffered saline. After incubation in buffers at 37 degrees C DOX was released faster at pH 5.0 (close to pH in endosomes; 43% DOX released within 24 h) than at pH 7.4 (pH of blood plasma; 16% DOX released within 24 h). Cleavage of hydrazone bonds between DOX and carrier continues even after plateau in the DOX release from micelles incubated in aqueous solutions is reached.

  9. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato

    2001-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  10. Bifunctional phenyl monophosphonic/sulfonic acid ion exchange resin and process for using the same

    DOEpatents

    Alexandratos, Spiro; Shelley, Christopher A.; Horwitz, E. Philip; Chiarizia, Renato; Gula, Michael J.; Xue, Sui; Harvey, James T.

    2002-01-01

    A cross-linked water-insoluble ion exchange resin comprised of polymerized monomers having a phenyl ring is disclosed. A contemplated resin contains (i) polymerized phenyl ring-containing monomers having a phosphonic acid ligand linked to the phenyl ring, (ii) about 2 to about 5 millimoles per gram (mmol/g) of phosphorus as phosphonic acid ligands, and (iii) a sufficient amount of a sulfonic acid ligand such that the ratio of mmol/g of phosphonic acid to mmol/g sulfonic acid is up to 3:1. A process for removing polyvalent metal cations from aqueous solution, and a process for removing iron(III) cations from acidic copper(II) cation-containing solutions that utilize the contemplated resin or other resins are disclosed.

  11. Morphological control of conductive polymers utilized electrolysis polymerization technique: trial of fabricating biocircuit.

    PubMed

    Onoda, Mitsuyoshi

    2014-10-01

    Conductive polymers are a strong contender for making electronic circuits. The growth pattern in conductive polymer synthesis by the electrolysis polymerization method was examined. The growth pattern is deeply related to the coupling reaction of the radical cation and the deprotonation reaction following it and changes suddenly depending on the kind and concentration of the supporting electrolyte and the solvent used. That is, when the electrophilic substitution coupling reaction becomes predominant, the three-dimensional growth form is observed, and when the radical coupling reaction becomes predominant, the two-dimensional growth morphology is observed. In addition, the growth pattern can be comparatively easily controlled by changing the value of the polymerization constant current, and it is considered that the indicator and development for biocircuit research with neuron-type devices made of conjugated polymers was obtained.

  12. RAFT polymerization and some of its applications.

    PubMed

    Moad, Graeme; Rizzardo, Ezio; Thang, San H

    2013-08-01

    Reversible addition-fragmentation chain transfer (RAFT) is one of the most robust and versatile methods for controlling radical polymerization. With appropriate selection of the RAFT agent for the monomers and reaction conditions, it is applicable to the majority of monomers subject to radical polymerization. The process can be used in the synthesis of well-defined homo-, gradient, diblock, triblock, and star polymers and more complex architectures, which include microgels and polymer brushes. In this Focus Review we describe how the development of RAFT and RAFT application has been facilitated by the adoption of continuous flow techniques using tubular reactors and through the use of high-throughput methodology. Applications described include the use of RAFT in the preparation of polymers for optoelectronics, block copolymer therapeutics, and star polymer rheology control agents. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. In-situ polymerized cellulose nanocrystals (CNC)-poly(l-lactide) (PLLA) nanomaterials and applications in nanocomposite processing.

    PubMed

    Miao, Chuanwei; Hamad, Wadood Y

    2016-11-20

    CNC-PLLA nanomaterials were synthesized via in-situ ring-opening polymerization of l-lactide in the presence of CNC, resulting in hydrophobic, homogeneous mixture of PLLA-grafted-CNC and free PLLA homopolymer. The free PLLA serves two useful functions: as barrier to further prevent PLLA-g-CNC from forming aggregates, and in creating improved interfacial properties when these nanomaterials are blended with other polymers, hence enhancing their performance. CNC-PLLA nanomaterials can be used for medical or engineering applications as-they-are or by compounding with suitable biopolymers using versatile techniques, such as solution casting, co-extrusion or injection molding, to form hybrid nanocomposites of tunable mechanical properties. When compounded with commercial-grade PLA, the resulting CNC-PLA nanocomposites appear transparent and have tailored (dynamic and static) mechanical and barrier properties, approaching those of poly(ethylene terephthalate), PET. The effect of reaction conditions on the properties of CNC-PLLA nanomaterials have been carefully studied and detailed throughout the paper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Poly(cyclohexylethylene)- block -Poly(lactide) Oligomers for Ultrasmall Nanopatterning Using Atomic Layer Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Li; Oquendo, Luis E.; Schulze, Morgan W.

    2016-03-08

    Poly(cyclohexylethylene)-block-poly(lactide) (PCHE–PLA) block polymers were synthesized through a combination of anionic polymerization, heterogeneous catalytic hydrogenation and controlled ring-opening polymerization. Ordered thin films of PCHE–PLA with ultrasmall hexagonally packed cylinders oriented perpendicularly to the substrate surface were prepared by spin-coating and subsequent solvent vapor annealing for use in two distinct templating strategies. In one approach, selective hydrolytic degradation of the PLA domains generated nanoporous PCHE templates with an average pore diameter of 5 ± 1 nm corroborated by atomic force microscopy and grazing incidence small-angle X-ray scattering. Alternatively, sequential infiltration synthesis (SIS) was employed to deposit Al2O3 selectively into the PLAmore » domains of PCHE–PLA thin films. A combination of argon ion milling and O2 reactive ion etching (RIE) enabled the replication of the Al2O3 nanoarray from the PCHE–PLA template on diverse substrates including silicon and gold with feature diameters less than 10 nm.« less

  15. Fabrication of selectively functionalized-graphene reinforced copper phthalocyanine nanocomposites with low dielectric loss and high dielectric constant

    NASA Astrophysics Data System (ADS)

    Wang, Zicheng; Wei, Renbo; Liu, Xiaobo

    2017-01-01

    A novel kind of selectively functionalized-graphene reinforced copper phthalocyanine (RGO-O-CuPc) nanocomposites was successfully fabricated through a facile and effective three-step method, involving preferential surficial modification and reduction of graphene oxide (GO) sheets, and followed by incorporating with CuPc via in situ polymerization. The results of SEM, AFM, XPS, FTIR, XRD and UV-vis confirmed that GO was effectively surficial functionalized by a ring-open covalent reaction between amino in 3-aminophenoxyphthalonitrile (3-APN) and epoxy groups on the GO sheets, and partly reduced back to graphene under solvothermal conditions. And the RGO-O-CuPc was successfully fabricated by self-assembling of CuPc molecule on graphene sheets via in situ polymerization. As a consequence, the selective surface functionalization and solvothermal reduction of GO facilitated the improvement in the dielectric constant and AC conductivity, and the decrease in the dielectric loss of the graphene/CuPc nanocomposites.

  16. Impact of tuning CO 2-philicity in polydimethylsiloxane-based membranes for carbon dioxide separation

    DOE PAGES

    Hong, Tao; Chatterjee, Sabornie; Mahurin, Shannon M.; ...

    2017-02-22

    Amidoxime-functionalized polydimethylsiloxane (AO-PDMSPNB) membranes with various amidoxime compositions were synthesized via ring-opening metathesis polymerization followed by post-polymerization modification. Compared to other previously reported PDMS-based membranes, the amidoxime-functionalized membranes show enhanced CO 2 permeability and CO 2/N 2 selectivity. The overall gas separation performance (CO 2 permeability 6800 Barrer; CO 2/N 2 selectivity 19) of the highest performing membrane exceeds the Robeson upper bound line, and the excellent permeability of the copolymer itself provides great potential for real world applications where huge volumes of gases are separated. This study details how tuning the CO 2-philicity within rubbery polymer matrices influences gasmore » transport properties. Key parameters for tuning gas transport properties are discussed, and the experimental results show good consistency with theoretical calculations. Finally, this study provides a roadmap to enhancing gas separation performance in rubbery polymers by tuning gas solubility selectivity.« less

  17. Hemocompatibility improvement of poly(ethylene terephthalate) via self-polymerization of dopamine and covalent graft of zwitterions.

    PubMed

    Cai, Xianmei; Yuan, Jiang; Chen, Shuangchun; Li, Pengfei; Li, Li; Shen, Jian

    2014-03-01

    Poly (ethylene terephthalate) (PET) has been widely adopted as a scaffold biomaterial, but further hemocompatibility improvement is still needed for wide biomedical applications. Inspired by the composition of adhesive proteins in mussels, we propose to use self-polymerized dopamine to form a surface-adherent polydopamine layer onto PET sheet, followed by Michael addition with N,N-dimethylethylenediamine (DMDA) to build tertiary amine, and final zwitterions(sulfobetaine and carboxybetaine) construction through ring-opening reaction. Physicochemical properties of substrates were demonstrated by water contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The hemocompatibility was evaluated by platelet adhesion, hemolytic, and protein adsorption. The results showed that the zwitterions immobilized PET endowed with improved resistance to nonspecific protein adsorption and platelet adhesion as well as nonhemolytic. The zwitterions with desirable hemocompatibility can be readily tailored to catheter for various biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Bactericidal Specificity and Resistance Profile of Poly(Quaternary Ammonium) Polymers and Protein-Poly(Quaternary Ammonium) Conjugates.

    PubMed

    Ji, Weihang; Koepsel, Richard R; Murata, Hironobu; Zadan, Sawyer; Campbell, Alan S; Russell, Alan J

    2017-08-14

    Antibacterial polymers are potentially powerful biocides that can destroy bacteria on contact. Debate in the literature has surrounded the mechanism of action of polymeric biocides and the propensity for bacteria to develop resistance to them. There has been particular interest in whether surfaces with covalently coupled polymeric biocides have the same mechanism of action and resistance profile as similar soluble polymeric biocides. We designed and synthesized a series of poly(quaternary ammonium) polymers, with tailorable molecular structures and architectures, to engineer their antibacterial specificity and their ability to delay the development of bacterial resistance. These linear poly(quaternary ammonium) homopolymers and block copolymers, generated using atom transfer radical polymerization, had structure-dependent antibacterial specificity toward Gram positive and negative bacterial species. When single block copolymers contained two polymer segments of differing antibacterial specificity, the polymer combined the specificities of its two components. Nanoparticulate human serum albumin-poly(quaternary ammonium) conjugates of these same polymers, synthesized via "grafting from" atom transfer radical polymerization, were strongly biocidal and also exhibited a marked decrease in the rate of bacterial resistance development relative to linear polymers. These protein-biocide conjugates mimicked the behavior of surface-presented polycationic biocides rather than their nonproteinaceous counterparts.

  19. Surface PEGylation of mesoporous silica materials via surface-initiated chain transfer free radical polymerization: Characterization and controlled drug release.

    PubMed

    Huang, Long; Liu, Meiying; Mao, Liucheng; Huang, Qiang; Huang, Hongye; Wan, Qing; Tian, Jianwen; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-12-01

    As a new type of mesoporous silica materials with large pore diameter (pore size between 2 and 50nm) and high specific surface areas, SBA-15 has been widely explored for different applications especially in the biomedical fields. The surface modification of SBA-15 with functional polymers has demonstrated to be an effective way for improving its properties and performance. In this work, we reported the preparation of PEGylated SBA-15 polymer composites through surface-initiated chain transfer free radical polymerization for the first time. The thiol group was first introduced on SBA-15 via co-condensation with γ-mercaptopropyltrimethoxysilane (MPTS), that were utilized to initiate the chain transfer free radical polymerization using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and itaconic acid (IA) as the monomers. The successful modification of SBA-15 with poly(PEGMA-co-IA) copolymers was evidenced by a series of characterization techniques, including 1 H NMR, FT-IR, TGA and XPS. The final SBA-15-SH- poly(PEGMA-co-IA) composites display well water dispersity and high loading capability towards cisplatin (CDDP) owing to the introduction of hydrophilic PEGMA and carboxyl groups. Furthermore, the CDDP could be released from SBA-15-SH-poly(PEGMA-co-IA)-CDDP complexes in a pH dependent behavior, suggesting the potential controlled drug delivery of SBA-15-SH-poly(PEGMA-co-IA). More importantly, the strategy should be also useful for fabrication of many other functional materials for biomedical applications owing to the advantages of SBA-15 and well monomer adoptability of chain transfer free radical polymerization. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Observation of steric hindrance effect controlling crystal packing structures and physical properties in three new isomeric nitronyl nitroxide radicals

    NASA Astrophysics Data System (ADS)

    Zhao, Hai-Rong; Sun, Jia-Sen; Sui, Yun-Xia; Ren, Xiao-Ming; Yao, Bin-Qian; Shen, Lin-Jiang; Meng, Qing-Jin

    2009-07-01

    Three isomeric nitronyl nitroxide radical compounds, 2-[ n-( N-benzyl)pyridinium]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide bromide ( n = 2, 3 and 4 for 1, 2 and 3, respectively), have been synthesized and structurally characterized. The influence of steric hindrance on the molecular packing structures and physical properties has been observed. In the radical 1, such steric hindrance leads to a folding conformation of the imidazoline and benzene rings and the intramolecular C-H…π interaction between the methyl group and the benzene ring. There is no such effect in 2 and 3. In crystal of 2, there are the intermolecular C-H…π between methyl groups and benzene ring and intermolecular π…π stacking interaction between pyridine and benzene rings. Crystal of 2 with a chiral space group P2 12 12 1 shows the SHG response about 0.4 times as that of urea. In crystal of 3, there are three symmetry-independent radical molecules, which form an unusually six-membered supramolecular ring via intermolecular O…π interactions. For the solid sample of 3, the X-band EPR exhibits an axially symmetric signal and magnetic susceptibility data suggest intermolecular antiferromagnetic (AFM) coupling interactions and very weak intermolecular ferromagnetic (FM) coupling interactions which is more likely caused by magnetic anisotropy, while measurements of both 1 and 2 show isotropic X-band EPR signals and simple Currie-Weiss magnetic behavior.

  1. Current Status of Robot-Assisted Radical Cystectomy: What is the Real Benefit?

    PubMed

    Takenaka, Atsushi

    2015-09-01

    In recent years, robot-assisted radical cystectomy has received attention worldwide as a useful procedure that helps to overcome the limitations of open radical cystectomy. We compared the surgical technique, perioperative and oncological outcomes, and learning curve of robot-assisted radical cystectomy with those of open radical cystectomy. The indications for robot-assisted radical cystectomy are identical to those of open radical cystectomy. Relative contraindications are due to patient positioning in the Trendelenburg position for long periods. Urinary diversion is performed either extracorporeally with a small skin incision or intracorporeally with a totally robotic-assisted maneuver. Accordingly, robot-assisted radical cystectomy can be performed safely with an acceptable operative time, little blood loss, and low transfusion rates. The lymph node yield and positive surgical margin rate were not significantly different between robot-assisted radical cystectomy and open radical cystectomy. The survival rates after robot-assisted radical cystectomy are estimated to be similar to that after open radical cystectomy. However, the recurrence pattern is different between robot-assisted radical cystectomy and open radical cystectomy, i.e., extrapelvic lymph node recurrence and peritoneal carcinomatosis were more frequently found in patients who underwent robot-assisted radical cystectomy than in those who underwent open radical cystectomy. Further validation is necessary to prove the feasibility of oncological control. A steep learning curve is one of the benefits of the new technique. The experience of only 50 robot-assisted radical prostatectomies is a minimum requirement for performing feasible robot-assisted radical cystectomy, and surgeons who have performed only 30 surgeries can reach an acceptable level of quality for robot-assisted radical cystectomy.

  2. Incidence and location of positive surgical margin among open, laparoscopic and robot-assisted radical prostatectomy in prostate cancer patients: a single institutional analysis.

    PubMed

    Koizumi, Atsushi; Narita, Shintaro; Nara, Taketoshi; Takayama, Koichiro; Kanda, Sohei; Numakura, Kazuyuki; Tsuruta, Hiroshi; Maeno, Atsushi; Huang, Mingguo; Saito, Mitsuru; Inoue, Takamitsu; Tsuchiya, Norihiko; Satoh, Shigeru; Nanjo, Hiroshi; Habuchi, Tomonori

    2018-06-19

    To evaluate the positive surgical margin rates and locations in radical prostatectomy among three surgical approaches, including open radical prostatectomy, laparoscopic radical prostatectomy and robot-assisted radical prostatectomy. We retrospectively reviewed clinical outcomes at our institution of 450 patients who received radical prostatectomy. Multiple surgeons were involved in the three approaches, and a single pathologist conducted the histopathological diagnoses. Positive surgical margin rates and locations among the three approaches were statistically assessed, and the risk factors of positive surgical margin were analyzed. This study included 127, 136 and 187 patients in the open radical prostatectomy, laparoscopic radical prostatectomy and robot-assisted radical prostatectomy groups, respectively. The positive surgical margin rates were 27.6% (open radical prostatectomy), 18.4% (laparoscopic radical prostatectomy) and 13.4% (robot-assisted radical prostatectomy). In propensity score-matched analyses, the positive surgical margin rate in the robot-assisted radical prostatectomy was significantly lower than that in the open radical prostatectomy, whereas there was no significant difference in the positive surgical margin rates between robot-assisted radical prostatectomy and laparoscopic radical prostatectomy. In the multivariable analysis, PSA level at diagnosis and surgical approach (open radical prostatectomy vs robot-assisted radical prostatectomy) were independent risk factors for positive surgical margin. The apex was the most common location of positive surgical margin in the open radical prostatectomy and laparoscopic radical prostatectomy groups, whereas the bladder neck was the most common location in the robot-assisted radical prostatectomy group. The significant difference of positive surgical margin locations continued after the propensity score adjustment. Robot-assisted radical prostatectomy may potentially achieve the lowest positive surgical margin rate among three surgical approaches. The bladder neck was the most common location of positive surgical margin in robot-assisted radical prostatectomy and apex in open radical prostatectomy and laparoscopic radical prostatectomy. Although robot-assisted radical prostatectomy may contribute to the reduction of positive surgical margin, dissection of the bladder neck requires careful attention to avoid positive surgical margins.

  3. Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles.

    PubMed

    Tóth, Ildikó Y; Szekeres, Márta; Turcu, Rodica; Sáringer, Szilárd; Illés, Erzsébet; Nesztor, Dániel; Tombácz, Etelka

    2014-12-30

    Magnetite nanoparticles (MNPs) with biocompatible coatings are good candidates for MRI (magnetic resonance imaging) contrasting, magnetic hyperthermia treatments, and drug delivery systems. The spontaneous surface induced polymerization of dissolved organic matter on environmental mineral particles inspired us to prepare carboxylated core-shell MNPs by using a ubiquitous polyphenolic precursor. Through the adsorption and in situ surface polymerization of gallic acid (GA), a polygallate (PGA) coating is formed on the nanoparticles (PGA@MNP) with possible antioxidant capacity. The present work explores the mechanism of polymerization with the help of potentiometric acid-base titration, dynamic light scattering (for particle size and zeta potential determination), UV-vis (UV-visible light spectroscopy), FTIR-ATR (Fourier-transformed infrared spectroscopy by attenuated total reflection), and XPS (X-ray photoelectron spectroscopy) techniques. We observed the formation of ester and ether linkages between gallate monomers both in solution and in the adsorbed state. Higher polymers were formed in the course of several weeks both on the surface of nanoparticles and in the dispersion medium. The ratio of the absorbances of PGA supernatants at 400 and 600 nm (i.e., the E4/E6 ratio commonly used to characterize the degree of polymerization of humic materials) was determined to be 4.3, similar to that of humic acids. Combined XPS, dynamic light scattering, and FTIR-ATR results revealed that, prior to polymerization, the GA monomers became oxidized to poly(carboxylic acid)s due to ring opening while Fe(3+) ions reduced to Fe(2+). Our published results on the colloidal and chemical stability of PGA@MNPs are referenced thoroughly in the present work. Detailed studies on biocompatibility, antioxidant property, and biomedical applicability of the particles will be published.

  4. One-Pot Synthesis of Multifunctional Polymers by Light-Controlled Radical Polymerization and Enzymatic Catalysis with Candida antarctica Lipase B.

    PubMed

    Hrsic, Emin; Keul, Helmut; Möller, Martin

    2015-12-01

    The preparation of multifunctional polymers and block copolymers by a straightforward one-pot reaction process that combines enzymatic transacylation with light-controlled polymerization is described. Functional methacrylate monomers are synthesized by enzymatic transacylation and used in situ for light-controlled polymerization, leading to multifunctional methacrylate-based polymers with well-defined microstructure. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Electron spin resonance of gamma-irradiated poly/ethylene 2,6-naphthalene dicarboxylate/.

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Pezdirtz, G. F.

    1971-01-01

    The two types of radicals trapped in gamma-irradiated PEN 2,6 are identified by ESR as - O - CH - CH2 - O - (radical I) and a radical located on the naphthalene ring (radical II). The concentrations of the radicals in the gross polyer are 10 to 20% of I and 80 to 90% of II. Similar trapped radicals are established in beta-irradiated PET, a structurally related polymer.

  6. Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution

    DOE PAGES

    Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.; ...

    2017-07-21

    1,4-Dimethoxybenzene derivatives are materials of choice for use as catholytes in nonaqueous redox flow batteries, as they exhibit high open-circuit potentials and excellent electrochemical reversibility. However, chemical stability of these materials in their oxidized form needs to be improved. Disubstitution in the arene ring is used to suppress parasitic reactions of their radical cations, but this does not fully prevent ring-addition reactions. By incorporating bicyclic substitutions and ether chains into the dialkoxybenzenes, a novel catholyte molecule, 9,10-bis(2-methoxyethoxy)-1,2,3,4,5,6,7,8-octahydro-1,4:5,8-dimethanenoanthracene (BODMA), is obtained and exhibits greater solubility and superior chemical stability in the charged state. As a result, a hybrid flow cell containingmore » BODMA is operated for 150 charge–discharge cycles with minimal loss of capacity.« less

  7. Radical-Mediated Enzymatic Carbon Chain Fragmentation-Recombination

    PubMed Central

    Zhang, Qi; Li, Yuxue; Chen, Dandan; Yu, Yi; Duan, Lian; Shen, Ben; Liu, Wen

    2010-01-01

    The radical S-adenosylmethionine (S-AdoMet) superfamily contains thousands of proteins that catalyze highly diverse conversions, most of which are poorly understood due to a lack of information regarding chemical products and radical-dependent transformations. We here report that NosL, involved in forming the indole side ring of the thiopeptide nosiheptide (NOS), is a radical S-AdoMet 3-methyl-2-indolic acid (MIA) synthase. NosL catalyzed an unprecedented carbon chain reconstitution of L-Trp to give MIA, showing removal of the Cα-N unit and shift of the carboxylate to the indole ring. Dissection of the enzymatic process upon the identification of products and a putative glycyl intermediate uncovered a radical-mediated, unusual fragmentation-recombination reaction. This finding unveiled a key step in radical S-AdoMet enzyme-catalyzed structural rearrangements during complex biotransformations. Additionally, NosL tolerated fluorinated L-Trps as the substrates, allowing for production of a regiospecifically halogenated thiopeptide that has not been found in over 80 entity-containing, naturally occurring thiopeptide family. PMID:21240261

  8. Sulfonated poly(ether ether ketone)/poly(vinyl alcohol) sensitizing system for solution photogeneration of small Ag, Au, and Cu crystallites.

    PubMed

    Korchev, A S; Shulyak, T S; Slaten, B L; Gale, W F; Mills, G

    2005-04-28

    Illumination of air-free aqueous solutions containing sulfonated poly(ether ether ketone) and poly(vinyl alcohol) with 350 nm light results in benzophenone ketyl radicals of the polyketone. The polymer radicals form with a quantum yield 0.02 and decay with a second-order rate constant 6 orders of magnitude lower than that of typical alpha-hydroxy radicals. Evidence is presented that the polymeric benzophenone ketyl radicals reduce Ag+, Cu2+, and AuCl4- to metal particles of nanometer dimensions. Decreases in the reduction rates with increasing Ag(I), Cu(II), and Au(III) concentrations are explained using a kinetic model in which the metal ions quench the excited state of the polymeric benzophenone groups, which forms the macromolecular radicals. Quenching is fastest for Ag+, whereas Cu2+ and AuCl4- exhibit similar rate constants. Particle formation becomes more complex as the number of equivalents needed to reduce the metal ions increases; the Au(III) system is an extreme case where the radical reactions operate in parallel with secondary light-initiated and thermal reduction channels. For each metal ion, the polymer-initiated photoreactions produce crystallites possessing distinct properties, such as a very strong plasmon in the Ag case or the narrow size distribution exhibited by Au particles.

  9. Photogeneration of H2O2 in SPEEK/PVA aqueous polymer solutions.

    PubMed

    Little, Brian K; Lockhart, PaviElle; Slaten, B L; Mills, G

    2013-05-23

    Photolysis of air-saturated aqueous solutions containing sulphonated poly(ether etherketone) and poly(vinyl alcohol) results in the generation of hydrogen peroxide. Consumption of oxygen and H2O2 formation are initially concurrent processes with a quantum yield of peroxide generation of 0.02 in stirred or unstirred solutions within the range of 7 ≤ pH ≤ 9. The results are rationalized in terms of O2 reduction by photogenerated α-hydroxy radicals of the polymeric ketone in competition with radical-radical processes that consume the macromolecular reducing agents. Generation of H2O2 is controlled by the photochemical transformation that produces the polymer radicals, which is most efficient in neutral and slightly alkaline solutions. Quenching of the excited state of the polyketone by both H3O(+) and OH(-) affect the yields of the reducing macromolecular radicals and of H2O2. Deprotonation of the α-hydroxy polymeric radicals at pH > 9 accelerate their decay and contribute to suppressing the peroxide yields in basic solutions. Maxima in [H2O2] are observed when illuminations are performed with static systems, where O2 reduction is faster than diffusion of oxygen into the solutions. Under such conditions H2O2 can compete with O2 for the reducing radicals resulting in a consumption of the peroxide.

  10. Advanced Materials by Atom Transfer Radical Polymerization.

    PubMed

    Matyjaszewski, Krzysztof

    2018-06-01

    Atom transfer radical polymerization (ATRP) has been successfully employed for the preparation of various advanced materials with controlled architecture. New catalysts with strongly enhanced activity permit more environmentally benign ATRP procedures using ppm levels of catalyst. Precise control over polymer composition, topology, and incorporation of site specific functionality enables synthesis of well-defined gradient, block, comb copolymers, polymers with (hyper)branched structures including stars, densely grafted molecular brushes or networks, as well as inorganic-organic hybrid materials and bioconjugates. Examples of specific applications of functional materials include thermoplastic elastomers, nanostructured carbons, surfactants, dispersants, functionalized surfaces, and biorelated materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Organocatalyzed atom transfer radical polymerization driven by visible light.

    PubMed

    Theriot, Jordan C; Lim, Chern-Hooi; Yang, Haishen; Ryan, Matthew D; Musgrave, Charles B; Miyake, Garret M

    2016-05-27

    Atom transfer radical polymerization (ATRP) has become one of the most implemented methods for polymer synthesis, owing to impressive control over polymer composition and associated properties. However, contamination of the polymer by the metal catalyst remains a major limitation. Organic ATRP photoredox catalysts have been sought to address this difficult challenge but have not achieved the precision performance of metal catalysts. Here, we introduce diaryl dihydrophenazines, identified through computationally directed discovery, as a class of strongly reducing photoredox catalysts. These catalysts achieve high initiator efficiencies through activation by visible light to synthesize polymers with tunable molecular weights and low dispersities. Copyright © 2016, American Association for the Advancement of Science.

  12. Investigation of metal ligand affinities of atom transfer radical polymerization catalysts with a quadrupole ion trap.

    PubMed

    di Lena, Fabio; Matyjaszewski, Krzysztof

    2009-11-07

    An electrospray ionization mass spectrometer equipped with a quadrupole ion trap as the mass analyzer provided a powerful tool for the investigation of metal ligand affinities of catalysts for atom transfer radical polymerization. It allowed, in particular, (i) the identification, in a library of ligands, of the most stable, and thus active, copper catalysts; (ii) the assessment of the effects of the reaction medium on the relative stabilities of the catalyst complexes; and (iii) the evaluation of the influence of the nature of the ligand on both the complex halogenophilicity and the metal-ligand stabilities in the gas-phase.

  13. Photo-triggered solvent-free metamorphosis of polymeric materials.

    PubMed

    Honda, Satoshi; Toyota, Taro

    2017-09-11

    Liquefaction and solidification of materials are the most fundamental changes observed during thermal phase transitions, yet the design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion remains challenging. Here, we demonstrate that solvent-free repeatable molecular architectural transformation between liquid-star and nonliquid-network polymers that relies on cleavage and reformation of a covalent bond in hexaarylbiimidazole. Liquid four-armed star-shaped poly(n-butyl acrylate) and poly(dimethyl siloxane) with 2,4,5-triphenylimidazole end groups were first synthesized. Subsequent oxidation of the 2,4,5-triphenylimidazoles into 2,4,5-triphenylimidazoryl radicals and their coupling with these liquid star polymers to form hexaarylbiimidazoles afforded the corresponding nonliquid network polymers. The resulting nonliquid network polymers liquefied upon UV irradiation and produced liquid star-shaped polymers with 2,4,5-triphenylimidazoryl radical end groups that reverted to nonliquid network polymers again by recoupling of the generated 2,4,5-triphenylimidazoryl radicals immediately after terminating UV irradiation.The design of organic and polymeric soft materials showing isothermal reversible liquid-nonliquid conversion is challenging. Here, the authors show solvent-free repeatable molecular architectural transformation between liquid-star and non-liquid-network polymers by the cleavage and reformation of covalent bonds in the polymer chain.

  14. Blood clearance and biodistribution of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization.

    PubMed

    Ohno, Kohji; Akashi, Tatsuki; Tsujii, Yoshinobu; Yamamoto, Masaya; Tabata, Yasuhiko

    2012-03-12

    The physiological properties of polymer brush-afforded silica particles prepared by surface-initiated living radical polymerization were investigated in terms of the circulation lifetime in the blood and distribution in tissues. Hydrophilic polymers consisting mainly of poly(poly(ethylene glycol) methyl ether methacrylate) were grafted onto silica particles by surface-initiated atom transfer radical polymerization that was mediated by a copper complex to produce hairy hybrid particles. A series of hybrid particles was synthesized by varying the diameter of the silica core and the chain length of the polymer brush to examine the relationship between their physicochemical and physiological properties. The hybrid particles were injected intravenously into mice to investigate systematically their blood clearance and body distribution. It was revealed that the structural features of the hybrid particles significantly affected their in vivo pharmacokinetics. Some hybrid particles exhibited an excellently prolonged circulation lifetime in the blood with a half life of ∼20 h. When such hybrid particles were injected intravenously into a tumor-bearing mouse, they preferentially accumulated in tumor tissue. The tumor-targeted delivery was optically visualized using hybrid particles grafted with fluorescence-labeled polymer brushes.

  15. Software for Demonstration of Features of Chain Polymerization Processes

    ERIC Educational Resources Information Center

    Sosnowski, Stanislaw

    2013-01-01

    Free software for the demonstration of the features of homo- and copolymerization processes (free radical, controlled radical, and living) is described. The software is based on the Monte Carlo algorithms and offers insight into the kinetics, molecular weight distribution, and microstructure of the macromolecules formed in those processes. It also…

  16. Preparation of thermo-responsive polymer brushes on hydrophilic polymeric beads by surface-initiated atom transfer radical polymerization for a highly resolutive separation of peptides.

    PubMed

    Mizutani, Aya; Nagase, Kenichi; Kikuchi, Akihiko; Kanazawa, Hideko; Akiyama, Yoshikatsu; Kobayashi, Jun; Annaka, Masahiko; Okano, Teruo

    2010-09-17

    Poly(N-isopropylacrylamide-co-N-tert-butylacrylamide) [P(IPAAm-co-tBAAm)] brushes were prepared on poly(hydroxy methacrylate) (PHMA) [hydrolyzed poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)] beads having large pores by surface-initiated atom transfer radical polymerization (ATRP) and applied to the stationary phases of thermo-responsive chromatography. Optimized amount of copolymer brushes grafted PHMA beads were able to separate peptides and proteins with narrow peaks and a high resolution. The beads were found to have a specific surface area of 43.0 m(2)/g by nitrogen gas adsorption method. Copolymer brush of P(IPAAm-co-tBAAm) grafted PHMA beads improved the stationary phase of thermo-responsive chromatography for the all-aqueous separation of peptides and proteins. 2010 Elsevier B.V. All rights reserved.

  17. Nanoengineered analytical immobilized metal affinity chromatography stationary phase by atom transfer radical polymerization: Separation of synthetic prion peptides

    PubMed Central

    McCarthy, P.; Chattopadhyay, M.; Millhauser, G.L.; Tsarevsky, N.V.; Bombalski, L.; Matyjaszewski, K.; Shimmin, D.; Avdalovic, N.; Pohl, C.

    2010-01-01

    Atom transfer radical polymerization (ATRP) was employed to create isolated, metal-containing nanoparticles on the surface of non-porous polymeric beads with the goal of developing a new immobilized metal affnity chromatography (IMAC) stationary phase for separating prion peptides and proteins. Transmission electron microscopy was used to visualize nanoparticles on the substrate surface. Individual ferritin molecules were also visualized as ferritin–nanoparticle complexes. The column's resolving power was tested by synthesizing peptide analogs to the copper binding region of prion protein and injecting mixtures of these analogs onto the column. As expected, the column was capable of separating prion-related peptides differing in number of octapeptide repeat units (PHGGGWGQ), (PHGGGWGQ)2, and (PHGGGWGQ)4. Unexpectedly, the column could also resolve peptides containing the same number of repeats but differing only in the presence of a hydrophilic tail, Q → A substitution, or amide nitrogen methylation. PMID:17481564

  18. Hydrolyzable Poly[Poly(Ethylene Glycol) Methyl Ether Acrylate]-Colistin Prodrugs through Copper-Mediated Photoinduced Living Radical Polymerization.

    PubMed

    Zhu, Chongyu; Schneider, Elena K; Nikolaou, Vasiliki; Klein, Tobias; Li, Jian; Davis, Thomas P; Whittaker, Michael R; Wilson, Paul; Kempe, Kristian; Velkov, Tony; Haddleton, David M

    2017-07-19

    Through the recently developed copper-mediated photoinduced living radical polymerization (CP-LRP), a novel and well-defined polymeric prodrug of the antimicrobial lipopeptide colistin has been developed. A colistin initiator (Boc 5 -col-Br 2 ) was synthesized through the modification of colistin on both of its threonine residues using a cleavable initiator linker, 2-(2-bromo-2-methylpropanoyloxy) acetic acid (BMPAA), and used for the polymerization of acrylates via CP-LRP. Polymerization proceeds from both sites of the colistin initiator, and through the polymerization of poly(ethylene glycol) methyl ether acrylate (PEGA 480 ), three water-soluble polymer-colistin conjugates (col-PPEGA, having degrees of polymerization of 5, 10, and 20) were achieved with high yield (conversion of ≥93%) and narrow dispersities (Đ < 1.3) in 2-4 h. Little or no effect on the structure and activity of the colistin was observed during the synthesis, and most of the active colistin can be recovered from the conjugates in vitro within 2 days. Furthermore, in vitro biological analyses including disk diffusion, broth microdilution, and time-kill studies suggested that all of the conjugates have the ability to inhibit the growth of multidrug-resistant (MDR) Gram-negative bacteria, of which col-PPEGA DP5 and DP10 showed similar or better antibacterial performance compared to the clinically relevant colistin prodrug CMS, indicating their potential as an alternative antimicrobial therapy. Moreover, considering the control over the polymerization, the CP-LRP technique has the potential to provide an alternative platform for the development of polymer bioconjugates.

  19. Well-Known Mediators of Selective Oxidation with Unknown Electronic Structure: Metal-Free Generation and EPR Study of Imide-N-oxyl Radicals.

    PubMed

    Krylov, Igor B; Kompanets, Mykhailo O; Novikova, Katerina V; Opeida, Iosip O; Kushch, Olga V; Shelimov, Boris N; Nikishin, Gennady I; Levitsky, Dmitri O; Terent'ev, Alexander O

    2016-01-14

    Nitroxyl radicals are widely used in chemistry, materials sciences, and biology. Imide-N-oxyl radicals are subclass of unique nitroxyl radicals that proved to be useful catalysts and mediators of selective oxidation and CH-functionalization. An efficient metal-free method was developed for the generation of imide-N-oxyl radicals from N-hydroxyimides at room temperature by the reaction with (diacetoxyiodo)benzene. The method allows for the production of high concentrations of free radicals and provides high resolution of their EPR spectra exhibiting the superhyperfine structure from benzene ring protons distant from the radical center. An analysis of the spectra shows that, regardless of the electronic effects of the substituents in the benzene ring, the superhyperfine coupling constant of an unpaired electron with the distant protons at positions 4 and 5 of the aromatic system is substantially greater than that with the protons at positions 3 and 6 that are closer to the N-oxyl radical center. This is indicative of an unusual character of the spin density distribution of the unpaired electron in substituted phthalimide-N-oxyl radicals. Understanding of the nature of the electron density distribution in imide-N-oxyl radicals may be useful for the development of commercial mediators of oxidation based on N-hydroxyimides.

  20. Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization in Undergraduate Polymer Science Lab

    ERIC Educational Resources Information Center

    Nguyen, T. L. U.; Bennet, Francesca; Stenzel, Martina H.; Barner-Kowollik, Christopher

    2008-01-01

    This 8-hour experiment (spread over two 4-hour sessions) is designed to equip students with essential skills in polymer synthesis, particularly in synthesizing polymers of well-defined molecular weight. The experiment involves the synthesis and characterization of poly(vinyl neodecanoate) via living free radical polymerization, specifically the…

  1. COMBINING ATOM TRANSFER RADICAL POLYMERIZATION AND DISULFIDE /THIOL REDOX CHEMISTRY: A ROUTE TO WELL-DEFINED (BIO)DEGRADABLE POLYMERIC MATERIALS. (R829580)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  2. Effects of a Protic Ionic Liquid on the Reaction Pathway during Non-Aqueous Sol–Gel Synthesis of Silica: A Raman Spectroscopic Investigation

    PubMed Central

    Martinelli, Anna

    2014-01-01

    The reaction pathway during the formation of silica via a two-component “non-aqueou” sol-gel synthesis is studied by in situ time-resolved Raman spectroscopy. This synthetic route is followed with and without the addition of the protic ionic liquid 1-ethylimidazolium bis(trifluoromethanesulfonyl)imide (C2HImTFSI) in order to investigate its effect on the reaction pathway. We demonstrate that Raman spectroscopy is suitable to discriminate between different silica intermediates, which are produced and consumed at different rates with respect to the point of gelation. We find that half-way to gelation monomers and shorter chains are the most abundant silica species, while the formation of silica rings strongly correlates to the sol-to-gel transition. Thus, curling up of linear chains is here proposed as a plausible mechanism for the formation of small rings. These in turn act as nucleation sites for the condensation of larger rings and thus the formation of the open and polymeric silica network. We find that the protic ionic liquid does not change the reaction pathway per se, but accelerates the cyclization process, intermediated by the faster inclusion of monomeric species. PMID:24743891

  3. Microgel coating of magnetic nanoparticles via bienzyme-mediated free-radical polymerization for colorimetric detection of glucose

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Wang, Xia; Liao, Chuanan; Wei, Qingcong; Wang, Qigang

    2015-10-01

    This study describes a new strategy for the fabrication of magnetic core-shell microgels by free-radical polymerization triggered by the cascade reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP). The mild polymerization around the interface of the magnetic nanoparticles permits the mild coating of the microgel layer with excellent characteristics for various applications in biocatalysis and medical diagnostics, as well as in clinical fields. The immobilized bienzyme within the microgel has a largely retained activity relative to the non-immobilized one. The confining effect of the microgel and the well designed distance between the two enzymes can benefit the diffusion of intermediates to the HRP active site. The final microgels can be incontestably employed as sensitive biosensors for colorimetric glucose detection.This study describes a new strategy for the fabrication of magnetic core-shell microgels by free-radical polymerization triggered by the cascade reaction of glucose oxidase (GOx) and horseradish peroxidase (HRP). The mild polymerization around the interface of the magnetic nanoparticles permits the mild coating of the microgel layer with excellent characteristics for various applications in biocatalysis and medical diagnostics, as well as in clinical fields. The immobilized bienzyme within the microgel has a largely retained activity relative to the non-immobilized one. The confining effect of the microgel and the well designed distance between the two enzymes can benefit the diffusion of intermediates to the HRP active site. The final microgels can be incontestably employed as sensitive biosensors for colorimetric glucose detection. Electronic supplementary information (ESI) available: Experimental details and ESI figures. See DOI: 10.1039/c5nr05716g

  4. Supernucleation and Orientation of Poly(butylene terephthalate) Crystals in Nanocomposites Containing Highly Reduced Graphene Oxide

    PubMed Central

    2017-01-01

    The ring-opening polymerization of cyclic butylene terephthalate into poly(butylene terephthalate) (pCBT) in the presence of reduced graphene oxide (RGO) is an effective method for the preparation of polymer nanocomposites. The inclusion of RGO nanoflakes dramatically affects the crystallization of pCBT, shifting crystallization peak temperature to higher temperatures and, overall, increasing the crystallization rate. This was due to a supernucleating effect caused by RGO, which is maximized by highly reduced graphene oxide. Furthermore, combined analyses by differential scanning calorimetry (DSC) experiments and wide-angle X-ray diffraction (WAXS) showed the formation of a thick α-crystalline form pCBT lamellae with a melting point of ∼250 °C, close to the equilibrium melting temperature of pCBT. WAXS also demonstrated the pair orientation of pCBT crystals with RGO nanoflakes, indicating a strong interfacial interaction between the aromatic rings of pCBT and RGO planes, especially with highly reduced graphene oxide. PMID:29296028

  5. New Polybenzimidazole Architectures by Diels Alder Polymerization

    DTIC Science & Technology

    2012-02-14

    stable organic polymers known.9 This class of polymers is aromatic with the heterocyclic benzimidazole group, a five membered imidazole ring...will allow benzimidazole ring systems to be prepared from the cycloaddition with an imidazole diene. The goals of the project included synthesis

  6. Unprecedented covalently attached ATRP initiator onto OH-functionalized mica surfaces.

    PubMed

    Lego, Béatrice; Skene, W G; Giasson, Suzanne

    2008-01-15

    Mica substrates were activated by a plasma method leading to OH-functionalized surfaces to which an atom transfer radical polymerization (ATRP) radical initiator was covalently bound using standard siloxane protocols. The unprecedented covalently immobilized initiator underwent radical polymerization with tert-butyl acrylate, yielding for the first time end-grafted polymer brushes that are covalently linked to mica. The initiator grafting on the mica substrate was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS), while the change in the water contact angle of the OH-activated mica surface was used to follow the change in surface coverage of the initiator on the surface. The polymer brush and initiator film thicknesses relative to the virgin mica were confirmed by atomic force microscopy (AFM). This was done by comparing the atomic step-height difference between a protected area of freshly cleaved mica and a zone exposed to plasma activation, initiator immobilization, and then ATRP.

  7. Stable polymeric carbon radicals. Part 2: Attempts at the preparation of polyradicals of the triphenylmethyl type linked by P-phenylene units

    NASA Technical Reports Server (NTRS)

    Braun, D.; Lehmann, P.

    1985-01-01

    As starting materials for the preparation of polyradicals of triphenylmethyl type linked by p-phenylene units bis(4-iodophenylmethane) and bis(4-iodo-2,5-dimethyl-phenylmethane) were synthesized by a Sandmeyer reaction from the corresponding diamino compounds and subsequently transformed into the corresponding polymeric hydrocarbons 6a and 6b by an Ullmann condensation. In the following step 6a and 6b were brominated at the tert. carbon atom by means of N-bromosuccinimide. The reaction of the resulting poly (4,4'-biphenylylen-alpha-bromobenzylidene)s (7a and 7b) with mercury afforded the corresponding radicals, the ESR spectra of which were recorded. From the methyl substituted polymer 7b poly (2,2'5,5-tetramethyl-4,4'-bi-phenylylen)phenylmethylidyne was formed, whereas the unsubstituted product 7a was transformed into a para-quinoide polymer with radical properties.

  8. Theoretical insight into reaction mechanisms of 2,4-dinitroanisole with hydroxyl radicals for advanced oxidation processes.

    PubMed

    Zhou, Yang; Liu, Xiaoqiang; Jiang, Weidong; Shu, Yuanjie

    2018-01-24

    The detailed degradation mechanism of an insensitive explosive, 2,4-dinitroanisole (DNAN), in advanced oxidation processes (AOPs) was investigated computationally at the M06-2X/6-311 + G(d,p)/SMD level of theory. Results obtained show that the addition-elimination reaction is the dominant mechanism. The phenol products formed can continue to be oxidized to benzoquinone radicals that are often detected by experiments and may be the initial reactants of ring-opening reactions. The H-abstraction reaction is an unavoidable competing mechanism; the intermediate generated can also undergo the process of addition-elimination reaction. The nitro departure reaction involves not only hydroxyl radical (•OH), but also other active substances (such as •H). More importantly, we found that AOP technology can easily degrade DNAN, similar to TNT and DNT. Thus, this method is worth trying in experiments. The conclusions of this work provide theoretical support for such experimental research. Graphical abstract Possible pathways of degradation by •OH radicals in advanced oxidation processes (AOPs) of the typical insensitive explosive 2,4-dinitroanisole (DNAN) were investigated by density functional theory (DFT) methods. Based on the Gibbs free energy barriers and intermediates, the dominant reaction mechanism was determined. The conclusions will be helpful in utilizing AOP technology to remove DNAN pollution.

  9. Development of materials from copolyacrylates via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Jones, Melody Mersadez

    Homopolymerization of 2-(trimethylsilyl)ethyl acrylate, 3,3-dimethylbutyl acrylate, methyl acrylate, and methyl methacrylate using atom transfer radical polymerization (ATRP) is reported. In addition, polymethyl acrylate and polymethyl methacrylate were used as macroinitiators for diblock copolymerizations (via ATRP) with various monomers to yield pMA-b-TMSEA, pMMA-b-TMSEA, and pMMA-b-GMA copolymers; these results are also reported. Controlled polymerizations were performed using the CuBr/hexamethyltriethylenetetramine catalyst system in combination with methyl bromopropionate as the initiator. The protected acid block copolymers pMA-b-TMSEA and pMMA-b-TMSEA were deprotected to afford acrylic and meth acrylic acid block copolymers pMA-b-AA and pMMA-b-AA. Methylene chloride was used to micellize the amphiphilic copolymers in order to obtain the critical micelle concentration of the polymers (CMCpMA-b-AA = 10 mg/mL, CMCpMMA-b-AA = 0.4 mg/mL). The majority of polymerization were done in bulk; however, since poly(trimethylsilyl)ethyl acrylate displayed polydispersity (Mn = 11459, PDI = 1.437) on the high end of the acceptable range, various solvents were utilized to decrease the polymerization rate and afford low polydispersity materials. This differs from the ATRP of polymethyl acrylate or polymethyl methacrylate using this catalytic system, which do not require the addition of a solvent to obtain well-defined polymers. Also, for this polymerization system three different temperatures (60°C, 90°C, and 120°C) were used, in order to reduce the concentration of radicals and the contribution of termination. The homopolymers and protected acid block copolymers were characterized by gel permeation chromatography to determine the relative molecular weights. Differential scanning calorimetry was used to obtain the glass transition temperature of all polymers. Characterization using NMR (1H and 13C) and FTIR confirmed homopolymerization of 3,3-dimethylbutyl acrylate, 2-(trimethylsilyl)ethyl acrylate and complete cleavage of the (trimethylsilyl)ethyl group from the protected acid copolymers.

  10. Molecular architecture requirements for polymer-grafted lignin superplasticizers.

    PubMed

    Gupta, Chetali; Sverdlove, Madeline J; Washburn, Newell R

    2015-04-07

    Superplasticizers are a class of anionic polymer dispersants used to inhibit aggregation in hydraulic cement, lowering the yield stress of cement pastes to improve workability and reduce water requirements. The plant-derived biopolymer lignin is commonly used as a low-cost/low-performance plasticizer, but attempts to improve its effects on cement rheology through copolymerization with synthetic monomers have not led to significant improvements. Here we demonstrate that kraft lignin can form the basis for high-performance superplasticizers in hydraulic cement, but the molecular architecture must be based on a lignin core with a synthetic-polymer corona that can be produced via controlled radical polymerization. Using slump tests of ordinary Portland cement pastes, we show that polyacrylamide-grafted lignin prepared via reversible addition-fragmentation chain transfer polymerization can reduce the yield stress of cement paste to similar levels as a leading commercial polycarboxylate ether superplasticizer at concentrations ten-fold lower, although the lignin material produced via controlled radical polymerization does not appear to reduce the dynamic viscosity of cement paste as effectively as the polycarboxylate superplasticizer, despite having a similar affinity for the individual mineral components of ordinary Portland cement. In contrast, polyacrylamide copolymerized with a methacrylated kraft lignin via conventional free radical polymerization having a similar overall composition did not reduce the yield stress or the viscosity of cement pastes. While further work is required to elucidate the mechanism of this effect, these results indicate that controlling the architecture of polymer-grafted lignin can significantly enhance its performance as a superplasticizer for cement.

  11. The degradation mechanism of phenol induced by ozone in wastes system.

    PubMed

    Youmin, Sun; Xiaohua, Ren; Zhaojie, Cui; Guiqin, Zhang

    2012-08-01

    A distinct understanding for the degradation mechanism of phenol induced by ozone is very essential because the ozonation process, one of the advanced oxidation processes (AOPs), is attractive and popular in wastewater treatment. In the present work, the detailed reactions of ozone and phenol are investigated employing the density functional theory B3LYP method with the 6-311++G (d, p) basis set. The profiles of the potential energy surface are constructed and the possible reaction pathways are indicated. These detailed calculation results suggest two degradation reaction mechanisms. One is phenolic H atom abstraction mechanism, and the other is cyclo-addition and ring-opening mechanism. Considering the effect of solvent water, the calculated energy barriers and reaction enthalpies for the reaction of O3 and phenol in water phase are both lower than those in gas phase, though the degradation mechanisms are not changed. This reveals that these degradation reactions are more favorable in the water solvent. The main reaction products are C(6)H(5)OO· radical, a crucial precursor for forming PCDD/Fs and one ring-opening product, which are in good agreement with the experimental observations.

  12. Spatially controlled, in situ synthesis of polymers

    DOEpatents

    Caneba, Gerard T.; Tirumala, Vijaya Raghavan; Mancini, Derrick C.; Wang, Hsien-Hau

    2005-03-22

    An in situ polymer microstructure formation method. The monomer mixture is polymerized in a solvent/precipitant through exposure to ionizing radiation in the absence any chemical mediators. If an exposure mask is employed to block out certain regions of the radiation cross section, then a patterned microstructure is formed. The polymerization mechanism is based on the so-called free-radical retrograde-precipitation polymerization process, in which polymerization occurs while the system is phase separating above the lower critical solution temperature. This method was extended to produce a crosslinked line grid-pattern of poly (N-isopropylacrylamide), which has been known to have thermoreversible properties.

  13. Synthesis, Characterization and in Vitro Evaluation of New Composite Bisphosphonate Delivery Systems

    PubMed Central

    Kolmas, Joanna; Sobczak, Marcin; Olędzka, Ewa; Nałęcz-Jawecki, Grzegorz; Dębek, Cezary

    2014-01-01

    In this study, new composite bisphosphonate delivery systems were obtained from polyurethanes (PUs) and nanocrystalline hydroxyapatite (HA). The biodegradable PUs were first synthesized from poly(ε-caprolactone) diols (PCL diols), poly(ethylene adipate) diol, 1,6-hexamethylene diisocyanate, 1,4-butanediol and HA. Moreover, the PCL diols were synthesized by the ring-opening polymerization catalysed by the lipase from Candida antarctica. Next, composite drug delivery systems for clodronate were prepared. The mechanical properties of the obtained biomaterials were determined. The cytotoxicity of the synthesized polymers was tested. The preliminary results show that the obtained composites are perspective biomaterials and they can be potentially applied in the technology of implantation drug delivery systems. PMID:25247580

  14. Adsorbed Polymer Nanolayers on Solids: Mechanism, Structure and Applications

    NASA Astrophysics Data System (ADS)

    Sen, Mani Kuntal

    In this thesis, by combining various advanced x-ray scattering, spectroscopic and other surface sensitive characterization techniques, I report the equilibrium polymer chain conformations, structures, dynamics and properties of polymeric materials at the solid-polymer melt interfaces. Following the introduction, in chapter 2, I highlight that the backbone chains (constituted of CH and CH2 groups) of the flattened polystyrene (PS) chains preferentially orient normal to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized, thereby increasing the number of surface-segmental contacts (i.e., enthalpic gain) which is the driving force for the flattening process of the polymer chains even onto a weakly interactive solid. In chapter 3, I elucidate the flattened structures in block copolymer (BCP) thin films where both blocks lie flat on the substrate, forming a 2D randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. In chapter 4, I reveal the presence of an irreversibly adsorbed BCP layer which showed suppressed dynamics even at temperatures far above the individual glass transition temperatures of the blocks. Furthermore, this adsorbed BCP layer plays a crucial role in controlling the microdomain orientation in the entire film. In chapter 5, I report a radically new paradigm of designing a polymeric coating layer of a few nanometers thick ("polymer nanolayer") with anti-biofouling properties.

  15. Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.

  16. Organo-Lewis acid as cocatalyst for cationic homogeneous Ziegler-Natta olefin polymerizations

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2002-01-01

    Organo-Lewis acids of the formula BR'R".sub.2 wherein B is boron, R' is fluorinated biphenyl, and R" is a fluorinated phenyl, fluorinated biphenyl, or fluorinated polycyclic fused ring group, and cationic metallocene complexes formed therewith. Such complexes are useful as polymerization catalysts.

  17. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore

    PubMed Central

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-01-01

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu2+. The detection limits of the polymer and vinyl monomer towards Cu2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer. PMID:28867764

  18. Fluorescent Polymer Incorporating Triazolyl Coumarin Units for Cu2+ Detection via Planarization of Ict-Based Fluorophore.

    PubMed

    Ngororabanga, Jean Marie Vianney; Du Plessis, Jacolien; Mama, Neliswa

    2017-08-30

    A novel fluorescent polymer with pendant triazolyl coumarin units was synthesized through radical polymerization. The polymer showed reasonable sensitivity and selectivity towards Cu 2+ in acetonitrile in comparison to other tested metal ions with a significant quenching effect on fluorescence and blue shifting in the range of 20 nm. The blue shift was assigned to the conformation changes of the diethylamino group from the coumarin moiety which led to planarization of the triazolyl coumarin units. The possible binding modes for Cu 2+ towards the polymer were determined through the comparison of the emission responses of the polymer, starting vinyl monomer and reference compound, and the triazole ring was identified as one of the possible binding sites for Cu 2+ . The detection limits of the polymer and vinyl monomer towards Cu 2+ were determined from fluorescence titration experiments and a higher sensitivity (35 times) was observed for the polymer compared with its starting monomer.

  19. NUCLEAR REACTOR COOLANT

    DOEpatents

    Colichman, E.L.

    1959-10-20

    The formation of new reactor coolants which suppress polymerization resulting from pyrolitic and radiation decomposition is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to about 10% of an alkall metal dispersed in the hydrocarbon.

  20. NUCLEAR REACTOR COOLANT

    DOEpatents

    Colichman, E.L.

    1959-10-20

    The formation of new reactor coolants which suppress polymerization resulting from pyrolytic and radiation decomposition is described. The coolants consist of polyphenyls and condensed ring compounds having from two to about four carbon rings and from 0.1 to about 5% of beryllium or magnesium dispersed in the hydrocarbon.

  1. High fluorescence emission silver nano particles coated with poly (styrene-g-soybean oil) graft copolymers: Antibacterial activity and polymerization kinetics.

    PubMed

    Hazer, Baki; Kalaycı, Özlem A

    2017-05-01

    Autoxidation of poly unsaturated fatty acids makes negative effect on foods. In this work, this negative effect was turned to a great advantage using autoxidized soybean oil as a macroperoxide nanocomposite initiator containing silver nano particles in free radical polymerization of vinyl monomers. The synthesis of soybean oil macro peroxide was carried out by exposing soybean oil to air oxygen with the presence of silver nanoparticles (Ag NPs) at room temperature. Autoxidized soybean oil macroperoxide containing silver nanoparticles (Agsbox) successfully initiated the free radical polymerization of styrene in order to obtain Polystyrene (PS)-g-soybean oil graft copolymer containing Ag NPs. Both autoxidized soybean oil and PS-g-sbox with Ag NPs showed a surface plasmon resonance and high fluorescence emission. Overall rate constant (K) of styrene polymerization initiated by autoxidized soybean oil macroperoxide with Ag NPs was found to be K=1.95.10 -4 Lmol -1 s -1 at 95°C. Antibacterial efficiency was observed in the PS-g-soybean oil graft copolymer film samples containing Ag NPs. 1 H NMR and GPC techniques were used for the structural analysis of the fractionated polymeric oils. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Radical graft polymerization of an Allyl Monomer onto Hydrophilic Polymers and their antibacterial nanofibrous membranes

    USDA-ARS?s Scientific Manuscript database

    Hydrophilic poly (vinyl alcohol-co-ethylene) (PVA-co-PE) copolymers with 27 mol %, 32 mol % and 44 mol % ethylene were functionalized by melt radical graft copolymerization with 2,4-diamino-6-diallylamino-1,3,5-triazine (NDAM) using reactive extrusion. This functionalization imparts antibacterial pr...

  3. Ejector/liquid ring pump provides <0. 30 mm Hg vacuum for polymerization vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockwood, A.; Gaines, A.

    1982-03-01

    Firestone Fibers and Textiles Company, a division of Firestone Tire and Rubber Company, manufactures tire and industrial yarns of polyester and nylon-6. Nylon-6 molding and extrusion resins are also produced at the plant in Hopewell, Virginia. The process for making polyester requires an extremely low vacuum on the polymerization reactor. A consistent polymerization vessel vacuum of 0.3 mm Hg is needed, but the existing vacuum source, a five-stage steam jet ejector, could only provide a 0.5 mm Hg level. Two options were considered when the company decided to replace the original system with a system designed for 0.15 mm Hgmore » with a non-condensible gas load of 10.8 lb/hr. A new five-stage jet ejector system to meet these requirements would use 1395 lb/hr of 100 psig steam. The other option was a hybrid vacuum source composed of a three-stage steam ejector system and a liquid ring vacuum pump that is more energy efficient than ejectors for low vacuum applications. The hybrid system was selected because the three-stage jet ejector would use only 1240 lb/hr of 100 psig steam. The liquid ring vacuum pump would increase the material and installation cost of the system by about $4000, but the savings in steam consumption would pay back the added cost in less than two years. The jet ejector/liquid ring vacuum pump system has provided both the capacity and the extremely low vacuum needed for the polyester polymerization vessel, after making a small modification. The hybrid vacuum source is reliable, requires only routine maintenance, and will contiue to save substantial amounts of steam each year compared to the five-stage steam jet ejector.« less

  4. Ultrahigh Molecular Weight Linear Block Copolymers: Rapid Access by Reversible-Deactivation Radical Polymerization and Self- Assembly into Large Domain Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mapas, Jose Kenneth D.; Thomay, Tim; Cartwright, Alexander N.

    2016-05-05

    Block copolymer (BCP) derived periodic nanostructures with domain sizes larger than 150 nm present a versatile platform for the fabrication of photonic materials. So far, the access to such materials has been limited to highly synthetically involved protocols. Herein, we report a simple, “user-friendly” method for the preparation of ultrahigh molecular weight linear poly(solketal methacrylate-b-styrene) block copolymers by a combination of Cu-wire-mediated ATRP and RAFT polymerizations. The synthesized copolymers with molecular weights up to 1.6 million g/mol and moderate dispersities readily assemble into highly ordered cylindrical or lamella microstructures with domain sizes as large as 292 nm, as determined bymore » ultra-small-angle x-ray scattering and scanning electron microscopy analyses. Solvent cast films of the synthesized block copolymers exhibit stop bands in the visible spectrum correlated to their domain spacings. The described method opens new avenues for facilitated fabrication and the advancement of fundamental understanding of BCP-derived photonic nanomaterials for a variety of applications.« less

  5. Raman Spectroscopy of Poly-Urea Formaldehyde Microcapsules

    NASA Astrophysics Data System (ADS)

    Espino, Omar; Chipara, Dorina; Chipara, Mircea; Martinez, Melissa

    2015-03-01

    The objective of this research project was to add self-healing capabilities to polymeric nanocomposites. We used the ``classical'' method to obtain self-healing polymers with the addition of TiO2 nanoparticles in the self-healing system. Self-healing polymers are obtained by dispersion of first generation Grubbs catalysts and microcapsules filled with monomers (typically DCPD). These kind of ``smart materials'' are able to survive to high mechanical stress via the ignition of the so called ``autonomous self-healing mechanism'' which is actually a ring opening methatesis polymerization (ROMP) reaction triggered by mechanical stresses in excess over a threshold limit through the rupture of microcapsules and the release of the monomeric content. As a preliminary step for adding self-healing capabilities in nanocomposites, the synthesis of microcapsules filled with dicyclopentadiene (DCPD) is vital for the addition of self-healing capabilities to polymeric matrices. We synthesized polyurea-formaldehyde (PUF) microcapsules filled with monomer (DCPD) using the in-situ polymerization. The synthesis was monitored by Raman spectroscopy, optical microscopy, and pH measurements that has been extensively used as a non-invasive techniques in the characterization of polymers and monitoring of organic reactions. The goal of this research was to assess the formation of the microcapsules during synthesis and the presence of the DCPD in the microcapsules. Samples were taken during the synthesis every 30 minutes and analyzed by Raman spectroscopy, and optical microscopy keeping a control over the pH of the solution.

  6. Poly(ornithine-co-arginine-co-glycine-co-aspartic Acid): Preparation via NCA Polymerization and its Potential as a Polymeric Tumor-Penetrating Agent.

    PubMed

    Yu, Haiyang; Tang, Zhaohui; Zhang, Dawei; Song, Wantong; Duan, Taicheng; Gu, Jingkai; Chen, Xuesi

    2015-06-01

    A novel random copolypeptide of ornithine, arginine, glycine, and aspartic acid [Poly(ornithine-co-arginine-co-glycine-co-aspartic acid), Poly(O,R,G,D)] has been prepared through ring-opening polymerization of N-δ-carbobenzoxy-l-ornithine N-carboxyanhydride [Orn(Cbz)-NCA)], l-glycine N-carboxyanhydride (Gly-NCA) and β-benzyl l-aspartate N-carboxyanhydride [Asp(Bn)-NCA], following by subsequent deprotection and guanidization. The structure of Poly(O,R,G,D) was confirmed by nuclear magnetic resonance (NMR) spectroscopy and gel permeation chromatography (GPC). Low cytotoxicity of Poly(O,R,G,D) was confirmed from MTT assay. The Poly(O,R,G,D) contain some internal sequences of RXXR (X = O, R, G, or D) that could be proteolytically cleaved to expose the cryptic CendR element and bind to Neuropilin-1. This would lead to vascular and tissue permeabilization. Therefore trypsin-cleaved Poly(O,R,G,D) increase the vascular leakage of Evans blue from dermal microvessels at the injection site in vivo skin permeability assay. The intratumoral injection of the Poly(O,R,G,D) significantly enhanced the concentration of cisplatin-loaded nanoparticles in MCF-7 solid tumors. These results show that Poly(O,R,G,D) could increase the vascular leakage and tissue penetration of nanoparticles in a solid tumor and can be used as a potential polymeric tumor-penetrating agent. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Spectral and kinetic properties of radicals derived from oxidation of quinoxalin-2-one and its methyl derivative.

    PubMed

    Skotnicki, Konrad; De la Fuente, Julio R; Cañete, Alvaro; Bobrowski, Krzysztof

    2014-11-19

    The kinetics and spectral characteristics of the transients formed in the reactions of •OH and •N3 with quinoxalin-2(1H)-one (Q), its methyl derivative, 3-methylquinoxalin-2(1H)-one (3-MeQ) and pyrazin-2-one (Pyr) were studied by pulse radiolysis in aqueous solutions at pH 7. The transient absorption spectra recorded in the reactions of •OH with Q and 3-MeQ consisted of an absorption band with λmax = 470 nm assigned to the OH-adducts on the benzene ring, and a second band with λmax = 390 nm (for Q) and 370 nm (for 3-MeQ) assigned, inter alia, to the N-centered radicals on a pyrazin-2-one ring. The rate constants of the reactions of •OH with Q and 3-MeQ were found to be in the interval (5.9-9.7) × 109 M-1·s-1 and were assigned to their addition to benzene and pyrazin-2-one rings and H-abstraction from the pyrazin-2-one nitrogen. In turn, the transient absorption spectrum observed in the reaction of •N3 exhibits an absorption band with λmax = 350 nm. This absorption was assigned to the N-centered radical on the Pyr ring formed after deprotonation of the respective radical cation resulting from one-electron oxidation of 3-MeQ. The rate constant of the reaction of •N3 with 3 MeQ was found to be (6.0 ± 0.5) × 109 M-1·s-1. Oxidation of 3-MeQ by •N3 and Pyr by •OH and •N3 confirms earlier spectral assignments. With the rate constant of the •OH radical with Pyr (k = 9.2 ± 0.2) × 109 M-1·s‒1, a primary distribution of the •OH attack was estimated nearly equal between benzene and pyrazin-2-one rings.

  8. New high boron content polyborane precursors to advanced ceramic materials: New syntheses, new applications

    NASA Astrophysics Data System (ADS)

    Guron, Marta

    There is a need for new synthetic routes to high boron content materials for applications as polymeric precursors to ceramics, as well as in neutron shielding and potential medical applications. To this end, new ruthenium-catalyzed olefin metathesis routes have been devised to form new complex polyboranes and polymeric species. Metathesis of di-alkenyl substituted o-carboranes allowed the synthesis of ring-closed products fused to the carborane cage, many of which are new compounds and one that offers a superior synthetic method to one previously published. Acyclic diene metathesis of di-alkenyl substituted m-carboranes resulted in the formation of new main-chain carborane-containing polymers of modest molecular weights. Due to their extremely low char yields, and in order to explore other metathesis routes, ring opening metathesis polymerization (ROMP) was used to generate the first examples of poly(norbornenyl- o-carboranes). Monomer synthesis was achieved via a two-step process, incorporating Ti-catalyzed hydroboration to make 6-(5-norbornenyl)-decaborane, followed by alkyne insertion in ionic liquid media to achieve 1,2-R2 -3-norbornenyl o-carborane species. The monomers were then polymerized using ROMP to afford several examples of poly(norbornenyl- o-carboranes) with relatively high molecular weights. One such polymer, [1-Ph, 3-(=CH2-C5H7-CH2=)-1,2-C 2B10H10]n, had a char yield very close to the theoretical char yield of 44%. Upon random copolymerization with poly(6-(5-norbornenyl) decaborane), char yields significantly increased to 80%, but this number was well above the theoretical value implicating the formation of a boron-carbide/carbon ceramic. Finally, applications of polyboranes were explored via polymer blends toward the synthesis of ceramic composites and the use of polymer precursors as reagents for potential ultra high temperature ceramic applications. Upon pyrolysis, polymer blends of poly(6-(5-norbornenyl)-decaborane) and poly(methylcarbosilane) converted into boron-carbide/silicon-carbide ceramics with high char yields. These polymer blends were also shown to be useful as reagents for synthesis of hafnium-boride/hafnium-carbide/silicon carbide and zirconium-boride/zirconium-carbide/silicon carbide composites.

  9. A synthetic polymer system with repeatable chemical recyclability

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Bo; Watson, Eli M.; Tang, Jing; Chen, Eugene Y.-X.

    2018-04-01

    The development of chemically recyclable polymers offers a solution to the end-of-use issue of polymeric materials and provides a closed-loop approach toward a circular materials economy. However, polymers that can be easily and selectively depolymerized back to monomers typically require low-temperature polymerization methods and also lack physical properties and mechanical strengths required for practical uses. We introduce a polymer system based on γ-butyrolactone (GBL) with a trans-ring fusion at the α and β positions. Such trans-ring fusion renders the commonly considered as nonpolymerizable GBL ring readily polymerizable at room temperature under solvent-free conditions to yield a high–molecular weight polymer. The polymer has enhanced thermostability and can be repeatedly and quantitatively recycled back to its monomer by thermolysis or chemolysis. Mixing of the two enantiomers of the polymer generates a highly crystalline supramolecular stereocomplex.

  10. Polymerization of ethylene through reversible addition-fragmentation chain transfer (RAFT).

    PubMed

    Dommanget, Cédric; D'Agosto, Franck; Monteil, Vincent

    2014-06-23

    The present paper reports the first example of a controlled radical polymerization of ethylene using reversible addition-fragmentation chain transfer (RAFT) in the presence of xanthates (Alkyl-OC(=S)S-R) as controlling agents under relative mild conditions (70 °C, <200 bars). The specific reactivity of the produced alkyl-type propagating radicals induces a side fragmentation reaction of the stabilizing O-alkyl Z group of the controlling agents. This fragmentation, rarely observed in RAFT, was proven by NMR analyses. In addition, semicrystalline copolymers of ethylene and vinyl acetate were also prepared with a similar level of control. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Synthesis of Tricyclo[4,3,1,0(1,5)]decane Core of Plumisclerin A Using Pauson-Khand Annulation and SmI2-Mediated Radical Cyclization.

    PubMed

    Chen, Ji-Peng; He, Wei; Yang, Zhen-Yu; Yao, Zhu-Jun

    2015-07-17

    An efficient synthesis of the tricyclo[4,3,1,0(1, 5)]decane core (B/C/D rings) of plumisclerin A, a unique cytotoxic marine diterpenoid, is described. A Pauson-Khand reaction and a SmI2-mediated radical 1,4-conjugate addition successfully served as key reactions for construction of the fully functionalized 5,6-fused rings and the highly strained cyclobutanol moiety with correct relative stereochemistries, respectively.

  12. Synthesis of Methylenebicyclo[3.2.1]octanol by a Sm(II)-Induced 1,2-Rearrangement Reaction with Ring Expansion of Methylenebicyclo[4.2.0]octanone.

    PubMed

    Takatori, Kazuhiko; Ota, Shoya; Tendo, Kenta; Matsunaga, Kazuma; Nagasawa, Kokoro; Watanabe, Shinya; Kishida, Atsushi; Kogen, Hiroshi; Nagaoka, Hiroto

    2017-07-21

    Direct conversion of methylenebicyclo[4.2.0]octanone to methylenebicyclo[3.2.1]octanol by a Sm(II)-induced 1,2-rearrangement with ring expansion of the methylenecyclobutane is described. Three conditions were optimized to allow the adaptation of this approach to various substrates. A rearrangement mechanism is proposed involving the generation of a ketyl radical and cyclopentanation by ketyl-olefin cyclization, followed by radical fragmentation and subsequent protonation.

  13. Structure of the Z Ring-associated Protein, ZapD, Bound to the C-terminal Domain of the Tubulin-like Protein, FtsZ, Suggests Mechanism of Z Ring Stabilization through FtsZ Cross-linking.

    PubMed

    Schumacher, Maria A; Huang, Kuo-Hsiang; Zeng, Wenjie; Janakiraman, Anuradha

    2017-03-03

    Cell division in most bacteria is mediated by the tubulin-like FtsZ protein, which polymerizes in a GTP-dependent manner to form the cytokinetic Z ring. A diverse repertoire of FtsZ-binding proteins affects FtsZ localization and polymerization to ensure correct Z ring formation. Many of these proteins bind the C-terminal domain (CTD) of FtsZ, which serves as a hub for FtsZ regulation. FtsZ ring-associated proteins, ZapA-D (Zaps), are important FtsZ regulatory proteins that stabilize FtsZ assembly and enhance Z ring formation by increasing lateral assembly of FtsZ protofilaments, which then form the Z ring. There are no structures of a Zap protein bound to FtsZ; therefore, how these proteins affect FtsZ polymerization has been unclear. Recent data showed ZapD binds specifically to the FtsZ CTD. Thus, to obtain insight into the ZapD-CTD interaction and how it may mediate FtsZ protofilament assembly, we determined the Escherichia coli ZapD-FtsZ CTD structure to 2.67 Å resolution. The structure shows that the CTD docks within a hydrophobic cleft in the ZapD helical domain and adopts an unusual structure composed of two turns of helix separated by a proline kink. FtsZ CTD residue Phe-377 inserts into the ZapD pocket, anchoring the CTD in place and permitting hydrophobic contacts between FtsZ residues Ile-374, Pro-375, and Leu-378 with ZapD residues Leu-74, Trp-77, Leu-91, and Leu-174. The structural findings were supported by mutagenesis coupled with biochemical and in vivo studies. The combined data suggest that ZapD acts as a molecular cross-linking reagent between FtsZ protofilaments to enhance FtsZ assembly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Preparation of end-grafted polymer brushes by nitroxide-mediated free radical polymerization of vaporized vinyl monomers.

    PubMed

    Li, Jun; Chen, Xiaoru; Chang, Ying-Chih

    2005-10-11

    In this work, we report a gas-phase polymerization approach to create end-grafted vinyl based polymer films on silicon oxide based substrates. The "surface-initiated vapor deposition polymerization" (SI-VDP) of vaporized vinyl monomers, via the nitroxide-mediated free radical polymerization mechanism, was developed to fabricate various homo- and block copolymer brushes from surface-bound initiators, 1-(4'-oxa-2'-phenyl-12'-trimethoxysilyldodecyloxy)-2,2,6,6-tetra-methylpiperidine ("TEMPO"). The resulting polymer thin films were characterized by the Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle goniometry, respectively, to identify the surface composition, film thickness, surface coverage, and water contact angles. Through the SI-VDP, end-grafted polymer films of polystyrene (PSt), poly(acrylic acid) (PAAc), poly(N-(2-hydroxypropyl) methacrylamide) (PHPMA), and poly(N-isopropylacrylamide) (PNIPAAm) with 10-200 nm thicknesses were fabricated. Furthermore, the block copolymer films of PAAc (1st block)-b-PSt (2nd block), PSt (1st block)-b-PAAc (2nd block), and a triblock copolymer film of PAAc (1st)-b-PSt (2nd)-b-PHPMA (3rd), were also fabricated, suggesting the "renewability" of the TEMPO-initiated polymerization in the SI-VDP scheme. It is also noticed that the SI-VDP is more efficient than the conventional solution phase polymerization in producing functional polymer brushes such as PNIPAAm, PAAc, or PAAc-b-PSt end-grafted films. In summary, our studies have shown clear advantages of the SI-VDP setup for the nitroxide-mediated polymerization scheme in controlling synthesis of end-grafted homo- and copolymer thin films.

  15. Anionic polymerization of p-(2,2'-diphenylethyl)styrene and applications to graft copolymers.

    PubMed

    Huang, Minglu; Han, Bingyong; Lu, Jianmin; Yang, Wantai; Fu, Zhifeng

    2017-01-01

    Well-controlled anionic polymerization of an initiator-functionalized monomer, p -(2,2'-diphenylethyl)styrene (DPES), was achieved for the first time. The polymerization was performed in a mixed solvent of cyclohexane and tetrahydrofuran (THF) at 40 °C with n -BuLi as initiator. When the volume ratio of cyclohexane to THF was 20, the anionic polymerization of DPES showed living polymerization characteristics, and well-defined block copolymer PDPES- b -PS was successfully synthesized. Furthermore, radical polymerization of methyl methacrylate in the presence of PDPES effectively afforded a graft copolymer composed of a polystyrene backbone and poly(methyl methacrylate) branches. The designation of analogous monomers and polymers was of great significance to synthesize a variety of sophisticated copolymer and functionalize polymer materials.

  16. New Pyrrole Derivatives with Potent Tubulin Polymerization Inhibiting Activity As Anticancer Agents Including Hedgehog-Dependent Cancer

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Coluccia, Antonio; Famiglini, Valeria; Pelliccia, Sveva; Passacantilli, Sara; Mazzoccoli, Carmela; Ruggieri, Vitalba; Sisinni, Lorenza; Bolognesi, Alessio; Rensen, Whilelmina Maria; Miele, Andrea; Nalli, Marianna; Alfonsi, Romina; Di Marcotullio, Lucia; Gulino, Alberto; Brancale, Andrea; Novellino, Ettore; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Silvestri, Romano

    2014-01-01

    We synthesized 3-aroyl-1-arylpyrrole (ARAP) derivatives as potential anticancer agents having different substituents at the pendant 1-phenyl ring. Both the 1-phenyl ring and 3-(3,4,5-trimethoxyphenyl)carbonyl moieties were mandatory to achieve potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARAP 22 showed strong inhibition of the P-glycoprotein-overexpressing NCI-ADR-RES and Messa/Dx5MDR cell lines. Compounds 22 and 27 suppressed in vitro the Hedgehog signaling pathway, strongly reducing luciferase activity in SAG treated NIH3T3 Shh-Light II cells, and inhibited the growth of medulloblastoma D283 cells at nanomolar concentrations. ARAPs 22 and 27 represent a new potent class of tubulin polymerization and cancer cell growth inhibitors with the potential to inhibit the Hedgehog signaling pathway. PMID:25025991

  17. Ring Opening Polymerization and Copolymerization of Cyclic Esters Catalyzed by Group 2 Metal Complexes Supported by Functionalized P-N Ligands.

    PubMed

    Harinath, Adimulam; Bhattacharjee, Jayeeta; Sarkar, Alok; Nayek, Hari Pada; Panda, Tarun K

    2018-03-05

    We report the preparation of alkali and alkaline earth (Ae) metal complexes supported by 2-picolylamino-diphenylphosphane chalcogenide [(Ph 2 P(=E)NHCH 2 (C 5 H 4 N)] [E = S (1-H); Se (2-H)] ligands. The treatment of the protic ligand, 1-H or 2-H, with alkali metal hexamethyldisilazides at room temperature afforded the corresponding alkali metal salts [M(THF) 2 (Ph 2 P(=E)NCH 2 (C 5 H 4 N)] [M = Li, E = S (3a), Se (3b)] and [{M(THF) n (Ph 2 P(=E)NCH 2 (C 5 H 4 N)} 2 ] [M = Na, E = S (4a), Se (4b); M = K, E = Se (5b)] in good yield. The homoleptic Ae metal complexes [κ 2 -(Ph 2 P(=Se)NCH 2 (C 5 H 4 N)Mg(THF)] (6b) and [κ 3 -{(Ph 2 P(=Se)NCH 2 (C 5 H 4 N)} 2 M(THF) n ] (M = Ca (7b), Sr (8b), Ba (9b)] were synthesized by the one-pot reaction of 2-H with [KN(SiMe 3 ) 2 ] and MI 2 in a 2:2:1 molar ratio at room temperature. The molecular structures of the protic-ligands 1-H and 2-H, as well as complexes 3a,b-5a,b and 6b-9b were established using single-crystal X-ray analysis. The Ae metal complexes 6b-9b were tested for ring-opening polymerization (ROP) of racemic lactide ( rac-LA) and copolymerization of rac-LA and ε-caprolactone (ε-CL) at room temperature. In the ROP of rac-LA, the calcium complex 7b exhibited high isoselectivity, with P i = 0.89, whereas both the barium and strontium complexes showed lower isoselectivity with P i = 0.78-0.62. In the copolymerization of rac-LA and ε-CL, both barium and strontium complexes proved to be efficient precatalysts for the formation of the block copolymer rac-LA-CL, but the reactivity of 9b was found to be better than that of 8b. All the polymers were fully characterized using differential scanning calorimetry, thermogravimetric analysis, and gel permeation chromatography analyses. Kinetic studies on the ROP reaction of LA confirmed that the rate of polymerization followed the order Ba ≫ Sr ≈ Ca.

  18. Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization.

    PubMed

    Majoinen, Johanna; Walther, Andreas; McKee, Jason R; Kontturi, Eero; Aseyev, Vladimir; Malho, Jani Markus; Ruokolainen, Janne; Ikkala, Olli

    2011-08-08

    Herein we report the synthesis of cellulose nanocrystals (CNCs) grafted with poly(acrylic acid) (PAA) chains of different lengths using Cu-mediated surface initiated-controlled radical polymerization (SI-CRP). First, poly(tert-butylacrylate) (PtBA) brushes were synthesized; then, subsequent acid hydrolysis was used to furnish PAA brushes tethered onto the CNC surfaces. The CNCs were chemically modified to create initiator moieties on the CNC surfaces using chemical vapor deposition (CVD) and continued in solvent phase in DMF. A density of initiator groups of 4.6 bromine ester groups/nm(2) on the CNC surface was reached, suggesting a dense functionalization and a promising starting point for the controlled/living radical polymerization. The SI-CRP of tert-butylacrylate proceeded in a well-controlled manner with the aid of added sacrificial initiator, yielding polymer brushes with polydispersity values typically well below 1.12. We calculated the polymer brush grafting density to almost 0.3 chains/nm(2), corresponding to high grafting densities and dense polymer brush formation on the nanocrystals. Successful rapid acid hydrolysis to remove the tert-butyl groups yielded pH-responsive PAA-polyelectrolyte brushes bound to the CNC surface. Individually dispersed rod-like nanoparticles with brushes of PtBA or PAA were clearly visualized by AFM and TEM imaging.

  19. Application of controlled radical polymerization (CRP) in the design of functional biomedical architectures

    NASA Astrophysics Data System (ADS)

    Siegwart, Daniel John

    In this thesis, atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization were utilized in the design of synthetic polymers to create tissue engineering scaffolds and drug delivery systems with improved control over structure and functionality. Thermo-sensitive injectable hydrogels based on poly(NIPAAm) with degradable ester units within the polymer backbone and at the cross-linking sites were prepared using ATRP and RAFT. Solvent induced morphologies of poly(methyl methacrylate-b-ethylene oxide-b-methyl methacrylate) triblock copolymers synthesized by ATRP were described. A micellar structure, composed of a hydrophobic PMMA core and a PEO shell was constructed for delivery of hydrophobic drugs. ATRP was carried out in inverse miniemulsion to prepare well defined functional nanogels that were capable of entrapping and releasing various molecules (Doxorubicin, carbohydrate-based drugs, fluorophores, and gold nanoparticles). The results demonstrated that nanogels prepared by ATRP in inverse miniemulsion could be internalized into cells via clathrin-mediated endocytosis. Nanogels functionalized with integrin-binding peptides increased cellular uptake. A process called Atom Transfer Radical Coupling (ATRC) was also described, which illustrated the power of functionality in ATRP. Finally, linear polymers and cross-linked nanogels were synthesized by ATRP and functionalized with biotin, pyrene, and peptide sequences, tying together the overall themes of structural control and functionality.

  20. Scavenging of free-radical metabolites of aniline xenobiotics and drugs by amino acid derivatives: toxicological implications of radical-transfer reactions.

    PubMed

    Michail, Karim; Baghdasarian, Argishti; Narwaley, Malyaj; Aljuhani, Naif; Siraki, Arno G

    2013-12-16

    We investigated a novel scavenging mechanism of arylamine free radicals by poly- and monoaminocarboxylates. Free radicals of arylamine xenobiotics and drugs did not react with oxygen in peroxidase-catalyzed reactions; however, they showed marked oxygen uptake in the presence of an aminocarboxylate. These free-radical intermediates were identified using the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) and electron paramagnetic resonance (EPR) spectrometry. Diethylenetriaminepentaacetic acid (DTPA), a polyaminocarboxylate, caused a concentration-dependent attenuation of N-centered radicals produced by the peroxidative metabolism of arylamines with the subsequent formation of secondary aliphatic carbon-centered radicals stemming from the cosubstrate molecule. Analogously, N,N-dimethylglycine (DMG) and N-methyliminodiacetate (MIDA), but not iminodiacetic acid (IDA), demonstrated a similar scavenging effect of arylamine-derived free radicals in a horseradish peroxidase/H2O2 system. Using human promyelocytic leukemia (HL-60) cell lysate as a model of human neutrophils, DTPA, MIDA, and DMG readily reduced anilinium cation radicals derived from the arylamines and gave rise to the corresponding carbon radicals. The rate of peroxidase-triggered polymerization of aniline was studied as a measure of nitrogen-radical scavenging. Although, IDA had no effect on the rate of aniline polymerization, this was almost nullified in the presence of DTPA and MIDA at half of the molar concentration of the aniline substrate, whereas a 20 molar excess of DMPO caused only a partial inhibition. Furthermore, the yield of formaldehyde, a specific reaction endproduct of the oxidation of aminocarboxylates by aniline free-radical metabolites, was quantitatively determined. Azobenzene, a specific reaction product of peroxidase-catalyzed free-radical dimerization of aniline, was fully abrogated in the presence of DTPA, as confirmed by GC/MS. Under aerobic conditions, a radical-transfer reaction is proposed between aminocarboxylates and arylamine free radicals via the carboxylic group-linked tertiary nitrogen of the deprotonated amino acid derivatives. These findings may have significant implications for the biological fate of arylamine xenobiotic and drug free-radical metabolites.

  1. Enhanced heterogeneous photo-Fenton process modified by magnetite and EDDS: BPA degradation.

    PubMed

    Huang, Wenyu; Luo, Mengqi; Wei, Chaoshuai; Wang, Yinghui; Hanna, Khalil; Mailhot, Gilles

    2017-04-01

    In this research, magnetite and ethylenediamine-N,N'-disuccinic acid (EDDS) are used in a heterogeneous photo-Fenton system in order to find a new way to remove organic contaminants from water. Influence of different parameters including magnetite dosage, EDDS concentration, H 2 O 2 concentration, and pH value were evaluated. The effect of different radical species including HO · and HO 2 · /O 2 ·- was investigated by addition of different scavengers into the system. The addition of EDDS improved the heterogeneous photo-Fenton degradation of bisphenol A (BPA) through the formation of photochemically efficient Fe-EDDS complex. This effect is dependent on the H 2 O 2 and EDDS concentrations and pH value. The high performance observed at pH 6.2 could be explained by the ability of O 2 ·- to generate Fe(II) from Fe(III) species reduction. GC-MS analysis suggested that the cleavage of the two benzene rings is the first degradation step followed by oxidation leading to the formation of the benzene derivatives. Then, the benzene ring was opened due to the attack of HO · radicals producing short-chain organic compounds of low molecular weight like glycerol and ethylene glycol. These findings regarding the capability of EDDS/magnetite system to promote heterogeneous photo-Fenton oxidation have important practical implications for water treatment technologies.

  2. Polyphosphoester-Camptothecin Prodrug with Reduction-Response Prepared via Michael Addition Polymerization and Click Reaction.

    PubMed

    Du, Xueqiong; Sun, Yue; Zhang, Mingzu; He, Jinlin; Ni, Peihong

    2017-04-26

    Polyphosphoesters (PPEs), as potential candidates for biocompatible and biodegradable polymers, play an important role in material science. Various synthetic methods have been employed in the preparation of PPEs such as polycondensation, polyaddition, ring-opening polymerization, and olefin metathesis polymerization. In this study, a series of linear PPEs has been prepared via one-step Michael addition polymerization. Subsequently, camptothecin (CPT) derivatives containing disulfide bonds and azido groups were linked onto the side chain of the PPE through Cu(I)-catalyzed azidealkyne cyclo-addition "click" chemistry to yield a reduction-responsive polymeric prodrug P(EAEP-PPA)-g-ss-CPT. The chemical structures were characterized by nuclear magnetic resonance spectroscopy, gel permeation chromatography, Fourier transform infrared, ultraviolet-visible spectrophotometer, and high performance liquid chromatograph analyses, respectively. The amphiphilic prodrug could self-assemble into micelles in aqueous solution. The average particle size and morphology of the prodrug micelles were measured by dynamic light scattering and transmission electron microscopy, respectively. The results of size change under different conditions indicate that the micelles possess a favorable stability in physiological conditions and can be degraded in reductive medium. Moreover, the studies of in vitro drug release behavior confirm the reduction-responsive degradation of the prodrug micelles. A methyl thiazolyl tetrazolium assay verifies the good biocompatibility of P(EAEP-PPA) not only for normal cells, but also for tumor cells. The results of cytotoxicity and the intracellular uptake about prodrug micelles further demonstrate that the prodrug micelles can efficiently release CPT into 4T1 or HepG2 cells to inhibit the cell proliferation. All these results show that the polyphosphoester-based prodrug can be used for triggered drug delivery system in cancer treatment.

  3. The role of living/controlled radical polymerization in the formation of improved imprinted polymers.

    PubMed

    Salian, Vishal D; Vaughan, Asa D; Byrne, Mark E

    2012-06-01

    In this work, living/controlled radical polymerization (LRP) is compared with conventional free radical polymerization in the creation of highly and weakly cross-linked imprinted poly(methacrylic acid-co-ethylene glycol dimethacrylate) networks. It elucidates, for the first time, the effect of LRP on the chain level and begins to explain why the efficiency of the imprinting process is improved using LRP. Imprinted polymers produced via LRP exhibited significantly higher template affinity and capacity compared with polymers prepared using conventional methods. The use of LRP in the creation of highly cross-linked imprinted polymers resulted in a fourfold increase in binding capacity without a decrease in affinity; whereas weakly cross-linked gels demonstrated a nearly threefold increase in binding capacity at equivalent affinity when LRP was used. In addition, by adjusting the double bond conversion, we can choose to increase either the capacity or the affinity in highly cross-linked imprinted polymers, thus allowing the creation of imprinted polymers with tailorable binding parameters. Using free radical polymerization in the creation of polymer chains, as the template-monomer ratio increased, the average molecular weight of the polymer chains decreased despite a slight increase in the double bond conversion. Thus, the polymer chains formed were shorter but greater in number. Using LRP neutralized the effect of the template. The addition of chain transfer agent resulted in slow, uniform, simultaneous chain growth, resulting in the formation of longer more monodisperse chains. Reaction analysis revealed that propagation time was extended threefold in the formation of highly cross-linked polymers when LRP techniques were used. This delayed the transition to the diffusion-controlled stage of the reaction, which in turn led to the observed enhanced binding properties, decreased polydispersity in the chains, and a more homogeneous macromolecular architecture. Copyright © 2012 John Wiley & Sons, Ltd.

  4. Reaction Paths and Chemical Activation Reactions of 2-Methyl-5-Furanyl Radical with 3O2.

    PubMed

    Hudzik, Jason M; Bozzelli, Joseph W

    2017-10-05

    Interest in high-energy substituted furans has been increasing due to their occurrence in biofuel production and their versatility in conversion to other useful products. Methylfurans are the simplest substituted furans and understanding their reaction pathways, thermochemical properties, including intermediate species stability, and chemical kinetics would aid in the study of larger furans. Furan ring C-H bonds have been shown to be extremely strong, approximately 120 kcal mol -1 , due in part to the placement of the oxygen atom and aromatic-like resonance, both within the ring. The thermochemistry and kinetics of the oxidation of 2-methyfuran radical at position 5 of the furan ring, 2-methyl-5-furanyl radical (2MF5j), is analyzed. The resulting chemically activated species, 2MF5OOj radical, has a well depth of 51 kcal mol -1 below the 2MF5j + O 2 reactants; this is 4-5 kcal mol -1 deeper than that of phenyl and vinyl radical plus O 2 , with both of these reactions known to undergo chain branching. Important, low-energy reaction pathways include chain branching dissociations, intramolecular abstractions, group transfers, and radical oxygen additions. Enthalpies of formation, entropies, and heat capacities for the stable molecules, radicals, and transition-state species are analyzed using computational methods. Calculated ΔH ° f 298 values were determined using an isodesmic work reaction from the CBS-QB3 composite method. Elementary rate parameters are from saddle point transition-state structures and compared to variational transition-state analysis for the barrierless reactions. Temperature- and pressure-dependent rate constants which are calculated using QRRK and master equation analysis is used for falloff and stabilization.

  5. Polymer-modified opal nanopores.

    PubMed

    Schepelina, Olga; Zharov, Ilya

    2006-12-05

    The surface of nanopores in opal films, assembled from 205 nm silica spheres, was modified with poly(acrylamide) brushes using surface-initiated atom transfer radical polymerization. The colloidal crystal lattice remained unperturbed by the polymerization. The polymer brush thickness was controlled by polymerization time and was monitored by measuring the flux of redox species across the opal film using cyclic voltammetry. The nanopore size and polymer brush thickness were calculated on the basis of the limiting current change. Polymer brush thickness increased over the course of 26 h of polymerization in a logarithmic manner from 1.3 to 8.5 nm, leading to nanopores as small as 7.5 nm.

  6. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization.

    PubMed

    Moraes, John; Ohno, Kohji; Maschmeyer, Thomas; Perrier, Sébastien

    2013-10-14

    Hybrid nanoparticles hold great promise for a range of applications such as drug-delivery vectors or colloidal crystal self-assemblies. The challenge of preparing highly monodisperse particles for these applications has recently been overcome by using living radical polymerization techniques. In particular, the use of reversible addition-fragmentation chain transfer (RAFT), initiated from silica surfaces, yields well-defined particles from a range of precursor monomers resulting in nanoparticles of tailored sizes that are accessible via the rational selection of polymerization conditions. Furthermore, using RAFT allows post-polymerization modification to afford multifunctional, monodisperse, nanostructures under mild and non-stringent reaction conditions.

  7. Well-Defined Macromolecules Using Horseradish Peroxidase as a RAFT Initiase.

    PubMed

    Danielson, Alex P; Bailey-Van Kuren, Dylan; Lucius, Melissa E; Makaroff, Katherine; Williams, Cameron; Page, Richard C; Berberich, Jason A; Konkolewicz, Dominik

    2016-02-01

    Enzymatic catalysis and control over macromolecular architectures from reversible addition-fragmentation chain transfer polymerization (RAFT) are combined to give a new method of making polymers. Horseradish peroxidase (HRP) is used to catalytically generate radicals using hydrogen peroxide and acetylacetone as a mediator. RAFT is used to control the polymer structure. HRP catalyzed RAFT polymerization gives acrylate and acrylamide polymers with relatively narrow molecular weight distributions. The polymerization is rapid, typically exceeding 90% monomer conversion in 30 min. Complex macromolecular architectures including a block copolymer and a protein-polymer conjugate are synthesized using HRP to catalytically initiate RAFT polymerization. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Polymerization Kinetics: Monitoring Monomer Conversion Using an Internal Standard and the Key Role of Sample "t[subscript 0]"

    ERIC Educational Resources Information Center

    Colombani, Olivier; Langelier, Ophelie; Martwong, Ekkachai; Castignolles, Patrice

    2011-01-01

    The use of an internal standard is a conventional and convenient way to monitor the conversion of one or several monomers during a controlled radical polymerization. However, the validity of this technique relies on an accurate determination of the initial monomer-to-internal standard ratio, A[subscript 0], because all subsequent calculations of…

  9. Surface water retardation around single-chain polymeric nanoparticles: critical for catalytic function?

    PubMed

    Stals, Patrick J M; Cheng, Chi-Yuan; van Beek, Lotte; Wauters, Annelies C; Palmans, Anja R A; Han, Songi; Meijer, E W

    2016-03-01

    A library of water-soluble dynamic single-chain polymeric nanoparticles (SCPN) was prepared using a controlled radical polymerisation technique followed by the introduction of functional groups, including probes at targeted positions. The combined tools of electron paramagnetic resonance (EPR) and Overhauser dynamic nuclear polarization (ODNP) reveal that these SCPNs have structural and surface hydration properties resembling that of enzymes.

  10. Sulfonated amphiphilic block copolymers : synthesis, self-assembly in water, and application as stabilizer in emulsion polymerization

    Treesearch

    Jiguang Zhang; Matthew R. Dubay; Carl J. Houtman; Steven J. Severtson

    2009-01-01

    Described is the synthesis of diblock copolymers generated via sequential atom transfer radical polymerization (ATRP) of poly(n-butyl acrylate) (PnBA) followed by chain augmentation with either sulfonated poly(2-hydroxyethyl methacrylate) (PHEMA) or poly(2-hydroxyethyl acrylate) (PHEA) blocks. ATRP of PHEMA or PHEA from PnBA macroinitiator was conducted in acetone/...

  11. Controlled aqueous polymerization of acrylamides and acrylates and "in situ" depolymerization in the presence of dissolved CO2.

    PubMed

    Lloyd, Danielle J; Nikolaou, Vasiliki; Collins, Jennifer; Waldron, Christopher; Anastasaki, Athina; Bassett, Simon P; Howdle, Steven M; Blanazs, Adam; Wilson, Paul; Kempe, Kristian; Haddleton, David M

    2016-05-05

    Aqueous copper-mediated radical polymerization of acrylamides and acrylates in carbonated water resulted in high monomer conversions (t < 10 min) before undergoing depolymerization (60 min > t > 10 min). The regenerated monomer was characterized and repolymerized following deoxygenation of the resulting solutions to reyield polymers in high conversions that exhibit low dispersities.

  12. First copper(II)-cyclophosphato complex with macrocyclic N-donor ligand: Single crystal structure elucidation with Hirshfeld surface analysis, optical, electrochemical and antioxidant properties

    NASA Astrophysics Data System (ADS)

    Hemissi, Hanène; Fezai, Ramzi; Mezni, Ali; Besbes-Hentati, Salma; Rzaigui, Mohamed

    2018-07-01

    From the system metal-cyclam-condensed phosphate is isolated the first complex of {(H3O+)2[Cu(II)(μ-P4O12)(cyclam)]}n(1). This complex was characterized by X-ray diffraction (XRD), spectroscopy (diffuse reflectance, UV-Vis and FT-IR) and thermal analysis (DTA/TGA). The solved molecular structure of 1 revealed one rare 1D-anionic polymeric copper(II)-complex, {[Cu(II)(μ-P4O12)(cyclam)]2-}n, involving two distinct ring ligands (cyclam / cyclotetraphosphate), in which a new coordination mode of the P4 O124- was observed. The counterions (H3O+) ensure the connection between 1D-polymers by acting as donor in a strong "charge-assisted" hydrogen bonds with P4O12 rings leading to 2D-supramolecular frameworks arranged in -A-B-A- fashion. The 2D-supramolecular network is stabilized by O/N-H…O interactions whereas the van der Waals contacts play a key role in the consolidation of the 3D packing as verified by Hirshfeld surface analysis in combination with 2D fingerprint plots. The biochemical properties of 1 was also evaluated via DDPH, ABTS, hydroxyl radical scavengers and ferric reducing power (FRP) showing promising antioxidant activities which has been clarified by means of the cyclic voltammetric study.

  13. Readily prepared biodegradable nanoparticles to formulate poorly water soluble drugs improving their pharmacological properties: The example of trabectedin.

    PubMed

    Capasso Palmiero, Umberto; Morosi, Lavinia; Bello, Ezia; Ponzo, Marianna; Frapolli, Roberta; Matteo, Cristina; Ferrari, Mariella; Zucchetti, Massimo; Minoli, Lucia; De Maglie, Marcella; Romanelli, Pierpaolo; Morbidelli, Massimo; D'Incalci, Maurizio; Moscatelli, Davide

    2018-04-28

    The improvement of the pharmacological profile of lipophilic drug formulations is one of the main successes achieved using nanoparticles (NPs) in medicine. However, the complex synthesis procedure and numerous post-processing steps hamper the cost-effective use of these formulations. In this work, an approach which requires only a syringe to produce self-assembling biodegradable and biocompatible poly(caprolactone)-based NPs is developed. The effective synthesis of monodisperse NPs has been made possible by the optimization of the block-copolymer synthesized via a combination of ring opening polymerization and reversible addition-fragmentation chain transfer polymerization. These NPs can be used to formulate lipophilic drugs that are barely soluble in water, such as trabectedin, a potent anticancer therapeutic. Its biodistribution and antitumor activity have been compared with the commercially available formulation Yondelis®. The results indicate that this trabectedin NP formulation performs with the same antitumor activity as Yondelis®, but does not have the drawback of severe local vascular toxicity in the injection site. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Light-responsive micelles of spiropyran initiated hyperbranched polyglycerol for smart drug delivery.

    PubMed

    Son, Suhyun; Shin, Eeseul; Kim, Byeong-Su

    2014-02-10

    Light-responsive polymeric micelles have emerged as site-specific and time-controlled systems for advanced drug delivery. Spiropyran (SP), a well-known photochromic molecule, was used to initiate the ring-opening multibranching polymerization of glycidol to afford a series of hyperbranched polyglycerols (SP-hb-PG). The micelle assembly and disassembly were induced by an external light source owing to the reversible photoisomerization of hydrophobic SP to hydrophilic merocyanine (MC). Transmission electron microscopy, atomic force microscopy, UV/vis spectroscopy, and dynamic light scattering demonstrated the successful assembly and disassembly of SP-hb-PG micelles. In addition, the critical micelle concentration (CMC) was determined through the fluorescence analysis of pyrene to confirm the amphiphilicity of respective SP-hb-PGn (n = 15, 29, and 36) micelles, with CMC values ranging from 13 to 20 mg/L, which is correlated to the length of the polar polyglycerol backbone. Moreover, the superior biocompatibility of the prepared SP-hb-PG was evaluated using WI-38 cells and HeLa cells, suggesting the prospective applicability of the micelles in smart drug delivery systems.

  15. Theoretical insights into the photo-protective mechanisms of natural biological sunscreens: building blocks of eumelanin and pheomelanin.

    PubMed

    Marchetti, Barbara; Karsili, Tolga N V

    2016-02-07

    Eumelanin (EM) and pheomelanin (PM) are ubiquitous in mammalian skin and hair--protecting against harmful radiation from the sun. Their primary roles are to absorb solar radiation and efficiently dissipate the excess excited state energy in the form of heat without detriment to the polymeric structure. EU and PM exist as polymeric chains consisting of exotic arrangements of functionalised heteroaromatic molecules. Here we have used state-of-the-art electronic structure calculations and on-the-fly surface hopping molecular dynamics simulations to study the intrinsic deactivation paths of various building blocks of EU and PM. Ultrafast excited state decay, via electron-driven proton transfer (in EU and PM) and proton-transfer coupled ring-opening (in PM) reactions, have been identified to proceed along hitherto unknown charge-separated states in EU and PM oligomers. These results shed light on the possible relaxation pathways that dominate the photochemistry of natural skin melanins. Extrapolation of such findings could provide a gateway into engineering more effective molecular constituents in commercial sunscreens--with reduced phototoxicity.

  16. Acrylonitrile-Butadiene Rubber (NBR) Prepared via Living/Controlled Radical Polymerization (RAFT).

    PubMed

    Kaiser, Andreas; Brandau, Sven; Klimpel, Michael; Barner-Kowollik, Christopher

    2010-09-15

    In the current work we present results on the controlled/living radical copolymerization of acrylonitrile (AN) and 1,3-butadiene (BD) via reversible addition fragmentation chain transfer (RAFT) polymerization techniques. For the first time, a solution polymerization process for the synthesis of nitrile butadiene rubber (NBR) via the use of dithioacetate and trithiocarbonate RAFT agents is described. It is demonstrated that the number average molar mass, $\\overline M _{\\rm n} $, of the NBR can be varied between a few thousand and 60 000 g · mol(-1) with polydispersities between 1.2 and 2.0 (depending on the monomer to polymer conversion). Excellent agreement between the experimentally observed and the theoretically expected molar masses is found. Detailed information on the structure of the synthesized polymers is obtained by variable analytical techniques such as infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, differential scanning calorimetry, and electrospray ionization-mass spectrometry (ESI-MS). Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Preparation of polystyrene brush film by radical chain-transfer polymerization and micromechanical properties

    NASA Astrophysics Data System (ADS)

    Zhao, Jing; Chen, Miao; An, Yanqing; Liu, Jianxi; Yan, Fengyuan

    2008-12-01

    A radical chain-transfer polymerization technique has been applied to graft-polymerize brushes of polystyrene (PSt) on single-crystal silicon substrates. 3-Mercapto-propyltrimethoxysilane (MPTMS), as a chain-transfer agent for grafting, was immobilized on the silicon surface by a self-assembling process. The structure and morphology of the graft-functionalized silicon surfaces were characterized by the means of contact-angle measurement, ellipsometric thickness measurement, Fourier transformation infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The nanotribological and micromechanical properties of the as-prepared polymer brush films were investigated by frictional force microscopy (FFM), force-volume analysis and scratch test. The results indicate that the friction properties of the grafted polymer films can be improved significantly by the treatment of toluene, and the chemically bonded polystyrene film exhibits superior scratch resistance behavior compared with the spin-coated polystyrene film. The resultant polystyrene brush film is expected to develop as a potential lubrication coating for microelectromechanical systems (MEMS).

  18. pH dependent antioxidant activity of lettuce (L. sativa) and synergism with added phenolic antioxidants.

    PubMed

    Altunkaya, Arzu; Gökmen, Vural; Skibsted, Leif H

    2016-01-01

    Influence of pH on the antioxidant activities of combinations of lettuce extract (LE) with quercetin (QC), green tea extract (GTE) or grape seed extract (GSE) was investigated for both reduction of Fremy's salt in aqueous solution using direct electron spin resonance (ESR) spectroscopy and in L-α-phosphatidylcholine liposome peroxidation assay measured following formation of conjugated dienes. All examined phenolic antioxidants showed increasing radical scavenging effect with increasing pH values by using both methods. QC, GTE and GSE acted synergistically in combination with LE against oxidation of peroxidating liposomes and with QC showing the largest effect. The pH dependent increase of the antioxidant activity of the phenols is due to an increase of their electron-donating ability upon deprotonation and to their stabilization in alkaline solutions leading to polymerization reaction. Such polymerization reactions of polyphenolic antioxidants can form new oxidizable -OH moieties in their polymeric products resulting in a higher radical scavenging activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization

    DOE PAGES

    Neti, Venkata S.; Das, Sadananda; Brown, Suree; ...

    2017-08-29

    Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less

  20. Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neti, Venkata S.; Das, Sadananda; Brown, Suree

    Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g-U/kg of adsorbent) in laboratory screening testsmore » using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. Here, the modest capacity in 21-days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less

  1. Efficient Functionalization of Polyethylene Fibers for the Uranium Extraction from Seawater through Atom Transfer Radical Polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neti, Venkata S.; Das, Sadananda; Brown, Suree

    Brush-on-brush structures are proposed as one method to overcome support effects in grafted polymers. Utilizing glycidyl methacrylate (GMA) grafted on polyethylene (PE) fibers using radiation-induced graft polymerization (RIGP) provides a hydrophilic surface on the hydrophobic PE. When integrated with atom transfer radical polymerization (ATRP), the grafting of acrylonitrile (AN) and hydroxyethyl acrylate (HEA) can be controlled and manipulated more easily than with RIGP. Poly(acrylonitrile)-co-poly(hydroxyethyl acrylate) chains were grown via ATRP on PE-GMA fibers to generate an adsorbent for the extraction of uranium from seawater. The prepared adsorbents in this study demonstrated promise (159.9 g- U/kg of adsorbent) in laboratory screeningmore » tests using a high uranium concentration brine and 1.24 g-U/Kg of adsorbent in the filtered natural seawater in 21-days. The modest capacity in 21- days exceeds previous efforts to generate brush-on-brush adsorbents by ATRP while manipulating the apparent surface hydrophilicity of the trunk material (PE).« less

  2. End-group-functionalized poly(N,N-diethylacrylamide) via free-radical chain transfer polymerization: Influence of sulfur oxidation and cyclodextrin on self-organization and cloud points in water

    PubMed Central

    Reinelt, Sebastian; Steinke, Daniel

    2014-01-01

    Summary In this work we report the synthesis of thermo-, oxidation- and cyclodextrin- (CD) responsive end-group-functionalized polymers, based on N,N-diethylacrylamide (DEAAm). In a classical free-radical chain transfer polymerization, using thiol-functionalized 4-alkylphenols, namely 3-(4-(1,1-dimethylethan-1-yl)phenoxy)propane-1-thiol and 3-(4-(2,4,4-trimethylpentan-2-yl)phenoxy)propane-1-thiol, poly(N,N-diethylacrylamide) (PDEAAm) with well-defined hydrophobic end-groups is obtained. These end-group-functionalized polymers show different cloud point values, depending on the degree of polymerization and the presence of randomly methylated β-cyclodextrin (RAMEB-CD). Additionally, the influence of the oxidation of the incorporated thioether linkages on the cloud point is investigated. The resulting hydrophilic sulfoxides show higher cloud point values for the lower critical solution temperature (LCST). A high degree of functionalization is supported by 1H NMR-, SEC-, FTIR- and MALDI–TOF measurements. PMID:24778720

  3. Signal amplification strategies for DNA and protein detection based on polymeric nanocomposites and polymerization: A review.

    PubMed

    Zhou, Shaohong; Yuan, Liang; Hua, Xin; Xu, Lingling; Liu, Songqin

    2015-06-02

    Demand is increasing for ultrasensitive bioassays for disease diagnosis, environmental monitoring and other research areas. This requires novel signal amplification strategies to maximize the signal output. In this review, we focus on a series of significant signal amplification strategies based on polymeric nanocomposites and polymerization. Some common polymers are used as carriers to increase the local concentration of signal probes and/or biomolecules on their surfaces or in their interiors. Some polymers with special fluorescence and optical properties can efficiently transfer the excitation energy from a single site to the whole polymer backbone. This results in superior fluorescence signal amplification due to the resulting collective effort (integration of signal). Recent polymerization-based signal amplification strategies that employ atom transfer radical polymerization (ATRP) and photo-initiated polymerization are also summarized. Several distinctive applications of polymers in ultrasensitive bioanalysis are highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Free-radical concentrations and other properties of pile-irradiated coals

    USGS Publications Warehouse

    Friedel, R.A.; Breger, I.A.

    1959-01-01

    Five coals reacted quite differently when they were exposed to pile-irradiation. Little or no change was found in free-radical content for the three coals of lowest carbon content, whereas the two coals of highest carbon content were found to have a considerable increase in free-radical content. The infrared spectra and the apparent hardness of the irradiated coals of higher carbon content indicate that polymerization occurred. Radiation of these coals in chemical reagents may promote reactivity.

  5. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  6. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.

    PubMed

    Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan

    2013-12-01

    The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  7. Applicability of samarium(III) complexes for the role of luminescent molecular sensors for monitoring progress of photopolymerization processes and control of the thickness of polymer coatings

    NASA Astrophysics Data System (ADS)

    Topa, Monika; Ortyl, Joanna; Chachaj-Brekiesz, Anna; Kamińska-Borek, Iwona; Pilch, Maciej; Popielarz, Roman

    2018-06-01

    Applicability of 15 trivalent samarium complexes as novel luminescent probes for monitoring progress of photopolymerization processes or thickness of polymer coatings by the Fluorescence Probe Technique (FPT) was studied. Three groups of samarium(III) complexes were evaluated in cationic photopolymerization of triethylene glycol divinyl ether monomer (TEGDVE) and free-radical photopolymerization of trimethylolpropane triacrylate (TMPTA). The complexes were the derivatives of tris(4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate)samarium(III), tris(4,4,4-trifluoro-1-phenyl-1,3-butanedionate)samarium(III) and tris(4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedionate)samarium(III), which were further coordinated with auxiliary ligands, such as 1,10-phenanthroline, triphenylphosphine oxide, tributylphosphine oxide and trioctylphosphine oxide. It has been found that most of the complexes studied are sensitive enough to be used as luminescent probes for monitoring progress of cationic photopolymerization of vinyl ether monomers over entire range of monomer conversions. In the case of free-radical polymerization processes, the samarium(III) complexes are not sensitive enough to changes of microviscosity and/or micropolarity of the medium, so they cannot be used to monitor progress of the polymerization. However, high stability of luminescence intensity of some of these complexes under free-radical polymerization conditions makes them good candidates for application as thickness sensors for polymer coatings prepared by free-radical photopolymerization. A quantitative relationship between a coating thickness and the luminescence intensity of the samarium(III) probes has been derived and verified experimentally within a broad range of the thicknesses.

  8. pH responsiveness of dendrimer-like poly(ethylene oxide)s.

    PubMed

    Feng, Xiaoshuang; Taton, Daniel; Borsali, Redouane; Chaikof, Elliot L; Gnanou, Yves

    2006-09-06

    Poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA), two polymers known to form pH-sensitive aggregates through noncovalent interactions, were assembled in purposely designed architecture -a dendrimer-like PEO scaffold carrying short inner PAA chains-to produce unimolecular systems that exhibit pH responsiveness. Because of the particular placement of the PAA chains within the dendrimer-like structure, intermolecular complexation between acrylic acid (AA) and ethylene oxide (EO) units-and thus macroscopic aggregation or even mesoscopic micellization-could be avoided in favor of the sole intramolecular complexation. The sensitivity of such interactions to pH was exploited to generate dendrimer-like PEOs that reversibly shrink and expand with the pH. Such PAA-carrying dendrimer-like PEOs were synthesized in two main steps. First, a fifth-generation dendrimer-like PEO was obtained by combining anionic ring-opening polymerization (AROP) of ethylene oxide from a tris-hydroxylated core and selective branching reactions of PEO chain ends. To this end, an AB(2)C-type branching agent was designed: the latter includes a chloromethyl (A) group for its covalent attachment to the arm ends, two geminal hydroxyls (B(2)) protected in the form of a ketal ring for the growth of subsequent PEO generations by AROP, and a vinylic (C) double bonds for further functionalization of the interior of dendrimer-like PEOs. Reiteration of AROP and derivatization of PEO branches allowed us to prepare a dendrimer-like PEO of fourth generation with a total molar mass of 52,000 g x mol(-1), containing 24 external hydroxyl functions and 21 inner vinylic groups in the interior. A fifth generation of PEO chains was generated from this parent dendrimer-like PEO of fourth generation using a "conventional" AB(2)-type branching agent, and 48 PEO branches could be grown by AROP. The 48 outer hydroxy-end groups of the fifth-generation dendrimer-like PEO obtained were subsequently quantitatively converted into inert benzylic groups using benzyl bromide. The 21 internal vinylic groups carried by the PEO scaffold were then chemically modified in a two-step sequence into bromoester groups. The latter which are atom transfer radical polymerization (ATRP) initiating sites thus served to grow poly(tert-butylacrylate) chains. After a final step of hydrolysis of the tert-butyl ester groups, double, hydrophilic, dendrimer-like PEOs comprising 21 internal junction-attached poly(acrylic acid) (PAA) blocks could be obtained. Dynamic light scattering was used to determine the size of these dendrimer-like species in water and to investigate their response to pH variation: in particular, how the pH-sensitive complexation of EO and AA units affects their overall behavior.

  9. Influence of Bridgehead Substitution and Ring Annelation on the Photophysical Properties of Polycyclic DBO-Type Azoalkanes.

    PubMed

    Adam, Waldemar; Nikolaus, Achim; Sauer, Jürgen

    1999-05-14

    The photophysical data for the polycyclic, bridgehead-substituted derivatives 1-10 of the photoreluctant diazabicyclo[2.2.2]oct-2-ene (DBO) are presented. Substitution on the bridgehead positions with radical-stabilizing substituents enhances the photoreactivity (Phi(r)) and decreases the fluorescence quantum yields (Phi(f)) and lifetimes (tau) compared to the parent DBO. The annelated rings have no influence on the photoreactivity, except when steric interactions with an alpha substituent hinder the optimal radical-stabilizing conformation. The fused rings and some of the bridgehead substituents reduce the solvent-induced quenching of the singlet-excited azo chromophore by steric shielding of the azo group and, thus, increase the fluorescence quantum yields and lifetimes.

  10. Composition and method of preparation of solid state dye laser rods

    DOEpatents

    Hermes, Robert E.

    1992-01-01

    The present invention includes solid polymeric-host laser rods prepared using bulk polymerization of acrylic acid ester comonomers which, when admixed with dye(s) capable of supporting laser oscillation and polymerized with a free radical initiator under mild thermal conditions, produce a solid product having the preferred properties for efficient lasing. Unsaturated polymerizable laser dyes can also be employed as one of the comonomers. Additionally, a method is disclosed which alleviates induced optical stress without having to anneal the polymers at elevated temperatures (>85.degree. C.).

  11. Survey Study of Trunk Materials for Direct ATRP Grafting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Tomonori; Chatterjee, Sabornie; Johnson, Joseph C.

    2015-02-01

    In previous study, we demonstrated a new method to prepare polymeric fiber adsorbents via a chemical-grafting method, namely atom-transfer radical polymerization (ATRP), and identified parameters affecting their uranium adsorption capacity. However, ATRP chemical grafting in the previous study still utilized conventional radiation-induced graft polymerization (RIGP) to introduce initiation sites on fibers. Therefore, the objective of the present study is to perform survey study of trunk fiber materials for direct ATRP chemical grafting method without RIGP for the preparation of fiber adsorbents for uranium recovery from seawater.

  12. Real-time monitoring of surface-initiated atom transfer radical polymerization using silicon photonic microring resonators: implications for combinatorial screening of polymer brush growth conditions.

    PubMed

    Limpoco, F Ted; Bailey, Ryan C

    2011-09-28

    We directly monitor in parallel and in real time the temporal profiles of polymer brushes simultaneously grown via multiple ATRP reaction conditions on a single substrate using arrays of silicon photonic microring resonators. In addition to probing relative polymerization rates, we show the ability to evaluate the dynamic properties of the in situ grown polymers. This presents a powerful new platform for studying modified interfaces that may allow for the combinatorial optimization of surface-initiated polymerization conditions.

  13. In Situ Monitoring of RAFT Polymerization by Tetraphenylethylene-Containing Agents with Aggregation-Induced Emission Characteristics.

    PubMed

    Liu, Shunjie; Cheng, Yanhua; Zhang, Haoke; Qiu, Zijie; Kwok, Ryan T K; Lam, Jacky W Y; Tang, Ben Zhong

    2018-05-22

    A facile and efficient approach is demonstrated to visualize the polymerization in situ. A group of tetraphenylethylene (TPE)-containing dithiocarbamates were synthesized and screened as agents for reversible addition fragmentation chain transfer (RAFT) polymerizations. The spatial-temporal control characteristics of photochemistry enabled the RAFT polymerizations to be ON and OFF on demand under alternating visible light irradiation. The emission of TPE is sensitive to the local viscosity change owing to its aggregation-induced emission characteristic. Quantitative information could be easily acquired by the naked eye without destroying the reaction system. Furthermore, the versatility of such a technique was well demonstrated by 12 different polymerization systems. The present approach thus demonstrated a powerful platform for understanding the controlled living radical polymerization process. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Hu; D Samanta; S Parelkar

    Controlled free radical polymerization chemistry is used to graft polymer chains to the corona of horse spleen ferritin (HSF) nanocages. Specifically, poly(methacryloyloxyethyl phosphorylcholine) (polyMPC) and poly(PEG methacrylate) (polyPEGMA) chains are grafted onto the nanocages by atom transfer radical polymerization (ATRP), in which the molecular weight of the polymer grafts is controlled by the monomer-to-initiator feed ratio. PolyMPC and polyPEGMA-grafted ferritin show a generally suppressed inclusion into diblock copolymer films relative to native ferritin, and the polymer coating is seen to mask the ferritin nanocages from antibody recognition. The solubility of polyPEGMA-coated ferritin in organic solvents enables its processing with polystyrene-block-poly(ethylenemore » oxide) copolymers, and selective integration into the PEO domains of microphase-separated copolymer structures.« less

  15. Surface modification of boron nitride nanosheets by polyelectrolytes via atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Wu, Yuanpeng; Guo, Meiling; Liu, Guanfei; Xue, Shishan; Xia, Yuanmeng; Liu, Dan; Lei, Weiwei

    2018-04-01

    In this study, the surface modification of boron nitride nanosheets (BNNSs) with poly 2-acrylamido-2-methyl- propanesulfonate (PAMPS) brushes is achieved through electron transfer atom transfer radical polymerization (ARGET ATRP). BNNSs surface was first modified with α-bromoisobutyryl bromide (BIBB) via hydroxyl groups, then PAMPS brushes were grown on the surface through ARGET ATRP. Polyelectrolyte brushes modified BNNSs were further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyses (TGA), x-ray powder diffraction (XRD) and scanning electron microscopy (SEM). The concentraction of water-dispersion of BNNSs have been enhanced significantly by PAMPS and the high water-dispersible functional BNNSs/PAMPS composites are expected to have potential applications in biomedical and thermal management in electronics.

  16. Capillary electrochromatography of inorganic cations in open tubular columns with a controllable capacity multilayered stationary phase architecture.

    PubMed

    Kubán, Pavel; Kubán, Petr; Kubán, Vlastimil; Hauser, Peter C; Bocek, Petr

    2008-05-09

    In this paper capillary electrochromatography of alkali and alkaline-earth metal cations in open tubular capillary columns is described. Capillary columns are prepared by coating fused silica capillaries of 75 microm I.D. with poly(butadiene-maleic acid) copolymer (PBMA) in multiple layers. Thermally initiated radical polymerization is used to crosslink the stationary phase. Capillary columns with different number of stationary phase layers can be prepared and allow for the adjustment of separation selectivity in the electrochromatographic mode. Fast and sensitive separations of common inorganic cations are achieved in less than 6 min in a 60 cm capillary column with on-column capacitively coupled contactless conductivity detector. Limits of detection (S/N=3) for the determination of alkali and alkaline-earth metal cations range from 0.3 to 2.5 microM and repeatability is better than 0.5, 4.5 and 6.1% for migration times, peak heights and peak areas, respectively.

  17. Evidence for Dynamic Chemical Kinetics at Individual Molecular Ruthenium Catalysts.

    PubMed

    Easter, Quinn T; Blum, Suzanne A

    2018-02-05

    Catalytic cycles are typically depicted as possessing time-invariant steps with fixed rates. Yet the true behavior of individual catalysts with respect to time is unknown, hidden by the ensemble averaging inherent to bulk measurements. Evidence is presented for variable chemical kinetics at individual catalysts, with a focus on ring-opening metathesis polymerization catalyzed by the second-generation Grubbs' ruthenium catalyst. Fluorescence microscopy is used to probe the chemical kinetics of the reaction because the technique possesses sufficient sensitivity for the detection of single chemical reactions. Insertion reactions in submicron regions likely occur at groups of many (not single) catalysts, yet not so many that their unique kinetic behavior is ensemble averaged. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Poly(ε-caprolactone) decorated with one room-temperature red-emitting ruthenium(II) complex: synthesis, characterization, thermal and optical properties.

    PubMed

    Schulze, Marcus; Jäger, Michael; Schubert, Ulrich S

    2012-04-13

    The incorporation of room-temperature red-emissive [Ru(II)(dqp)(dqp-CH(2) OH)](2+) (dqp is 2,6-di(quinolin-8-yl)pyridine) in poly(ε-caprolactone) (PCL) is explored following two routes. First, the ring-opening polymerization of ε-caprolactone is investigated using the free ligand and the complex as initiators. Alternatively, the complexation strategy utilizing PCL-dqp as a macroligand is detailed. Both routes yield room-temperature emissive polymers centered at 400 nm (free ligand) and 680 nm (complex) in aerated solvent. DSC and TGA showed the typical properties of PCL, for example, the melting point (59 °C). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Labelling Polymers and Micellar Nanoparticles via Initiation, Propagation and Termination with ROMP

    PubMed Central

    Thompson, Matthew P.; Randolph, Lyndsay M.; James, Carrie R.; Davalos, Ashley N.; Hahn, Michael E.

    2014-01-01

    In this paper we compare and contrast three approaches for labelling polymers with functional groups via ring-opening metathesis polymerization (ROMP). We explored the incorporation of functionality via initiation, termination and propagation employing an array of novel initiators, termination agents and monomers. The goal was to allow the generation of selectively labelled and well-defined polymers that would in turn lead to the formation of labelled nanomaterials. Norbornene analogues, prepared as functionalized monomers for ROMP, included fluorescent dyes (rhodamine, fluorescein, EDANS, and coumarin), quenchers (DABCYL), conjugatable moieties (NHS esters, pentafluorophenyl esters), and protected amines. In addition, a set of symmetrical olefins for terminally labelling polymers, and for the generation of initiators in situ is described. PMID:24855496

  20. Synthesis and properties of amphiphilic hyperbranched polyethers as pigment dispersant

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Zhou, Y. J.; Long, S. J.; Liu, Y. G.; Li, J. H.

    2018-01-01

    Hyperbranched polymers possess prominent properties such as low viscosity, good solubility, high rheological property, environmental non-toxic, and so on, which have potential applications in coatings. In this study, the amphiphilic hyperbranched polyethers (AHPs) consisting of hydrophobic hyperbranched polyethers core and hydrophilic poly (ethylene glycol) arms with different degree of branching (DB) under various reaction temperatures was prepared by the cation ring-opening polymerization. Their structures were characterized by IR, 13CNMR and GPC. Their dispersion properties for pigment particles were investigated. The AHP47 with 0.47 DB was found to have good dispersion properties for Yellow HGR. This work would provide experimental data and theoretical foundation for the application of hyperbranched polyethers in environmental protection coating.

  1. Facially Amphipathic Glycopolymers Inhibit Ice Recrystallization.

    PubMed

    Graham, Ben; Fayter, Alice E R; Houston, Judith E; Evans, Rachel C; Gibson, Matthew I

    2018-05-02

    Antifreeze glycoproteins (AFGPs) from polar fish are the most potent ice recrystallization (growth) inhibitors known, and synthetic mimics are required for low-temperature applications such as cell cryopreservation. Here we introduce facially amphipathic glycopolymers that mimic the three-dimensional structure of AFGPs. Glycopolymers featuring segregated hydrophilic and hydrophobic faces were prepared by ring-opening metathesis polymerization, and their rigid conformation was confirmed by small-angle neutron scattering. Ice recrystallization inhibition (IRI) activity was reduced when a hydrophilic oxo-ether was installed on the glycan-opposing face, but significant activity was restored by incorporating a hydrophobic dimethylfulvene residue. This biomimetic strategy demonstrates that segregated domains of distinct hydrophilicity/hydrophobicity are a crucial motif to introduce IRI activity, which increases our understanding of the complex ice crystal inhibition processes.

  2. The effect of simulated low earth orbit radiation on polyimides (UV degradation study)

    NASA Technical Reports Server (NTRS)

    Forsythe, John S.; George, Graeme A.; Hill, David J. T.; Odonnell, James H.; Pomery, Peter J.; Rasoul, Firas A.

    1995-01-01

    UV degradation of polyimide films in air and vacuum were studied using UV-visible, ESR, FTIR, and XPS spectroscopies. The UV-visible spectra of polyimide films showed a blue shift in the absorption compared to Kapton. This behavior was attributed to the presence of bulky groups and kinks along the polymer chains which disrupt the formation of a charge transfer complex. The UV-visible spectra showed also that UV irradiation of polyimides result extensively in surface degradation, leaving the bulk of the polymer intact. ESR spectra of polyimides irradiated in vacuum revealed the formation of stable carbon-centered radicals which give a singlet ESR spectrum, while polyimides irradiated in air produced an asymmetric signal shifted to a lower magnetic field, with a higher g value and line width. This signal was attributed to oxygen-cenetered radicals of peroxy and/or alkoxy type. The rate of radical formation in air was two fold higher than for vacuum irradiation, and reached a plateau after a short time. This suggests a continuous depletion of radicals on the surface via an ablative degradation process. FTIR, XPS, and weight loss studies supported this postulate. An XPS study of the surface indicated a substantial increase in the surface oxidation after irradiation in air. The sharp increase in the C-O binding energy peak relative to the C-C peak was believed to be associated with an aromatic ring opening reaction.

  3. Mechanistic Study on Electronic Excitation Dissociation of the Cellobiose-Na+ Complex

    NASA Astrophysics Data System (ADS)

    Huang, Yiqun; Pu, Yi; Yu, Xiang; Costello, Catherine E.; Lin, Cheng

    2016-02-01

    The recent development of electron activated dissociation (ExD) techniques has opened the door for high-throughput, detailed glycan structural elucidation. Among them, ExD methods employing higher-energy electrons offer several advantages over low-energy electron capture dissociation (ECD), owing to their applicability towards chromophore-labeled glycans and singly charged ions, and ability to provide more extensive structural information. However, a lack of understanding of these processes has hindered rational optimization of the experimental conditions for more efficient fragmentation as well as the development of informatics tools for interpretation of the complex glycan ExD spectra. Here, cellobiose-Na+ was used as the model system to investigate the fragmentation behavior of metal-adducted glycans under irradiation of electrons with energy exceeding their ionization potential, and served as the basis on which a novel electronic excitation dissociation (EED) mechanism was proposed. It was found that ionization of the glycan produces a mixture of radical cations and ring-opened distonic ions. These distonic ions then capture a low-energy electron to produce diradicals with trivial singlet-triplet splitting, and subsequently undergo radical-induced dissociation to produce a variety of fragment ions, the abundances of which are influenced by the stability of the distonic ions from which they originate.

  4. Multichannel silicon WDM ring filters fabricated with DUV lithography

    NASA Astrophysics Data System (ADS)

    Lee, Jong-Moo; Park, Sahnggi; Kim, Gyungock

    2008-09-01

    We have fabricated 9-channel silicon wavelength-division-multiplexing (WDM) ring filters using 193 nm deep-ultraviolet (DUV) lithography and investigated the spectral properties of the ring filters by comparing the transmission spectra with and without an upper cladding. The average channel-spacing of the 9-channel WDM ring filter with a polymeric upper cladding is measured about 1.86 nm with the standard deviation of the channel-spacing about 0.34 nm. The channel crosstalk is about -30 dB, and the minimal drop loss is about 2 dB.

  5. Presidential Green Chemistry Challenge: 2009 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2009 award winner, Professor Krzysztof Matyjaszewski, developed Atom Transfer Radical Polymerization to make polymers with copper catalysts and environmentally friendly reducing agents.

  6. Functionalized Nano and Micro Structured Composite Coatings

    DTIC Science & Technology

    2011-06-01

    created. Contact angles for water, hexadecane and warfare simulants (tributyl phosphate (TBP), methyl salicylate (MS) and 2-chloroethyl ethyl sulfide... methyl salicylate PAA-POEGMA polyacrylic acid-co-poly(oligoethylene glycol methacrylate) PBMA poly(butyl methacrylate) PD-TDES commercial mixture of...polymerized radically (according to a procedure published elsewhere1) to give PGMA, Mn = 300,000 kDa, PDI = 2. The polymerization was carried out in methyl

  7. Hydrocarbon polymeric binder for advanced solid propellant

    NASA Technical Reports Server (NTRS)

    Potts, J. E. (Editor); Ashcraft, A. C., Jr.; Wise, E. W.

    1971-01-01

    The results of curing vinyl alcohol terpolymers of ethylene, propylene and vinyl acetate are reported for an average functionality of 1.24 when reacted with an equivalent amount of diisocynate, and saturated polyisoprene derivative is described having terminal methyl ester functionality. The development is reported of two hydroxy-telechelic polyisoprenes prepared by DEAB initiated free radical polymerization followed by LiAlH4 reduction of the end groups.

  8. Nosiheptide Biosynthesis Featuring a Unique Indole Side Ring Formation on the Characteristic Thiopeptide Framework

    PubMed Central

    Yu, Yi; Duan, Lian; Zhang, Qi; Liao, Rijing; Ding, Ying; Pan, Haixue; Wendt-Pienkowski, Evelyn; Tang, Gongli; Shen, Ben; Liu, Wen

    2009-01-01

    Nosiheptide (NOS), belonging to the e series of thiopeptide antibiotics that exhibit potent activity against various bacterial pathogens, bears a unique indole side ring system and regiospecific hydroxyl groups on the characteristic macrocyclic core. Here, cloning, sequencing and characterization of the nos gene cluster from Streptomyces actuosus ATCC 25421 as a model for this series of thiopeptides has unveiled new insights into their biosynthesis. Bioinformatics-based sequence analysis and in vivo investigation into the gene functions show that NOS biosynthesis shares a common strategy with recently characterized b or c series thiopeptides for forming the characteristic macrocyclic core, which features a ribosomally synthesized precursor peptide with conserved posttranslational modifications. However, it apparently proceeds via a different route for tailoring the thiopeptide framework, allowing the final product to exhibit the distinct structural characteristics of e series thiopeptides, such as the indole side ring system. Chemical complementation supports the notion that the S-adenosylmethionine (AdoMet)-dependent protein NosL may play a central role in converting Trp to the key 3-methylindole moiety by an unusual carbon side chain rearrangement, most likely via a radical-initiated mechanism. Characterization of the indole side ring-opened analog of NOS from the nosN mutant strain is consistent with the proposed methyltransferase activity of its encoded protein, shedding light into the timing of the individual steps for indole side ring biosynthesis. These results also suggest the feasibility of engineering novel thiopeptides for drug discovery by manipulating the NOS biosynthetic machinery. PMID:19678698

  9. Polymer-Based Black Phosphorus (bP) Hybrid Materials by in Situ Radical Polymerization: An Effective Tool To Exfoliate bP and Stabilize bP Nanoflakes

    PubMed Central

    2018-01-01

    Black phosphorus (bP) has been recently investigated for next generation nanoelectronic multifunctional devices. However, the intrinsic instability of exfoliated bP (the bP nanoflakes) toward both moisture and air has so far overshadowed its practical implementation. In order to contribute to fill this gap, we report here the preparation of new hybrid polymer-based materials where bP nanoflakes (bPn) exhibit a significantly improved stability. The new materials have been prepared by different synthetic paths including: (i) the mixing of conventionally liquid-phase exfoliated bP (in dimethyl sulfoxide, DMSO) with poly(methyl methacrylate) (PMMA) solution; (ii) the direct exfoliation of bP in a polymeric solution; (iii) the in situ radical polymerization after exfoliating bP in the liquid monomer (methyl methacrylate, MMA). This last methodology concerns the preparation of stable suspensions of bPn–MMA by sonication-assisted liquid-phase exfoliation (LPE) of bP in the presence of MMA followed by radical polymerization. The hybrids characteristics have been compared in order to evaluate the bP dispersion and the effectiveness of the bPn interfacial interactions with polymer chains aimed at their long-term environmental stabilization. The passivation of the bPn is particularly effective when the hybrid material is prepared by in situ polymerization. By using this synthetic methodology, the nanoflakes, even if with a gradient of dispersion (size of aggregates), preserve their chemical structure from oxidation (as proved by both Raman and 31P-solid state NMR studies) and are particularly stable to air and UV light exposure. The feasibility of this approach, capable of efficiently exfoliating bP while protecting the bPn, has been then verified by using different vinyl monomers (styrene and N-vinylpyrrolidone), thus obtaining hybrids where the nanoflakes are embedded in polymer matrices with a variety of intriguing thermal, mechanical, and solubility characteristics.

  10. Artificial Informational Polymers and Nanomaterials from Ring-Opening Metathesis Polymerization

    NASA Astrophysics Data System (ADS)

    James, Carrie Rae

    Inspired by naturally occurring polymers (DNA, polypeptides, polysaccharides, etc.) that can self-assemble on the nanoscale into complex, information-rich architectures, we have synthesized nucleic acid based polymers using ROMP. These polymers were synthesized using a graft-through strategy, whereby nucleic acids bearing a strained cyclic olefin were directly polymerized. This is the first example of the graft-through polymerization of nucleic acids. Our approach takes advantage of non-charged peptide nucleic acids (PNAs) as elements to incorporate into ROMP polymer backbones. PNA is a synthetic nucleic acid analogue known for its increased affinity and specificity for complementary DNA or RNA. To accomplish the graft-through polymerization of PNA, we conjugated PNA to strained cyclic olefins using solid phase peptide conjugation chemistry. These PNA monomers were then directly polymerized into homo and block copolymers forming brushes, or comb-like arrangements, of information. Block copolymer amphiphiles of these materials, where the PNA brush served as the hydrophilic portion, were capable of self-assembly into spherical nanoparticles (PNA NPs). These PNA NPs were then studied with respect to their ability to hybridize complementary DNA sequences, as well as their ability to undergo cellular internalization. PNA NPs consisting of densely packed brushes of nucleic acids possessed increased thermal stability when mixed with their complementary DNA sequence, indicating a greater DNA binding affinity over their unpolymerized PNA counterparts. In addition, by arranging the PNA into dense brushes at the surface of the nanoparticle, Cy5.5 labeled PNA NPs were able to undergo cellular internalization into HeLa cells without the need for an additional cellular delivery device. Importantly, cellular internalization of PNA has remained a significant challenge in the literature due to the neutrally charged amino-ethyl glycine backbone of PNA. Therefore, this represents a novel way of facilitating cellular uptake of PNA. This materials strategy represents the first direct polymerization of nucleic acids, and presents a novel method for arranging biological information on the nanoscale at high density in order to confer novel attributes.

  11. Synthesis and structures of bis-ligated zinc complexes supported by tridentate ketoimines that initiate L-lactide polymerization.

    PubMed

    Gerling, Kimberly A; Rezayee, Nomaan M; Rheingold, Arnold L; Green, David B; Fritsch, Joseph M

    2014-11-21

    Eight bis-ligated, homoleptic, zinc complexes were synthesized through the reaction of NNO Schiff base ketoimines bearing varying substituents with diethyl zinc in an inert atmosphere glovebox at room temperature and isolated in 62-95% yield. The complexes were characterized with (1)H, (13)C, and (19)F nuclear magnetic resonance spectroscopy, absorbance spectroscopy, high resolution mass spectrometry, elemental analysis, and single crystal X-ray crystallography. The complexes were shown to adopt distorted octahedral coordination geometry around zinc. The (1)H and (19)F NMR spectra of complexes 1-7 showed stable zinc coordination at 300 K while the effect of steric encumbrance and two trifluoromethyl groups in complex 8 was investigated with variable temperature NMR. The bis-ligated zinc complexes were effective initiators for the ring opening polymerization of L-lactide into poly-L-lactic acid (PLLA). With [L-lac]/[Zn complex] = 50, the bis-ligated zinc complexes yielded percentage conversion of 14-98% with polymerization times varying from 15-1440 min, where the longest reaction times were required when two trifluoromethyl groups were present. The addition of 4-fluorophenol co-catalyst resulted in up to a 5-fold increase in the percentage conversion in toluene solution and up to a 14-fold increase in bulk melt polymerization with reductions in the poly-dispersity index values for the isolated PLLA. Addition of 4-fluorophenol to complex 1 was studied with (1)H and (19)F NMR and appeared to yield an in situ generated zinc alkoxide complex.

  12. Phosphoniums as catalysts for metal-free polymerization: Synthesis of well-defined poly(propylene oxide)

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Liu, Quan; Ren, Haojun; Zhang, Nanjie; Li, Pengfei; Yang, Kang

    2017-11-01

    The anionic ring-opening polymerization of propylene oxide (PO) was initiated with glycerol and catalyzed by three new synthetic phosphonium salts, tetrakis (pyrrolidino) phosphonium (Py4P1+), tetrakis (piperidino) phosphonium (Pi4P1+), tetrakis (morpholino) phosphonium (Mo4P1+), and the known tetrakis [cyclohexyl (methyl) amino] phosphonium (Cy4P1+) and tetrakis [tris (dimethylamino) phosphonoamino] phosphazene (P5+). The effects of substituents on the polymerization behavior, especially the molecular weight and its distribution, degree of unsaturation, and the sequential structures of poly (propylene oxide) (PPO) were investigated. The structures of these catalysts and PPOs were characterized by FT-IR, 1H and 13C NMR, and GPC. The results indicate that Cy4P1+, Py4P1+, and Pi4P1+ have lower optimum reaction temperatures at 90, 70, and 70 °C, respectively, and are better than traditional catalysts KOH and double metal cyanide. PPO samples with high molecular weight, narrow polydispersity, and high functionality were accessible when catalyzed with Cy4P1+, Pi4P1+, and P5+ at the optimum temperature. Notably, Pi4P1+ formed unimodal distribution PPO with 9000 g/mol, 2.93 of functionality, and 0.008 mmol/g degree of unsaturation. Majority segments of PPO from five catalysts adopted the stereoregular head-to-tail structure, exhibiting excellent regularity.

  13. Poly(sophorolipid) structural variation: effects on biomaterial physical and biological properties.

    PubMed

    Peng, Yifeng; Munoz-Pinto, Dany J; Chen, Mingtao; Decatur, John; Hahn, Mariah; Gross, Richard A

    2014-11-10

    Diacetylated lactonic sophorolipids (polyLSL[6'Ac,6″Ac]), a biosurfactant, can be efficiently polymerized by ring-opening metathesis polymerization (ROMP). In this paper, enzyme-mediated chemical transformations are developed to regioselectively modify LSL[6'Ac,6″Ac] at sophorose primary hydroxyl positions (6' and 6″). The resulting modified LSLs were polymerized to expand polyLSL structural diversity, that is, polyLSL[6'OH,6″Ac], polyLSL[6'OH,6″OH], polyLSL[6'Bu,6″Ac], polyLSL[6'N3,6″Ac], and polyLSL[6'MA,6″Ac]. Controlled placement of azide and methacrylate at sophorolipid moieties enables the use of "click" reactions to introduce bioactive groups. Thermal analyses of polyLSLs showed that the acylation pattern at sugar moieties has a remarkable effect on chain stiffness and crystallinity. Films of polyLSL[6'Ac,6″Ac], polyLSL[6'OH,6″Ac], and polyLSL[6'Bu,6″Ac] exhibited nonbrittle behaviors with compressive elastic moduli ranging from ∼1.5 to ∼4.9 MPa. PolyLSLs were cytocompatible with human mesenchymal stem cells (h-MSCs), and examination of material-induced osteogenic cell lineage progression uncovered a dependence on polyLSL substitution at sophorose 6'-sites. This research reveals opportunities to regulate polyLSL physical properties and cell response behaviors by variation in substituents at polyLSL sophorolipid moieties.

  14. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers.

    PubMed

    Chen, Wei; Meng, Fenghua; Cheng, Ru; Deng, Chao; Feijen, Jan; Zhong, Zhiyuan

    2014-09-28

    Biodegradable polymeric nanocarriers are one of the most promising systems for targeted and controlled drug and gene delivery. They have shown several unique advantages such as excellent biocompatibility, prolonged circulation time, passive tumor targeting via the enhanced permeability and retention (EPR) effect, and degradation in vivo into nontoxic products after completing their tasks. The current biodegradable drug and gene delivery systems exhibit, however, typically low in vivo therapeutic efficacy, due to issues of low loading capacity, inadequate in vivo stability, premature cargo release, poor uptake by target cells, and slow release of therapeutics inside tumor cells. To overcome these problems, a variety of advanced drug and gene delivery systems has recently been designed and developed based on functional biodegradable polycarbonates and copolymers. Notably, polycarbonates and copolymers with diverse functionalities such as hydroxyl, carboxyl, amine, alkene, alkyne, halogen, azido, acryloyl, vinyl sulfone, pyridyldisulfide, and saccharide, could be readily obtained by controlled ring-opening polymerization. In this paper, we give an overview on design concepts and recent developments of functional polycarbonate-based nanocarriers including stimuli-sensitive, photo-crosslinkable, or active targeting polymeric micelles, polymersomes and polyplexes for enhanced drug and gene delivery in vitro and in vivo. These multifunctional biodegradable nanosystems might be eventually developed for safe and efficient cancer chemotherapy and gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Intramolecular addition of benzylic radicals onto ketenimines. Synthesis of 2-alkylindoles.

    PubMed

    Alajarín, Mateo; Vidal, Angel; Ortín, María-Mar

    2003-12-07

    The inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions. These intramolecular cyclizations provide a novel radical-mediated synthesis of 2-alkylindoles.

  16. Analyses and comparison of a novel, hybrid, multifunctional orthopedic composite and implant

    NASA Astrophysics Data System (ADS)

    Dicicco, Michael

    In the orthopedic/medical device industry, 2, 2' -bis-(4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (Bis-GMA)- and diurethanedimethacrylate (DUDMA)-based polymeric biomaterials have become well-known substitutes for polymethylmethacrylate (PMMA)- and ultra-high molecular weight polyethylene (UHMWPE)-based biomaterials, respectively. The development of these polymeric biomaterials cannot continue without direct comparison studies against currently marketed materials. The initiative for this research stems wholly from developing analytical methodologies that assist in qualifying novel biomaterials under development, by evaluating their chemical properties, performance, and safety. The goals of this research were: (i) Characterize the assay/quality of every resin component and quantify elution of extractable monomers from novel, DUDMA-based RHAKOSS(TM) implant, (ii) Determine degree of conversion (alpha) and rate of polymerization (Rp) for novel, Bis-GMA-based CORTOSS(TM) composite, (iii) Assess risk for radical-induced post-surgical cytotoxicity for CORTOSS, (iv) Determine if surface radical chemistries occur for sterilized RHAKOSS and assess its oxidative stability, and (v) Quantify antibiotic elution from antibiotic-impregnated CORTOSS and identify factors that control elution. The phenomena studied necessitated the utilization of several analytical spectroscopic techniques; fluorometry, differential scanning calorimetry (DSC), electron paramagnetic resonance (EPR), ultraviolet-visible (UV-VIS), attenuated total reflectance---Fourier-transform infrared (ATR-FTIR), and high performance liquid chromatography (HPLC). A battery of lateral chemical techniques were employed as well; including molecular derivatization/tagging, phase partitioning, spin-trapping, and thermal annealing. Results demonstrated that RHAKOSS monomer percent compositions were prepared according to formulations and monomer elution was virtually undetectable, serving as an empirical gauge to portend degree of polymerization (DOP). A high alpha was reported for CORTOSS and essentially all bifunctional monomers had at least one functional group polymerized, stressing low monomer elution potential. Regarding cytotoxicity, CORTOSS impeded further production of hydroxyl radicals (•OH), whereas RHAKOSS did not facilitate the Fenton reaction but displayed some chelating abilities. Residual radicals in RHAKOSS were easily terminated, thus not projected to form oxidative degradants. Additionally, significant antibiotic concentrations, over extended durations, eluted from CORTOSS in linear-type fashion, advocating a sustained therapeutic effect, and phase partitioning correlated antibiotic release to hydrophilicity. The incurred data comprehensively argues in favor of the excellent biocompatibility that CORTOSS and RHAKOSS inherently possess, and was definitive in rendering them as advanced biomaterials, possessing favorable chemical properties.

  17. Risk of Small Bowel Obstruction After Robot-Assisted vs Open Radical Prostatectomy.

    PubMed

    Loeb, Stacy; Meyer, Christian P; Krasnova, Anna; Curnyn, Caitlin; Reznor, Gally; Kibel, Adam S; Lepor, Herbert; Trinh, Quoc-Dien

    2016-12-01

    Whereas open radical prostatectomy is performed extraperitoneally, minimally invasive radical prostatectomy is typically performed within the peritoneal cavity. Our objective was to determine whether minimally invasive radical prostatectomy is associated with an increased risk of small bowel obstruction compared with open radical prostatectomy. In the U.S. Surveillance, Epidemiology and End Results (SEER)-Medicare database, we identified 14,147 men found to have prostate cancer from 2000 to 2008 treated by open (n = 10,954) or minimally invasive (n = 3193) radical prostatectomy. Multivariable Cox proportional hazard models were used to examine the impact of surgical approach on the diagnosis of small bowel obstruction, as well as the need for lysis of adhesions and exploratory laparotomy. During a median follow-up of 45 and 76 months, respectively, the cumulative incidence of small bowel obstruction was 3.7% for minimally invasive and 5.3% for open radical prostatectomy (p = 0.0005). Lysis of adhesions occurred in 1.1% of minimally invasive and 2.0% of open prostatectomy patients (p = 0.0003). On multivariable analysis, there was no significant difference between minimally invasive and open prostatectomy with respect to small bowel obstruction (HR 1.17, 95% CI 0.90, 1.52, p = 0.25) or lysis of adhesions (HR 0.87, 95% CI 0.50, 1.40, p = 0.57). Limitations of the study include the retrospective design and use of administrative claims data. Relative to open radical prostatectomy, minimally invasive radical prostatectomy is not associated with an increased risk of postoperative small bowel obstruction and lysis of adhesions.

  18. Hydroxyl radical induced transformation of phenylurea herbicides: A theoretical study

    NASA Astrophysics Data System (ADS)

    Mile, Viktória; Harsányi, Ildikó; Kovács, Krisztina; Földes, Tamás; Takács, Erzsébet; Wojnárovits, László

    2017-03-01

    Aromatic ring hydroxylation reactions occurring during radiolysis of aqueous solutions are studied on the example of phenylurea herbicides by Density Functional Theory calculations. The effect of the aqueous media is taken into account by using the Solvation Model Based on Density model. Hydroxyl radical adds to the ring because the activation free energies (0.4-47.2 kJ mol-1) are low and also the Gibbs free energies have high negative values ((-27.4) to (-5.9) kJ mol-1). According to the calculations in most of cases the ortho- and para-addition is preferred in agreement with the experimental results. In these reactions hydroxycyclohexadienyl type radicals form. In a second type reaction, when loss of chlorine atom takes place, OH/Cl substitution occurs without cyclohexadienyl type intermediate.

  19. Synthesis of Resveratrol Tetramers via a Stereoconvergent Radical Equilibrium

    PubMed Central

    Keylor, Mitchell H.; Matsuura, Bryan S.; Griesser, Markus; Chauvin, Jean-Philippe R.; Harding, Ryan A.; Kirillova, Mariia S.; Zhu, Xu; Fischer, Oliver J.; Pratt, Derek A.; Stephenson, Corey R. J.

    2017-01-01

    Persistent free radicals have become indispensable in the synthesis of organic materials by living radical polymerization. However, examples of their use in the synthesis of small molecules are rare. Herein, we report the application of persistent radical and quinone methide intermediates to the synthesis of the resveratrol tetramers nepalensinol B and vateriaphenol C. The spontaneous cleavage and reconstitution of exceptionally weak carbon-carbon bonds has enabled a stereoconvergent oxidative dimerization of racemic materials in a transformation that likely coincides with the biogenesis of these natural products. The efficient synthesis of higher-order oligomers of resveratrol will facilitate the biological studies necessary to elucidate their mechanism(s) of action. PMID:27940867

  20. Mononuclear salen-gallium complexes for iso-selective ring-opening polymerization (ROP) of rac-lactide.

    PubMed

    Specklin, David; Fliedel, Christophe; Hild, Frédéric; Mameri, Samir; Karmazin, Lydia; Bailly, Corinne; Dagorne, Samuel

    2017-10-03

    A series of mononuclear salen-supported gallium amido/alkoxide derivatives were prepared and structurally characterized and subsequently used as initiators in rac-lactide ring-opening polymerisation (ROP). The reaction of variously substituted salen ligands (1a-1f) with 0.5 equiv. of Ga 2 (NMe 2 ) 6 allowed the isolation of the corresponding (salen)Ga-NMe 2 chelates (2b-2d, 2f) via an amine elimination route, as poorly soluble compounds in common solvents. The (salen)Ga-OBn derivatives (3a-3e) may be readily accessed by an amine-elimination/alcoholysis sequence and the molecular structures of 3a, 3d and 3e were confirmed through X-ray crystallography diffraction analysis. The present (salen)Ga-X species may effectively mediate the iso-selective ROP of rac-LA in a controlled manner (P m up to 0.77 using a 1/1 2f/BnOH mixture as ROP initiator), with a ROP activity greatly dependent upon steric hindrance and geometrical constraints imposed by the variously substituted salen ligands. Based on the present study, salen ligands with limited steric hindrance and a certain degree of flexibility appear best suited for iso-selective ROP by (salen)Ga chelates. The salen-gallium complex 3a is also effective for the controlled ROP of ε-caprolactone (CL) and the production of PCL-b-PLA copolymers.

Top